
ology,

PHYSICAL REVIEW D 69, 114506 ~2004!
N to D electromagnetic transition form factors from lattice QCD
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The magnetic dipole, the electric quadrupole, and the Coulomb quadrupole amplitudes for the transition
gN→D are evaluated both in quenched lattice QCD atb56.0 and using two dynamical Wilson fermions
simulated atb55.6. The dipole transition form factor is accurately determined at several values of momentum
transfer. On the lattices studied in this work, the electric quadrupole amplitude is found to be nonzero, yielding
a negative value for the ratioREM of electric quadrupole to magnetic dipole amplitudes at three values of
momentum transfer.
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I. INTRODUCTION

Recent photoproduction experiments on the nucleon
Bates@1# and Jefferson Lab@2# have produced accurate me
surements on the ratios of electric and Coulomb quadrup
amplitudes to the magnetic dipole amplitude. Nonvanish
values for these ratios are thought to be connected w
nucleon deformation.

Deformation is a common phenomenon in nuclear a
atomic physics. Classically, the multiphoton coincidence
periment of taking a flash photograph or observing an i
minated object distinguishes a deformed dumbbell from
spherically symmetric sphere. Quantum mechanically, a m
tiphoton coincidence experiment could also determine th
J50 ground state of a diatomic molecule has a deform
shape. However, usually in electromagnetic probes of mic
scopic systems, we are constrained to make measurem
associated with one-photon exchange, corresponding
matrix element of a one-body operator. In the case of a
atomic molecule, the one-body charge density of theJ50
state is spherically symmetric and cannot reveal the defor
tion that is present in the system.

In many cases, however, when a nuclear or atomic sys
is well approximated by a deformed intrinsic state, it is s
possible to observe its deformation using a one-body elec
magnetic operator. We consider here the lowest order ele
multipole, the quadrupole moment. For an axially deform
object, the quadrupole moment in the body-fixed intrin
frame is given by

Q05E d3rr~r !~3z22r 2! ~1!

wherer(r ) is the charge density distribution. IfQ0 is posi-
tive, the object is prolate with the polar axis longer than
equatorial axis. In contrast, for an oblate object with the
lar axis shorter than the equatorial axis, the quadrupole
ment is negative. For collective rotation of the deformed
trinsic state @3#, the relation between the spectroscop
0556-2821/2004/69~11!/114506~18!/$22.50 69 1145
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quadrupole momentQ measured in the laboratory frame an
the intrinsic quadrupole momentQ0 in the body-fixed intrin-
sic frame is given by

Q5
3K22J~J11!

~J11!~2J13!
Q0 , ~2!

whereJ is the total angular momentum of the system in t
lab, K is the projection ofJ onto thez axis of the body-fixed
intrinsic frame, and we have considered the substate w
azimuthal quantum numberM5J. In the previous example
of the J50 diatomic molecule, althoughQ0Þ0, Eq. ~2!
yields Q50 so that the deformation, while present, is uno
servable. Similarly, in the case of a nucleon withJ51/2, Q
is zero althoughQ0 may not be. However, for theD with J
53/2, Eq. ~2! shows that a deformed intrinsic state can
detected by the spectroscopic quadrupole momentQ. TheE2
andC2 transition moments between theJ51/2 nucleon and
J53/2 nucleon have the same property of revealing the p
ence of deformation in the nucleon, theD, or both, and in
this work we calculate these moments in lattice QCD a
provide direct evidence for this deformation.

The question whether the nucleon is deformed from
spherical shape was raised 20 years ago@4# and it is still
unsettled. On the lattice, hadron wave functions obtained
density-density correlators can provide information about
deformation of particles of spin higher than 1/2@5#. This
approach yields no information about the deformation ab
the nucleon for the same reason as the vanishing of its s
troscopic quadrupole moment. This is why in lattice studi
as in experiment, one looks for quadrupole strength in
gN→D transition to extract information on the nucleon d
formation.

State-of-the-art lattice QCD calculations can yield mod
independent results for these matrix elements and pro
direct comparison with experiment. Spin-parity selecti
rules allow a magnetic dipoleM1, an electric quadrupole
E2, and a Coulomb quadrupoleC2 amplitude. If both the
nucleon and theD are spherical, thenE2 and C2 are ex-
©2004 The American Physical Society06-1
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pected to be zero. AlthoughM1 is indeed the dominant am
plitude, there is mounting experimental evidence ove
range of momentum transfer thatE2 and C2 are nonzero
@1,2#. A recent analysis of experimental results on the val
of E2/M1 andC2/M1 is shown to be incompatible with
spherical nucleon@7#.

Understanding the origin of a nonzero deformation is
important theoretical issue, which depends on QCD dyna
ics. The physical origin of nonzeroE2 andC2 amplitudes is
attributed to different mechanisms in the various models
the constituent nonrelativistic quark model the deformat
was originally explained by the color-magnetic hyperfine
terquark potential arising from one-gluon exchange and p
ducing aD-state admixture in the singlet-quark wave fun
tions of the nucleon and theD @4#. The deformation due to
the hyperfine interaction was also studied in ‘‘relativize
quark models. In both cases the deformation obtained, m
sured by the ratioE2/M1, is smaller than that found exper
mentally.

In the context of the constituent quark model, it was
cently proposed that elimination of gluonic and qua
antiquark pairs leads to two-body contributions in the cha
and vector current operators that produce a nonzero qua
pole moment in agreement with experiment using o
s-wave functions for the nucleon and theD @6#. In cloudy
nonrelativistic models@6# as well as in chiral or cloudy bag
models@8#, the deformation arises because of the asymme
pion cloud, whereas in soliton models it is thought to be d
to the nonlinear pion field interactions. Most of the resu
obtained in cloudy baryon models predict values sma
than the experimentally measured ones suggesting tha
deformation cannot be entirely attributed to the pion clo
This is in agreement with lattice results@5# where a nonzero
deformation is observed in the case of the rho meson eve
the quenched approximation where pion cloud contributi
are omitted.

In the present work we will compare quenched and
quenched results for the transition matrix elementgN→D in
order to examine sea quark contributions to the deforma
@9#. An early, pioneering lattice QCD study@10# with a lim-
ited number of quenched configurations yielded an incon
sive result for the ratio of the electric quadrupole to magne
dipole amplitudes, referred to as EMR orREM , since a zero
value could not be statistically excluded. However, the th
retical framework that it provided is still applicable, and w
will apply similar techniques to the present study making
number of improvements.~i! We use smearing technique
which very effectively filter the ground state so that the tim
independent physical observables can be extracted from
correlators.~ii ! The quenched calculation is done on tw
volumes at the same parameters to check the volume de
dence of the results.~iii ! Using a large quenched lattice a
lows us to simulate smaller quark masses, the lightest giv
a ratio of pion to rho mass of 50%.~iv! For each lattice
momentum transferq we calculate the multipoles in the re
frames both of the nucleon and of theD. These two different
choices of kinematics enable the evaluation of the transi
form factors at two different four-momentum transfers.~v!
We study dynamical quark effects by evaluating the fo
11450
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factors using the SESAM configurations@11# that were pro-
duced atb55.6 on a lattice of size 163332 using hybrid
Monte Carlo simulations for two degenerate flavors of d
namical Wilson fermions.~vi! In all cases we use more con
figurations to improve the statistics.

II. LATTICE MATRIX ELEMENTS

The current matrix element for thegN→D transition with
on-shell nucleon andD states and real or virtual photons
shown schematically in Fig. 1. It has the form@12#

^D~p8,s8!u j muN~p,s!&5 iA2

3S mDmN

ED~p8!EN~p!
D 1/2

3ūt~p8,s8!O tmu~p,s! ~3!

where p(s) and p8(s8) denote initial and final momenta
~spins! and ut(p8,s8) is a spin vector in the Rarita
Schwinger formalism.

The operatorO tm can be decomposed in terms of th
Sachs form factors as

O tm5GM1~q2!KM1
tm 1GE2~q2!KE2

tm1GC2~q2!KC2
tm , ~4!

where the magnetic dipoleGM1, the electric quadrupoleGE2,
and the Coulomb quadrupoleGC2, form factors depend on
the momentum transferq25(p82p)2. The kinematical
functionsKtm depend onp, p8, MN , andMD and their ex-
pressions are given in Ref.@12#. The reason for using this
parametrization for a lattice computation, as pointed out
Ref. @10#, is that the Sachs form factors do not depe
strongly on the difference between the nucleon and theD
mass. From the Sachs form factors one can evaluate the
E2/M1 referred to above as EMR orREM , and the analo-
gous ratio of the Coulomb quadrupole amplitude to the m
netic dipole amplitudeC2/M1, known as CMR orRSM ,
which are the target of recent experiments. Using the re
tions given in Refs.@12,13# the ratiosREM and RSM in the
rest frame of theD are obtained from the Sachs form facto
via

REM52
GE2~q2!

GM1~q2!
~5!

FIG. 1. Ng→D matrix element. The photon couples to one
the quarks in the nucleon at a fixed timet1 to produce aD.
6-2
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and

RSM52
uqu

2mD

GC2~q2!

GM1~q2!
. ~6!

The lattice construction of the appropriate matrix e
ments for the evaluation of these form factors follows clos
that of Ref.@10#. The computationally most demanding pa
in this evaluation is the calculation of the three-point cor
lation function that corresponds to the diagram shown in F
1 and it is given by

^Gs
D j mN~ t2 ,t1 ;p8,p;G!&

5 (
x2 , x1

exp~2 ip8•x2!exp@1 i ~p82p!•x1#Gba

3^VuT@xs
a~x2 ,t2! j m~x1 ,t1!x̄b~0,0!#uV&, ~7!

where an initial state with the quantum numbers of
nucleon is created at time zero and the final state with
quantum numbers of theD is annihilated at a later timet2.
The photon couples to one of the quarks in the nucleon a
intermediate timet1 producing a D. The corresponding
three-point correlation function for the transitionD→gN is
given by
f

11450
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^Gs
N jmD~ t2 ,t1 ;p8,p;G!&

5 (
x2 , x1

exp~2 ip8•x2!exp@1 i ~p82p!•x1#

3Gba^VuT@xa~x2 ,t2! j m~x1 ,t1!x̄s
b~0,0!#uV&. ~8!

For the spin-12 source, xp(x,t), and the spin-32 source,

xs
D1

(x,t), we use the interpolating fields

xp~x!5eabc@uTa~x!Cg5db~x!#uc~x!, ~9!

xs
D1

~x!5
1

A3
eabc$2@uTa~x!Cgsdb~x!#uc~x!

1@uTa~x!Cgsub~x!#dc~x!%, ~10!

and for the projection matrices for the Dirac indices

G i5
1

2 S s i 0

0 0D , G45
1

2 S I 0

0 0D . ~11!

For large Euclidean time separationst22t1@1 and t1
@1, the time dependence and field normalization consta
are canceled in the following ratio@10#:
Rs~ t2 ,t1 ;p8,p;G;m!5F ^Gs
D j mN~ t2 ,t1 ;p8,p;G!&^Gs

N jmD~ t2 ,t1 ;2p,2p8;G†!&

^d i j Gi j
DD~ t2 ,p8;G4!&^GNN~ t2 ,2p;G4!&

G 1/2

⇒
t22t1@1,t1@1

Ps~p8,p;G;m!, ~12!
ent

lues
s
l

d-
whereGNN andGi j
DD are the nucleon andD two-point func-

tions given, respectively, by

^GNN~ t,p;G!&5(
x

e2 ip•xGba^VuTxa~x,t !x̄b~0,0!uV&,

^Gst
DD~ t,p;G!&5(

x
e2 ip•xGba^VuTxs

a~x,t !x̄t
b~0,0!uV&.

~13!

The phase in Eq. ~12! is the same as that o

Gs
D j mN(t2 ,t1 ;p8,p) since formally we have

Ps~p8,p;G;m!5S ED1mD

ED
D 21/2S 11

q2

3mD
2 D 21/2

3S EN1mN

2EN
D 21/2^Gs

D j mN~ t2 ,t1 ;p8,p;G!&

ZNZDe2ED(t22t1)e2ENt1
.

~14!
We use the lattice conserved electromagnetic curr
j m(x) given by

j m~x!5(
f

Qfk f$c̄
f~x1m̂ !~11gm!Um†~x!c f~x!

2c̄ f~x!~12gm!Um~x!c f~x1m̂ !%, ~15!

symmetrized on sitex by taking j m(x)→@ j m(x)1 j m(x

2m̂)#/2, whereQf is the charge of a quark of flavorf andk f

is its hopping parameter.
In the nucleon laboratory framep50 and p85q. The

Sachs form factors can be extracted from the plateau va
of Ps(p8,p;G;m) for specific combinations of the matrice
G and theD vector indicess. The expressions for genera
momentum transferq are obtained using the standard Eucli
ean nonrelativistic representation for theg matrices @14#
with e123451. The kinematical functionsKtm in Euclidean
space are given by
6-3
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KM1
tm 52

3

~mD1mN!21Q2

~mD1mN!

2mN
i etmabpap8b,

KE2
tm52KM1

tm 16V21~Q2!
~mD1mN!

2mN

32ig5etlabpap8bemlgdpgp8d,

KC2
tm526V21~Q2!

~mD1mN!

2mN
ig5Qt~Q2Pm2Q•PQm!,

~16!

with V(Q2)5@(mD1mN)21Q2#@(mD2mN)21Q2# and Q
5q, whereQ45 iq0 is the lattice momentum transfer givin
Q252q2. By pa andp8 b we now denote Euclidean spac
momenta defined analogously toQm. The Rarita-Schwinger
spin sum for theD in Euclidean space is given by

(
s

us~p,s!ūt~p,s!5
2 ig•p1mD

2mD
F dst1

2pspt

3mD
2

2 i
psgt2ptgs

3mD
2

1

3
gsgtG ~17!

and the Dirac spin sum

(
s

u~p,s!ū~p,s!5
2 ig•p1mN

2mN
. ~18!

We generalize in what follows the expressions of R
@10# to allow momentum transfers in any spatial directio
By selecting the time component of the current theGC2 form
factor is extracted from

GC25C~q2!F 2mD

d lkq22qkql~112ED /mD!
GP l~q,0;iGk ;4!,

C~q2!5A3

2

4EDmN

mN1mD
S ED1mD

ED
D 1/2S 11

q2

3mD
2 D 1/2

,

~19!
11450
.
.

whereED5Ap821mD
2 and the indicesk andl denote spatial

directions. By selecting the spatial component of the curr
the GM1 andGE2 form factors are extracted from

GM15C~q2!es lk4
1

qk
Ps~q,0;iG4 ; l !

5C~q2!
1

~qk!22~ql !2 S qkP l~q,0;Gk ; l !

2qlPk~q,0;G l ;k!2
mD

ED
@qkPk~q,0;G l ; l !

2qlP l~q,0;Gk ;k!# D ~20!

and

GE25
C~q2!

3

1

~qk!22~ql !2

3S qkP l~q,0;Gk ; l !2qlPk~q,0;G l ;k!

1
mD

ED
@qkPk~q,0;G l ; l !2qlP l~q,0;Gk ;k!# D ~21!

providedqkÞql . If we consider a momentum transfer th
has zero component along the current direction, Eqs.~20!
and ~21! simplify to

S GM1

3GE2
D 5

C~q2!

qk S P l~q,0;Gk ; l !7
mD

ED
Pk~q,0;G l ; l ! D .

~22!

Another possibility is to extract the transition form facto
by using, instead ofRs , the ratio
Rs
(1)~ t2 ,t1 ;p8,p;G;m!5

^Gs
D j mN~ t2 ,t1 ;p8,p;G!&

^d i j Gi j
DD~ t2 ,p8;G4!&@^GNN~2t1 ,p;G4!&/^d i j Gi j

DD~2t1 ,p8;G4!&#1/2
, ~23!

or equivalently

Rs
(2)~ t2 ,t1 ;p8,p;G;m!5

^Gs
N jmD~ t2 ,t1 ;p8,p;G!&

^GNN~ t2 ,p8;G4!&@^d i j Gi j
DD~2t1 ,p;G4!&/^GNN~2t1 ,p8;G4!&#1/2

. ~24!
6-4
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In this work we choose the current along thez direction
and consider momentum transfers along thex axis. In par-
ticular we consider the lowest allowed lattice momentu
transferq5(2p/Na,0,0), wherea is the lattice spacing and
N the spatial lattice size, with the exception of the lar
quenched lattice, where we also consider momentum tran
q5(4p/Na,0,0). For our choice of the momentumq it is
reasonable to take in Eqs.~12!, ~23!, and~24! the more sym-
metric combination 3/2(G22

DD1G33
DD) instead of d i j Gi j

DD .

With this replacement the second square root involvingq2 in
the overall factorC(q2) given in Eq.~19! is absent. Using
the fact that the momentum transfer has a component on
the x direction Eqs.~19! and ~22! simplify to

G C2
(a)5C0

mD

q2

mD

ED
P1~q,0;2 iG1 ;4!, ~25!

G C2
(b)5C0

2mD

q2
P2~q,0;iG2 ;4!

5C0

2mD

q2
P3~q,0;iG3 ;4!, ~26!

and

G M1
(a) 5C0

1

uqu
P2~q,0;iG4 ;3!, ~27!

G M1
(b) 5C0

1

uqu S P3~q,0;G1 ;3!2
mD

ED
P1~q,0;G3 ;3! D ,

~28!

G E2
(a)5

C0

3

1

uqu ~2P3~q,0;G1 ;3!2P2~q,0;iG4 ;3!!,

~29!

G E2
(b)5

C0

3

1

uqu S P3~q,0;G1 ;3!1
mD

ED
P1~q,0;G3 ;3! D ,

~30!

whereC0 is obtained fromC(q2) given in Eq.~19! by omit-
ting the second square root@15#. When theD is produced at
rest, the factorsmD /ED in Eqs. ~25!, ~28!, and ~30! are ab-
sent and

C0→A3

2

4mNEN

mD1mN
AEN1mN

EN
.

The resulting formulas then agree with those given in R
@10#.

Smearing is essential for achieving ground state do
nance before the signal from the time correlators is lost in
noisy large time limit. We use the gauge invariant Wuppe
smearingd(x,t)→dsmear(x,t) at the source and the sink. W
smear the fermion interpolating fields according to@16,17#

dsmear~x,t !5(
z

F„x,z;U~ t !…d~z,t ! ~31!
11450
fer

in

f.

i-
e
l

with the gauge invariant smearing function constructed fr
the hopping matrixH:

F~x,z;U~ t !!5~11aH !n@x,z;U~ t !#, ~32!

where H„x,z;U(t)…5( i 51
3 @Ui(x,t)dx,y2 i1Ui

†(x
2 i ,t)dx,y1 i #. The parametersa54.0 andn550 are tuned so
as to optimize the overlap with the baryon states. Qu
propagators with a photon insertion are computed with
sequential source technique. Therefore for the three-p
functions we require two inversions with the second inv
sion having a momentum-dependent source. The seque
source technique requires that the photon couples to
quark at fixed timet1 which is chosen large enough so th
the nucleon andD ground states are identified. For the la
tices used here we know from the nucleon andD two-point
functions that fort1>5a the excited state contributions be
come negligible. We also make use of the equal weighting
the $U% and $U* % gauge configurations in the lattice actio
@18# and the parity symmetry of our correlators to impro
the plateau behavior of the reduced ratioPs(p8,p;G;m). For
implementation of this procedure we need an additional
quential propagator with the photon carrying momentu
2q. To see the improvement, we compare in Fig. 2 the
sults obtained when for each configuration we consider
photon carrying either momentumq or 2q to those obtained
for the photon with momentaq and 2q for equal statistics.
As can be seen, for large time separations, the quality of
plateau obtained for the reduced ratioPs(p8,p;G;m) is im-
proved when the equal reweighting of$U% and $U* % is
implemented, enabling us to fit over a larger range, far fr
the time insertion of the current. In all the results presen
here this benefit is utilized: thus for each configuration
sequential propagator is inverted twice, once with the pho
carrying momentumq and once carrying momentum2q.

FIG. 2. The ratioR2(t2 ,t1 ;q,0;iG4 ;3). Data with aphoton car-
rying momentumq and 2q averaged over 50 quenched configur
tions are denoted by the stars. Data with a photon carrying ei
positive or negativeq averaged over 100 configurations are sho
by the3 and1 symbols, respectively. These results are for a latt
of size 323364 atk50.1558. The current couples to the quark
t1 /a58.
6-5
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Unambiguous identification of the plateau region at la
time separations from the source outweighs the additio
costs.

The ratios given in Eqs.~12!, ~23!, and~24! provide three
ways for extracting the form factors. In Fig. 3 we compa
these three possibilities for evaluatingG M1

(a) . The plot illus-
trates the results for the unquenched case atk50.1565—a
similar behavior is observed in all cases. We consider
kinematically different cases: one where the nucleon has
momentum and therefore theD carries momentumq, and the
other where theD is produced at rest and therefore t
nucleon has momentum2q. What is clearly seen for both
kinematics is thatRs as given in Eq.~12! yields the best
plateau, which starts as early as two time slices away fr
the time where the current couples to the quark. In contr
the other two definitions require five time slices to sho
convergence to the same value. Evidently excited state
tributions come with the opposite sign in the matrix eleme
gN→D andD→gN canceling to a large extent in the rat
Rs . The same conclusion is reached forG M1

(b) extracted from

FIG. 3. G M1
(a) in units of natural magnetons using the rati

Rs (3), Rs
(1) (l), andRs

(2) ~1! with the nucleon at rest~top! and
with theD at rest~bottom! for dynamical quarks atk50.1565. The
current couples to the quark att1 /a56.
11450
e
al
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Eq. ~28! ~without themD /ED factor whenD is at rest!. In
Fig. 4 we show the analogous results forG E2

(a) extracted from
Eq. ~29!. Again the ratioRs yields an earlier plateau, which
in this case is indispensable since the signal becomes
noisy beyond time separationst12t2>6/a. Equation ~30!
provides an alternative way to extract the electric quadrup
form factor. However, the plateaus for the reduced rat
involved in the extraction ofG E2

(b) deteriorate when the
nucleon is at rest leading to unreliable results. When theD is
at rest, Eq.~30! produces a good plateau for the ratioRs ,
yielding results forG E2

(b) consistent with those forG E2
(a) .

Therefore in what follows Eq.~30! will be used only when
theD is produced at rest to check consistency with the val
obtained from Eq.~29!. The ratio REM is evaluated using
G E2

(a) andG M1
(a) since this is applicable for both types of kine

matics. The systematic errors and noise become worse
GC2. When theD is produced in motion the ratioRs cannot
be used since the correlatorsGs

D jN and Gs
N jD do not agree

even in sign for time separationst22t1<11/a, and after that
they are too noisy to be usable. This is seen in Fig. 5 wh

FIG. 4. G E2
(a) in units of natural magnetons extracted from E

~29! using the ratiosRs (3), Rs
(1) (l), and Rs

(2) ~1! with the
nucleon at rest~top! and with D at rest ~bottom! for dynam-
ical quarks atk50.1565. The current couples to the quark
t1 /a56.
6-6
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we show results forG C2
(a) . The other two combinations tha

yield G C2
(b) show at best equally poor results. When theD is

produced at rest the signs are consistent and the ratioRs ,
although noisy, can be used to look for a plateau. In w
follows we will attempt to fit over the plateau range only f
the case when theD is at rest in order to provide an estima
on GC2 wherever possible.

In the case of the dominant amplitudeM1 the definitions
G M1

(a) andG M1
(b) can be used for both our kinematics and t

results forG M1
(a) andG M1

(b) are directly compared in Fig. 6 fo
the SESAM lattice atk50.1565 at momentum transferq
5(2p/16a,0,0) both when theD is produced at rest an
when the nucleon is at rest. In theD rest frameG M1

(a) andG M1
(b)

are in perfect agreement with a plateau region that sets i
early as two time slices from the insertion of the curre
When theD carries momentum,G M1

(a) andG M1
(b) agree for time

separationst22t1>4/a, suggesting that contamination du
to excited states is more severe when theD is produced in
motion.

FIG. 5. G C2
(a) in units of natural magnetons extracted from E

~25! using the ratiosRs (3), Rs
(1) (l), and Rs

(2) ~1! with the
nucleon at rest~top! and with D at rest ~bottom! for dynamical
quarks at k50.1565. The current couples to the quark
t1 /a56.
11450
t

as
.

Figures 7 and 8 show the corresponding results forGE2
andGC2. For both form factors the data become very no
for time separationst22t1>7/a. However, for the case o
the electric quadrupole we have a plateau region extend
over four time slices, enabling us to extract a value forG E2

(a)

both forD static and forD carrying a momentum. When th
D is produced at rest the reduced ratio needed for the ext
tion of G E2

(b) shows similar plateau behavior as that obtain
for G E2

(a) whereas, as we already mentioned, when theD is
not at rest this correlator is too noisy to be useful especi
for the small quenched and unquenched lattices. The ide
fication of the plateau region becomes particularly diffic
for GC2. In Fig. 8 we show results for the ratioRs only for
the case when theD is produced at rest since, as we ha

t

FIG. 6. GM1 in units of natural magnetons (e/2mN) for the un-
quenched theory on a lattice of size 163332 at k50.1565 and
momentum transferq5(2p/16a,0,0). Filled triangles and crosse
denote results forG M1

(a) @Eq. ~27!# andG M1
(b) @Eq. ~28!#, respectively,

when the nucleon is at rest. The3 ’s and stars denote, respectivel
results forG M1

(a) andG M1
(b) when theD is produced at rest. They ar

shifted to the left and right of the results obtained when the nucl
is at rest for clarity. The photon is injected att1 /a56 as shown by
the arrow.

FIG. 7. GE2 in natural magnetons for the unquenched theory
a lattice of size 163332 at k50.1565 and momentum transferq
5(2p/16a,0,0). Filled triangles denote the results forG E2

(a) when
the nucleon is at rest. The3 ’s and stars denote, respectively, resu
for G E2

(a) andG E2
(b) when theD is produced at rest. The rest of th

notation is the same as that of Fig. 6.
6-7
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already discussed, when theD has nonzero momentum th
three-point functions fluctuate in sign, making the ratioRs

unusable. From Fig. 8 it can be seen that the results obta
for G C2

(a) , involving matrix elements with theD vector index
s in the same direction as that of the momentum trans
have overall smaller statistical errors as compared to th
for G C2

(b) . In fact, for most cases, the ratioRs from Eq. ~26!

FIG. 8. GC2 in natural magnetons for the unquenched theory
a lattice of size 163332 at k50.1565 and momentum transferq
5(2p/16a,0,0). We show only results for theD at rest. The3 ’s
denote the results forG C2

(a) @without the factormD /ED in Eq. ~25!#;
stars and diamonds denote results forG C2

(b) using Eq.~26! with theD
vector indexs52 ands53, respectively. The rest of the notatio
is the same as that of Fig. 6.
11450
ed
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can be determined only for small time separationst22t1,
insufficient to neglect contributions from excited state
Therefore in what follows we will mostly use Eq.~25! to
estimateGC2.

The behavior of the transition form factors show
in Figs. 6, 7, and 8 for the SESAM lattice atk50.1565
is typical and it is observed for the other lattices andk
values.

III. RESULTS

The quenched calculation of the transition form factors
carried out atb56.0 using lattices of size 163332 and 323

364. For the unquenched calculation we use the SES
configurations atb55.6 on a lattice of size 163332. We use
Wilson fermions with hopping parametersk given in Table I
where we also list the values of the ratio of the pion mass
the rho mass. For all configurations, the number of which
given in Table I, we double the statistics in performing t
calculation both forq and for2q.

To set the lattice spacinga in the quenched theory one ca
use the well-known value of the string tension. Howev
since we want to compare quenched and unquenched re
we need a determination that is applicable in both cas
Since we are calculating matrix elements in the baryon se
it is more appropriate to use the value extracted from
nucleon mass in the chiral limit to set the scale. In t
quenched case the value extracted using the nucleon ma
a2152.04(2) GeV (a50.098 fm) and in the unquenche
a2151.88(7) GeV (a50.106 fm) with a systematic erro

n

. The
the
TABLE I. k values and momentum transfers used for the evaluation of the transition form factors
ratio of the rho mass to the pion mass at thesek values is also given. We used the nucleon mass to set
scale.

Q2 (GeV2)

k mp /mr mp (GeV) No. of Configurationsp at rest D at rest

Quenched:b56.0, 163332, q250.64 GeV2

0.57 0.64 0.1530 0.84 0.877~3! 100
0.55 0.64 0.1540 0.78 0.736~2! 100
0.50 0.64 0.1550 0.70 0.604~2! 100
0.40 0.64 kc50.1571 0 0 Extrapolated

Quenched:b56.0, 323364, q250.64 GeV2

0.50 0.64 0.1550 0.69 0.598~4! 100

Quenched:b56.0, 323364, q250.16 GeV2

0.13 0.16 0.1554 0.64 0.537~4! 100
0.10 0.15 0.1558 0.59 0.469~4! 100
0.057 0.13 0.1562 0.50 0.392~4! 100
0.064 0.13 kc50.1571 0 0 Extrapolated

Unquenched:b55.6, 163332, q250.54 GeV2

0.48 0.54 0.1560 0.83 0.837~6! 196
0.48 0.54 0.1565 0.81 0.755~10! 200
0.45 0.54 0.1570 0.76 0.655~9! 201
0.45 0.54 0.1575 0.68 0.527~8! 200
0.40 0.53 kc50.1585 0 0 Extrapolated
6-8
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TABLE II. The plateau values ofG M1
(a) , G E2

(a) in units ofe/2mN andREM in percent for different fit ranges
are given together with thex2/DOF for the quenched and SESAM lattices in the rest frame of theD. G C2

(a) is
also given for the cases where a plateau can be identified. We indicate the value that we adopted
asterisk.

163332 quenched 163332 unquenched 323364 quenched

k50.153 k50.1560 k50.1554

GM1 t i /a tf /a x2/DOF GM1 t i /a tf /a x2/DOF GM1 t i /a tf /a x2/DOF
2.25~6! 8 12 0.1 2.35~5! 8 12 0.2 2.98~6! 10 16 1.9
2.25~7!* 8 16 0.2 2.36~5!* 8 16 0.5 3.00~7! 10 20 1.6
2.28~7! 10 12 0.1 2.37~6! 10 12 0.002 3.07~8! 12 16 0.4
2.26~9! 10 16 0.2 2.39~7! 10 16 0.9 3.09~9!* 12 20 0.5
GE2 t i /a tf /a x2/DOF GE2 t i /a tf /a x2/DOF GE2 t i /a tf /a x2/DOF
0.036~10! 8 12 0.3 0.004~7! 8 12 2 0.049~15!* 10 16 0.5
0.038~11!* 8 16 0.4 0.003~7! 8 16 1.4 0.046~16! 10 20 1.1
0.037~15! 10 12 0.6 20.010~11! 10 12 1.0 0.047~23! 12 16 0.8
0.042~17! 10 16 0.5 20.012~13!* 10 16 0.5 0.038~26! 12 20 1.2
REM ti /a tf /a x2/DOF REM ti /a tf /a x2/DOF REM ti /a tf /a x2/DOF
21.6~5! 8 12 0.3 20.12~29! 8 12 2.0 21.6~5!* 10 16 0.6
21.7~5!* 8 16 0.4 20.13~32! 8 16 1.4 21.6~5! 10 18 1.0
21.8~6! 9 16 0.4 0.01~41! 9 16 1.0 21.5~5! 10 20 1.2
21.6~6! 10 12 0.6 0.44~48! 10 12 1.0 21.5~8! 12 16 0.8
21.8~7! 10 16 0.5 0.52~56!* 10 16 0.5 21.2~8! 12 20 1.3
GC2 t i /a tf /a x2/DOF GC2 t i /a tf /a x2/DOF GC2 t i /a tf x2/DOF

0.18~7! 10 16 0.3
0.12~13!* 12 16 0.1

k50.155 k50.1570 k50.1562

GM1 t i /a tf /a x2/DOF GM1 t i /a tf /a x2/DOF GM1 t i /a tf /a x2/DOF
1.94~8! 8 12 0.4 1.92~5! 8 12 0.2 2.71~9! 10 16 1.1
1.92~9! 8 16 0.9 1.91~7!* 8 16 0.1 2.72~9! 10 20 1.2
1.95~10!* 9 15 0.8 1.93~8! 9 16 0.3 2.82~13! 12 16 0.2
2.01~12! 10 12 0.02 1.95~9! 10 12 0.2 2.83~13!* 12 18 0.3
1.94~13! 10 16 1.1 1.94~10! 10 16 0.1 2.84~14! 12 20 0.6
GE2 t i /a tf /a x2/DOF GE2 t i /a tf /a x2/DOF GE2 t i /a tf /a x2/DOF
0.074~24! 8 12 0.3 0.022~9! 8 12 0.2 0.077~24!* 10 16 0.5
0.072~25! 8 16 0.3 0.023~10! 8 16 0.4 0.075~25! 10 20 0.8
0.078~33!* 9 15 0.3 0.023~13!* 9 15 0.2 0.105~47! 12 16 0.2
0.077~37! 10 12 0.2 0.027~14! 10 12 0.1 0.097~50! 12 18 0.6
0.071~38! 10 16 0.3 0.029~16! 10 16 0.4 0.093~50! 12 20 0.8
REM ti /a tf /a x2/DOF REM ti /a tf /a x2/DOF REM ti /a tf /a x2/DOF
23.9~1.3! 8 12 0.2 21.1~5! 8 12 0.2 22.9~9!* 10 16 0.4
23.8~1.3!* 8 16 0.2 21.2~5! 8 16 0.4 22.8~10! 10 20 0.8
24.0~1.7! 9 16 0.2 21.2~7!* 9 16 0.4 23.7~1.7! 12 16 0.3
23.8~1.9! 10 12 0.2 21.4~7! 10 12 0.2 23.4~1.7! 12 18 0.6
23.6~1.9! 10 16 0.2 21.5~9! 10 16 0.4 23.2~1.8! 12 20 0.9
GC2 t i /a tf /a x2/DOF GC2 t i /a tf /a x2/DOF GC2 t i /a tf /a x2/DOF

0.11~3! 8 12 0.2 0.25~9! 10 15 0.2
0.11~3!* 8 15 0.3
0.12~5! 10 12 0.4 0.17~21!* 12 15 0.1
0.13~5! 10 15 0.3
l
a

of

elds
ld
of about 15%@11# coming from the choice of the chira
extrapolationAnsatz. We note that if one uses the rho mass
the chiral limit one obtainsa2152.3 GeV (a50.087 fm)
for both the quenched and the unquenched theory@11,19,20#,
11450
t
with a systematic error of about 10% due to the choice
fitting range and chiral extrapolation ansatz@19#. Therefore
using the nucleon or the rho mass to set the scale yi
results fora within the systematic uncertainties. We wou
6-9
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like to stress here that in the ratiosREM andRSM , which are
the experimentally measured quantities, the lattice spa
does not explicitly enter and therefore a precise determ
tion of a is less crucial here than in other studies. In Tabl
we use the value fora obtained from the nucleon mass
convert the momentum transferq at which the transition mo-
ments are evaluated to physical units. The lattice fo
momentum transferQ2 depends on thek values through the
nucleon andD masses. These values are given in Table I.
already mentioned we consider two kinematically differe
cases, one with theD being at rest and the other with th
nucleon at rest. For allk values, includingkc , for the case
when theD is produced at rest the variation inQ2 is negli-
gible. For the case when the nucleon is at rest the variatio

FIG. 9. G M1
(a) , G E2

(a) in units of natural magnetons an
2G E2

(a)/G M1
(a) in the quenched theory for lattices of size 163332

(3 symbols! and 323364 ~stars! at k50.155 and momentum trans
fer q5(2p/16a,0,0). For this comparison the data for the lar
lattice are shifted by two time slices to the left so that the coupl
of the photon to the quark occurs at the same time point on
graph. The dashed and solid lines are the plateau values fo
small and larger lattices, respectively.
11450
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Q2 over the range ofk values considered here is sizable,
particular whenq5(2p/32a,0,0) whereQ2 changes by a
factor of 2. We will come back to this point in Sec. IV whe
we discuss the chiral extrapolation of the results. In all
evaluations we takeu and d quarks of the same mass. Th
current couples to the quark at time slicet156a for the
lattices of size 163332 and att158a for the lattice of size
323364.

To extract a reliable value for the form factors we ident
the best plateau region having the largest possible range
ensure that changing the fit range within this plateau reg
produces results that remain within statistical errors of e
other. In Table II we give the variation of the mean valu
from changing the fit range of the plateaus for two repres
tativek values for each lattice in the rest frame of theD. The
quality of the plateaus and best fit ranges for the case w
the nucleon is at rest is displayed in Figs. 10 and 11 forGM1
and in Fig. 12 forGE2. In Fig. 13 we display the plateaus fo

g
e
he

FIG. 10. G M1
(a) at momentum transferq5(2p/16a,0,0) in the

rest frame of the nucleon. The three upper graphs on the left s
the quenched results for the lattice of size 163332 at k50.153,
0.154, and 0.155. The lowest graph on the left shows quenc
results for the lattice of size 323364. On the right we show the
unquenched results atk50.1560, 0.1565, 0.1570, and 0.1575. T
photon couples to the quark att1 /a56 for the small lattices and a
t1 /a58 for the large lattice as shown by the arrow. The dash
lines show the fit range and bounds on the plateau value obtaine
jackknife analysis.
6-10



um
w

b
e

ob

th
e
r

e
ic

th
c
ea
y
m
th
o
o
r

nce
the

s
us

ed
the
lts
in

,
e

r

es
the
o-

r-

un-
imi-

2
an

ow
n

N TO D ELECTROMAGNETIC TRANSITION FORM FACTORS . . . PHYSICAL REVIEW D 69, 114506 ~2004!
the large quenched lattice forGE2 in the rest frame of theD
in order to have one case of direct comparison to the n
bers chosen for the best plateau in Table II. In Fig. 14
show the plateaus and best fit ranges forREM in the rest
frame of the nucleon. From the plateau values given in Ta
II it can be seen that the dependence of the results on th
ranges is, in all cases, well within the statistical errors
tained from jackknife analysis.

In order to access finite volume effects we calculate
transition form factors in the quenched theory on two lattic
of size 163332 and 323364 at the same momentum transfe
We show the results forGM1 , GE2, and the ratioGE2 /GM1 in
Fig. 9. The data forGM1 obtained on the large volume li
systematically below the ones obtained on the small latt
The results forGE2 as well as for the ratioGE2 /GM1 have
overlapping errors. On the two volumes, the difference in
plateau values is smallest in the ratio since volume effe
tend to cancel in numerator and denominator. The plat
values forGM1 given in Table III are systematically lower b
10–15 % on the larger lattice. Therefore there is a volu
correction to the results obtained on the small lattices of
order of 10%, which is comparable to the statistical err
The results obtained on the larger lattice have negligible v
ume dependence if the volume correction scales in inve

FIG. 11. G M1
(a) for the quenched theory on a lattice of size 33

364 atk50.1554, 0.1558, and 0.1562 with the nucleon at rest
for momentum transferq52p/32a. The photon couples to the
quark att1 /a58 as indicated by the arrow. The dashed lines sh
the fit range and bounds on the plateau value obtained by jackk
analysis.
11450
-
e

le
fit
-

e
s
.

e.

e
ts
u

e
e

r.
l-
se

proportion to the volume. ForGE2 and the ratioGE /GM1,
which carry larger statistical errors, the volume depende
is harder to access since the difference in the values for
two volumes is well within the statistical errors.

The values forGM1 extracted from the fits to the plateau
are collected in Table III. The overall quality of the platea
as well as the best fit range chosen for eachk value can be
seen in Fig. 10 forq5(2p/16a,0,0) and in Fig. 11 forq
5(2p/32a,0,0) for both the quenched and the unquench
theory. The larger time extension of the lattice improves
identification of the plateau region, yielding reliable resu
for GM1 at the lighter quark masses. From the values given
Table III we conclude that, when theD is produced at rest
the definitionsG M1

(a) or G M1
(b) yield the same values. The cas

where theD carries momentumq along thex directionG M1
(b) ,

which is extracted from matrix elements for which theD
vector index is in thex direction, yields consistently large
values than those obtained fromG M1

(a) . This difference in the
values ofG M1

(a) andG M1
(b) is volume independent and increas

from about 6% for the heavier quarks to about 15% for
lighter ones. It is also independent of the value of the m
mentum carried by theD. It would be interesting to allow
momentum transfers in all directions to check if this diffe
ence will be reduced and also use anO(a) improved Dirac
operator to check whether it is due to finitea effects.

To look for sea quark effects on the value ofGM1 we
compare the quenched results on the small lattice to the
quenched results using the SESAM configurations at a s

d

ife

FIG. 12. G E2
(a) . The notation is as in Fig. 10.
6-11
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lar ratio of the pion mass to the rho mass. From the value
pion to rho mass ratios given in Table I one thus compa
quenched results atk50.153, 0.154, and 0.155 to the un
quenched results atk50.1560, 0.1570, and 0.1575, respe
tively. Unquenching leads to a stronger quark mass dep
dence, increasing the value ofGM1 at the heaviest quark mas
and reducing it at the two lighter quark masses.

In Fig. 12 we show the quenched and unquenched res
for G E2

(a) at q5(2p/16a,0,0) in the lab frame of the nucleon
The plateau region is limited to a few time slices for t
quenched lattice, whereas for the SESAM lattice for tw
the statistics the fits can be extended over a larger time
terval. For a staticD both G E2

(a) and G E2
(b) show a similar

behavior and the best plateau fit ranges are given, forG E2
(a) ,

in Table II for representativek values. As we already men
tioned, although the central value forGE2 decreases on goin
to the larger lattice, the observed decrease is well within
statistics. Similarly, unquenching systematically reduces
value ofGE2. However, with our statistics this reduction r
mains within errors, for the threek values that correspond t
similar ratios of pion to rho mass. Plateau identification i
proves for the large lattice as seen in Fig. 12, where
display results atk50.155 for both the large and sma
quenched lattices at equal momentum transfer. This impro
ment is also seen in Fig. 13, where we show results for
large quenched lattice atq5(2p/32a,0,0), even though
lighter quarks are used. Here part of the noise reductio
due to having a smaller value of the momentum trans
This enables us to check the stability of our fits by chang
the fit range as given in Table II.

FIG. 13. G E2
(a) for D at rest. The notation is as in Fig. 11.
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Our lattice results for the ratio2G E2
(a)/G M1

(a) are displayed
for the quenched and the unquenched theory in Fig. 14 in
rest frame of the nucleon. The general trend is that this r
becomes more negative as we approach the chiral limit.
plateau values seen in the figure and given in Table III g
no indication of an increase in this ratio as we unquen
This may mean that pion cloud contributions, expected
drive this ratio more negative, are suppressed at these l
quark masses. However, one must keep in mind that pa
the pion cloud is taken into account in the quenched the
since using relativistic quarks includes backward propa
tion in time and thus effectively pionic contributions. A stud
with lighter pions is required in order to assess the imp
tance of pion contributions due to sea quarks on the valu
this ratio and thus on nucleon deformation.

Finally, in Fig. 15 we show the results forG C2
(a) with D

static for the large quenched lattice for which the ratioRs

can be obtained for long enough time separationst22t1 to
allow plateau identification. Although an evaluation ofG C2

(a)

is also carried out for the SESAM configurations, a lar

FIG. 14. The ratio2G E2
(a)/G M1

(a) in the lab frame of the nucleon
The three upper graphs on the left show results for the quenc
theory on a lattice of size 163332 for q5(2p/16a,0,0) at k
50.153, 0.154, 0.155 and the lowest shows results for a lattic
size 323364 for the same value ofq at k50.155. On the right we
show results for the SESAM configurations atk50.1560, 0.1565,
0.1570, and 0.1575 forq5(2p/16a,0,0). The current couples to
the quark at timet1 /a56 for the lattices of temporal size 32a and
at t1 /a58 for the lattice of temporal size 64a, as shown by the
arrow.
6-12
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TABLE III. Results forGM1 , GE2 in units of natural magnetons (e/2mN) and for the ratio2GE2 /GM1.

p at rest D at rest p at rest D at rest p at rest D at rest D at rest
k G M1

(a) G M1
(b) G M1

(a) G M1
(b) G E2

(a) G E2
(a) G E2

(b) REM ~%! G C2
(a)

Quenched:b56.0, 163332, q5(2p/16a,0,0)
0.153 2.37~7! 2.52~7! 2.25~7! 2.26~7! 0.046~13! 0.038~11! 0.035~12! 21.8~8! 21.7~5!

0.154 2.24~8! 2.41~9! 2.12~8! 2.14~8! 0.054~19! 0.054~19! 0.045~18! 22.4~9! 22.3~7!

0.155 2.15~14! 2.27~11! 1.95~10! 1.99~10! 0.068~28! 0.078~33! 0.071~24! 23.3~1.4! 23.8~1.3!
Quenched:b56.0, 323364, q5(2p/16a,0,0)

0.1550 1.87~10! 1.99~10! 1.78~7! 1.76~7! 0.048~20! 0.049~40! 0.056~41! 22.6~7! 20.95~48!

Quenched:b56.0, 323364, q5(2p/32a,0,0)
0.1554 3.24~10! 3.44~10! 3.09~9! 3.12~9! 0.073~30! 0.049~15! 0.049~16! 22.2~9! 21.6~5! 0.12~13!

0.1558 3.11~11! 3.35~10! 2.97~11! 3.00~11! 0.079~23! 0.059~18! 0.057~18! 23.0~1.2! 22.1~6! 0.12~15!

0.1562 2.96~13! 3.22~12! 2.83~13! 2.84~14! 0.131~53! 0.077~24! 0.075~24! 24.1~2.0! 22.9~9! 0.17~21!

Nf52: b55.6,163332, q5(2p/16a,0,0)
0.1560 2.51~6! 2.65~6! 2.36~5! 2.36~5! 0.031~8! 20.012~13! 20.011~12! 21.1~4! 0.52~56! —
0.1565 2.34~8! 2.52~7! 2.13~6! 2.15~6! 0.035~10! 0.020~11! 0.025~9! 21.3~5! 20.7~5! 0.11~3!

0.1570 2.03~8! 2.18~9! 1.91~7! 1.90~7! 0.033~12! 0.023~13! 0.027~10! 21.3~7! 21.2~7! 0.11~3!

0.1575 2.01~7! 2.29~8! 1.73~6! 1.72~7! 0.070~17! 0.021~16! 0.025~16! 23.5~9! 21.2~9! 0.08~3!
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enough plateau range could not be identified for allk values.
Poor plateau identification leading to a limited fit range m
introduce systematic errors that are not included in the er
of the extracted values given in Table III. However, for t
cases where we can fit over four time slices far enough fr
the time of the current insertion the mean value ofG C2

(a) is
positive at allk values. Therefore, even though the syste

FIG. 15. G C2
(a) in the rest frame of theD. The notation is as in

Fig. 11.
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atic errors are largest for this form factor, which means t
the jackknife errors given in Table III provide an underes
mation of the actual error, our lattice results favor a negat
value for the ratio2GC2 /GM1 in agreement with experiment

IV. CHIRAL EXTRAPOLATIONS

In order to obtain physical results we need to extrapol
the lattice data to the chiral limit. Chiral perturbation theo
has been applied to calculate the transition form factors@13#
but the range of validity is limited to very small quar
masses and very low momentum transfers and therefore
annot be used in the current analysis.1 Since the nucleon or
the D carry a finite momentum we expect chiral logs th
appear at next-to-leading order in chiral perturbation the
to be suppressed for the momentum transfers studied in
work. Therefore a behavior proportional to the pion ma
squared should be appropriate all the way to very near
chiral limit. The linear dependence of our results on the p
massmp squared is seen from Figs. 16, 17, and 18. T
results shown in these figures are for the kinematical c
where theD is stationary andQ2 remains almost unchange
as the pion mass approaches the chiral limit. The errors
the lattice data are obtained by jackknife analysis and
purely statistical. Given the fact that we have results only
three values ofk in the quenched case and four in the u
quenched case a linear fit is the best option we have. For
quenched calculation the error on the extrapolated valu
the chiral limit that we quote in Table IV is obtained b
doing a complete jackknife analysis for the threek values. In

1After the completion of this work, chiral perturbation theory w
also applied in the quenched case up to next to leading orde
Arndt and Tiburzi@25#. The main conclusion of this work is tha
GM1 andGE2 depend logarithmically on the pion mass squared, a
the full theory.
6-13
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the unquenched case, configurations at each quark mas
obtained from different Monte Carlo simulations, and a st
dard x2-minimization procedure, which assumes uncor
lated data points at each quark mass, can be applied.

Extrapolating linearly in mp
2 , we obtain for both

quenched and unquenched lattices very good fits forGM1,
which is the most accurately determined quantity. All t
data points fall nicely on a straight line even in the u
quenched case, where the data at different quark masse
uncorrelated since they are obtained using a different se
configurations. A linearAnsatzalso fits well the quenched
results forGE2 andREM as can be seen in Figs. 16, 17, a
18. For the corresponding unquenched results, althoug
linearAnsatzstill provides a good fit, giving ax2 per degree
of freedom51.1 for GE2 and x2/DOF50.6 for REM , the
unquenched results forGE2 andREM show very weak mass
dependence at the three lightest quark masses. Chiral pe
bation theory suggests a similar mass dependence forGE2 as
that for GM1. An unquenched calculation with higher stati
tics on a larger lattice to avoid finite size effects that, es
cially at the lightest quark mass (k50.1575), can be signifi-
cant is called for to check this mass dependence. Given
weak mass dependence, we also fitGE2 and REM to a con-
stant which gives a lower value forGE2 and the absolute
magnitude ofREM at the chiral limit. For comparison we
include also for the quenched results the value obtained

FIG. 16. Top,G M1
(a) ; middle,G E2

(a) ; and bottom, EMR in % ver-
susmp

2 in lattice units in the rest frame of theD for the quenched
163332 lattice. The dashed line is fitted toa1bmp

2 and the dash-
dotted line to a constant with the chiral value obtained shown w
a filled square and star for the twoAnsätze, respectively.
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FIG. 17. The same as in Fig. 16 but for the unquenched the

FIG. 18. The same as in Fig. 16 but for the quenched 323364
lattice.
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TABLE IV. Results for GM1 , GE2 in units of e/2mN and for the ratioREM52GE2 /GM1 in percent
extrapolated to the chiral limit. All errors given are statistical. The last column gives the prediction forREM

in percent obtained within the SL model@21# where for the quenched case we quote their values without p
cloud contributions and for the unquenched theory we give their fully dressed results for the case wh
D is produced at rest. In the last two columns we give the experimental results at similar values ofQ2.

Q2 (GeV2) G M1
(a) G E2

(a) REM

Quenched QCD SL
p at rest 0.40 24.4~1.7!
D at rest 0.64 1.71~14! 0.104~48! 24.8~1.8! 21.3
D at rest 0.13 2.56~20! 0.108~36! 24.1~1.4! 21.3
p at rest 0.06 25.9~3.0!

Unquenched QCD SL
D at rest 0.53 1.29~10! 0.052~24! 23.1~1.3! 22.7
p at rest 0.40 23.7~1.2!

Experimental results
0.126 22.0~2!~2.0! @1#

0.40 23.4~4!~4! @2#

0.52 21.6~4!~4! @2#
n
d

ith
th

ned
FIG. 19. The EMR ratio in % in the rest frame of the nucleo
Top for the quenched 163332 lattice, middle for the unquenche
theory, and bottom for the quenched 323364 lattice. The dashed
line is fitted toa1bmp

2 and the dash-dotted line to a constant w
the chiral value obtained shown with a filled square and star for
two Ansätze, respectively.
11450
.

e

FIG. 20. Top,G C2
(a) ; middle, G C2

(b) ; and bottom,2G C2
(a)/G M1

(a) in
% versusmp

2 in lattice units in the rest frame of theD for the
quenched 323364 lattice. The dashed line is fitted toa1bmp

2 and
the dash-dotted line to a constant with the chiral value obtai
shown with a filled square and star for the twoAnsätze, respec-
tively.
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ing a constant fit even though a linear fit inmp
2 is favored by

the data. Although the chiral absolute value ofREM is re-
duced by modifying the fittingAnsatzto a constant,REM
remains negative in all cases.

For kinematics where the nucleon is at restQ2 changes as
we approach the chiral limit. This change is particularly s
vere for the large quenched lattice where one would need
extrapolation of form factors computed atQ2 that decrease
by 50%. In phenomenological studies one models theQ2

dependence of the three form factors by

Ga~Q2!5Ga~0!Ra~Q2!GE
p~Q2!, ~33!

whereRa(Q2) for a5M1,E2, andC2 measures the devia
tions from the proton electric form factorGE

p(Q2)51/(1
1Q2/0.71)2. Usually experimental data are fitted by takin
RM1(Q2)5RE2(Q2)5RC2(Q2)511a exp(2Q2g) @21#.
There are not enough data to simultaneously fit theQ2 and
the quark mass dependence. We are in the process of s
ing theQ2 dependence of these form factors using the fix
source sequential technique@22,23#. However, assuming tha
the above phenomenologicalAnsätzeprovide a good descrip
tion for theQ2 dependence ofGM1 andGE2, we expect the
Q2 dependence to cancel in the ratioREM . Therefore a chiral
extrapolation can be performed forREM also in the case o
the nucleon being at rest. A constant and a linear fit inmp

2 are
shown for the three lattices in Fig. 19. Once more the c
stant provides a lower limit for the absolute magnitude
REM and still leads to a negative value in the chiral limit
all cases.

Finally, we cannot observe any quark mass depende
for G C2

(a) andG C2
(b) as well as for the ratio2G C2

(a)/G M1
(a) given

the present statistical uncertainties as can be seen in Fig
We included in the figure a constant and a linear fit yield
results that are consistent with each other. We show o
results obtained in the rest frame of theD for the large
quenched lattice where we have the best signal. For this
tice and kinematics atQ250.13 GeV2 the values we extrac
from the linear Ansatz are G C2

(a)50.20(32) and G C2
(b)

50.48(34) in units of natural magnetons (e/2mN). Changing
the fitting range can lead to changes of the mean valu
about 30% at eachk value. Although the mean values o
G C2

(b) are systematically larger than those ofG C2
(a) at all k

values they are always within statistical errors. Despite
large statistical and systematic uncertainties on this quan
the data favor more a negative than a positive CMR ratio

V. DISCUSSION

In Table IV we list the chiral extrapolated values of th
M1 andE2 form factors obtained in the rest frame of theD
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as well as of the ratioREM obtained for both kinematics. Th
values given are the result of using a linearAnsatzin mp

2 to
extrapolate to the chiral limit, and the quoted errors are o
statistical. As discussed in Secs. III and IV there are a nu
ber of systematic errors that we must consider when com
ing the results of Table IV to the experimental ones. W
summarize here the source of systematic errors on the f
factors and their ratios. Finite volume effects are estima
by performing a quenched calculation at the same value
momentum transfer on a lattice of size 163332 and 323

364 at b56.0. Assuming a 1/volume dependence forGM1

the results show a 10–15 % correction for the data obtai
on the small lattice and negligible for the larger lattice. T
statistical errors onGE2 are too large to enable any volum
correction to be extracted. However, one would expec
similar volume dependence as forGM1. On the other hand
the volume dependence largely cancels in the ratio and so
expect both EMR and CMR ratios to have negligible volum
dependence. The variation in the mean values obtained
varying the plateau ranges is smaller as compared to
statistical errors as can be seen from Table II, where we h
given the values obtained using different fit ranges for r
resentativek values for all the lattices studied in this work
We look for unquenching effects by comparing quench
and unquenched results on lattices of similar physical v
ume and lattice spacing as well as the pion to rho mass ra
For pion masses in the range of 800–500 MeV unquench
effects are within statistical errors. Extrapolation of the l
tice results to the chiral limit represents the biggest unc
tainty that can be eliminated only by evaluating the fo
factors closer to the chiral limit. Avoiding any chiral extrap
lations the results on the two quenched and on the
quenched lattices at the lightest quark mass give a ratioREM
in the range of about (21 to 25)%, which is in accord with
the range obtained in experimental measurements. B
quenched and unquenched calculations are done at valu
b corresponding to a lattice spacing of about 0.1 fm. E
mating finite lattice spacing effects would require repeat
the calculation at two larger values ofb, keeping the physi-
cal volume constant and attempting a continuum extrap
tion. This is beyond our current computer resources and
systematic error due to the finite lattice spacing can be e
mated.

In the last column of Table IV we give the results for th
ratio REM obtained in the Sato-Lee~SL! model using an
effective Hamiltonian defined in the subspace ofpN% gN
% D @21#. Within the SL modelREM is calculated in the res
frame of theD as a function ofQ2 for bare and dressed
vertices. It is interesting that for bare vertices these auth
obtain nonzero values forREM pointing to the fact that a
TABLE V. f M1 , f E2 , A1/2, andA3/2 in units of GeV21/2.

Lattice 2q2 (GeV2) f M1 f E2 A1/2 A3/2

163332 0.64 0.266~22! 20.016~7! 20.109~13! 20.244~20!

323364 0.13 0.296~23! 20.012~4! 20.129~12! 20.267~20!

SESAM 0.53 0.194~15! 20.0078~36! 20.085~8! 20.175~13!
6-16
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nonzero electric quadrupole amplitude implying nucleon
formation that obtained even without pions. This is in agr
ment with lattice results on the rho deformation that is o
served in the quenched approximation without pi
contributions@5#. Comparing the value obtained in the S
model atQ250.64 GeV2 and 0.13 GeV2 using bare vertices
to our quenched lattice result via Eq.~5! @21#, we see that
quenched QCD produces a more negative value forREM than
that obtained in the SL model. One must, however, take
account that, in the baryonic sector, quenching still inclu
part of the pion cloud due to quarks propagating backwa
in time. These are absent in the SL model with bare vertic
On the other hand unquenched lattice results at quark ma
that correspond to pion masses in the range 500–800 M
do not influence the value ofREM . This implies that pion
cloud contributions from sea quarks at these pion masse
not large. It remains an open issue whether this means
pionic contributions from back-going quarks are also sm
in which case the difference between quenched lattice
SL model results cannot be explained solely by pion con
butions from back-going quarks. Results forREM obtained in
the SL model with fully dressed vertices are twice as ne
tive as those obtained with bare vertices, showing, wit
this model, the importance of pionic contributions to def
mation. Our unquenched results, obtained here for ra
heavy pions, show no significant enhancement which m
reflect thatqq̄ creation is suppressed. Since it is for lig
pions that large pionic contributions are expected, it is i
perative to repeat the calculation with dynamical qua
closer to the chiral limit to study sea quark contributions.

The values of the ratioREM given in Table IV can be
compared to those measured at various values ofQ2 in re-
cent experimental searches for nucleon deformation. The
tice results forREM are plotted in Fig. 21 together with th
recently measured experimental data. In the figure we

FIG. 21. The ratioREM in % versusQ2 at the chiral limit. Filled
triangles are quenched and open triangles are unquenched re
The filled square is the Particle Data Group result atQ250 @24#,
the crosses are from Ref.@2#, and the star is from Ref.@1#. The
errors shown on the experimental results are statistical. The la
values shown are those obtained using a linear fit inmp

2 to extrapo-
late to the chiral limit. In the unquenched case the error bars
increased so that an extrapolation to the chiral limit using a cons
lies within the shown error bands.
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included the Particle Data group value forREM at Q250
@24#. Once more what can be seen from this figure is t
quenched and unquenched results are within errors. The
quenched results at our two available momentum trans
are in agreement with the experimental results. We stress
all the errors shown on this figure are statistical. For
experimental results the systematic error is about the sam
the statistical error. For the lattice results the most sev
systematic error comes from assuming a linearAnsatzin mp

2

for the extrapolation to the chiral limit.
From the lattice data obtained in this workRSM can be

estimated only in the chiral limit for the large quenched l
tice. Extrapolating the results obtained in theD rest frame for
the large quenched lattice atQ250.13 GeV2 we find
2G C2

(a)/GM15(27.7611)% which leads, via Eq.~6!, to
RSM5(21.261.7)% where only the statistical error i
given. At Q250.126 GeV2 the experimental value ofRSM is
(26.560.262.5)% @1#. As already mentioned, the lattic
evaluation of this quantity is affected by large systematic a
statistical errors, which must be studied before a more ac
rate determination can be obtained.

Finally, in order to facilitate comparison with experime
and phenomenology, not only for the ratios but also forGM1
and GE2 separately, we give the relationship between
Sachs form factors studied in this work and the electrom
netic transition amplitudesf M1 and f E2 in the rest frame of
the D @21#:

f M15
e

2mN
S uqumD

mN
D 1/2 GM1

@12q2/~mN1mD!2#1/2
, ~34!

f E252
e

2mN
S uqumD

mN
D 1/2 GE2

@12q2/~mN1mD!2#1/2
~35!

with e5A4p/137. Since these are continuum relationsh
to obtain results forf M1 and f E2 from the values given in
Table IV one uses the physical nucleon andD mass. We give
the values forf M1 and f E2 in Table V. They are related to th
helicity amplitudesA1/2 andA3/2 by

f M152
1

2
~A1/21A3A3/2!,

f E252
1

2 S A1/22
1

A3
A3/2D . ~36!

As can be seen from Table IV, the values of the helic
amplitudes forQ2 closest to zero are in agreement with t
values atQ250, A1/2520.13560.006 GeV21/2, and A3/2
520.25560.008 GeV21/2, as given by the Particle Dat
Group.

VI. CONCLUSIONS

The matrix element for the transitiongN→D is computed
in lattice QCD both for the quenched theory and for tw

lts.
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dynamical Wilson fermions in a first attempt to study u
quenching effects on these form factors. The dominant m
netic dipole form factor is calculated with statistical accura
of about 10%. The electric quadrupole is suppressed by
order of magnitude and it is calculated to a statistical ac
racy of about 50%. Unquenching tends to decrease the
ues ofGM1 andGE2. The ratio of these form factors provide
a direct comparison to the experimentally measured r
REM . We find a negative value forREM of the order of a few
percent in accord with experiment. For pions of mass in
range of about 800–500 MeV we obtain no evidence for
increase in the value ofREM as we unquench. It is expecte
that pion cloud contributions are suppressed for these he
quarks and therefore it is important, in future studies, to
lighter dynamical quarks for the evaluation of these fo
factors. Large statistical and systematic errors prevent at
stage a determination of the Coulomb quadrupole form f
tor. A detailed study of lattice artifacts will be needed f
better control of systematic errors, before a more accu
v.
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extraction of the Coulomb form factor and of the ratioRSM is
possible.
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