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The magnetic dipole, the electric quadrupole, and the Coulomb quadrupole amplitudes for the transition
vyN—A are evaluated both in quenched lattice QCDBat6.0 and using two dynamical Wilson fermions
simulated ap3=>5.6. The dipole transition form factor is accurately determined at several values of momentum
transfer. On the lattices studied in this work, the electric quadrupole amplitude is found to be nonzero, yielding
a negative value for the ratiBg), of electric quadrupole to magnetic dipole amplitudes at three values of
momentum transfer.
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[. INTRODUCTION quadrupole momer® measured in the laboratory frame and
the intrinsic quadrupole momefyY, in the body-fixed intrin-
Recent photoproduction experiments on the nucleon asic frame is given by
Bateg[1] and Jefferson Laf2] have produced accurate mea-

surements on the ratios of electric and Coulomb quadrupole Q= 3K2-J(J+1) )
amplitudes to the magnetic dipole amplitude. Nonvanishing (J+1)(23+3) <

values for these ratios are thought to be connected with

nucleon deformation. whereJ is the total angular momentum of the system in the

Deformation is a common phenomenon in nuclear andab, K is the projection ofl onto thez axis of the body-fixed
atomic physics. Classically, the multiphoton coincidence exintrinsic frame, and we have considered the substate with
periment of taking a flash photograph or observing an illu-azimuthal quantum numbevi =J. In the previous example
minated object distinguishes a deformed dumbbell from #f the J=0 diatomic molecule, althougk,#0, Eq. (2)
spherically symmetric sphere. Quantum mechanically, a mulyields Q=0 so that the deformation, while present, is unob-
tiphoton coincidence experiment could also determine that §ervable. Similarly, in the case of a nucleon with 1/2, Q
J=0 ground state of a diatomic molecule has a deformeds zero althoughQ, may not be. However, for th& with J
shape. However, usually in electromagnetic probes of micro=3/2, Eq.(2) shows that a deformed intrinsic state can be
scopic systems, we are constrained to make measuremerttgtected by the spectroscopic quadrupole mor@eiithe E2
associated with one-photon exchange, corresponding to @hdC2 transition moments between tiie- 1/2 nucleon and
matrix element of a one-body operator. In the case of a did=3/2 nucleon have the same property of revealing the pres-
atomic molecule, the one-body charge density of ke ence of deformation in the nucleon, the or both, and in
state is spherically symmetric and cannot reveal the deformahis work we calculate these moments in lattice QCD and
tion that is present in the system. provide direct evidence for this deformation.

In many cases, however, when a nuclear or atomic system The question whether the nucleon is deformed from a
is well approximated by a deformed intrinsic state, it is still Spherical shape was raised 20 years pgfoand it is still
possible to observe its deformation using a one-body electrasnsettled. On the lattice, hadron wave functions obtained via
magnetic operator. We consider here the lowest order electridensity-density correlators can provide information about the
multipole, the quadrupole moment. For an axially deformeddeformation of particles of spin higher than 1/&]. This
object, the quadrupole moment in the body-fixed intrinsicapproach yields no information about the deformation about
frame is given by the nucleon for the same reason as the vanishing of its spec-

troscopic quadrupole moment. This is why in lattice studies,

_ 3 2 o as in experiment, one looks for quadrupole strength in the
Qo_j d*rp(r)(3z°=r%) (D yN—A transition to extract information on the nucleon de-
formation.
wherep(r) is the charge density distribution. @, is posi- State-of-the-art lattice QCD calculations can yield model-

tive, the object is prolate with the polar axis longer than theindependent results for these matrix elements and provide
equatorial axis. In contrast, for an oblate object with the podirect comparison with experiment. Spin-parity selection
lar axis shorter than the equatorial axis, the quadrupole maules allow a magnetic dipol&1, an electric quadrupole
ment is negative. For collective rotation of the deformed in-E2, and a Coulomb quadrupof@2 amplitude. If both the
trinsic state [3], the relation between the spectroscopicnucleon and thel are spherical, thec2 andC2 are ex-
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pected to be zero. Althougkl 1 is indeed the dominant am-
plitude, there is mounting experimental evidence over a
range of momentum transfer thB2 and C2 are nonzero
[1,2]. A recent analysis of experimental results on the values
of E2/IM1 andC2/M1 is shown to be incompatible with a Y
spherical nucleof7].

Understanding the origin of a nonzero deformation is an
important theoretical issue, which depends on QCD dynam-

ics. The physical origin of nonze®2 andC2 amplitudes is (x2,t2) (0,0)
attributed to different mechanisms in the various models: In
the constituent nonrelativistic quark model the deformation A(p’) N(p)

was originally explained by the color-magnetic hyperfine in- FIG. 1. NvoA i el The oh | ‘
terquark potential arising from one-gluon exchange and prog. G. ks | yt_h) ma}tr'x € tem?_nt. d t_e pt oton dCOUpaeAS to one o
ducing aD-state admixture in the singlet-quark wave func- "¢ duarks In the nucieon at a fixe meto produce 3.

tions of the nucleon and th& [4]. The deformation due to . ) .
A ; o - -, factors using the SESAM configuratiofikl] that were pro-
the hyperfine interaction was also studied in “relativized uced atB—5.6 on a lattice of size #6¢32 using hybrid

quark models. In both cases the deformation obtained, me‘%lonte Carlo simulations for two degenerate flavors of dv-
sured by the rati&€2/M 1, is smaller than that found experi- : . ) : 9 y
namical Wilson fermions(vi) In all cases we use more con-

mentally. figurations to improve the statistics
In the context of the constituent quark model, it was re- 9 P '

cently proposed that elimination of gluonic and quark-
antiquark pairs leads to two-body contributions in the charge IIl. LATTICE MATRIX ELEMENTS

and vector current operators that produce a nonzero quadru- The current matrix element for theN— A transition with

pole moment in agreement with experiment using only,n_ghell nucleon and states and real or virtual photons is
s-wave fupc_t|ons for the nucleon a'nd tlz_he [6]. In cloudy shown schematically in Fig. 1. It has the fof?]
nonrelativistic model$6] as well as in chiral or cloudy bag

modelg[ 8], the deformation arises because of the asymmetric 2 msMy 172
pion cloud, whereas in soliton models it is thought to be due (A(p",s")juIN(p,s)) =i \/:( —)

to the nonlinear pion field interactions. Most of the results 3\ EA(p')En(p)
obtained in cloudy baryon models predict values smaller — s

than the experimentally measured ones suggesting that the Xup’,s")O™u(p,s) (3
deformation cannot be entirely attributed to the pion cloud. h do'(s’) denote initial and final t
This is in agreement with lattice resu[ts] where a nonzero where p(s) an F,) (jc’ ) Jdenote Initial and final momenta
deformation is observed in the case of the rho meson even igplns) and u,(p’,s’) Is a spin vector in the Rarita-

A : .- hwinger formalism.
the quenched approximation where pion cloud contributions>® .
9 PP P The operatorO ™ can be decomposed in terms of the

are omitted. Sachs f fact
In the present work we will compare quenched and un- achs form factors as
enched results for the transition matrix elemeNt— A in r r - r
qu u ” X eleme : O™ =Gui(P)KH +Gea( PP KE+ Gea(ADKT,  (4)

order to examine sea quark contributions to the deformation
[9]. An early, pioneering lattice QCD study0] with a lim-
ited number of quenched configurations yielded an inconclu
sive result for the ratio of the electric quadrupole to magneti
dipole amplitudes, referred to as EMR Rgy, , since a zero
value could not be statistically excluded. However, the theo
retical framework that it provided is still applicable, and we
will apply similar techniques to the present study making
number of improvementdi) We use smearing techniques,
which very effectively filter the ground state so that the time-
independent physical observables can be extracted from t
correlators.(ii) The quenched calculation is done on two
volumes at the same parameters to check the volume depe
dence of the resultgiii) Using a large quenched lattice al-

lows us to simulate smaller quark masses, the lightest givin%ons given in Refs[12,13 the ratiosRey andRsy, in the
' EM SM

. . o .
a ratio of pion to rho mass of 50%iv) F_or eac_h lattice rest frame of thél are obtained from the Sachs form factors
momentum transfeq we calculate the multipoles in the rest _:

frames both of the nucleon and of the These two different  * &

choices of kinematics enable the evaluation of the transition 2

form factors at two different four-momentum transfe(s) Rey= — M (5)
We study dynamical quark effects by evaluating the form Gm1(9?)

where the magnetic dipolgy,;, the electric quadrupolég,,

and the Coulomb quadrupolg.,, form factors depend on
%he momentum transfeg?=(p’—p)2. The kinematical
functionsK™* depend omp, p’, My, andM, and their ex-
pressions are given in Reff12]. The reason for using this
parametrization for a lattice computation, as pointed out in
%Ref. [10], is that the Sachs form factors do not depend
strongly on the difference between the nucleon andAhe
mass. From the Sachs form factors one can evaluate the ratio
q:EZ/Ml referred to above as EMR &g,,, and the analo-
ous ratio of the Coulomb quadrupole amplitude to the mag-
etic dipole amplitudeC2/M1, known as CMR orRgy,,
which are the target of recent experiments. Using the rela-

114506-2



N TO A ELECTROMAGNETIC TRANSITION FORM FACTOR . . . PHYSICAL REVIEW D 69, 114506 (2004

and (G 4(t2,ty5p" piI))
lal  Gea(a?)
Rsy=—5— . 6 = —ip’- +i(p'—p)-
= 2ms G (o) (®) 2 eXHiP x)exi +i(p'=p)-xi]
The lattice construction of the appropriate matrix ele- XA QT x“(Xp,t2)j “(Xq,t1) x2(0,0)7| Q). 8

ments for the evaluation of these form factors follows closely

that of Ref.[10]. The computationally most demanding part For the spini source, xP(x,t), and the spirg source,
in this evaluation is the calculation of the three-point corre-Xf(X,t), we use the interpolating fields

lation function that corresponds to the diagram shown in Fig.

Land itis given by XP(X) = €0TUT3(x) Cysd®(x) Ju(x), )

(G5 ™Mtz ta;p" pil) L
ATt _ abc Ta b c
Xo (X)—ﬁe {2[u"3(x)Cry,d°(x) Ju®(x)

= > exp(—ip -Xp)exd +i(p’—p)-x, [P

e + U0 Cy, U0 1d°(x)}, (10
X(QUTIxG (X2, t2) ] (%1, 1) X (0,0]]2), (7) " and for the projection matrices for the Dirac indices
where an initial state with the quantum numbers of the
nucleon is created at time zero and the final state with the i 0 — 0 11
quantum numbers of tha is annihilated at a later tims,. “2lo0 o/r "4 2\l0 o) (D
The photon couples to one of the quarks in the nucleon at an
intermediate timet; producing aA. The corresponding For large Euclidean time separatiohs—t;>1 andt;
three-point correlation function for the transitidn— yN is >1, the time dependence and field normalization constants
given by are canceled in the following ratid.0]:

V2 t,—t;>14>1

(GAI™N(t,,ty:p P TINGN A (ty,ty;—p,—p';Th)
= Ip,pTiw), 12

(6ij GﬁA(tz TGNt —piTy))

Ro’(tZ vtl;p,vp;r;/-l’):

whereGNN andGﬁA are the nucleon and two-point func- We use the lattice conserved electromagnetic current
tions given, respectively, by j*(x) given by

<GNN<t,p;r>>=§ e P Q| Ty (x,1) xP(0,0)|Q), B
jﬂ(x)=2 Qe (x+ ) (1+ ¥, )U#T(x) 4 (x)

A . _ —ip- @ a Ny — ~
<Gg¢(t,p,F)>—§ e PXAAQ|Txg(x, ) x7(0,0]Q). — () (L= y, ) UE) ' (x+ )}, (15)
(13
The phase in Eq.(12 is the same as that of Symmetrized on .sitex by taking j*(x)—[]*(x) +j*(x
Gﬁj#N(tz,tl:p’ ,p) since formally we have __H)]/Z’ W_herle is the charge of a quark of flavband ¢
is its hopping parameter.
_12 5\ —112 In the nucleon laboratory framp=0 andp’=q. The
,(p’ p-F-M):(EA+mA) 1+ g Sachs form factors can be extracted from the plateau values
o Er 3m: of IT,(p',p;T"; ) for specific combinations of the matrices

. I' and theA vector indiceso. The expressions for general
‘1’2<G§_J”N(t2,t1;p’ p:T)) momentum transfeg are obtained using the standard Euclid-
ZNZAe*EA(tZ*‘ﬂe*EN‘l' ean ni)zrggelativistic r.eprese.ntation fpr the matrice§[14]

with €*“*"=1. The kinematical function&™ in Euclidean
(14)  space are given by

En+my
2E\
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Kt = 3 (my+my) i emnabpap' B whereE, =\ p2+ mz and the indice& and! denote spatial
(my+my)2+Q?%  2my directions. By selecting the spatial component of the current

the Gy1 and Gg, form factors are extracted from
. , _ (my+my)
Kgz=—Ki1+68Q 1(Q2)2—mN )
, ) QM1=C(qz)e"'k4—kHU(q,0;iI‘4;l)

X 2i yse™*Ppp P 7Pp7p ] q

(Ma+my)

TH . _ -1 2
Kdz=—-60"7(Q% 2my

175Q7(Q*P*—Q-PQ"), ot

=C(q Ky2_ 412
(16) (@)= (a’)
with Q(Q%)=[(m,+my)*+Q?I[(my—my)?+Q?] and Q
=q, whereQ*=iq? is the lattice momentum transfer giving
Q?=-q2 By p® andp’ # we now denote Euclidean space
momenta defined analogously @*. The Rarita-Schwinger —q'H.(q,O;Fk;k)]) (20)
spin sum for theA in Euclidean space is given by

(quI(qu;Fk;l)

I T My g T
=g (a,0;I" k) — E—A[q M (q.,0:T ;1)

: d
—  —iyp+my 2p,p, an
ZS u(r(pas)uf(pis)_T oT 3mi
Po¥-—PrY G —C(qz) !
_iPo¥r Fr¥e = E2” 73 K2 o2
" 3m, 3 VoY (17) (99°—(a)
and the Dirac spin sum x| g I0y(9,0;T ;1) —q'TI(q,0;T 1K)
_ —jv- —+ mA
S u(psjulp.s)= —5o . 18) +E—A[qknk(q,o;r|;|>—q'H.(q,o;rk;k>]) (21)
s N

We generalize in what follows the expressions of Ref.providedg*#q'. If we consider a momentum transfer that
[10] to allow momentum transfers in any spatial direction.has zero component along the current direction, E26)
By selecting the time component of the current g form  and(21) simplify to
factor is extracted from

ZmA . G C( 2) m
Geo=C(?) T11(q,0;iT;4), M1y T T s T,
c2 5qu2_qkq|(1+ ZEA/mA) I k 3gE2 qk Hl(qaolrkil)_'_ EAHk(qaoyFI ,|) .
(22)
3 4E,my [Ex+my| Y2 g |
C(@)=V35 — | .
2my+my Ea 3mi Another possibility is to extract the transition form factors

(19 by using, instead oR,, the ratio

(GA"™N(ty,ty;p",piT))
(8;G (2,0 T))(GNN2ty,piT ) ( ;G (2ty,p" ;T ) 1M

R (t,,ty;p T )= (23)

or equivalently

<GEjMA(t2 t:p",piT))
<GNN(t2ap’ §F4)>[<5ij GﬁA(Ztl ,p;r4)>/<GNN(2t1 P’ ;F4)>]l/2.

RA(t,,t;p o 0) = (24)
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In this work we choose the current along thélirection 1.5 | T |
and consider momentum transfers along xhaxis. In par-
ticular we consider the lowest allowed lattice momentum 12 b .
transferq=(27/Na,0,0), wherea is the lattice spacing and
N the spatial lattice size, with the exception of the Iarge,\ %%
quenched lattice, where we also consider momentum transfe*r-_: 09 53 6 gi(%&i‘ T % i

= (4m/Na,0,0). For our choice of the momentuqit is = y _:: 1
reasonable to take in Egd.2), (23), and(24) the more sym- g 06 | x 4+ 1 5 s .
metric combination 3/235+G33) instead of §;G;*. Tk e S &
With this replacement the second square root involgjhin by 03 L |
the overall factorC(g?) given in Eq.(19) is absent. Using ’ K‘*‘
the fact that the momentum transfer has a component only ir w K
the x direction Eqs(19) and(22) simplify to 0.0 L ! :

0 5 10 15 20
t /a
G8=Coz T I (q0-iT1i4), (29 o/
g° Ea

FIG. 2. The ratioR,(t,,t;;0,0;i'4;3). Data with aphoton car-
2m, rying momentung and —q averaged over 50 quenched configura-
ggjz)=C0—2H2(q,O;iF2;4) tions are denoted by the stars. Data with a photon carrying either
positive or negativel] averaged over 100 configurations are shown
by the X and+ symbols, respectively. These results are for a lattice

2m i =
-C, ZA T4(q,0iiT5:4), (26) of S|z_e 32X 64 atk=0.1558. The current couples to the quark at
q t,/a=8.
and with the gauge invariant smearing function constructed from
the hopping matript:
1 :
Gii=Cofg M2(0.0il4;3), @) FzUD)=(1+aH)xzUm], (32
. 1 my where HX,zU()=22[Ui(X,t) 8,y i+ U (x
Q(M)1=00|q| ( 13(q,0:'1;3) — == 111(9,0:I'3; 3)) —i,t)8xy+i]. The parametera=4. 0 andn=50 are tuned so

(29) as to optimize the overlap with the baryon states. Quark
propagators with a photon insertion are computed with the

Co 1 sequential source technique. Therefore for the three-point
Q(Eaz)=? W(ZH3(q ,0;11:3)—11,(q,0;iI'4;3)), functions we require two inversions with the second inver-

(29) sion having a momentum-dependent source. The sequential

source technique requires that the photon couples to the
Co 1 m, quark at fixed timet; which is chosen large enough so that
Q(Ebz)=? ql ( I15(q,0;T"1;3)+ E, Hl(q,O;F3;3)), the nucleon and\ ground states are identified. For the lat-

(30) tices used here we know from the nucleon andwo-point
functions that fort;=5a the excited state contributions be-
whereC, is obtained fromC(g?) given in Eq.(19) by omit-  come negligible. We also make use of the equal weighting of
ting the second square rodt5]. When theA is produced at the {U} and{U*} gauge configurations in the lattice action
rest, the factorsn, /E, in Egs.(25), (28), and(30) are ab- [18] and the parity symmetry of our correlators to improve

sent and the plateau behavior of the reduced rdtig(p’,p;I"; u). For
implementation of this procedure we need an additional se-
\/§4mNEN [En+ My quential propagator with the photon carrying momentum
Co— 2m,+ my En —¢. To see the improvement, we compare in Fig. 2 the re-

sults obtained when for each configuration we consider the
The resulting formulas then agree with those given in Refphoton carrying either momentugor — g to those obtained
[10]. for the photon with momentg and — q for equal statistics.
Smearing is essential for achieving ground state domiAs can be seen, for large time separations, the quality of the
nance before the signal from the time correlators is lost in thlateau obtained for the reduced rakig,(p’,p;T"; 1) is im-
noisy large time limit. We use the gauge invariant Wuppertaproved when the equal reweighting ¢} and {U*} is
smearingd(x,t) —d>"®¥(x,t) at the source and the sink. We implemented, enabling us to fit over a larger range, far from

smear the fermion interpolating fields accordind 16,17 the time insertion of the current. In all the results presented
here this benefit is utilized: thus for each configuration the
dsmea x t) = E F(x,zU(1)d(zt) (31) sequential propagator is inverted twice, once with the photon

carrying momentung and once carrying momentumg.
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4 : T T 0.1 T T T =X
p at rest p at rest ‘
> £ > 5 ¢ T__x
W 1114 & 225yl Laall|
N I 4 S ITF |
L X ¥ XX L + o 14
_ 2t 3 ¢ }L 00 pecee® T LT A
o o
X R,(q,0:iI'%3) X R, & R 1
T . * RMqoirts) ] ¢ R® & RO |
oX T RP(0,g;-ir%3) + R® & R®
0 Lexx® ' ' ~0.1 . u :
0 4 8 12 16 Y 4 8 12 16
4 T T T 0.1 I ! T
A at rest N A at rest}
> = T
3+ . X T1 1
é Q ¥z E)E% X T |
) [ L L + f— 3
\/‘_ 2 + %Ix%%%ggg%}%% 500 _$<¢<¥<04, 'ﬂ'"&
= o P
© ° gV
X R,(0,—q;il'43) X R, &Ry T l J |
r N ¢ RW(0,—q;il*3) | * R" & RY I l 1
2 2
+ x + B®Y—q;0;-il'%3) + R® & R® I
0 _wt(el(’ | | —01 L I L
0 4 8 12 16 0 4 t8 Y 12 16
t2/0 2 a

; ; ; . FIG. 4. @ in units of natural magnetons extracted from Eq.
FIG. 3. & in units of natu_ral magnetons using the ratios (29) usin (fhEZr HoR. (x) R ‘9 TARE (1) with th q
R, (x), RY (), andR? (+) with the nucleon at restop) and using the ratioR, (X), R, (), and R e

with the A at rest(bottom) for dynamical quarks at=0.1565. The pucleon at resf(top) and with A at rest (bottom) for dynam-
current couples to the quark &t/a="6. ical quarks atk=0.1565. The current couples to the quark at

tl/a:6.

Unambiguous identification of the plateau region at largeEd- (28) (without them, /E, factor whenA is at rest. In
time separations from the source outweighs the additiondfid. 4 e show the analogous results &) extracted from
costs. Eq. (29). Again the ratioR,, yields an earlier plateau, which
The ratios given in Eqg12), (23), and(24) provide three in this case is indispensable since the signal becomes too
ways for extracting the form factors. In Fig. 3 we comparenoisy beyond time separations—t,=6/a. Equation(30)
these three possibilities for evaluatigd?) . The plot illus- provides an alternative way to extract the electric quadrupole
trates the results for the unquenched case-a0.1565—a form factor. However, the plateaus for the reduced ratios
similar behavior is observed in all cases. We consider twdnvolved in the extraction ofG{) deteriorate when the
kinematically different cases: one where the nucleon has zerducleon is at rest leading to unreliable results. Whenithe
momentum and therefore thecarries momenturg, and the ~ at rest, Eq.(30) produces a good plateau for the raRy,
other where theA is produced at rest and therefore theyielding results forG® consistent with those fog¥.
nucleon has momentumm . What is clearly seen for both Therefore in what follows Eq(30) will be used only when
kinematics is thaR, as given in Eq.(12) yields the best theA is produced at rest to check consistency with the values
plateau, which starts as early as two time slices away frondbtained from Eq(29). The ratioRg), is evaluated using
the time where the current couples to the quark. In contrast &) andG 2 since this is applicable for both types of kine-
the other two definitions require five time slices to showmatics. The systematic errors and noise become worse for
convergence to the same value. Evidently excited state cor;c,. When theA is produced in motion the ratiR, cannot
tributions come with the opposite sign in the matrix elementsbe used since the correlato@&’N and GY/* do not agree
yN—A andA— yN canceling to a large extent in the ratio even in sign for time separations—t,;<11/a, and after that
R, . The same conclusion is reached ) extracted from  they are too noisy to be usable. This is seen in Fig. 5 where
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0.30 T T T S T T T T T T T .
at rest Ps
. p +z 13335411
> . fs‘x‘*x*gsqg%x% T
S 2 FAARERRR ]
} 0.15 I o R1(1) . Q T
2 TT ¢ a
— + R1() T T =t O A Gm() p at rest
3 T s 1F + G, ® p at rest
@) T 1 ¢ D) M1
0.00 ‘#"t"f'*’ """ St SF S s B i e " xGM1‘°’ A at rest
¢ I L %@% * Gm(b) A at rest
r's 4 1 0 L e 2 | ¥ | | | |
s ¢ il 4 o 2 4 6,8 10 12 14 1
-0.15 ' ' : &/
g 4 8 12 L FIG. 6. Gy1 In units of natural magnetongf2m,) for the un-
0.30 quenched theory on a lattice of size®¥632 at k=0.1565 and
’ ' ' | | _ momentum transfeq=(2#/16a,0,0). Filled triangles and crosses
A at rest ~He | 4 denote results fog (%} [Eq. (27)] andG ") [Eq. (28)], respectively,
> . .
=z -[__ when the nucleon is at rest. The€'s and stars denote, respectively,
£ 3 x 1 results forG (&) andG ) when theA is produced at rest. They are
Q 0.15 3 }[ M shifted to the left and right of the results obtained when the nucleon
Q2 - ; * T{x 17T is at rest for clarity. The photon is injectedtata=6 as shown by
& X J‘{[ J b the arrow.
N by
> & + -
© " + X Figures 7 and 8 show the corresponding resultsGer
0.00 X484+ -cemmomoes S el £ ¢ seki e .
X R 4 4 and Gc,. For both form factors the data become very noisy
2 for time separation$,—t,=7/a. However, for the case of
¢ RW . . .
1 the electric quadrupole we have a plateau region extending
- Rl(z) over four time slices, enabling us to extract a valueg
—-0.15 : : both for A static and forA carrying a momentum. When the
0 4 8 12 16 A is produced at rest the reduced ratio needed for the extrac-
tZ/O tion of G} shows similar plateau behavior as that obtained

for &) whereas, as we already mentioned, when shis
FIG. 5. G in units of natural magnetons extracted from Eq. not at rest this correlator is too noisy to be useful especially
(25) using the ratiosR, (%), R} (#), andR? (+) with the  for the small quenched and unquenched lattices. The identi-
nucleon at resttop) and with A at rest(bottom for dynamical  fication of the plateau region becomes particularly difficult
quarks at k=0.1565. The current couples to the quark atgqg, Geo. In Fig. 8 we show results for the ratR, only for

t/a=6. the case when tha is produced at rest since, as we have
we show results fog&). The other two combinations that 010 — T 1 T T T 1
yield G{) show at best equally poor results. When thés AG,® p at rest
produced at rest the signs are consistent and the Ratio ~_ 0.05 - b7y
although noisy, can be used to look for a plateau. In what EZ A %%ﬁﬁf }
follows we will attempt to fit over the plateau range only for ~ a A + I ﬁ
the case when tha is at rest in order to provide an estimate ¢ 0-00 - A M ST [
on G, wherever possible. . *x X i T

In the case of the dominant amplitutlel the definitions 5" | | * X T 0
G andG{P) can be used for both our kinematics and the TG ® A at rest J 0 \
results forG &) andG () are directly compared in Fig. 6 for * Go® A at rest J
the SESAM lattice atx=0.1565 at momentum transfey -0.10 ' ' L : . : '
=(2m/16a,0,0) both when the\ is produced at rest and o 2 4 6t2/08 oo 12z M1 .

when the nucleon is at rest. In therest frameg &} andg ()
are in perfect ggreerr_]ent with a plat.eau rggion that sets in as FIG. 7. Gg» in natural magnetons for the unquenched theory on
early as two time slices from the insertion of the current.; |attice of size 18x32 at x=0.1565 and momentum transfar
. b . N
When theA carries momentung 3} andg{;) agree for time = (2./162,0,0). Filled triangles denote the results BE) when

separations, —t;=4/a, suggesting that contamination due the nucleon is at rest. The's and stars denote, respectively, results
to excited states is more severe when thés produced in  for G& and G when theA is produced at rest. The rest of the

motion. notation is the same as that of Fig. 6.
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estimateGe,.

values.

0.4 T T T T T T T
X G,® A at rest T {

T —r ¢
= oot } i -
3 Y g N

E
~— *.i X 4
N 0.0 |-®e-... *® X < o e i
& * G, :0=2
* G, :0=3
—0.2 1 1 ¥ 1 1 1
0 2 4 6 10 12 14 16
t,/a

a lattice of size 16x32 at k=0.1565 and momentum transfgr
=(2/16a,0,0). We show only results for th& at rest. Thex'’s
denote the results fa &) [without the factom, /E, in Eq. (25)];
stars and diamonds denote resultsdé®) using Eq.(26) with the A
vector indexe=2 ando =3, respectively. The rest of the notation

is the same as that of Fig. 6.

already discussed, when the has nonzero momentum the
three-point functions fluctuate in sign, making the ragigp

PHYSICAL REVIEW D 69, 114506 (2004

can be determined only for small time separatiopst;,
insufficient to neglect contributions from excited states.
Therefore in what follows we will mostly use E@5) to

The behavior of the transition form factors shown
in Figs. 6, 7, and 8 for the SESAM lattice at=0.1565
) is typical and it is observed for the other lattices awnd

Ill. RESULTS

The quenched calculation of the transition form factors is
carried out a{8=6.0 using lattices of size $&32 and 33

X 64. For the unquenched calculation we use the SESAM
FIG. 8. G, in natural magnetons for the unquenched theory onconfigurations ap=>5.6 on a lattice of size £& 32. We use

Wilson fermions with hopping parametetsgiven in Table |

where we also list the values of the ratio of the pion mass to
the rho mass. For all configurations, the number of which is
given in Table I, we double the statistics in performing the

calculation both forg and for —q.

To set the lattice spacirgin the quenched theory one can
use the well-known value of the string tension. However,
since we want to compare quenched and unquenched results
we need a determination that is applicable in both cases.
Since we are calculating matrix elements in the baryon sector

unusable. From Fig. 8 it can be seen that the results obtaingflis more appropriate to use the value extracted from the

for G4,

involving matrix elements with thA vector index

nucleon mass in the chiral limit to set the scale. In the

o in the same direction as that of the momentum transfergquenched case the value extracted using the nucleon mass is
have overall smaller statistical errors as compared to thosa™1=2.04(2) GeV 6=0.098 fm) and in the unquenched

for G . In fact, for most cases, the ratid, from Eq. (26)

a 1=1.88(7) GeV @=0.106 fm) with a systematic error

TABLE I. « values and momentum transfers used for the evaluation of the transition form factors. The
ratio of the rho mass to the pion mass at thesealues is also given. We used the nucleon mass to set the

scale.
Q (GeV?)

p at rest A at rest K m,/m, m_ (GeV) No. of Configurations
QuenchedB=6.0, 16x 32, q>=0.64 Ge\

0.57 0.64 0.1530 0.84 0.873) 100

0.55 0.64 0.1540 0.78 0.768 100

0.50 0.64 0.1550 0.70 0.6 100

0.40 0.64 k.=0.1571 0 0 Extrapolated
Quenched8=6.0, 32X 64, q>=0.64 Ge\

0.50 0.64 0.1550 0.69 0.568 100
QuenchedB=6.0, 32X 64,q?>=0.16 Ge\

0.13 0.16 0.1554 0.64 0.56% 100

0.10 0.15 0.1558 0.59 0.469 100

0.057 0.13 0.1562 0.50 0.302 100

0.064 0.13 k.=0.1571 0 0 Extrapolated

UnquenchedB=5.6, 16x 32, q>°=0.54 Ge\}

0.48 0.54 0.1560 0.83 0.8%) 196

0.48 0.54 0.1565 0.81 0.768) 200

0.45 0.54 0.1570 0.76 0.685 201

0.45 0.54 0.1575 0.68 0.5 200

0.40 0.53 k.=0.1585 0 0 Extrapolated
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TABLE Il. The plateau values of (&), ¢ in units ofe/2my andRgy, in percent for different fit ranges
are given together with thg?/ DOF for the quenched and SESAM lattices in the rest frame ofthé gag is
also given for the cases where a plateau can be identified. We indicate the value that we adopted with an
asterisk.

16°x 32 quenched 18< 32 unquenched 3% 64 quenched

k=0.153 «=0.1560 «k=0.1554
Om1 t/a t/a x?/DOF Om1 ti/a ti/a xY?/DOF Gy ti/a ti/a x°/DOF
2.256) 8 12 0.1 2.3%) 8 12 0.2 29%) 10 16 1.9
2.257)* 8 16 0.2 2.36)* 8 16 0.5 3.007) 10 20 1.6
2.297) 10 12 0.1 2.37) 10 12  0.002 3.0B 12 16 0.4
2.269) 10 16 0.2 2.307) 10 16 0.9 3.00)* 12 20 0.5
Geo t;/a ti/a x?/DOF Geo ti/a ti/a x’/DOF Geo ti/a ti/a x?/DOF
0.03410) 8 12 0.3 0.0047) 8 12 2 0.04015* 10 16 0.5
0.03811)* 8 16 0.4 0.008) 8 16 1.4  0.0466) 10 20 1.1
0.037115 10 12 0.6 -0.01Qq11) 10 12 1.0 0.04»3 12 16 0.8
0.04217) 10 16 05 -0.01213* 10 16 05 0.03@6 12 20 1.2
Rem t/a t/a x?/DOF Rem ti/a ti/a xy’/DOF  Rgy ti/a ti/a x?/DOF
—1.65) 8 12 0.3 -0.1229 8 12 20 -165* 10 16 0.6
—1.7(5)* 8 16 0.4 -0.1332 8 16 1.4 -1.65 10 18 1.0
—1.86) 9 16 0.4 0.0141) 9 16 1.0 -1.55 10 20 1.2
—1.6(6) 10 12 0.6 0.449 10 12 1.0 -158 12 16 0.8
—1.87) 10 16 0.5 0.586* 10 16 05 —-128 12 20 1.3
Geo t;/a ti/a x?/DOF Geo ti/a ti/a x’/DOF Geo ti/a t x?/DOF
0187 10 16 0.3
0.1213* 12 16 0.1
k=0.155 «k=0.1570 «k=0.1562
Om1 t,/a t/a x?/DOF w1 ti/a ti/la xY?/DOF Gy t;/a ti/a x?/DOF
1.948) 8 12 0.4 1.925) 8 12 0.2 27190 10 16 1.1
1.929) 8 16 0.9 1.917)* 8 16 0.1 270 10 20 1.2
1.9510)* 9 15 0.8 1.98) 9 16 0.3 28713 12 16 0.2
2.01(12) 10 12 0.02 1.98) 10 12 0.2 28Q3* 12 18 0.3
1.9413) 10 16 1.1 1.9410) 10 16 0.1 2844 12 20 0.6
Ges t;/a ti/a x2/DOF Ges ti/a ti/a x’/DOF Ger ti/a ti/a x?/DOF
0.07424) 8 12 0.3 0.02®) 8 12 0.2 0.07R4* 10 16 0.5
0.07225) 8 16 0.3 0.02810) 8 16 04 00785 10 20 0.8
0.07833* 9 15 0.3 0.02813* 9 15 0.2 0.10847) 12 16 0.2
0.07137 10 12 0.2 0.02M4 10 12 0.1  0.0950 12 18 0.6
0.07138) 10 16 0.3 0.0206) 10 16 04  0.09500 12 20 0.8
Rem t;/a ti/a x?/DOF Rem ti/a tida x?/DOF  Rgy ti/a tda x?/DOF
-3913 8 12 0.2 —1.1(5) 8 12 02 —-299* 10 16 0.4
-3.81.3* 8 16 0.2 —1.25) 8 16 04 —2810 10 20 0.8
—-4.01.7 9 16 0.2 —1.27)* 9 16 04 —-3717 12 16 0.3
-3819 10 12 0.2 —1.47) 10 12 02 —-3417 12 18 0.6
-3619 10 16 0.2 -1.509) 10 16 04 -3218 12 20 0.9
Geo t,/a t/a x?/DOF Geo ti/a ti/a x’/DOF Geo t/a ti/a x?/DOF
0.11(3) 8 12 0.2 0289) 10 15 0.2
0.11(3)* 8 15 0.3
0.125) 10 12 04  01RDH* 12 15 0.1
0.135) 10 15 0.3

of about 15%[11] coming from the choice of the chiral with a systematic error of about 10% due to the choice of
extrapolationAnsatz We note that if one uses the rho mass atfitting range and chiral extrapolation ans@i®]. Therefore

the chiral limit one obtainsa™'=2.3 GeV @=0.087 fm)  using the nucleon or the rho mass to set the scale yields
for both the quenched and the unquenched thghty19,2Q, results fora within the systematic uncertainties. We would

114506-9



ALEXANDROU et al.

4

PHYSICAL REVIEW D 69, 114506 (2004

' ' ' lenched ' lenched
x 16%32 T . s f RS
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£ . Ti p
N g w*xEEELL iH 1} _
o r4 0lanst A :/c=0.1:53 sast A /c=:0.156:0
- 1 L
o ~ 3t 1 :
A
s X® E Ll emsnt | oo
N
o
.2 T T T T \_: 1r e
. o i Laat £=0.154 L aa4 £=0.1565
3t §
- 2 ‘A;iﬂii 1 ascamd iy
x* 1 4
Laaty £=0.155 L .44 £=0.1570
% 4 8 12 1 ' ' ' 1
3t 32%64 | } ]
2 ‘AAA‘__;:QEH" Y =% L} 1
(_')E 1+ 1 _
Ny X 0 laaanst?ty 0701350 |, aas, ©=01575
O“‘ * 0 4 8 2 16 O 4 8 12 16
—0.05 _%*% ] t,/a t,/a
T
X - FIG. 10. (&) at momentum transfeq=(2/16a,0,0) in the
M1
>Jf rest frame of the nucleon. The three upper graphs on the left show
- the quenched results for the lattice of size482 at k=0.153,
— 1 L L L 0.154, and 0.155. The lowest graph on the left shows quenched
0.10 : .
0 4 8 t./a 12 16 20 results for the lattice of size 3% 64. On the right we show the
2

unquenched results at=0.1560, 0.1565, 0.1570, and 0.1575. The

photon couples to the quark gt/a=6 for the small lattices and at
FIG. 9. ¢, ¢9 in units of natural magnetons and t;/a=8 for the large lattice as shown by the arrow. The dashed

-6@/G3 in the quenched theory for lattices of size®¥82  lines show the fit range and bounds on the plateau value obtained by

(X symbol3 and 32 64 (star$ at «k=0.155 and momentum trans- jackknife analysis.

fer g=(27/16a,0,0). For this comparison the data for the large

lattice are shifted by two time slices to the left so that the coupling - » over the range ok values considered here is sizable. in
of the photon to the quark occurs at the same time point on the 9 Sldered here IS sizable,

i _ 2
graph. The dashed and solid lines are the plateau values for tHeArticular whenq=(27/32a,0,0) whereQ” changes by a
small and larger lattices, respectively. factor of 2. We will come back to this point in Sec. IV when

we discuss the chiral extrapolation of the results. In all the
like to stress here that in the rati®,, andRgy, which are  evaluations we take andd quarks of the same mass. The
the experimentally measured quantities, the lattice spacingurrent couples to the quark at time slitg=6a for the
does not explicitly enter and therefore a precise determindattices of size 16x 32 and att;=8a for the lattice of size
tion of a is less crucial here than in other studies. In Table 132°x 64.
we use the value foa obtained from the nucleon mass to  To extract a reliable value for the form factors we identify
convert the momentum transferat which the transition mo- the best plateau region having the largest possible range and
ments are evaluated to physical units. The lattice fourensure that changing the fit range within this plateau region
momentum transfe®? depends on the values through the produces results that remain within statistical errors of each
nucleon and\ masses. These values are given in Table I. A®ther. In Table Il we give the variation of the mean values
already mentioned we consider two kinematically differentfrom changing the fit range of the plateaus for two represen-
cases, one with thd being at rest and the other with the tative x values for each lattice in the rest frame of theThe
nucleon at rest. For ak values, includingk., for the case quality of the plateaus and best fit ranges for the case when
when theA is produced at rest the variation @ is negli-  the nucleon is at rest is displayed in Figs. 10 and 115y
gible. For the case when the nucleon is at rest the variation iand in Fig. 12 forGg,. In Fig. 13 we display the plateaus for
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FIG. 11. G{& for the quenched theory on a lattice of size® 32 FIG. 12. G . The notation is as in Fig. 10.

X 64 atk=0.1554, 0.1558, and 0.1562 with the nucleon at rest and
for momentum transfeg=2w/32a. The photon couples to the . .
quark att;/a=8 as indigated by the arrovs. The dashzd lines showprqport'on to the volumg. Foge, and the ratioGe /G,
the fit range and bounds on the plateau value obtained by jackknif¢/Nich carry larger statistical errors, the volume dependence
analysis. is harder to access since the difference in the values for the
two volumes is well within the statistical errors.

The values foiG,,,; extracted from the fits to the plateaus

the large quenched lattice fgk, in the rest frame of th& ) X
in order to have one case of direct comparison to the num@re collected in Table Ill. The overall quality of the plateaus
s well as the best fit range chosen for eactalue can be

bers chosen for the best plateau in Table Il. In Fig. 14 we® C - T
show the plateaus and best fit ranges Ry in the rest S€€N In Fig. 10 fom=(27/16a,0,0) and in Fig. 11 for
frame of the nucleon. From the plateau values given in Tablg™ (27/322,0,0) for both the quenched and the unquenched

Il it can be seen that the dependence of the results on the ﬁlgeor.y.. The larger time extension of the lattice improves the
ranges is, in all cases, well within the statistical errors obldentification of the plateau region, yielding reliable results
tained from jackknife analysis. for Gy, at the lighter quark masses. Frlom the values given in
In order to access finite volume effects we calculate thelable Il we corzac)lude t(h‘)?t’ when thk is produced at rest,
transition form factors in the quenched theory on two latticedhe definitionsg ;7 or Gy yield the same values. The case
of size 16X 32 and 33X 64 at the same momentum transfer. Where theA carries momenturq along thex directiong ),
We show the results fofy;, Ggo, and the ratiacGg, /Gy, in -~ Which is extracted from matrix elements for which the
Fig. 9. The data foiGy,; obtained on the large volume lie Vector index is in thex direction, yields consistently larger
systematically below the ones obtained on the small latticevalues than those obtained fragi) . This difference in the
The results forGg, as well as for the ratiGg, /Gy, have  values ofG (&) andg () is volume independent and increases
overlapping errors. On the two volumes, the difference in thdrom about 6% for the heavier quarks to about 15% for the
plateau values is smallest in the ratio since volume effecttighter ones. It is also independent of the value of the mo-
tend to cancel in numerator and denominator. The plateamentum carried by thé. It would be interesting to allow
values forG,,; given in Table Il are systematically lower by momentum transfers in all directions to check if this differ-
10-15% on the larger lattice. Therefore there is a volumence will be reduced and also use @a) improved Dirac
correction to the results obtained on the small lattices of th@perator to check whether it is due to findeeffects.
order of 10%, which is comparable to the statistical error. To look for sea quark effects on the value @f, we
The results obtained on the larger lattice have negligible volecompare the quenched results on the small lattice to the un-
ume dependence if the volume correction scales in inversguenched results using the SESAM configurations at a simi-
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FIG. 13.G® for A at rest. The notation is as in Fig. 11. tjq tzs/q
lar ratio of the pion mass to the rho mass. From the values of FIG. 14. The ratio- G{/G{) in the lab frame of the nucleon.
pion to rho mass ratios given in Table | one thus compareShe three upper graphs on the left show results for the quenched
guenched results at=0.153, 0.154, and 0.155 to the un- theory on a lattice of size $&32 for q=(2#/16a,0,0) at x
guenched results at=0.1560, 0.1570, and 0.1575, respec-=0.153, 0.154, 0.155 and the lowest shows results for a lattice of
tively. Unquenching leads to a stronger quark mass depersize 32x 64 for the same value af at k=0.155. On the right we
dence, increasing the value @, at the heaviest quark mass show results for the SESAM configurations &t 0.1560, 0.1565,
and reducing it at the two lighter quark masses. 0.1570, and 0.1575 foq=(27/16,0,0). The current couples to

In Fig. 12 we show the quenched and unquenched resul{§€ quark at time, /a=6 for the lattices of temporal size 82nd
for g(Eaz? atq=(2/16a,0,0) in the lab frame of the nucleon. at t,/a=8 for the lattice of temporal size 64 as shown by the
The plateau region is limited to a few time slices for the "W
quenched lattice, whereas for the SESAM lattice for twice  Qur |attice results for the ratie- G3/G () are displayed

the statistics the fits can be extended over a larger time irgyy the guenched and the unquenched theory in Fig. 14 in the
terval. For a staticA both 3 and G&) show a similar  rest frame of the nucleon. The general trend is that this ratio
behavior and the best plateau fit ranges are giveng@r, becomes more negative as we approach the chiral limit. The
in Table Il for representative values. As we already men- plateau values seen in the figure and given in Table Il give
tioned, although the central value 6g, decreases on going No indication of an increase in this ratio as we unquench.
to the larger lattice, the observed decrease is well within oufhis may mean that pion cloud contributions, expected to
statistics. Similarly, unquenching systematically reduces thélrive this ratio more negative, are suppressed at these large
value ofGg,. However, with our statistics this reduction re- quark masses. However, one must keep in mind that part of
mains within errors, for the three values that correspond to the pion cloud is taken into account in the quenched theory
similar ratios of pion to rho mass. Plateau identification im-Since using relativistic quarks includes backward propaga-
proves for the large lattice as seen in Fig. 12, where wdion in time and thus effectively pionic contributions. A study
display results atc=0.155 for both the large and small With lighter pions is required in order to assess the impor-
quenched lattices at equal momentum transfer. This improvdance of pion contributions due to sea quarks on the value of
ment is also seen in Fig. 13, where we show results for théhis ratio and thus on nucleon deformation.

large quenched lattice af=(2/32a,0,0), even though Finally, in Fig. 15 we show the results f@{ with A
lighter quarks are used. Here part of the noise reduction istatic for the large quenched lattice for which the reip

due to having a smaller value of the momentum transfercan be obtained for long enough time separatipnst; to
This enables us to check the stability of our fits by changingallow plateau identification. Although an evaluation &)

the fit range as given in Table II. is also carried out for the SESAM configurations, a large
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TABLE lll. Results forGy 1, Gg» in units of natural magnetongf2my) and for the ratio— Ggs /Gy1-

p at rest A at rest p at rest A at rest p at rest A atrest A atrest
K G g G G g8 G& G Rew (%) g&
QuenchedB=6.0, 16X 32, q=(27/16a,0,0)
0.153 2.317) 2.527) 2.257) 2.267) 0.04613 0.03811) 0.03512) -1.8(8) —1.7(5)
0.154 2.248) 2419  2.128) 2.148) 0.05419)  0.05419) 0.04518) —2.4(9) -2.37)

0.155  2.1614) 2.2711) 1.95100 1.9910)0 0.06828  0.07833 0.07124  —-3.31.4 -3.81.3
QuenchedB=6.0, 32x 64, q=(27/16a,0,0)

0.1550 1.8710) 1.99100 1.787) 1.767) 0.04820)  0.04940 0.05641) —2.67  —0.9549
QuenchedB=6.0, 32x 64, q=(27/32a,0,0)

0.1554 3.24100 3.44100 3.099) 3.129) 0.07330) 0.04915 0.04916) —2.209) -1.65  0.1213

0.1558 3.1111) 3.35100 2.9711) 3.0011) 0.07923)  0.05918 0.057189 -3.01.2 —2.16)  0.1215

0.1562 2.9613) 3.2212 2.8313 2.8414) 0.13153)  0.07124) 0.07824) —4.1(2.00 -299 0.1721)
N;=2: B=5.6,16x 32, q=(27/16a,0,0)
0.1560 2.516) 2.656) 2.365  2.365  0.0318 —0.01213 —0.01112 -—1.14) 0.5256) —

0.1565 2.3¢8) 2.527) 2.136) 2.156) 0.03510)  0.02q11) 0.0259) -1.35  -075  0.113)
0.1570 2.08) 2.189) 1.947) 1.907) 0.03312 0.02313  0.027100 -137) —1.27  0.113)
0.1575 2.017) 2298 1.736) 1.727) 0.07q17) 0.02416)  0.02516 —-3.59  —1.29)  0.083)

enough plateau range could not be identified fowxallalues.  atic errors are largest for this form factor, which means that
Poor plateau identification leading to a limited fit range maythe jackknife errors given in Table Il provide an underesti-
introduce systematic errors that are not included in the errormation of the actual error, our lattice results favor a negative
of the extracted values given in Table Ill. However, for thevalue for the ratio- G-, /Gy, in agreement with experiment.
cases where we can fit over four time slices far enough from
the time of the current insertion the mean valuegdf) is IV. CHIRAL EXTRAPOLATIONS
positive at allx values. Therefore, even though the system-
In order to obtain physical results we need to extrapolate
: T the lattice data to the chiral limit. Chiral perturbation theory
has been applied to calculate the transition form fadtb8$
but the range of validity is limited to very small quark
LA a1l L{l 4 masses and very low momentum transfers and therefore itc-
0.0 -4----a-A A el Sl EEERE annot be used in the current analysiSince the nucleon or
the A carry a finite momentum we expect chiral logs that
appear at next-to-leading order in chiral perturbation theory
. ] to be suppressed for the momentum transfers studied in this
—-0.6 —t work. Therefore a behavior proportional to the pion mass
squared should be appropriate all the way to very near the
351 } £{ 1 chiral limit. The linear dependence of our results on the pion

0.6 T T T
£=0.1554

>

massm,_. squared is seen from Figs. 16, 17, and 18. The
results shown in these figures are for the kinematical case
where theA is stationary and)? remains almost unchanged

as the pion mass approaches the chiral limit. The errors on

G, (e/2m))
5
Il
o
o
o
&

. . e . . . the lattice data are obtained by jackknife analysis and are

—0.6 ©=0.1562 ' ' ' ' purely statistical. Given the fact that we have results only at
e £ - three values ok in the quenched case and four in the un-

2 E { 4 4 qguenched case a linear fit is the best option we have. For the

00baaaat O TLT 1. ] quenched calculation the error on the extrapolated value at

the chiral limit that we quote in Table IV is obtained by
doing a complete jackknife analysis for the thregalues. In

1 1 1 Jf 1 1 1 1
-0.6
0O 2 4 6 8 10 12 14 16 18 1After the completion of this work, chiral perturbation theory was
t2/0 also applied in the quenched case up to next to leading order by

Arndt and Tiburzi[25]. The main conclusion of this work is that
FIG. 15. g(cag in the rest frame of thé. The notation is as in Gy, andGg, depend logarithmically on the pion mass squared, as in
Fig. 11. the full theory.
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FIG. 17. The same as in Fig. 16 but for the unquenched theory.
FIG. 16. Top,G&, ; middle,¢& ; and bottom, EMR in % ver-
susm? in lattice units in the rest frame of the for the quenched
16°% 32 lattice. The dashed line is fitted &o- bm2 and the dash-
dotted line to a constant with the chiral value obtained shown with
a filled square and star for the twinsaze respectively. — 3.2 % _ -
o £ 30f F--71
the unquenched case, configurations at each quark mass ac
obtained from different Monte Carlo simulations, and a stan-3 28 |
dard y?-minimization procedure, which assumes uncorre-~ 2.6 |
lated data points at each quark mass, can be applied. =

. . . . 2.4
Extrapolating linearly in mfr, we obtain for both = . ; ;

guenched and unquenched lattices very good fitsGfgr, ' ' '

which is the most accurately determined quantity. All the — 12| 1
data points fall nicely on a straight line even in the un- EZ 10k T~ - _
guenched case, where the data at different quark masses acN T,

uncorrelated since they are obtained using a different set 0} 08 L I )
configurations. A lineaAnsatzalso fits well the quenched ~ o6} L. ... _._._. Tk T
results forGe, andRgy, as can be seen in Figs. 16, 17, and , & T % -
18. For the corresponding unquenched results, although % I : : : : ]
linear Ansatzstill provides a good fit, giving & per degree -
of freedom=1.1 for G, and y?/DOF=0.6 for Rg), the 2t {» --------------------- %—;—/— —’-} -
unquenched results f@g, andRgy show very weak mass ¢ Pt

dependence at the three lightest quark masses. Chiral pertu~ =3 [ P ]
bation theory suggests a similar mass dependencg:foas @ _a b L == - )
that for Gy,1. An unquenched calculation with higher statis- 1

tics on a larger lattice to avoid finite size effects that, espe- -5t -
cially at the lightest quark mass € 0.1575), can be signifi- - s -

cant is called for to check this mass dependence. Given thi 0.00 0.02 0.04 5 0.06 0.08
weak mass dependence, we alsadfib and Rgy, to a con- (mﬂo)

stant which gives a lower value f@Jg, and the absolute
magnitude ofRg,, at the chiral limit. For comparison we FIG. 18. The same as in Fig. 16 but for the quenchetix®
include also for the quenched results the value obtained ugattice.
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FIG. 19. The EMR ratio in % in the rest frame of the nucleon.
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TABLE IV. Results for Gy1, Geo in units of e/2my and for the ratioRgy=—Gg,2/Gy1 In percent
extrapolated to the chiral limit. All errors given are statistical. The last column gives the predictiRa for
in percent obtained within the SL mod&l1] where for the quenched case we quote their values without pion
cloud contributions and for the unquenched theory we give their fully dressed results for the case where the
A is produced at rest. In the last two columns we give the experimental results at similar valés of

Q (GeV)) G G& Rem
Quenched QCD SL
p at rest 0.40 —4.41.7
A at rest 0.64 1.71.4) 0.10448) —4.81.8) -1.3
A at rest 0.13 2.5@0) 0.10836) -4.1(1.9 -1.3
p at rest 0.06 —5.93.0
Unquenched QCD SL
A at rest 0.53 1.290 0.05224) -3.11.3 —2.7
p at rest 0.40 —-3.71.2
Experimental results
0.126 —-2.02)(2.0 [1]
0.40 —3.44)4 [2]
0.52 —1.6(4)(4) [2]
3 T _ T T T /_ . . . .
[ Tonmie b=l B /% e 13264 N =0
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FIG. 20. Top,¢¥); middle, ¢ ; and bottom,—G&)/G (@) in

Top for the quenched £& 32 lattice, middle for the unquenched % versusmf, in lattice units in the rest frame of th& for the
theory, and bottom for the quenched®324 lattice. The dashed quenched 32< 64 lattice. The dashed line is fitted &+ bmZ and

line is fitted toa+bm? and the dash-dotted line to a constant with the dash-dotted line to a constant with the chiral value obtained

the chiral value obtained shown with a filled square and star for theshown with a filled square and star for the twmsaze respec-
two Ansdze respectively.

tively.
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ing a constant fit even though a linear fitriif. is favored by ~ as well as of the rati®g ) obtained for both kinematics. The
the data. Although the chiral absolute value Ry, is re-  values given are the result of using a lindarsatzin mf, to
duced by modifying the fittingAnsatzto a constantRgy, extrapolate to the chiral limit, and the quoted errors are only
remains negative in all cases. statistical. As discussed in Secs. Ill and IV there are a num-
For kinematics where the nucleon is at rétchanges as  ber of systematic errors that we must consider when compar-
we approach the chiral limit. This change is particularly se-ing the results of Table IV to the experimental ones. We
vere for the large quenched lattice where one would need themmarize here the source of systematic errors on the form
extrapolation of form factors computed @F that decrease factors and their ratios. Finite volume effects are estimated
by 50%. In phenomenological studies one models @fe by performing a quenched calculation at the same value of
dependence of the three form factors by momentum transfer on a lattice of size3¥632 and 32
2y _ 2yaP(O2 X 64 at3=6.0. Assuming a 1/volume dependence iy,
9a(Q) = GalORA(Q)GE(Q), 33 the results show a 10—15 % correction for the data obtained
whereR,(Q?) for a=M1,E2, andC2 measures the devia- on the small lattice and negligible for the larger lattice. The
tions from the proton electric form factdBP(Q?)=1/(1  statistical errors o, are too large to enable any volume
+Q?/0.71Y. Usually experimental data are fitted by taking correction to be extracted. However, one would expect a
Ru1(Q)=Rex(Q)=Rcy(Q?) =1+ aexp(-Q?%) [21].  similar volume dependence as fGf;;. On the other hand
There are not enough data to simultaneously fit@feand the volume dependence largely cancels in the ratio and so we
the quark mass dependence. We are in the process of studgxpect both EMR and CMR ratios to have negligible volume
ing the Q2 dependence of these form factors using the fixecddependence. The variation in the mean values obtained by
source sequential techniq{@2,23. However, assuming that varying the plateau ranges is smaller as compared to the
the above phenomenologicdhsazeprovide a good descrip-  statistical errors as can be seen from Table Il, where we have
tion for the Q2 dependence ofy,; andGg,, we expect the given the values obtained using different fit ranges for rep-
Q? dependence to cancel in the rag,, . Therefore a chiral resentativex values for all the lattices studied in this work.
extrapolation can be performed f&:y also in the case of We look for unquenching effects by comparing quenched
the nucleon being at rest. A constant and a linear finjnare ~ and unquenched results on lattices of similar physical vol-
shown for the three lattices in Fig. 19. Once more the conume and lattice spacing as well as the pion to rho mass ratio.
stant provides a lower limit for the absolute magnitude ofFor pion masses in the range of 800—500 MeV unquenching
Rem and still leads to a negative value in the chiral limit in effects are within statistical errors. Extrapolation of the lat-
all cases. tice results to the chiral limit represents the biggest uncer-
Finally, we cannot observe any quark mass dependendainty that can be eliminated only by evaluating the form
for &) andG L) as well as for the ratio- G&)/G (@) given  factors closer to the chiral limit. Avoiding any chiral extrapo-
the present statistical uncertainties as can be seen in Fig. 2@tions the results on the two quenched and on the un-
We included in the figure a constant and a linear fit yieldingguenched lattices at the lightest quark mass give a Rytjp
results that are consistent with each other. We show onljn the range of about« 1 to —5)%, which is in accord with
results obtained in the rest frame of the for the large the range obtained in experimental measurements. Both
quenched lattice where we have the best signal. For this lagiuenched and unquenched calculations are done at values of
tice and kinematics a)?=0.13 Ge\f the values we extract B corresponding to a lattice spacing of about 0.1 fm. Esti-
from the linear Ansatz are g(caz)zo_go(gz) and g(cbz) mating finite lattice spacing effects would require repeating
=0.48(34) in units of natural magnetors/?m,;). Changing the calculation at two larger values gf keeping the physi-
the fitting range can lead to changes of the mean value d§al volume constant and attempting a continuum extrapola-
about 30% at each value. Although the mean values of tion. This is beyond our current computer resources and no
G®) are systematically larger than those @f) at all x  Systematic error due to the finite lattice spacing can be esti-
values they are always within statistical errors. Despite thénated- _
large statistical and systematic uncertainties on this quantity, N the last column of Table IV we give the resuilts for the

the data favor more a negative than a positive CMR ratio. 'ali0 Rey obtained in the Sato-Le€SL) model using an
effective Hamiltonian defined in the subspacemfle yN

@A [21]. Within the SL modeRgy, is calculated in the rest

frame of theA as a function ofQ? for bare and dressed
In Table IV we list the chiral extrapolated values of the vertices. It is interesting that for bare vertices these authors

M1 andE2 form factors obtained in the rest frame of the obtain nonzero values foRgy pointing to the fact that a

V. DISCUSSION

TABLE V. fy1, fga, Ay, andAg, in units of GeV Y2

Lattice - q2 (Ge\/z) f M1 sz Al/2 A3/2

163% 32 0.64 0.26622) —0.0167) —-0.10913) —0.24420)
3253x64 0.13 0.29023) —0.0124) -0.12912) —0.26720)
SESAM 0.53 0.19415) —0.007836) —0.0858) —0.17513)
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' =, ' included the Particle Data group value fBgy at Q>=0

P % [24]. Once more what can be seen from this figure is that
quenched and unquenched results are within errors. The un-

] T ] quenched results at our two available momentum transfers

(]

. are in agreement with the experimental results. We stress that
all the errors shown on this figure are statistical. For the
experimental results the systematic error is about the same as
the statistical error. For the lattice results the most severe
systematic error comes from assuming a lindasatzin me
x CLAS for the extrapolation to the chiral limit.
A From the lattice data obtained in this woRg), can be
4 B estimated only in the chiral limit for the large quenched lat-
Qz Gevz tice. Extrapolating the results obtained in theest frame for
the large quenched lattice aD?=0.13 Ge\? we find
FIG. 21. The raticRe,, in % versusQ? at the chiral limit. Filed ~ — 9 &/Gm1=(—7.7£11)% which leads, via Eq(6), to

triangles are quenched and open triangles are unquenched resufsy=(—1.2=1.7)% where only the statistical error is
The filled square is the Particle Data Group resulQat=0 [24], given. AtQ?=0.126 GeV the experimental value dRs), is
the crosses are from Rdf2], and the star is from Refl]. The  (—6.5+0.2+2.5)% [1]. As already mentioned, the lattice
errors shown on the experimental results are statistical. The latticevaluation of this quantity is affected by large systematic and
values shown are those obtained using a linear finjnto extrapo-  statistical errors, which must be studied before a more accu-
late to the chiral limit. In the unquenched case the error bars arggte determination can be obtained.
increased so that an extrapolation to the chiral limit using a constant Finally, in order to facilitate comparison with experiment
lies within the shown error bands. and phenomenology, not only for the ratios but alsodgg

_ ) ) ) and Gg, separately, we give the relationship between the
nonzero electric quadrupole amplitude implying nucleon deachs form factors studied in this work and the electromag-

formation that obtained even without pions. This is in agreeqetic transition amplitudes,; andfg, in the rest frame of
ment with lattice results on the rho deformation that is 0b-tpe A [21]:

served in the quenched approximation without pion
contributions[5]. Comparing the value obtained in the SL

-8 4 quenched
4 unquenched

.0 2

1/2
model atQ”=0.64 GeV and 0.13 GeV using bare vertices ~ f, = © |q|mA> G ’ (34)
to our quenched lattice result via E@) [21], we see that 2my | my [1—q?/(my+my)?]Y2
guenched QCD produces a more negative valu®ggy than
that obtained in the SL model. One must, however, take into e [lglmy|¥2 Ges
account that, in the baryonic sector, quenching still includes fg,=— 5 ( ) 5 s (35
part of the pion cloud due to quarks propagating backwards Myt My [1—g%(my+my)°]

in time. These are absent in the SL model with bare vertices.

On the other hand unquenched lattice results at quark masse#h e=y47/137. Since these are continuum relationships

that correspond to pion masses in the range 500-800 Metp obtain results forfy,; andfg, from the values given in

do not influence the value d®gy. This implies that pion Table IV one uses the physical nucleon andhass. We give

cloud contributions from sea quarks at these pion masses atee values foff,; andfg, in Table V. They are related to the

not large. It remains an open issue whether this means thelicity amplitudesA,, and Az, by

pionic contributions from back-going quarks are also small,

in which case the difference between quenched lattice and

SL model results cannot be explained solely by pion contri- fm1=— §<All2+ \/§A3/2)'

butions from back-going quarks. Results Ry, obtained in

the SL model with fully dressed vertices are twice as nega-

tive as those obtained with bare vertices, showing, within

this model, the importance of pionic contributions to defor-

mation. Our unquenched results, obtained here for rather

heavy pions, show no significant enhancement which mays can be seen from Table IV, the values of the helicity

reflect thatqq creation is suppressed. Since it is for light amplitudes forQ? closest to zero are in agreement with the

pions that large pionic contributions are expected, it is im-values atQ?=0, A;,=—0.135-0.006 GeV 2, and A,

perative to repeat the calculation with dynamical quarks=—0.255+0.008 GeV 2, as given by the Particle Data

closer to the chiral limit to study sea quark contributions. Group.
The values of the ratidRgy, given in Table IV can be

compared to those measured at various value®%fn re-

cent experimental searches for nucleon deformation. The lat-

tice results forRgy, are plotted in Fig. 21 together with the ~ The matrix element for the transitiopN— A is computed

recently measured experimental data. In the figure we alsim lattice QCD both for the quenched theory and for two

(36)

VI. CONCLUSIONS
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dynamical Wilson fermions in a first attempt to study un- extraction of the Coulomb form factor and of the ra#gy, is
guenching effects on these form factors. The dominant magsossible.

netic dipole form factor is calculated with statistical accuracy

of about 10%.'The eIectric_: quadrupole is suppressed by an ACKNOWLEDGMENTS
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