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Recombination of dyons into calorons inSU„2… lattice fields at low temperatures
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~Received 12 February 2004; published 25 June 2004!

By cooling of equilibrium lattice fields at finite temperature inSU(2) gauge theory it has been shown that
topological objects~calorons! observed on the lattice in the confined phase possess a dyonic substructure which
becomes visible under certain circumstances. Here we show that with the increasing temporal lattice extent the
distribution in the caloron parameter space is modified such that the calorons appear nondissociated into
constituent dyons. Still the calorons have nontrivial holonomy which is demonstrated by the Polyakov line
behavior for these configurations. At vanishing temperature~on a symmetric lattice! topological lumps ob-
tained by cooling show rotational symmetry in 4D for the action density, but a characteristic internal double-
peak structure of Polyakov lines with respect to all~temporal and spatial! directions.

DOI: 10.1103/PhysRevD.69.114505 PACS number~s!: 11.15.Ha, 11.10.Wx, 12.38.Lg, 14.80.Hv
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I. INTRODUCTION

At high temperatures, near but below the deconfinem
temperature, classical solutions of Yang-Mills equations w
nontrivial holonomy@Kraan–van Baal~KvB! calorons@1,2##
are seen on the lattice forSU(2) gauge theory to be fre
quently dissociated into dyons@3–6#. This means that the
distance between the dyons forming a caloron,

d5
pr2

b
, ~1!

is larger than the size of dyons~which isb/p for the case of
maximally nontrivial holonomy!. Herer is the instanton size
parameter andb is the temporal periodicity interval.

These observations have been made by the use of coo
Therefore, the question arises why such a substructure
not been observed by previous authors who have used
cooling method. In this paper we will argue that there is o
a certain window of temperature or space-time asymm
where it can be revealed by this method.

The interest in the existence of caloron constituents
increased since it has been demonstrated in Ref.@7# that a
constituent substructure very reminiscent of the caloron
lutions can also be identified without cooling, above and
low the phase transition. This can be achieved by using
localization properties of the fermionic zero modes of a s
ably chirally improved Dirac operator. The similarity wit
the properties of a caloron solution is strikingly realized fo
certain fraction of configurations with topological chargeQ
561, where the single zero mode is seen to change
localization when the periodicity of fermionic boundary co
ditions becomes modified. A systematic study@7# of the typi-
cal pattern of localization and delocalization followed
jumps of the zero mode has revealed that this pattern
pends on the timelike holonomy exactly in a caloronlike w
Whereas the topological density has a much more com
cated structure, the positions where the zero mode is pin
down actually show the signatures expected for caloron c
0556-2821/2004/69~11!/114505~11!/$22.50 69 1145
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stituents@8#: they are local maxima of the topological densi
q(x) with a sign as required by the chirality of the mod
This suggests that~dissociated or nondissociated! calorons
might really form the semiclassical background of the gau
field near the phase transition.

Coming back toSU(2) calorons with their two constitu
ents, it seems that the quantitiesd andr appearing in Eq.~1!
are impossible to be measured simultaneously: whend is
seen by observation of separate dyon positions no instan
like profile ~of topological density! is observed which could
be used to definer. Whend goes to zero (d!b) an instan-
ton size parameterr can be measuredby comparison with
the instanton’s action density profile, but thenno dyons are
seenas separate objects. More precisely, the parameted
cannot be measured forall caloron configurations as the dis
tance between constituents as long as only the action o
pological charge densities are available as local observa
to describe them.

The time periodicity parameterb defines the temperatur
T: b51/T. In order to demonstrate how the recombination
constituents depends on the temperature we can chang
temporal extentb of the lattice.

We employ the standard relaxation cooling technique
ing the Wilson lattice action and concentrate on the inve
gation of lowest-action field configurations withQ561.
Besides the fact that solutions withuQu51 are nonexistent
on a torus in a mathematically strict sense@9#, also the cool-
ing method has a limited relevance. It cannot be used
revealing the full topological structure of the QCD vacuu
even if the latter is semiclassical to a certain extent. In p
ticular, it considerably weakens the chiral condensate co
pared with its value for equilibrium fields@10#. Moreover, it
is well known that the Wilson action depends on the inst
ton ~or caloron! scale size. Therefore, its minimizatio
shrinks the localized solutions until they disappear ‘‘throu
the lattice meshs.’’ Thus, small excitations will be lost firs
In the literature—besides fermionic methods—there are b
ter techniques like improved cooling, smoothing, smeari
etc., allowing us to decipher the topological long-ran
©2004 The American Physical Society05-1
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structure of the gauge fields. But this task isnot our concern
in this paper. Here we ask the more modest question a
what kinds of simple classical solutions can be found fr
equilibrium gauge fields at different temperatures by succ
sively minimizing the action.

This question remains interesting for those who want
build or apply semiclassical-like approximations—i.e., mo
els like the instanton gas or liquid model@11# being success
ful in many phenomenological applications for which chir
symmetry breaking~and not quark confinement! is playing
the major role @12#. Until now most of the cooling~or
smoothing! results obtained atT,Tc have been interprete
in terms of Belavin-Polyakov-Schwarz-Tyupkin~BPST! in-
stanton@13# and Harrington-Shepard~HS! caloron@14# solu-
tions, respectively, all exhibiting trivial asymptotic ho
lonomy. Here we would like to convince the reader that
simplest caloron or instanton solutions seen after coo
have typically nontrivial holonomy, irrespectively of the
possible dissociation into dyons pairs. Therefore, they can
be correctly interpreted as BPST or HS solutions.

The paper is organized as follows. In Sec. II we draw
attention to the static nature of configurations near the
confining transition. Section III presents our results on se
classical configurations at finite temperatures, pointing
the loss of ‘‘staticity’’ and the increasing importance of th
Polyakov loop for detecting the nontrivial substructure
lower temperature. In Sec. IV we extend the cooling stud
to the symmetric torus. We emphasize that the KvB calo
solutions were constructed in an infinite spatial volum
When used at finite volume considerable deviations are to
expected when the spatial box size is no longer large c
pared tob, since the typical size of the constituents isb/p.
Finally, in Sec. V, we discuss the consequences, also in
perspective of a twin paper by Gattringeret al. @15#.

II. NONSTATICITY AND SEPARATION
INTO CONSTITUENTS

It turns out that the possibility to observe the dyonic co
stituents of a KvB caloron as lumps of action depends
(pr/b)2. In SU(2) lattice gauge theory~LGT! at b[4/g0

2

52.2 on a lattice 16334 the parameterr is concentrated
near the valuer'2.5a (a is the lattice spacing! @4#. With
b54a,

S pr

b D 2

'4@1.

This means that dyons are well separated. The value ofr in
@4# was determined by fitting the lattice caloron with th
analytic KvB caloron, and formula~1! was used. On the
lattice 16336 ~with b56a) and at the sameb52.2 ~i.e., at
a temperature 1.5 times lower! the parameter (pr/b)2 would
be of the orderO(1). Then, from this simple arithmetics
one would expect that calorons are not dissociated into
onic lumps anymore.

The possibility to measure the distance between dy
inside a caloron just by detecting the peaks of the ac
density on the lattice is given only in the case of we
11450
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separated objects. Indirectly this distance can be meas
by measuring a quantity that can be called nonstaticity.1 Un-
fortunately, cooling yields metastable plateaus only for te
peratures below the deconfining temperature. On the o
hand, this allows us to restrict ourselves in the following
maximally nontrivial holonomybecause the average Poly
kov line vanishes. To describe for this special case the r
tion between distanced and nonstaticity, we have considere
analytical caloron solutions in continuous space-time. We
vided the time intervalb into Nt time slices and expresse
the action in thei th time slice,Si5(xWsxW ,i , in terms of the
local action densitysxW ,i . The nonstaticityd t is defined as

d t5

(
i 51

Nt

(
xW

usxW ,i 112sxW ,i u

(
i 51

Nt

(
xW

sxW ,i

. ~2!

Obviously, this definition depends on the number of tim
slices,Nt , such that one would haved t→0 for Nt→`. In
order to get an asymptoticallyNt-independent quantity we
will modify the definition ofd t as follows:

d t5

(
i 51

Nt

(
xW

usxW ,i 112sxW ,i u

(
i 51

Nt

(
xW

sxW ,i

Nt

4
. ~3!

The factor 1/4 has been chosen such that for a lattice3

34, where all the simulations were initially done using E
~2!, the two definitions~3! and ~2! agree.

With the definition~3! at hand we can calculate the no
staticity of an analytic KvB caloron. The nonstaticity d
pends on the holonomy and on the distance between
constituents inside the caloron. For maximally nontrivial h
lonomy ~which coincides with the average holonomy in th
confinement phase! the constituent dyons have equal ma
For this simplified case we have determined a bifurcat
value of the nonstaticity,d t* 50.27, choosing the distanc
between the constituents such that the two lumps of the
tion density~dyons! merge into one lump of the action den
sity. This single lump is what we call a ‘‘recombined ca
oron.’’ As already mentioned, the nonstaticity uses t
discreteness of a lattice configuration. The valued t* is ob-
tained by inserting the analytic form of the action density
a continuum KvB caloron solution@1#, calculated exactly at
the point of bifurcation, into the evaluation of Eq.~3! using a
grid with lattice spacinga5b/Nt . In order to see how well
defined at finiteNt this ‘‘bifurcation value’’ d t* can be, we
have evaluated it for various~even and odd! Nt>4. The
function d t* (Nt) that goes tod t* 50.27 for Nt→` is pre-
sented in Fig. 1.

1See Ref.@6# where it has been defined in a slightly different wa
5-2
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RECOMBINATION OF DYONS INTO CALORONS IN . . . PHYSICAL REVIEW D69, 114505 ~2004!
If the nonstaticity is lower than the bifurcation valued t* ,
two dyons can be distinguished by the two maxima of
action density. If the nonstaticity is bigger thand t* , two
dyons appear recombined into a caloron with only one ac
density maximum.

III. RECOMBINATION OF DYONS INTO CALORONS
WITH LOWERING TEMPERATURE

The main results of this paper are obtained from
sembles ofSU(2) gauge field configurations created by he
bath Monte Carlo simulations atb52.2 with respect to the
Wilson actionSW on lattices 1633Nt with Nt54, Nt55,
andNt56. Each ensemble consisted of about 8000 indep
dent configurations. Cooling of these configurations was p
formed using the fastest possible relaxation with respec
the Wilson action. For this method each linkUx,m is imme-
diately replaced by the projection toSU(2) of the staples
around it,Ũxm .

The cooled configurations studied in this paper have b
identified when the cooling history finally has arrived at
quasistable plateau on the level of a single instanton ac
SW'Sinst52p2b. Later on, we describe also some resu
concerning higher plateaus of the action—e.
SW'3Sinst—which are passed earlier in the cooling proce
More precisely, on such plateaus we stopped cooling alw
at local minima of the violation of the lattice equations
motion @6#. Here, the violation is defined as

V5(
xm

S 1

2
tr@Uxm2Ũxm#†@Uxm2Ũxm# D 1/2

. ~4!

In addition to that, the following conditions have been im
posed for the automatized selection of the classical soluti

FIG. 1. The dependence of nonstaticityd t* , defined at the bi-
furcation point for analytic KvB caloron solutions, on the numb
of time slices,Nt . The zigzag form of the curve can be explain
by the qualitatively different arrangement of even and odd ti
points where the continuum KvB caloron solution has to be ca
lated in order to evaluate Eq.~3!.
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~i! the action fits into the window 0.5,SW /Sinst,1.25,
~ii ! the decrease of action has slowed down

uDSWu/Sinst,0.05,
~iii ! the violation of the equations of motion should b

sufficiently weak,V,25.

In most of the cases for which the first and second con
tions hold we find a small minimum violationV,20. In a
few cases there were also local minima with much largeV
values, which hardly could be interpreted as extended s
tions of the lattice equations of motion. Thus, the third co
dition was implied in order to select ‘‘good’’ solutions. W
have varied our stopping criteria2 and seen that the details o
the ensemble of the ‘‘frozen’’ objects slightly change. O
main observations reported below do not depend on the
tails of the procedure. The efficiency of the conditions w
such that 80%~in the caseNt54), 60% (Nt55), and 55%
(Nt56) of the equilibrium configurations ended up in
cooled configuration at the one-instanton action plate
These cooled configurations include events with topolog
chargeQ561—i.e., real calorons—as well as configur
tions with topological chargeQ50 which in our previous
paper@6# had been identified as static dyon-antidyon pa
(DD̄). The latter constitute 18% (Nt54), 14% (Nt55),
and 8% (Nt56), respectively, of all cooled configurations
the one-instanton level. They have been discarded from
considerations in this paper.

We remind the reader that the recombination thresh
d t* 50.27, strictly speaking, reflects the recombination
maximally nontrivial holonomy only—i.e., with an
asymptotic value of the Polyakov lineLas50. If one per-
forms cooling without special restrictions concerning the h
lonomy, there is no guarantee that the asymptotic holono
of the caloron configurations still coincides with the avera
Polyakov line of equilibrium configurations in confinemen
For the purpose of defining anasymptoticholonomyLas for
each cooled configuration, we have determined the ave
of LxW over a 3D subvolume where the local 3D action dens
sxW is low, for definitenesssxW,0.0001. In Fig. 2 we presen
the distribution of cooled configurations overLas as a histo-
gram ~with bin size 0.1! for the three casesNt54, Nt55,
and Nt56. In the legend we show the respective volum
fraction (F'0.15) of the three-volume over which th
‘‘asymptotic’’ value Las is defined as an average—i.e., f
from the lumps of action and topological charge.

As explained above, the nonstaticityd t is a measure
which describes the distance from a perfectly~Euclidean!
time-independent configuration. In other words, the distrib
tions of nonstaticity of caloron events obtained by cooling
equilibrium lattice configurations can be considered as a s
stitute for the distribution in dyon distancesd. This quantity
can be directly measured for cooled lattice gauge field c
figurations. We show in Fig. 3 thed t distributions for all our
cooling products obtained atb52.2 on 1633Nt lattices.

In an attempt to make a fair comparison with caloro
with nontrivial holonomy and to correct for the possible ev

2The criteria have been tested forNt54 and applied also toNt

55 and 6~at the sameb).
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-
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E.-M. ILGENFRITZ et al. PHYSICAL REVIEW D 69, 114505 ~2004!
lution of the asymptotic holonomy away fromLas50 during
the cooling process, we defined a subsample by the req
mentuLasu,1/6. One can see that the cut with respect to
asymptotic holonomy selects cooled configurations from
flat central part of the histogram shown in Fig. 2. On t
other hand, we notice that a considerable fraction of coo
configurations has developed an asymptotic holonomyuLasu
.1/6.

In Fig. 3~a! we show the probability distribution overd t
for cooled configurations with an action at the one-instan
plateau without the cut according to the asymptotic h
lonomy uLasu. One can see that a relatively high fraction
configurations, obtained from the Monte Carlo equilibriu

FIG. 2. The distribution of holonomyLas for the three samples
of cooled configurations corresponding to three temperatures b
deconfinement atNt54, Nt55, andNt56.
11450
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with Nt54, hasd t,d t* 50.27. This means that they woul
be identifiable as consisting of two constituents by looki
for the 3D action density on the lattice. ForNt55 it is only
a minority of cooled configurations which falls below th
thresholdd t50.27. No static~according to the nonstaticity
criterion! configurations have been found among cooli
products atNt56.

We have repeated the same analysis after applying the
with respect to the asymptotic holonomy,uLasu,1/6. Then
we get modified histograms ind t for the three temperatures
This is shown in Fig. 3~b!. The histograms got more pro
nounced peaks ind t which are positioned around 0.125, e
actly aroundd t* 50.27, and around 0.5 forNt54, Nt55,
andNt56, respectively.

There are other criteria which could be used to charac
ize a more or less static configuration—for example,
presence of static Abelian monopoles emerging in the m
mal Abelian projection. This criterion is not identical wit
the separation set byd t* . Thus, another subsample can
defined by the property that a pair of static Abelian mon
poles has been found after fixing the cooled configuration
the maximal Abelian gauge and doing the Abelian projecti
This subsample can be analyzed with respect to the th
dimensional distanceR between the Abelian monopoles.

In Fig. 4~a! we show the histogram overd t of all cooled
configurations obtained from the Monte Carlo ensemble
Nt54 together with the histogram of those which explicite
exhibit the dyon-dyon structure in terms of Abelian mon
poles. One can see that practically all cooled configurati
below d t* possess this structure, but aboved t* the fraction
rapidly goes to zero. We show the same forNt56—i.e., at
lower temperature—in Fig. 4~b!. In this case, at the pea
value aroundd t50.5 only 20% of the solutions still are cha
acterized by a static dyon-dyon pair, whereas at higher n
staticity this is never the case. In these two distributions
cut with respect to the asymptotic holonomy has been
plied.

w

nt
FIG. 3. The distribution of nonstaticityd t after cooling as histograms~with bin width 0.05!, for three temperatures below deconfineme
at Nt54, Nt55, andNt56: ~a! without any cut,~b! when a cutuLasu,1/6 is applied. The thick vertical line marks the nonstaticityd t*
where the caloron recombines.
5-4
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FIG. 4. The distribution of nonstaticityd t after cooling compared with the subsample of configurations which have a static dyon
~DD! structure exhibited by monopoles after Abelian projection:~a! for the higher temperature withNt54, ~b! for the lower temperature
with Nt56. The thick vertical line marks the nonstaticityd t* where the caloron recombines.
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Up to now we have two tentative definitions of the po
tion of the constituents: one is the position of the two sta
Abelian monopoles~in MAG, as long as they are static! and
the other is defined by the maxima of the 3D action densi3

In the case of well-separable maxima of the latter th
maxima fall close to the positions of the MAG monopoles.
the other limiting cases of recombined maxima or imb
anced maxima~this corresponds to an asymptotic holonom
far from zero! of the 3D action density at least theabsolute
maximum of action densityis still easy to find. It is eitherthe
single maximum or it takes the role ofone of the maxima.
For the case ofNt54—i.e., the temperature just belo
deconfinement—we show in Fig. 5~a! the histogram with
respect to the local Polyakov loop at the two sorts of
constituent points: the loci of static monopoles or the ma
mum of action density. In both definitions the histogra
peaks near toLxW561. The peak is, however, more pro
nounced for the monopole locations, less pronounced for
maxima of the 3D action density.

The relation between the nonstaticityd t and the distance
R between the static dyonic constituents emerging~in MAG
as Abelian monopole! given in lattice units is presented i
Fig. 5~b! for the higher temperature, near the deconfinem
temperature (Nt54). For this temperature such dyon-dyo
events are clearly distinguishable among the cooled confi
rations as long as the nonstaticityd t,0.6. For extremely low
nonstaticityd t @left from the peaks in Figs. 3~a! and 3~b!# we
find an average distanceR'7, whereas neard t* the average
distance isR'4. For higherd t , the part of solutions which

3For the case of analytical caloron solutions, the relation betw
the constituent locations, the locations of the maxima of the ac
density and the locations whereuPu51 has been compared in Re
@16#.
11450
c

.
e

-

i-

e

nt

u-

still possesses a clear dyon-dyon structure in terms of A
lian monopoles has them localized at distancesR between
one and two lattice spacings.

In order to represent how the Polyakov line behaves
side a lump of action, we have chosen the absolute maxim
of the 3D action density~denoted as central pointxW0) and
have explored the Polyakov loop in its neighborhood. F
this purpose, we have defined a locally summed-up Polya
line Ltot @summed over the central pointxW0 and its six near-
est neighborsxW i( i 51, . . . ,6)],

Ltot5(
i 50

6

LxW i
, ~5!

and a kind of Polyakov-line dipole moment over the same
of 3D lattice points with respect to the central point:

MW tot5(
i 51

6

LxW i
~xW i2xW0!. ~6!

The absolute valueuLtotu of the first quantity tests the amoun
of local coherence of the Polyakov line. The absolute va
uMW totu of the second quantity tests the amount of presenc
opposite-sign Polyakov lines representing eventually t
different constituents inside the same lump of action. Fig
6~a! shows how theuLtotu ~i.e., the locally summed-up Polya
kov line! changes withd t in different bins of width 0.1. For
the temperature nearest to the transition, atNt54, we see
that uLtotu falls from '4.0 to'1.0 atd t>0.5. We interprete
this such that in the region, where constituents can be w
separated according to the action density~at smalld t), they
are characterized by a relatively smooth change of the Po
kov line inside. In the region of larged t where they are not
separable according to the action density, the Polyakov
changes rapidly in the neighborhood of the absolute ma

n
n

5-5
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FIG. 5. The dyon-dyon structure after Abelian projection:~a! distribution of the local Polyakov loop at the position of the static Abel
monopoles compared to the distribution at the maxima of action density,~b! average distance between the static Abelian monopole
nonstaticityd t assigned to the cooled configuration. The thick vertical line marks the nonstaticityd t* where the caloron recombines.
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mum of action density. For the lower temperaturesNt55
and Nt56, the relationship between these properties of
action cluster andd t is the same. The difference is that sep
rable lumps of action~those with lowd t) become very rare
Figure 6~b! shows how the ‘‘dipole moment’’uMW totu of the
Polyakov line around a maximum of action density rises w
increasing nonstaticityd t . In the region where one can sep
rate the constituents according to the action density, the
pole moment is small, emphasizing again the homogeneit
the Polyakov line around the central point. In the regi
beyondd t* the dipole moment gradually stabilizes around
value of 1.5.

In the same way as described so far, we have analy
configurations obtained by cooling at higher-action platea
11450
n
-
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As an example we show in Fig. 7 the histogram of nons
ticity d t for the same three temperatures represented byNt

54, Nt55, and Nt56. Although the precise border be
tween static and nonstatic has not the clear meaning as
the one-caloron case, the trend is the same: at lower temp
ture the lumps of action tend to be more localized also
Euclidean time~‘‘instanton like’’!. Compared with the one
caloron case, the histograms are more smeared.

So far we have investigated the outcome from cooling
varying temporal lattice extent and fixed spatial volum
What happens when changingb at fixed lattice size and
fixed lattice asymmetry? In Fig. 8 we again show nonsta
ity d t histograms without applying cuts foruLasu. We com-
pare ~a! for Nt54 the casesb50, b52.04, andb52.20
ne

ro.
FIG. 6. The Polyakov line in the neighborhood of maxima of the action density:~a! modulus of the average summed-up Polyakov li

uLtotu, ~b! modulus of the corresponding ‘‘dipole moment’’uMW totu vs nonstaticityd t , for the subsample with asymptotic holonomy near ze
For details of the definition see the text. The thick vertical line marks the nonstaticityd t* where the caloron recombines.
5-6
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RECOMBINATION OF DYONS INTO CALORONS IN . . . PHYSICAL REVIEW D69, 114505 ~2004!
with each other and~b! for Nt56 the caseb52.20 with b
52.36.4 The statistics for the newb values~0.0, 2.04 and
2.36! is of orderO(200) field configurations each. Contra
to what one might have expected, we see that among
cases~a! and~b!, respectively, there are no qualitative diffe
ences. This means that the ratio of probabilities for the
currence of dissociated calorons~or separate static dyo
pairs! versus nondissociated~single lump! calorons isnot a
function of the temperature describing the original equil
rium ensemble. Instead, it is mainly determined by the
ometry~the aspect ratio! of the lattice. The larger the tempo
ral lattice extent is in comparison with the spatial extent,
lower is the probability to find separated lumps of more
less static objects after cooling. In other words, once ther
only one topologicalQÞ0 object left, everything is classi
cal. As a rule, the object is smooth, such that only the size
the box matters or other ‘‘infrared forces’’~e.g., those forbid-
ding single instantons! play a role. This observation clearl
shows the limitation of the cooling method applied to t
lowest-action plateaus.

IV. INSTANTONS OR CALORONS
ON A SYMMETRIC 4-TORUS

With low statistics ~100 configurations! we have also
cooled equilibrium configurations generated withb52.2 on
symmetric lattices (164 representing ‘‘zero’’ temperature!. In
this case we have found for the classical configurations at
plateauSW'Sinst a broad distribution of nonstaticity with
maximum aroundd t'2 and with a tail extending beyond
~see Fig. 9!. These are obviously configurations with an a

4Note that according to asymptotic scaling (b52.20,Nt54) and
(b52.36,Nt56) would correspond approximately to the sam
physical temperature.

FIG. 7. The same as in Fig. 3~a! for S53Sinst plateaus. No cut
in the asymptotic holonomy has been applied. The thick vert
line marks the nonstaticityd t* where the caloron recombines.
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tion ~topological charge! density well localized in all four
Euclidean directions. There is a nontrivial behavior of t
Polyakov line inside these nondissociated, instantonlike
jects resembling the Polyakov line associated with the ti
direction in the finite-temperature case for nondissocia
calorons. We have mapped the cooled lattice configura
with the help of all four possible definitions of the Polyako
line, which are now, on a symmetric lattice, physica
equivalent to each other. Figure 10 shows the profiles of
action density, topological charge density, and the Polya
lines ~for four possible definitions! as they are seen in appro
priate planes intersecting the lump through the centrum.
latter is defined as the maximum of the 4D action dens
For all types of Polyakov lines the characteristic doub
structure is seen exactly when the ‘‘asymptotic’’ value of t
respective Polyakov line isnot closeto 61.

It is interesting to compare the pattern of the Polyak
line of these ‘‘caloron candidates’’ with the analytic Kv
caloron formally constructed on a 164 lattice corresponding
to maximally nontrivial holonomy with respect to what ha
been chosen as the ‘‘time’’ direction. For this constructio
the two constituents have been placed along thez direction,
separated by eight lattice spacings. The lattice caloron is
tained calculating link by link from the continuum gaug
field Am . Of course, such a constructed lattice caloron h
irregularities at the boundary if the lattice action is evalua
under the assumption of periodicity. After some cooling t
configuration turns into an~approximate! solution of the lat-
tice equations of motionon the torus. By that time the
boundary artifacts have disappeared~see Fig. 11!, and the
Wilson action has becomeSinst52p2b. The KvB caloron is
now adjusted to periodic boundary condition also in t
x,y,z directions. Despite the large separation the constitue
formally have, judging according to the action density it is
nondissociated caloron. It is seen that the cooling does
influence significantly the structure of the Polyakov lines
the KvB caloron witnessed by the time-directed Polyak
line ~plt! showing the double-peak structure mention
above. The space-directed Polyakov lines (plx,ply,plz)
have a simple structure characteristic for trivial holonomy
is analytically clear that for caloron solutions asymptotica
plx,ply,plz→61. This is in contrast to the would-be ‘‘cal
oron candidate’’ obtained by cooling from confining equili
rium lattice configurations at zero temperature~Fig. 10!
where the double-peak structure is present for allt,x,y,z
directions and, generically, the asymptotic holonomy in
directions is nontrivial.

V. CONCLUSIONS AND PERSPECTIVES

In the present investigation we have subjected equilibri
lattice gauge fields corresponding to various temperature
ordinary relaxation~usually called ‘‘cooling’’! in order to
obtain an ensemble of classical solutions for further study
this way we have extracted lowest-action classical soluti
of unit topological charge typical for the given equilibrium
ensemble. Notice that, at least as long this technique is u
this possibility is restricted to the confinement phase. We
not claim to find the real and complete topological structu

l
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FIG. 8. The distribution of nonstaticityd t after cooling for fixedNt but varyingb values. No cut in the asymptotic holonomy is mad
The spatial lattice size is always 163. ~a! Nt54: b50.0, 2.04, 2.20.~b! Nt56: b52.20, 2.36.
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hidden under the quantum fluctuations and consisting of
pological lumps of compensating sign. What we wanted
see were the simplest solutions suitable as building blo
for a semiclassical modelling of the Yang-Mills path integr
In conclusion we can say that cooling of equilibrium latti
fields in SU(2) lattice gauge theory shows that there ex
topological objects with a dyonic substructure and that
are able to resolve only in the confined phase. With incre
ing temporal lattice extent it becomes more probable that
observed dyons recombine into calorons such that it beco
impossible to perceive the substructure lookingexclusivelyat
the distribution of action and topological charge. Stric
speaking, we have found that the fraction of dissociated
orons among all single-calorons events does not depen
the physical temperature of the equilibrium fields but on

FIG. 9. The distribution of nonstaticityd t after cooling forb
52.2 on the symmetric lattice 164, obtained from 42 configuration
with unit topological charge.
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geometric aspect ratio of the box—i.e., the asymmetry of
lattice. However, all calorons have a nontrivial holonom
which is mapped out by the behavior of the Polyakov li
inside and outsidethese configurations.

In the limiting case of zero temperature~i.e., on a sym-
metric lattice! topological lumps withQ561 obtained by
cooling look instanton like and, at the same time, have
characteristic double-peak structure of the Polyakov line
all t ,x,y,z directions. This distinguishes them from the re
KvB solutions which possess this structure only with resp
to a distinguished ‘‘time’’ direction.

Strictly speaking, an analytic solution of the Euclide
equations of motion withQ561 is impossible on the 4D
torus@9#. Nevertheless, on the lattice quasistable solutions
this kind exist. If considered only as lumps of action a
topological charge, there is no contradiction with the pre
ous observations from ‘‘instanton searches.’’ As our analy
shows, for temperatures much lower than the deconfinem
temperature rotationally symmetric~in 4D! and ~anti-!self-
dual lumps seem to be preferred under cooling.

At finite temperature, they can be subsumed under
general class of KvB solutions. For zero temperature, ho
ever, a so-far unknown parametrization with nontriv
asymptotic holonomy has yet to be found.

After having completed the present investigation we w
informed by Gattringer and Pullirsch@15# about their paper
‘‘Topological lumps and Dirac zero modes inSU(3) lattice
gauge theory on the torus’’ prior to publication. In this pap
the authors concentrate on and more systematically cont
the inspection of the low-lying modes of the chirally im
proved Dirac operator on the 4-torus, in the background
equilibrium lattice gauge fields atT50. It is extremely in-
teresting that they find, for a certain fraction of Monte Ca
configurations in theuQu51 sector, a similar pattern of hop
ping zero modes as a function of varying fermionic bound
conditions as forTÞ0. Moreover, the change of localizatio
5-8
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RECOMBINATION OF DYONS INTO CALORONS IN . . . PHYSICAL REVIEW D69, 114505 ~2004!
FIG. 10. Profiles of the action density (s), the topological charge density (q), and the Polyakov lines (plt,plx,ply,plz) calculated along
all straight line pathes parallel to the four axes for a 164 lattice caloron found by cooling a Monte Carlo—generated equilibrium gauge
down to the one-instanton action plateau. The center of the caloron~at the maximum of its action density! was found at the site (x,y,z,t)
5(7,8,8,14). The planes shown in the figures cross just this point.
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happens independently of which of the four directions is c
sen as the ‘‘imaginary time’’ direction along which periodi
ity can be purposedly changed. The concurrent zero-m
positions~two or three as in the finite-temperature case! are
consistent with being randomly distributed in the 4D pe
odic box. The authors argue that this observation hints at
existence of a semiclassical background consisting of lo
ized ~in 4D! instanton constituents. Whereas other~mono-
pole?! properties of the constituents are less obvious, a n
integer topological charge of the constituents has b
hypothetically assumed in analogy with the dissociated K
solutions. In fact, this should not be too difficult to be esta
11450
-

de

-
e
l-

n-
n

-

lished. It is in particular this last interpretation that has
pass further tests. In case it becomes confirmed then it wo
be difficult to reconcile this with our observations based
cooling. Our findings are consistent with a picture in whi
~at finite temperature! the temporal size of the box dete
mines ~inversely! the size of the background solutions.
contrast, the scenario of Ref.@15# seems to imply a complete
dissolution~within the available 4-volume! of some constitu-
ents which still span a coherent semiclassical backgrou
This would mean that there is no scale of coherence whic
dynamically generated and decoupled from the overall s
of the box. If the latter picture can be confirmed, we wou
5-9
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E.-M. ILGENFRITZ et al. PHYSICAL REVIEW D 69, 114505 ~2004!
FIG. 11. Profiles of the action density (s), the topological charge density (q), and the Polyakov lines (plt,plx,ply,plz) as in Fig. 10 but
for a 164 lattice caloron obtained from a discretized KvB solution corrected by some cooling to the one-instanton action plateau~309 cooling
steps!. The center of the caloron~at the maximum of its action density! was placed to the site (x,y,z,t)5(8,8,8,1). The planes shown in th
figures cross this point.
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have to blame cooling~or the cooling action we have used!
for artificially driving all semiclassical configurations int
integer-charged topological lumps at lower temperatu
whereas separated monopole constituents are correctly re
duced by cooling only at higher temperatures. This wo
explain why previous studies of the topological propert
using various cooling~smoothing! techniques~which actu-
ally missed the relevant temperature range! were not suitable
to discover the nontrivial holonomy accompanying all top
logical charges.

There is still an ongoing debate on the question in as f
semiclassical interpretation of the QCD vacuum is valid
all @17#. For the time being we have nothing to add to th
11450
s
ro-
d
s

-

a
t

discussion. But our results point to the fact that the instan
gas or liquid model~as well as other models! have to be
reconsidered by taking into account the nontrivial holono
structure. We believe that this will improve the bad perfo
mance of~trivial holonomy! instantons in comparison with
lattice smoothing results as reported in@18,19#.
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