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Recombination of dyons into calorons inSU(2) lattice fields at low temperatures

E.-M. ligenfritz and M. Muler-Preussker
Humboldt-Universitazu Berlin, Institut fu Physik, Newtonstr. 15, D-12489 Berlin, Germany

B. V. Martemyanov and A. |. Veselov
Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117259 Moscow, Russia
(Received 12 February 2004; published 25 June 2004

By cooling of equilibrium lattice fields at finite temperatureSitJ(2) gauge theory it has been shown that
topological objectgcalorons observed on the lattice in the confined phase possess a dyonic substructure which
becomes visible under certain circumstances. Here we show that with the increasing temporal lattice extent the
distribution in the caloron parameter space is modified such that the calorons appear nondissociated into
constituent dyons. Still the calorons have nontrivial holonomy which is demonstrated by the Polyakov line
behavior for these configurations. At vanishing temperatorea symmetric latticetopological lumps ob-
tained by cooling show rotational symmetry in 4D for the action density, but a characteristic internal double-
peak structure of Polyakov lines with respect to(&imporal and spatipdirections.
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[. INTRODUCTION stituentq 8]: they are local maxima of the topological density
g(x) with a sign as required by the chirality of the mode.
At high temperatures, near but below the deconfinemenThis suggests thatdissociated or nondissociajedalorons
temperature, classical solutions of Yang-Mills equations withmight really form the semiclassical background of the gauge
nontrivial holonomy{Kraan—van BaalKvB) calorons[1,2]]  field near the phase transition.

are seen on the lattice f@U(2) gauge theory to be fre- Coming back toSU(2) calorons with their two constitu-
quently dissociated into dyor[8—6]. This means that the ents, it seems that the quantitéandp appearing in Eq(1)
distance between the dyons forming a caloron, are impossible to be measured simultaneously: wtida
5 seen by observation of separate dyon positions no instanton-
d= mp- ) like profile (of topological densityis observed which could
b’ be used to definp. Whend goes to zerod<b) an instan-

ton size parametes can be measuretly comparison with

is larger than the size of dyorthich isb/ 7 for the case of the instanton’s action density profile, but thea dyons are
maximally nontrivial holonomy: Herep is the instanton size seenas separate objects. More precisely, the parameter
parameter ant is the temporal periodicity interval. cannot be measured fafl caloron configurations as the dis-

These observations have been made by the use of coolintance between constituents as long as only the action or to-
Therefore, the question arises why such a substructure hgelogical charge densities are available as local observables
not been observed by previous authors who have used ttie describe them.
cooling method. In this paper we will argue that there is only The time periodicity parametdr defines the temperature
a certain window of temperature or space-time asymmetryi: b=1/T. In order to demonstrate how the recombination of

where it can be revealed by this method. constituents depends on the temperature we can change the
The interest in the existence of caloron constituents hatemporal extenb of the lattice.
increased since it has been demonstrated in Réfthat a We employ the standard relaxation cooling technique us-

constituent substructure very reminiscent of the caloron soig the Wilson lattice action and concentrate on the investi-
lutions can also be identified without cooling, above and begation of lowest-action field configurations wif@=*1.

low the phase transition. This can be achieved by using thBesides the fact that solutions witl)|=1 are nonexistent
localization properties of the fermionic zero modes of a suit-on a torus in a mathematically strict seri8¢ also the cool-
ably chirally improved Dirac operator. The similarity with ing method has a limited relevance. It cannot be used for
the properties of a caloron solution is strikingly realized for arevealing the full topological structure of the QCD vacuum
certain fraction of configurations with topological chai@e even if the latter is semiclassical to a certain extent. In par-
==*1, where the single zero mode is seen to change itficular, it considerably weakens the chiral condensate com-
localization when the periodicity of fermionic boundary con- pared with its value for equilibrium fields.0]. Moreover, it
ditions becomes modified. A systematic stidyof the typi-  is well known that the Wilson action depends on the instan-
cal pattern of localization and delocalization followed byton (or caloron scale size. Therefore, its minimization
jumps of the zero mode has revealed that this pattern deshrinks the localized solutions until they disappear “through
pends on the timelike holonomy exactly in a caloronlike way.the lattice meshs.” Thus, small excitations will be lost first.
Whereas the topological density has a much more compliin the literature—besides fermionic methods—there are bet-
cated structure, the positions where the zero mode is pinndgeér techniques like improved cooling, smoothing, smearing,
down actually show the signatures expected for caloron coretc., allowing us to decipher the topological long-range
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structure of the gauge fields. But this task@t our concern  separated objects. Indirectly this distance can be measured
in this paper. Here we ask the more modest question as foy measuring a quantity that can be called nonstattdity-

what kinds of simple classical solutions can be found fromfortunately, cooling yields metastable plateaus only for tem-
equilibrium gauge fields at different temperatures by succegseratures below the deconfining temperature. On the other
sively minimizing the action. hand, this allows us to restrict ourselves in the following to

This question remains interesting for those who want tomaximally nontrivial holonomyecause the average Polya-
build or apply semiclassical-like approximations—i.e., mod-kov line vanishes. To describe for this special case the rela-
els like the instanton gas or liquid modéll] being success- tion between distance and nonstaticity, we have considered
ful in many phenomenological applications for which chiral analytical caloron solutions in continuous space-time. We di-
symmetry breakindand not quark confinemenis playing vided the time intervab into N, time slices and expressed
the major role[12]. Until now most of the cooling(or  the action in theith time slice,S5=3sx;, in terms of the
smoothing results obtained al <T. have been interpreted local action densitys; ;. The nonstaticitys, is defined as
in terms of Belavin-Polyakov-Schwarz-Tyupk{BPST) in-
stanton13] and Harrington-Shepar@S) caloron[14] solu- N
tions, respectively, all exhibiting trivial asymptotic ho- > > |Sxi+1— Skl
lonomy. Here we would like to convince the reader that the =1
simplest caloron or instanton solutions seen after cooling 6= Ny ' @
have typically nontrivial holonomy, irrespectively of their > > Sxi
possible dissociation into dyons pairs. Therefore, they cannot =1 X
be correctly interpreted as BPST or HS solutions.

The paper is organized as follows. In Sec. Il we draw theObviously, this definition depends on the number of time
attention to the static nature of configurations near the deslices,N;, such that one would havg—0 for N;—. In
confining transition. Section Il presents our results on semiorder to get an asymptoticallj;-independent quantity we
classical configurations at finite temperatures, pointing ouwill modify the definition of 5; as follows:
the loss of “staticity” and the increasing importance of the
Polyakov loop for detecting the nontrivial substructure at Ni
lower temperature. In Sec. IV we extend the cooling studies E E IS i+1~ Sx.il
to the symmetric torus. We emphasize that the KvB caloron s =l N¢ 3
solutions were constructed in an infinite spatial volume. t N 4 )
When used at finite volume considerable deviations are to be 2 E Sy
expected when the spatial box size is no longer large com- =1 %
pared tob, since the typical size of the constituentsbigr.

Finally, in Sec. V, we discuss the consequences, also in thehe factor 1/4 has been chosen such that for a lattice 16

perspective of a twin paper by Gattringetral. [15]. X4, where all the simulations were initially done using Eq.
(2), the two definitiong3) and (2) agree.

Il. NONSTATICITY AND SEPARATION V_V|_th th:} def|n|t|(?n(_3) at handI we canhcalculate t_h_e ngn-

INTO CONSTITUENTS staticity of an analytic KvB caloron. The nonstaticity de-

pends on the holonomy and on the distance between the

2

It turns out that the possibility to observe the dyonic con-constituents inside the caloron. For maximally nontrivial ho-
stituents of a KvB caloron as lumps of action depends orlonomy (which coincides with the average holonomy in the
(mp/b)?. In SU(2) lattice gauge theoryL GT) at B=4/gZ  confinement phagethe constituent dyons have equal mass.
=2.2 on a lattice 18x4 the parametep is concentrated For this simplified case we have determined a bifurcation
near the valugp~2.5a (a is the lattice spacing[4]. With  value of the nonstaticitys; =0.27, choosing the distance
b=4a, between the constituents such that the two lumps of the ac-
tion density(dyons merge into one lump of the action den-
P sity. This single lump is what we call a “recombined cal-
(T ~4>1. oron.” As already mentioned, the nonstaticity uses the
discreteness of a lattice configuration. The valifeis ob-
This means that dyons are well separated. The valyeiof tained by inserting the analytic form of the action density of
[4] was determined by fitting the lattice caloron with the @ continuum KvB caloron solutiofiL], calculated exactly at
analytic KvB caloron, and formuldl) was used. On the the point of bifurcation, into the evaluation of E§) using a
lattice 16x 6 (with b=6a) and at the sam@=2.2(i.e., at  9rid with lattice spacinga=Db/N;. In order to see how well
a temperature 1.5 times lowehe parameter4p/b)? would ~ defined at finiteN, this “bifurcation value” 8¢ can be, we
be of the orderO(1). Then, from this simple arithmetics, have evaluated it for variougeven and oddN=4. The
one would expect that calorons are not dissociated into dyfunction &; (N;) that goes tos; =0.27 for N;— is pre-
onic lumps anymore. sented in Fig. 1.
The possibility to measure the distance between dyons
inside a caloron just by detecting the peaks of the action—
density on the lattice is given only in the case of well- See Ref[6] where it has been defined in a slightly different way.
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0.28 - T - T - - ' (i)  the action fits into the window 08S,,/S;,5;<1.25,
(i) the decrease of action has slowed down to
|ASw|/Sinst<0.05,
027} (i) the violation of the equations of motion should be

sufficiently weak,vV<25.

3. (Ny)

In most of the cases for which the first and second condi-
tions hold we find a small minimum violatio®<20. In a
few cases there were also local minima with much laMger
values, which hardly could be interpreted as extended solu-
025 — tions of the lattice equations of motion. Thus, the third con-
dition was implied in order to select “good” solutions. We
have varied our stopping critefiand seen that the details of

04 . ! . ! . ! . | s the ensemble of the “frozen” objects slightly change. Our
0 » Ny @ 80 '® " main observations reported below do not depend on the de-
tails of the procedure. The efficiency of the conditions was

FIG. 1. The dependence of nonstaticifjy , defined at the bi- gy ch that 80%in the caseN,=4), 60% (N,=5), and 55%
furcation point for analytic KvB caloron solutions, on the number (N, =6) of the equilibrium configurations ended up in a
of time slices,N;. The zigzag form of the curve can be explained -qpjed configuration at the one-instanton action plateau.
by the qualitatively different arrangement of even and odd timeThese cooled configurations include events with topological
pointg where the continuum KvB caloron solution has to be Calcu'chargeQ= +1—i.e., real calorons—as well as configura-
lated in order to evaluate E). tions with topological charg®=0 which in our previous

paper[6] had been identified as static dyon-antidyon pairs

If the nonstaticity is lower than the bifurcation valag , (DD). The latter constitute 18%N;=4), 14% (N;=5),
two dyons can be distinguished by the two maxima of theand 8% (,=6), respectively, of all cooled configurations at
action density. If the nonstaticity is bigger thaff , two  the one-instanton level. They have been discarded from the
dyons appear recombined into a caloron with only one actiogonsiderations in this paper.
density maximum. We remind the reader that the recombination threshold

5¢ =0.27, strictly speaking, reflects the recombination for
maximally nontrivial holonomy only—i.e., with an

[1l. RECOMBINATION OF DYONS INTO CALORONS asymptotic value of the Polyakov line,s=0. If one per-

WITH LOWERING TEMPERATURE forms cooling without special restrictions concerning the ho-
) , ) lonomy, there is no guarantee that the asymptotic holonomy

The main results of this paper are obtained from en<s the caloron configurations still coincides with the average
sembles o5U(2) gauge field configurations created by heatpg|yakov line of equilibrium configurations in confinement.
bgth Mont<_e Carlo S|muI§1t|ons @#=2.2 yvlth respect to the o the purpose of defining asymptoticholonomyL . for
Wilson actionS,, on lattices 18x N, with N;=4, Ny=5,  each cooled configuration, we have determined the average
andN,=6. Each ensemble consisted of about 8000 indepery | : over a 3D subvolume where the local 3D action density
dent configurations. Cooling of these configurations was pery: s |ow, for definiteness;<0.0001. In Fig. 2 we present
formed using the fastest possible relaxation with respect tghe gistribution of cooled configurations oveex, as a histo-
the Wilson action. For this r_nethod each likk , is imme- gram (with bin size 0.} for the three caseN,=4, N,=5,
diately replaced by the projection ®U(2) of the staples anqN,=6. In the legend we show the respective volume
around it,Uy, . fraction (F~0.15) of the three-volume over which the

The cooled configurations studied in this paper have beemsymptotic” value L, is defined as an average—i.e., far
identified when the cooling history finally has arrived at afrom the lumps of action and topological charge.
quasistable plateau on the level of a single instanton action As explained above, the nonstatici§ is a measure
Sw~Sinst=27°p. Later on, we describe also some resultswhich describes the distance from a perfeduclidean
concerning  higher plateaus of the action—e.g.time-independent configuration. In other words, the distribu-
Sw~3Si,s—Wwhich are passed earlier in the cooling processtions of nonstaticity of caloron events obtained by cooling of
More precisely, on such plateaus we stopped cooling alwaysquilibrium lattice configurations can be considered as a sub-
at local minima of the violation of the lattice equations of stitute for the distribution in dyon distancesThis quantity
motion [6]. Here, the violation is defined as can be directly measured for cooled lattice gauge field con-

figurations. We show in Fig. 3 th& distributions for all our
1 2 cooling products obtained #=2.2 on 16x N, lattices.
_ - Tt Ry In an attempt to make a fair comparison with calorons
V=2 2 MU= Ul U= U | @ with nontrivial holonomy and to correct for the possible evo-

0.26 —

X

In addition to that, the following conditions have been im- 2The criteria have been tested fli=4 and applied also to,
posed for the automatized selection of the classical solutions:5 and 6(at the sames).
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0.7 with N;=4, hass,< &f =0.27. This means that they would

be identifiable as consisting of two constituents by looking

06 I , for the 3D action density on the lattice. Filg=5 it is only

a minority of cooled configurations which falls below the
threshold$,=0.27. No static(according to the nonstaticity

051 i criterion) configurations have been found among cooling

products aitN;=6.

04 | . We have repeated the same analysis after applying the cut

with respect to the asymptotic holonomy,,4<1/6. Then

0a | | we get modified histograms i§ for the three temperatures.

| This is shown in Fig. ®). The histograms got more pro-
i nounced peaks i@, which are positioned around 0.125, ex-

02 —-— N1=6, F=0.152 1 actly arounds;f =0.27, and around 0.5 fax,=4, N;=5,

andN;=6, respectively.

04 I i There are other criteria which could be used to character-
| ] ize a more or less static configuration—for example, the
| _ presence of static Abelian monopoles emerging in the maxi-

0+ Y 0 05 "—'_1 mal Abelian projection. This criterion is not identical with

L_as the separation set by; . Thus, another subsample can be
o defined by the property that a pair of static Abelian mono-
FIG. 2. The distribution of holonomi;  for the three samples  ygles has been found after fixing the cooled configuration to
of cooled configurations corresponding to three temperatures beloye maximal Abelian gauge and doing the Abelian projection.

deconfinement &l =4, N;=5, andN;=6. This subsample can be analyzed with respect to the three-
dimensional distanc® between the Abelian monopoles.
lution of the asymptotic holonomy away froln,,=0 during In Fig. 4(a) we show the histogram ove}; of all cooled

the cooling process, we defined a subsample by the requireonfigurations obtained from the Monte Carlo ensemble at
ment|L .4 <1/6. One can see that the cut with respect to theN,=4 together with the histogram of those which explicitely
asymptotic holonomy selects cooled configurations from theexhibit the dyon-dyon structure in terms of Abelian mono-
flat central part of the histogram shown in Fig. 2. On thepoles. One can see that practically all cooled configurations
other hand, we notice that a considerable fraction of coolethelow &f possess this structure, but abo§e the fraction
configurations has developed an asymptotic holondimy] rapidly goes to zero. We show the same fge=6—i.e., at
>1/6. lower temperature—in Fig. (B). In this case, at the peak

In Fig. 3@ we show the probability distribution ove},  value arounds,=0.5 only 20% of the solutions still are char-
for cooled configurations with an action at the one-instantoracterized by a static dyon-dyon pair, whereas at higher non-
plateau without the cut according to the asymptotic ho-staticity this is never the case. In these two distributions no
lonomy|L,{. One can see that a relatively high fraction of cut with respect to the asymptotic holonomy has been ap-
configurations, obtained from the Monte Carlo equilibrium plied.

7 ; ; 1 — . ;
—— N_t=4 ol ABS(L_as) < 1/6 |
---- N_t=5 N_t=4
61 —-— N_t=6 ol ---- N_t=5 ]
B —-— N_t-6
5 & r ]

[P ——

delta_t

FIG. 3. The distribution of nonstaticity, after cooling as histogran{gvith bin width 0.03, for three temperatures below deconfinement
atN;=4, N;=5, andN,=6: (a) without any cut,(b) when a cufL,{<1/6 is applied. The thick vertical line marks the nonstaticeity
where the caloron recombines.
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7 — 5 T
_ N_t=4 — N_t=6
—— All KvB solutions —— All KvB solutions
6 ---- DD (static U(1) monopoles) 1 - - -- DD(static U(1) monopoles)

e -

0 —_ I 1 . L L

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4
delta_t delta_t

FIG. 4. The distribution of nonstaticity, after cooling compared with the subsample of configurations which have a static dyon-dyon
(DD) structure exhibited by monopoles after Abelian projecti@y:for the higher temperature witN,=4, (b) for the lower temperature
with N;=6. The thick vertical line marks the nonstatici#§ where the caloron recombines.

Up to now we have two tentative definitions of the posi- still possesses a clear dyon-dyon structure in terms of Abe-
tion of the constituents: one is the position of the two statidian monopoles has them localized at distanBebetween
Abelian monopolegin MAG, as long as they are statiand  one and two lattice spacings.
the other is defined by the maxima of the 3D action derisity. In order to represent how the Polyakov line behaves in-
In the case of well-separable maxima of the latter thes&ide alump of action, we have chosen the absolute maximum
maxima fall close to the positions of the MAG monopoles. Inof the 3D action densitydenoted as central point) and
the other limiting cases of recombined maxima or imbal-have explored the Polyakov loop in its neighborhood. For
anced maximdthis corresponds to an asymptotic holonomythis purpose, we have defined a locally summed-up Polyakov
far from zerg of the 3D action density at least tladsolute  line L,,, [summed over the central poirg and its six near-
maximum of action density still easy to find. It is eithethe  est neighbors;(i=1, . . . ,6)],
single maximum or it takes the role ohe of the maxima.

For the case ofN;=4—i.e., the temperature just below °

deconfinement—we show in Fig.(& the histogram with Ltor:igo Ly ®)
respect to the local Polyakov loop at the two sorts of 3D

constituent points: the loci of static monopoles or the maxi-and a kind of Polyakov-line dipole moment over the same set
mum of action density. In both definitions the histogramof 3D lattice points with respect to the central point:

peaks near td.;=*1. The peak is, however, more pro-
nounced for the monopole locations, less pronounced for the
maxima of the 3D action density.

The relation between the nonstaticify and the distance
R between the static dyonic constituents emergingAG The absolute valuf .| of the first quantity tests the amount
as Abelian monopolegiven in lattice units is presented in 0f local coherence of the Polyakov line. The absolute value
Fig. 5(b) for the higher temperature, near the deconfinementM,,,| of the second quantity tests the amount of presence of
temperature N;=4). For this temperature such dyon-dyon opposite-sign Polyakov lines representing eventually two
events are clearly distinguishable among the cooled configudifferent constituents inside the same lump of action. Figure
rations as long as the nonstaticify<0.6. For extremely low 6(a) shows how théL .| (i.e., the locally summed-up Polya-
nonstaticitys; [left from the peaks in Figs.(8) and 3b)]we  kov line) changes withs; in different bins of width 0.1. For
find an average distand®~7, whereas neas; the average the temperature nearest to the transitionNat-4, we see

distance isR~4. For highers,, the part of solutions which that|Ly| falls from ~4.0 to~1.0 at5=0.5. We interprete
this such that in the region, where constituents can be well

separated according to the action densitysmall 5,), they
3For the case of analytical caloron solutions, the relation betwee@re characterized by a relatively smooth change of the Polya-
the constituent locations, the locations of the maxima of the actiokoV line inside. In the region of largé, where they are not
density and the locations whef|=1 has been compared in Ref. separable according to the action density, the Polyakov line
[16]. changes rapidly in the neighborhood of the absolute maxi-

6
Mior= 2, L5(Xi=Xo). (6)
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1.5 T T T 8 T

N_t=4
—— DD {U(1) static monopoles) --
---- Points S_max

CN_t=4

0.5 1 0 0.1 0.2 03 0.4 0.5 0.6 0.7
L delta_t

0.8

FIG. 5. The dyon-dyon structure after Abelian projecti@m:distribution of the local Polyakov loop at the position of the static Abelian
monopoles compared to the distribution at the maxima of action defisjtyverage distance between the static Abelian monopoles vs
nonstaticity 8, assigned to the cooled configuration. The thick vertical line marks the nonstaffcityhere the caloron recombines.

mum of action density. For the lower temperatufés=5  As an example we show in Fig. 7 the histogram of nonsta-
and N;=6, the relationship between these properties of anicity &; for the same three temperatures representedi by
action cluster and, is the same. The difference is that sepa-=4, N,=5, and N;,=6. Although the precise border be-
rable lumps of actiorithose with lows;) become very rare. tween static and nonstatic has not the clear meaning as for
Figure @b) shows how the “dipole moment/M,,,| of the  the one-caloron case, the trend is the same: at lower tempera-
Polyakov line around a maximum of action density rises withture the lumps of action tend to be more localized also in
increasing nonstaticity, . In the region where one can sepa- Euclidean time(“instanton like”). Compared with the one-
rate the constituents according to the action density, the diealoron case, the histograms are more smeared.
pole moment is small, emphasizing again the homogeneity of So far we have investigated the outcome from cooling for
the Polyakov line around the central point. In the regionvarying temporal lattice extent and fixed spatial volume.
beyonds; the dipole moment gradually stabilizes around aWhat happens when changing at fixed lattice size and
value of 1.5. fixed lattice asymmetry? In Fig. 8 we again show nonstatic-
In the same way as described so far, we have analyzeity &, histograms without applying cuts fok,¢. We com-
configurations obtained by cooling at higher-action plateauspare (a) for N;=4 the case®3=0, f=2.04, andB=2.20

T »

03+ 1 ¥ L
-
g e 1 1
@ a %
2r O N_t=4
E E 5N_t=5
E 05 *N_t=6
: m ABS(L_as) < 1/6
i+t 4
L L L 1 Il 0 L L L L 1 I
% 0.2 04 06 0.8 1 1.2 14 0 0.2 0.4 0.6 0.8 1 1.2 1.4

delta_t

FIG. 6. The Polyakov line in the neighborhood of maxima of the action der(sitynodulus of the average summed-up Polyakov line
|Liotl» (b) modulus of the corresponding “dipole momeni¥l,.| vs nonstaticitys, , for the subsample with asymptotic holonomy near zero.
For details of the definition see the text. The thick vertical line marks the nonstafitityhere the caloron recombines.
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' ' ' ' ' ' tion (topological chargedensity well localized in all four

=4 Euclidean directions. There is a nontrivial behavior of the

jg Polyakov line inside these nondissociated, instantonlike ob-

- jects resembling the Polyakov line associated with the time

direction in the finite-temperature case for nondissociated

_ P calorons. We have mapped the cooled lattice configuration
| | with the help of all four possible definitions of the Polyakov

! line, which are now, on a symmetric lattice, physically

|

|

|

equivalent to each other. Figure 10 shows the profiles of the
action density, topological charge density, and the Polyakov
i lines (for four possible definitionsas they are seen in appro-
. priate planes intersecting the lump through the centrum. The
- ! latter is defined as the maximum of the 4D action density.
= For all types of Polyakov lines the characteristic double
structure is seen exactly when the “asymptotic” value of the
L L respective Polyakov line isot closeto +1.
. , P R et It is interesting to compare the pattern of the Polyakov
03 04 05 06 07 08 09 line of these “caloron candidates” with the analytic KvB
delta_t caloron formally constructed on a “@attice corresponding
FIG. 7. The same as in Fig(@ for S=3S,, plateaus. No cut 0 maximally nontrivial holonomy with respect to what has
in the asymptotic holonomy has been applied. The thick verticaP€en chosen as the “time” direction. For this construction,
line marks the nonstaticity? where the caloron recombines. the two constituents have been placed alongztdeection,
separated by eight lattice spacings. The lattice caloron is ob-

with each other andb) for N;=6 the case3=2.20 with 3 tained calculating link by link from the continuum gauge

=2.36% The statistics for the neyg values(0.0, 2.04 and field A,,. Of course, such a constructed lattice caloron has

2.36) is of orderO(200) field configurations each. Contrary irregularities at the boundary if the lattice action is evaluated
to what one might have expected, we see that among thlénde_r the_assumpn_on of perlodlt_:|ty. After some cooling the
casega) and(b), respectively, there are no qualitative differ- configuration turns into atapproximatg solution of the lat-
ences. This means that the ratio of probabilities for the oclice equations of motioron the torus By that time the
currence of dissociated calororfer separate static dyon boundary artifacts have disappear@ete Fig. 11, and the
pairs versus nondissociategingle lump calorons isnota  Wilson action has beconts,s=274. The KvB caloron is
function of the temperature describing the original equilib-NoW adjusted to periodic boundary condition also in the
fium ensemble. Instead, it is mainly determined by the geXY,Z directions. Despite the large separation the constituents
ometry(the aspect ratjoof the lattice. The larger the tempo- formally have, judging according to the action density it is a
ral lattice extent is in comparison with the spatial extent, thenondissociated caloron. It is seen that the cooling does not
lower is the probability to find separated lumps of more orinfluence S|gn|f|cant_ly the structure of the I?olyakov lines of
less static objects after cooling. In other words, once there i1€ KvB caloron witnessed by the time-directed Polyakov
only one topologicalQ#0 object left, everything is classi- line (plt) showing the double-peak structure mentioned
cal. As a rule, the object is smooth, such that only the size ofPove. The space-directed Polyakov lingsixply,plz)

the box matters or other “infrared force&.g., those forbid- have a simple structure characteristic for trivial holonomy. It
ding single instantonsplay a role. This observation clearly IS analytically clear that for caloron solutions asymptotically

shows the limitation of the cooling method applied to theP!X,ply,plz—*1. This is in contrast to the would-be “cal-
lowest-action plateaus. oron candidate” obtained by cooling from confining equilib-

rium lattice configurations at zero temperatufieig. 10
where the double-peak structure is present fortally,z
directions and, generically, the asymptotic holonomy in all
directions is nontrivial.

IV. INSTANTONS OR CALORONS
ON A SYMMETRIC 4-TORUS

With low statistics (100 configurations we have also
cooled equilibrium configurations generated wigth-2.2 on
symmetric lattices (16representing “zero” temperatuyreln
this case we have found for the classical configurations at the In the present investigation we have subjected equilibrium
plateauS,,~S;,,s; a broad distribution of nonstaticity with a lattice gauge fields corresponding to various temperatures to
maximum arounds,~2 and with a tail extending beyond 3 ordinary relaxation(usually called “cooling”) in order to
(see Fig. 9. These are obviously configurations with an ac-obtain an ensemble of classical solutions for further study. In

this way we have extracted lowest-action classical solutions
of unit topological charge typical for the given equilibrium
“Note that according to asymptotic scaling=£2.20,N,=4) and  ensemble. Notice that, at least as long this technique is used,
(B=2.36,N,=6) would correspond approximately to the same this possibility is restricted to the confinement phase. We do
physical temperature. not claim to find the real and complete topological structure

V. CONCLUSIONS AND PERSPECTIVES

114505-7



E.-M. ILGENFRITZ et al. PHYSICAL REVIEW D 69, 114505 (2004

8 5 T T
N_t =4 = N_t=6
""""" —— beta=22 —— beta=2.2
] ——- beta=2.04 ——- beta=2.36

------------ beta =0 i _

delta_t

FIG. 8. The distribution of nonstaticity, after cooling for fixedN, but varyingg values. No cut in the asymptotic holonomy is made.
The spatial lattice size is always16a) N;=4: 3=0.0, 2.04, 2.20(b) N;=6: 8=2.20, 2.36.

hidden under the quantum fluctuations and consisting of togeometric aspect ratio of the box—i.e., the asymmetry of the
pological lumps of compensating sign. What we wanted tdattice. However, all calorons have a nontrivial holonomy
see were the simplest solutions suitable as building blockghich is mapped out by the behavior of the Polyakov line
for a semiclassical modelling of the Yang-Mills path integral. inside and outsid¢hese configurations.

In conclusion we can say that cooling of equilibrium lattice  |n the limiting case of zero temperatufiee., on a sym-
fields in SU(2) lattice gauge theory shows that there exXistmetric lattice topological lumps withQ=+1 obtained by
topological objects with a dyonic substructure and that Weooling look instanton like and, at the same time, have the
are able to resolve only in the confined phase. With increassnaracteristic double-peak structure of the Polyakov line in
ing temporal lattice extent it becomes more probable that the { v 7 directions. This distinguishes them from the real

pbservgd dyons rec.ombme into calorons suc_:h that_ I becomefng solutions which possess this structure only with respect
impossible to perceive the substructure lookaxglusivelyat to a distinguished “time” direction

the distribution of action and topological charge. Strictly . . . . .
speaking, we have found that the fraction of dissociated cal- Strictly speaking, an analytic solution of the Euclidean

orons among all single-calorons events does not depend Q(?guatlgnsNof mt?]t'?n W'tIQt:hillt;.S |mpos§|lt)lilon tret' 4D f
the physical temperature of the equilibrium fields but on theo.rus[. . everineless, on the atlice quasistable solutions o
this kind exist. If considered only as lumps of action and

topological charge, there is no contradiction with the previ-
ous observations from “instanton searches.” As our analysis
shows, for temperatures much lower than the deconfinement
temperature rotationally symmetriin 4D) and (anti-)self-

dual lumps seem to be preferred under cooling.

At finite temperature, they can be subsumed under the
general class of KvB solutions. For zero temperature, how-
ever, a so-far unknown parametrization with nontrivial
asymptotic holonomy has yet to be found.

After having completed the present investigation we were
informed by Gattringer and Pullirsdi5] about their paper
“Topological lumps and Dirac zero modes $U(3) lattice
gauge theory on the torus” prior to publication. In this paper
the authors concentrate on and more systematically continue
the inspection of the low-lying modes of the chirally im-
proved Dirac operator on the 4-torus, in the background of
equilibrium lattice gauge fields &t=0. It is extremely in-
teresting that they find, for a certain fraction of Monte Carlo

FIG. 9. The distribution of nonstaticity, after cooling forg configurations in théQ| =1 sector, a similar pattern of hop-
=2.2 on the symmetric lattice $obtained from 42 configurations ping zero modes as a function of varying fermionic boundary
with unit topological charge. conditions as foil #0. Moreover, the change of localization
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FIG. 10. Profiles of the action densitg)( the topological charge densitg), and the Polyakov linesa(t,plx,ply,plz) calculated along
all straight line pathes parallel to the four axes for 4 Ibtice caloron found by cooling a Monte Carlo—generated equilibrium gauge field
down to the one-instanton action plateau. The center of the calatdhe maximum of its action densjtyas found at the sitex(y,z,t)
=(7,8,8,14). The planes shown in the figures cross just this point.

happens independently of which of the four directions is chodished. It is in particular this last interpretation that has to
sen as the “imaginary time” direction along which periodic- pass further tests. In case it becomes confirmed then it would
ity can be purposedly changed. The concurrent zero-modee difficult to reconcile this with our observations based on
positions(two or three as in the finite-temperature gaaee  cooling. Our findings are consistent with a picture in which
consistent with being randomly distributed in the 4D peri-(at finite temperatupethe temporal size of the box deter-
odic box. The authors argue that this observation hints at theines (inversely the size of the background solutions. In
existence of a semiclassical background consisting of localeontrast, the scenario of R¢fL5] seems to imply a complete
ized (in 4D) instanton constituents. Whereas otlierono-  dissolution(within the available 4-volumeof some constitu-
pole?) properties of the constituents are less obvious, a nonents which still span a coherent semiclassical background.
integer topological charge of the constituents has beeifThis would mean that there is no scale of coherence which is
hypothetically assumed in analogy with the dissociated KvBdynamically generated and decoupled from the overall size
solutions. In fact, this should not be too difficult to be estab-of the box. If the latter picture can be confirmed, we would
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FIG. 11. Profiles of the action densitg)( the topological charge densitg), and the Polyakov linesa(t,plx,ply,plz) as in Fig. 10 but
for a 16' lattice caloron obtained from a discretized KvB solution corrected by some cooling to the one-instanton actior(308teaoling
steps. The center of the calorofat the maximum of its action densjtwas placed to the sitex(y,z,t) =(8,8,8,1). The planes shown in the
figures cross this point.

have to blame coolingor the cooling action we have used discussion. But our results point to the fact that the instanton
for artificially driving all semiclassical configurations into gas or liquid model(as well as other modelshave to be
integer-charged topological lumps at lower temperatureseconsidered by taking into account the nontrivial holonomy
whereas separated monopole constituents are correctly repratructure. We believe that this will improve the bad perfor-
duced by cooling only at higher temperatures. This wouldmance of(trivial holonomy) instantons in comparison with
explain why previous studies of the topological propertieslattice smoothing results as reportedir8,19.
using various coolingsmoothing techniques(which actu-
ally missed the relevant temperature rangere not suitable
to discover the nontrivial holonomy accompanying all topo-
logical charges.

There is still an ongoing debate on the question in as far a Three of usE.-M.I., B.V.M., and M.M.-P) gratefully ac-
semiclassical interpretation of the QCD vacuum is valid atkknowledge the kind hospitality extended to them at the
all [17]. For the time being we have nothing to add to thisInstituut-Lorentz of the Universiteit Leiden, where this paper
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