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Non-Abelian Stokes theorem for SW2) gauge fields
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We derive a version of non-Abelian Stokes theorem for(Blgauge fields in which neither additional
integration nor surface ordering are required. The path ordering is eliminated by introducing the instantaneous
color orientation of the flux. We also derive the non-Abelian Stokes theorem on the lattice and discuss various
terms contributing to the trace of the Wilson loop.
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[. INTRODUCTION theorem. Finally, we discuss the physical meaning and origin
of various terms contributing to the trace of the Wilson loop

The usual Abelian Stokes theorem relates the integra@nd present the results of our qualitative numerical simula-
along a closed curv€ bounding some surfacg, and an tions.
integral defined on this surface. This version of the Stokes
theorem is most relevant in physical applications since it Il. NON-ABELIAN STOKES THEOREM
allows us to express the holonomy of a gauge noninvariant IN THE CONTINUUM LIMIT
electromagnetic potential via physically observable magnetic
flux. The invention of non-Abelian gauge theories necessi- Consider a Wilson loop operator in the fundamental rep-
tated a non-Abelian generalization of the Stokes theorentesentation, W(T), evaluated on a closed contowt
Nowadays, there are quite a few formulations of the non=1{x,(t),te[0;T],x,(0)=x,(T)}, which is parametrized
Abelian Stokes theorertNAST) available(for review see, by differentiable functions,(t). By definition the operator
e.g., Ref[1] and references therginGenerically there exist W(T) provides a solution to the first-order differential equa-
two principal approaches: the operaf@—7] and the path- tion
integral[8—13] approaches.

It is worth mentioning that the central issue of any formu- (p(t)|(i9,+A)=0, (1)
lation of the NAST is how to make sense of the path ordering
prescription inherent to the non-Abelian holonoitwilson (V)] = ($(0)|W(t) ?)

loop). In this respect neither the operator nor path-integral

approach is helpful for concrete calculation of the Wilson .

loop. Indeed, wh|lg in the former case .path orde(mg is t_raded W(t) =T ex if A(r)dr!,
for a more complicated surface ordering prescription, in the 0

latter case an additional path integral over auxiliary variables

Lia[[r;tl;oduced which cannot be calculated even apprOX'WhereA=%aaAZ[x(t)]kM(t) is the tangential component of

N X . . S
In this paper we derive a new version of non-AbeIianthe gauge potentiair® are the Pauli matrices, differention is

Stokes theorem focusing exclusively on @Wvalued Wil- taken \_N'trl‘ /rzegpegt tc_)b'ihe parametea_nd{M |sé§Rvec]:[orh|n
son loops in the fundamental representation. Moreover, th.—ge spin-1/2 irreducible representation spatiRR) of the

central object of our discussion is the phase of the Wilso U(2) group. S.".‘C‘* Ea(1) i; nothing 'else but the time-
loop ¢, . It determines the Wilson loop trace, 1/2Viir dependent Schdinger equation, the Wilson loop/(t) can

_ i ; ; ; . be interpreted as a quantum mechanical evolution operator
=Cc0Sg,,, Which is the only gauge invariant quantity associ- ) Lo
ated v(mh gauge holonom{/g g a y with the time-dependent Hamiltonidh= — A(t). Moreover,

The basic idea is to introduce the instantaneous color orithe. correspondlr_]g state space commdes with sp|n-'1/2 IRR, in
entation of the chromomagnetic flux piercing the loop. Evi—Whr']Ch atcotn\éenlint basis is prlgv:cdelcé b{ g?nera“mn)
dently this color orientation remains unknown until the wil- Conerent statel4] (see, e.g., Refd.15-17 for reviews.

son loop is calculated by some other means. Nevertheless, The spin coherent staté¢n|} are parametrized by a set of

allows us to avoid the path ordering and represent the Wilsonnit three-dimensional vectorsn?=1 and in this basis ar-

loop phase as an ordinary integral to which Abelian Stokebitrary state( /| has a unique representation

theorem applies. Furthermore, we relate the resulting surface

integral with properties of gauge fields on this surface. (Yl :ei¢<ﬁ|. @)
As we noted above, in order to get explicitly the color

orientation of the flux one has to calculate the Wilson loop, .

first. In this respect our formulation is well suited for lattice 1€ action of SU2) operatorg reads

studies where the gauge holonomy is to be evaluated numeri- R o

cally. We derive the lattice version of the non-Abelian Stokes (nlg=¢ “’(ngl, (4)
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where the phase factas depends on both and g, and ¢ By construction the vector fieI&(t) is covariantly con-
=¢(g,n). Therefore, in the basis of coherent states ). stant along the contodf,k#D#ﬁzo. Equation(5) implies
becomes also that for anyt [0;T] the stateg/n(t)| is an eigenstate of
. - - the Wilson loop calculated o starting from the point
(w(t)]=e*O(n(t)[=(n(0)|W(1), (5)

x,(t). In other words, (n(t)] is an eigenstate of

where without loss of generality we have take(0)=0 or W' (t)W(T)W(t). The interpretation ofi(t) is then straight-
equivalently( 4-(0)| = (n(0)|. forward; it is the instantaneous color orientation of the flux

Equation(1) imposes no restrictions on the initial vector Pi€rcing the loopC. Since the contour considered is not in-

(ﬁ(0)|, which therefore can be taken arbitrarily. However, gzgesc')?;%’ g;g color direction of the flux is different at vari-
there exists a distinguished initial state which is of particular P o R )
importance for the discussion below. Namely, let us take 1€ assignment of the vector fieft) to a given closed

(n(0)| to be the eigenstate of the full evolution operator path C is unfortgnately not unique. The. amblguny comes
from Eq. (6) which possesses two solutions with opposite

(n(0)|W(T)=e"*M(n(0)|. (6)  sign ofn:

Note that generically 1/2.W(T)9t +1 and we assume this_ <iﬁ(o)|W(T)=eiizp(T)<i_ﬁ(0)|. (10)
from now on. The gauge invariant trace of the Wilson loop is

given by 1/2 TAW(T) = cos¢(T). On the other hand, one gets o L - i

from Egs.(1), (3) the following equation for the Wilson loop However, this sign ambiguity is only global: 4h50)| IS an
phase factof18]: eigenstate withp(T) >0, then for anyte [0;T] (n(t)| is an
eigenstate of W' (t)W(T)W(t) with the same positive
phase. Therefore there is only a global freedom to change
n(t)— —n(t) for all t simultaneously.

) ] ] Consider the infinitesimal closed contod€, located in
Using standard properties of the spin coherent sfdtes17  (, ) plane at poink, which bounds the elementary surface

T - N N >
o= [ (AR -i@alie @)

one can represent E@?) in vectorlike notation element 60%”. Since in this caseW(T)=W(8C)=1
1 (A N +(i/2)oF ,, 604"+ 0(50), the eigenvalue proble®),(10)
5 TrW(T)=cos EanAdefscﬂ'[%nx d,n]d<ac*"|, could easily be solved:

8

where the vector field(t) has been smoothly extended from
the contoulC into an arbitrary surfac8, bounded byC. Note
that Eq.(8) may be identically rewritten in the gauge invari-
ant form

n{#=+Fsol |F o,

©(8C) = *|Fdo|=+(Fér)?, (11)

where we have explicitly indicated the.¢) dependence of
O the eigenvector and evident Lorenz indices have been sup-
ZL nk,,d%c* pressed. Therefore the infinitesimal version of non-Abelian
C Stokes theorent9) is (no summation ovep, v)

1
ETrW(T) =COS|

11 . R R
+ZLCn.[DMn>< D,n]d2e#"|, 9

%TrW( 5C,)~cos| %ﬁ&’w)lfw(x) Sol’+0(b0)
whereD3°= 59, — £3°PA°, is the covariant derivative and

F2,=d,A3—3,A%—e®APAS is the non-Abelian field 1.

strength. Note that apparent surface dependence of(8s. ~1- g(wa‘UfV)ZJF o(50?), (12
(9) is only superficial since they are identical to EQ)
which is explicitly surface independent. However, the con-

crete way to extends n(t)—n S, is not fixed yet and  Wher : ne
we discuﬁs this poin? in( d)e_t)ail(sgt))eelovf/. y It is amusing to note that Eq€8), (9) look similar to the

Let us emphasize that E¢®), (9) cannot be used to ac- non-Abelian Stokes theorem of RéB] apart from the ab-

tally calculate the Wilson loop since construction of thesence of the path integral ovatt) in Eq. (9). We conclude
evolving statesi(t) requires knowledge of the Wilson loop therefore that the path integral of RE8] is exactly saturated

itself. Nevertheless, Eq9) might be relevant for theoretical by the two particular trajectories n(t). It is worth mention-
considerations since it represents the phase fadf6) as an  ing, however, that the construction oft), Eq. (5), makes
integral of the field strength introduced first by 'tHo¢#9] no reference to the classical equations of motion and there-
and Polyako\20] in connection with monopoles. Equation fore Egs.(8), (9) do not correspond in general to any semi
(9) is the NAST to be discussed in more detail below. classical approximation.

ere we have used the covariant constancﬁ oh 6C,.
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Notice that Eq(9) is still not uniquely defined. The point whereU; e SU(2) are the link matrices parametrized as
is that the vector fieladh(t) may be extended arbitrarily from

C to S,. The only requirement is that the extensicn U;=cosy, +i sinyou; , =cosy,—i sinyou; _,
s n(t)—n(o) e Se must be continuous and the distribution .
n(o) must agree witm(t) at the boundansS,=C. On the ui =1, (14)

other hand, Eq(9) is applicable to any closed contour, in ) ) o ]
particular to any infinitesimal area element®. Therefore, and the corresponding lattice path piercing the sites

at every pointx(c) € S; we have a naturally defined direc- So:S1.-.-.Sn—1 IS assumed to be closed and non-self-
tion A(’) which can be used to make E@) unambiguous intersecting. There is an analogous parametrization of the
" _Wilson loop,

Then the only remaining problem is the choice of sign of
ﬁ(cr) since at every poink(o) e S, considered separately
there is no distinction between ﬁ(o). Here the continuity

requirement for the extensiafs n(t)—n(c) e S, becomes
crucial. Indeed, since the surfagis assumed to be regular

(e.g., smooth and without self-intersectiprtse fieldF do is  gng therefore the sta(aT/+(so)| to be ascribed to the sitg
continuous orS; and therefore Eq(11) allows one to define g

ﬁ(a) continuously as wellthese arguments may fail for ex-

ceptional configurations which are not generic and which we (W, (So)|=(w |,

do not consider for that reasphis way one could provide
a well-defined and unambiguous meaning to E@&, (9)
since for any spanning surfa& and for any boundary dis-

tribution neC there exists a unique extensiad®®n(t)  \oie that one could equally take the eigenstie (so)|
—n(o) e S;. Moreover, following the analogy with Abelian jnstead(see the discussion in the previous sedtiés far as
case one could try to apply E) to closed(infinitesima)  only a single Wilson loop is concerned, there is not much
surfaceS and obtain the non-Abelian Bianchi identities writ- difference between the two choices and it is sufficient to take
ten in Abelian-like form in terms oh,A. However, this either of them.

W= CO0S@,,+i SiN@,oW, = COS@,—i SiN@,oW_

w2 =1,

(W (o) |[W=e€"#w(W., (Sp)|. (15)

would require one to extend the fiefte S into the volume Starting from(vT/+(so)| one constructs the corresponding
bounded bySwhich is rlot a straightforward procedure. The eigenstates<v7/+(si)|, i=1,...N—1, in all other sites
point is that the fieldn(o) is essentially a tensorial-like s;,...,sy_; using Egs(3),(5):

quantity[see Eq.(12)] and is only defined on the infinitesi-

mal surface elemento e S. The extension of € Sinto the (W, (s)|Ui=€e"(W (si;q1)], i=0,...N—1. (16

enclosed volume and the corresponding form of non-Abelian

Bianchi identities go beyond the scope of present publicatiofBince the initial state was taken to be an eigenstai®,dhe

and will be discussed elsewhere. chain (16) is closed,sy=Sy,(W. (Sy)|=(W, (So)|, and one
The sign ambiguity in the definition (ﬁ(a) is reminis- gets the following relation between the Wilson loop phase

cent to the model of Ref$21,22 (Alice electrodynamids ¢, and the phaseg; coming from linksU; [18]:

Indeed, the key feature of Alice electrodynamics is that the N1

U(1) generatoln(c) in our caséis known only up to the -3, 17)

sign. Moreover, the definition of the central object of the Pw= o Vi

model, Alice string, is based on the continuity arguments

similar to the above reasoning. However, the relevance ofve are in haste to add that, strictly speaking, @) is not

Alice electrodynamics to the SB) gauge theory is still un- entirely correct. The point is that the left hand sid#lS) is

clear and we will not dwell on this issue. always bounded,¢,|<, while the sum on the right can
In the next section we consider the non-Abelian Stokesake values outside the interVlat- 7; 7]. To be precise, Eq.

theorem on the lattice. As a by-product we also illustrate thg17) should express the equality of the phase facefs,

appearance of various terms in EQ). not the anglesp,, by themselves. Therefore, there are terms
27k, ke Z missing in Eq(17). From now on in all equations
IIl. NON-ABELIAN STOKES THEOREM like Eq. (17) the mod 2r operation is always assumed and
ON THE LATTICE will not be indicated explicitly.

The derivation of the lattice NAST begins from consider- N Order to make one step further we need to consider in

ation of the fundamental representation Wilson loop on thdnore detail Eq(16). Consider an S(2) operatorU which
lattice: upon acting on some initial state,| brings it to another

N_1 state(n,|:

W=T] Ui=UgxU,;x---xUpy_4, 13 . o L
iﬂo Lo Nt a3 (n|U=¢€""%n,|, U=cosv+isinvou,, (18
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where y is an additional phase which depends on b((ﬁhj A

and U. There are two eigenstatéﬁg of the operatorU
which form a complete basis in the spin-1/2 IRR:

<61|U:eiiv<l]t|a
1:|J+><G+|+|67)<Jf|, (19

Using the resolution of unity19) in Eq. (18) one gets

e'v(ny|uy )(uy|+e "y u_)(u_|=e"(ny,

B ng’
Y= v+ Q0(Ny, U Np) =~ v+ Qo(Ny,U-Ny), (20 FIG. 1. NAST in the simplest case of three linfsee text
where {o(ny, . .. Ny) is the oriented area of the spherical UG, .,.U" is again geodesic with initial and final states
polygon on unit two-dimensional sphe® with corners at 27 M2

the north pole ofS? and atn,, ... ny (in that ordey. In ~ Peingm; andn, and thus equals tGy, ., . Equation(20)
deriving Eq.(20) standard properties of the spin coherentallows to rewrite Eq(21) in the form
states have been uséske, e.g., Ref§15-17): o o
.- Qo(Ng,us,Ny)+Qo(My, U ,m
(Rl ) ()| = o), ot ) TR e T
. o . =Qg(My,nz) +Qg(Ng,mMy). (22

Note that in our normalization Are&f)=2. In particular,
there is no additional 1/2 factor in front éf,. Equationg17),(20),(22) are sufficient to derive the NAST

From very general arguments one expects that(E8.  on the lattice. We illustrate the derivation on the simplest
has an interpretation of ordinary rotation of the vealgr  example. Generalization to usual cubic geometry is straight-
around the axisi, by the anglev. However, as far as only forwgrd but technically notorious. Thus we will only discuss
initial and final states are taken into account the rotatiorfhe final result.
operator remains in fact undetermined. Indeed, there are in- Consider the simplest nontrivial configuration of three
finitely many rotations which connect two given states. Onlinks, Fig. 1, from which one could construct three different
the other hand, among various G operators there is a Wilson loops

distinguished uniques,, _,,,. which describes the motion N N N
> > Lo L > > WOZUOUZ, W1:U0U1, W2:U1U2.
n;—n, along the shortest geodesic line connectingn,:

Let ¢; be the phase angle of the corresponding Wilson loop,

Gny—n, = (MNg) +io [N Xn,], 1/2 TrW, = cosg, . Applying the procedure of the previous
. o i section to each Wilson loop separately, one gets six states
— nl nq,n > ->(i . L . .
(N1 Gy, = €02y {n®) ,nP1,i=0,1,2, sitting at point& andB; a pair of states

) ) . with fixed i is assigned to the corresponding Wilson loops
The physical relevance of geodesic curves is widely knownWi . In particular,

The importance of the geodesic matricefi1an in the

present context comes from the consideration of the diagram (ﬁX)IWi :ei¢i<ﬁg)|' i=01,2. (23)
n, i n, Let us evaluate the phase anglg. According to Eqs(17),
(20,
Gmlﬂan Tszﬂnz .
o U N @0:U0+Qo(n,(5\0)1u0,+ vn(BO))_U2+QO(n(BO)1u2,+ in(AO))y
m . m

. wherewv, enters with minus sign becaubl is conjugated in
HeEe the §ame%0peratdn‘ corresponds to the rotations, the definition ofW,. Using Eq.(22) we can write
—n, andm;—m,. The diagram is closed by two geodesic
matricesGmﬁnl andGmZan. From the analysis of the dia- ©o=vp+ Qo(ﬁ(Al) ,1]0’+ ,ﬁ(Bl))+QO(ﬁ'(AO) ,ﬁg))
gram one obtains the relation I I R
+Qo(n§Y ) — v+ Q(ng Uz + &)
Gm,—-n,U=UGn, 1, (21) o o
+Qo(ng” ) + Qo(n) ). (24)
which follows from the fact that adjoint S®) action is
equivalent to S@) rotation. Therefore the matrix The next step is to add zero in the fofsee Eqs(21),(22)]
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0=v,+Qo(n& Uy, .0+ Qo(n AP + Qo(n) )

— v+ Qg( ﬁg) ,l]l,+ aﬁ,(Al))

to Eq.(24) and collect various terms together using the rela-

tions like
®1=vp+ Qo( ﬁgl) -Go,+ ﬁ(sl)) —ut Qo(ﬁ(sl) -Jl,+ aﬁ(Al))a

Q(A)=0o(n,n{) + Qo(n D) + Qo(nD,n),

whereQ(A)=Q(n{ ,n n?) is the area of spherical tri-

angle constructed on the indicated three unit vectors at point O P
!

A. In other words)(A) is just the oriented solid angle be-
tween the triple{n{®,n{ ,nf)}.

Therefore the final equation which relates the phase

anglesy;,i=0,1,2 is

Po= @1t @2+ Q(A)+(B), (25

PHYSICAL REVIEW D69, 114502 (2004

1

FIG. 2. NAST on square latticesee text for detai)s

tors per plaquette situated at plaquette’s corners. Therefore
there are four unit vectors at the poin{see Fig. 2, and(),

whereQ (A) and()(B) are the oriented solid angles betweenis just the oriented solid angle between them. The third term

the triads{nt” ,nY n®} and{n® ,n® nM}. Note the dif-
ferent ordering of states if2(A) and ()(B), which corre-
sponds to counting the outgoing flux at both poiaAtandB.
Let us emphasize that E{R5) is valid irrespectively of
the particular choice of the statgsy ,n{)} provided that the
phasesp; are calculated according to Ed.7) or (23). It does
not matter which particular solution of E23) was taken to

construct{nf’ ,nd’} on each Wilson loop, Eq25) remains

formally the same with either choice. But this means that Eq

(25) is ambiguous becausg changes sign Whe{ﬁﬂ) ,ﬁg)}
are replaced by—n{), —n{’}. In fact this is the same sign

(“perimeter contribution’) is analogous to the second one. It
accounts for the difference in color direction between the
states on the nearest to the loop “internal” plaquettes and the
states on the loop itself. Technically is an oriented solid
angle between the corresponding three vectors.
Equation(26) has a simple physical interpretation. The
magnitude of the total fluxe,,, piercing large closed con-
tour C is the sum of a few terms. The first term sums up the
magnitudes of elementary fluxes penetrating the sur&ce
Since the theory is non-Abelian, each elementary flux has its
own color orientation which is no less important than the
flux magnitude(for flux piercing finite contourC the color

problem discussed previously. We will fix it after considering girection of the flux varies along). The other terms in Eq.

the continuum limit of Eq(25).
The generalization of Eq25) to the case of usual cubic

(26) take into account the difference in color orientation of
various fluxes or§, as well as of the total flux piercing. It

nal result

Pw= E oyt 2

xe S xe S

Ot 2 (26)
xeC
is illustrated on Fig. 2. It is understood that phasgs, ¢
are calculated via Eq17). Here¢,, is the phase of the large
Wilson loop, 1/2 TW(C)=cose¢,,, where C is the planar
2% 2 closed contoufsee Fig. 2, which bounds the surface
Sc. The first term on the RHEdynamical part”) is the sum
of contributions coming from four “internal” plaquettes be-
longing toS;. In particular,

1
5TrUp =cosey, px= 0,1,2,3,

2

SU(2) gauge copy of Abelian configuratiohthe second and
third contributions in Eq(26) vanish identically and one gets
the usual Abelian Stokes theorem.

Let us consider Eq(26) in the limit of vanishing lattice
spacing,a—0. The contribution of the first term was in fact
already calculated in Eq$11),(12):

1. .
“dynamicalpart”= azxezsc SMF (X) + o(a?)

~3f nF,,d%c* (27)
4)sg T

WhereUpx is the corresponding plaquette matrix. The secondyhere ﬁvaESC is given by Eq.(11). In order to get the
term (“solid angle”) comes from the points common to four continuum limit of the second term consider the point
different “internal” plaquettes. We recall that application of €S, and let (wv) be a plane tangential 18, at x. Then{,

the NAST, Eq.(25), requires construction of four color vec-

is the oriented solid angle between the four vectors
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F. V. GUBAREV PHYSICAL REVIEW D69, 114502 (2004

> > > > I I I 1 I I
n;=ny—a-(D,ny+D,n,), - 1

C-©V(R)

n,=n,—a-D,n,, L e Ve® }
S Vsolid(R)

Ng=n,, i aAV i R)

n,=n,—a-D,n,, (28)
M

- 0.5
wheren, is again given by Eq(11) andD is the covariant

derivative. It is straightforward then to evaludbs :

1 2/ - - 2
szza (n-[D,nXD,n])+o(a?). (29

Therefore,
FIG. 3. Various terms contributing to the heavy quark potential.

l R R . . .
“solid angl¢’= Zf n-[DMnx Dvn]dZU’“’. (30) Lines are drawn to guide the eye.
Sc

contribution is of each term into the Wilson loop expectation
Unfortunately, there exists no simple expression for thevalue
third term, Eq.(26), in the continuum limit. However, this is ) _TV(R)
to be expected. Indeed, one can readily convince oneself that (expiou})~e * (32
the meaning of the “perimeter contribution” is to provide
correct boundary conditions in E€R6). In other words, the
third term, Eq.(26), guarantees that the vector fieﬁ){a)

e S agrees Witkﬁ(t) e C on the boundan$S,=C.

where we have restricted ourselves to the consideration of
rectangulaim X R, T>R loops only. Therefore the problem is
to calculate

Combining Egs.(27),(30) one formally reproduces Eq. , STV (R)
(9), confirming that Eq(26) is indeed the lattice formulation ex IXEES,(’DX ~e Tant, (33
of the non-Abelian Stokes theoreff). However, this con- ¢
clusion relies heavily on Eq(29) which is only valid if
n,,XxeSc, is continuous across the plaquette boundaries. <ex iXES QxJ>~eTVS°“d(R), (34)
&>

This suggests a natural way to fix the relative sign of eigen-
states on neighboring plaquettes analogously to the con-
tinuum considerations above. Namely, we propose to fix the <ex iE ax} > ~e~ ™Vperim(R) (35)
particular distribution of eigenstates by the requirement that xeC

Notice that theT,R dependence of the expectation values
R= 2 |0+ |ay (3D (33— (35) is anad hocassumption which has to be checked
X< xee separately. However, we have found that E@8)—(35) in-
- ; Lo deed accurately describe numerical data.
take the minimal possible valugt is assumed, of course, We calculated the expectation valu@8)—(35) on 50 sta-

that eigenvectors. at the b_oundamjt).ec are held fixed tistically independent configurations using the spatial smear-
from the very beginningy This pEescr|pt|on fixes completely ing algorithm(see, e.g., Ref23] for details. For each rect-
and unambiguously all the statego) € S¢ provided that the  angular loopC={TXR} Egs. (15),(16) were applied to
functional R has a unique minimum. The uniqueness of theconstruct the eigenstates 6nThe same procedure was used
minimum of R is a separate issue and we have no analytica{0 build the eigenvectorsﬁ(i)} i=0 3 oneach “inter-

p L LA | L

methods to investigate it. However, at least numerically thqq » : -
o i . . . al” plaquettep € S, (only surfaces with minimal area were
minimum of Eq.(31) might be approximated with high ac- considereg Finally, the functional31) was minimized with

curacy- respect to the inversiongn(’}—{—n{)},peS;, using a
variant of the simulated annealing algoriti2¥] and keep-
ing the boundary conditions e C fixed.

In this section we describe simple lattice experiments with The results of our simulations are presented on Fig. 3,
Eqg. (26) which we performed in pure S@) lattice gauge where circles represent the full heavy quark poten(i?a),
theory considered on #2attice at3=2.4 using the standard squares correspond the “dynamical” pa@3), and finally
Wilson action. diamonds and triangles stand for “solid34) and “perim-

Since the decompositiof26) is gauge invariantsee dis- eter” (35 contributions, respectively. Note that the solid
cussion in previous sectipnit is legitimate to ask what the curves on Fig. 3 are drawn to guide the eye.

IV. NUMERICAL SIMULATIONS
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There are few striking features of the expectation valueshe “solid angle” contribution(30),(34),(37) is formally not
(33)—(35) to be mentioned here. First of all, the “perimeter” suppressed by the action even at very lgfge
potential, Eq(35), turns out to be practicalliR independent:

(36)

V. CONCLUSIONS

Vperim(R)~const, . ) .
We have derived a new version of the non-Abelian Stokes

which might be an indication that the perimeter contributiontheorem for the Wilson loop in the fundamental representa-
drops out in the expectation value of the full Wilson loop tion of the SU2) gauge group. By considering the instanta-
(32). Second, botlVg,,(R) andVs,i4(R) appear to be linear neous color direction of the flux piercing the loop we were
at large distancefR=3, albeit with somewhat larger slope able to avoid the path ordering in the conventional definition
than the full potentiaV(R)~ s y2)R: of the Wilson loop operator. Moreover, this approach allows
one to represent the phase angle of the Wilson loop as an

Vayl(R)~04yiR,  Vsoiia(R) = 0s0iigR, (387  ordinary one-dimensional integral to which the usual Stokes
theorem applies. Furthermore, we were able to relate the re-
Tdyn _ Tsolid ~16 39) sulting surface integral with properties of non-Abelian gauge
Osu2) Osuz) fields on that surface.

Unfortunately, our formulation can hardly be called a
AlthoughVy,(R) deviates from linear behavior at distances “theorem” because it does not help to calculate the Wilson
R=3\Vsia(R) is rising strictly linear starting from the |oop itself. However, this drawback is not specific to this
smallest possible distand®=2. The existence of a linearly paper since other known variants of the non-Abelian Stokes
rising term in the heavy quark potential at short distances hageorem are also not very useful for Wilson loop calcula-
been widely discussed in the literature see, e.g., R8&- tions. At the same time our construction is well suited for
29] and references therein. numerical investigations. To achieve this goal we have also
Finally, we emphasize that the expectation value of thejerived the non-Abelian Stokes theorem on the lattice and
full Wilson loop (32) is not factorizable into the terms illustrated the origin and physical meaning of various terms
(33)—(35). It is clearly seen from Fig. 3 that contributing to the trace of the Wilson loop.

V(R) #Vgyn(R) + Vsgiig(R) + Vierim(R) + const, (39) ACKNOWLEDGMENTS
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