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Non-Abelian Stokes theorem for SU„2… gauge fields

F. V. Gubarev
ITEP, B.Cheremushkinskaja 25, Moscow, 117259, Russia

and ITP, Kanazawa University, Kanazawa 920-1192, Japan
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We derive a version of non-Abelian Stokes theorem for SU~2! gauge fields in which neither additional
integration nor surface ordering are required. The path ordering is eliminated by introducing the instantaneous
color orientation of the flux. We also derive the non-Abelian Stokes theorem on the lattice and discuss various
terms contributing to the trace of the Wilson loop.
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I. INTRODUCTION

The usual Abelian Stokes theorem relates the inte
along a closed curveC bounding some surfaceSC and an
integral defined on this surface. This version of the Sto
theorem is most relevant in physical applications since
allows us to express the holonomy of a gauge noninvar
electromagnetic potential via physically observable magn
flux. The invention of non-Abelian gauge theories neces
tated a non-Abelian generalization of the Stokes theor
Nowadays, there are quite a few formulations of the n
Abelian Stokes theorem~NAST! available~for review see,
e.g., Ref.@1# and references therein!. Generically there exis
two principal approaches: the operator@2–7# and the path-
integral @8–13# approaches.

It is worth mentioning that the central issue of any form
lation of the NAST is how to make sense of the path order
prescription inherent to the non-Abelian holonomy~Wilson
loop!. In this respect neither the operator nor path-integ
approach is helpful for concrete calculation of the Wils
loop. Indeed, while in the former case path ordering is tra
for a more complicated surface ordering prescription, in
latter case an additional path integral over auxiliary variab
is introduced which cannot be calculated even appro
mately.

In this paper we derive a new version of non-Abeli
Stokes theorem focusing exclusively on SU~2!-valued Wil-
son loops in the fundamental representation. Moreover,
central object of our discussion is the phase of the Wils
loop ww . It determines the Wilson loop trace, 1/2 TrW
5cosww , which is the only gauge invariant quantity asso
ated with gauge holonomy.

The basic idea is to introduce the instantaneous color
entation of the chromomagnetic flux piercing the loop. E
dently this color orientation remains unknown until the W
son loop is calculated by some other means. Nevertheles
allows us to avoid the path ordering and represent the Wil
loop phase as an ordinary integral to which Abelian Sto
theorem applies. Furthermore, we relate the resulting sur
integral with properties of gauge fields on this surface.

As we noted above, in order to get explicitly the col
orientation of the flux one has to calculate the Wilson lo
first. In this respect our formulation is well suited for lattic
studies where the gauge holonomy is to be evaluated num
cally. We derive the lattice version of the non-Abelian Stok
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theorem. Finally, we discuss the physical meaning and or
of various terms contributing to the trace of the Wilson lo
and present the results of our qualitative numerical simu
tions.

II. NON-ABELIAN STOKES THEOREM
IN THE CONTINUUM LIMIT

Consider a Wilson loop operator in the fundamental re
resentation, W(T), evaluated on a closed contourC
5$xm(t),tP@0;T#,xm(0)5xm(T)%, which is parametrized
by differentiable functionsxm(t). By definition the operator
W(T) provides a solution to the first-order differential equ
tion

^c~ t !u~ i ] t1A!50, ~1!

^c~ t !u5^c~0!uW~ t !, ~2!

W~ t !5T expH i E
0

t

A~t!dtJ ,

whereA5 1
2 saAm

a @x(t)# ẋm(t) is the tangential component o
the gauge potential,sa are the Pauli matrices, differention i
taken with respect to the parametert, and^cu is a vector in
the spin-1/2 irreducible representation space~IRR! of the
SU~2! group. Since Eq.~1! is nothing else but the time
dependent Schro¨dinger equation, the Wilson loopW(t) can
be interpreted as a quantum mechanical evolution oper
with the time-dependent HamiltonianH52A(t). Moreover,
the corresponding state space coincides with spin-1/2 IRR
which a convenient basis is provided by generalized~spin!
coherent states@14# ~see, e.g., Refs.@15–17# for reviews!.
The spin coherent states$^nW u% are parametrized by a set o
unit three-dimensional vectorsnW ,nW 251 and in this basis ar-
bitrary statê cu has a unique representation

^cu5eiw^nW u. ~3!

The action of SU~2! operatorg reads

^nW ug5eiw^nW gu, ~4!
©2004 The American Physical Society02-1
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where the phase factorw depends on bothnW and g, andw

5w(g,nW ). Therefore, in the basis of coherent states Eq.~2!
becomes

^c~ t !u5eiw(t)^nW ~ t !u5^nW ~0!uW~ t !, ~5!

where without loss of generality we have takenw(0)50 or
equivalently^c(0)u5^nW (0)u.

Equation~1! imposes no restrictions on the initial vect

^nW (0)u, which therefore can be taken arbitrarily. Howev
there exists a distinguished initial state which is of particu
importance for the discussion below. Namely, let us ta

^nW (0)u to be the eigenstate of the full evolution operator

^nW ~0!uW~T!5eiw(T)^nW ~0!u. ~6!

Note that generically 1/2TrW(T)Þ61 and we assume thi
from now on. The gauge invariant trace of the Wilson loop
given by 1/2 TrW(T)5cosw(T). On the other hand, one ge
from Eqs.~1!, ~3! the following equation for the Wilson loop
phase factor@18#:

w~T!5E
0

T

~^nW uAunW &2 i ^nW u] tunW &!dt. ~7!

Using standard properties of the spin coherent states@15–17#
one can represent Eq.~7! in vectorlike notation

1

2
Tr W~T!5cosF1

2EC
nW AW dt1

1

4ESC

nW •@]mnW 3]nnW #d2smnG ,
~8!

where the vector fieldnW (t) has been smoothly extended fro
the contourC into an arbitrary surfaceSC bounded byC. Note
that Eq.~8! may be identically rewritten in the gauge invar
ant form

1

2
TrW~T!5cosF1

4ESC

nW FW mnd2smn

1
1

4ESC

nW •@DmnW 3DnnW #d2smnG , ~9!

whereDm
ab5dab]m2«acbAm

c is the covariant derivative an

Fmn
a 5]mAn

a2]nAm
a 2«abcAm

b An
c is the non-Abelian field

strength. Note that apparent surface dependence of Eqs~8!,
~9! is only superficial since they are identical to Eq.~7!
which is explicitly surface independent. However, the co
crete way to extendC{nW (t)→nW (s)PSC is not fixed yet and
we discuss this point in details below.

Let us emphasize that Eqs.~8!, ~9! cannot be used to ac
tually calculate the Wilson loop since construction of t
evolving statesnW (t) requires knowledge of the Wilson loo
itself. Nevertheless, Eq.~9! might be relevant for theoretica
considerations since it represents the phase factorw(T) as an
integral of the field strength introduced first by ’tHooft@19#
and Polyakov@20# in connection with monopoles. Equatio
~9! is the NAST to be discussed in more detail below.
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,
r
e

s

-

By construction the vector fieldnW (t) is covariantly con-
stant along the contourC,ẋmDmnW 50. Equation~5! implies
also that for anytP@0;T# the statê nW (t)u is an eigenstate o
the Wilson loop calculated onC starting from the point
xm(t). In other words, ^nW (t)u is an eigenstate o
W1(t)W(T)W(t). The interpretation ofnW (t) is then straight-
forward; it is the instantaneous color orientation of the fl
piercing the loopC. Since the contour considered is not i
finitesimal, the color direction of the flux is different at var
ous points onC.

The assignment of the vector fieldnW (t) to a given closed
path C is unfortunately not unique. The ambiguity com
from Eq. ~6! which possesses two solutions with oppos
sign of nW :

^6nW ~0!uW~T!5e6 iw(T)^6nW ~0!u. ~10!

However, this sign ambiguity is only global: if^nW (0)u is an
eigenstate withw(T).0, then for anytP@0;T# ^nW (t)u is an
eigenstate ofW1(t)W(T)W(t) with the same positive
phase. Therefore there is only a global freedom to cha
nW (t)→2nW (t) for all t simultaneously.

Consider the infinitesimal closed contourdCx located in
(m,n) plane at pointx, which bounds the elementary surfac
element dsx

mn . Since in this caseW(T)[W(dCx)51

1( i /2)sW FW mndsx
mn1o(ds), the eigenvalue problem~6!,~10!

could easily be solved:

nW x
(mn)56FW ds/ uFW dsu,

w~dCx!56uFW dsu56A~FW ds!2, ~11!

where we have explicitly indicated the (mn) dependence of
the eigenvector and evident Lorenz indices have been
pressed. Therefore the infinitesimal version of non-Abel
Stokes theorem~9! is ~no summation overm,n)

1

2
Tr W~dCx!'cosF1

2
nW x

(mn)FW mn~x!dsx
mn1o~ds!G

'12
1

8
~FW mndsx

mn!21o~ds2!, ~12!

where we have used the covariant constancy ofnW on dCx .
It is amusing to note that Eqs.~8!, ~9! look similar to the

non-Abelian Stokes theorem of Ref.@8# apart from the ab-
sence of the path integral overnW (t) in Eq. ~9!. We conclude
therefore that the path integral of Ref.@8# is exactly saturated
by the two particular trajectories6nW (t). It is worth mention-
ing, however, that the construction ofnW (t), Eq. ~5!, makes
no reference to the classical equations of motion and th
fore Eqs.~8!, ~9! do not correspond in general to any se
classical approximation.
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NON-ABELIAN STOKES THEOREM FOR SU~2! GAUGE FIELDS PHYSICAL REVIEW D69, 114502 ~2004!
Notice that Eq.~9! is still not uniquely defined. The poin
is that the vector fieldnW (t) may be extended arbitrarily from
C to SC . The only requirement is that the extensionC
{nW (t)→nW (s)PSC must be continuous and the distributio
nW (s) must agree withnW (t) at the boundarydSC5C. On the
other hand, Eq.~9! is applicable to any closed contour,
particular to any infinitesimal area element ofSC . Therefore,
at every pointx(s)PSC we have a naturally defined direc
tion nW (s) which can be used to make Eq.~9! unambiguous.
Then the only remaining problem is the choice of sign
nW (s) since at every pointx(s)PSC considered separatel
there is no distinction between6nW (s). Here the continuity
requirement for the extensionC{nW (t)→nW (s)PSC becomes
crucial. Indeed, since the surfaceSC is assumed to be regula
~e.g., smooth and without self-intersections!, the fieldFW ds is
continuous onSC and therefore Eq.~11! allows one to define
nW (s) continuously as well~these arguments may fail for ex
ceptional configurations which are not generic and which
do not consider for that reason!. This way one could provide
a well-defined and unambiguous meaning to Eqs.~8!, ~9!
since for any spanning surfaceSC and for any boundary dis
tribution nW PC there exists a unique extensionC{nW (t)
→nW (s)PSC . Moreover, following the analogy with Abelian
case one could try to apply Eq.~9! to closed~infinitesimal!
surfaceSand obtain the non-Abelian Bianchi identities wr
ten in Abelian-like form in terms ofnW ,AW . However, this
would require one to extend the fieldnW PS into the volume
bounded byS which is not a straightforward procedure. Th
point is that the fieldnW (s) is essentially a tensorial-like
quantity @see Eq.~12!# and is only defined on the infinites
mal surface elementsdsPS. The extension ofnW PS into the
enclosed volume and the corresponding form of non-Abe
Bianchi identities go beyond the scope of present publica
and will be discussed elsewhere.

The sign ambiguity in the definition ofnW (s) is reminis-
cent to the model of Refs.@21,22# ~Alice electrodynamics!.
Indeed, the key feature of Alice electrodynamics is that
U~1! generator@nW (s) in our case# is known only up to the
sign. Moreover, the definition of the central object of t
model, Alice string, is based on the continuity argume
similar to the above reasoning. However, the relevance
Alice electrodynamics to the SU~2! gauge theory is still un-
clear and we will not dwell on this issue.

In the next section we consider the non-Abelian Sto
theorem on the lattice. As a by-product we also illustrate
appearance of various terms in Eq.~9!.

III. NON-ABELIAN STOKES THEOREM
ON THE LATTICE

The derivation of the lattice NAST begins from conside
ation of the fundamental representation Wilson loop on
lattice:

W5 )
i 50

N21

Ui5U03U13•••3UN21 , ~13!
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whereUiPSU(2) are the link matrices parametrized as

Ui5cosy i1 i siny isW uW i ,15cosy i2 i siny isW uW i ,2 ,

uW i ,6
2 51, ~14!

and the corresponding lattice path piercing the si
s0 ,s1 , . . . ,sN21 is assumed to be closed and non-se
intersecting. There is an analogous parametrization of
Wilson loop,

W5cosww1 i sinwwsW wW 15cosww2 i sinwwsW wW 2 ,

wW 6
2 51,

and therefore the state^wW 1(s0)u to be ascribed to the sites0
is

^wW 1~s0!u[^wW 1u,

^wW 1~s0!uW5eiww^wW 1~s0!u. ~15!

Note that one could equally take the eigenstate^wW 2(s0)u
instead~see the discussion in the previous section!. As far as
only a single Wilson loop is concerned, there is not mu
difference between the two choices and it is sufficient to ta
either of them.

Starting from^wW 1(s0)u one constructs the correspondin
eigenstates^wW 1(si)u, i 51, . . . ,N21, in all other sites
s1 , . . . ,sN21 using Eqs.~3!,~5!:

^wW 1~si !uUi5eig i^wW 1~si 11!u, i 50, . . . ,N21. ~16!

Since the initial state was taken to be an eigenstate ofW, the
chain ~16! is closed,sN[s0 ,^wW 1(sN)u[^wW 1(s0)u, and one
gets the following relation between the Wilson loop pha
ww and the phasesg i coming from linksUi @18#:

ww5 (
i 50

N21

g i . ~17!

We are in haste to add that, strictly speaking, Eq.~17! is not
entirely correct. The point is that the left hand side~LHS! is
always bounded,uwwu<p, while the sum on the right can
take values outside the interval@2p;p#. To be precise, Eq.
~17! should express the equality of the phase factorseiww,
not the anglesww by themselves. Therefore, there are ter
2pk,kPZ missing in Eq.~17!. From now on in all equations
like Eq. ~17! the mod 2p operation is always assumed an
will not be indicated explicitly.

In order to make one step further we need to conside
more detail Eq.~16!. Consider an SU~2! operatorU which
upon acting on some initial statênW 1u brings it to another
state^nW 2u:

^nW 1uU5eig^nW 2u, U5cosy1 i sinysW uW 1 , ~18!
2-3
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F. V. GUBAREV PHYSICAL REVIEW D69, 114502 ~2004!
whereg is an additional phase which depends on both^nW 1u
and U. There are two eigenstates^uW 6u of the operatorU
which form a complete basis in the spin-1/2 IRR:

^uW 6uU5e6 i y^uW 6u,

15uuW 1&^uW 1u1uuW 2&^uW 2u. ~19!

Using the resolution of unity~19! in Eq. ~18! one gets

ei y^nW 1uuW 1&^uW 1u1e2 i y^nW 1uuW 2&^uW 2u5eig^nW 2u,

g5y1V0~nW 1 ,uW 1 ,nW 2!52y1V0~nW 1 ,uW 2 ,nW 2!, ~20!

whereV0(nW 1 , . . . ,nW N) is the oriented area of the spheric
polygon on unit two-dimensional sphereS2 with corners at
the north pole ofS2 and atnW 1 , . . . ,nW N ~in that order!. In
deriving Eq. ~20! standard properties of the spin cohere
states have been used~see, e.g., Refs.@15–17#!:

^nW 1unW 2&/u^nW 1unW 2&u5eiV0(nW 1 ,nW 2).

Note that in our normalization Area(S2)52p. In particular,
there is no additional 1/2 factor in front ofV0.

From very general arguments one expects that Eq.~18!

has an interpretation of ordinary rotation of the vectornW 1

around the axisuW 1 by the angley. However, as far as only
initial and final states are taken into account the rotat
operator remains in fact undetermined. Indeed, there are
finitely many rotations which connect two given states.
the other hand, among various SU~2! operators there is a
distinguished uniqueGn1→n2

which describes the motion

nW 1→nW 2 along the shortest geodesic line connectingnW 1 ,nW 2:

Gn1→n2
5~nW 1nW 2!1 isW •@nW 13nW 2#,

^nW 1uGn1→n2
5eiV0(nW 1 ,nW 2)^nW 2u.

The physical relevance of geodesic curves is widely kno
The importance of the geodesic matricesGn1→n2

in the
present context comes from the consideration of the diag

nW 1 →
U

nW 2

Gm1→n1
↑ ↑Gm2→n2

.

mW 1 →
U

mW 2

Here the same operatorU corresponds to the rotationsnW 1

→nW 2 andmW 1→mW 2. The diagram is closed by two geodes
matricesGm1→n1

andGm2→n2
. From the analysis of the dia

gram one obtains the relation

Gm1→n1
U5UGm2→n2

, ~21!

which follows from the fact that adjoint SU~2! action is
equivalent to SO~3! rotation. Therefore the matrix
11450
t
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m

UGm2→n2
U1 is again geodesic with initial and final state

beingmW 1 andnW 1 and thus equals toGm1→n1
. Equation~20!

allows to rewrite Eq.~21! in the form

V0~nW 1 ,uW 6 ,nW 2!1V0~mW 2 ,uW 6 ,mW 1!

5V0~mW 2 ,nW 2!1V0~nW 1 ,mW 1!. ~22!

Equations~17!,~20!,~22! are sufficient to derive the NAST
on the lattice. We illustrate the derivation on the simple
example. Generalization to usual cubic geometry is straig
forward but technically notorious. Thus we will only discu
the final result.

Consider the simplest nontrivial configuration of thr
links, Fig. 1, from which one could construct three differe
Wilson loops

W05U0U2
1 , W15U0U1

1 , W25U1U2
1 .

Let w i be the phase angle of the corresponding Wilson lo
1/2 TrWi5coswi . Applying the procedure of the previou
section to each Wilson loop separately, one gets six st

$nW A
( i ) ,nW B

( i )%,i 50,1,2, sitting at pointsA andB; a pair of states
with fixed i is assigned to the corresponding Wilson loo
Wi . In particular,

^nW A
( i )uWi5eiw i^nW A

( i )u, i 50,1,2. ~23!

Let us evaluate the phase anglew0. According to Eqs.~17!,
~20!,

w05y01V0~nW A
(0) ,uW 0,1 ,nW B

(0)!2y21V0~nW B
(0) ,uW 2,1 ,nW A

(0)!,

wherey2 enters with minus sign becauseU2 is conjugated in
the definition ofW0. Using Eq.~22! we can write

w05y01V0~nW A
(1) ,uW 0,1 ,nW B

(1)!1V0~nW A
(0) ,nW A

(1)!

1V0~nW B
(1) ,nW B

(0)!2y21V0~nW B
(2) ,uW 2,1 ,nW A

(2)!

1V0~nW B
(0) ,nW B

(2)!1V0~nW A
(2) ,nW A

(0)!. ~24!

The next step is to add zero in the form@see Eqs.~21!,~22!#

FIG. 1. NAST in the simplest case of three links~see text!.
2-4
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NON-ABELIAN STOKES THEOREM FOR SU~2! GAUGE FIELDS PHYSICAL REVIEW D69, 114502 ~2004!
05y11V0~nW A
(2) ,uW 1,1 ,nW B

(2)!1V0~nW A
(1) ,nW A

(2)!1V0~nW B
(2) ,nW B

(1)!

2y11V0~nW B
(1) ,uW 1,1 ,nW A

(1)!

to Eq. ~24! and collect various terms together using the re
tions like

w15y01V0~nW A
(1) ,uW 0,1 ,nW B

(1)!2y11V0~nW B
(1) ,uW 1,1 ,nW A

(1)!,

V~A!5V0~nW A
(0) ,nW A

(1)!1V0~nW A
(1) ,nW A

(2)!1V0~nW A
(2) ,nW A

(0)!,

whereV(A)5V(nW A
(0) ,nW A

(1) ,nW A
(2)) is the area of spherical tri

angle constructed on the indicated three unit vectors at p
A. In other words,V(A) is just the oriented solid angle be
tween the triple$nW A

(0) ,nW A
(1) ,nW A

(2)%.
Therefore the final equation which relates the ph

anglesw i ,i 50,1,2 is

w05w11w21V~A!1V~B!, ~25!

whereV(A) andV(B) are the oriented solid angles betwe
the triads$nW A

(0) ,nW A
(1) ,nW A

(2)% and$nW B
(0) ,nW B

(2) ,nW B
(1)%. Note the dif-

ferent ordering of states inV(A) and V(B), which corre-
sponds to counting the outgoing flux at both pointsA andB.

Let us emphasize that Eq.~25! is valid irrespectively of
the particular choice of the states$nW A

( i ) ,nW B
( i )% provided that the

phasesw i are calculated according to Eq.~17! or ~23!. It does
not matter which particular solution of Eq.~23! was taken to
construct$nW A

( i ) ,nW B
( i )% on each Wilson loop, Eq.~25! remains

formally the same with either choice. But this means that
~25! is ambiguous becausew i changes sign when$nW A

( i ) ,nW B
( i )%

are replaced by$2nW A
( i ) ,2nW B

( i )%. In fact this is the same sign
problem discussed previously. We will fix it after consideri
the continuum limit of Eq.~25!.

The generalization of Eq.~25! to the case of usual cubi
geometry is straightforward but technically involved. The
nal result

ww5 (
xPSC

wx1 (
xPSC

Vx1(
xPC

ax ~26!

is illustrated on Fig. 2. It is understood that phasesww ,wx
are calculated via Eq.~17!. Hereww is the phase of the larg
Wilson loop, 1/2 TrW(C)5cosww , where C is the planar
232 closed contour~see Fig. 2!, which bounds the surfac
SC . The first term on the RHS~‘‘dynamical part’’! is the sum
of contributions coming from four ‘‘internal’’ plaquettes be
longing toSC . In particular,

1

2
Tr Upx

5coswx , px50,1,2,3,

whereUpx
is the corresponding plaquette matrix. The seco

term ~‘‘solid angle’’! comes from the points common to fou
different ‘‘internal’’ plaquettes. We recall that application o
the NAST, Eq.~25!, requires construction of four color vec
11450
-

nt

e

.

d

tors per plaquette situated at plaquette’s corners. There
there are four unit vectors at the pointx ~see Fig. 2!, andVx

is just the oriented solid angle between them. The third te
~‘‘perimeter contribution’’! is analogous to the second one.
accounts for the difference in color direction between
states on the nearest to the loop ‘‘internal’’ plaquettes and
states on the loop itself. Technicallya i is an oriented solid
angle between the corresponding three vectors.

Equation ~26! has a simple physical interpretation. Th
magnitude of the total flux,ww , piercing large closed con
tour C is the sum of a few terms. The first term sums up t
magnitudes of elementary fluxes penetrating the surfaceSC .
Since the theory is non-Abelian, each elementary flux has
own color orientation which is no less important than t
flux magnitude~for flux piercing finite contourC the color
direction of the flux varies alongC). The other terms in Eq
~26! take into account the difference in color orientation
various fluxes onSC as well as of the total flux piercingC. It
is worth mentioning that for pure Abelian fields@or for a
SU~2! gauge copy of Abelian configurations# the second and
third contributions in Eq.~26! vanish identically and one get
the usual Abelian Stokes theorem.

Let us consider Eq.~26! in the limit of vanishing lattice
spacing,a→0. The contribution of the first term was in fac
already calculated in Eqs.~11!,~12!:

‘‘dynamicalpart’’5a2 (
xPSC

1

2
nW xFW mn~x!1o~a2!

'
1

4ESC

nW FW mnd2smn, ~27!

where nW x ,xPSC is given by Eq.~11!. In order to get the
continuum limit of the second term consider the pointx
PSC and let (mn) be a plane tangential toSC at x. ThenVx
is the oriented solid angle between the four vectors

FIG. 2. NAST on square lattice~see text for details!.
2-5
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nW 15nW x2a•~DmnW x1DnnW x!,

nW 25nW x2a•DnnW x ,

nW 35nW x ,

nW 45nW x2a•DmnW x , ~28!

wherenW x is again given by Eq.~11! and D is the covariant
derivative. It is straightforward then to evaluateVx :

Vx5
1

2
a2~nW •@DmnW 3DnnW # !1o~a2!. ~29!

Therefore,

‘‘solid angle95
1

4ESC

nW •@DmnW 3DnnW #d2smn. ~30!

Unfortunately, there exists no simple expression for
third term, Eq.~26!, in the continuum limit. However, this is
to be expected. Indeed, one can readily convince oneself
the meaning of the ‘‘perimeter contribution’’ is to provid
correct boundary conditions in Eq.~26!. In other words, the
third term, Eq.~26!, guarantees that the vector fieldnW (s)
PSC agrees withnW (t)PC on the boundarydSC5C.

Combining Eqs.~27!,~30! one formally reproduces Eq
~9!, confirming that Eq.~26! is indeed the lattice formulation
of the non-Abelian Stokes theorem~9!. However, this con-
clusion relies heavily on Eq.~29! which is only valid if
nW x ,xPSC , is continuous across the plaquette boundar
This suggests a natural way to fix the relative sign of eig
states on neighboring plaquettes analogously to the c
tinuum considerations above. Namely, we propose to fix
particular distribution of eigenstates by the requirement t

R5 (
xPSC

uVxu1(
xPC

uaxu ~31!

take the minimal possible value@it is assumed, of course
that eigenvectors at the boundarynW (t)PC are held fixed
from the very beginning#. This prescription fixes completel
and unambiguously all the statesnW (s)PSC provided that the
functionalR has a unique minimum. The uniqueness of t
minimum of R is a separate issue and we have no analyt
methods to investigate it. However, at least numerically
minimum of Eq.~31! might be approximated with high ac
curacy.

IV. NUMERICAL SIMULATIONS

In this section we describe simple lattice experiments w
Eq. ~26! which we performed in pure SU~2! lattice gauge
theory considered on 124 lattice atb52.4 using the standard
Wilson action.

Since the decomposition~26! is gauge invariant~see dis-
cussion in previous section!, it is legitimate to ask what the
11450
e

at

s.
-
n-
e
t

e
al
e

h

contribution is of each term into the Wilson loop expectati
value

^exp$ iww%&;e2TV(R), ~32!

where we have restricted ourselves to the consideration
rectangularT3R,T@R loops only. Therefore the problem i
to calculate

K expH i (
xPSC

wxJ L ;e2TVdyn(R), ~33!

K expH i (
xPSC

VxJ L ;e2TVsolid(R), ~34!

K expH i (
xPC

axJ L ;e2TVperim(R). ~35!

Notice that theT,R dependence of the expectation valu
~33!– ~35! is anad hocassumption which has to be checke
separately. However, we have found that Eqs.~33!–~35! in-
deed accurately describe numerical data.

We calculated the expectation values~32!–~35! on 50 sta-
tistically independent configurations using the spatial sme
ing algorithm~see, e.g., Ref.@23# for details!. For each rect-
angular loop C5$T3R% Eqs. ~15!,~16! were applied to
construct the eigenstates onC. The same procedure was use
to build the eigenvectors$nW p

( i )%,i 50, . . . ,3, oneach ‘‘inter-
nal’’ plaquettepPSC ~only surfaces with minimal area wer
considered!. Finally, the functional~31! was minimized with
respect to the inversions$nW p

( i )%→$2nW p
( i )%,pPSC , using a

variant of the simulated annealing algorithm@24# and keep-
ing the boundary conditionsnW PC fixed.

The results of our simulations are presented on Fig
where circles represent the full heavy quark potential~32!,
squares correspond the ‘‘dynamical’’ part~33!, and finally
diamonds and triangles stand for ‘‘solid’’~34! and ‘‘perim-
eter’’ ~35! contributions, respectively. Note that the sol
curves on Fig. 3 are drawn to guide the eye.

FIG. 3. Various terms contributing to the heavy quark potent
Lines are drawn to guide the eye.
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There are few striking features of the expectation val
~33!–~35! to be mentioned here. First of all, the ‘‘perimete
potential, Eq.~35!, turns out to be practicallyR independent:

Vperim~R!'const, ~36!

which might be an indication that the perimeter contributi
drops out in the expectation value of the full Wilson loo
~32!. Second, bothVdyn(R) andVsolid(R) appear to be linea
at large distances,R*3, albeit with somewhat larger slop
than the full potentialV(R)'sSU(2)R:

Vdyn~R!'sdynR, Vsolid~R!'ssolidR, ~37!

sdyn

sSU(2)
'

ssolid

sSU(2)
'1.6. ~38!

AlthoughVdyn(R) deviates from linear behavior at distanc
R&3,Vsolid(R) is rising strictly linear starting from the
smallest possible distanceR52. The existence of a linearly
rising term in the heavy quark potential at short distances
been widely discussed in the literature see, e.g., Refs.@25–
29# and references therein.

Finally, we emphasize that the expectation value of
full Wilson loop ~32! is not factorizable into the term
~33!–~35!. It is clearly seen from Fig. 3 that

V~R!ÞVdyn~R!1Vsolid~R!1Vperim~R!1const, ~39!

and therefore there are various interference terms contri
ing to V(R). The point, however, is that the linear piec
coming from Vsolid might survive at small distances sinc
,’’

p-

11450
s

as

e

t-

the ‘‘solid angle’’ contribution~30!,~34!,~37! is formally not
suppressed by the action even at very largeb.

V. CONCLUSIONS

We have derived a new version of the non-Abelian Sto
theorem for the Wilson loop in the fundamental represen
tion of the SU~2! gauge group. By considering the instant
neous color direction of the flux piercing the loop we we
able to avoid the path ordering in the conventional definit
of the Wilson loop operator. Moreover, this approach allo
one to represent the phase angle of the Wilson loop as
ordinary one-dimensional integral to which the usual Sto
theorem applies. Furthermore, we were able to relate the
sulting surface integral with properties of non-Abelian gau
fields on that surface.

Unfortunately, our formulation can hardly be called
‘‘theorem’’ because it does not help to calculate the Wils
loop itself. However, this drawback is not specific to th
paper since other known variants of the non-Abelian Sto
theorem are also not very useful for Wilson loop calcu
tions. At the same time our construction is well suited f
numerical investigations. To achieve this goal we have a
derived the non-Abelian Stokes theorem on the lattice
illustrated the origin and physical meaning of various ter
contributing to the trace of the Wilson loop.

ACKNOWLEDGMENTS

We acknowledge thankfully fruitful discussions with T
Suzuki and V.I. Zakharov. This work was supported by JS
Grant No. P03024.
’’

ll-

s

s.
@1# B. Broda, ‘‘Non-Abelian Stokes theorem in action
math-ph/0012035.

@2# M. B. Halpern, Phys. Rev. D19, 517 ~1979!.
@3# I. Arefeva, Theor. Math. Phys.43, 353 ~1980!.
@4# N. E. Bralic, Phys. Rev. D22, 3090~1980!.
@5# P. M. Fishbane, S. Gasiorowicz, and P. Kaus, Phys. Rev. D24,

2324 ~1981!.
@6# Y. A. Simonov, Sov. J. Nucl. Phys.50, 134 ~1989!.
@7# V. I. Shevchenko and Y. A. Simonov, Phys. Lett. B437, 146

~1998!.
@8# D. Diakonov and V. Y. Petrov, Phys. Lett. B224, 131 ~1989!;

JETP Lett.49, 251 ~1989!.
@9# F. A. Lunev, Nucl. Phys.B494, 433 ~1997!.

@10# K. I. Kondo, Phys. Rev. D58, 105016~1998!.
@11# K. I. Kondo and Y. Taira, Prog. Theor. Phys.104, 1189~2000!.
@12# D. Diakonov and V. Petrov, J. Exp. Theor. Phys.92, 905

~2001!.
@13# M. A. Zubkov, Phys. Rev. D68, 054503~2003!.
@14# A. M. Perelomov, Commun. Math. Phys.26, 222 ~1972!.
@15# A. M. Perelomov, Usp. Fiz. Nauk123, 23 ~1977!.
@16# A. M. Perelomov,Generalized Coherent States And Their A

plications ~Springer-Verlag, New York, 1986!.
@17# W. M. Zhang, ‘‘Coherent States in Field Theory,
hep-th/9908117.

@18# F. V. Gubarev and V. I. Zakharov, Int. J. Mod. Phys. A17, 157
~2002!.

@19# G. ’t Hooft, Nucl. Phys.B79, 276 ~1974!.
@20# A. M. Polyakov, JETP Lett.20, 194 ~1974!.
@21# A. S. Schwarz, Nucl. Phys.B208, 141 ~1982!.
@22# A. S. Schwarz and Y. S. Tyupkin, Nucl. Phys.B209, 427

~1982!.
@23# G. S. Bali, K. Schilling, and C. Schlichter, Phys. Rev. D51,

5165 ~1995!.
@24# G. S. Bali, V. Bornyakov, M. Muller-Preussker, and K. Schi

ing, Phys. Rev. D54, 2843~1996!.
@25# A. I. Vainshtein and V. I. Zakharov, Phys. Rev. Lett.73, 1207

~1994!; ibid. 75, 358~E! ~1995!.
@26# R. Akhoury and V. I. Zakharov, ‘‘Renormalons and 1/Q2 cor-

rections,’’ hep-ph/9705318.
@27# G. S. Bali, Phys. Lett. B460, 170 ~1999!.
@28# F. V. Gubarev, M. I. Polikarpov, and V. I. Zakharov, ‘‘Physic

of the power corrections in QCD,’’ hep-ph/9908292.
@29# K. G. Chetyrkin, S. Narison, and V. I. Zakharov, Nucl. Phy

B550, 353 ~1999!.
2-7


