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Hamiltonian lattice quantum chromodynamics at finite density with Wilson fermions
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Quantum chromodynamid€CD) at sufficiently high density is expected to undergo a chiral phase transi-
tion. Understanding such a transition is of particular importance for neutron star or quark star physics. In
Lagrangian S(B) lattice gauge theory, the standard approach breaks down at large chemical ppiedtial
to the complex action problem. The Hamiltonian formulation of lattice QCD does not encounter such a
problem. In a previous work, we developed a Hamiltonian approach at finite chemical poteatidlobtained
reasonable results in the strong-coupling regime. In this paper, we extend the previous work to Wilson fermi-
ons. We study the chiral behavior and calculate the vacuum energy, chiral condensate, and quark number
density, as well as the masses of light hadrons. There is a first-order chiral phase transition at zero temperature.
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. INTRODUCTION cal chemical potentiajc=m{),=M{/3, with m{), and
M f\,o) being the dynamical mass of quark and nucleon mass at

Quantum Chromodynamic§QCD) is the fundamental w=0, respectively(We expect this is also true for Kogut-
theory of strong interactions. It is an 8) gauge theory of Sussk_ind fermiong.By solving the gap and Bet_h_e-SaIp_eter
quarks and gluons. The precise determination of the QC®quations, the authors of R¢l1] obtained the critical point
phase diagram on the temperatdr@nd chemical potential the same as ours; but they concluded that the chiral transition
w plane will provide valuable information for the experimen- iS of second order, different from ours. Our order of transi-
tal search for the quark-gluon plasné@GP. The ultimate  tion is consistent with other lattice simulation resyft2].
goal of machines such as the Relativistic Heavy lon Collider . Wilson's approach to lattice fermiorj$] has been exten-
(RHIC) at BNL and the Large Hadron CollidgtHC) at sively used in hadron spectrum calculations as well as in
CERN is to create the QGP phase, and replay the birth anQCD at finite temperature. It avoids the species doubling and

evolution of the Universe. Such a new state of matter malpreserves the flavor symmetry, but it explicitly breaks the

also exist in the core of neutron stars or quark stars at Iov9hlral symmetr{1,13-1§, one of the most important sym-

. ) . metries of the original theory. Nonperturbative fine tuning of
temperaturel and large chemical potentiad. Lattice gauge the bare fermion mass has to be done, in order to define the
theory (LGT), proposed by Wilsorj1], is a first principles '

! - b chiral limit [19,20.
nonperturbative method for QCD. Although it is the most |, this paper, we study Hamiltonian lattice QCD with Wil-

reliable technique for investigating phase transitions in QCDggny fermions at finite chemical potential. We derive the ef-
it is not free of problems: the complex action at finite chemi-fective Hamiltonian in the strong-coupling regime and diag-
cal potential and species doubling with naive fermions.  onalize it by Bogoliubov transformation. The vacuum
In the Lagrangian formulation of LGT at finite chemical energy, chiral condensate, and masses of pseudoscalar, vector
potential, the success is limited to &) gauge theory2,3],  meson, and nucleons are computed. In the nonperturbatively
while in the physical S(B) case, complex actiof#,5] spoils  defined chiral limit, we obtain reasonable results for the criti-
numerical simulations with importance sampling. Evencal point and some physical quantities in the lakgelimit,
though much efforf6—8] has recently been made for )  with N, the number of colors.
LGT, and some very interesting information on the phase To our knowledge, the only existing literature about the
diagram at largél and smallx. has been obtained, it is still same systemr& 0 andw+#0) is Ref.[21], where the author
extremely difficult to do simulations at large chemical poten-used a very different approach: the solution to the gap equa-
tial. QCD at largeu is of particular importance for neutron tion. In contrary to the conventional predictioh%9], the
star or quark star physics. Hamiltonian formulation of LGT author found that even at=0, there is a critical value for
does not encounter the notorious “complex action problem."the effective four fermion coupling, below which dynami-
Recently, we proposed a Hamiltonian approach to LGT withcal mass of quark vanishes. He introduced the concept of
naive fermions at finite chemical potentj@,10] and solve it  total chemical potential and found that the transition order
in the strong-coupling regime. We predicted that at zero temelepends on the input parameté&rsandr as well as the mo-
perature, there is a first-order chiral phase transition at critimentum. In contrast, we find that in the chiral limit, dynami-
cal mass of quark does not vanish for all valueKoff w
<puc (the chiral-symmetry broken phasend atu=uc,
*Corresponding author. Email address: stslxq@zsu.edu.cn our order of chiral phase transition does not depend on the
"Mailing address. input parameter.
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The rest of the paper is organized as follows. In Sec. llwhere

we derive the effective Hamiltonian at finite chemical poten-
tial. In Sec. Ill, we present the results for the vacuum energy,
chiral condensate, and hadron masses. In Sec. IV, we esti-
mate the critical chemical potential at zero temperature. The
results are summarized in Sec. V.

Il. EFFECTIVE HAMILTONIAN
IN THE STRONG-COUPLING REGIME

A. u=0 case

We begin with QCD Hamiltonianwith Wilson fermions
at chemical potentiak=0 on one-dimensional continuum
time and three-dimensional spatial discretized lattice,

+d

H= ME z/f(x>w(x>+—2 2 PP (X, K) g(x+Kk)

MH

3.2

x)U(x K) (x+ k)

N|,

I+

2 d 1
> E"(x)E"‘(x)——E Tr(Up+U; —2),
x j=1 ag p

(2.1

l\)|(Q
)

Hetf= Mg Pr(X) () —

8aN g ;tj {ar
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M=m+ —,
a

(2.2

K(r2+1)d
a

d=3 is the spatial dimension and, a, r, andg are, respec-
tively, the bare fermion mass, spatial lattice spacing, Wilson
parameter, and bare coupling constamfx, k) is the gauge

link variable at sitex and directiork. The Fermion fieldy on
each lattice site carries spiBirac), color and flavor indexes;
here and in the following, whenever there is a summation
sign “X,,” summations over these indexes are implied.
The conventiony_,= — 1 is used.Ej(x) is the color-
electric field at sitex and directionj, and summation
overa=1.2,...,8 isimplied. U, is the product of gauge
link variables around an elementary spatial plaquette,
and it represents the color magnetic interactions. In
the continuum limita—0, Eqg. (2.1) approaches the con-
tinuum QCD Hamiltonian in the temporal gauge
A4:O.

The effective Hamiltonian, obtained by strong-coupling
expansion up to the second order|[29]

2 P (X) (%)

2+ 1)t 0P, (0] (x+R) g, (x+K)

+(r2= 1) ] 00 yathe, O P (X+K) yaihr (x+K)

= (2= 1) () ysthr, () 9] (x+K) sy, (x+K)

+(r2+ 1) o] (0 va ¥ (0 ], (x+K) yaysips, (x+K)

+ L2+ (L= 28, )10, (0 vay; ¥, (0 7 (X+K) vy, 9, (x+K)

—[r2= (L= 284, )19 (0 ¥jibr, 00 g X+ K) ;i (x+K)

—[r2+ (1= 281y 1P () 740, () i (x+K) yao s (x+K)

—[r2= (1= 284y )¢, (0 b, 9 (x+R)japy (x+ )} 23

We use a representation gfmatrices described if33].
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This effective Hamiltonian is equivalent to that in REE9], 1

though different representations pfmatrices are used. Here Vi ¢ (X)= _,/,;r (X) (1= ¥a) ¥ 1 (X),
Ti= €, Y, Yiy The flavor indexes are explicitly written. 2\ -1 z

This effective Hamiltonian describes the nearest-neighbor

four fermion interactions, with

1 Vi1, 0= —=u1 001+ v4) v, (%).
= (2.4 2N -v

g°Cy (3.2
being the effective four fermion coupling constant. Here o
Cn=(N2—1)/(2N,) is the Casimir invariant of the SB) ] stands for the positive spatial direction, anchndv ' de-
gauge group. note, respectively, the expectation valueyaf and ¢y in

the vacuum statf ;) of Heys, i€,
B. u#0 case
In the continuum, the grand canonical partition functon — — 1 —

of QCD at finite temperatur® and chemical potentigk is v=(P(x) ‘W(X))eff:m((}efdg Y)Y ()| Qes),

Z=Tre PH-#N) " B=(kgT) 1, (2.5

1
wherekg is the Boltzmann constant ar is the particle UT=<¢T(X)¢(X))eff=WQeff|E T O) Y| Qo).
number operator, s X (32

N=§ () p(x). (2.6)

HereN; is the total number of lattice sites ah the number

of flavors. It is shown in Appendix A that under the linear-
According to Eq.(2.5 and following the procedure in Sec. ization prescriptior{23], operators defined in E¢3.1) sat-

Il A, the role of the Hamiltonian at strong coupling is now isfy the canonical commutation relations for bosons and then
played by the effective HamiltoniatiZ;; in Eq. (2.7) can be expressed

in terms of these operators in the following way:

HE=Herr— uN. (2.7
In this Hamiltonian, there are three input parameteysn, HEti~Hlinear=ER+Hit Hy, 33
andu. Suppose we study the phase structure of the system in
the chiral limit. Such a limit can be reached by fine tuningwhere
the bare quark mass so that the pion becomes massless. In
such a case, there are only two free parametersrlafto u. Kd(1+r2 Kdr2
The vacuum energy is the expectation valuédef uN in E(O) NN Mv_—( (I+r )+M of+ r (UZJFU_Z)
its ground staté)), and also the expectation value ldf; 4aN,
in its ground statéQ.¢;), given by Kd _
(UZ 02+v20'+020') (34)
Eo=(Q[H—uN[Q)=(Qep|HEi{ Qerr). (2.8 - 4aN
IIl. PHYSICAL QUANTITIES AT p#0 AND T=0 and
A. Meson masses
Kd(1—r?)-
One way to compute the masses of mesons as well as the Hy=|{2M—-——v E 1'[f L6, O £,(X)

contributions of the mesons to the vacuum energy is to aNe
bosonize the effective Hamiltonian E(2.3). We introduce Kr2

) s — + R
the following operator$9,22,23: * Zan 122 [T17 1,00 Ly (x+K)

1 -
Tt,1,(X) = —= 11 (0 (1= 72) y5¥1,(X), 1,1, 0TI g (X K0]
2
K —

_ T T »
1 4achx,f1§,;z,k [T ¢ OOTI{ ¢ (x+K)
i211(X) 5 _v_‘/’fz( V(A ya) ysibr, () + 10, ()5 (X+K)],
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Kd(1—r?)—)\
Hy=|2M— — 5 xflE VI OV, (0
S W0V (xR
X X
4achx,fl,f2,k,j If1f22 2 Hital
Vit 1,00V (xHK)]

K —
- U
4aNc x,f ’Efz’k’j

1

[Vir,,00V]e e (x+K)

+Vit,1,00Vjt,1, (X K) (1= 28, )).- (3.5

vl vy, v;(,j, and Vg, are the expectation values of four

fermion operators,

1

v,= m(ﬂefflx'fgzyk P () Py (X) iy (x+K)

X e (X+K) | Qesp),

1

o~
Y27 20NN,

<0efflxvf§2]k U 00 P, (09 (x+K)

X i, (x+K)| Qese),

— 1
_ 2 _ .
Uerj_ szst<Qeff|X,f2f . [r +(l 25lk|vJ)]

1,12,K,]

X4y (X) 0y () g (x+K) 0y (X+ )| Qe

1
R 2_(1— .
UZUj ZdeN5<Qe”|x,f1,zfz, | [r (1 26|k|,J)]

Xt ()0, () ] (x+K) oy e, (X +K) [ Q).
(3.6

After a Fourier transformation,

Hflf2<x>=§ el 1,(p), (3.7

Hp in Eqg. (3.5 becomes
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Hp= -] > ﬁ;rlfz(p)ﬁfzfl(p)
p.f1.fo
E E [} ofs (p)II ,f,(P)

2aNc fifo

+ﬁ(p)f1f2ﬁ12fl(p)]j§=:l cosp;a

K — ~
—Zachpg [TTf ¢ (I (=)
+10; ¢ (—=p)IT; 4 (p)] 2 cospja. (3.8
=1
The Bogoliubov transformatiof20],
ﬁ(p)—>ﬁ(p)coshup+ﬁ*(—p)sinhup,
1" (p)—T1"(p)coshu,+TI(— p)sinhu,,
(3.9
diagonalizedHy; if
d
2
tanh ,=— —— cosp,a,
p Gl 21 p|
r2. 8
_ 12
G,=2 an, r2)+ NCU?=:1 cospa,
Gy 3.1
277 2aN’ (3.10
The resultingHy; is
Hn=Cy % (1~ tanif2u,) VAT ¢ (p)TT 1, (p)
G, 2 1
—7Nf2 [1-(1—tanif2u,)Y?]
2G,r?
G, E cosp|a) (3.11

Now ﬁ;rlfz(p) stands for the pseudo-scalar creation operator

in the momentum space. According to £§.11), the differ-

ence between the pseudo-scalar meson energy and vacuum

energy is
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=G;(1-tanif2u,)*?

1/2
v(1-r?)- (1—r2>2 cosp.a)

—I‘2)

K d 1/2
+——(1+r?)p Y, cosp.a) , (3.12
aNc =1

which gives the pseudo-scalar mass wiper0. The pseu-

doscalar mass square is

Kdr?—
aN,

Kd—

Kdre M +
an, "’ aN,’
(3.13

In order to define the chiral limit, one has to fine tulle

MZ=E M+

filp,-0=4

—Mc¢hiral SO that the pion becomes massless. From Eq.

(3.13, we get

Kdre—

iral—— 5 U.
chiral aNc

(3.19

In this limit, the pseudoscalar mass square behaved #s
M —M_pirar» Which is the PCAC relation.

TheH,, sector in Eq(3.5 can be considered in a similar
way. After a Fourier transformation,

v,-(x>=§ e”V;(p), (3.15
and a Bogoliubov transformation,
Vi(p)—V;(p)costw’ +V[(—p)sinhw{’,
Vi(p)—V(p)costw;(p)+V;(— p)sinhw,
(3.16

H, becomes a diagonalized one,

HV:Glijf:f (1- tanl’?ZW(J))l/QJf t,(P)Vijt,,(P)
Jifrafa

1 N?E ( [1—(l—tanh?2WE)J'))1/2]
p.J

d
2G,
+ —rzz cosp|a) (3.17)
G, ~
if
d
. 2G
tanh ()= — G_lz( 21 cosp,a— 2 cosp;a
(3.18

Now VJf f, (p) stands for the vector creation operator in the

momentum space. The vector mass is

PHYSICAL REVIEW D 69, 114501 (2004

d—1_

—-2K v.

My=G;(1—tant2w{))2-M—Mc
aN,

(3.19

According to Eqgs.(3.3), (3.11), and (3.17), the vacuum
energy reads

Eq=(Q[H*|Q)
—g0- 22 N?Z ([1—(1—tanr?2up)1/2]

2G,r?
G,

d
E cosp|a)

——NZE( (1-tanif2w()))*?]

ZG 22 cosp|a) (3.20
Gl <
This also gives the thermodynamic potentigtand poten-
tial) at T=0.

As shown in Ref.[20], at =0 the results above are
consistent with those of Smit in Reff19] where the 1M,
expansion was used.

B. Results in the largeN, limit

As shown in Appendix B, in the chiral limit, the dominant
contributions to the vacuum energy for lariyg is

Kd(1+r?)
Eqo—N¢Ng Mchirap —| ————

-f—,u)vT

[(v*>2 v?]- d[v_2—<v*>2]}

4aN.
(3.21
As shown Appendix C, under the mean-field approxima-
tion, i.e., by Wick contracting a pair of fermion fields in the

four fermion terms in Eq(2.3), one can obtain a bilinear
Hamiltonian in the largeN. limit,

4aN

Heff~HMFA:A§ J(x)¢<x)+8§ PO w(x) +

(3.22
where
Kd )
A= Ivlchlral 2aN (1_r )U,
_Kd(1+r?) [ o L
B a 2N, ’

d [(1+r2)0 12— (1-r2)v2]NeN;.

C="Zan;
(3.23
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The coefficientA plays the role of dynamical mass of quark. Here we denoteC. — =f°> — Using Egs.(3.21) and

; . n,,n, = o
According to Egs(2.8) and (3.22, the vacuum energy in (3.27, in the IargepNp Iin:ipt nWe obtain the normalized
presence of the chemical potentigh is now Eg S €

=(QetfHura— uN|Qet), Which agrees with Eq(3.21), vacuum energy,

derived from the largé&\. limit of a Bosonized Hamiltonian Eq
Eq (33) €n= m

In the largeN. limit, the fermion fieldis can be expressed cflls
as — Kdrz

=Mchira(N+n—1)— a (n—n+1)
£(x) )
X)= : 3.2 Kdr? — — Kd
#x) (WT(X) (329 +T(n2+n2+1—2n)+ — (n+n-2nn-1)

The two-spinorsé and »' are the annihilation operator of —,u(n—FJr 1), (3.28

positive energy fermion and creation operator of negative o
energy fermion, respectively. Let us define the stajgn,)  where the quark numberand antiquark numben,
in the momentum space by

n=(n)= 2 Cy 7Ny,

§p|opip>:0’ fglop’ﬁp>:|lpip>’ pMlp P

&ol1p.p)=10,.0p),  E|1,,n,)=0, =( >=n ; i Cn)in,Np (3.29
pp

7p|Np,0p) =0, ,7;|np,op>:|np,1p>, are constrained in the range[d, 1] and determined by mini-

mizing the vacuum energy.
. For a generic nucleon operat@r, consisting of three
7pINp,Lp) =Np,0p),  7pINp, 1) =0. (329  quarks, the thermo mass is

_ — ey _
The numbersn, andn,, take the values 0 or 1 due to the Minuei=(Qetd OnucHerOnucl Lerr) ~Ea . (3.30

Pauli principle. By definition, the up and down components j,1e+ the mean-field approximation in the laigg limit, it
of the fermion field are decoupled in such a statg,np). becomegsee Appendix D
For the vacuum state ¢i%;;, we make an ansatz

Mnue=3(A+B)—3u. (3.31)

Qerp= 2 fa i INp.Np)- (3.26 IV. PHASE STRUCTURE AT T=0 AND i#0
np,np,p

We now consider in the larg@t, limit, the critical behav-
In the leadingN,; limit, the dominant contributions to the i0r of the system aT=0 andu+ 0. The ground state of the
chiral condensate and quark number density are system corresponds to the lowest value of the vacuum en-
ergy. At some given inputs of Wilson parameteand chemi-

cal potentialw, we can find the value af andn when €

<_l/,>: Q) ¢(0)]2) 0 Eqg. (3.28 is minimized. The result is
Nst
1 n=0(u—-uc),
= > Co i (npNolugng ) _
NN o 5 p P PP e n=0. 4.1)
=2N¢(n+n—1), Here® (u— uc) is the step function: itis 0 for<uc and 1

for u>uc, whereuc is the critical chemical potential,

QIZ W 0pml)y

Kd
= — — [ 2
Ng NN, 1— N, 1 Mc= (1+2r°). (4.2
1 _ _ — . . .
_ _ + _ Substituting Eq.(4.1) into Eqg. (3.27), we obtain the chiral
2NcN¢Ng an;p’p Coy Mo Mpl ¢14Anp np) — 1 condensate and quark number density,
=n—n. (3.27 () =2N O (n—pc) 1],
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APPENDIX A: BOSONIZATION AND LINEARIZATION
where
In Sec. lll, to bosonize the Hamiltonian E¢R.3), we
. t + .
M(Noﬂc|:3m&0y)n (4.5  introduce the operatorH, I1', V, andV', defined by Eq.

(3.1). In Eq. (2.3, there are terms having direct correspon-
dence to these operators. In addition, there are also terms
irrelevant to these operators.

In order that the operators in E(B.1) represent the ap-

is the nucleon mass at=0, and

) Kd(1+r?) propriate mesons, they must satisfy the commutation rela-
mdyn:—a (4.8 tions for boson operators. However, a direct calculation
shows

is the dynamical mass of quark at=0. From Eq.(4.4), one 1 _ .

sees that the nucleon thermo mass vanishgs=amM ) /3 [Hfl,fz(x).ﬂ;rz,fl(x)]= 2——[¢fl(X) e, () + e, (X) P (X) ],
=m{),, before the chiral phase transition takes place. This is v

not surprising because Wilson fermions break explicitly the;,, +

chiral symmetry. The value ofic should coincide with e[V”l*fZ(X)'V"fz’fl(X)]

M{®)./3 whenr is very small, i.e., as in the case of naive or

. d 1 — 1
Kogut-Susskind fermionf9]. = 8 =L b1, () 1, (0 + 1,0 1,00 ] = =L Y (%)
20 1 1 2 2 4v 1
V. DISCUSSIONS X (=), 00+ 8 0y v= 1) (0],
In the preceding sections, we have investigated (A1)

(d+1)-dimensional Hamiltonian lattice QCD at finite den- . . . . .
sity with Wilson fermions in the strong-coupling regime. We which are not consistent with the_ commutation relations be-
compute the vacuum energy, meson and nucleon masses, C[,y_y_e_en th_e ar_1n|h|Iat|on and crgatlon operators for bosons. A
ral condensate, and quark number density. At finite chemicatimilar situation also appears in quantum theory of magneti-
potential, there is an interplay between the bare fermiorf@tion[28] and many-particle systenj29], where a linear-
mass in the chiral limit and the chiral condensate, which ha&ation prescription is used to simplify the theory. Using such
to be determined self-consistently. The critical behavior of2 Procedure, i.e., with the fermion bilinears on the right-hand
the system in the largdl, limit is considered: a first-order Side of the commutation relations replaced by the vacuum
chiral phase transition is found gi=puc; the nucleon expectation values(x)¢(x)—uv and for degenerate quarks,
thermo mass vanishes before the chiral transition takes placgg. (A1) becomes
which is due to the explicit breakdown of chiral symmetry
by Wilson fermions. QO bl

We have not yet specified the nature of the chiral- t < e”|§ Vet B
symmetric phase fou> uc. Is it a QGP phase or a color- [1I(x). 11 (X)]%U: N¢Nsg =1
superconducting phag@4,25? Up to now, there has been
no first-principles investigation of such a phase in(3U _
gauge theory. The answer to this question might be very (Qerd 2 Pih] Qetr)
important to our understanding of the formation of the neu‘[vj(x),vf(x)]~5j| <
tron star or quark star. N¢Ngv

We also know that the strong-coupling regime is far from
the continuum limit. One has to develop a new numerical T N~
method to study the continuum physics. The Monte Carlo <Qeff|; VOO =77 X )
Hamiltonian method developed recenit®6,27] might even-
tually be useful for such a purpose. We hope to discuss these
interesting issues in the future. =0y, (A2)

2NN
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which are the correct commutation relations for bosons. As 1

shown in Refs[20,23, the linearization prescription leads to
results consistent with Ref19], where systematic 0, ex-
pansion was used.

The four fermion terms in Eq(2.3), which have direct
correspondence to the boson operators, are

2 [9,00 750,00y, (xR ysy, (x+ k)

+ it 00 Y45, 00U (X+K) yaysipr (x+K)]

_ T T Iy
202, [, 00T, (x k)

+10 g, 0T g (x+K)],

2 [, (0 v, 009,06+ ) ys, (x+ )

=1 (0745, ()P (XTK) yaysibr (x+K)]

—20 2 [T, ¢ (0T, (x+)

+ 10,1, (OTL] g (x+K)],

2 L,00 70091, (R Yoy, (X +K)

+ 4t 00 Yj i, 009 (XHR) vy, (x+ R 1(L =28, ))

_ ) T i
2@}_ [V, 00V s (x+K)

+ij1f2(x)vjf2f1(x+R)](1_25|k|,j)v

P Lorf (0 va 7,00 U] (x+K) vy, 1, (X +K)

=1 00 y5 1,00 9 (x+K) g (x+K)]
= 2@1, [Vii,1,00Vii 1, (x+k)
(A3)

+Vjr, 1,0 Vg1, (x+K)].

For the biIinearEXJ(x) P(x) in Eq. (2.9), a direct calcu-
lation shows

1 _
5 2 PP, (0

1
= [4/f, () va(1= va) Ysibs,(X)

4N —-v

=7 () Va1~ v4) Vs vaths,(X)]

= = ——={ (0(L=7) ysihs,(X)
2\ —v
==y 1,(X). (A4)
Similarly, one can also show
L _
[z% YO (X)L (0 | =111 ¢ (%),
1 A ’ -
5 2 OB Vi1, () | = = Vi1, (0),
1 A ’ T - T
5; Y)Y ) Vipp 00 | = Vg5 ().
' (A5)

Equations (Ad4) and (A5) imply that the bilinear
2. (X) (x) can be bosonized as

2 PO)Y(X)~

X

v+ 201 ¢ (OTT (%)

t22 vj*fzfl(ijflfz(x)). (A6)

For the four fermion term Exﬁl(x)dlfz(x)afz(x
+K) e (x+K) in Eq. (2.3, we have

1 s ’ "o ' '
5; Uy (X ) () X+ K) s (X +K), T g, (%)

1— - A
S (X HK) gy (X +K), I g,(X)

2 (X)X’

1
S (X ) g (X7, g1, (X)

+2
X/

X iy (X" +R) gy (X +K)

=—20T1; 1 (X), (A7)

where on the right-hand side EGA4) and the linearization
prescription have been used. In addition, we also have

1 s ’ "o ' ) T
5 2 Py (X ) e () g (X + R gy (¢ + K0, T 4 (00

=201l (%),

1 — — ~ ~
> 2 P (X P (XT) iy (X" +K) iy (X7 + k),ijlfz(X)}

=20Vt 1,(%),

114501-8
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1 i ’ "N ) Iy T
5 2 U)X+ R (X +R), Vg (0
= 2v_vj*f2fl(x) : (A8)

Equations(A7) and (A8) also imply that the four fermion
term Syaht (X) e, (X) ¢, (X +K) ¢ (x+K) can be bosonized
as

20, 008, () (X R gy (x4 )
~§ vt AT (0TIt 1, (X)
(A9)

+ 4@ Vijzfl(X)ijlfz(X) :

In the linear prescription, the four fermion operators in
Eq. (2.3), which are irrelevant to the operators in E§.1),

PHYSICAL REVIEW D 69, 114501 (2004

} >

s XK T7.fp

v 2dN¢N “ﬂl,cl(x)‘ﬂfz,cl()(»eff

Xt o (xR P, e, (XKD e
+ (e, 00U, 0, (XKD er s, (XH RV ¢ (¥))er),

(B1)

where the color and flavor indexes for the fermion fields are
explicitly specified and summation over the repeated color
index is implied.(- - - )¢fs Stands for the expectation value
taken in the vacuum sta{€l.). Because

(10,01, 0, (X)eri=v 8¢ 1,*Nq,
<¢f2,cl(x)%2,cz(x+ R))effoc 5cl,c21
(‘ﬁ;rl,cl(x)¢f2,cl(X)>eff:UT5fl,f2°<Nc,

(16,008, ¢, (XHK))err 8¢, o, (B2)

are replaced by their vacuum expectation values. For ex-

ample,

T p(x)~vT,

20 91,009,009, (K)o, (x-+ )~ 2dNiNgw 3,

2 [+ (128 )10 () 05, (0) (X + K)

X, K, j

X oy (x+k)~2d NfNSv_ZUJ_,

j [r2=(1-268))

1f (o, 009 (x+K)

X, K,

X0 1,//fl(x+R)wszfNSu;(,j .
(A10)

Collecting the above results, we obtain E¢3.3), (3.4),
and(3.5).

APPENDIX B: VACUUM ENERGY
IN THE LARGE N, LIMIT

According to Eq.(3.6),

1

Y27 2dN(N .

> (W e, (O, 0, ())ers

k,fq1.fo
X <Zf2,cz(x+ R) (pfl,cz(x'l' R)>eff

+ (1, () Pt 0, (XKD e b (XKt 6, (et

the terms from Wick contraction of bilinear at different lat-
tice sites are subdominant for largk . Therefore we have

2

v, T)Zl

vy—v? vy (v (B3)
with v andv ' expectation value of fermion bilinears defined
in Eq. (3.2). Expectation values of other four fermion opera-
tors in EQ.(3.6) can be considered in a similar way,
Vag,*(Tr0))?=0, v}, =(Tro))?=0,  (B4)

in the largeN, limit.
In the chiral limit Eq.(3.14), G, defined in Eq.(3.10

scales as K/N,xK andG, /G, does not depend ad.. The
Nf2 terms in EQ.(3.20 are subdominant because they are
proportional toK, while other nonvanishing terms Eﬁ(?) in
Eq. (3.20, defined in Eq.3.4), are dominant because they

behave agKxKN, or vTK=KN,. Using this fact and sub-
stituting Eqs.(B3) and Eq.(B4) into Eq.(3.4), we obtain Eq.
(3.2 from Eg. (3.20, i.e., the vacuum energy in the large
N limit.

APPENDIX C: MEAN-FIELD APPROXIMATION
IN THE LARGE N LIMIT

The mean-field approximation is a popular technique
widely used in quantum field theory with four fermion inter-
actions(for example, to bilinearize the Nambu-Jona-Lasino
model[30,31]) and quantum theory of many-patrticle systems
[29].

In order to show how to derive E¢3.22 from Eq.(2.3),
let us look at the first and last of the four fermion terms in
Eqg. (2.3 as an example. Under the mean-field approxima-
tion, i.e., replacing a pair of fermion fields by their vacuum
expectation value, the first four fermion term in EQ.3
becomes

114501-9
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> lﬂ?l (X, ¢, (X) ¢I2|Cz(x+ K bt o, (x+K)

x,K,f1,fo
~X’k§1’f2<< U o, 0t e, D eritht, o, (XH R, o (X+K)

it o 01, e 00U o (XHR) It o, (X+K) et
1o OOt 008 ¢ (XHR) efith, e, (X+K)
1,0, 0T o (XHR(W] | o (01, e, (X+K))er)

—2dN¢Ng 1. (CY

PHYSICAL REVIEW D 69, 114501 (2004

Mnuei={ et Onucl( Hmpa— #N) Ol el Qe — EQ(- :
D1

Substituting the bilinear Hamiltonian E¢3.22), the fermion

field Eq. (3.24), and the particle number operator Eg.6)
into Eq.(D1), we have

M Nucl™ <Qeff|ONucl( A; Z(X) 'ﬂ(x)

+<B—m§ P ()P(x)+C | Oflyel Qer) —Eq

Again, the color and flavor indexes for the fermion fields are

explicitly specified and summation over the repeated color

index is implied. According to EqB2), for largeN., Wick

= <Qeff|ONucI( A; (ng_ 7]77T)

contractions of bilinear at different lattice sites give sub-

dominant contribution, therefore

2 W (0, 0 (0 o (XFR) iy o (x+K)

AT

~pt >

XK1, o

] )P, ()]~ 2dNgNg(vT)?

Sty i LW, xR g, (X +K)

=0T 2 [P .00 P1,600 + X+ K) i X+ K0

—2dN¢Ng(v1)?
=4dv > ¢ () (x)—2dNNg(v H2 (C2)

Under the mean-field approximation in the laigglimit,

+(B—m§ &'+ 77"+ C|Ofuel Qerd—Eq

= <Qeff|ONuc|( AEX: e+ (B- M)EX: §T§>

Xoltlucl|Qeff>a (DZ)

where we have used the fact that the terms wjthy andC
are canceled b¥q, .

Let us take the proton as an example. One can write the
operatorOy, .., explicitly as

1
Oluci=== 2 €ccpesbe, uiLEL w1 EL 42X
V18N, x

— &L ud0EL a1(X)], (D3)

the dominant contribution to the last four fermion term in Eq.

(2.3 is

2 U6, (0031, 0 (U, o (xHR) g, o, (x+)

x,Kk,f1,fo

~ >

PN (W, e, (001, ¢, (D)eritht, (X +K)
X i, e, XHR) TP o (00, 0], o (x+K)
X ot o, (XTK))esr) —2d NstUZaj

«Tr(o)=0. (C3)

Treating other four fermion terms in the same way, one ob-

tains EQ.(3.22), i.e., the bilinear Hamiltoniai \ g4 -

APPENDIX D: NUCLEON MASS

Under the mean-field approximation in the lafdglimit,
Eq. (3.30 becomes

wherec,,c,, andc; are the color indexesj andd stand,
respectively, for thel quark andd quark, and 1 and 2 are the
spin-up and -down indexes. Using the anticommutation rela-
tionship for fermions,
t /
fc,f,s(x)fcr'fr,sr(x )
t /
= 5c,c’ 5f,f’ 53,5’ 5x,x’ - gc”f”S’(X )fc,f,s(x)v
(D4)

one obtains

;§*<x>§<x>0Luc.lneff>=30Luc||0eff>. (D5)

Equation(3.31) is a consequence of Eqd2) and (D5).

At u=0, the nucleon mass equalsn§), [see Eq(4.5)],

which agrees with Ref$19,32.
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