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Hamiltonian lattice quantum chromodynamics at finite density with Wilson fermions
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Quantum chromodynamics~QCD! at sufficiently high density is expected to undergo a chiral phase transi-
tion. Understanding such a transition is of particular importance for neutron star or quark star physics. In
Lagrangian SU~3! lattice gauge theory, the standard approach breaks down at large chemical potentialm, due
to the complex action problem. The Hamiltonian formulation of lattice QCD does not encounter such a
problem. In a previous work, we developed a Hamiltonian approach at finite chemical potentialm and obtained
reasonable results in the strong-coupling regime. In this paper, we extend the previous work to Wilson fermi-
ons. We study the chiral behavior and calculate the vacuum energy, chiral condensate, and quark number
density, as well as the masses of light hadrons. There is a first-order chiral phase transition at zero temperature.
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I. INTRODUCTION

Quantum Chromodynamics~QCD! is the fundamenta
theory of strong interactions. It is an SU~3! gauge theory of
quarks and gluons. The precise determination of the Q
phase diagram on the temperatureT and chemical potentia
m plane will provide valuable information for the experime
tal search for the quark-gluon plasma~QGP!. The ultimate
goal of machines such as the Relativistic Heavy Ion Colli
~RHIC! at BNL and the Large Hadron Collider~LHC! at
CERN is to create the QGP phase, and replay the birth
evolution of the Universe. Such a new state of matter m
also exist in the core of neutron stars or quark stars at
temperatureT and large chemical potentialm. Lattice gauge
theory ~LGT!, proposed by Wilson@1#, is a first principles
nonperturbative method for QCD. Although it is the mo
reliable technique for investigating phase transitions in QC
it is not free of problems: the complex action at finite chem
cal potential and species doubling with naive fermions.

In the Lagrangian formulation of LGT at finite chemic
potential, the success is limited to SU~2! gauge theory@2,3#,
while in the physical SU~3! case, complex action@4,5# spoils
numerical simulations with importance sampling. Ev
though much effort@6–8# has recently been made for SU~3!
LGT, and some very interesting information on the pha
diagram at largeT and smallm has been obtained, it is sti
extremely difficult to do simulations at large chemical pote
tial. QCD at largem is of particular importance for neutro
star or quark star physics. Hamiltonian formulation of LG
does not encounter the notorious ‘‘complex action problem
Recently, we proposed a Hamiltonian approach to LGT w
naive fermions at finite chemical potential@9,10# and solve it
in the strong-coupling regime. We predicted that at zero te
perature, there is a first-order chiral phase transition at c
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cal chemical potentialmC5mdyn
(0) 5MN

(0)/3, with mdyn
(0) and

MN
(0) being the dynamical mass of quark and nucleon mas

m50, respectively.~We expect this is also true for Kogut
Susskind fermions.! By solving the gap and Bethe-Salpet
equations, the authors of Ref.@11# obtained the critical point
the same as ours; but they concluded that the chiral trans
is of second order, different from ours. Our order of tran
tion is consistent with other lattice simulation results@12#.

Wilson’s approach to lattice fermions@1# has been exten
sively used in hadron spectrum calculations as well as
QCD at finite temperature. It avoids the species doubling
preserves the flavor symmetry, but it explicitly breaks t
chiral symmetry@1,13–18#, one of the most important sym
metries of the original theory. Nonperturbative fine tuning
the bare fermion mass has to be done, in order to define
chiral limit @19,20#.

In this paper, we study Hamiltonian lattice QCD with Wi
son fermions at finite chemical potential. We derive the
fective Hamiltonian in the strong-coupling regime and dia
onalize it by Bogoliubov transformation. The vacuu
energy, chiral condensate, and masses of pseudoscalar, v
meson, and nucleons are computed. In the nonperturbati
defined chiral limit, we obtain reasonable results for the cr
cal point and some physical quantities in the largeNc limit,
with Nc the number of colors.

To our knowledge, the only existing literature about t
same system (r 5” 0 andm5” 0) is Ref.@21#, where the author
used a very different approach: the solution to the gap eq
tion. In contrary to the conventional predictions@19#, the
author found that even atm50, there is a critical value for
the effective four fermion couplingK, below which dynami-
cal mass of quark vanishes. He introduced the concep
total chemical potential and found that the transition ord
depends on the input parametersK and r as well as the mo-
mentum. In contrast, we find that in the chiral limit, dynam
cal mass of quark does not vanish for all values ofK if m
,mC ~the chiral-symmetry broken phase!; and atm5mC ,
our order of chiral phase transition does not depend on
input parameter.
©2004 The American Physical Society01-1
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The rest of the paper is organized as follows. In Sec.
we derive the effective Hamiltonian at finite chemical pote
tial. In Sec. III, we present the results for the vacuum ene
chiral condensate, and hadron masses. In Sec. IV, we
mate the critical chemical potential at zero temperature.
results are summarized in Sec. V.

II. EFFECTIVE HAMILTONIAN
IN THE STRONG-COUPLING REGIME

A. µÄ0 case

We begin with QCD Hamiltonian1 with Wilson fermions
at chemical potentialm50 on one-dimensional continuum
time and three-dimensional spatial discretized lattice,

H5M(
x

c̄~x!c~x!1
1

2a (
x

(
k561

6d

c̄~x!gkU~x,k!c~x1 k̂!

2
r

2a (
x

(
k561

6d

c̄~x!U~x,k!c~x1 k̂!

1
g2

2a
(

x
(
j 51

d

Ej
a~x!Ej

a~x!2
1

ag2
(

p
Tr~Up1Up

122!,

~2.1!
11450
I,
-
y,
ti-
e

where

M5m1
rd

a
, ~2.2!

d53 is the spatial dimension andm, a, r, andg are, respec-
tively, the bare fermion mass, spatial lattice spacing, Wils
parameter, and bare coupling constant.U(x,k) is the gauge

link variable at sitex and directionk̂. The Fermion fieldc on
each lattice site carries spin~Dirac!, color and flavor indexes
here and in the following, whenever there is a summat
sign ‘‘(x , ’’ summations over these indexes are implie
The conventiong2k52gk is used. Ej

a(x) is the color-
electric field at sitex and direction j, and summation
over a51,2, . . . ,8 isimplied. Up is the product of gauge
link variables around an elementary spatial plaque
and it represents the color magnetic interactions.
the continuum limita→0, Eq. ~2.1! approaches the con
tinuum QCD Hamiltonian in the temporal gaug
A450.

The effective Hamiltonian, obtained by strong-couplin
expansion up to the second order, is@20#
He f f5M(
x

c̄ f~x!c f~x!2
K~r 211!d

a (
x

c f
†~x!c f~x!

1
K

8aNc
(

x
(

k56 j
$~r 211!c f 1

† ~x!c f 2
~x!c f 2

† ~x1 k̂!c f 1
~x1 k̂!

1~r 221!c f 1

† ~x!g4c f 2
~x!c f 2

† ~x1 k̂!g4c f 1
~x1 k̂!

2~r 221!c f 1

† ~x!g5c f 2
~x!c f 2

† ~x1 k̂!g5c f 1
~x1 k̂!

1~r 211!c f 1

† ~x!g4g5c f 2
~x!c f 2

† ~x1 k̂!g4g5c f 1
~x1 k̂!

1@r 21~122d uku, j !#c f 1

† ~x!g4g jc f 2
~x!c f 2

† ~x1 k̂!g4g jc f 1
~x1 k̂!

2@r 22~122d uku, j !#c f 1

† ~x!g jc f 2
~x!c f 2

† ~x1 k̂!g jc f 1
~x1 k̂!

2@r 21~122d uku, j !#c f 1

† ~x!g4s jc f 2
~x!c f 2

† ~x1 k̂!g4s jc f 1
~x1 k̂!

2@r 22~122d uku, j !#c f 1

† ~x!s jc f 2
~x!c f 2

† ~x1 k̂!s jc f 1
~x1 k̂!%. ~2.3!

1We use a representation ofg matrices described in@33#.
1-2



e
.
bo

re

on

.
w

m
ng
I

t
t

r-

hen
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This effective Hamiltonian is equivalent to that in Ref.@19#,
though different representations ofg matrices are used. Her
s j5e j j 1 j 2

g j 1
g j 2

. The flavor indexes are explicitly written
This effective Hamiltonian describes the nearest-neigh
four fermion interactions, with

K5
1

g2CN

~2.4!

being the effective four fermion coupling constant. He
CN5(Nc

221)/(2Nc) is the Casimir invariant of the SU(Nc)
gauge group.

B. µÅ0 case

In the continuum, the grand canonical partition functi
of QCD at finite temperatureT and chemical potentialm is

Z5Tr e2b(H2mN), b5~kBT!21, ~2.5!

where kB is the Boltzmann constant andN is the particle
number operator,

N5(
x

c†~x!c~x!. ~2.6!

According to Eq.~2.5! and following the procedure in Sec
II A, the role of the Hamiltonian at strong coupling is no
played by

He f f
m 5He f f2mN. ~2.7!

In this Hamiltonian, there are three input parameters:r, m,
andm. Suppose we study the phase structure of the syste
the chiral limit. Such a limit can be reached by fine tuni
the bare quark massm so that the pion becomes massless.
such a case, there are only two free parameters left:r andm.

The vacuum energy is the expectation value ofH2mN in
its ground stateuV&, and also the expectation value ofHe f f

m

in its ground stateuVe f f&, given by

EV5^VuH2mNuV&5^Ve f fuHe f f
m uVe f f&. ~2.8!

III. PHYSICAL QUANTITIES AT µÅ0 AND TÄ0

A. Meson masses

One way to compute the masses of mesons as well as
contributions of the mesons to the vacuum energy is
bosonize the effective Hamiltonian Eq.~2.3!. We introduce
the following operators@9,22,23#:

P f 1f 2
~x!5

1

2A2 v̄
c f 1

† ~x!~12g4!g5c f 2
~x!,

P f 2 f 1
† ~x!5

1

2A2 v̄
c f 2

† ~x!~11g4!g5c f 1
~x!,
11450
r

in

n

he
o

Vj f 1f 2
~x!5

1

2A2 v̄
c f 1

† ~x!~12g4!g jc f 2
~x!,

Vj f 2f 1

† ~x!5
1

2A2 v̄
c f 2

† ~x!~11g4!g jc f 1
~x!.

~3.1!

j stands for the positive spatial direction, andv̄ andv† de-
note, respectively, the expectation value ofc̄c and c†c in
the vacuum stateuVe f f& of He f f , i.e.,

v̄5^c̄~x!c~x!&e f f5
1

NfNs
^Ve f fu(

x
c̄~x!c~x!uVe f f&,

v†5^c†~x!c~x!&e f f5
1

NfNs
Ve f fu(

x
c†~x!c~x!uVe f f&.

~3.2!

HereNs is the total number of lattice sites andNf the number
of flavors. It is shown in Appendix A that under the linea
ization prescription@23#, operators defined in Eq.~3.1! sat-
isfy the canonical commutation relations for bosons and t
the effective HamiltonianHe f f

m in Eq. ~2.7! can be expressed
in terms of these operators in the following way:

He f f
m ;HLinear

m 5EV
(0)1HP1HV , ~3.3!

where

EV
(0)5NfNsFM v̄2S Kd~11r 2!

a
1m D v†1

Kdr2

4aNc
~v2

†1 v̄2!

2
Kd

4aNc
~ v̄22v2

†1v2s j

† 1 v̄2s j
!G , ~3.4!

and

HP5S 2M2
Kd~12r 2!

aNc
v̄ D (

x, f 1 , f 2

P f 2f 1

† ~x!P f 1f 2
~x!

1
Kr 2

4aNc
v̄ (

x, f 1 , f 2 ,k
@P f 1f 2

† ~x!P f 2f 1
~x1 k̂!

1P f 1f 2
~x!P f 2f 1

† ~x1 k̂!#

2
K

4aNc
v̄ (

x, f 1 , f 2 ,k
@P f 1f 2

† ~x!P f 2f 1

† ~x1 k̂!

1P f 1f 2
~x!P f 2f 1

~x1 k̂!#,
1-3
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HV5S 2M2
Kd~12r 2!

aNc
v̄ D (

x, f 1 , f 2 , j
Vj f 2f 1

† ~x!Vj f 1f 2
~x!

1
Kr 2

4aNc
v̄ (

x, f 1 , f 2 ,k, j
@Vj f 1f 2

† ~x!Vj f 2f 1
~x1 k̂!

1Vj f 1f 2
~x!Vj f 2f 1

† ~x1 k̂!#

2
K

4aNc
v̄ (

x, f 1 , f 2 ,k, j
@Vj f 1f 2

† ~x!Vj f 2f 1

† ~x1 k̂!

1Vj f 1f 2
~x!Vj f 2f 1

~x1 k̂!#~122d uku, j !. ~3.5!

v2
† , v̄2 , v2s j

† , and v̄2s j
are the expectation values of fou

fermion operators,

v̄25
1

2dNfNs
^Ve f fu (

x, f 1 , f 2 ,k
c̄ f 1

~x!c f 2
~x!c̄ f 2

~x1 k̂!

3c f 1
~x1 k̂!uVe f f&,

v2
†5

1

2dNfNs
^Ve f fu (

x, f 1 , f 2 ,k
c f 1

† ~x!c f 2
~x!c f 2

† ~x1 k̂!

3c f 1
~x1 k̂!uVe f f&,

v̄2s j
5

1

2dNfNs
^Ve f fu (

x, f 1 , f 2 ,k, j
@r 21~122d uku, j !#

3c̄ f 1
~x!s jc f 2

~x!c̄ f 2
~x1 k̂!s jc f 1

~x1 k̂!uVe f f&,

v2s j

† 5
1

2dNfNs
^Ve f fu (

x, f 1 , f 2 ,k, j
@r 22~122d uku, j !#

3c f 1

† ~x!s jc f 2
~x!c f 2

† ~x1 k̂!s jc f 1
~x1 k̂!uVe f f&.

~3.6!

After a Fourier transformation,

P f 1f 2
~x!5(

p
eipxP̃ f 1f 2

~p!, ~3.7!

HP in Eq. ~3.5! becomes
11450
HP5S 2M2
Kd

aNc
~12r 2! D (

p, f 1 , f 2

P̃ f 1f 2

† ~p!P̃ f 2f 1
~p!

1
Kr 2

2aNc
v̄(

f 1f 2
(

p
@P̃ f 1f 2

† ~p!P̃ f 2f 1
~p!

1P̃~p! f 1f 2
P̃ f 2f 1

† ~p!#(
j 51

d

cospja

2
K

2aNc
v̄ (

p, f 1 , f 2

@P̃ f 1f 2

† ~p!P̃ f 2f 1

† ~2p!

1P̃ f 1f 2
~2p!P̃ f 2f 1

~p!#(
j 51

d

cospja. ~3.8!

The Bogoliubov transformation@20#,

P̃~p!→P̃~p!coshup1P̃†~2p!sinhup ,

P̃†~p!→P̃†~p!coshup1P̃~2p!sinhup ,
~3.9!

diagonalizesHP if

tanh 2up52
2G2

G1
(
l 51

d

cospla,

G152M2
Kd

aNc
v̄~12r 2!1

Kr 2

aNc
v̄(

l 51

d

cospla,

G252
K

2aNc
v̄. ~3.10!

The resultingHP is

HP5G1 (
p, f 1 , f 2

~12tanh22up!1/2P̃ f 1f 2

† ~p!P̃ f 2f 1
~p!

2
G1

2
Nf

2(
p

S @12~12tanh22up!1/2#

1
2G2r 2

G1
(
l 51

d

cosplaD . ~3.11!

Now P̃ f 1f 2

† (p) stands for the pseudo-scalar creation opera

in the momentum space. According to Eq.~3.11!, the differ-
ence between the pseudo-scalar meson energy and va
energy is
1-4
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EP5G1~12tanh22up!1/2

5S 2M2
Kd

aNc
v̄~12r 2!2

K

aNc
~12r 2!v̄(

l 51

d

cosplaD 1/2

3S 2M2
Kd

aNc
v̄~12r 2!

1
K

aNc
~11r 2!v̄(

l 51

d

cosplaD 1/2

, ~3.12!

which gives the pseudo-scalar mass whenpj50. The pseu-
doscalar mass square is

MP
2 5EP

2 upj 5054S M1
Kdr2

aNc
v̄ D S M1

Kdr2

aNc
v̄2

Kd

aNc
v̄ D .

~3.13!

In order to define the chiral limit, one has to fine tuneM
→Mchiral so that the pion becomes massless. From
~3.13!, we get

Mchiral52
Kdr2

aNc
v̄. ~3.14!

In this limit, the pseudoscalar mass square behaves asMP
2

}M2Mchiral , which is the PCAC relation.
The HV sector in Eq.~3.5! can be considered in a simila

way. After a Fourier transformation,

Vj~x!5(
p

eipxṼj~p!, ~3.15!

and a Bogoliubov transformation,

Ṽj~p!→Ṽj~p!coshwp
( j )1Ṽj

†~2p!sinhwp
( j ) ,

Ṽj
†~p!→Ṽj

†~p!coshwj~p!1Ṽj~2p!sinhwp
( j ) ,

~3.16!

HV becomes a diagonalized one,

HV5G1 (
p, j , f 1 , f 2

~12tanh22wp
( j )!1/2Ṽj f 1f 2

† ~p!Vj f 2f 1
~p!

2
G1

2
Nf

2(
p, j

S @12~12tanh22wp
( j )!1/2#

1
2G2

G1
r 2(

l 51

d

cosplaD , ~3.17!

if

tanh 2wp
( j )52

2G2

G1
S (

l 51

d

cospla22 cospjaD .

~3.18!

Now Ṽj f 1f 2

† (p) stands for the vector creation operator in t

momentum space. The vector mass is
11450
q.

MV5G1~12tanh22w0
( j )!1/2→M→Mc22KAd21

aNc

v̄.

~3.19!

According to Eqs.~3.3!, ~3.11!, and ~3.17!, the vacuum
energy reads

EV5^VuHmuV&

5EV
(0)2

G1

2
Nf

2(
p

S @12~12tanh22up!1/2#

1
2G2r 2

G1
(
l 51

d

cosplaD
2

G1

2
Nf

2(
p, j

S @12~12tanh22wp
( j )!1/2#

1
2G2

G1
r 2(

l 51

d

cosplaD . ~3.20!

This also gives the thermodynamic potential~grand poten-
tial! at T50.

As shown in Ref.@20#, at m50 the results above ar
consistent with those of Smit in Ref.@19# where the 1/Nc
expansion was used.

B. Results in the largeNc limit

As shown in Appendix B, in the chiral limit, the dominan
contributions to the vacuum energy for largeNc is

EV→NfNsFMchiralv̄2S Kd~11r 2!

a
1m D v†

1
Kdr2

4aNc
@~v†!21 v̄2#2

Kd

4aNc
@ v̄22~v†!2#G .

~3.21!

As shown Appendix C, under the mean-field approxim
tion, i.e., by Wick contracting a pair of fermion fields in th
four fermion terms in Eq.~2.3!, one can obtain a bilinea
Hamiltonian in the largeNc limit,

He f f;HMFA5A(
x

c̄~x!c~x!1B(
x

c†~x!c~x!1C,

~3.22!

where

A5Mchiral2
Kd

2aNc
~12r 2!v̄,

B5
Kd~11r 2!

a S v†

2Nc
21D ,

C52
Kd

4aNc
@~11r 2!v†22~12r 2!v̄2#NsNf .

~3.23!
1-5
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The coefficientA plays the role of dynamical mass of quar
According to Eqs.~2.8! and ~3.22!, the vacuum energy in
presence of the chemical potentialm is now EV

5^Ve f fuHMFA2mNuVe f f&, which agrees with Eq.~3.21!,
derived from the largeNc limit of a Bosonized Hamiltonian
Eq. ~3.3!.

In the largeNc limit, the fermion fieldc can be expresse
as

c~x!5S j~x!

h†~x!
D . ~3.24!

The two-spinorsj and h† are the annihilation operator o
positive energy fermion and creation operator of nega
energy fermion, respectively. Let us define the stateunp ,n̄p&
in the momentum space by

jpu0p ,n̄p&50, jp
†u0p ,n̄p&5u1p ,n̄p&,

jpu1p ,n̄p&5u0p ,n̄p&, jp
†u1p ,n̄p&50,

hpunp,0p&50, hp
†unp,0p&5unp,1p&,

hpunp,1p&5unp,0p&, hp
†unp,1p&50. ~3.25!

The numbersnp and n̄p take the values 0 or 1 due to th
Pauli principle. By definition, the up and down compone
of the fermion field are decoupled in such a stateunp ,n̄p&.
For the vacuum state ofHe f f

m , we make an ansatz

uVe f f&5 (
np ,n̄p ,p

f np ,n̄p
unp ,n̄p&. ~3.26!

In the leadingNc limit, the dominant contributions to the
chiral condensate and quark number density are

^c̄c&5
^VuSxc̄~x!c~x!uV&

NfNs
→ v̄

5
1

NfNs
(

np ,n̄p ,p

Cnp ,n̄p
^np ,n̄puc̄cunp ,n̄p&

52Nc~n1n̄21!,

nq5
^Vu( xc

†~x!c~x!uV&

2NcNfNs
21→ v†

2Nc
21

5
1

2NcNfNs
(

np ,n̄p ,p

Cnp ,n̄p
^np ,n̄puc†cunp ,n̄p&21

5n2n̄. ~3.27!
11450
e

s

Here we denoteCnp ,n̄p
5 f np ,n̄p

2 . Using Eqs. ~3.21! and

~3.27!, in the large Nc limit we obtain the normalized
vacuum energy,

eV5
EV

2NcNfNs

5Mchiral~n1n̄21!2
Kdr2

a
~n2n̄11!

1
Kdr2

a
~n21n̄21122n̄!1

Kd

a
~n1n̄22nn̄21!

2m~n2n̄11!, ~3.28!

where the quark numbern and antiquark numbern̄,

n5^n&5 (
np ,n̄p ,p

Cnp ,n̄p
np ,

n̄5^n̄&5 (
np ,n̄p ,p

Cnp ,n̄p
n̄p , ~3.29!

are constrained in the range of@0,1# and determined by mini-
mizing the vacuum energy.

For a generic nucleon operatorONucl consisting of three
quarks, the thermo mass is

MNucl5^Ve f fuONuclHe f f
m ONucl

† uVe f f&2EV . ~3.30!

Under the mean-field approximation in the largeNc limit, it
becomes~see Appendix D!

MNucl53~A1B!23m. ~3.31!

IV. PHASE STRUCTURE AT TÄ0 AND µÅ0

We now consider in the largerNc limit, the critical behav-
ior of the system atT50 andmÞ0. The ground state of the
system corresponds to the lowest value of the vacuum
ergy. At some given inputs of Wilson parameterr and chemi-
cal potentialm, we can find the value ofn and n̄ when eV

Eq. ~3.28! is minimized. The result is

n5Q~m2mC!,

n̄50. ~4.1!

HereQ(m2mC) is the step function: it is 0 form,mC and 1
for m.mC , wheremC is the critical chemical potential,

mC5
Kd

a
~112r 2!. ~4.2!

Substituting Eq.~4.1! into Eq. ~3.27!, we obtain the chiral
condensate and quark number density,

^c̄c&52Nc@Q~m2mC!21#,
1-6
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nq5Q~m2mC!. ~4.3!

There is clearly is a first-order chiral phase transition. F
m,mC , the system is in the confinement phase with chir
symmetry breaking. Form.mC , chiral symmetry is re-
stored.

According to Eqs.~3.23!, ~3.31!, and ~4.1!, the thermo
mass of the nucleon is

MNucl5MNucl
(0) 23m, ~4.4!

where

MNucl
(0) 53mdyn

(0) ~4.5!

is the nucleon mass atm50, and

mdyn
(0) 5

Kd~11r 2!

a
~4.6!

is the dynamical mass of quark atm50. From Eq.~4.4!, one
sees that the nucleon thermo mass vanishes atm5MNucl

(0) /3
5mdyn

(0) , before the chiral phase transition takes place. Thi
not surprising because Wilson fermions break explicitly
chiral symmetry. The value ofmC should coincide with
MNucl

(0) /3 whenr is very small, i.e., as in the case of naive
Kogut-Susskind fermions@9#.

V. DISCUSSIONS

In the preceding sections, we have investiga
(d11)-dimensional Hamiltonian lattice QCD at finite de
sity with Wilson fermions in the strong-coupling regime. W
compute the vacuum energy, meson and nucleon masses
ral condensate, and quark number density. At finite chem
potential, there is an interplay between the bare ferm
mass in the chiral limit and the chiral condensate, which
to be determined self-consistently. The critical behavior
the system in the largeNc limit is considered: a first-orde
chiral phase transition is found atm5mC ; the nucleon
thermo mass vanishes before the chiral transition takes p
which is due to the explicit breakdown of chiral symmet
by Wilson fermions.

We have not yet specified the nature of the chir
symmetric phase form.mC . Is it a QGP phase or a color
superconducting phase@24,25#? Up to now, there has bee
no first-principles investigation of such a phase in SU~3!
gauge theory. The answer to this question might be v
important to our understanding of the formation of the ne
tron star or quark star.

We also know that the strong-coupling regime is far fro
the continuum limit. One has to develop a new numeri
method to study the continuum physics. The Monte Ca
Hamiltonian method developed recently@26,27# might even-
tually be useful for such a purpose. We hope to discuss th
interesting issues in the future.
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APPENDIX A: BOSONIZATION AND LINEARIZATION

In Sec. III, to bosonize the Hamiltonian Eq.~2.3!, we
introduce the operatorsP, P†, V, and V†, defined by Eq.
~3.1!. In Eq. ~2.3!, there are terms having direct correspo
dence to these operators. In addition, there are also te
irrelevant to these operators.

In order that the operators in Eq.~3.1! represent the ap
propriate mesons, they must satisfy the commutation r
tions for boson operators. However, a direct calculat
shows

@P f 1 , f 2
~x!,P f 2 , f 1

† ~x!#5
1

2v̄
@c̄ f 1

~x!c f 1
~x!1c̄ f 2

~x!c f 2
~x!#,

@Vj , f 1 , f 2
~x!,Vl , f 2 , f 1

† ~x!#

5d j l

1

2v̄
@c̄ f 1

~x!c f 1
~x!1c̄ f 2

~x!c f 2
~x!#2

1

4v̄
@c f 1

† ~x!

3~g jg l2g lg j !c f 1
~x!1c f 2

† ~x!~g jg l2g lg j !c f 2
~x!#,

~A1!

which are not consistent with the commutation relations
tween the annihilation and creation operators for bosons
similar situation also appears in quantum theory of magn
zation @28# and many-particle systems@29#, where a linear-
ization prescription is used to simplify the theory. Using su
a procedure, i.e., with the fermion bilinears on the right-ha
side of the commutation relations replaced by the vacu
expectation valuec̄(x)c(x)→ v̄ and for degenerate quarks
Eq. ~A1! becomes

@P~x!,P†~x!#'
1

v̄

^Ve f fu(
x

c̄cuVe f f&

NfNs
51,

@Vj~x!,Vl
†~x!#'d j l

^Ve f fu(
x

c̄cuVe f f&

NfNsv̄

2

^Ve f fu(
x

c†~x!~g jg l2g lg j !c~x!uVe f f&

2NfNsv̄

5d j l , ~A2!
1-7
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which are the correct commutation relations for bosons.
shown in Refs.@20,23#, the linearization prescription leads t
results consistent with Ref.@19#, where systematic 1/Nc ex-
pansion was used.

The four fermion terms in Eq.~2.3!, which have direct
correspondence to the boson operators, are

(
x,k

@c f 1

† ~x!g5c f 2
~x!c f 2

† ~x1 k̂!g5c f 1
~x1 k̂!

1c f 1

† ~x!g4g5c f 2
~x!c f 2

† ~x1 k̂!g4g5c f 1
~x1 k̂!#

522v̄(
x,k

@P f 1f 2

† ~x!P f 2f 1

† ~x1 k̂!

1P f 1f 2
~x!P f 2f 1

~x1 k̂!#,

(
x,k

@c f 1

† ~x!g5c f 2
~x!c f 2

† ~x1 k̂!g5c f 1
~x1 k̂!

2c f 1

† ~x!g4g5c f 2
~x!c f 2

† ~x1 k̂!g4g5c f 1
~x1 k̂!#

522v̄(
x,k

@P f 1f 2

† ~x!P f 2f 1
~x1 k̂!

1P f 1f 2
~x!P f 2f 1

† ~x1 k̂!#,

(
x,k, j

@c f 1

† ~x!g4g jc f 2
~x!c f 2

† ~x1 k̂!g4g jc f 1
~x1 k̂!

1c f 1

† ~x!g jc f 2
~x!c f 2

† ~x1 k̂!g jc f 1
~x1 k̂!#~122d uku, j !

522v̄ (
x,k, j

@Vj f 1f 2

† ~x!Vj f 2f 1

† ~x1 k̂!

1Vj f 1f 2
~x!Vj f 2f 1

~x1 k̂!#~122d uku, j !,

(
x,k, j

@c f 1

† ~x!g4g jc f 2
~x!c f 2

† ~x1 k̂!g4g jc f 1
~x1 k̂!

2c f 1

† ~x!g jc f 2
~x!c f 2

† ~x1 k̂!g jc f 1
~x1 k̂!#

52v̄ (
x,k, j

@Vj f 1f 2

† ~x!Vj f 2f 1
~x1 k̂!

1Vj f 1f 2
~x!Vj f 2f 1

† ~x1 k̂!#. ~A3!

For the bilinear(xc̄(x)c(x) in Eq. ~2.3!, a direct calcu-
lation shows

F1

2
(
x8

c̄~x8!c~x8!,P f 1f 2
~x!G

5
1

4A2 v̄
@c f 1

† ~x!g4~12g4!g5c f 2
~x!

2c f 1

† ~x!g4~12g4!g5g4c f 2
~x!#
11450
s
52

1

2A2 v̄
c f 1

† ~x!~12g4!g5c f 2
~x!

52P f 1f 2
~x!. ~A4!

Similarly, one can also show

F1

2 (
x8

c̄~x8!c~x8!,P f 2f 1

† ~x!G5P f 2f 1

† ~x!,

F1

2 (
x8

c̄~x8!c~x8!,Vj f 1f 2
~x!G52Vj f 1f 2

~x!,

F1

2 (
x8

c̄~x8!c~x8!,Vj f 2f 1

† ~x!G5Vj f 2f 1

† ~x!.

~A5!

Equations ~A4! and ~A5! imply that the bilinear
(xc̄(x)c(x) can be bosonized as

(
x

c̄~x!c~x!;(
x

S v̄12P f 2f 1

† ~x!P f 1f 2
~x!

12(
j

Vj f 2f 1

† ~x!Vj f 1f 2
~x! D . ~A6!

For the four fermion term (xc̄ f 1
(x)c f 2

(x)c̄ f 2
(x

1 k̂)c f 1
(x1 k̂) in Eq. ~2.3!, we have

F1

2 (
x8

c̄ f
18
~x8!c f

28
~x8!c̄ f

28
~x81 k̂!c f

18
~x81 k̂!,P f 1f 2

~x!G
5(

x8
c̄ f

18
~x8!c f

28
~x8!F1

2
c̄ f

28
~x81 k̂!c f

18
~x81 k̂!,P f 1f 2

~x!G
1(

x8
F1

2
c̄ f

18
~x8!c f

28
~x8!,P f 1f 2

~x!G
3c̄ f

28
~x81 k̂!c f

18
~x81 k̂!

.22v̄P f 1f 2
~x!, ~A7!

where on the right-hand side Eq.~A4! and the linearization
prescription have been used. In addition, we also have

F1

2 (
x8

c̄ f
18
~x8!c f

28
~x8!c̄ f

28
~x81 k̂!c f

18
~x81 k̂!,P f 2f 1

† ~x!G
.2v̄P f 2f 1

† ~x!,

F1

2 (
x8

c̄ f
18
~x8!c f

28
~x8!c̄ f

28
~x81 k̂!c f

18
~x81 k̂!,Vj f 1f 2

~x!G
.22v̄Vj f 1f 2

~x!,
1-8
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F1

2 (
x8

c̄ f
18
~x8!c f

28
~x8!c̄ f

28
~x81 k̂!c f

18
~x81 k̂!,Vj f 2f 1

† ~x!G
.2v̄Vj f 2f 1

† ~x!. ~A8!

Equations~A7! and ~A8! also imply that the four fermion
term (xc̄ f 1

(x)c f 2
(x)c̄ f 2

(x1 k̂)c f 1
(x1 k̂) can be bosonized

as

(
x

c̄ f 1
~x!c f 2

~x!c̄ f 2
~x1 k̂!c f 1

~x1 k̂!

;(
x

S v̄214v̄P f 2f 1

† ~x!P f 1f 2
~x!

14v̄(
j

Vj f 2f 1

† ~x!Vj f 1f 2
~x! D . ~A9!

In the linear prescription, the four fermion operators
Eq. ~2.3!, which are irrelevant to the operators in Eq.~3.1!,
are replaced by their vacuum expectation values. For
ample,

c†~x!c~x!;v†,

(
x,k

c f 1

† ~x!c f 2
~x!c f 2

† ~x1 k̂!c f 1
~x1 k̂!;2dNfNsv2

† ,

(
x,k, j

@r 21~122d uku, j !#c̄ f 1
~x!s jc f 2

~x!c̄ f 2
~x1 k̂!

3s jc f 1
~x1 k̂!;2dNfNsv̄2s j

,

(
x,k, j

@r 22~122d uku, j !#c f 1

† ~x!s jc f 2
~x!c f 2

† ~x1 k̂!

3s jc f 1
~x1 k̂!;2dNfNsv2s j

† .

~A10!

Collecting the above results, we obtain Eqs.~3.3!, ~3.4!,
and ~3.5!.

APPENDIX B: VACUUM ENERGY
IN THE LARGE Nc LIMIT

According to Eq.~3.6!,

v̄25
1

2dNfNs
(

x,k, f 1 , f 2

~^c̄ f 1 ,c1
~x!c f 2 ,c1

~x!&e f f

3^c̄ f 2 ,c2
~x1 k̂!c f 1 ,c2

~x1 k̂!&e f f

1^c f 2
~x!c̄ f 2 ,c2

~x1 k̂!&e f f^c f 1
~x1 k̂!c̄ f 1 ,c1

~x!&e f f!,
11450
x-

v2
†5

1

2dNfNs
(

x,k, f 1 , f 2

~^c f 1 ,c1

† ~x!c f 2 ,c1
~x!&e f f

3^c f 2 ,c2

† ~x1 k̂!c f 1 ,c2
~x1 k̂!&e f f

1^c f 2
~x!c f 2 ,c2

† ~x1 k̂!&e f f^c f 1
~x1 k̂!c f 1 ,c1

† ~x!&e f f!,

~B1!

where the color and flavor indexes for the fermion fields
explicitly specified and summation over the repeated co
index is implied.^•••&e f f stands for the expectation valu
taken in the vacuum stateuVe f f&. Because

^c̄ f 1 ,c1
~x!c f 2 ,c1

~x!&e f f5 v̄d f 1 , f 2
}Nc ,

^c f 2 ,c1
~x!c̄ f 2 ,c2

~x1 k̂!&e f f}dc1 ,c2
,

^c f 1 ,c1

† ~x!c f 2 ,c1
~x!&e f f5v†d f 1 , f 2

}Nc ,

^c f 2 ,c1
~x!c f 2 ,c2

† ~x1 k̂!&e f f}dc1 ,c2
, ~B2!

the terms from Wick contraction of bilinear at different la
tice sites are subdominant for largeNc . Therefore we have

v̄2→ v̄2, v2
†→~v†!2, ~B3!

with v̄ andv† expectation value of fermion bilinears define
in Eq. ~3.2!. Expectation values of other four fermion oper
tors in Eq.~3.6! can be considered in a similar way,

v̄2s j
}~Tr s j !

250, v2s j

† }~Tr s j !
250, ~B4!

in the largeNc limit.
In the chiral limit Eq. ~3.14!, G1 defined in Eq.~3.10!

scales asv̄K/Nc}K andG1 /G2 does not depend onNc . The
Nf

2 terms in Eq.~3.20! are subdominant because they a
proportional toK, while other nonvanishing terms ofEV

(0) in
Eq. ~3.20!, defined in Eq.~3.4!, are dominant because the
behave asv̄K}KNc or v†K}KNc . Using this fact and sub-
stituting Eqs.~B3! and Eq.~B4! into Eq.~3.4!, we obtain Eq.
~3.21! from Eq. ~3.20!, i.e., the vacuum energy in the larg
Nc limit.

APPENDIX C: MEAN-FIELD APPROXIMATION
IN THE LARGE Nc LIMIT

The mean-field approximation is a popular techniq
widely used in quantum field theory with four fermion inte
actions~for example, to bilinearize the Nambu-Jona-Lasi
model@30,31#! and quantum theory of many-particle system
@29#.

In order to show how to derive Eq.~3.22! from Eq. ~2.3!,
let us look at the first and last of the four fermion terms
Eq. ~2.3! as an example. Under the mean-field approxim
tion, i.e., replacing a pair of fermion fields by their vacuu
expectation value, the first four fermion term in Eq.~2.3!
becomes
1-9
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(
x,k, f 1 , f 2

c f 1 ,c1

† ~x!c f 2 ,c1
~x!c f 2 ,c2

† ~x1 k̂!c f 1 ,c2
~x1 k̂!

; (
x,k, f 1 , f 2

~^c f 1 ,c1

† ~x!c f 2 ,c1
~x!&e f fc f 2 ,c2

† ~x1k̂!cf1,c2
~x1 k̂!

1c f 1 ,c1

† ~x!c f 2 ,c1
~x!^c f 2 ,c2

† ~x1 k̂!c f 1 ,c2
~x1 k̂!&e f f

1c f 1 ,c1

† ~x!^c f 2 ,c1
~x!c f 2 ,c2

† ~x1 k̂!&e f fc f 1 ,c2
~x1 k̂!

1c f 2 ,c1
~x!c f 2 ,c2

† ~x1 k̂!^c f 1 ,c1

† ~x!c f 1 ,c2
~x1 k̂!&e f f!

22dNfNsv2
† . ~C1!

Again, the color and flavor indexes for the fermion fields a
explicitly specified and summation over the repeated co
index is implied. According to Eq.~B2!, for largeNc , Wick
contractions of bilinear at different lattice sites give su
dominant contribution, therefore

(
x,k, f 1 , f 2

c f 1 ,c1

† ~x!c f 2 ,c1
~x!c f 2 ,c2

† ~x1 k̂!c f 1 ,c2
~x1 k̂!

'v† (
x,k, f 1 , f 2

d f 1 , f 2
@c f 2 ,c

† ~x1 k̂!c f 1 ,c~x1 k̂!

1c f 1 ,c
† ~x!c f 2 ,c~x!#22dNfNs~v†!2

5v† (
x,k, f

@c f ,c
† ~x!c f ,c~x!1c f ,c

† ~x1 k̂!c f ,c~x1 k̂!#

22dNfNs~v†!2

54dv†(
x

c†~x!c~x!22dNfNs~v†!2. ~C2!

Under the mean-field approximation in the largeNc limit,
the dominant contribution to the last four fermion term in E
~2.3! is

(
x,k, f 1 , f 2

c f 1 ,c1

† ~x!s jc f 2 ,c1
~x!c f 2 ,c2

† ~x1 k̂!s jc f 1 ,c2
~x1 k̂!

; (
x,k, f 1 , f 2

~^c f 1 ,c1

† ~x!s jc f 2 ,c1
~x!&e f fc f 2 ,c2

† ~x1 k̂!

3s jc f 1 ,c2
~x1 k̂!1c f 1 ,c1

† ~x!s jc f 2 ,c1
~x!^c f 2 ,c2

† ~x1 k̂!

3s jc f 1 ,c2
~x1 k̂!&e f f!22dNfNsv2s j

†

}Tr~s j !50. ~C3!

Treating other four fermion terms in the same way, one
tains Eq.~3.22!, i.e., the bilinear HamiltonianHMFA .

APPENDIX D: NUCLEON MASS

Under the mean-field approximation in the largeNc limit,
Eq. ~3.30! becomes
11450
e
r

-

.

-

MNucl5^Ve f fuONucl~HMFA2mN!ONucl
† uVe f f&2EV .

~D1!

Substituting the bilinear Hamiltonian Eq.~3.22!, the fermion
field Eq. ~3.24!, and the particle number operator Eq.~2.6!
into Eq. ~D1!, we have

MNucl5^Ve f fuONuclS A(
x

c̄~x!c~x!

1~B2m!(
x

c†~x!c~x!1CDONucl
† uVe f f&2EV

5^Ve f fuONuclS A(
x

~j†j2hh†!

1~B2m!(
x

~j†j1hh†!1CDONucl
† uVe f f&2EV

5^Ve f fuONuclS A(
x

j†j1~B2m!(
x

j†j D
3ONucl

† uVe f f&, ~D2!

where we have used the fact that the terms withh†h andC
are canceled byEV .

Let us take the proton as an example. One can write
operatorONucl

† explicitly as

ONucl
† 5

1

A18Ns

(
x

ec1c2c3
jc1 ,u,1

† ~x!@jc2 ,u,1
† ~x!jc3 ,d,2

† ~x!

2jc2 ,u,2
† ~x!jc3 ,d,1

† ~x!#, ~D3!

wherec1 ,c2 , and c3 are the color indexes,u and d stand,
respectively, for theu quark andd quark, and 1 and 2 are th
spin-up and -down indexes. Using the anticommutation re
tionship for fermions,

jc, f ,s~x!jc8, f 8,s8
†

~x8!

5dc,c8d f , f 8ds,s8dx,x82jc8, f 8,s8
†

~x8!jc, f ,s~x!,

~D4!

one obtains

(
x

j†~x!j~x!ONucl
† uVe f f&53ONucl

† uVe f f&. ~D5!

Equation~3.31! is a consequence of Eqs.~D2! and ~D5!.
At m50, the nucleon mass equals 3mdyn

(0) @see Eq.~4.5!#,
which agrees with Refs.@19,32#.
1-10
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