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Bounds on new physics fromB\V1V2 decays
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We consider the possibility that physics beyond the standard model contributes to the decaysB→V1V2 ,
whereV1 and V2 are vector mesons. We show that a time-dependent angular analysis ofB→V1V2 decays
provides many tests for this new physics~NP!. Furthermore, although one cannot solve for the NP parameters,
we show that this angular analysis allows one to put bounds on these parameters. This can be useful in
estimating the scale of NP, and can tell us whether any NP found directly at future high-energy colliders can be
responsible for effects seen inB→V1V2 decays.
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I. INTRODUCTION

Within the standard model~SM!, a complex phase in the
Cabibbo-Kobayashi-Maskawa~CKM! quark mixing matrix
is responsible forCP violation @1#. By studyingCP-violating
processes in theB system, one can test this explanation.
any discrepancy with the SM predictions is found, this wou
be evidence for physics beyond the SM.

There are a great many tests for the presence of new p
ics ~NP! in B decays@2#. Should a signal for NP be found
there are basically two ways to proceed. One can exam
various models of physics beyond the SM to see wheth
particular model can account for the experimental resu
Alternatively, one can perform a model-independent analy
to learn about general properties of the NP responsible
the signal. Most theoretical work has concentrated on
first approach.

For example, within the SM, theCP-violating asymme-
tries in Bd

0(t)→J/CKs and Bd
0(t)→fKs both measure the

CP phaseb, to a good approximation@3#. However, although
the BaBar measurement of theCP asymmetry inBd

0(t)
→fKs agrees with that found inBd

0(t)→J/cKs ~within er-
rors!, the Belle measurement disagrees at the level of 3s
@4#. This suggests that physics beyond the SM—specific
new decay amplitudes inB→fK—may be present. In ligh
of this, many papers have been written to show how part
lar models of NP can account for this discrepancy@5#. On the
other hand, only two papers contain a model-independ
analysis ofBd

0(t)→fKs @6# ~and even here some theoretic
numerical input is required!.

In this paper, we show how model-independent inform
tion about new physics can be obtained from an ang
analysis ofB→V1V2 decays, whereV1 and V2 are vector
mesons. This method is applicable to thoseB→V1V2 decays
in which ~i! V̄1V̄25V1V2 , so that this final state is accessib
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to bothB0 and B̄0, and~ii ! a single decay amplitude dom
nates in the SM. The only theoretical assumption we mak
that there is only a single NP amplitude, with a differe
weak phase from that of the SM amplitude, contributing
these decays. In the event that a signal for NP is found,
demonstrate that one can placelower bounds on the NP pa
rameters@7#.

If physics beyond the SM contributes toBd
0(t)→fKs ,

there should also be NP signals in the correspondingB
→V1V2 decay,Bd

0(t)→fK* 0. Our method can be used i
this situation to get information about the NP. It can also
applied to Bd

0(t)→J/cK* 0, Bd
0(t)→K* 0K̄* 0, Bs

0(t)
→J/cf, etc., should NP signals be found in these decay1

Any new-physics effects inB decays are necessarily vir
tual. On the other hand, future experiments at the CE
Large Hadron Collider~LHC! and at a lineare1e2 collider
~GLC! will make direct searches for such NP. Should NP
found in bothB→V1V2 decays and at the LHC/GLC, th
bounds from the angular analysis can tell us whether the
seen at LHC/GLC can be responsible for the effects inB
→V1V2 decays.

We begin in Sec. II by describing the theoretical fram
work of our method. Signals of new physics are examined
Sec. III. The main results—how to place bounds on the t
oretical NP parameters—are presented in Sec. IV. We dis
and summarize these results in Sec. V.

II. THEORETICAL FRAMEWORK

Consider aB→V1V2 decay which is dominated by
single weak decay amplitude within the SM. This holds f
processes which are described by the quark-level decab̄

→ c̄cs̄, b̄→ s̄ss̄, or b̄→ s̄dd̄. In all cases, the weak phase
the SM amplitude is zero in the standard parametrization@1#.
Suppose now that there is a single new-physics amplitu
with a different weak phase, that contributes to the dec

1Our analysis treats only the situation where there are additio
NP decays amplitudes; it does not apply to the case where the

appears only inB0-B̄0 mixing.
©2004 The American Physical Society13-1
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The decay amplitude for each of the three possible heli
states may be written as

Al[amp~B→V1V2!l5aleidl
a
1bleifeidl

b
,

Āl[amp~B̄→~V1V2!l5aleidl
a
1ble2 ifeidl

b
,

~1!

whereal and bl represent the SM and NP amplitudes, r
spectively,f is the new-physics weak phase, thedl

a,b are the
strong phases, and the helicity indexl takes the values
$0,i,'%. UsingCPT invariance, the full decay amplitudes ca
be written as

A5amp~B→V1V2!5A0g01Aigi1 iA'g' ,

Ā5amp~B̄→V1V2!5Ā0g01Āigi2 iĀ'g' ,
~2!

where thegl are the coefficients of the helicity amplitude
written in the linear polarization basis. Thegl depend only
on the angles describing the kinematics@8#.

Note that it is not a strong assumption to consider a sin
NP amplitude. First, the new physics is expected to be he
so that all strong phasesdl should be small. In this case
since thedl are all of similar size, our parametrization abo
is adequate. Second, if it happens that this is not the c
and there are several different contributing NP amplitud
our analysis pertains to the dominant signal. Finally, if all t
NP amplitudes are of the same size, our approach prov
an order-of-magnitude estimate for the size of new phys

Equations ~1! and ~2! enable us to write the time
dependent decay rates as

G„ B
~2 !

~ t !→V1V2…5e2Gt (
l<s

@Lls6Sls cos~DMt !

7rls sin~DMt !#glgs . ~3!

Thus, by performing a time-dependent angular analysis
the decayB(t)→V1V2 , one can measure 18 observabl
These are

Lll5
1

2
~ uAlu21uĀlu2!, Sll5

1

2
~ uAlu22uĀlu2!,

L' i52Im~A'Ai* 2Ā'Āi* !, L i05Re~AiA0* 1ĀiĀ0* !,

S' i52Im~A'Ai* 1Ā'Āi* !, S i05Re~AiA0* 2ĀiĀ0* !,

r' i5ReS q

p
@A'

* Āi1Ai* Ā'# D , r''5ImS q

p
A'

* Ā'D ,

r i052ImS q

p
@Ai* Ā01A0* Āi# D , r i i 52ImS q

p
Ai* Āi D ,

~4!

where i 5$0,i%. In the above,q/p is the weak phase facto
associated withB-B̄ mixing. For Bd

0 mesons,q/p5exp
(22ib), while q/p51 for Bs

0 mesons. Henceforth we con
centrate on the decays ofBd

0 mesons, though our results ca
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easily be adapted toBs
0 decays. Note thatb may include NP

effects inBd
0-B̄d

0 mixing. Note also that the signs of the var
ousrll terms depend on theCP parity of the various helicity
states. We have chosen the sign ofr00 and r ii to be 21,
which corresponds to the final statefK* .

Not all of the 18 observables are independent. There a
total of six amplitudes describingB→V1V2 and B̄→V1V2
decays@Eq. ~1!#. Thus, at best one can measure the mag
tudes and relative phases of these six amplitudes, giving
independent measurements.

The 18 observables given above can be written in term
13 theoretical parameters: threeal’s, threebl’s, b, f, and
five strong phase differences defined bydl[dl

b2dl
a , D i

[d'
a 2d i

a . The explicit expressions for the observables a
as follows:

Lll5al
21bl

212albl cosdl cosf,

Sll522albl sindl sinf,

L' i52@a'bi cos~D i2d i !2aib' cos~D i1d'!#sinf,

L i052@aia0 cos~D02D i!

1aib0 cos~D02D i2d0!cosf1a0bi cos~D02D i

1d i!cosf1bib0 cos~D02D i1d i2d0!#,

S' i522@a'ai sinD i1a'bi sin~D i2d i !cosf

1aib' sin~D i1d'!cosf

1b'bi sin~D i1d'2d i !#,

S i052@aib0 sin~D02D i2d0!

2a0bi sin~D02D i1d i!#sinf,

r i i 5ai
2 sin 2b12aibi cosd i sin~2b1f!

1bi
2 sin~2b12f!,

r''52a'
2 sin 2b22a'b' cosd' sin~2b1f!

2b'
2 sin~2b12f!,

r' i52@aia' cosD i cos 2b

1a'bi cos~D i2d i !cos~2b1f!

1aib' cos~D i1d'!cos~2b1f!

1bib' cos~D i1d'2d i !cos~2b12f!#,

r i052@a0ai cos~D02D i!sin 2b

1aib0 cos~D02D i2d0!sin~2b1f!

1a0bi cos~D02D i1d i!sin~2b1f!

1b0bi cos~D02D i1d i2d0!sin~2b12f!#. ~5!
3-2
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In subsequent sections, we will work extensively with the
expressions.

It is straightforward to see that, in the presence of n
physics, one cannot extract the phaseb. There are 11 inde-
pendent observables, but 13 theoretical parameters. Sinc
number of measurements is fewer than the number of par
eters, one cannot express any of the theoretical unkno
purely in terms of observables. In particular, it is impossi
to extract b cleanly. Nevertheless, we will show that th
angular analysis does allow one to obtain significantlower
boundson the NP parameters, as well as on the deviation
b from its measured value.

In our analysis, we usually assume thatb has not been
measured independently, so that there are indeed 13
known theoretical parameters. However, this might not
the case. For example, the decayBd

0(t)→J/cKs @or Bd
0(t)

→J/cK* 0] is dominated by the tree contribution. Even
there is new physics in theb̄→ c̄cs̄ penguin amplitude, its
effect will probably be very small. If it is found experimen
tally that this is so~e.g., using the NP signals discussed in t
next section!, the measurement of theCP asymmetry in this
mode gives the true~SM! value ofb. This can then be use
as an input for other modes, such asBd

0(t)→ḟK* 0. In this
case there are only 12 theoretical parameters, and the a
sis simplifies. We will comment on this possibility in Se
IV F.

III. SIGNALS OF NEW PHYSICS

As mentioned in the Introduction, lower bounds on ne
physics parameters are possible only if there is a signa
physics beyond the SM. In this section, we discuss the p
sible new-physics signals inB→V1V2 decays.

In the absence of NP, thebl are zero in Eq.~1!. The
number of parameters is then reduced from 13 to 6: th
al’s, two strong phase differences (D i), andb. It is straight-
forward to show that all six parameters can be determi
cleanly in terms of observables@Eq. ~5!#. However, there are
a total of 18 observables. Thus, there must exist 12 relat
among the observables in the absence of NP. These are

Sll5L' i5S i050,

r i i

L i i
52

r''

L''

5
r i0

L i0
,

L i05
1

2L''
S Lll

2 r'0r'i1S'0S'i~Lll
2 2rll

2 !

Lll
2 2rll

2 D ,

r' i
2

4L''L i i 2S' i
2 5

L''
2 2r''

2

L''
2 . ~6!

The key point is the following:the violation of any of the
above relations will be a smoking-gun signal of NP. We
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therefore see that the angular analysis ofB→V1V2 decays
provides numerous tests for the presence of NP.2

Since there are 11 independent observables and six
rameters in the SM, one might expect that only five tests
needed to verify the presence of NP. However, since
equations in Eq.~5! are nonlinear, this logic can fail: if the
SM parameters take certain special values, more tests
needed. For example, suppose thatbi5b'50 and d050.
Since b0Þ0, NP is present. We haveSll5L'i50. If D0

takes the valuep/2, we will also find thatL'050. Thus,
despite the presence of NP, 5 of the 12 tests above agree
the SM. In this case, further tests are needed to confirm
fact that NP is present. In the most general case,all 12 tests
above are needed to search for NP.~In any event, because i
is not knowna priori which observables will be measured,
is important to have a list of all NP tests.!

We should stress here that the list of NP signals is in
pendent of the parametrization of new physics. That is, e
if there are several contributing amplitudes, the NP can s
be discovered through the tests in Eq.~6!. Furthermore, even
in this general case, it is necessary to perform all 12 test
order to show that NP is not present.

The observableL' i deserves special attention. It is th
coefficient of theT-odd ‘‘triple product’’ in B→V1V2 de-
cays,qW •(«W 13«W 2), whereqW is the momentum of one of the
final vector mesons in the rest frame of theB, and«W 1,2 are the
polarizations ofV1 andV2 @9#. From Eq.~5!, one sees tha
even if the strong phase differences vanish,L' i is nonzero in
the presence of new physics (fÞ0), in contrast to the direc
CP asymmetries~proportional toSll). This is due to the fact
that the' helicity is CP-odd, while the 0 andi helicities are
CP-even. Thus,'-0 and'-i interferences include an add
tional factor of ‘‘i’’ in the full decay amplitudes@Eq. ~2!#,
which leads to the cosine dependence on the strong pha

Although the reconstruction of the fullBd
0(t) and B̄d

0(t)
decay rates in Eq.~3! requires both tagging and time
dependent measurements, theLls terms remain even if the

two rates forBd
0(t) and B̄d

0(t) decays are added togethe
Note also that these terms are time-independent. There
no tagging or time-dependent measurements are neede
extract L' i . It is only necessary to perform an angul
analysis of the final stateV1V2 . Thus, this measurement ca
even be made at a symmetricB factory.

The decays of chargedB mesons to vector-vector fina
states are even simpler to analyze since no mixing is
volved. One can in principle combine charged and neutraB

2Note that, despite the many tests, it is still possible for the NP
remain hidden. If the three strong phase differencesdl vanish, and
the ratior l[bl /al is the same for all helicities, i.e.,r 05r i5r' ,
then it is easy to show that the relations in Eq.~6! are all satisfied.
Thus, if these very special conditions happen to hold, the ang
analysis ofB→V1V2 would show no signal for NP even if it is
present, and the measured value ofb would not correspond to its
true ~SM! value. Still, we should stress that it is highly unlikely th
the NP parameters would respect such a singular situation.
3-3
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decays to increase the sensitivity to new physics. For
ample, forB→J/cK* decays, one simply performs an a
gular analysis on all decays in which aJ/c is produced
accompanied by a charged or neutralK* . A nonzero value of
L' i would be a clear signal for new physics@10#.

IV. BOUNDS ON THE THEORETICAL PARAMETERS

In this section, we explore the constraints on the size
new physics, assuming that a NP signal is observed iB
→V1V2 . As we have shown, the amplitudes are written
terms of 13 theoretical parameters~including b!, but there
are only 11 independent observables. Since the numbe
unknowns is greater than the number of observables, nai
one would think that it is not possible to obtain any inform
tion about the NP parameters. However, since the exp
sions for the observables in terms of the theoretical par
eters are nonlinear@Eq. ~5!#, it is in fact possible to obtain
boundson the NP parameters. One can even put a lo
bound on the difference between the measured value ob
~which is affected by the presence of NP! and its true~SM!
value.

The first step is to reduce the number of unknowns in
expressions for the observables. That is, even though
cannot solve for the theoretical parameters in terms of
servables, one can obtain a partial solution, in which obs
ables are written in terms of a smaller number of parame
plus other observables.

For B→V1V2 decays, the analogue of the usual directCP
asymmetry adir

CP is al
dir[Sll /Lll , which is helicity-

dependent. We define the related quantity
11401
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yl[A12Sll
2 /Lll

2 . ~7!

The measured value of sin 2b can also depend on the helicit
of the final state: rll can be recast in terms of a measur
weak phase 2bl

meas, defined as

sin 2bl
meas[

6rll

ALll
2 2Sll

2
, ~8!

where the1 ~2! sign corresponds tol50,i ~'!.
It is possible to express the nine theoretical parame

al , bl , anddl in terms of the nine observablesLll , Sll ,
andrll and the parametersb andf. The other observable
can in turn be expressed in terms ofLll , Sll , and rll ,
along with the three theoretical parametersb1f and D i .
Using the expressions forLll , Sll , andbl

measabove, one
can expressal andbl as follows:

2al
2 sin2 f5Lll@12yl cos~2bl

meas22b22f!#, ~9!

2bl
2 sin2 f5Lll@12yl cos~2bl

meas22b!#. ~10!

These expressions will play a critical role in the derivation
bounds on the NP parameters.

The seemingly impossible task of eliminating 10 com
nations of the theoretical parametersal , bl , dl , b, andf in
terms of the observablesLll , Sll , and rll and variable
b1f becomes possible by using the following relation:
bl

al
cosdl cosf5

22Lll cos2 f1ylLll@cos~2bl
meas22b22f!1cos~2bl

meas22b!#

2Lll@12yl cos~2bl
meas22b22f!#

52cos2 fS 11
yl sin~2bl

meas22b22f!tanf

12yl cos~2bl
meas22b22f!

D , ~11!
s in
where we have used the expression forLll given in Eq.~5!.
We introduce a compact notation to express Eq.~11! by de-
fining

Pl
2[Lll@12yl cos~2bl

meas22b22f!#, ~12!

jl[
Lllyl sin~2bl

meas22b22f!

Pl
2 . ~13!

This results in

bl

al
cosdl cosf52cos2 f2jl cosf sinf . ~14!

Similarly, we define
sl[
Sll

Pl
2 , ~15!

which allows us to write

bl

al
sindl sinf52sl sin2 f . ~16!

We can now express the remaining nine observable
terms ofD i , b1f, and the newly defined parametersPl ,
jl , andsl as follows:

S' i5Pi P'@~j's i2j is'!cosD i

2~11j ij'1s is'!sinD i #, ~17!
3-4
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L' i5Pi P'@~j'2j i !cosD i2~s i1s'!sinD i #, ~18!

r' i5Pi P'$@~211j ij'1s is'!cos~2b12f!

2~j i1j'!sin~2b12f!#cosD i

1@~2j is'1j's i !cos~2b12f!

2~s i2s'!sin~2b12f!#sinD i%, ~19!

S i05PiP0@~j i2j0!sin~D02D i!

1~s i1s0!cos~D02D i!#, ~20!

L i05PiP0@~j0s i2s0j i!sin~D02D i!

1~11j0j i1s is0!cos~D02D i!#, ~21!

r i05PiP0$@~211j ij01s is0!sin~2b12f!

1~j i1j0!cos~2b12f!#cos~D02D i!

1@~j is02j0s i!sin~2b12f!1~s0

2s i!cos~2b12f!#sin~D02D i!%. ~22!

The notable achievement of the above relations is the exp
sion of observables involving the interference of helicities
terms of only three theoretical parameters (D i ,b1f),
thereby reducing the complexity of the extremization pro
lem. The above relations are extremely important in obta
ing bounds on NP parameters.

We now turn to the issue of new-physics signals. T
presence of NP is indicated by the violation of at least one
the relations given in Eq.~6!. This in turn implies thatbl

Þ0 and ubl
meas2buÞ0 for at least one helicityl. Clearly,

any bounds on NP parameters will depend on the spe
signal of NP. We therefore examine several different NP s
nals and explore the restrictions they place on NP param
space.

Note that we do not present an exhaustive study of n
physics signals. The main point of the present paper is
show that it is possible to obtain bounds on the NP para
eters, even though there are more unknowns than obs
ables. Furthermore, the relations for the observables are
ficiently complicated that it is not possible to derive analy
bounds for every signal of NP. Whenever possible,
present analytic bounds on the NP parameters. However
certain NP signals, we can only obtain numerical bounds
all cases, the bounds are found without any approximatio
This demonstrates the power of angular analysis and its
fulness in constraining NP parameters.

We will see that, whilebl andbl /al can be constrained
with just one signal of NP, obtaining a bound onubl

meas

2bu requires at least two NP signals. Also, because
equations are nonlinear, there are often discrete ambigu
in the bounds. These can be reduced, leading to stro
bounds on NP, if a larger set of observables is used.
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In the subsections below, we present bounds for sev
different signals of NP.

A. SllÅ0

Suppose first that one observes directCP violation in at
least one helicity, i.e.,SllÞ0. The minimum value ofbl

2 can
be obtained by minimizingbl

2 @Eq. ~10!# with respect tob
andf,

bl
2> 1

2 @Lll2ALll
2 2Sll

2 #. ~23!

Thus, if direct CP violation is observed, one can place
lower bound on the new-physics amplitudebl .

On the other hand, it follows from Eq.~10! that no upper
bound can ever be placed onbl

2. One can always takebl

→`, as long asf→0 with bl sinf held constant. For the
same reason, one can never determine the NP weak phaf,
or place a lower bound on it.~This no longer holds if the true
value ofb is known. We discuss this possibility in Sec. IV F!

It is possible, however, to place lower bounds on other
quantities. Using Eqs.~9! and ~10!, it is straightforward to
obtain the constraints

1
2 Lll~12yl!<bl

2 sin2 f< 1
2 Lll~11yl!,

12yl

11yl
<r l

2<
11yl

12yl
, ~24!

where

r l[
bl

al
. ~25!

If SllÞ0, these give nontrivial lower bounds. The low
bound onr l is very useful in estimating the magnitude of N
amplitudes or the scale of NP.

One interesting observation can be made regard
bounds onbl

2. Saying that new physics is present impli
that the NP amplitudebl must be nonzero for at least on
helicity; the other two helicities could have vanishing N
amplitudes. A nonzero direct asymmetryadir

CPÞ0 ~i.e., Sll

Þ0) implies a nonzero NP amplitude with a lower bou
given by Eq.~23!. Other NP signals@Eq. ~6!# do not bound
the NP amplitudebl

2 for a single helicity, but can bound
combinations (bl

26bs
2). This is perhaps surprising but ma

be understood as follows. Consider, for example, the NP
nal L' iÞ0. Even in the presence of such a signal, it is p
sible that one of eitherbi or b' is zero, but not both@see Eq.
~5!#. Thus, one can only obtain a lower bound when sim
taneously boundingbi

2 andb'
2 . Hence, forL' iÞ0, we must

consider bounds on sums and differences of the NP am
tudes,bi

26b'
2 . A similar argument applies to all signals o

NP in Eq. ~6! involving two helicities. We will encounter
such lower bounds in subsequent subsections.
3-5
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B. bl
measÅbs

meas

Another signal of NP is if the measured value ofb is
different in two helicities, i.e.,bl

measÞbs
meas. We define
s

n
on

q
or

he

s

11401
2vsl[2bs
meas22bl

meas, hl[2~bl
meas2b!. ~26!

Using Eq.~10!, we have
~bl
26bs

2 !sin2 f5
Lll6Lss

2
2

ylLll coshl6ysLss cos~2vsl1hl!

2
. ~27!

Extremizing this expression with respect tohl , we obtain a solution forhl ,

sinhl56
ysLss sin 2vsl

Ayl
2Lll

2 1ys
2Lss

2 22ylysLllLss cos 2vsl

. ~28!

Taking into account the sign of the second derivative, we get the bounds

~bl
26bs

2 !sin2 f>
Lll6Lss

2
2

Ayl
2Lll

2 1ys
2Lss

2 62ylysLllLss cos 2vsl

2
, ~29!

~bl
26bs

2 !sin2 f<
Lll6Lss

2
1

Ayl
2Lll

2 1ys
2Lss

2 62ylysLllLss cos 2vsl

2
. ~30!
nts
to

y

t

or-
.

Extremizing with respect tof as well, one obtains the
bounds

~bl
26bs

2 !>
Lll6Lss

2
2

uylLll6ysLsse2ivslu
2

,

~31!

where it has been assumed thatLll.Lss , and that the
right-hand side of the inequality is positive.@Note that an
upper bound on (bl

26bs
2) cannot be obtained.# We will see

below that Eq.~31! plays a central role in deriving bound
for other signals of NP.

We emphasize that all of the above bounds are exact—
approximations or limits have been used. From the c
straints on (bl

26bs
2) one can obtain lower bounds onbl

2 and
bs

2 individually.
Even without extremization, careful examination of E

~27! implies minimum and maximum possible values f
(bl

26bs
2)sin2 f. These can also be derived from Eq.~24! and

are given by

~bl
26bs

2 !sin2 f>
Lll6Lss

2
2

ylLll1ysLss

2
,

~bl
26bs

2 !sin2 f<
Lll6Lss

2
1

ylLll1ysLss

2
. ~32!

Note that if 2vsl50, Eqs. ~29! and ~30! reproduce the
bounds of Eq.~32! for (bl

21bs
2)sin2 f; if 2vsl5p, one

reproduces the bounds on (bl
22bs

2)sin2 f. If one uses other
NP signals to constrain the NP parameters, then unless t
other signals result in constraining the value of 2vsl to be
other than 0 orp, one cannot obtain better bounds than tho
o
-

.

se

e

of Eq. ~32!. Note also that, while 2vsl can be measured
directly up to discrete ambiguities, additional measureme
will result in the reduction of such ambiguities and lead
tighter bounds.

C. L� iÅ0 with SllÄ0

We now turn to the NP signalL' iÞ0. Here we assume

that the phase ofBd
0-B̄d

0 mixing has not been measured in an
helicity, i.e., the parameterv' i is unknown. This situation is
plausible: as discussed above,L' i can be obtained withou
tagging or time dependence, while the measurement ofv' i

requires both.
In order to obtain analytic bounds which depend onL' i ,

it is simplest to consider the limit in which all directCP-
violating asymmetries vanish (Sll50). In this limit, with a
little algebra Eq.~18! reduces to

L' i

2AL i i L''

52sinv' i cosD i , ~33!

where v' i[b'
meas2b i

meas. We solve the above for sinv'i

and substitute it into the expressions for (bi
26b'

2 )sin2 f @Eq.
~27!#. The resulting expressions are minimized straightf
wardly with respect to cosDi andh i to obtain new bounds
The extrema with respect toD i for both (bi

26b'
2 ) occur at

cos2 D i5H 1,
L' i

2

4L i i
2L''

2 cos2~h i /2!
,

L' i
2

4L i i
2L''

2 sin2~h i /2!J ,

~34!
3-6
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while that with respect toh i depends onL' i , and occurs for
both (bi

26b'
2 ) at

sinh i56
2RA12R2L''

AL i i
2 62~122R2!L i i L''1L''

2
, ~35!

where

R5
L' i

2AL i i L''

. ~36!

These extrema yield new lower limits on (bi
26b'

2 ),

2~bi
26b'

2 !>L i i 6L''2A~L i i 6L''!27L' i
2 . ~37!

Interference terms such asL' i also allow us to obtain
bounds forhl . Using Eqs.~27! and ~37!, one can easily
derive the bound

~L i i 1L'' cos 2v' i !cosh i1L'' sin 2v' i sinh i

<A~L i i 1L''!22L' i
2 , ~38!

which can be rewritten as

L i i cosh i1L'' cosh'<A~L i i 1L''!22L' i
2 . ~39!

Thus, if L' iÞ0, one cannot haveh i5h'50. These con-
straints therefore place a lower bound onub i

meas2bu and/or
ub'

meas2bu.
This procedure can also be applied toS i0 , and different

lower bounds on (bi
26b0

2) and onh i , h0 can be derived.
Analytic bounds onr l are not easy to derive, hence on

numerical bounds are obtained. We describe this in the n
subsection.

D. L� iÅ0 with SllÅ0

We now assume that bothL' iÞ0 and SllÞ0, but no
measurement has been made of the parameterv' i . In this
case the procedure outlined in the previous subsection ca
be used to obtain analytic bounds on (bi

26b'
2 ). The reason is

that one does not find a simple solution forv' i such as that
given in Eq. ~33!. In this case, we are forced to turn
numerical solutions. We use the same method as in the
vious subsection—we solve Eq.~18! for v' i and substitute it
into Eq. ~27!—except that now the minimization is pe
formed numerically with respect to the variablesh i , f, and
D i using the computer programMINUIT @11#.

We assume the new-physics signalL'0Þ0. In order to
perform numerical minimization, we must choose values
the observables. Here and in the next subsection, we
L0050.6, L''50.16,y050.60, andy'50.74.

In Fig. 1, we present the lower and upper bounds onb0
2

1b'
2)sin2 f as a function ofL'0 . As in the previous subsec

tion, these bounds are obtained by minimizing with resp
to the variablesD i and h i . Since the minimum value o
(b0

21b'
2 ) can be obtained from that of (b0

21b'
2 )sin2 f by

setting sinf51 ~its maximum value!, the lower bound on
11401
xt

ot

re-

r
ke

ct

(b0
21b'

2 ) is identical to that of (b0
21b'

2 )sin2 f. However,

upper bounds can only be derived for (b0
21b'

2 )sin2 f. For
comparison, we include the bounds for the case of vanish
direct CP asymmetry, i.e.,S005S''50 @Eq. ~37!#. It is
clear that the bounds are stronger if there are more signa
NP.

As in the previous subsection, the constraints on (b0
2

1b'
2 )sin2 f imply certain allowed regions forh0 and h'

@see Eq.~39! and the surrounding discussion#. These are
shown in Fig. 2. Recall thathl[2(bl

meas2b). Since it is not
possible to simultaneously haveh05h'50 ~or p!, this is a
clear sign of NP~as isL'0Þ0). However, since neitherh0
nor h' is constrained to lie within a certain range, no boun
on b can be derived.

One can perform a similar numerical extremization f
(b0

22b'
2 )sin2 f. However, for this particular data set, w

FIG. 1. The lower and upper bounds on (b0
21b'

2 )sin2 f as a
function ofL'0 . For curvesb andc we have assumed the followin
values for the observables:L0050.6, L''50.16, y050.60, and
y'50.74. Curvesa andd represent the corresponding case with
direct CP asymmetry~i.e., y05y'51.0).

FIG. 2. Contours showing the~correlated! lower and upper
bounds onh0 andh' , corresponding to the different values ofL'0

shown in the figure. We have assumed the following values for
observables: L0050.6, L''50.16,y050.60, andy'50.74. Val-
ues ofh0 andh' above~below! and to the right~left! of the mini-
mum ~maximum! contours are allowed.
3-7
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simply reproduce the bounds of Eq.~32!: 20.02<(b0
2

2b'
2 )sin2 f<0.46. Since this bound is independent ofL'0 ,

we have not plotted it.
The easiest way to see whether the numerical extrem

tion of (b0
26b'

2 )sin2 f depends onL'0 or not is as follows.
We refer to Eq.~27!, and note that 2v'01h05h' . The
minimal ~maximal! value of (b0

21b'
2 )sin2 f occurs at the

point (h0 ,h')5(0,0) @~p, p!#. Thus, the minimal~maximal!
value of (b0

21b'
2 )sin2 f depends onL'0 only if the point~0,

0! @~p, p!# is excluded. Similarly, the minimal~maximal!
value of (b0

22b'
2 )sin2 f depends onL'0 only if the point~0,

p! @~p, 0!# is excluded. Referring to Fig. 2, we note that t
points (h0 ,h')5(0,0), ~p, p! are excluded. Thus, the min
mal and maximal values of (b0

21b'
2 )sin2 f depend onL'0 ,

as in Fig. 1. On the other hand, the points (h0 ,h')5(0,p)
and ~p, 0! are allowed, so the minimal and maximal valu
of (b0

22b'
2 )sin2 f are independent ofL'0 , as described

above.
As noted previously, the minimal values for (b0

26b'
2 ) are

equal to those for (b0
26b'

2 )sin2 f. These values can then b
combined to give individual minima onb0

2 andb'
2 .

It is also possible to obtain numerical bounds on the co
binations of ratiosr 0

26r'
2 @Eq. ~25!#. The procedure is very

similar to that used to obtain bounds on (b0
26b'

2 )sin2 f. The
bounds onr 0

26r'
2 are shown in Fig. 3. As was the case f

(b0
22b'

2 )sin2 f, the bounds onr 0
22r'

2 are independent o
L' i and follow directly from Eq.~24!: 26.44<r 0

22r'
2

<3.85. However, unlikeb0
26b'

2 , upper bounds onr 0
26r'

2

can also be obtained. The upper and lower bounds onr 0
2

6r'
2 can then be used to boundr 0

2 andr'
2 individually. This

constrains the scale of new physics, and so is very sig
cant.

E. Observation of L�0 and S�0 with S00Å0,S��Å0

In this subsection we assume that, in addition toL'0 ,
S'0 is also known (v'0 is still assumed not to have bee

FIG. 3. Upper and lower bounds onr 0
26r'

2 as a function of
L'0 . We have assumed the following values for the observable
L0050.6, L''50.16,y050.60, andy'50.74.
11401
a-

-

fi-

measured!. We then see, from Eqs.~17! and ~18!, that both
cos(D0) and sin(D0) can be determined in terms of these tw
observables. Thus,D0 can be obtained without ambiguity
Furthermore, using the relation cos2(D0)1sin2(D0)51, we
cansolvefor v'0 , up to an eightfold discrete ambiguity~i.e.,
a fourfold ambiguity in 2v'0).3 This is shown explicitly in
the Appendix. Thus,v'0 does not take a range of values,
in the previous subsections, but instead takes specific va
~In fact, one can solve forv'0 , up to discrete ambiguities
whenever two observables are known which involve the
terference of two helicity amplitudes.!

The expressions and values forD0 andv'0 are then sub-
stituted into Eq.~27!, and we useMINUIT to numerically
minimize the resulting expression with respect toni andf.
As before, we takeL0050.6, L''50.16,y050.60, andy'

50.74.
The numerical constraints on (b0

26b'
2 )sin2 f and (r 0

2

6r'
2 ) are shown in Fig. 4. In these figures, we have on

presented results for positive values ofL'0 . A point on a
plot with a negative value ofL'0 is equivalent to that with a
positive L'0 and negativeS'0 . This interchange reverse
the signs of cos(D0) and sin(D0), but does not change th
value ofv'0 .

As noted above, the knowledge of bothL'0 and S'0
allows us to fix the value ofv'0 , up to an eightfold discrete
ambiguity. In this case, we can use Eqs.~29!, ~30!, and~31!
to directly bound (bl

26bs
2)sin2 f. This is illustrated in Fig. 5

for L'050.2 andS'050.2.
Of course, it is also possible to measure 2v'0 directly

@Eq. ~8!#, up to a fourfold discrete ambiguity. As we show
the Appendix, in general these four values only partia
overlap with the four values obtained from the derivation
2v'0 from measurements ofL'0 andS'0—the discrete am-
biguity in 2v'0 is reduced to twofold. Thus, by combinin
the two ways of obtaining 2v'0 , the discrete ambiguity can
be reduced. This will in turn improve the bounds on the N
parameters.

As in the previous subsection, one can also place~corre-
lated! constraints onh0 and h' . In itself, this does not
lead to a bound onb. However, if in addition 2bl

meas

is measured directly @Eq. ~8!#, then b can be
constrained.

F. Measurement ofb

Finally, suppose that an angular analysis ofBd
0(t)

→J/cK* 0 is done, and no new physics is found. This im
plies that the trueBd

0-B̄d
0 mixing phaseb can be extracted

from measurements ofCP violation in this decay. Now sup-
pose that some NP signal is found inBd

0(t)→fK* 0. The

3It is to be expected that we can solve forv'0 in this case. If the
theoretical parametersb and f did not vanish from the equation
cos2(D0)1sin2(D0)51, then we would have a relation between t
independentparametersb andf, which is impossible.b andf are
eliminated because this equation depends on (2b'

meas22b22f)
2(2b0

meas22b22f)52v'0 .
3-8
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FIG. 4. The lower and uppe
bounds on (b0

26b'
2 )sin2 f and

(r 0
26r'

2 ) as a function ofS'0 .
Each curve corresponds to a sp
cific value of L'0 , shown in the
figure. We have assumed the fo
lowing values for the observ-
ables: L0050.6, L''50.16, y0

50.60, andy'50.74.
a

.

u-
e
e

f
o

ield

on

l

rv-
analysis described in the previous sections can now be
plied, except that in this case weknow the value ofb. In
addition to improving bounds onbl

2 and r l
2 using previous

techniques, we can now constrain the NP phasef.
For example, assuming thatb is known, one can use Eq

~10! to improve the bound onbl
2,

bl
2>

Lll

2
@12yl cos~2bl

meas22b!#. ~40!

2bl
measand 2b can each be obtained with a twofold ambig

ity. Their combination leads to a twofold ambiguity in th
bound for bl

2. Obviously, to be conservative, we take th
weaker of the two bounds.

To obtain a meaningful bound onf, we require the use o
r l

2. In previous subsections, we have derived bounds
(r 0

26r'
2 ) ~Figs. 3 and 4!. Bounds on (r i

26r'
2 ) and (r 0

26r i
2)
11401
p-

n

can also be obtained. These can all be combined to y
upper and lower bounds onr l

2. Together, Eqs.~9! and ~10!
provide a constraint onf,

~r l
2!min<

12y0 cos~2b0
meas22b!

12y0 cos~2b0
meas22b22f!

<~r l
2!max.

~41!

In this case, there is an eightfold ambiguity on the bounds
sin 2f.

V. DISCUSSION AND SUMMARY

In this paper we considerB→V1V2 decays in which
V̄1V̄25V1V2 , so that bothB0 andB̄0 can decay to the fina
stateV1V2 . If a time-dependent angular analysis ofB0(t)
→V1V2 can be performed, it is possible to extract 18 obse
r

g

th
FIG. 5. The lower and uppe
bounds on (b0

26b'
2 )sin2 f as a

function ofv'0 . For curvesb and
c we have assumed the followin
values for the observables:L00

50.6, L''50.16, y050.60, and
y'50.74. Curvesa and d repre-
sent the corresponding case wi
no direct CP asymmetry~i.e., y0

5y'51.0). The solutions forv'0

for L'050.2 and S'050.2 are
shown as vertical lines.
3-9
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ables@Eq. ~4!#. However, there are only six helicity ampl
tudes describing the decaysB→V1V2 andB̄→V1V2 . There
are therefore only 11 independent observables~equivalent to
the magnitudes and relative phases of the six helicity am
tudes!.

We assume that theB→V1V2 decays are dominated by
single decay amplitude in the standard model~SM!. The SM
parametrization of such decays contains six theoretical
rameters: three helicity amplitudesal , two relative strong
phases, and the weak phaseb ~the phase ofBd

0-B̄d
0 mixing!.

Because there are 18 observables, one has a total of 12
tions to test for the presence of new physics~NP! @Eq. ~6!#.
With 11 independent observables and six SM paramet
one might expect that only five tests are necessary to se
for NP. However, because the equations relating the obs
ables to the theoretical parameters are nonlinear@Eq. ~5!#, for
certain~fine-tuned! values of the SM parameters, some te
can agree with the SM predictions, even in the presenc
NP. To take this possibility into account, all 12 NP tests
needed to perform a complete search for NP.

In this paper we assume that a single NP amplitude c
tributes toB→V1V2 decays. In this case one finds a total
13 theoretical parameters: in addition to the six SM para
eters, there are three NP helicity amplitudesbl , three addi-
tional relative strong phases, and one NP weak phasef.
Suppose now that a NP signal is seen. With only 11 indep
dent observables, it is clear that one cannot extract any o
NP parameters. However, precisely because the equatio
Eq. ~5! are nonlinear, one can placelower boundson the
theoretical parameters. This is the main point of the pap

In the previous section we presented several such c
straints, which we summarize here. The form of the c
straints depends on which observables have been meas
In some cases, it is possible to obtain analytic results
other cases only numerical bounds are possible.

For example, three distinct NP signals areSllÞ0, bl
meas

Þbs
meas, andL' iÞ0 ~with Sll50). In all three cases on

can derive analytic lower bounds on the size ofbl ,

bl
2>

1

2
@Lll2ALll

2 2Sll
2 #,

~bl
26bs

2 !>
Lll6Lss

2
2

uylLll6ysLsse2ivslu
2

,

2~bi
26b'

2 !>L i i 6L''2A~L i i 6L''!27L' i
2 ,

~42!

where yl[A12Sll
2 /Lll

2 and 2vsl[2bs
meas22bl

meas. A
priori , one does not know which of the above constrai
will be strongest—this will depend on the measured val
of the observables and/or which NP signals are seen.

Constraints on other theoretical parameters are poss
For example, if one measuresL' iÞ0 ~with Sll50), one
finds

L i i cosh i1L'' cosh'<A~L i i 1L''!22L' i
2 , ~43!
11401
li-

a-

la-

rs,
ch
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le.

wherehl[2(bl
meas2b). Thus, if L' iÞ0, one obtains cor-

related lower bounds onub i
meas2bu and ub'

meas2bu.
If more observables or NP signals are measured, then

not possible to obtain analytic constraints—one must p
form a numerical analysis. In Sec. IV D we presented n
merical results forL'0Þ0 with S00Þ0 andS''Þ0. In Sec.
IV E we assumed that in additionS'0 was measured. In both
cases we were able to put lower bounds on (b0

26b'
2 ). @Up-

per bounds are possible only for (b0
21b'

2 )sin2 f.] We also
obtained bounds onr 0

26r'
2 (r l[bl /al).

The bounds improve as more NP signals are included
the fits. This is logical. For a particular NP signal, the boun
are weakest if that signal is zero.~Indeed, the bounds vanis
if all NP signals are zero.! If a nonzero value for that signa
is found, the bound will improve. Similarly, the bounds ge
erally improve if additional observables are measured, e
if they are not signals of NP. This is simply because ad
tional measurements imply additional constraints, which c
only tighten bounds on the theoretical parameters.

This behavior is seen most clearly in Secs. IV C–IV
Consider the lower bound on (b0

21b'
2 )sin2 f as a function of

L'0 . In Sec. IV C, it is assumed that the NP signalSll

50. In Fig. 1, we see that the bound is strengthened, vary
from 0 (L'050) to about 0.05 (L'050.4). In Sec. IV D,
the valuesy050.60 andy'50.74 are taken, i.e., it is as
sumed that both NP signalsS00 andS'' are nonzero. In this
case Fig. 1 shows that the lower bound varies from 0
(L'050) to 0.24 (L'050.4). ForL'050.2, the bound is
0.16. In Sec. IV E, the measurement ofS'0 ~not a NP signal!
is added. Now the lower bound on (b0

21b'
2 )sin2 f depends

on the values of bothL'0 andS'0 . From Fig. 4, we see tha
it takes the value 0.18 forL'050.2 andS'0520.15.

In addition to the bounds on thebl andr l , it is possible
to find correlated numerical constraints on thehl , as in Fig.
2. If these are combined with a measurement of 2bl

meas, one
can then obtain a bound onb, even though NP is present.

Even if 2vsl is not measured directly, one can obtain
value~up to a fourfold ambiguity! through measurements o
two observables involving the interference of two helic
amplitudes~as well as theLll andSll). These can be con
verted into bounds on the other NP parameters. If 2vsl is
measured directly, this reduces the discrete ambiguity to t
fold, and improves the bounds.

Finally, all of the above bounds assume that the true~SM!
value ofb is not known. However, it is possible that no N
is seen inBd

0(t)→J/cK* 0, in which case measurements
CP violation in this decay allow one to extract the true val
of b. This value ofb can then be used as aninput to the
analysis of other decays, such asBd

0(t)→fK* 0, in which
NP signals might be found. Ifb is assumed to be known
then the bounds onbl

2 andr l
2 described above are tightene

in general. In addition, it is possible to place bounds on
NP weak phasef.

We stress that we have not presented a complete lis
constraints on the NP parameters—the main aim of this
per was simply to show that such bounds exist. Our res
have assumed that only a subset of all observables has
measured, and the bounds vary depending on the NP si
3-10
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found. In practice, the constraints will be obtained by p
forming a numerical fit using all measurements. If it is po
sible to measure all observables, one will obtain the stron
constraints possible.

As a specific application, we have noted the apparent
crepancy in the value of sin 2b as obtained from measure
ments ofBd

0(t)→J/cKs andBd
0(t)→fKs . In this case, the

angular analyses ofBd
0(t)→J/cK* andBd

0(t)→fK* would
allow one to determine if new physics is indeed present
NP is confirmed, the method described in this paper wo
allow one to put constraints on the NP parameters. If NP
subsequently discovered in direct searches at the LHC
GLC, these bounds would indicate whether this NP could
responsible for that seen inB decays.
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APPENDIX

Assume that, in addition toL00, L'' , S00, and S'' ,
L'0 andS'0 are also known. The expressions for these l
two quantities are~repeated for convenience!

S'05P0P'@~j's02j0s'!cosD0

2~11j0j'1s0s'!sinD0#, ~A1!

L'05P0P'@~j'2j0!cosD02~s01s'!sinD0#,
~A2!

where
l:

11401
-
-
st

s-

If
ld
is
or
e

e
e

t

Pl
2[Lll@12yl cos~2bl

meas22b22f!#,

jl[
Lllyl sin~2bl

meas22b22f!

Pl
2 ,

sl[
Sll

Pl
2 , ~A3!

with

y'[S 12
Sll

2

Lll
2 D 1/2

. ~A4!

Equations~A1! and ~A2! can be solved for cosDi and
sinDi . Writing

L'05A cosD01B sinD0 ,

S'05A8 cosD01B8 sinD0 , ~A5!

where

A[P0P'~j'2j0!, B[2P0P'~s01s'!,

A8[P0P'~j's02j0s'!,

B8[2P0P'~11j0j'1s0s'!, ~A6!

we get

cosD05
B8L'02BS'0

AB82BA8
,

sinD05
A8L'02AS'0

A8B2B8A
. ~A7!

Then the relation cos2 D01sin2 D051 results in
15
~A821B82!L'0

2 1~A21B2!S'0
2 22~AA81BB8!L'0S'0

~AB82BA8!2 . ~A8!
The point is that each of the four combinations (A21B2),
(A821B82), (AA81BB8), and (AB82BA8) is independent
of b andf.

In order to show this, the following relations are usefu

jl
252sl

212
Lll

Pl
2 21,

j0j'5
L00L''y0y'

P0
2P'

2 cos 2v'021

2
L00L''

P0
2P'

2 1
L00

P0
2 1

L''

P'
2 ,
Pl
452Lll

2 12LllPl
2

1Lll
2 yl

2 cos2~2bl
meas22b22f!, ~A9!

where

2v'0[2b'
meas22b0

meas. ~A10!

With these one can show that

~A21B2!52L00L''12S00S''

22L00L''y0y' cos 2v'0 ,
3-11
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~A821B82!52L00L''12S00S''

12L00L''y0y' cos 2v'0 ,

~AA81BB8!52~L''S001L00S''!,

~AB82BA8!254~L00
2 2S00

2 !~L''
2 2S''

2 !sin2 2v'0 .

~A11!

Thus, the relation cos2 D01sin2 D051 gives a quadratic
equation in cos 2v'0,

N1~12cos2 2v'0!5~N21M2 cos 2v'0!1~N3

1M3 cos 2v'0!1N4 , ~A12!

where
4

m

s

11401
N154~L00
2 2S00

2 !~L''
2 2S''

2 !,

N252~L00L''12S00S''!L'0
2 ,

M252L00L''y0y'L'0
2 ,

N352~L00L''12S00S''!S'0
2 ,

M3522L0L''y0y'S'0
2 ,

N4522~L''S001L00S''!L'0S'0 .
~A13!

The solution for cos 2v'0 is
cos 2v'05
2~M21M2!6A~M21M3!224N1~N21N31N42N1!

2N1
. ~A14!
d

he

. If
Thus, we obtain 2v'0 with a fourfold discrete ambiguity~or,
equivalently,v'0 with an eightfold ambiguity!.

It is also possible to obtain 2v'0 from direct measure-
ments ofr00 and r'' @Eq. ~8!#. However, it is sin 2bl

meas

which is measured, so that one extracts two values,

2bl
meas, p22bl

meas. ~A15!

This leads to a fourfold discrete ambiguity in 2v'0 ,
2v656~2b'
meas22b0

meas!,

6~2b'
meas12b0

meas2p!. ~A16!

Of these four values, in general only two will be foun
among those obtained by deriving 2v'0 from measurements
of L00, L'' , S00, S'' , L'0 , andS'0 . Thus, be extract-
ing 2v'0 in these two different ways, one can reduce t
discrete ambiguity to twofold.

Note that this can only be done if new physics is found
no NP signal is observed, then 2v'050, and discrete ambi-
guities are irrelevant.
a,

D.

rein.
a-
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