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We consider the possibility that physics beyond the standard model contributes to the Bee®y¥>,
whereV; andV, are vector mesons. We show that a time-dependent angular analyBis:¥fV, decays
provides many tests for this new physi®dP). Furthermore, although one cannot solve for the NP parameters,
we show that this angular analysis allows one to put bounds on these parameters. This can be useful in
estimating the scale of NP, and can tell us whether any NP found directly at future high-energy colliders can be
responsible for effects seen B+ V,V, decays.
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. INTRODUCTION to bothB® andB®, and(ii) a single decay amplitude domi-

nates in the SM. The only theoretical assumption we make is
Within the standard modéEM), a complex phase in the that there is only a single NP amplitude, with a different
Cabibbo-Kobayashi-MaskawgCKM) quark mixing matrix ~weak phase from that of the SM amplitude, contributing to
is responsible fo€P violation[1]. By studyingCP-violating  these decays. In the event that a signal for NP is found, we
processes in th® system, one can test this explanation. If demonstrate that one can pldoever bounds on the NP pa-
any discrepancy with the SM predictions is found, this wouldr@meters7]. _ 0
be evidence for physics beyond the SM. If physics beyond the SM contr|.butes By(t)— oK,
There are a great many tests for the presence of new phyl€ré should also be NP signals in the corresponding

0 *0 i
ics (NP) in B decays[2]. Should a signal for NP be found, — V1V, decay,By(t)— $K*". Our method can be used in
there are basically two ways to proceed. One can examintg's situation to get information about the NP. It can also be

gpplied to Bg(t)—J/yK*O,  Bg(t)—K*°K*®,  BX(1)

various models of physics beyond the SM to see whether . )
—Jly, etc., should NP signals be found in these dedays.

particular model can account for the experimental results: - ! o=
Any new-physics effects iB decays are necessarily vir-

Alternatively, one can perform a model-independent analysis ,
to learn about general properties of the NP responsible fol@l- On the other hand, future experiments at the CERN

the signal. Most theoretical work has concentrated on th&arge Hgdron CoI!ide(LHC) and at a lineae"e" collider
first approach. (GLC) will make direct searches for such NP. Should NP be

For example, within the SM, th€P-violating asymme- found in bothB—V,V, decays and at the LHC/GLC, the
tries in BY(t)— /WK, and BY(t) — ¢K both measure the bounds from the angular analysis can tell us whether the NP
S S

CP phases, to a good approximatiof8]. However, although set\a/nvat dLHC/GLC can be responsible for the effect8in
the BaBar measurement of th@P asymmetry inBS(t) ~  V1V2 d€cays.

. . o We begin in Sec. Il by describing the theoretical frame-
— ¢K agrees with that found iBJ(t) — J/ /K (within er- . . i
rors), the Belle measurement disagrees at the level o:fr3.5work of our method. Signals of new physics are examined in

..~ Sec. lll. The main results—how to place bounds on the the-

; ' . Y%retical NP parameters—are presented in Sec. IV. We discuss
new decay amplitudes iB— ¢K—may be present. In light and summarize these results in Sec. V.

of this, many papers have been written to show how particu-

lar models of NP can account for this discrepaftly On the Il. THEORETICAL FRAMEWORK

other hand, only two papers contain a model-independent

analysis ofBJ(t)— ¢K [6] (and even here some theoretical ~ Consider aB—V,;V, decay which is dominated by a

numerical input is required single weak decay amplitude within the SM. This hold_s for
In this paper, we show how model-independent informaprocesses which are described by the quark-level delsays

tion about new physics can be obtained from an angular,ccs b—sss orb—sdd. In all cases, the weak phase of

analysis ofB—V,V, decays, wheré/; andV, are vector the SM amplitude is zero in the standard parametrizdtign

mesons. This method is applicable to th@se V,V, decays  Suppose now that there is a single new-physics amplitude,

in which (i) V,V,=V;V,, so that this final state is accessible with a different weak phase, that contributes to the decay.

*Email address: london@Ips.umontreal.ca 10ur analysis treats only the situation where there are additional
"Email address: nita@imsc.res.in NP decays amplitudes; it does not apply to the case where the NP
*Email address: sinha@imsc.res.in appears only iB°-B° mixing.

0556-2821/2004/691)/11401312)/$22.50 69114013-1 ©2004 The American Physical Society



LONDON, SINHA, AND SINHA PHYSICAL REVIEW D 69, 114013 (2004

The decay amplitude for each of the three possible heliciteasily be adapted B2 decays. Note thg8 may include NP

states may be written as effects inBY-BY mixing. Note also that the signs of the vari-
_ - Ce b ousp,, terms depend on th@P parity of the various helicity
Ax=amp(B—>V1V2))\:axe'53+ b,e'%e'’x, states. We have chosen the signpgf and p;; to be —1,
which corresponds to the final stafe<*.
1 Not all of the 18 observables are independent. There are a
@) total of six amplitudes describing—V,V, and B—V,V,
wherea, andb, represent the SM and NP amplitudes, re-decaysEq. (1)]. Thus, at best one can measure the magni-
spectively,¢ is the new-physics weak phase, wﬁeb are the tudes and relative phases of these six amplitudes, giving 11
strong phases, and the helicity indaxtakes the values independent measurements.
{0JI,.L}. Using CPTinvariance, the full decay amplitudes can  The 18 observables given above can be written in terms of
be written as 13 theoretical parameters: thrag’s, threeb,’s, B, ¢, and
five strong phase differences defined by= 52—5‘;‘, A,
=67 —6&%. The explicit expressions for the observables are
as follows:

2 Auw=ai+b{+2ab, coss, cose,

A=ampB— (VyVy), =a,e % +bye e,

A=ampgB—V,V,)=Aq00+Ag,+iA Q, ,

A=ampB—V,V,)=Aggo+Ag,—iA, g, ,

where theg, are the coefficients of the helicity amplitudes
written in the linear polarization basis. Tlgg depend only
on the angles describing the kinematiig$.
Note that it is not a strong assumption to consider a singlé\Li -
NP amplitude. First, the new physics is expected to be heavy,
so that all strong phase$, should be small. In this case, Ajo=2[aa,C0gA;—A)
since thes, are all of similar size, our parametrization above
is adequate. Second, if it happens that this is not the case, Do COS Ao = Ay = 89)COS¢+agh; CoS Ao~ 4,
and there are several different contributing NP amplitudes, + 8,)cos¢+b by cog Ag— A+ 8,— o)1,
our analysis pertains to the dominant signal. Finally, if all the
NP amplitudes are of the same size, our approach provid
an order-of-magnitude estimate for the size of new physics.
Equations (1) and (2) enable us to write the time- +ajb, sin(A;j+ 6, )cos¢
dependent decay rates as

3= —2a,b, sind, sin¢,

2[a, bjcogA;—8;)—a;b, cogA;+6,)]sing,

Li=—2[a a;sinA;+a, b; sin(A;— §;)cose

+bj_bi Sir](Ai+ 5J__6i)]l

(=)
I'(B(t)—V,Vy)=e Ayy+3),COAML) ,
te ’\2”[ e 2j0=2[abg Sin(Ag— A= &)
+Pro SINAMY) ], 9, - () —agb; sin(Ag—Ay+4))Ising,

Thus, by performing a time-dependent angular analysis of

a2 -
the decayB(t)—V,V,, one can measure 18 observables. Pii =i SiN 28+ 2aib; cosé; sin(25+ ¢)

These are +bi2 Sin(2B+24),
A—1A2+K2 E—EAZ—KZ 2
)\)\_2(| )\| | )\| ), )\}\_2(| )\| | )\| )s le:—aLsinzﬂ—ZalbLCosalsin(Zﬂ—F(j))
_ __ _h2qi
Api=—ImA AF—ALAT), Ap=RaAA;+AAS), bi sin(28+24),
S.i=—Im(A A" +A A¥), 3,=ReAA:-AAY), pLi=2[aja, cosA;cos28

+a, b;cogdA;—6)cog28+ ¢)
+ajb, cogA;+6,)cog28+ ¢)
+b;b, cogA;+ 6, —6)cog2B+2¢)],

T @ pex
PLiZR%E[AIAi"'Ai*AL])v pLL=Im<BAIAL)v

I - q
Pilo= " |m(B[A*Ao+A3Au])a pii=— |m(EAi*Ai) ,
(4 ppo=2[a0a cogAg—A)sin 2B
wherei={0/l}. In the aboveg/p is the weak phase factor +a by cogAg— A — 8p)sin(28+ ¢)
associated withB-B mixing. For BY mesons,q/p=exp tab A Avt 8)sin(2 8+
(—2iB), while g/p=1 for BY mesons. Henceforth we con- 30y COS Ao~ A+ 8)SIN2A+ §)
centrate on the decays Bf} mesons, though our results can +bgby cogAg— A+ 5,— 8y)SiN2B8+2¢)]. (5)
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In subsequent sections, we will work extensively with thesetherefore see that the angular analysisBefV,V, decays
expressions. provides numerous tests for the presence of NP.

It is straightforward to see that, in the presence of new Since there are 11 independent observables and six pa-
physics, one cannot extract the phaeThere are 11 inde- rameters in the SM, one might expect that only five tests are
pendent observables, but 13 theoretical parameters. Since thgeded to verify the presence of NP. However, since the
number of measurements is fewer than the number of paramgguations in Eq(5) are nonlinear, this logic can fail: if the
eters, one cannot express any of the theoretical unknownsy1 parameters take certain special values, more tests are
purely in termls of IObSI\?rvabtlr?Si In partlculga”r, |th|s '”j[ﬁotsst'ﬁ'eneeded. For example, suppose thatb, =0 and 8,=0.
to extract 8 cleanly. Nevertheless, we will show that the «; ; A
angular ar’f':llysis d){)es allow one to obtain significamter Sincebo#0, NP is present. We h.aVE“_AL”:O' If S0

}akes the valuer/2, we will also find thatA , ;=0. Thus,

boundspn the NP parameters, as well as on the deviation Odespite the presence of NP, 5 of the 12 tests above agree with
p from its measured value. the SM. In this case, further tests are needed to confirm the
In our analysis, we usually assume thathas not been : . '
Y y e F;_\ct that NP is present. In the most general cafie] 2 tests

measured independently, so that there are indeed 13 u b ded hf b .
known theoretical parameters. However, this might not be220Ve are needed to search for NR.any event, because it

the case. For example, the decBS’((t)—d/z,//K [or Bg(t) is not knowna priori which observables will be measured, it

. , s o .
—.J/yK*9] is dominated by the tree contribution. Even if IS Important to have a list of all NP tesgs. .
there is new physics in the ~€6s penguin amplitude, its We should stress her_e th_at the list of NE signals is inde-
effect will probably be very small. If it is found experir,nen- pendent of the parametrization of new physics. That is, even

tally that this is sde.qg., using the NP signals discussed in thehc thgre are several contributing gmplitudes, the NP can siill
next sectiol, the measurement of tH@P asymmetry in this be discovered through the tests in E§). Furthermore, even

mode gives the truéSM) value of 8. This can then be used in this general case, it is necessary to perform all 12 tests in

) . . rder how that NP is n resent.
as an input for other modes, such B&(t)—uﬁK*o. In this order to show that S not prese t. . :
. The observable\ |; deserves special attention. It is the
case there are only 12 theoretical parameters, and the anale/c—)

sis simplifies. We will comment on this possibility in Sec. eff"i'e”} Of}heT'Odd “}r!ple product” in B—V,V, de-
IVE. cays,G-(€1X¢€,), whereq is the momentum of one of the

final vector mesons in the rest frame of Bieande; , are the

polarizations ofV; andV, [9]. From Eq.(5), one sees that
Ill. SIGNALS OF NEW PHYSICS even if the strong phase differences vanish; is nonzero in
the presence of new physicé ¢ 0), in contrast to the direct

physics parameters are possible only if there is a signal o P asymmetriegproportional taX,,). This is due to the fact

physics beyond the SM. In this section, we discuss the poé— at theL helicity is CP-odd, while the 0 and helicities are
sible new-physics signals B— V,V, deéays. CP-even. Thus,L-0 and_L-|l interferences include an addi-

In the absence of NP, the, are zero in Eq(1). The tional factor of “” in the full decay amplitude§Eq. (2)],
number of parameters is then reduced from 13 to 6: thre¥hich leads to the cosine dependence on the strong phases.
a,’s, two strong phase differenced), andg. It is straight- Although the reconstruction of the fuBS(t) and By(t)
forward to show that all six parameters can be determinedecay rates in Eq(3) requires both tagging and time-
cleanly in terms of observabl¢Eq. (5)]. However, there are dependent measurements, the, terms remain even if the
a total of 18 observables. Thus, there must exist 12 relationg,q rates fong(t) and gg(t) decays are added together.

among the observables in the absence of NP. These are  \q(e ai50 that these terms are time-independent. Therefore,
no tagging or time-dependent measurements are needed to
Sa=Ai=2,0=0, extract A ;. It is only necessary to perform an angular
analysis of the final staté;V,. Thus, this measurement can
even be made at a symmeticfactory.
Pi __ PiL _ Pio The decays of chargeB mesons to vector-vector final

Ai AL Ay’ states are even simpler to analyze since no mixing is in-
volved. One can in principle combine charged and newral

As mentioned in the Introduction, lower bounds on new-

1 [AXpiopiit2 02 (AR —pR))

0 2A A>2\>\_Pi>\ , °Note that, despite the many tests, it is still possible for the NP to
remain hidden. If the three strong phase differengesanish, and
5 5 5 the ratior,=b, /a, is the same for all helicities, i.eto=r;=r
Pli _ AT —pl, 6 then it is easy to show that the relations in E§). are all satisfied.
AN, | Aj; _zfi_ Ai ' ©) Thus, if these very special conditions happen to hold, the angular
analysis ofB—V;V, would show no signal for NP even if it is
present, and the measured valueBofvould not correspond to its
The key point is the followingthe violation of any of the true(SM) value. Still, we should stress that it is highly unlikely that
above relations will be a smoking-gun signal of N®e the NP parameters would respect such a singular situation.
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decays to increase the sensitivity to new physics. For ex- Y= m . 7)
ample, forB—J/4K* decays, one simply performs an an-
gular analysis on all decays in which H¢ is produced
accompanied by a charged or neutfdl. A nonzero value of
A ; would be a clear signal for new physifk0].

The measured value of siBZan also depend on the helicity
of the final state: p,, can be recast in terms of a measured
weak phase B\"°% defined as

IV. BOUNDS ON THE THEORETICAL PARAMETERS

, , , . . o
In this section, we explore the constraints on the size of sin 28—, (8)
new physics, assuming that a NP signal is observe® in VAL

—V,V,. As we have shown, the amplitudes are written in

terms of 13 theoretical parameteiiscluding B), but there ~ where the+ (—) sign corresponds ta=0]l (L).

are only 11 independent observables. Since the number of It is possible to express the nine theoretical parameters
unknowns is greater than the number of observables, naivelg, , b, , andé, in terms of the nine observablés,, , 2,, ,

one would think that it is not possible to obtain any informa-and p,, and the parametey8 and ¢. The other observables
tion about the NP parameters. However, since the expresan in turn be expressed in terms &f, , %,,, andp,,,
sions for the observables in terms of the theoretical paramalong with the three theoretical paramet¢s ¢ and A; .
eters are nonlinediEq. (5)], it is in fact possible to obtain Using the expressions fok,, , 3,,, and 8}***above, one
boundson the NP parameters. One can even put a lowetan express, andb, as follows:

bound on the difference between the measured valug of

\(/v;lrbizh is affected by the presence of Néhd its true(SM) 2a}2\ Si? = A,,[1—y, cog28™%-28-24)], (9)
The first step is to reduce the number of unknowns in the 5 eas
expressions for the observables. That is, even though one 2P\ Sin® ¢=A,,[1-y, cog2B7°**-2p)]. (10)

cannot solve for the theoretical parameters in terms of ob-

servables, one can obtain a partial solution, in which observfhese expressions will play a critical role in the derivation of

ables are written in terms of a smaller number of parameterbounds on the NP parameters.

plus other observables. The seemingly impossible task of eliminating 10 combi-
ForB—V,V, decays, the analogue of the usual dif€&t  nations of the theoretical parametess, b, , 8, , 5, and¢ in

asymmetry adcif is ag"EEM/AM, which is helicity- terms of the observables,,, 2,,, andp,, and variable

dependent. We define the related quantity B+ ¢ becomes possible by using the following relation:

—2A,, €O p+Yy, A\, [COL 2B 28—2¢)+cog 281~ 2p)]
2A\\[1-y,\ cog2B,°*-2B-2¢)]

Y\ Sin(2B1***-28—-2¢)tan¢

by
— C0SJ), COSp=
a

=— +
oS | ¥ Ty cos 2B 2529 | D
|

where we have used the expressionAqy, given in Eq.(5). DI
We introduce a compact notation to express @d) by de- O\="p2 (19

fining A

PizAm[l—yx COS{Z,GTGE‘S— 28-24)], (12) which allows us to write
. b

A\Yy SIN2BY 28— 2¢) —2sing, sing=—a, s ¢. (16)

&= p? . (13 a,

We can now express the remaining nine observables in
terms ofA;, B+ ¢, and the newly defined parametd?®s,
&, , ando, as follows:

This results in

ﬁcosﬁh COS¢p=—C0F p— &, COSP SiNg . (149
& 2, i=PiP. [(£ 07— &0 )cosA,

Similarly, we define —(1+§é, +ojo )sinA], 17
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A =PiP,[(& —&)cosA,— (oi+o,)sinA;], (18) In the subsections below, we present bounds for several
different signals of NP.

p1i=PiP {[(-=1+§¢& +oio,)cod28+24)

A. 3\, #0
~(&i+£,)sin(28+2¢)]cosA,; Suppose first that one observes dir€& violation in at
+[(— &0, +& a)cod2B+2) least one helicity, i'.e.EM_qé O.ZThe minimurr_1 value ab? can

be obtained by minimizindy [Eq. (10)] with respect toB

—(oy—0,)sin(2B+2¢)]sinA}, (19  andg,
. b2>l A,y — /A2 N2 ) 23
2”0:P\\Po[(fu_go)SIn(Ao—A”) N 2[ AN AN 2)\)\] ( )

+ (ot og)cogAg—A))], (200 Thus, if directCP violation is observed, one can place a
lower bound on the new-physics amplitudg.
_ B . B On the other hand, it follows from E@10) that no upper
A10=PiPol (6001~ 008))SINAo = 4y) bound can ever be placed &f. One can always takb,
+(1+ &é+ oyog)cogAg— A ], (21 —o, as long asp— 0 with b, sin¢ held constant. For the
same reason, one can never determine the NP weak ghase
_ or place a lower bound on ifThis no longer holds if the true
pio=PPol{[(=1+§éo+ oy00)SiN2B+2¢) value of 8 is known. We discuss this possibility in Sec. IV F.
. It is possible, however, to place lower bounds on other NP
(&1 £0)C0S25+2¢)]cod Ao~ Ay) quantities. Using Eq99) and (10), it is straightforward to

+[(& 09— &oy)SIN2B+2¢) + (0 obtain the constraints
—0)Cc0g2B+2¢)]sin(Ag—A))}. (22 ,
: ” FA(1=y)<bfsi? g<3 A\ (1+y,),
The notable achievement of the above relations is the expres-
sion of observables involving the interference of helicities in 1=y <r2< 14y, (24)
terms of only three theoretical parameterd; (8+ ¢), 1+y, M 1-vy,’

thereby reducing the complexity of the extremization prob-
lem. The above relations are extremely important in obtain
ing bounds on NP parameters.

We now turn to the issue of new-physics signals. The
presence of NP is indicated by the violation of at least one of by
the relations given in Eq6). This in turn implies thab, rk:a' (29
#0 and|B\'"**-B|#0 for at least one helicit\. Clearly,

any bounds on NP parameters will depend on the specifi . o
signal of NP. We therefore examine several different NP sig—Fr 2,70, these give nontrivial lower bounds. The lower

nals and explore the restrictions they place on NP paramet(-?lpun.d orr), is very useful in estimating the magnitude of NP
space. amplltudgs or th_e scale of NE. .

Note that we do not present an exhaustive study of new- One |nte2rest|ng_ observation can b(_a made rggar_dlng
physics signals. The main point of the present paper is tgounds onb. Saymg that new physics is present implies
show that it is possible to obtain bounds on the NP paramthat the NP amplitudé, must be nonzero for at least one
eters, even though there are more unknowns than obser(€licity; the other two helicities could hane vanishing NP
ables. Furthermore, the relations for the observables are simplitudes. A nonzero direct asymmetyiy 0 (i.e., 3,
ficiently complicated that it is not possible to derive analytic #0) implies a nonzero NP amplitude with a lower bound
bounds for every signal of NP. Whenever possible, wediven by Eq.(23). Other NP signal$Eq. (6)] do not bound
present analytic bounds on the NP parameters. However, féhe NP amplitudeb} for a single helicity, but can bound
certain NP signals, we can only obtain numerical bounds. Iifombinations % =b2). This is perhaps surprising but may
all cases, the bounds are found without any approximationie understood as follows. Consider, for example, the NP sig-
This demonstrates the power of angular analysis and its us@al A, ;% 0. Even in the presence of such a signal, it is pos-
fulness in constraining NP parameters. sible that one of eithep; or b, is zero, but not botfisee Eq.

We will see that, whileb, andb, /a, can be constrained (5)]. Thus, one can only obtain a lower bound when simul-
with just one signal of NP, obtaining a bound a7  taneously bounding? andb?. Hence, forA ;#0, we must
— B| requires at least two NP signals. Also, because th&onsider bounds on sums and differences of the NP ampli-
equations are nonlinear, there are often discrete ambiguiti&sdes,bizi bf. A similar argument applies to all signals of
in the bounds. These can be reduced, leading to strong®&P in Eq. (6) involving two helicities. We will encounter
bounds on NP, if a larger set of observables is used. such lower bounds in subsequent subsections.

where
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B. BYE B 20,,=2pMas-_pgMmeas  ,, —o(pMeas_ gy (26)
Another signal of NP is if the measured value gfis
different in two helicities, i.e.8)'**% B, We define Using Eq.(10), we have

AMEAse 2NA\COSHEY A 4, COL 20, + 7))

(b2+b?)sir? ¢p=

Extremizing this expression with respect#q, we obtain a solution for, ,

y(rA oo sin ZwU)\

siny,==* . (28
\/y)zxAi)\—'_yi'Agro'_zykyaA)\)\AUUCOS2(1)0)\
Taking into account the sign of the second derivative, we get the bounds
AnFAyy VY2AZ +Y2A2 +2y,y,A\\A,, COS 20,
(02 b2)sir? = >\>\2 ATy );xy A x, 29
AnEA,, 2AZ HY2IAZ + 2y, Yo A A by COS 20,
(b2 b2)si? g A0 Ao ALY Dol 3 (30

2 2

Extremizing with respect top as well, one obtains the of Eqg. (32). Note also that, while @,, can be measured
bounds directly up to discrete ambiguities, additional measurements
. will result in the reduction of such ambiguities and lead to
A)\)\iAmf |y)\A)\)\iy0A(ro’e2|w0}\| t|ghter bounds.
2 2 '

(b2+b?)=

(31)
i CAJ_|¢0 with 2)\)\=0
where it has been assumed thef,>A,,, and that the
right-hand side of the inequality is positivENote that an We now turn to the NP signak ;;#0. Here we assume
upper bound ont? +b?) cannot be obtainefWe will see

below that Eq.(31) plays a central role in deriving bounds L . T
for other signals of NP. helicity, i.e., the parametes  ; is unknown. This situation is

We emphasize that all of the above bounds are exact—nBIau_S'ble: as dls&:ussej abO\Aalih.Tanhbe obtained W'tho:jt
approximations or limits have been used. From the cont2gging or time dependence, while the measurement, o

straints on b2=b?) one can obtain lower bounds &3 and ~ 'eduires both. _ _

b(zr individually. _ _In qrder to obtain qnalytlc bqur_ld_s Whl(_:h depeqd/bﬂ ,
Even without extremization, careful examination of Eq. 't IS Simplest to consider the limit in which all dire@P-

(27) implies minimum and maximum possible values for\(|olat|ng asymmetries vanisi®(, =0). In this limit, with a

(b2+b2)sir? ¢. These can also be derived from Ea4) and  little algebra Eq(18) reduces to

that the phase dJ-BS mixing has not been measured in any

are given by Al
————=—SiNw,; COSA;, (33
A=A Ay +Y,A 2AGA
(b2+b2)5in2 ¢> AN oo y)\ AN y(r ol
AN — Mo = 2 2 y
where o, ;=B "% We solve the above for sin;
b2+ b2)sir? < AMaEAgs . AWt YoA o (32 and substitute it into the expressions fof - b?)sir? ¢ [Eq.
(by=bg)sim ¢= 2 2 ’ (27)]. The resulting expressions are minimized straightfor-

wardly with respect to ca4; and »; to obtain new bounds.
Note that if 2w,, =0, Egs. (29 and (30) reproduce the The extrema with respect t; for both (b?+b?) occur at
bounds of Eq.(32) for (b2+b?)sir? ¢; if 2w, =, one
reproduces the bounds ohZ(—b?2)sir? ¢. If one uses other 2 AZ, AZ,
NP signals to constrain the NP parameters, then unless theseos Aj=4{ 1,———> ) 7 ,
othergsignals result in constrainliang the value @2 to be 4AGAT, cos(mif2)" AAGAL, i (7l2)
other than 0 orr, one cannot obtain better bounds than those (39
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while that with respect tay; depends om\ | ;, and occurs for 0.8 T
both (b?+b?) at 07 e
< e
2RV1-R%A 0.6 S b
siny =+ —— > = —, (39 e B8
\/Aiiiz(l_ZR )AiiALL—’_ALL RZ! 0.5
where o104
+ 0.3
R= L (36) c\§ 0.2 ”////C
2VhiA N
. . 2 e
These extrema yield new lower limits ob*+b?), 0 = : ‘
0 0.1 0.2 0.3 0.4 0.5
2(b7xb?)= A=A, — V(A=A )?F AT (3D Ao
Interference terms such a%,; also allow us to obtain FIG. 1. The lower and upper bounds obj(-b?)sir’ ¢ as a
bounds forz, . Using Egs.(27) and (37), one can easily function ofA 4. For curves andc we have assumed the following
derive the bound values for the observableg,,=0.6, A, =0.16, yo=0.60, and
y, =0.74. Curvesa andd represent the corresponding case with no
(Ajj+A,, cos2w, )cosy+ A, sin2w, ;siny direct CP asymmetry(i.e., yo=Yy, =1.0).
=\V(Aj+A )= AT (39)

(b3+b?) is identical to that of 163+ b?)sir? ¢. However,
which can be rewritten as upper bounds can only be derived fds3(+b?)sir? ¢. For
comparison, we include the bounds for the case of vanishing
Ajicosp+ AL, cosy <\(Aj+A,)>—AT. (39  direct CP asymmetry, i.e.30=2,, =0 [Eq. (37)]. It is
clear that the bounds are stronger if there are more signals of
Thus, if A ;#0, one cannot havey;=n, =0. These con- NP.
straints therefore place a lower bound |@f"***- 8| and/or As in the previous subsection, the constraints @3 (
| BBl +b?)sir? ¢ imply certain allowed regions for, and 7,
This procedure can also be applieddg,, and different [see Eq.(39) and the surrounding discussioriThese are
lower bounds onl¢f+b) and onz,, 7o can be derived.  shown in Fig. 2. Recall thag, =2(8M*- g). Since it is not

Analytic bounds orr, are not easy to derive, hence only possible to simultaneously havg= 7, =0 (or ), this is a
numerical bounds are obtained. We describe this in the neXlear sign of NRas isA | ,#0). However, since neithep,

subsection. nor 7, is constrained to lie within a certain range, no bounds
on B can be derived.
D. A ;#0 with X,,#0 One can perform a similar numerical extremization for

2 m2vai ; ;
We now assume that both ;#0 and3,,+0, but no (b5—b?)sir? ¢. However, for this particular data set, we

measurement has been made of the parameter In this
case the procedure outlined in the previous subsection cannot 180
be used to obtain analytic bounds dif -b?). The reason is
that one does not find a simple solution for; such as that
given in Eqg.(33). In this case, we are forced to turn to
numerical solutions. We use the same method as in the pre- ]
vious subsection—we solve E@.8) for w,; and substitute it Mo 90+ ]
into Eq. (27)—except that now the minimization is per- ]
formed numerically with respect to the variablgs, ¢, and
A, using the computer programiNuIT [11]. 45
We assume the new-physics signal ;#0. In order to
perform numerical minimization, we must choose values for 0 ‘ ‘ ]
the observables. Here and in the next subsection, we take 0 45 90 135 180
Aoo=0.6,A,, =0.16,y,=0.60, andy, =0.74. n.
In Fig. 1, we present the lower and upper boundsmﬁ] ( FIG. 2. Contours showing thécorrelatedl lower and upper

2 . . . .
+b{)sir’ ¢ as a function of\, . As in the previous subsec- 1, ony, and 7, , corresponding to the different valuesf o

tion, these bounds are obtained by minimizing with respectpown in the figure. We have assumed the following values for the
to the variablesA; and »;. Since the minimum value of gpservables: Ayy=0.6, A, =0.16,y,=0.60, andy, =0.74. Val-

(bj+Db?) can be obtained from that ob§+b?)sir?¢ by  ues of, and 5, above(below) and to the rightleft) of the mini-
setting sing=1 (its maximum valug the lower bound on  mum (maximum contours are allowed.

135 ¢
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12 x ; ; ; measuref] We then see, from Eq$17) and (18), that both
/11 cos(Ap) and sinfy) can be determined in terms of these two
. \(r§+ri)max observables. Thus\, can be obtained without ambiguity.
e Furthermore, using the relation &8;)+sirf(Ag)=1, we
6 s o cansolvefor o ¢, up to an eightfold discrete ambiguitye.,
4 (rg =71 )max a fourfold ambiguity in 20, 5).2 This is shown explicitly in
2 G i) the Appendix. Thuse, ; does not take a range of values, as
0 e N in the previous subsections, but instead takes specific values.
(In fact, one can solve fow, 5, up to discrete ambiguities,
-2 whenever two observables are known which involve the in-
-4 terference of two helicity amplitudes.
-6 (rZ — r2 )min The expressions and values g andw, ( are then sub-
8 ’ . ‘ . stituted into EQ.(27), and we usemINUIT to numerically
minimize the resulting expression with respectntoand ¢.
g 0.1 0.2 03 04 5 As before, we take\ ;0=0.6, A, | =0.16,y,=0.60, andy,
Ao =0.74.
FIG. 3. Upper and lower bounds ag+r? as a function of The numerical constraints onb§=b?)sir’ ¢ and (§
A | o. We have assumed the following values for the observables: irf) are shown in Fig. 4. In these figures, we have only
Ap=0.6,A,,=0.16,y,=0.60, andy, =0.74. presented results for positive values &f ;. A point on a

plot with a negative value ok | ; is equivalent to that with a
simply reproduce the bounds of E¢32: —0.02<(bj positive A, , and negativeS, ,. This interchange reverses
—bf)s,in2 ¢=<0.46. Since this bound is independent/of, the signs of cog{y) and sinf\y), but does not change the
we have not plotted it. value ofw, q.

The easiest way to see whether the numerical extremiza- As noted above, the knowledge of both, o, and X
tion of (bgi bf)sin2 ¢ depends on\ | ; or not is as follows. allows us to fix the value ob, ¢, up to an eightfold discrete
We refer to Eq.(27), and note that @, ,+ no=7, . The  ambiguity. In this case, we can use E(9), (30), and(31)
minimal (maxima) value of (2+b?)sir? ¢ occurs at the to directly bound bf=b?)sir? ¢. This is illustrated in Fig. 5
point (79, 7,)=(0,0) [(m, m)]. Thus, the minimaimaxima) ~ for A, ,=0.2 andX, ,=0.2.
value of b3+ b?)sir? ¢ depends om | , only if the point(O, Of course, it is also possible to measure 2 directly
0) [(m, m)] is excluded. Similarly, the minimalmaxima)  [EQ.(8)], up to a fourfold discrete ambiguity. As we show in
value of (b2—b?)sir? ¢ depends o, , only if the point(0, ~ the Appendix, in general these four values only partially
) [(m, 0)] is excluded. Referring to Fig. 2, we note that the overlap with the four values obtained from the derivation of
points (77, 7,)=(0,0), (, m) are excluded. Thus, the mini- 2@, o from measurements of, ; andX, ;—the discrete am-
mal and maximal values obg+b?)sir? ¢ depend om\ |, biguity in 2w, ¢ is reduped to twofolq. Thus, by gomb|n|ng
as in Fig. 1. On the other hand, the pointg,(7,)=(0,7) the two ways of_ obt_alr_ung (Zl_o, the discrete ambiguity can
and (, 0) are allowed, so the minimal and maximal values e reduced. This will in turn improve the bounds on the NP

of (b2—b?)sir?¢ are independent of\ o, as described Parameters. , ,
above. As in the previous subsection, one can also placere-

As noted previously, the minimal values fdsg+b?) are lated constraints onyo and 7, . In itself, this doesmg;gt
2

equal to those fort(gt b?)sir? ¢. These values can then be !ead to a bound onB. However, if in addition &,

combined to give individual minima obg andbf. s measured directly [Eq. (8)]. then S can be

; ) . ) constrained.
It is also possible to obtain numerical bounds on the com-

binations of ratiog3+r? [Eq. (25)]. The procedure is very
similar to that used to obtain bounds du(-b?)sir? ¢. The
bounds orr2=r2 are shown in Fig. 3. As was the case for ~ Finally, suppose that an angular analysis Bf(t)
(b(z,—bf)sinz #, the bounds orrg—rf are independent of —J/yK*0 is done, and no new physics is found. This im-
A,; and follow directly from Eq.(24: —6.44<r2—r?  plies that the trueB3-BY mixing phaseg can be extracted
<3.85. However, unlikebgi bf, upper bounds oméirf from measurements &P violation in this decay. Now sup-
can also be obtained. The upper and lower boundsZn Pose that some NP signal is found Bj(t)— ¢K*°. The
+r? can then be used to boun§ andr? individually. This
constrains the scale of new physics, and so is very signifi-
cant. 3t is to be expected that we can solve for in this case. If the
theoretical parameter8 and ¢ did not vanish from the equation
cog(Ag)+sir’(Ag)=1, then we would have a relation between the
independenparameterg and ¢, which is impossibleg and ¢ are

In this subsection we assume that, in additionAtp,, eliminated because this equation depends of7(2*-28—2¢)
3 o is also known v, o is still assumed not to have been —(285°*-28—2¢)=2w,,.

F. Measurement of 8

E. Observation of A |y and X | 5 with Xy#0%, | #0

114013-8



BOUNDS ON NEW PHYSICS FROMB—V,V, DECAYS PHYSICAL REVIEW D69, 114013 (2004

T, 0.7
005757 02 : 00s
0.4 0.6 S R ——
- ~ < ¥ 0.1 02
5 03 g os
wn 0
| 4 03
0.1 '
No o N
S 0.2
= wler =l "
0 —_— 0.1 FIG. 4. The lower and upper
i 0 bounds on k3+b?)sir? ¢ and
04 02 0 02 04 -04  -02 20 02 04 (r0+ rl) as a function ofX .
Ylo <0 Each curve corresponds to a spe-
cific value of A, ¢, shown in the
4 e —"~-\ 12 figure. We have assumed the fol-
5 005701 O \ 0 B ot lowing values for the observ-
\ & e ables: Ag=0.6, A, =0.16, y,
0 — 3 i =0.60, andy, =0.74.
c\L—| C\L—|
| -2 + 6
No No
4 / < 4
/
005 ¢
P 2 01 g2 g 5
% o L0 L 102
-04  -0.2 0 0.2 04 -04 -0.2 0 0.2 0.4
Yo Yo

analysis described in the previous sections can now be agan also be obtained. These can all be combined to yield
plied, except that in this case waow the value ofB. In upper and lower bounds o'ri Together, Eqs(9) and (10)
addition to improving bounds obf andri using previous provide a constraint om,

techniques, we can now constrain the NP phase

For example, assuming thatis known, one can use Eq. 1—-yoco9237°%%-2)

. 2 (r3) i< <(r?)max-

(10) to improve the bound oby, Mmin=7 Ty cos 28T 28— 2¢) ) max
A (42)
b= 22 [1-y, cog28M*-2p)]. 40
2 [1=y, cos25) Al 40 In this case, there is an eightfold ambiguity on the bounds on
sin 2¢.

2B7°*and 28 can each be obtained with a twofold ambigu-
ity. Their cozmbinat_ion leads to a twofold _ambiguity in the V. DISCUSSION AND SUMMARY
bound forb;. Obviously, to be conservative, we take the
weaker of the two bounds. In this paper we consideB—V,;V, decays in which

To obtain a meaningful bound ap, we require the use of V,V,=V,V,, so that bottB° andB° can decay to the final
rA In previous subsections, we have derived bounds ostateV,V,. If a time-dependent angular analysis Bf(t)
(r2=r?) (Figs. 3 and 4 Bounds on (?=r?) and (3+r?)  —V;V, can be performed, it is possible to extract 18 observ-

1 1
FIG. 5. The lower and upper
08| e i o038 — ey bounds on K¥3+b?)sir? ¢ as a
o [
k= N , \/ o \?/ g function of w, . For curves anq
@ 0.6~ >—1 " — B 06 e ¢ we have assumed the following
,-:| L h ,_:[ o b e values for the observablesA g
RY 54 R i =0.6, A, , =0.16, y,=0.60, and
+ v [ y, =0.74. Curvesa and d repre-
=) - s N ~ £ sent the corresponding case with
) N & 1 = N i il . )
—~02 A1 e 6 4l L ~ 0.2 S e S g /d\ "R m /:/ no direct CP asymmetry(i.e., Yo
/\ ) /\ =y, =1.0). The solutions fow o
0 0 S : for A, (=0.2 andX ,=0.2 are
= = . .
§ E 8 g ° 9 K a § & a T ° %R E % shown as vertical lines.
1 1 w ! 1 w
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ables[Eq. (4)]. However, there are only six helicity ampli-

tudes describing the decaps—V,V, and§—>V1V2. There
are therefore only 11 independent observaléegiivalent to

PHYSICAL REVIEW D 69, 114013 (2004

where 7,=2(8V°**- ). Thus, if A, ;#0, one obtains cor-
related lower bounds ofB]"***- g| and|BT'***- 3.
If more observables or NP signals are measured, then it is

the magnitudes and relative phases of the six helicity amplinot possible to obtain analytic constraints—one must per-

tudes.
We assume that thB—V,V, decays are dominated by a
single decay amplitude in the standard mo@&\i). The SM

form a numerical analysis. In Sec. IVD we presented nu-
merical results fol | ;70 with 2 y,# 0 andX,, | #0. In Sec.
IV E we assumed that in additich,  was measured. In both

parametrization of such decays contains six theoretical pa:ases we were able to put lower bounds béi( bf). [Up-

rameters: three helicity amplitudes , two relative strong
phases, and the weak phagéthe phase oBS-BY mixing).

per bounds are possible only fobj+b?)sir? ¢.] We also
obtained bounds org+r? (r,=b, /a,).

Because there are 18 observables, one has a total of 12 rela-The bounds improve as more NP signals are included in
tions to test for the presence of new physis®) [Eq. (6)].  the fits. This is logical. For a particular NP signal, the bounds
With 11 independent observables and six SM parametersre weakest if that signal is zerdndeed, the bounds vanish
one might expect that only five tests are necessary to sear¢ghall NP signals are zerplf a nonzero value for that signal
for NP. However, because the equations relating the obserys found, the bound will improve. Similarly, the bounds gen-
ables to the theoretical parameters are nonlifiggr(5)], for  erally improve if additional observables are measured, even
certain(fine-tuned values of the SM parameters, some testsif they are not signals of NP. This is simply because addi-
can agree with the SM predictions, even in the presence afonal measurements imply additional constraints, which can

NP. To take this possibility into account, all 12 NP tests arepnly tighten bounds on the theoretical parameters.

needed to perform a complete search for NP.

This behavior is seen most clearly in Secs. IVC-IVE.

In this paper we assume that a single NP amplitude congonsider the lower bound o+ b?)sir? ¢ as a function of
tributes toB—V,V, decays. In this case one finds a total of A ;. In Sec. IVC, it is assumed that the NP sigit|,

13 theoretical parameters: in addition to the six SM param-q, |n Fig. 1, we see that the bound is strengthened, varying

eters, there are three NP helicity amplitudgs three addi-
tional relative strong phases, and one NP weak phase

from 0 (A, o=0) to about 0.05 4, ,=0.4). In Sec. IVD,
the valuesy,=0.60 andy, =0.74 are taken, i.e., it is as-

Suppose now that a NP signal is seen. With only 11 indepersymed that both NP signaks,, ands, , are nonzero. In this
dent observables, it is clear that one cannot extract any of thggge Fig. 1 shows that the lower bound varies from 0.14
NP parameters. However, precisely because the equations iR —0) to 0.24 (\, ,=0.4). ForA, ,=0.2, the bound is

Eq. (5) are nonlinear, one can pladewer boundson the

0.16. In Sec. IV E, the measurement®f, (not a NP signal

theoretical parameters. This is the main point of the paper.;5 5qded. Now the lower bound O,b(z{Jr bf)sin2d> depends

In the previous section we presented several such COM5n the values of both
straints, which we summarize here. The form of the con
straints depends on which observables have been measur
In some cases, it is possible to obtain analytic results; iqo

other cases only numerical bounds are possible.

For example, three distinct NP signals &g, #0, By
# B and A ;#0 (with X,,=0). In all three cases one
can derive analytic lower bounds on the sizebf,

1
bz?z[/\m\_ VA>2\>\_2>2\>\]1

*A

- oo

2

| y)\A)\)\ * yO'A o’o’e2i @
2 1

(b22b2)= 20

2(b2=b?)=A; = A, — (A=A, )2FAT, w
42

where y,=V1-3{/A5, and 20, =287 257" A
priori, one does not know which of the above constraint

will be strongest—this will depend on the measured value

of the observables and/or which NP signals are seen.

Constraints on other theoretical parameters are possibl

For example, if one measurées, ;#0 (with %,,=0), one
finds

Ajicosp+ AL, cosy, <\(Aj+A,)2—A%, (43

Lo and | ;. From Fig. 4, we see that

;Iat takes the value 0.18 fok | ;=0.2 andX, ;= —0.15.

‘In addition to the bounds on th®g, andr, , it is possible
find correlated numerical constraints on the, as in Fig.
2. If these are combined with a measurement 2%, one
can then obtain a bound g8 even though NP is present.

Even if 2w, is not measured directly, one can obtain its
value (up to a fourfold ambiguitythrough measurements of
two observables involving the interference of two helicity
amplitudes(as well as the\,, andX.,,). These can be con-
verted into bounds on the other NP parameters.df 2 is
measured directly, this reduces the discrete ambiguity to two-
fold, and improves the bounds.

Finally, all of the above bounds assume that the (&)
value of 8 is not known. However, it is possible that no NP
is seen int(t)—>J/z,//K*°, in which case measurements of
CP violation in this decay allow one to extract the true value
of B. This value of 8 can then be used as amput to the
analysis of other decays, such Bg(t)HqSK*O, in which
NP signals might be found. IB is assumed to be known,

Sthen the bounds ob? andr? described above are tightened,
¥ general. In addition, it is possible to place bounds on the

NP weak phaseb.

€ We stress that we have not presented a complete list of
constraints on the NP parameters—the main aim of this pa-
per was simply to show that such bounds exist. Our results
have assumed that only a subset of all observables has been
measured, and the bounds vary depending on the NP signal
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found. In practice, the constraints will be obtained by per-
forming a numerical fit using all measurements. If it is pos-
sible to measure all observables, one will obtain the strongest
constraints possible.

As a specific application, we have noted the apparent dis-
crepancy in the value of sin®as obtained from measure-
ments ofBY(t)—J/yK andBi(t)— ¢Ks. In this case, the
angular analyses cBg(t)—>J/¢K* and Bﬁ(t)—»q&K* would
allow one to determine if new physics is indeed present. | ith
NP is confirmed, the method described in this paper woul
allow one to put constraints on the NP parameters. If NP is
subsequently discovered in direct searches at the LHC or
GLC, these bounds would indicate whether this NP could be
responsible for that seen B decays.

PHYSICAL REVIEW D69, 114013 (2004

PZ=A,\[1-y, cod280%-25—-2¢)],

A\\Yy SIN2BY-2B8—2¢)
P2 ’

&=

2}\)\

—, A3
p)2\ (A3)

O)\=

22 1/2
}\)\) (A4)

nela i

Equations(Al) and (A2) can be solved for cas; and

sinA;. Writing
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APPENDIX A'=PoP (& 09— &o0,),
Assume that, in addition td\gg, A, |, g0, and, |, B'=—PyP, (1+ &€ +op0)), (AB)
A o andX | 4 are also known. The expressions for these last
two quantities arérepeated for convenience we get
2, 0=PoP.[(£ 00— &0 )COSA B'A o~ B0
COSAg= AB _BA
—(1+&pé, + 090, )sinA], (AL)
. A'A A
Ajo= POPL[(SJ__gO)COSAO_(O-O—'—O-J_)Son](lAZ) sinAO:ﬁ (A7)
where Then the relation cds\+sir? Ag=1 results in
|
(A'24+B'2)A%+(A2+ B3 2 —2(AA'+BB")A o3 | A
- (ABr_BAr)Z . ( 8)
|
The point is that each of the four combination&?¢- B?), Py=—AZ +2A,,P2
12 12 ’ ’ ’ AT
(A"*+B'9), (AA'+BB’), and AB’'—BA’) is independent ) s
of B and ¢. +AL\Yr COS (287 -28—26),  (A9)
In order to show this, the following relations are useful:
A where
g=-oft2—=r-1,
i 2w, ¢=2p" 287 (A10)
Eof, = AOOAéigoyi 0S 2, o— 1 With these one can show that
POPJ_
AooA 1 Ao Apy (A2+B2):2AOOALL+ZEOOELL
ngi PS Pi ' —2A oo\ 1 Yoy, COS 2w, o,
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(A"24+B'2)=2AgoA | +23002 Ny =4(A5— S5 (A2, —32 ),
+2A00A || VoY1 COS 2w, g, 2

N2=2(AgoA 1 +2%00% 1 )ATy,
(AA"+ BBI):Z(AJ_J_EOO+AOOELL)! )
s oo b, M2=2A00A 11 YoYiALo
(AB'— BA,)2:4(A00_20&(ALL _ELL)San 20, 9.
(A11) N3=2(AgoA 11 +2300% 1 1) 350,
Thus, the relation cég\,+sir®Ag=1 gives a quadratic
equation in cosa@, o, Ms=—2A0A, Yoy, 250,
Nl(l_ CO§ 2wL0)=(N2+ Mz Ccos 2LUL0)+ (NS N4: _Z(ALLEOO"_AOOELL)ALOELO-
+Mzcos2w, o) +N,,  (Al2) (A13)

where The solution for cos@, g is

—(M2+ M) = V(My+Mg)?=4N;(Np+Ng+Ny—Ny)

COS 2w, o= 2N, (A14)
|
Thus, we obtain @ o with a fourfold discrete ambiguitgor, 20, =+ (2B%-257,
equivalently,w, ; with an eightfold ambiguity. N
It is also possible to obtain®, , from direct measure- = (28285 7). (A16)
ments ofpgy and p, |, [Eq. (8)]. However, it is sin B . .
which is measured, so that one extracts two values. Of these four values, in general only two will be found

among those obtained by deriving2, from measurements
of Aggs Ay, 200, 211, Ao, andX | o. Thus, be extract-
meas meas ing 2w, ¢ in these two different ways, one can reduce the
2B\ m=2B\ (A15)  discrete ambiguity to twofold.
Note that this can only be done if new physics is found. If
no NP signal is observed, ther2,=0, and discrete ambi-

This leads to a fourfold discrete ambiguity w2, guities are irrelevant.
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