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Radiative corrections to radiative 7re2 decay
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The lowest order radiative corrections to the width and spectra of the radiadé®elecay are calculated. We
take into account the virtual photon emission contribution as well as soft and hard real photon emission
contributions. The result turns out to be consistent with the standard Drell-Yan picture for the width and spectra
in the leading logarithmical approximation which permits us to generalize it to all orders of perturbation theory.
Explicit expressions of nonleading contributions are obtained. The contribution of the short distance is found
to be in agreement with standard model predictions. It is presented as a general normalization factor. We check
the validity of the Kinoshita-Lee-Nauenberg theorem about the cancellation in the total width of the mass
singularities at the zero limit of the electron mass. We discuss the results of the previous papers devoted to this
problem. The Dalitz plot distribution is illustrated numerically.
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[. INTRODUCTION =131 MeV is the pion decay constai,q is the element of
the Cabibbo-Kobayashi-Maskawa quark mixing matrix, and
The process of radiative negative pion decay, M andm are masses of pions and electrons. The explicit form
of the matrix element includiniyl 5 is given in Appendix A.
7 (p)—e (1) +ve(a)+ ¥(K), (1) In Sec. lll, we consider the process of double radiative

pion decay and extract the leading contribution proportional
attracts a lot of attention both experimentally and theoretito the “large” logarithm InM?/m? which arises from the ki-
cally [1-4,12—-14. The main reason for this is the unique nematics of emission of one of the hard photons collinearly
possibility to extract the so-called structure-depend&im) to electron momentum. We arrive at the result which can be

part M gp of the matrix element, obtained by applying the quasireal electron metf&id
In conclusion, we combine the leading contributions and
M=Mg+Msp, (2)  find that the result can be expressed in terms of the electron

structure function[6]. Really, the lowest order RC in the
feading logarithmical approximatiofLLA) (i.e., keeping
terms[ (a/ ) In(M?n?)]") turns out to reproduce two first-
order contributions of the electron structure function obeying
the evolution equation of renormalization gro(RG). This
fact permits us to generalize our result to include higher or-

Inner bremsstrahlupr) part M'B’ t'he problem of takmg ders of perturbation theorfPT) contributions to the electron
into account radiative correctio®C’s) becomes essential. structure function in the leading approximation. In conclu-

The Iowest_ order RC for a special experimental setup WaZion, we also argue that our consideration can be generalized
calculated in 1991 in Ref4], where, unfortunately, the con- to the whole matrix element

tribution to RC’s from the emission of an additional hard — \o ¢ e next-to-leading contributions, we put them in

photon was not considered. This is the motivation of OUlhe form of the so-calle& factor which collects all the non-

paper. nhan large logarith ntributions. Part of them
Our paper is organized as follows. In Sec. Il, we calculatee ancedby large logarithm contributions. Part of them,

L ; o . arising from virtual and real soft photon emission, is given
Ihe (:(O?t{rl]butlonsl o R|C sazlfro:?tthhe emission of ¥|rtual 32.0' analytically. The other part, arising from emission of addi-
ons(at Ine one loop ievelan € ones arising from adadl- 4i4n4) hard photon in noncollinear kinematics, is presented in

g‘g‘,altsﬁﬁ ph(I)Et[c;n eT'SfS;ﬁn‘ Fotr_deflmlt?nen(:ss, we Cons'deﬁxppendix C in terms of three-fold convergent integrals.
s to the QED part of the matrix elemells , In Appendix B, we give the simplified form of RCighe
lowest order ongsand make an estimation of the omitted

which can be described in terms of vector and axial-vecto
form factors of the pion and the hints of a “new physics”
including a possible revealing of tensor forc@shich are
absent in the traditional standard model

Because of numerical smallnessMfp compared to the

(s*r) (s*p) ek

Mg=—iAUg(r) terms which determine the accuracy of the simplified RC's.
(kr)  (kp) ~ 2(kr) Appendix D contains the list of one-loop integrals used in
calculation of one-loop Feynman integrals.
X(1+ : .

(1+75)v,(a), In Tables I-11I the result of numerical calculation of con-

G tributions of RC’s to the Dalitz-plot distribution in the Born

. ; ) o .
A=e—V,4f .m, 3 level, leading, and nonleading approximations are given.

\/E II. VIRTUAL AND SOFT REAL PHOTON EMISSION RC’S

where e=VAma, Gg=1.17<10° GeV ? is the Fermi A rather detailed calculation of the lowest order RC was
coupling constantg is the photon polarization vectof,,  carried out in Ref[4]. Nonclear manipulations with a soft
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TABLE I. The value of®(3 [i.e., Born inner bremsstrahlung part, see &)].

y/Ix 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.9 41.000 8.278 2.833 1.250 0.644 0.371 0.232 0.156
0.8 33.111 8.500 3.333 1.611 0.889 0.542 0.356
0.7 25.500 7.500 3.222 1.668 0.975 0.623
0.6 20.000 6.444 2.966 1.625 0.998
0.5 16.111 5.561 2.708 1.558
0.4 13.347 4.875 2.494
0.3 11.375 4.364
0.2 9.975

photon emission contribution used in R#] results ina a d%, [ p ro\2

wrong form of the dependence of RC’s on the photon detec-— A ;= — _J ( — )

tion thresholdA e which contradicts the general theor¢. 7 2m?) 201 \(kip) - (Kin)], _ f2ecaeeym

Another reason for our revision of Rd#] is the mixing of !

(on-mass shell and dimensioha¢gularization schemes in it. oAe

We use here the unrenormalized theory with the ultraviolet — _— f[(Le_ 2)In(
cutoff parameter\. ™

Following Ref.[4], we first consider RC's to the “largest”
contribution—inner bremsstrahlund s . As well we con-
sider the central part of the Dalitz plot and orftpossible
B=(m/M)2=1.34x10"°, that is3—0.

We distinguish the contribution to RC’s from emission of
virtual and soft additional photonsA(, and Ag, respec-
tively):

11,
|t ale ZLE1-6

X[1+0(B)], (6

where k; is the additional soft photon momentunh,
=In(y%B) and\ is the “photon mass’¥,= m?/6. This result
agrees with the general analysis of infrared behavior given in
Ref. [7].

Now let us consider the calculation of the virtual photon
emission corrections. First, we use the minimal form for in-
troduction of the electromagnetic field through the generali-
' zation of the derivativep,,—p,—ieA,.

a

> Mgyt sor= 2 IMg|?[ 1+ ;(AV+AS)

i tat
spin st The sum of contribution&ll particles except antineutrino
(4)
can be on or off mass shgleads to
h “n o - o~ oA
where s(F+R+m)p ) s(F+k+m)
————v,(q)—ev,(q)=m- v,(9),
(1-y)(1+(1-%)%) (r+k)?2—m? (r+k)2—m?
> M g[?=8A7—— =8AZB(x.y), )
X“(x+y—1)

(5) p=r+k+q. Thus we can extract the contact photon emis-
sion vertex and obtain the effective vertexm, as it is
(herex=2(kp)/M?, y=2(rp)/M?2, z=2(kr)/M?, M is the  shown in Fig. 1.

pion mass In terms of this new effective vertex we can write down
Soft photon emission RC’s have a standard f¢see, for the one-loop Feynman diagrantED’s) of virtual photon
example Ref[8], formula(16)], emission RG (a/w)Ay] which are shown in Fig. Zsee Ref.

TABLE II. The value of (@/27)(L.—1)® (3 [see Eq(B1)].

yIx 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.9 —2.740 —0.521 —-0.174 —0.076 —0.039 —0.022 —0.014 —0.009
0.8 —1.773 —0.407 —0.152 —0.071 —0.039 —0.023 —0.015
0.7 —1.155 —0.290 —0.116 —0.057 —0.032 —0.020
0.6 —0.772 —0.203 —0.084 —0.043 —0.025
0.5 —0.521 —0.140 —0.059 —0.031
0.4 —0.348 —0.093 —0.040
0.3 —-0.221 —0.056
0.2 —0.118
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TABLE Ill. The value ofK(x,y) [see Eq(33)].

y/x 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9 —2.568 —1.855 —-1.135 —0.512 —0.160 0.106 0.215 —0.018

0.8 —2.707 —2.362 —1.978 —1.596 —1.229 —0.994 —1.161

0.7 —2.657 —2.493 —2.248 —2.012 —1.850 —1.941

0.6 —2.716 —2.600 —2.438 —2.333 —2.431

0.5 —2.892 —2.748 —2.661 —2.768

0.4 —3.137 —2.979 —3.049

0.3 —3.575 —3.405

0.2 —4.324
[4]). We should notice that these diagrams can be separated 8a _1-y[1 z
out into four classes. The contributions of each of thesed|My;|*=2 Re{(M|B)+Mm}=——A2W E_ln(ﬁ)
classes are gauge invariant. m )

Three first classes were considered in R}, where their
gauge invariance and in particular the zero contribution of
class Il were strictly shown. The last statement directly fol-As we work within the unrenormalized theory, we should
lows from the gauge invariance. consider class I\V¥not considered in Ref4]) which concerns
The contribution of class Il contains the regularized masshe contribution of counterterms due to renormalization of
and vertex operators. The relevant matrix element has thghe pion and electron wave functiofsee Ref[8], formula

form 7],
) a — - ~(g*Tr) ke*
M|||:—IA217—Mue(r) & —km Bl+VBZ o 1 3 M2 9
AMP=2 Mgl o= | = sLat s InB+in———
X(1+ y5)v,(q), ®) eril 2 2 v
where M* 3
N =3 (10

1 1( y' )

1 1 2y'?+3y'+2
—Nt—— g
y/ 2a 2y/a2

wherel , =In(A%¥M?) and A is the ultraviolet cutoff param-

eter to be specified later. The first term in the brackets in the
Bzz —
B

Class T Class 11 Class 1T

1 | |
n=—[Lis(1)~Li(1+y")—imIn(1+y")]; - -J_':{ - f‘§<
y
herelg=InZB—im a=1+y’, y’'=2(kr)/m?. We see that -
M, is explicitly gauge invariant and is free from infrared ____¥__»" | __¥ __
singularities. At the realistic limity~x~z> 8 (rather far é

from the boundaries of the Dalitz p)oive obtain for contri-
bution to the matrix element squafstructure~B; gives a

zero contribution in the limi3—0) (in agreement with Ref. . S

[4]) AX
g \< Qi ----- mi<
- % ol

Class IV

FIG. 1. Effective vertex. FIG. 2. Feynman diagrams of virtual contributions.
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right-hand side is the electron wave-function renormalizationThe denominators of the pion and electron Green functions
constant and the second one corresponds to the pion wav@y are listed in Appendix D. We omitteah everywhere in the
function renormalization. numerators. The ultraviolet divergences are preseAt iand

Let us now consider the contributions of FD’s of class I. As.
In Ref. [4] the explicit gauge invariance of the sum was Using the set of vector and scalar integrals listed in Ap-
demonstratedk ,(T{+ T5+T5+ T4+ T£)=0, whereT/* is  pendix D and adding the soft photon emission corrections we
the contribution of the corresponding FD of clasgske obtain

Fig. 2.
The contribution to the matrix element square can be writ- a a 3
ten as 1+;(AV+A5)=SN[1+; (Le—l)<InA+Z —InA
A[M[2=2Rg(Mg) "M}
ROXY) | (12)

@ d*k, B'(x,y)
_ A2
2 R f i 2 (At At Agt At Asl whereSy=1+3(al/m)L,, A=2Ae/yM. R(X,y) looks like

(12) 3 2
R(x,y)=4aby| —5Iny+§—4lnyln§
where o
—8blny{—ay(1+In4)

AIZE 1 Sp[F[Z(f)—R)—Rl](F—Rl) +[(x=2)2—y(a+2)]Inx+x(1+y?)Inz}
X (0) ) +2b In?y{ — 16y + X[ 16— 7x+ 7y(x—2)]}
X(1+75)61((Qp)+k—p)li, —&,-8by[6+2x2—X(5+Y)]

Z)|Mm? _
+4xyzh Li,y| = | = Liy(1—y) |+ 8abyLi,(x)
L . ky* _ _
AzzmsF{rh(r_kl)(lJr?’s)q Q}\“LT } +8abylnxIn(1—x)—8xxyz(x+y—2)Inz

—4xyzIn2z[ —x+y(x—2)+y2]—4xyb, (13

2 ~ ~ T ~ r PR
A= W2 SP[V(ZP_'@(V"‘D B'(x,y) =8(1-y)[1+(1—x)2](x+y—2)2=8aby,

(14)

wherea=1+(1—x)?, b=(x+y—2)%, x=1-x, y=1-y,
z=x+y—1. Here we do not have a complete agreement
with the result of Ref[4]. Note that the sumAs+ Ay, does
not depend on “photon masg’, and, besides, the coefficient
at the large logarithnh . agrees with RG predictions.

z

) R(h—k
X (1+ y5>q([o<p—k1>]+ (p—l)”

A=

1 A aa A4
——Sp[mzp—kl)(r—kl)
(0(1)(2)(2')
Ay)\ Ill. EMISSION OF ADDITIONAL HARD PHOTON
Q'+~

Xy (T+k—ky)(1+ v5)q -

Emission of an additional hard photdnot considered in
the previous papers concerning RC’s to the>evy decay,
i.e., the process of the double photon emission in#e2

1 1 ~
decay,7 (p)—e (r)+vo(q) + v(ky) + y(ks), is described

As= —Sp[FmHRMZb—Rl)

2(0)(1)(2')
kyM |1
V4

X (r+k—ko)(1+75)q 5
M

wherek; is the virtual photon momentum,

:—_+_:_
Qu (kp)  (kr) M2

Pu  Tu Z(rﬂ Pu
z x)/

by 11 FD’s drawn in Fig. 3.

In collinear kinematicgwhen one of the real photons is
emitted close to the electron emission directithe relevant
contribution to the differential width contains large loga-
rithms.

The matrix element of the double radiative pion decay has
the form

M7 =iAV4ma[ue(r)O,,(1+ ¥s)
Xv ()] e (k)es(Ka), (15
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1 ¢ ¢} 1o? § It is convenient to consider separately the collinear kine-
1 l E i 1 l matics of emission of one of the photons, i.e., the case when
o < - < T T the angle of emission of one of the final photon directions of

1 2 3 4 motion is rather smallg, = (r',k;) < <1, 62> . (Note that
double collinear kinematics is excluded since the invariants

1 2 2 1 2 1
i J_ * 2 X1 ,=2(ky 2)/M? cannot be small simultaneously.
s B N A, .l The contribution of these collinear kinematics to the dif-

ferential width contains “large logarithmsl .. To extract

5 6 ’ 8 the relevant contribution we can use the quasireal electron

2 5! 12 method[5]. For this aim let us arrange the integration over

% % V phase volume in the following way:

9 10 11< IM[2d®,= M ¢[?dDg + [Mc|*(dd ,— dD)
+(IM]2=|Mc|?)dDy,, (19

FIG. 3. Feynman diagrams, describing the double radiative pion
decay. with

wheree, , are the photons polarization vectors which obey

the Lorentz condition:(ky,&1(k;))=(Ky,e5(K,))=0. The 8 y*+(y+xp)? 168

(4ma) 22 M= — — - —

tensorO*” has the form xp Xo(Xaty) o xj2
2p¥[2[p—ki]"]  2p"T2(p—ka)*] 1+ (1—x7)%](1—xp—
OHrV= —29‘”+ 1 + 2 X[ ( Xl) ]( X2 y), (20)
1 2p*  Y(r+ko,+m)
X + 3rd3L. 43
k,d>k
—ki—k)2—M2  —2(kp)  2(kpr) BV g, =m0 KK 2
(P—ki—kp) (27)8M ~*dd,=M TR T S (p—r—k;—ky)?]

2p” y“(F+R1+ m)

+ 2
— a
2(kap)  2(kqr) = —XyXpydxdx,dy dC; dQ,
2

r+k,+m r+k,+m
Y Y Y XX
172
2(kar) 2(kar) X8 1-x—x—y+ —-(1-Cyp
r+ky+k,+m
(r+k1+k2) —m +7(1_C1)+ 7(1_(:2) , (21)
One can be convinced in the explicit fulfillment of the re-
quirements of Bose symmetry and gauge invariance 72 X
M7™=e"Y(g,—k,)=M7 " (g,—k,)=0. The expression (27)8M 4dd§ = o dx;dx,dy dQS, (22)
for |M ™72~ S (r +m)O*’q O,,,] is rather cumber- 7 X2
some.
The contribution to the differential width has the form  Where
1 2(ky2p) 2(ky o)
drnaard:_E |M7Heyw|2dq)4a (17) X1,2= . ,
2M ! M2 ! M2
(2m)* d3q d d3k, d3k, — —.
dd,= o &(p—q-r—kyi—ky). Cio=cogky ,ky), Cyo=cogkyy,r),

4_(277)12 ZQO 2r0 20)1 2(1)2
(18)  and dQ, is the angular phase volume of the photon with

. . . four-momentunk,.
We do not take into account the identity of photons: we Note that integration over the angular phase volume

believe the photon with momentuky to be a measurable dQ, in dq)ff [see Eq.(19)] is restricted by fdQ(z:

one with 2,p)/M?=x and the photon with momentuky _ om 1 . .
to be a background one with R{p)/M?>A and most gen- ~ 0 dé fl*HS/ZdCZ and in the second term in Eq19),
eral kinematics. dd,—d®S can be replaced by dd®, with
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_2my (1002 : 1422 3
fdﬂz—fo do [Z,7° dC?. The.secon(.j and th? thqu terms P = fim 6(1—2—A)+5(1—z)(2 A+ >
in Eq. (19 do not contain collinear singularities, i.e., are Aol -2 2
finite in the limit 3—0. )
The contribution of the hard photon emission can be writ- _ 1+z 29)
ten out in the form 1-z) .’
1dt z
drhard a (1dt y 63 P (7= | — pW(z)p-1| = 29
Tie 2 [T SRAI . Zo (2) (2) : (29)
dxdy A Zij n B(x,t)| Py (t) Le 1+In4 . t t
vl The functionKz(X,y) is the so-calleK factor which here
13|+ —KIExY. 60,0), (23  has the form
R(X,y) h
. . . . Kig(x,y)=2 —2InA+Kj(x,y,4), (30
where the functiorB(x,t) is defined in Eq(5), B'(X,y)
) where R(x,y) and B’(x,y) was defined in Eqs(13) and
1+z (14). The quantityk'L(x,y,A)—2 InA is finite atA—0 and
(1)(5) = o 1BLX Y,
Py(2) 1-z 6(1=z=4), (24) its explicit expression is given in Appendix C.

. . IV. DISCUSSION
andK[i2"%(x,y, 6o,A) represents the contribution of two last

terms in Eq.(19). Now it is convenient to introduce the It is easy to see that in the total decay width all the de-
following quantity: pendence o disappears in accordance with the Kinoshita-
Lee-NauenberdKLN) theorem[9]. Really, we obtain inte-

grating overy:
Kis(x,Y,8) =K[g"(x.y,0,A)

1dt 63 fld fldtD(y) f(t)—jldtf(t)ftdyD(y>
+f —B(x,t) Pgl)(z)|n—°+1—4, e M 0 ot 1t
gt t)" 4 t
1 1 1
(25 =f dtf(t)J dzD(z):f dtf(t).
0 0 0
which does not already depend on the paraméter The (31)
explicit view of Kig(x,y,A) is given in Appendix C. Now let us discuss the dependence on the ultraviolet cutoff

In the total sum of virtual, soft, and hard photon emissiony _ |t was shown in a series of remarkable papers by A. Sirlin
contributions all the auxiliary parameters—photon Mass [10] that the standard model providds= My, . Another im-
and A—are cancelled out. The resulting expression for theyortant momentnot considered heyds the evolution with
differential width with RC's up to any order of QED PT with regpect to the ultraviolet scale of virtual photon momenta
the leading logarithm ¢/m)L.~1 and the next-to-leading from the hadron scalenf,) up to M [10]. It results in ef-
accuracy have the form fective  replacement Sy— Sgw= 1+ (a/m)IN(MZ/Y)

~1.0232. So all the QED corrections to the total width are

drRe 1dt y o small ~O(«/7), but the electroweak ones rather lardé:
dedB =A28Wf TB(x,t)D(? 1+ Z—K,B(x,y)>, ~I'y-Sgw. The factorSgy, can be absorbed by the pion
y Y m 26) lifetime constantf .\/Sgw— 2P [11]. Thus we replace;,
defined in Eq.(3), with A, ,
where D(z) is the well-known electron structure function, Ge Ge exp
which has the form A=e—=Vyf.m — Agp=e—=Vf;"m. (32
V2 V2

o We also note here that according to Héfl] we must use the

D(2)=6(1-2)+ 5 (Le— 1)PH(2) redefined constam,, in the Born approximation. That is

why we useA.,, in Appendix A.
2 In our explicit calculations we considered RC'’s to the

Z) (Le—D?PP(2)+---, (2D inner bremsstrahlung part of the matrix element. Let us now
argue that in the integrand of the right-hand side of 26)
one can replacB(x,y) by the total value including the struc-

where ture dependent contributio@gz(x,y) which is defined in

o

114004-6



RADIATIVE CORRECTIONS TO RADIATIVE we2 DECAY

Eq. (A5) in Appendix A. This fact can be proved in the

leading logarithmic approximation. One of contributions Mgp=

arising from the additional hard photon emission close to the
electron direction can be obtained by applying the quasireal
electron method[5] and has the form(26) with P®)
—PM. The KLN theorem in a unique form provides the
soft photon emission and virtual RC’s to be of a form with

complete kerneP(z) in the structure functio®(z) in Eq.
(26). So our result reads
dFRC P 1dt Yy o
= — o 4 —
dxdy Aexp.fy t CDtot(X!t)D t 1+ ZWK(X,)’) .
(33

MT:_

PHYSICAL REVIEW D 69, 114004 (2004

Aexp — 1
Wue(f)%( +vys)v,(d)e,
X{Fyet"*Pp ks+iF A[g*(kp) = p*Kk"]},  (A3)
Aexp T
mfexp FTe k ue(r)o-,uv(l—’_‘)/S)UV(q)
CAew Q.
e 1(K.Ep ﬁea)Fue(r)
Xa*"(1+ys)v,(q), (A4)

We also calculate the RC’s to the SD part in the leadingvhereQ=p—k. The constanf,, is defined in Eq(32).

logarithmical approximation. Formul@®3) can be trusted in  Squaring amplitudéAl) and summing over the final photon

the region where the IB part dominates. In the region wherdolarizations leads to the following decay width:

IB<SD, which is suitable for SD measurement, both IB and d2ro

SD are small; so the question about nonleading contributions— =

becomes academical. Thus we suggest herekHattor is dxdy
the same order of magnitude as for the IB péik.,
K(x,y)=K,g(x,y)], where it can be calculated in the model-
independent way. Its numerical value is given in Table III.

We underline that the explicit dependence on the “large
logarithm” L= In(y?B) is present in the Dalitz-plot distribu-
tion.

Now let us discuss the results obtained in some previous
papers devoted to RC in the radiative pion decay.

In Ref.[4], the hard photon emission was not considered
which led to violation of the KLN theorem.

In Refs.[12] and[13], the main attention was paid to the
possible sources of tensor forces. As for real GEHDN cor-
rections depicted in formula(13) in Ref. [12] SI'/T
~0.7(a/7)~0.2%, the QED leading RC was presumably
omitted.

where
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APPENDIX A: BORN AMPLITUDE

The radiative pion decay matrix element in the Born ap-

M , )
(277_)4Aexp5¢)tot(x!y)
a
A2 =D+ (fy+ F)2DO+(fy—f 42D

+2\BL(Fy+ F A DO, + (fy—F DO
_f 127 (0)
+2[2f(fr—fp) + 17D

+2[2(fr— 1)+ Fx] @), (A5)
1-y)[1+(1—x)?
)
x2(x+y—1)
®P=(1-x)(x+y-1)%,
0= (1-x)(1-y)?,
(0) _1
O, = (1=x)(1-y),
1 x2
0) — _Z(1— _
ofi= -~ (1 y)(l x+x+y_1),
PP =(1-y)(x+y—1),
1-y
(0)_
(I)TZ X ' (A6)

particular, the conservation of the vector current hypothesis

M=Mjg+MsptMr, (A1) relates the vector form factét, to the lifetime of the neutral
pion,
where
o 1 2T (7%= yy)
M " _( ) (s*r) (g*p) e*k |FV(O)|=; W—MZOOZSQ"_'OOOOS,
=—i Ue(r -
BT e eV kr) (kp) | 2(kr) (A7)
X(1+ys)v,(d), (A2)  or equivalentlyfy~3.78. The Dalitz-plot distribution of the
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inner bremsstrahlung part of the Born amplitudg? is
given in Table I.

APPENDIX B: SIMPLIFIED FORMULA FOR RADIATIVE
CORRECTIONS

Here we present the simplified form of radiative correc-

tions,

2
Mee_pz @ M o Tl (141,200
dxdy = “P2m (2m)* P2 -

+ (fy=Ta) 200+ 2V B (fy+ fA) DI,
+(fy=fA) R T+ 2[2f7(fr— 1)+ 2]

Int—

+2[2(fr— )+ Fx] @)
o

o (Lem DI®fF+ (fyt fo) %0
a

+(fy— 020D+ 2Bl (fy+ f) D),
+(fy=fA PR T+ 2[ 2 ¢(fr— 1) + 2]

+2[2(fT—f+)+f+x]cb<le)}], (B1)

where®(?) was presented in Appendix A and

1+x2[3y y x+Xxy y y
)= —=+Z———Iny+2=In-
X2 |22 x X2 zy

X(X2+y?) X

- — In—|,

X%z z

3, 1-y> —
cb&l)=§[§zz+ 2y +y(y—2x)

+X(x—2y)Iny —x2y + 222 Inﬂ,

3, 1-y? —
CDU)=;[§y2+ 2y +y(y—3)+(1—-2y)iny
— Y
+2 2Inq,
Y y
xly — 'y
¢f%2+=gg—ylny—2ylnﬂ,

1] 1 3x%y _[_ oy
O =—| — —xy+-—+x| ylny+2yIn=-
X 2 z y

2
Y Xy ¥y
+X°| = ——Iny+2-In-
x X2 zy

Xz z

X(x2+y?) x) ]

PHYSICAL REVIEW D69, 114004 (2004

Y - == — — Y
+y(2x+y)—(xy—y)|ny+2yz|n)—/,

2

y 1 y
Ww_2| _ = Z
(I)Tz_x 2+Iny+2|ny ,

wherez=x+y—1,x=1-X, y=1—y. Here we should no-
tice that the functionsb(!) satisfy the following property:

3
o= a

(B2)

1
J dydM=o0, (B3)
0

which is in accordance with the demands of the KLN theo-
rem.

Let us now estimate the magnitude of the terms omitted in
our approximate formuléB1l). They are

a ‘(m)za M?2

m 2
(M) :;K(x,y) — -;In;:

2
M2
_|n_
aa m2

=10 *1-2x10"3%1075%104, (B4)
respectively. The main error arises from/¢r)K which is
presented in Eq(30) and Appendix C. The Dalitz-plot dis-
tribution of RC’s to the inner bremsstrahlung part of the

Born amplituded(2) is given in Table II.

APPENDIX C: HARD PHOTON EMISSION K|hB FACTOR
In the numerical calculation of thi[y factor (25) it is
convenient to use the following form of phase volu(24):
M4 72 XXy

dp,=—— —
(2m)8 25 |A,|

d xdy dG dQ,,

Whel’e szde2d¢2, A2=2_X(1_C12)_y(l_C2),
Cy,=c0sk; »,r). Thus theKy factor which comes from
hard photon emission RC’s reads

Kis(x,y,A)—2InA

1 y 1 X
=— | dCdQy— —— I ye(X,X5,Y) +2—
e 1 2|A2| B(x.y) ne(X,X2,Y) Xy

1 ( a,
+ B(xy) X_é [L(X,X2,y) = |A] oty
1dt B(x,t) ( y)
- - (Cy
y t B(X!y) t

where
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2y 2y?  2yx yx yx y> 2y’ y3x yx* y%x 2%,  YXo
(X, Xo,Y)=—y+ ——y2f —— — 4 — = X YXp— —— — —
LXXz.Y) y y a a b ab b ab ab ab ab 27 Y% a b

2% Y%, 2%,  2Y%Xy AYyXs XXo XXp YXXo  YXXo  2Y°XXy XXy  YXXp  Xp°
+ + -—+
ab b X X ax b2 b b2 b ab b2 ab

YXX%Z  YXXZ  X2Xp2 XX yx yx oy 2y v oy yAx2
+— + - ——t et —— — —— —
b b2 ab b>  b? x; x; x; bx, x; bxj bx; bx; bx

VX YXo Yo 2%, ¥, 2yXX  2yXX ByxX 4y®XX, B6y>xX, 2y3xx,
+ + — + + + - — +
x; bx;  x;  bxy  bxg X b?x;  bx; b?x} bx; b?x;

4yxPx,  AYXPX,  AyAXPX,  2YXXy  YXo?  YAXo?  AyXX?  AyXX?  AyPXX?  AyxPX,?
- - + + + - - + +

2,7 ’ 2,1 2,1 ’ ’ 2, ’ 2,1 2,1
b“x; bx; b“x; b“x; bx;  bxg b"x} bx; b“x; b“x;

2yX%3  2yX]  yxXX, YAXX] 2XoX]  2XpX;  2XoX)  2XoXp  AXpX  XXpXp  XXoX|
- +

b?x; a ab ab a b ab X ax b2 ab
2YXXoX]  XXp2X]
- - : (C2
ab ab
1 singular regular
INC(X1X21y):X_2|NC (nysz)_HNC (X7X21y)1 (Cs)

_ —4x  4yx 2x 2yx 4yx 4xxp 4xX, 2xXX; 4XXy
IR XY= ——+ — e e e e e (Ca)

2 ’ ' ’ 2 2 ’ !

8 8y 4y 6x 4x 4yx 3yx yXx x® yx* 6X, 4x, 4yx, 3yX Yy,
egulalix,x,,y)=2— —+ —— —+ —F ————F — — — - — — ——f — f — — + -
a g2 a a ab 42 ab ab ab ab a ab a2 ab ab

4%, AyX, 2yX¥% Byxx 3x2X, X,
J’_ — —

2 2 ’ ’ ’ ’ ’ ’
ax a‘x a ab ab ab ab ab Xp ax; X axy X1 X1

y 2y y* 2y? x yx

2yx yx2yx oy xP YR 2y% Y VX YXp 2¥Xp Y XX
- —— —— - + +
ax; bx{ abxy bx; bx; bx; ax; bx] abxg bx; abx; abx b?]

2

XXo  YXX  YXX  2YXXs  YXPXy  YXPXs  XXp  YXo?  YPXR? XXp? YXXo?  XPXp2
- + - + - + + -

+ —_ —
bx; b?; bx; abx; b?] abxg b?; abxg abx b%] abx b}
! ’ ! ! ! ! ! ! ! ! !
8Xy  AXXy  AXoXy  AXoXp  2XXpXp  8Xp;  AXXy  AXoXy  AXoX,  2XXpXy  2Y X
-——+ + - - -— + - - -
a2 a? a? a’x a2 a2 a? a? a’x a2 ax;
2XXp  2XXp  2XXp  YXoXp  YPXoXp  XXoXhp XXX, 2YXXoXs  XZXpXh
+ + + + - - - - - , (CH

! ! ! ! 2 ! ! ! !
ax; bx; abxy abx abx < b°x; abx abx; abxg
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(1=x=y)[1+(1-%)°] (xz+y)*+y?
X2(X+Xx,+y—1) X2ty

L= , (Co)

herea= (xxo/2) (1—Cyp) —X— X5, b=(xx%/2) (1—Cyp) + X3
X5, X;=(x1y/2)(1-Cy), X2=(X2y/2)(1’—\C2), Ciz
=C1Co 1 $,5,C080,, Ci=cosky k),  Sio

=sin[Ky 2,1). A=xy+xx[Co—(C1S,/S;)cosy].
Let us note that the combination

where

1 1
Bxy) X ﬂ?“%xx2w+2—

is finite at thex,— 0 limit. In this integral the value o%, is
fixed by the delta function in phase volum@l): x,

=(1/A)[2-2(x+y)+xy(1—-C,)]. The energy conserva-

tion law gives G=x,<2—x-—VY.

APPENDIX D: VECTOR AND SCALAR
FOUR-DIMENSIONAL LOOP INTEGRALS

We introduce the following shorthand for impulse inte-

grals (we imply the real part in right-hand side

; f d%, 1 » f d%k, ke
) oG- T ) G
(D)

where we have used the short notation for the integral

denominators,
(0)=ki—A?,

(D=(p—k)?~M? (1)=(p—k—k)’~M?

(2)=(r—ky)?=m?,  (2)=(r+k—ky)?>~m? (D2

The integrals with two denominators are

‘]1’2:LA1 ‘]OIILA+11 ‘]12:LA+1+ %ylny,

X
ler LA’ ‘]ll’:LA_ll J011=LA+1+m|nX,

‘J22'=LA_1_L,81 J02=LA+1_L[3,

2—
J02/:LA+1_In(Z), Jl/zr:LA+1_T§|n(2_y),

1
(D3)
whereL y=In(A%M?), L g=In B8, B=m?/M?.

The integrals with three denominatdsge putM =1 and
introduce the notation 3= \?%/M?) are

1 2 2 1 y—1
JOlZZE Lnhg—In“y+ EL +2Liy| —— y ,

PHYSICAL REVIEW D69, 114004 (2004

1-x
JOl’sz —§2+Inxln7+Li2(x) ,
1 f1 ]
lez'ley Eln y+Liy(1-y)—InBIny;,
(D4)
2 1.

3012':_2(1—_2)"1 Z, 3011’:;[“2(1_)()_52],

1
Jooz= 3|5 |n E‘fzy 311'2:_1Ty|-'2(1_y),

whereL.=In(y%B), &,=Li,y(1)==/6.
We also need two integrals with four denominators:

2

1 (1 5 z
J =—— —-Li+LJn—+2 , D5
0122 ZyZ 2 e e )\S §2 ( )

11 X2
Jorro= — 1 —L24+LJIn—+2&, .
0112 ny 2 e e )\g 52

(D6)

Now we consider the vector integrals with three denomina-

tors:

Jo12= P a1t 1 Boaa,
Jb1o=(P—K) gy o+ 1*Boyz,
Jb1r =P o1y + K Bory
ngzr =prapy +(r+k)*Boiz ,
=pragytr#BrratkCyg,

‘] 12—

Jioy =P a1y +1#B1oy +KHCro

ngz, - rﬂaozzr + kﬁﬁozzr . (D?)

The coefficientsw;j, , Bij, andc;j, are the following:

1
Q12— §(312_301),

]
= B, B .
Bo1z y |1z dorm y 1 01
1
o1y = ;(301—301' +XJo11/)s
1 2
Boir = X Jipr—Jor — ;(301_301/+X3011/) )
Qo1 2= _X(Jl’Z_‘]Ol’)’
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1 1
Bor2= m(z\]or —J12=Joo—XJo1r2)s Bior =J120 + ry(le—le')-
1 1
Qg1 =— [22(J1 — o) Cr22= ry(Zle_ler —Ja2 —YJi22).
(1-2)?
—(142)(I1p — Jog+ 2Jp12) ], The vector integrals with four denominators are:
1 Jo10y = P o120 +1#Boroz + (I +K)*Corpx . (D9)
Boiz =~ 2[2(~312'_~]01+ ZJp12) o )
(1-2) The coefficientsy;j., Bijc, andc;j, are the following:

—(1+2)(J1—Jo2) 1 1
Jigz + ry[ZJOZZ’ —(1-2y+2)Jp1»

o122 = m
ooy = E(Joz' —Jozt+2J22),

—Y(Jo12—=Z2Jp122) ]

1
Bozor = E(Jzz'_Joz/)a (D8) 1
Boizz = m{(z+ y—2y—1)J1p2
ayyp=Jd112+ ry(le_Jyz), 21— 2+ 2) gy + (1—2)2Jory

1 +[y(1+2)—22](2Jp122 — Jo12 }» (D10)
B1r2= H(Jyz_‘hz),
1 Co122 = m[(y_zz)\llzz'
C112= H[Jn'_2\]12+31'2_(2_Y)311'2], 1
+ ry{yz(-]mz_ ZJ122) —YZdoo

1z = 1oy iz 9, ~[Y(1+2) - 2203012},
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