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Radiative corrections to the azimuthal asymmetry in transversely polarized Mgller scattering
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Experiment E158 at SLAC can measure an azimuthal asymmetry in single-spin, transversely polarized
Mgller scatteringe™ 'e”—e~e™, which arises from a QED rescattering phase. We recompute the leading-
order (one-loop asymmetry, confirming previous results, and calculate the leading logarithmic QED correc-
tions due to initial-state radiation from the beam and target electrons and due to final-state radiation. The size
of these radiative corrections is quite sensitive to experimental details, such as the acceptance in energy and in
polar angle of the scattered electron. For E158, the corrections are modest, increasing the parts-per-million
asymmetry by roughly 1%.
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[. INTRODUCTION two-photon exchange with a single proton in the intermedi-
ate state, but also from inelastic hadronic intermediate states;
Single-spin triple-product asymmetries, or asymmetrieshe latter terms are difficult_ to compute directly, although
arising from transverse polarization, play a special role inthey can be bounded experimentdl). .
scattering theory because they are directly sensitive to res- Perhaps the cleanest setting for studying such asymme-
cattering phases. An operator of the fon=S. (kxk'), tries is in a process dominated by QED, such as transversely
where S is a spin andk andk’ are two different particle Polarized Msller scatteringe™'e”—e"e”. Experiment
momenta, is odd under a “naive” time-reversal operationE158 at SLAC performs Mgller scattering f45 GeV po-
which reverses all spins and momenta, but does not earized electrons off unpolarized target electrons at rest. The
change initial and final states. A nonzero value @stems ~Prime goal of E158 is to measure the parity-violating right-

from terms in the covariant scattering amplitude that are prol—ef} erlizyrt?r?]etrx m_the ciross /sectjron for I_T_)Egnur?w;]atlll t}?am
portional to the Levi-Civitaensore,,,,, which always ap- polarization, Apy=(0r—0u)/(ort01). € nght-et

. i . asymmetry is sensitive td boson exchange and potentially
pears accompanied by a factorioHence, in the absence of

CP violati tati e . to new physics, such as a nelvboson or contact interac-
violation, a nonzero expectation valy®) requires an tions. The first measurement has yieldég,=[—175

absorptive (imaginary part for the amplitude, Ifi#0, +30(stat.): 20(syst.} X 109 [7]. While most of the E158

which can be generated_ py r.escatterllng—for example, b}ﬁata were taken with the electron beam polarized longitudi-
one-loop diagrams containing intermediate two-particle cuts, a1y in order to accomplish this measurement, a fraction of

There have been many theoretical and experimental Stucﬂhe running was carried out with transverse electron polar-

ies_of single-spin transyersely p(_)larized asymmetries _in ation, enabling the measurement of an azimuthal asymme-
variety of contexts. For instance, in the decay of a polarize ry:

neutron,n' —p+e” +v,, an expectation value fdB,- (Ke
X k,) is produced by QED final-state interactions, which can 2m  d(o!—ah)
therefore mask trulfi-odd effectd 1]. Analogous single-spin Ar(p)=
observables in the decay of a polarizédboson to three
hadronic jets, stemming from QCD and electroweak final-
state interactions, have been studied theoretiddlyand whereS; is the spin of the incoming electron, with momen-
bounded experimentally]. QCD final-state interactions can tum ke, and ¢ is the azimuthal angle of the scattered elec-
also play a role in generating azimuthal single-spin asymmetron (with momentumk_) around the beam direction, mea-
tries in semi-inclusive pion leptoproduction off polarized sured from the direction of the transverse polarization.
protons at leading twig#]. Similarly, a phase in the timelike In contrast toApy, @ nonzero azimuthal asymmetry
electromagnetic proton form factor from QCD final-state in- At(¢) can be generated by QED interactions alone. The cal-
teractions can be detected by measuring transverse prot@ulation of Ar(¢) for transversely polarized Mgller scatter-
polarization in the reactioa*e‘ﬂpa[s]_ ing at leading one-loop order was performed by Barut and
As a final example, QED rescattering phases produce ahronsdal in 19608] and by DeRaad and Ng in 1978].
azimuthal asymmetry in the elastic scattering of electrons ofBecause only the absorptive part of the scattering amplitude
transversely polarized protorsp' —ep, or transverse final- contributes to this observable, achannel cut is required.
state polarization in the time-reversed reactiep—ep/.  Hence only the box Feynman diagram enters, plus the ver-

The QED asymmetry receives contributions not only fromsion obtained by exchanging the two identical outgoing
electron legs, as depicted in Fig. 1. Besides the rescatter-

ing phase, the effect requires an electron helicity flip.
*Email address: lance@slac.stanford.edu For center-of-masgc.m) energies much larger than the

"Email address: mschreib@slac.stanford.edu electron mass,\/;> m,, therefore, it takes the formA+(¢)
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4 4 f | 4 | versely polarized beam electron also involves analogues of
Z + }< + kernels for the evolution of transversely polarized quark dis-
2 tributions[16]. These kernels can be obtained from the stan-
@ o ' dard longitudinally polarized splitting amplitudes by a
change of basis.

FIG. 1. (a) Tree-level graphs for electron-electron scatteriiny. We find that the magnitude of the leading-logarithmic
One-loop graphs contributing to the azimuthal asymmetry for transNLO corrections is quite sensitive to the experimental cuts.
verse polarization. Because an absorptive part instebannel is  Initial-state radiatior{ISR), for example, lowers the effective

required(the cut is indicated by the dashed linenly box diagrams  value of s, which could enhance the asymmetry, since the
fr?em;'r?s\t;'nziftgiﬂz\ﬁr:sci;?r'}n (ljifntge beam electron is indicated by, 5 ging-order asymmetry is proportional toe/\/s. More
g line. importantly, ISR also skews the relation between polar
angles in the post-radiatiom” e~ c.m. frame and the labo-
=a><me/\/§><f(0)sin¢, where « is the fine structure con- ratory frame, changing the effective c.m. polar angle accep-
stant, ¢ and ¢ are, respectively, the azimuthal aidm. tance of the experiment. Final-state radiatie$R does not

frame polar scattering angles, arids a function ofé. have either of these properties and typically produces smaller
Since there are two identical electrons in the final state¢orrections to the asymmetry.
f(#) must be odd undef— 7— ¢; that is, a symmetric ac- This paper is organized as follows. In Sec. Il we establish

ceptance irg (in an unsegmented detectovill wash out the ~ our notation and review the leading-order azimuthal asym-

asymmetry ing. The E158 detector is well segmentedgn ~ Metry prediction[8,9]. In Sec. Il we describe the leading-

(12-fold), but coarsely segmented # (only 2-fold). Fortu- logarithmic NLO corrections and present numerical results

itously, the # acceptance is almost entirely in the backwardfor an experimental arrangement similar to E158. In Sec. IV

hemisphere in the c.m. frame, leaving the sensitivity of E158Ve present our conclusions. In the Appendix we give a deri-

to Ar(¢) quite high. vation of the kernel needed for evolution of the transversely
The E158 c.m. energy is roughly 200 MeV, so the asym-Polarized electron distribution.

metry is of orderame/\/§~ 10~°. This may seem small, but
it is two orders of magnitude larger than the electroweak  Il. NOTATION AND LEADING-ORDER RESULTS
asymmetryAp,,. Even though only a relatively small frac-
tion of the data was taken with transversely polarized elec-
trons, a precision of the order of a few percent can be
achieved folA1(¢). One can either test QED at this level or

reverse the logic and use the QED prediction as a detector . .
calibration or polarimetef10]. where the photon is only present at next-to-leading order. We

At the percent level of precision, it becomes important toUS€ @ right-handeslyz coordinate system, writing momenta

. . . k*=(k;,ky,ky,k,). We take the energy of the beam electron
investigate the next-to-leading ord®LO), or O(«?), QED . T Xy 2 Bz : )
radiative corrections té;(¢). The full O(a?) calculation in the laboratory frame to bE and its momentum to be in

of the asymmetry requires two-loop scattering amplitudes fofhe z direction: ky=(E,0,0,/E*?~mj). We let its polariza-
e 'e"—e e and one-loop scattering amplitudes for tion be in the positivex direction. In the laboratory frame,
e le e e y. For \/g>me, as in E158 kinematics, it the unpolarized target electron is at rést=(m,,0,0,0). Th,e
would suffice to compute these amplitudes in the limit wheremomem‘m‘2 of t2he detected scaztteredz electron kis
one takesn,—0 after extracting the leadingi,/ /s behav- = (Eian: VEfy= Mg SiNblay COS, VEjzy— M SiN sy Sin ¢,

ior from the diagrams. This computation should be feasible,\/EIZab— mé cos6,p); its azimuthal anglep increases from 0
because it is known how to perform all the relevant two-loopin the positivex direction throughm/2 in the positivey di-
four-point integrals[11] and one-loop five-point integrals rection.
[12] in this limit in dimensional regularizatior{Similar am- The Born-level differential cross section for Mgller scat-
plitudes without transverse polarization have already beegering, from the tree diagrams in Fig. 1a, is
computed 13].)
In the present paper, we calculate the largest ofte?) dgBom
corrections—those that are enhanced by the large logarithm——
In(s/nﬁ) due to collinear singularities in initial-state radiation Q exact
from both the incoming beam electron and the target elec-
tron, as well as final-state radiation. The amplitude for «

We consider the process

e (k) +e (kp)—e (kp+e (k[+yk)l, (2

2 (2+tu+ud)?+4mZ(mi—t—u)(t?—tu+u?)
e 'e”—e e y factorizes in these collinear limits, so that o’ t2u2 '
its full kinematic dependence is not required. In an electron
structure function approach[14], analogues of the €
Dokshitzer-Gribov-Lipatov-Altarelli-ParisiDGLAP) split-
ting kernels[15] enter our computation. In the case of targetwhere  s=(k;+ky)?=2mg(E+my), u=(kj—kp)?
radiation and final-state radiation, only the unpolarized ker= —2mg(E;p— mg), t=(k1—k1)2=4m§,—s—u. (We in-
nels are required. However, the radiation from the transelude the statistical factor of 1/2 for identical electrons in
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da/dQ), so such expressions should be integrated over two- Leadmg order Azimuthal Asymmetry Coefficient

body phase space for nonidentical partigles. L B R
The leading term in the cross section containing the azi- [ E = 46 GeV : ]
muthal dependence arises at ordérfrom the interference 5l |
between the tree diagrams in Figajland the box diagrams i
in Fig. 1(b). The ¢ dependence at this order is given|[idy9]
2 COO ]
do? a® mg [ 4m: 1 = ol
— =——-—F=sinfsing \/1- ——5— X UK N
da | .. 8 s s t?u e f 1
Sl & z '
-t I : : ]
X { 3(s—4md)| t(u—s+2m3)In 5 - : : 1
s—4mg -5 : : —
2 _ [ = L | ]
— — s+ — — i L N S L L L
u(t=s+2me)in s—4m? 2(t-utu -1.0 —05 0.0 05 1.0
cosf
) . - .
FIG. 2. The azimuthal asymmetry coefficient at leading order,
We have reproduced this result independently. at°, as a function of co8, for E=46 GeV, \'s~217 MeV. The

Equationg3) and(4) include the exact dependence on thevertical dotted lines indicate the approximate acceptance of E158
electron mass. However, in computing the NLO leadingfor leading-order kinematics.
logarithms ins/mg, we shall drop the terms suppressed by
powers ofmi/s in the leading-order asymmetry. The error \ye have
induced by omitting these terms, for E158 kinematics, is
much smaller than the size of td¥«? In(smf)) corrections.

The Born-level and leadingp-dependent cross sections then 1

LO__
become ar =

da?/dQ

sing dgBomdQ (19

do®™  a?(t?+tu+u?)?
dQ  2s tu ’ ® In Fig. 2 the leading-order asymmetry coefficiem$® is
plotted as a function of c.m. polar angle ¢bfr a beam
d‘7¢_ a® me Sin6'sin ¢ —— 1 energy of E=46 GeV or \/g~217 MeV. We set «a
dQ 8 s t2u = a(\/s)=1/135.9 here[E158 probes central scattering in
the c.m. frame, witht| and|u| ranging between 0s3ands,
X[3S t(u—s)ln(_—t) —u(t—s)ln(_—u> so the difference betweem(\/g) anda(\/H) or a(\/M) is
s s negligible, less than 0.1%The asymmetry is of the order of
parts per million at this energy.
Note thata}® is odd underg—mw— 6 or, equivalently,
—2(t-utuy, ©®  that Eq.(6) is odd undett«—u. This asymmetry is a conse-
quence of having two identical electrons in the final state. In
and the kinematics can be simplified to the c.m. frame, if one electron is at an angled), the other
(at leading orderis at (w— 6,¢+ 7720 Because si is odd
S under ¢ ¢+, the coefficientas~ must be odd under
$=2meE, 1= —2EBgy(1-C0Sfiay) =~ 5 (1~ cosd), 60— — 0. The odd behavior means that the integrated asym-
metry seen by an experiment integrating over a range in
s cosé is quite sensitive to the precise acceptance. For ex-
~2MeEpap=— 5 (1+cosb), (7)  ample, a symmetric forward-backward acceptance in the c.m.
frame leads to zero asymmetry at leading order. The E158
E m. 1—cosé polar-angle_ acceptan¢@], 4.4 mrad< Olap=<7.5 mrad, corre-
Ea==(1+cosf), cosh,=1— = I (8) sponds mainly to the backward c.m. hemisphere for leading-
2 E 1+cosd order kinematics,—0.4<cosé < 0.1, as indicated by the
. . dotted lines in Fig. 2.
with ¢9__the ¢.m. frame polar scattering angle. As mentioned in the Introduction, the sensitivity to the
Writing the asymmetry as acceptance could lead to relatively large QED corrections
27 d(ol—oh) from hard photon radiation, which skews the .kinema.tics of
A )= =y sing, (9) t_he e e —e e su_bprogess. In the r_1ext section we inves-
ol+o! do¢ tigate these corrections in more detail.
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4 . s . ' . limit, because a transverse polarization state is a coherent
UEE 5 x superposition of two different longitudindhelicity) states.
' ' Thus a helicity flip is not required, only a different amplitude
T 1 e 1 . .. . .
for the two different electron helicity configurations, for a
beam target final

given photon helicity. In the Appendix we perform this com-
FIG. 3. Di tributing to the NLO leading-| ith putation. The result can also be extracted from the QCD
- . blagrams contributing fo the eading-loganthm- o, 1,tion equations for transversely polarized quatig by

enhanced corrections to the azimuthal asymmetry. These graphs aégnverting color factors and coupling constants to the QED
to be interfered with corresponding graphs for the Born process.

The exchange graphs are omitted. Also shown, with short arrows(,:ase:

are the transverse spin states of the initial electron and of the quasi- 1 3

on-shell electron line in the case of beam radiation. PIT(x)=—— — —(3+X)+ - 8(1—X 13
(0= g7~z 30 z91-%, (13

[Il. NLO CALCULATION AND RESULTS

The leading-logarithmic QED corrections to the azimuthal Pli(x)= E(l—x), (14)
asymmetry arise from collinearly enhanced hard photon ra- 4
diation. These contributions can be divided into bed, (
target ¢), and final-statdf) radiation, according to the elec-
tron line with which the photon is collinear, as shown in Fig.
3. In each of these limits, the"e”—e~ e~ y cross section

whereP!! (PT!) is the splitting probability withoutwith) a
transverse spin flip. These probabilities satis®y/'(x)
+PTH(x)=P(x). It turns out that theS(1—x) terms make a
vanishing contribution to the azimuthal asymmetry, since

factorizes into a collinear splitting probabilifyt4,15, mul- ) . . .
tiplied by the lower-ordee” e —e~e™ cross section evalu- the_y QO not d|§(upt th? Ieaqlng-order kmt_amahcs, and the
spin-flip probability vanishes in the soft limit— 1.

ated for boosted kinematics. In the construction of the asym-

metry, for the ¢-dependent numerator the boosted cross In the case of ISR_, because the radiated photon carries
section is provided byle?/dQ in Eq. (6); for the denomi- momentum, the effective c.m. energy squared for the Mgller

nator of the asymmetry, it i dq in Eq. (5). We still scattering decreases frosn- 2m.E to s’ =xs. In the case of

\/— , 4 _ FSR, the radiation happens after the scatterings’ses. In
have to pay a factor ofn./v's in do®/dQ); hence we can | ,giative events, we usé to denote the polar angle in the

neglect powers ofne/\/g in the splitting probabilities. c.m. frame of thee e~ —e e~ subprocess. To take into
Although from the perspective of the laboratory frameaccount experimental cuts, we need to rel@tandx to the

one might not expect radiation off of the target to be impor-laboratory variable®,,, andE,,,. The relations are
tant, in the center-of-mass frame such radiation is on an al-

most equal footing with radiation from the beam. One differ- , E
ence, though, is that we have to track the transverse s'=xs, EBap=X7(1+cosh),
polarization of the quasi-on-shell electron in the case of
beam radiation, as indicated by the opposing transverse ar- m. 1—cosf
rows in Fig. 3. A dilution of the transverse polarization will COSOp=1— — ——— [bean, (19
accompany the photon radiation in this case. XE 1+cosd

We let x denote the longitudinal momentum fraction re-
tained by an incoming or outgoing electron, after it has radi-
ated a collinear photon. The— 1 limit represents the emis-
sion of a soft photon. In the leading-logarithmic
approximation, we neglect the transverse momentum of the Xm, 1—cosé
photon in computing the boosted kinematics of thiee™ COStan=1= = T7cosa Ltergel, (16)
—e~ e~ subprocess. The integral over this small transverse
momentum produces an overall factor ofdnﬁ). The unpo-

E
s’ =Xxs, E,ab=§(1+ coséb),

E
larized splitting probability for massless electrons is well s'=s, E|ab:x§(1+ cosdb),
known[14]:
1 3 =1 m, 1—cosé inal 1
P(X)—m—§(1+X)+ 25(1—X), (11) COSO\3p= E 1+cosd [ |na]. ( 7)
with the standard “plus” prescription definition We define a model experimental acceptance in the laboratory
frame by
1 f(x) 1 f(x)—f(1)
f x—zf dx———. (12 )
0 (1 - X) + 0 1-x A EIa\b> Emin ’ emin< alab< emax- (18)

For the case of radiation from the transversely polarizedJsing Egs.(15), (16), and (17) the acceptancé can be
beam, we need to know the probability of a transverse spitranslated into acceptances,, A;, and A; bounding the
flip. This probability is unsuppressed in the massless electromtegration region forx and 6 in the respective correction
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terms(and also the regioA, which bounds the integral for

leading-order, nonradiative events

Including collinear radiation, the relevant terms in the dif-

ferential cross section are modified as follows:

dO,Born( S) dO,Born( S)
o do
a S 1 dO_Born(S)
—In| — f dxPPO"(x) ———,
mg)i%nf o ! (x) dQ
(19
do?(s) do?(s)
—
dQ dQ
@ (s)
+—In| — deP¢(x)
7 \m2)ichut
(20)
where p PH(X)—P”(X) PBorn PBorn PBorn P¢

=pP¢= P(x) We insert Eqs(19) and (20) into Eq. (10)

perform the integrals over the respective acceptances in bond d;; and the QED-corrected resudty"

PHYSICAL REVIEW D 69, 113001 (2004

TABLE I. Azimuthal asymmetry coefficient as a function of
Emin for E=46 GeV, 6,,,=4.4 mrad, 6,,,,= 7.5 mrad.

Emin (GEV)  atOx10° 8y 5 5 Lbxacf
8 —3.7949 —0.0221 0.0452 0.0011 —3.8826
10 —3.7949 —0.0121 0.0282 0.0015 —3.8562
12 —3.7949 —0.0060 0.0165 0.0019 —3.8348
14 —3.4180 —0.0040 0.0109 0.0022 —3.4414

N—f dxdcosap(x) ST
§= N xdcosAP(x) O
BOTI"I( )
Df—f dxdcos@P(x)—Q (27

In Table | we present results for the azimuthal asymmetry
coefficient forE=46 GeV as a function of the minimum
accepted energ¥ i, for 4.4<6,,,<7.5 mrad. We give the
leading-order result integrated over the acceptanl;s@,; the
beam, target, and final-state fractional correctitﬂgs St
. The leading-

the numerator and denominator of the asymmetry, and exerder result does not depend B, until Em,n> 13 GeV; at

pand the result ina,
logarithmic-corrected asymmetry coefficient,

att=atO(1+ 8+ 6.+ &), (21)
where
No
a#O:D—O, (22)
a\/— Di
o= ———, i=bt,f. (23)
o NO DO
Here the leading-order integrated results are
N —J dc0s0?7® b —f g cosg 2T
0= Ay COS aQ 0= Ay COSs d—Q
(24)
The radiative terms are
do?(xs
Nb=f dxdcosa[P!1(x)— P1 (x)]om XS
Ay dQ
b= [ dxdcossp(x) ST X 25
5= [ xdcosé (X)T’ (25
Ne— [ dxdcosap(x) ST
t= A Xacos (X)T,
D —f dxdoosap () XS 26
= xdcos (X)d—Q’ (26)

thus obtaining, for the leading- that point theE, cut starts to remove the most backward-

scattered electror(@ the c.m. framg which have the lowest
energies in the laboratory frame. The corrections from beam
and target radiation have opposite sign, because such radi-
ated photons skew in opposite directions the relation be-
tween the subprocess c.m. frame and the laboratory frame, as
indicated by Eqs(15) and (16). For beam radiation, as
decreases from 1, a given angle in the subprocess c.m. frame
boosts to a larger angle in the laboratory frame. Hence, for
small x, the experimental cuts now sample some of the c.m.
forward hemisphere, where the LO asymmetry is positive.
Thus &, is negative. For target radiation, however,xade-
creases from 1, the boost back to the laboratory frame be-
comes larger and the resulting c.m. angles boost to smaller
laboratory frame angles. Now smaliforces the experimen-

tal cuts to sample more of the c.m. backward hemisphere,
where the LO asymmetry can be even more negative. Thus
6, is positive. It is also larger in magnitude thap, which

may be due to the depolarization of the beam by ISR:
PIT(x)— P (x)<P(x). As E, decreases, both, and &,
increase in magnitude, as more hard radiative events are per-
mitted, which skew the kinematics more. Final-state radia-
tion does not alter the LO relation betweénand 6,,;,. It

only has an effect via the minimum energy cut, which affects
the effective co® acceptance through E{L7) for E,,. In-
deed,d; decreases &5, is lowered.

Table Il presents azimuthal asymmetry results with the
minimum accepted enerdy,,, held fixed at 13 GeV and the
minimum angle fixed atd,,,=4.4 mrad, but varying the
maximum angle .. Now the variation in the QED-
corrected result is dominated by the variation in the leading-
order terma%o , since the leading-order acceptance is chang-
ing. However, the size of, and §; also depends strongly on
Omax, Presumably because thsdope of the leading-order
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TABLE Il. Azimuthal asymmetry coefficient as a function of basis, this dependence generates the spin flip.
Omax for E=46 GeV, Ein=13 GeV, 0,=4.4 mrad. Explicitly, the transverse staté$) and||) are given in
terms of longitudinal statels) and|—) by

Omax (Mragd — at°x 10° 8y 5 8 aftx10f
6.5 —2.6358 —0.0102 0.0241 0.0016 —2.6724 1 1
7.0 ~3.2762 —0.0061 0.0166 0.0019 —3.3103 |T>_$(|+>+|_>)' |l>—$(|+)—|—>)- (A1)
7.5 —3.7949 —0.0044 0.0121 0.0021 —3.8241
8.0 —3.8039 —0.0043 0.0120 0.0021 —3.8330

The x dependence of the amplitudes for collinear splitting,
e—evy, in the helicity basis can be extracted from analogous
results for theg— qg splitting amplitudes in QCDsee, e.g.,

asymmetry ah= 0y, (the left dotted line in Fig. Pis also  pef [17)). The nonvanishing, helicity-conserving amplitudes
changing; the slope determines how effective the skewed Kiz o

nematics are in altering the asymmetry.

1
IV. CONCLUSIONS AND OUTLOOK AN e y(My= Ag(el ) ey =

X
In this paper we computed the leading-logarithmic QED (A2)

corrections to the azimuthal symmetry in transversely polar-

ized Mgller scattering, which relies on a one-loop rescatter-

ing phase and is currently being measured by the E158 ex- Al ey = Ae(H) () () =
periment. The correction term arising from radiation off the J1—
beam electron involves a transverse spin-flip splitting prob- (A3)
ability analogous to that encountered in the QCD evolution

of transversely polarized quark distributions, which dilutesThex dependence of the usual unpolarized splitting probabil-
the beam polarization. The corrections from radiation off theity for x<1, P(x)o(1+x?)/(1—Xx), can easily be recovered
beam and target are opposite in sign, because they skew thg§ summing the squares of these amplitudes. Here we wish

kinematic relation between the subprocess center-of-mass transform these amplitudes to the transverse electron spin
frame and laboratory frame in opposite directions. Final-statgasis(A1),

radiation is smaller in size. The net effect depends on the

cuts, but is typically about a 1% increase in the magnitude of 1
the asymmetry. This shift is somewhat below the anticipated
precision of the E158 measurement of a few percent. In prin- 1 V1—X 1/1
ciple, therefore, the present QED prediction, combined with A(e'—el y*)=—(1 1) —< 1)
the E158 measurement, could be used as an alternate way to 0 X \/5
measure the beam polarization or calibrate the azimuthal re- 1—x

sponse of the detector. Finally, computation of the nonloga-

rithmically enhanced QED corrections is a feasible future 1+x

project, though probably not mandated by the presently = (A4)
achievable experimental precision. 2y1-X

:

x
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APPENDIX: EVOLUTION OF TRANSVERSE ELECTRON

POLARIZATION The amplitudes for the case of negative photon helicity have

the same magnitudes, using parity. Note that the relative
Collinear photon radiation can produce a transverse spiphase of the amplitudes given in Eq82) and(A3) is im-
flip for a massless electron because the transverse spin statertant in Eqs(A4) and (A5); it can be fixed by requiring
is a coherent superposition of both longitudinal sfielic-  that the amplitudes become independent of the electron he-
ity) states. There is no longitudinal spin flip in the masslesdicity in the soft photon limitx— 1.
limit, but for a given photon helicity, the amplitude for ra-  The square of Eq(A5) gives thex dependence of the
diation depends on the electron helicity. In the transverséransverse spin-flip splitting probability in E¢L4), P'!(x)
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=%(1—x). This term needs no plus-prescription regulariza-malization of P'" and P'! can be fixed by requiring their
tion asx— 1; nor is there a5(1—x) term. The square of Eq. sum to be equal t&(x) in Eq. (11). The §(1—x) term in
(A4) gives thex dependence oP!'(x) in Eq. (13); here, P'! can be inferred from electron number conservation,
plus-prescription regularization is required. The overall nor-f§dxP(x) = [3dx[P'T(x)+ P} (x)]=1.
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