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We stress that the dS/CFT correspondence should be formulated using unitary principal series representa-
tions of the de Sitter isometry group or conformal group, rather than highest-weight representations as origi-
nally proposed. These representations, however, are infinite dimensional, and so do not account for the finite
gravitational entropy of de Sitter space in a natural way. We then propose to replace the classical isometry
group by ag-deformed version. This is carried out in detail for two-dimensional de Sitter space and we find
that the unitary principal series representations deform to finite-dimensional unitary representations of the
guantum group. We believe this provides a promising microscopic framework to account for the Bekenstein-
Hawking entropy of de Sitter space.
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I. INTRODUCTION ity of the Hamiltonian of a comoving observer, and shows
this must be quasi-periodic as timhés taken to infinity. The

A holographic formulation of quantum gravity in de Sitter symmetry group instead implies that the matrix element has
space has been proposed i (and anticipated ifi2,3]), and  a finite constant limit. One must then give up either Hermi-
the details of this correspondence have been elaborated fuieity and/or the classical symmetries to obtain a finite en-
ther in[4-19. The basic picture conjectures that quantumtropy. In this paper we take the view that the unitarity of the
gravity in de Sitter is holographically dual to a boundary description is paramount and ultimately led us to construct a
conformal field theory that can be viewed as residing at thdormalism where the classical symmetries are relinquished.

spacelike pastand/or futureg infinity. The isometry group of Our analysis begins at the classical level with a review in
de Sitter space is identified with the conformal group on theSec. Il of the original dS/CFT correspondence. In Sec. lll we
boundary. then emphasize the point made[ib] that the quantization

In another set of developments, holographic bounds owf a scalar field on de Sitter space with mass larger than the
the entropy in de Sitter space have been formulated, with thelubble scale yields a unitary principal series representation
conclusion thatS<A/4, whereA is the area of the cosmo- of the classical isometry group, as opposed to the standard
logical horizon[20—-30. For eternal de Sitter space, one cannon-unitary highest-weight representations considered in the
view this relation as bounding the number of states accessriginal dS/CFT conjecture. It is then natural to propose a
sible to a local observer. Exactly what one means by acceswew version of the correspondence using the principal series
sible is then open to debate. Banksal. [23,24,27 have  representations of the conformal group.
argued for the strongest interpretation of the bound, where However, principal series representations are infinite di-
the number of states in the Hilbert spaceefé®. Susskind mensional, conflicting with finite de Sitter entropy. We there-
and co-workerg28,31] have instead argued the number of fore propose to replace the classical isometry group by a
states should be countably infinite, with the number of stateguantum symmetry grougFor an introduction to quantum
below a certain energy being boundedédy?. Another pos-  groups, se¢32,33.) The quantum group involves a defor-
sible interpretation compatible with semiclassical physics ismation parameteq, which we take to be a root of unity. The
that the spectrum of states is continuous and that the gravelassical symmetry group is recovered in the limit>1.
tational entropyA/4 is simply a finite contribution to an oth- Quantum group deformations have appeared in the context
erwise infinite number of accessible states. of AAS/CFT in[34-34.

In the first two scenarios, there is apparent conflict with  For simplicity we will restrict our attention to the case of
the dS/conformal field theor§CFT) proposal. The isometry two-dimensional de Sitter space; however, we expect the
group of de Sitter involves non-compact boost generatoranain results to generalize to other dimensions. In Sec. IV we
yielding unitary irreducible representations that are infiniteidentify finite-dimensional irreducible representations of the
dimensional. This conflicts with finiteness of the entropy. Aquantum group that become the unitary principal series rep-
related argument given if28] studies a matrix element of a resentations of the conformal group in the classical limit. We
booste'- () assuming finiteness of the entropy and Hermitic-propose a duality between gdeformed conformal field

theory and a bulk gravitational theory incdeformed de

Sitter background. Bulk fields corresponding to these repre-
*Electronic address: alberto@nuclecu.unam.mx sentations are then to be identified with corresponding opera-
"Electronic address: lowe@brown.edu tors in theg-CFT. This new formulation has many of the
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ingredients needed to resolve the entropy finiteness issue w?

mentioned above, and we discuss the analogue of the quasi- (0]0-(2)0.(02")]0)=— 742,97, (4)
periodic correlator calculation $28] in this new framework.

In Sec. V, we end with some discussion of topics such as thgygether with the contact terms

g-deformed CFT at the interacting level, geometry of
g-deformed de Sitter space, the formulation of gravity in this
background, entropy calculations, and the higher dimen-
sional case. Finally, we warmly recommefi4,37] where
many related ideas appear.

(010 (2)0.(21)]0)= 4 62(0,0")

(010, ()0 (Q)|0)==262(0,0. (5

Il. REVIEW OF THE CLASSICAL
dSCFT CORRESPONDENCE We note that for bulk fields with masses>(d—1)/2 (in
units of the Hubble scale which we will concentrate on

The classical dS/CFT correspondence was proposed Qyere, the quantity is real and so the corresponding confor-
Strominger{1] and studied further if4], whose notation we 1o, primaries have complex conformal weights.

follow. Thus far the correspondence does not go as far as gqr the case of dS the two-point functions in the CFT

specifying the CFT at the interacting level. In the current 4) can be used to define the Zamolodchikov norm in the
state of development the correspondence specifies a mappiggyndard way:

from free bulk scalar field correlation functions to boundary

correlation functions of conformal primary operators. (0(Q)]0L(Q)=AL(Q,—Qp). (6)
In terms of global coordinates, the metric on
d-dimensional de Sitter space is This norm corresponds to an inner product defined on fields
in the bulk that involves an additional action @PTas com-
d<2 pared to the standard Klein-Gordon inner producssg].
7 = —dt?>+costtdQ?_,, For future reference let us define precisely what we mean

by unitarity in this contex{39]. A Hermitian inner product

with L the Hubble length, which will be henceforth set equal Sat'SﬂeS<,C,¢|M<¢|X>:<¢|C,X>, for ceC, tog.ethe.r with
to unity. the c_ondrqon( b x)={(x|¢). This inner product is said to be
The correspondence ¢#] was formulated for a scalar nvariant if (]9x)=(9” ¥/|x) whereg is an element of the
field of massm in a generale-vacuum. However, as de- algebra, andy* is the adjoint ofg. Unitarity adds the condi-
scribed in[17], only the Euclidean vacuum state £ — =) tion that the Hermitian inner product be positive definite.
can be consistently coupled to gravity, so we will restrict our R€presentations with complex conformal weights are
attention to that case. OA— andZ* the field behaves as  therefore non-unitary40] with respect to the inner product
(6), for whichLy=L_,. For example,
lim ¢(t,0)=¢'7(Q)e" '+ ¢"(Q)e"-!
Jm SLO)=d o= (Lo [Loh,y=(h.[L3Ih,)=h?(h, |h,)
lim ¢(t,00) = H2U(Q)e 14 2U(Q)e h-t (1) which is not positive definite for nontrivigh , ).
1 + —
Ill. NEW CLASSICAL dS /CFT PROPOSAL

where As we have seen, the conformal field theory as defined

above is not unitary. This issue arose because one insisted on
h+=d__liw, L=\ /mz_(d__l) ) establishing a correspondence with the standard highest-
-2 4 weight representations considered in conformal field theory.
We propose instead to formulate the correspondence using
and(), denotes the point antipodal b on thed—1 sphere.  the unitary principal series representations of the de Sitter

The correspondence proceeds by examining the bulksometry group and conformal groupQ(d,1). Closely re-
Wightman function in the limit that points are taken to infin- |ated proposals appear 5], though we differ on some of

ity: the details and interpretation.
To keep the discussion as explicit as possible, we will
lim Gg(x,x")=e"+t*IA_ (Q,0") now restrict our attention to two-dimensional de Sitter space.
77— = The classical de Sitter isometry groupS€X2,1), which at

the level of the algebra is isomorphic $(2,R)~su(1,1).

h_ ! !
+e-("A_(Q,0), (3 Let us choose global coordinatesf) for dS;:

where A . is proportional to the two-point function on the ds’= —dt?+ cosiftd 6°.

sphere of a conformal primary of weight. . The expres-

sions (3) determine two-point functions of operators in the When acting on scalar field modes, thE§2,R) generators
dual CFT, take the form
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9 9 where they,(t) are the normalized Euclidean vacuum
Lozcosaﬁ—sinetanht% modes, constructed explicitly for arbitrary-dimensional de
Sitter in (3.37) of [4]. Using Eq.(11) the boundary propaga-
P 9 tor is simply &, or equivalently Sp__ e k("=
L-1—Ly=2sing—+2 cosf tanht— = 5(6' — 6) in coordinate space. The bulk Wightman propa-
gator in the Euclidean vacuum is then recovered from the
boundary propagata$y ,» as

L+l =2 (7)
7 (El(t',0") (1, 0)|E)
and satisfy the Virasoro algebra zw: _—
= Yo (t)yR (e O k0
[Lm’Ln]:(m_n)Lm+n- (8) k,k'=—o
We will now show that the representation efi(1,1) =Gg(t',0";1,0) (14)

~sl(2,R) one gets when quantizing a scalar field in de Sitter,
in the range of masses under consideratior>(1/2), is in | 4
fact a principal series representation. These representatloﬁé(?/vmepcear:ngc]t on the set of modéE3) with the generators
are part of a larger family of representations labeled b

contﬁwuous comp?ex paran{eteang an index that can takey (}7) to determine the relation with E§L0). This requires the
the discrete values 0 and 1/2; we will be interested only in s? of aI nolrginw]?l 1h5y pergt;ﬁct)gr\emc fILtht'on identity, noted
the cases=0. They can be realizgd1] in terms of genera- in formula (162) of [15], wi eresu

torsH, X, , X_ that act on periodic functions on the circle,

WhereGg is the Euclidean vacuum propagator as defined, for

f(#) with #[0,27r). Choosinge *’, ke Z as a basis on LO:h+Cosg+singi,
this space of functions, the action of the generators is given a9
by
. . ) d
He k= Ke k¢ L ,—L;=2h,sin6-2 coseﬁ,
X+e—ik9:(k_ T)e—i(k+1)o,
+ R
Li+L_ 4= 2&0

X_e Ki=— (k+ e k-1, 9

Comparing with Eq.(10), we see that we indeed have a

In terms of differential operators, the generators are . ) i . .
P 9 principal series representation with=—h,=—1/2—ipu,

9 and
H=2i —,
90 H=i(L,+L_,),
X =ie"‘9i—re 1o i
* 36 ’ Xi=5(Li=L-y)+Lo,
X_——igit 10 i
=—iell =, —rel’ (10 X == (=L L. (15)

The principal series representations correspond to the ca:
7=—1/2+ip, with p real[41]. They are unitary with respect
to the canonical inner product

For completeness, let us observe that whenl1/2 the quan-
tity w is pure imaginary and so the parameteis real. As
noted in[13], in the range 82m< 1/2 the representation one
1 (2n _ _ finds belongs to the supplementary series1l7<<0),
(f4]fo)= EJ dof(e'%)f,(e?). (11)  whereas for special values in the range<0 one makes
0 contact with the discrete series representations. These two
additional types of representations are unitary with respect to
a different boundary inner produf32]. _
H*=H X*=—-X_. X‘=—X._. (12) Notice that our boundary basis functiores™®’ [or,
Coo rTT * equivalently, our bulk basis functiong(t)e %] are eigen-
Now, in the dS/CFT context, one can define a boundaryfunctions not ofl,, but of L, +L ;. Eigenfunctions ot

to-bulk map by promoting the modes on the circle to modeé"”th eigenvalud » are of the form
on de Sitter,

The associated notion of conjugation is

6
e oy (e ke, (13) Fo(0)=tan®Zsin"0, (16)
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with w real. These functions are periodic and so admit a To summarize, we have seen that scalar fields in de Sitter

Fourier series expansion; they are however singulap at
=0,7. They satisfy the orthogonality relatigd5]

Ohderw)Fw,(a)oca(w—w') (17

provided the singularities &= 0,7 are regulated in a suit-
able way.

A very interesting point is that we see a single irreducible
representation of the conformal group appear, rather than th[%
two distinct highest-weight representations that appear in th
|

original version of the correspondence described above.
we were to try to represent a non-trivialvacuum other than
the Euclidean vacuurtwhich as explained ifl7] is unlikely

to make sense in the interacting theory coupled to gravity
we would need to use a linear combination ygft) and
yi(t) in Eqg. (13), and two distinct representations witt+
—h. would appear.
equivalent, but the transformation involves a non-trivial
change of basif41], which takes the form

I'(h_—k)
|k>=m|k>

fo_r|k) a representation satisfying E®) with r=—h_ , and

|k) a representation satisfying E@) with 7=—h_. In co-
ordinate space, this is rewrittéh5]

— 2 o
fi(@)oc | de'[1—cog6—6')] "-e k7,
0

i.e., for the basie ¥’ satisfying Eq.(9) with 7= —h., the
basisf, will satisfy the same relations with, —h_. Note

the appearance of the propagator of a conformal primary o

weighth_ in this change of basis.

It is easy to check that the Klein-Gordon inner product for

a free quantum scalar field reduces to the inner prodiigt
up to a positive normalization constafthe simplest way is
to look at a time slice that approachés). The adjoint of

the generators with respect to this inner product is thereforg, 5’

given by Eq.(12), which implies

This notion of conjugation is also emphasized[1%], and
discussed in[13]; it amounts to the statement that the
SL(2,R) group elements, exp{L,) with c,e R, are unitary.
Notice that it differs from the definition of adjoint considered
in [4,38], L} =L_,. The difference between these two defi-

nitions becomes even more significant in the higher-

dimensional case: quantization of a scalar fieldlidimen-

sions yields a unitary principal series representation of the

conformal group ind—1 Euclidean dimensions$O(d,1),
whereas the notion of conjugation employed4r38] makes
contact instead with the Lorentzian conformal grasi@(d
—1,2) [15].

yield principal series representations®b(1,1)~SL(2,R).

All these representations are irreducible for genemjanfi-

nite dimensional and without highest or lowest weights. We
have also constructed a bulk-to-boundary map at the level of
the field modes: field configurations on the boundary are
mapped into linear combinations of positive-frequency Eu-
clidean vacuum modes.

It is natural then to propose a new version of the
dS,/CFT; correspondence, where bulk correlation functions
of a scalar field are determined by matrix elements in a CFT
u at lives on a circle, built out of the unitary principal series
rfepresentation withr=—h_ . It is most natural to think of
this correspondence in terms of duality of the bulk theory
with a CFT living on a single spatial boundary in the infinite
pastZ ~, where the bulk to boundary maa3) matches the
definition of the Euclidean vacuui4). Here we differ with
the interpretation proposed ji5] in terms of two entangled
CFTs living on both past and future infinities of de Sitter.

These representations are actuallgqmjating the correspondence using a single boundary also

allows for the possibility that the CFT may describe states
that are asymptotically de Sitter in the past, but do not evolve
to an asymptotically de Sitter final stafer vice versa if one
takes the boundary & ™"). Aside from some minor differ-
ences in the formulas, all we have said generalizes to the
general case ¢@¥CFTy_;.

IV. QUANTUM dS /CFT PROPOSAL

The representations of th&Q(d,1) group discussed
above are infinite dimensional, and so do not naturally ex-
plain the finiteness of the horizon entropy in the dS/CFT
framework. To ameliorate this problem, we will show for the
case of d$ that a quantum deformation of the symmetry
group vyields finite-dimensional unitary representations that
0 over to the unitary principal series representations in the
lassical limit.

A. Quantum groups

Our basic building block will be the quantum group
SLy(2,C) or, more precisely, the universal enveloping alge-
q(s1(2,C)) with complex coefficients built out of gen-
eratorsk, X, , X_ satisfying[32]

KK '=K 'K=1, KX.K '=q"2X_,

K—K™1!

[X+,X_]: 1
a—q

(18

The universal enveloping algebra consists of the space
spanned by the monomials

(X4)"KM(X)! (19

with me 7Z andn,l non-negative integers. It is a Hopf alge-
bra with comultiplicationA defined as
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A(K)=K®K
AXy)=X 0K+1eX,
AX_)=X_@1+K leX_
and with antipodes and counite defined as

S(X-)

S(K)=K™% S(X,)=—-X,K1 —KX_,

e(K)=1, &(X.)=0.

It is also useful to define a related comultiplication

'=g°A, o(a®b)=b®a.

Roughly speaking, we can think of the eleméhtas g",
whereH becomes the usual Cartan generatobf2) when
we take the classical—1 limit. Written in terms ofH, the
algebra becomes

qt—qH

[H,X.]=+2X., —.
q—q

[X+ ,X_]:

However, it will be important later that the quantum group

PHYSICAL REVIEWED, 106008 (2004

Jz=iH, J;=X"+X", and J,=i(X*=X"),

which become a canonical basis ®u(1,1) in the classical
limit g— 1. Thex*-structure(20) defines an involution of the
algebraU 4(sl(2,C)). The mapé (21) maps the Hopf algebra
into itself, provided we permute factors in the comultiplica-
tion (i.e., # is an anti-comorphisin It is then easy to check
that

for i=1,2,3 and that this restriction is compatible with the
Hopf algebra structure. The algebra generated byJthé,
andK =q~ Y3 with real coefficients is then a real Hopf alge-
bra, which we denot& 4(su(1,1));.

For g a root of unity(for simplicity we will mostly con-
sider the casg=e?"/N with N odd"), the center of the al-
gebra involves not just the usual quadratic Casimir

Kg+K™ g™t
cox_x,+ KK A
(@-9)

but also the elements

XN XN KN, and KN, (22)
+

involves the restriction to products of generators of the form

(19). We refer the reader tf32,33 for an introduction to
guantum groups.
We will be interested in defining a notion of conjugation

This implies that any irreducible representation of the alge-
bra is finite dimensiondl32].

on these generators, in order to specify inner products. This B, Classical limit of the quantum group representation

pairing is known as a-structure. In the mathematics litera-

ture, this is usually defined to preserve the form of the co-

multiplication, in the sense thai(a*)=(*®*)A(a). We

will be interested however in a generalization of this notion

of *-structure whereA(a*)=(*®*)A’(a), which is dis-
cussed extensively in the introductory section§4s|. There

exist a number of different choices of this *-structure for

U4(sl(2,C)), which are discussed if86,39,42. We will be
interested in the specific choice

X*=—X., K¥=K™1, (20

defined forqg a root of unity. This is the quantum counterpart

of Eqg. (12), which as we saw in Sec. lll is the notion of
conjugation relevant to a scalar field on,d$he map(20) is
anti-linear(acts by complex conjugation annumbers, in-
volutive and is an anti-morphisitneverses the order of gen-
eratorg. The Hopf algebral,(sl(2,C)) combined with this
*-structure is known asJy(su(1,1)), which again is to be

For g a root of unity(we will take q=e2™'N with N odd)
there exists a class of finite-dimensional irreducible represen-
tations of the quantum group that can be realized on the
N-dimensional basigm) with m=0, ... N—1 [32] and pa-
rametrized by the complex numbeagh,\

K|m)y=g~2"\|m)

qm_qu )\ql*m_)\*lqul
qg-q* qg—-q*

X, |my=| ab+ |m—1)

X_|my=|m+1)
supplemented by the additional cyclic operations
X,|0)y=a|N—-1),

X_|N=1)=b|0). (23)

Fora,b+#0 there are no highest- or lowest-weight states and

thought of as an enveloping algebra with complex coeffi-the representation is called cyclic.

cients. For the special case thpts a root of unity, we can

To try to establish a connection with the principal series

extract a real subalgebra of this Hopf algebra, which we'epresentations, let us take the-1 classical limit of the

denoteUy(su(1,1))g. This is done by defining a map

O(XT)=—X*, O(K)=K™ 1 (22)
and showing that the restrictiora* =6(a) where a

e Uqy(su(1,1)) is compatible with the algebra and comulti-
plication structure.

In more detail: one may define the basis of generators

above expressions, with=q?', K=q" and allowing for a
change in normalization of the basis elementsy)
—B(m)|m):

The main difference for eveN is that the exponents in E¢22)

and, consequently, the dimensions of the irreducible representations

discussed in the next subsection becadwi2 [32].
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H[m)=2(1—m)[m) (X, m[X, my=—(m|X_X,|m)
m__ 7m)\ 17m_)\71 m—1
B(m—1) —[aps T4 14 g
X, |my=(@b+m(2l+1-m))———|m—1) q—q ! q-q !
B(m)
x(m|m) (26)
X_|m)= mler 1). (24) where we have used the notion of conjugation defined by the
B(m) *-structure (20). Substituting in forab and usingr=—1
— 7, we need to check whether
SettingB(m+1)/B(m)=m—7—1, - I -
—q "AgtM-NTIg™
v=|2+|+|7|2—(q qil g 71q >0.
ab=r?+7-1%—1, (25) q—q a—q
- This can be expressed as
and defining a new basj&)’ = |l —m), Eq. (24) becomes
. (Zw(l—k)) . (277(|+1+k)
sin
H|k) =2k|k)’ 2l+1 21+1
) & v=12+1+|7%~
_nz( 2m
X.|K)' = (k—7)[k+1)’ ST 21+ 1
2w (1=k)
X[k’ == (7+k)[k—1)' S\ 311
=12+1+ |7+ 5
as for the principal series representati(@). This makes sir? oI11

sense provided we identifywith an integer. Since is com-

plex, ab is in general complex. Furthermore, sine®  which is manifestly positive. The same is true for the special
=0,... N—1 we getk=1—=N+1, ... k. Therefore, if we cases on the edgesnEON—1). Similar results are ob-
takel=(N—1)/2 (odd N), we getk=—(N—-1)/2,...,N  tained for(X_m|X_m). There is one additional relation that
—1)/2 which gives us the principal series basisNas>©.  comes from demanding invariance of the inner product under
Notice that up to these conditions dnand Eg.(25), the xN,

individual values ofa andb are undetermined. As we will

see in the next subsection, invariance of the inner product (xNojoy—(o[(xN)*0y=0,

fixesa andb up to a phase, and this phase drops out of the

product ab which appears in the action of the generatorswhich leads to the condition

(24).

In the basis wherd.;+L_,=—iH is diagonal, we ap- 2 sty .
proach the classical principal series representation in a [bl*=- JHO s(i)
smooth way. There is a subtlety, however, if we attempt to
change basis to diagonalize the operdtgr= (X, +X_)/2  where
and then take thg—1 limit. BecausexX =1, the spectrum
of X.. is N evenly spaced points around a circle centered at _ q"—q ™ agtM—A"Igm?
the origin. Therefore the spectrumlof will also be made up s(j)=ab+ n . .

of N discrete points, and it turns out their spacing remains q-a a-a

constant al —c, so one does not reproduce the continuousris fixesa andb up to an overall phase. Under these con-

spectrum ofl, expected in the classical liml.6). This im-  gitions, the cyclic irreducible representations are unitary for
plies theq—1, N— limit does not commute with the regu- arpjtrary N.

larization needed to make sense of the completeness relation
(7). D. qdSCFT proposal

Underlying our proposal that, at the quantum level, the
isometry group of two-dimensional de Sitter space should be

We wish to investigate unitarity of the cyclic quantum g deformed lies of course the idea that,d&elf should be
group representations under the conditi@®5) and | = (N similarly deformed, to produce a geometry on which
—1)/2. For the unitary principal series representations in thé&J4(su(1,1)); has a natural action. At the classical level, dS
classical limit we haver=—1/2+ip, which impliesabis  can be understood as the quotient of the isometry group
always a negative real number. The eigenvaluesHadre  SU(1,1) by the non-compad/(1) associated with one of
real, since is an integer. It remains to examine the boost generators, and so, at the quantum level, one is

C. Unitarity
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naturally led to considet) ,(su(1,1))x/U(1). Similar con- In our g-deformed framework, howeves; '~ is not in the
structions have been explored[856,43. We will make some universal enveloping algebra, so the argument does not go
additional comments about thisdeformed geometry in the through. Instead one is restricted to operators built out of
concluding section, but a more detailed analysis is left foproducts ofK, K™, X, andX_ . Since the spectrum df
future work. in our representations is manifestly discrete, correlation func-
Our overall proposal is then that tihé¢dimensional rep- tions are guaranteed to display the expected quasi-
resentations described above can be used to formulate a ngriodicity. The main virtue of our approach is that this is
correspondence between a gravitational theory in a bullachieved without giving up the Hermiticity ¢i.
g-deformed de Sitter geometry and gzdeformed holo-
graphic CFT. We emphasize that the representations in ques-
tion are unitary for arbitrarN, and in theN— o limit, they
make contact with the reformulation of the classical dS/CFT In this paper we have made two main points. First, we
correspondence in terms of unitary principal series represemave emphasized that, as observedllis], the dS/CFT cor-
tations discussed in Sec. lll. We believe this provides aespondence must be formulated in terms of principal series
promising microscopic framework to account for the finite representations of the isometry-conformal group, as opposed
entropy of de Sitter space. to the standard highest-weight representations usually con-
sidered in CFT. Such a reformulation of dS/CFT is natural
E. Relation to “the trouble with de Sitter space” from the bulk point of view, since quantization of a scalar
field on dS yields representations of the former, and not the
Ig\tter, type. In particular, the ordinary Klein-Gordon inner
product directly coincides with the scalar product of the prin-
cipal series representations, and differs from the one consid-
entropy, Hermiticity of the static patch Hamiltonian, and Co_ered in[4,38], which is on the other hand associated with the

variance under the classical symmetries. In the static patcHsual CFT notion of adjoint. BUt. the reformulation is in fact
with coordinates also natural from the perspective of the boundary theory,

because the putative dual CFT lives orda-(1)-dimensional
1 space that is Euclidean from the start, and is not as in the
ds?= (—dt§+dr2) usual case obtained by analytic continuation from an origi-
costr nally Lorentzian spacetime. The relevant conformal group is
consequenth5Q(d,1) and notSO(d—1,2) [15]. Most im-
the sl(2,R) generators take the form portantly, the principal series representations are unitary, so
P in the new formulation one avoids the problems associated
with the non-unitarity of the highest-weight representations
that appear if1].
Of course, one of the motivations [f,38] for concentrat-
L,—L,=-2 coshssinhri -2 Sinhtscoshri ing on a bulk inner product that differs from the ordinary one
dtg ar was to try to obtain a framework that departs from the stan-
dard perturbative quantization of the scalar field on dS space,
and has consequently at least some chance of making contact
with the finite-dimensionalor at least discrete-energil-
bert space that the finite entropy of de Sitter seems to hint at
Thus the static patch Hamiltonian is to be identified with  [23,24,27,28,3]L Our second main point in this paper has
i ) been that it is possible to achieve this goal without losing
He=—iLo=—i(X; +X)/2. (@7) contact with the principal series story, as long as we are
willing to give up the classical symmetries and trade them
for a g-deformed version, witlg a root of unity. We gladly
pay this price because in exchange we have obtained a finite-
dimensional framework that imanifestly unitary

V. DISCUSSION

Now that we have aj-deformed version of the theory
with finite dimensional representations, we can reanalyze th
arguments of 28,44 arguing for quasi-periodic matrix ele-
ments for any description of de Sitter compatible with finite

Lo=——
T

J J
L,+L_;=2 coshgsinhr— + 2 cosht,coshr—.
dtg ar

The argument 0f28,44] proceeds by analyzing the general
matrix element of a Hermitian boost generator=ilL _;
=(X_—X,+H)/2, which obeys

[He,L]=iL. Thus far, a precise description of thedeformed de Sitter
geometry and its spacetime physics is lacking, but let us
The classical argument proceeds by studying make a few general comments based on the structure of the
algebra and the representations we are considering. We hope
(yleMstelte Mt gy = (y eiLe’t|¢> to return to this set of issues in more detail in future work.

The cyclic relation(22) implies that all irreducible represen-
with | ) a general state. This matrix element approaches 1 asations are finite dimensional. The indéxthat labels our
t—co. On the other hand, under the assumption thahas a  basis of state$k)’ is interpreted as momentum around the
discrete spectrum, the authors [@8,44] show the matrix circle in the classical limit, so the deformation can be
element must be quasi-periodic in time, and so in particulathought of as enforcing an ultraviolet cutoff on this momen-
cannot approach a constant. tum. Thus the Euclidean boundary space of the dS/CFT cor-
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respondence, dual to this momentum, can be roughly thought Let us describe this in a little more detail. To isolate the
of as a discrete set of pointsLikewise, one deduces the states defined on the causal diamond of an observer on the
spectrum of the operatod$™ and X~ must also be discrete Nnorth pole of de Sitter, it is necessary to trace over modes on
with an ultraviolet cutoff of ordeN. This implies the same is the southern diamorid]. This can be implemented by view-
true of the Hamiltoniari27), so it seems the time direction of N9 the modes on the southern diamond as a thermofield

the bulk de Sitter spacetime also becomes discretized. dOUbl.e of mode; on the northem dlamc[[m]. Provided we
start in the Euclidean vacuum, integrating out the southern

_Systgms with finite d|men5|onal_ Hilbert spaces undgrg%odes then gives rise to a thermal Boltzmann density matrix
Poincarerecurrence, as has been discussed extensively in tI}Sr the northern diamond modes. To make contact with this
context of de Sitter spacetime [23,28,31,44,4b If the di- ~ ohe eigenfunctions df, with >0 should be viewed as
mension of the Hilbert space & whereSis the statistical = gatic patch modes on the northern diamond, and likewise
meé:ha_nlcal_ entropy, then there will be a recurrence ime o modes correspond to the southern diamond. The bulk
xe”. Likewise energy measurements will always be uncery, poundary map places these modes in the Euclidean
tain at order I =e ~. In our setup, if the dimension of \4cyum, so for the classical version of the dS/CFT corre-
Hilbert space is of the same order of that of a singlegpondence described in Sec. lil, the same story will carry
q-deformed repsresentatmn, we would obtain the same relasyer, with a better understanding of theleformed de Sitter
tions with N=e®. _ . eometry, and the bulk to boundary map in particular, we

Of course so far we have only considered the properties Qigpe a similar story will also hold in the-dS/CFT case.
a_smgle irreducible representation. One might expect the full \1ost of the ideas studied in this paper generalize directly
Hilbert space to be built out of arbitrary tensor products ofy, higher-dimensional de Sitter space. In particular, the clas-
these representations, which would enlarge the number Gficy| de Sitter isometry grougg0(d,1) have unitary princi-
states to infinity. Inter_actlons are built using the fusion rulespa| series representations. The unitary norm is naturally de-
for these representations, which have been thoroughly stugieq on functions on thel— 1 sphere, which we identify
ied in [46,47. However as we have said, space should b&jth the holographic boundary. The adjoint on this norm
thought qf as a finite number of points, so we are far fr_omagain differs from that proposed fi#,38], as also empha-
the situation where we have a spacetime with a well-defined;zeq in[15]. We conjecture there will likewise be a sensible
asymptotic region where multi-particle states can be buily geformation of the classical isometry group and that the
neglecting interactions. Nevertheless, even if we assume thakgociatedg-deformed holographic conformal field theory
this infinite-dimensional Hilbert space is the correct descripyyaseq on a deformation of the unitary principal series repre-
tion, the energy eigenvalues can remain discrete, which cafenations will be dual to a gravitational theory in the bulk
still lead to Poincareecurrencg45] and, more importantly, g deformed de Sitter geometry. We hope to further elaborate

can be compatible with the finite entropy of de Sitter spacgy the details of this higher-dimensional correspondence in
[28]. In the static patch, a cutoff is naturally implemented in¢ ,re work.

the form of a Boltzmann weighting of states at finite tem-
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