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New twist on the dSÕCFT correspondence
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We stress that the dS/CFT correspondence should be formulated using unitary principal series representa-
tions of the de Sitter isometry group or conformal group, rather than highest-weight representations as origi-
nally proposed. These representations, however, are infinite dimensional, and so do not account for the finite
gravitational entropy of de Sitter space in a natural way. We then propose to replace the classical isometry
group by aq-deformed version. This is carried out in detail for two-dimensional de Sitter space and we find
that the unitary principal series representations deform to finite-dimensional unitary representations of the
quantum group. We believe this provides a promising microscopic framework to account for the Bekenstein-
Hawking entropy of de Sitter space.
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I. INTRODUCTION

A holographic formulation of quantum gravity in de Sitt
space has been proposed in@1# ~and anticipated in@2,3#!, and
the details of this correspondence have been elaborated
ther in @4–19#. The basic picture conjectures that quantu
gravity in de Sitter is holographically dual to a bounda
conformal field theory that can be viewed as residing at
spacelike past~and/or future! infinity. The isometry group of
de Sitter space is identified with the conformal group on
boundary.

In another set of developments, holographic bounds
the entropy in de Sitter space have been formulated, with
conclusion thatS<A/4, whereA is the area of the cosmo
logical horizon@20–30#. For eternal de Sitter space, one c
view this relation as bounding the number of states acc
sible to a local observer. Exactly what one means by ac
sible is then open to debate. Bankset al. @23,24,27# have
argued for the strongest interpretation of the bound, wh
the number of states in the Hilbert space iseA/4. Susskind
and co-workers@28,31# have instead argued the number
states should be countably infinite, with the number of sta
below a certain energy being bounded byeA/4. Another pos-
sible interpretation compatible with semiclassical physics
that the spectrum of states is continuous and that the gr
tational entropyA/4 is simply a finite contribution to an oth
erwise infinite number of accessible states.

In the first two scenarios, there is apparent conflict w
the dS/conformal field theory~CFT! proposal. The isometry
group of de Sitter involves non-compact boost generat
yielding unitary irreducible representations that are infin
dimensional. This conflicts with finiteness of the entropy.
related argument given in@28# studies a matrix element of
boosteiL (t) assuming finiteness of the entropy and Hermit
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ity of the Hamiltonian of a comoving observer, and sho
this must be quasi-periodic as timet is taken to infinity. The
symmetry group instead implies that the matrix element
a finite constant limit. One must then give up either Herm
ticity and/or the classical symmetries to obtain a finite e
tropy. In this paper we take the view that the unitarity of t
description is paramount and ultimately led us to construc
formalism where the classical symmetries are relinquishe

Our analysis begins at the classical level with a review
Sec. II of the original dS/CFT correspondence. In Sec. III
then emphasize the point made in@15# that the quantization
of a scalar field on de Sitter space with mass larger than
Hubble scale yields a unitary principal series representa
of the classical isometry group, as opposed to the stand
non-unitary highest-weight representations considered in
original dS/CFT conjecture. It is then natural to propose
new version of the correspondence using the principal se
representations of the conformal group.

However, principal series representations are infinite
mensional, conflicting with finite de Sitter entropy. We ther
fore propose to replace the classical isometry group b
quantum symmetry group.~For an introduction to quantum
groups, see@32,33#.! The quantum group involves a defo
mation parameterq, which we take to be a root of unity. Th
classical symmetry group is recovered in the limitq→1.
Quantum group deformations have appeared in the con
of AdS/CFT in @34–36#.

For simplicity we will restrict our attention to the case
two-dimensional de Sitter space; however, we expect
main results to generalize to other dimensions. In Sec. IV
identify finite-dimensional irreducible representations of t
quantum group that become the unitary principal series r
resentations of the conformal group in the classical limit. W
propose a duality between aq-deformed conformal field
theory and a bulk gravitational theory in aq-deformed de
Sitter background. Bulk fields corresponding to these rep
sentations are then to be identified with corresponding op
tors in theq-CFT. This new formulation has many of th
©2004 The American Physical Society08-1
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ingredients needed to resolve the entropy finiteness is
mentioned above, and we discuss the analogue of the q
periodic correlator calculation of@28# in this new framework.
In Sec. V, we end with some discussion of topics such as
q-deformed CFT at the interacting level, geometry
q-deformed de Sitter space, the formulation of gravity in t
background, entropy calculations, and the higher dim
sional case. Finally, we warmly recommend@34,37# where
many related ideas appear.

II. REVIEW OF THE CLASSICAL
dSÕCFT CORRESPONDENCE

The classical dS/CFT correspondence was proposed
Strominger@1# and studied further in@4#, whose notation we
follow. Thus far the correspondence does not go as fa
specifying the CFT at the interacting level. In the curre
state of development the correspondence specifies a map
from free bulk scalar field correlation functions to bounda
correlation functions of conformal primary operators.

In terms of global coordinates, the metric o
d-dimensional de Sitter space is

ds2

L2
52dt21cosh2tdVd21

2 ,

with L the Hubble length, which will be henceforth set equ
to unity.

The correspondence of@4# was formulated for a scala
field of massm in a generala-vacuum. However, as de
scribed in@17#, only the Euclidean vacuum state (a52`)
can be consistently coupled to gravity, so we will restrict o
attention to that case. OnI 2 andI 1 the field behaves as

lim
t→2`

f~ t,V!5f1
in~V!eh1t1f2

in~V!eh2t

lim
t→`

f~ t,VA!5f1
out~V!e2h1t1f2

out~V!e2h2t ~1!

where

h65
d21

2
6 im, m5Am22

~d21!2

4
~2!

andVA denotes the point antipodal toV on thed21 sphere.
The correspondence proceeds by examining the b

Wightman function in the limit that points are taken to infi
ity:

lim
t,t8→2`

GE~x,x8!5eh1(t1t8)D1~V,V8!

1eh2(t1t8)D2~V,V8!, ~3!

whereD6 is proportional to the two-point function on th
sphere of a conformal primary of weighth6 . The expres-
sions ~3! determine two-point functions of operators in th
dual CFT,
10600
ue
si-

e
f
s
-

by

as
t
ing

l

r

lk

^0uO6~V!O6~V8!u0&52
m2

4
D6~V,V8!, ~4!

together with the contact terms

^0uO2~V!O1~V8!u0&5
m

4
d (2)~V,V8!

^0uO1~V!O2~V8!u0&52
m

4
d (2)~V,V8!. ~5!

We note that for bulk fields with massesm.(d21)/2 ~in
units of the Hubble scale!, which we will concentrate on
here, the quantitym is real and so the corresponding confo
mal primaries have complex conformal weights.

For the case of dS3, the two-point functions in the CFT
~4! can be used to define the Zamolodchikov norm in
standard way:

^O6~V!uO6~V!&5D6~V,2VA!. ~6!

This norm corresponds to an inner product defined on fie
in the bulk that involves an additional action ofCPTas com-
pared to the standard Klein-Gordon inner product@4,38#.

For future reference let us define precisely what we m
by unitarity in this context@39#. A Hermitian inner product
satisfies^ccux&5 c̄^cux&5^cuc̄x& for cPC, together with
the condition̂ cux&5^xuc&. This inner product is said to be
invariant if ^cugx&5^g* cux& whereg is an element of the
algebra, andg* is the adjoint ofg. Unitarity adds the condi-
tion that the Hermitian inner product be positive definite.

Representations with complex conformal weights a
therefore non-unitary@40# with respect to the inner produc
~6!, for which Ln* 5L2n . For example,

^L0h1uL0h1&5^h1uL0
2uh1&5h1

2 ^h1uh1&

which is not positive definite for nontrivialuh1&.

III. NEW CLASSICAL dS ÕCFT PROPOSAL

As we have seen, the conformal field theory as defin
above is not unitary. This issue arose because one insiste
establishing a correspondence with the standard high
weight representations considered in conformal field the
We propose instead to formulate the correspondence u
the unitary principal series representations of the de S
isometry group and conformal groupSO(d,1). Closely re-
lated proposals appear in@15#, though we differ on some o
the details and interpretation.

To keep the discussion as explicit as possible, we w
now restrict our attention to two-dimensional de Sitter spa
The classical de Sitter isometry group isSO(2,1), which at
the level of the algebra is isomorphic tosl(2,R)'su(1,1).
Let us choose global coordinates (t,u) for dS2:

ds252dt21cosh2tdu2.

When acting on scalar field modes, thesl(2,R) generators
take the form
8-2
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L05cosu
]

]t
2sinu tanht

]

]u

L212L152 sinu
]

]t
12 cosu tanht

]

]u

L11L2152
]

]u
~7!

and satisfy the Virasoro algebra

@Lm ,Ln#5~m2n!Lm1n . ~8!

We will now show that the representation ofsu(1,1)
'sl(2,R) one gets when quantizing a scalar field in de Sit
in the range of masses under consideration (m.1/2), is in
fact a principal series representation. These representa
are part of a larger family of representations labeled b
continuous complex parametert and an index« that can take
the discrete values 0 and 1/2; we will be interested only
the case«50. They can be realized@41# in terms of genera-
tors H, X1 , X2 that act on periodic functions on the circl
f (u) with uP@0,2p). Choosinge2 iku, kPZ as a basis on
this space of functions, the action of the generators is gi
by

He2 iku52ke2 iku,

X1e2 iku5~k2t!e2 i (k11)u,

X2e2 iku52~k1t!e2 i (k21)u. ~9!

In terms of differential operators, the generators are

H52i
]

]u
,

X15 ie2 iu
]

]u
2te2 iu,

X252 ieiu
]

]u
2teiu. ~10!

The principal series representations correspond to the
t521/21 ir, with r real@41#. They are unitary with respec
to the canonical inner product

~ f 1u f 2!5
1

2pE0

2p

du f 1~eiu! f 2~eiu!. ~11!

The associated notion of conjugation is

H* 5H, X1* 52X2 , X2* 52X1 . ~12!

Now, in the dS/CFT context, one can define a bounda
to-bulk map by promoting the modes on the circle to mod
on de Sitter,

e2 iku→yk~ t !e2 iku, ~13!
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where the yk(t) are the normalized Euclidean vacuu
modes, constructed explicitly for arbitrary-dimensional
Sitter in ~3.37! of @4#. Using Eq.~11! the boundary propaga
tor is simply dk,k8 , or equivalently (k52`

` e2 ik(u82u)

5d(u82u) in coordinate space. The bulk Wightman prop
gator in the Euclidean vacuum is then recovered from
boundary propagatordk,k8 as

^Euf~ t8,u8!f~ t,u!uE&

5 (
k,k852`

`

yk8~ t8!yk* ~ t !e2 ik8u81 ikudk,k8

5GE~ t8,u8;t,u! ~14!

whereGE is the Euclidean vacuum propagator as defined,
example, in@4#.

We can act on the set of modes~13! with the generators
~7! to determine the relation with Eq.~10!. This requires the
use of a non-trivial hypergeometric function identity, not
in formula ~161! of @15#, with the result

L05h1cosu1sinu
]

]u
,

L212L152h1sinu22 cosu
]

]u
,

L11L2152
]

]u
.

Comparing with Eq.~10!, we see that we indeed have
principal series representation witht52h1521/22 im,
and

H5 i ~L11L21!,

X15
i

2
~L12L21!1L0 ,

X252
i

2
~L12L21!1L0 . ~15!

For completeness, let us observe that whenm,1/2 the quan-
tity m is pure imaginary and so the parametert is real. As
noted in@13#, in the range 0,m,1/2 the representation on
finds belongs to the supplementary series (21,t,0),
whereas for special values in the rangem,0 one makes
contact with the discrete series representations. These
additional types of representations are unitary with respec
a different boundary inner product@32#.

Notice that our boundary basis functionse2 iku @or,
equivalently, our bulk basis functionsyk(t)e

2 iku] are eigen-
functions not ofL0, but of L11L21. Eigenfunctions ofL0
with eigenvalueiv are of the form

Fv~u!5taniv
u

2
sintu, ~16!
8-3
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with v real. These functions are periodic and so admi
Fourier series expansion; they are however singular au
50,p. They satisfy the orthogonality relation@15#

E
0

2p

duFv~u!Fv8~u!}d~v2v8! ~17!

provided the singularities atu50,p are regulated in a suit
able way.

A very interesting point is that we see a single irreduci
representation of the conformal group appear, rather than
two distinct highest-weight representations that appear in
original version of the correspondence described above
we were to try to represent a non-triviala-vacuum other than
the Euclidean vacuum~which as explained in@17# is unlikely
to make sense in the interacting theory coupled to gravi!,
we would need to use a linear combination ofyk(t) and
yk(t) in Eq. ~13!, and two distinct representations witht5
2h6 would appear. These representations are actu
equivalent, but the transformation involves a non-triv
change of basis@41#, which takes the form

uk&5
G~h22k!

G~h12k!
uk&

for uk& a representation satisfying Eq.~9! with t52h1 , and
uk& a representation satisfying Eq.~9! with t52h2 . In co-
ordinate space, this is rewritten@15#

f k~u!}E
0

2p

du8@12cos~u2u8!#2h2e2 iku8;

i.e., for the basise2 iku satisfying Eq.~9! with t52h1 , the
basisf k will satisfy the same relations withh1→h2 . Note
the appearance of the propagator of a conformal primar
weight h2 in this change of basis.

It is easy to check that the Klein-Gordon inner product
a free quantum scalar field reduces to the inner product~11!,
up to a positive normalization constant~the simplest way is
to look at a time slice that approachesI 2). The adjoint of
the generators with respect to this inner product is there
given by Eq.~12!, which implies

Ln* 52Ln .

This notion of conjugation is also emphasized in@15#, and
discussed in@13#; it amounts to the statement that th
SL(2,R) group elements, exp(cnLn) with cnPR, are unitary.
Notice that it differs from the definition of adjoint considere
in @4,38#, Ln* 5L2n . The difference between these two de
nitions becomes even more significant in the high
dimensional case: quantization of a scalar field ind dimen-
sions yields a unitary principal series representation of
conformal group ind21 Euclidean dimensions,SO(d,1),
whereas the notion of conjugation employed in@4,38# makes
contact instead with the Lorentzian conformal groupSO(d
21,2) @15#.
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To summarize, we have seen that scalar fields in de S
yield principal series representations ofSU(1,1)'SL(2,R).
All these representations are irreducible for genericm, infi-
nite dimensional and without highest or lowest weights. W
have also constructed a bulk-to-boundary map at the leve
the field modes: field configurations on the boundary
mapped into linear combinations of positive-frequency E
clidean vacuum modes.

It is natural then to propose a new version of t
dS2 /CFT1 correspondence, where bulk correlation functio
of a scalar field are determined by matrix elements in a C
that lives on a circle, built out of the unitary principal seri
representation witht52h1 . It is most natural to think of
this correspondence in terms of duality of the bulk theo
with a CFT living on a single spatial boundary in the infini
pastI 2, where the bulk to boundary map~13! matches the
definition of the Euclidean vacuum~14!. Here we differ with
the interpretation proposed in@15# in terms of two entangled
CFTs living on both past and future infinities of de Sitte
Formulating the correspondence using a single boundary
allows for the possibility that the CFT may describe sta
that are asymptotically de Sitter in the past, but do not evo
to an asymptotically de Sitter final state~or vice versa if one
takes the boundary atI 1). Aside from some minor differ-
ences in the formulas, all we have said generalizes to
general case dSd /CFTd21.

IV. QUANTUM dS ÕCFT PROPOSAL

The representations of theSO(d,1) group discussed
above are infinite dimensional, and so do not naturally
plain the finiteness of the horizon entropy in the dS/C
framework. To ameliorate this problem, we will show for th
case of dS2 that a quantum deformation of the symmet
group yields finite-dimensional unitary representations t
go over to the unitary principal series representations in
classical limit.

A. Quantum groups

Our basic building block will be the quantum grou
SLq(2,C) or, more precisely, the universal enveloping alg
bra Uq„sl(2,C)… with complex coefficients built out of gen
eratorsK, X1 , X2 satisfying@32#

KK215K21K51, KX6K215q62X
6
,

@X1 ,X2#5
K2K21

q2q21
. ~18!

The universal enveloping algebra consists of the sp
spanned by the monomials

~X1!nKm~X2! l ~19!

with mPZ andn,l non-negative integers. It is a Hopf alge
bra with comultiplicationD defined as
8-4
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D~K !5K ^ K

D~X1!5X1 ^ K11^ X1

D~X2!5X2 ^ 11K21
^ X2

and with antipodeS and counit« defined as

S~K !5K21, S~X1!52X1K21, S~X2!52KX2 ,

«~K !51, «~X6!50.

It is also useful to define a related comultiplication

D8[s+D, s~a^ b![b^ a.

Roughly speaking, we can think of the elementK as qH,
whereH becomes the usual Cartan generator ofSL(2) when
we take the classicalq→1 limit. Written in terms ofH, the
algebra becomes

@H,X6#562X6 , @X1 ,X2#5
qH2q2H

q2q21
.

However, it will be important later that the quantum gro
involves the restriction to products of generators of the fo
~19!. We refer the reader to@32,33# for an introduction to
quantum groups.

We will be interested in defining a notion of conjugatio
on these generators, in order to specify inner products. T
pairing is known as a* -structure. In the mathematics litera
ture, this is usually defined to preserve the form of the
multiplication, in the sense thatD(a* )5(* ^ *) D(a). We
will be interested however in a generalization of this noti
of *-structure whereD(a* )5(* ^ *) D8(a), which is dis-
cussed extensively in the introductory sections of@42#. There
exist a number of different choices of this *-structure f
Uq„sl(2,C)…, which are discussed in@36,39,42#. We will be
interested in the specific choice

X6* 52X7 , K* 5K21, ~20!

defined forq a root of unity. This is the quantum counterpa
of Eq. ~12!, which as we saw in Sec. III is the notion o
conjugation relevant to a scalar field on dS2. The map~20! is
anti-linear~acts by complex conjugation onc numbers!, in-
volutive and is an anti-morphism~reverses the order of gen
erators!. The Hopf algebraUq„sl(2,C)… combined with this
*-structure is known asUq„su(1,1)…, which again is to be
thought of as an enveloping algebra with complex coe
cients. For the special case thatq is a root of unity, we can
extract a real subalgebra of this Hopf algebra, which
denoteUq„su(1,1)…R . This is done by defining a map

u~X6!52X6, u~K !5K21, ~21!

and showing that the restrictiona* 5u(a) where a
PUq„su(1,1)… is compatible with the algebra and comul
plication structure.

In more detail: one may define the basis of generators
10600
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J35 iH , J15X11X2, and J25 i ~X12X2!,

which become a canonical basis forsu(1,1) in the classical
limit q→1. The* -structure~20! defines an involution of the
algebraUq„sl(2,C)…. The mapu ~21! maps the Hopf algebra
into itself, provided we permute factors in the comultiplic
tion ~i.e., u is an anti-comorphism!. It is then easy to check
that

Ji* 52Ji

for i 51,2,3 and that this restriction is compatible with th
Hopf algebra structure. The algebra generated by theJ1 ,J2
andK5q2 iJ3 with real coefficients is then a real Hopf alge
bra, which we denoteUq„su(1,1)…R .

For q a root of unity~for simplicity we will mostly con-
sider the caseq5e2p i /N with N odd1!, the center of the al-
gebra involves not just the usual quadratic Casimir

C5X2X11
Kq1K21q21

~q2q21!2

but also the elements

X1
N ,X2

N ,KN, and K2N. ~22!

This implies that any irreducible representation of the al
bra is finite dimensional@32#.

B. Classical limit of the quantum group representation

For q a root of unity~we will takeq5e2p i /N with N odd!
there exists a class of finite-dimensional irreducible repres
tations of the quantum group that can be realized on
N-dimensional basisum& with m50, . . . ,N21 @32# and pa-
rametrized by the complex numbersa,b,l:

Kum&5q22mlum&

X1um&5S ab1
qm2q2m

q2q21

lq12m2l21qm21

q2q21 D um21&

X2um&5um11&

supplemented by the additional cyclic operations

X1u0&5auN21&, X2uN21&5bu0&. ~23!

For a,bÞ0 there are no highest- or lowest-weight states a
the representation is called cyclic.

To try to establish a connection with the principal ser
representations, let us take theq→1 classical limit of the
above expressions, withl5q2l , K5qH and allowing for a
change in normalization of the basis elements,um&
→B(m)um&:

1The main difference for evenN is that the exponents in Eq.~22!
and, consequently, the dimensions of the irreducible representa
discussed in the next subsection becomeN/2 @32#.
8-5
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Hum&52~ l 2m!um&

X1um&5„ab1m~2l 112m!…
B~m21!

B~m!
um21&

X2um&5
B~m11!

B~m!
um11&. ~24!

SettingB(m11)/B(m)5m2t2 l ,

ab5t21t2 l 22 l , ~25!

and defining a new basisuk&85u l 2m&, Eq. ~24! becomes

Huk&852kuk&8

X1uk&85~k2t!uk11&8

X2uk&852~t1k!uk21&8

as for the principal series representation~9!. This makes
sense provided we identifyl with an integer. Sincet is com-
plex, ab is in general complex. Furthermore, sincem
50, . . . ,N21 we getk5 l 2N11, . . . ,k. Therefore, if we
take l 5(N21)/2 ~odd N), we getk52(N21)/2, . . . ,(N
21)/2 which gives us the principal series basis asN→`.
Notice that up to these conditions onl and Eq. ~25!, the
individual values ofa and b are undetermined. As we wil
see in the next subsection, invariance of the inner prod
fixes a andb up to a phase, and this phase drops out of
product ab which appears in the action of the generato
~24!.

In the basis whereL11L2152 iH is diagonal, we ap-
proach the classical principal series representation i
smooth way. There is a subtlety, however, if we attempt
change basis to diagonalize the operatorL05(X11X2)/2
and then take theq→1 limit. BecauseX6

N }1, the spectrum
of X6 is N evenly spaced points around a circle centered
the origin. Therefore the spectrum ofL0 will also be made up
of N discrete points, and it turns out their spacing rema
constant asN→`, so one does not reproduce the continuo
spectrum ofL0 expected in the classical limit~16!. This im-
plies theq→1, N→` limit does not commute with the regu
larization needed to make sense of the completeness rel
~17!.

C. Unitarity

We wish to investigate unitarity of the cyclic quantu
group representations under the conditions~25! and l 5(N
21)/2. For the unitary principal series representations in
classical limit we havet521/21 ir, which impliesab is
always a negative real number. The eigenvalues ofH are
real, sincel is an integer. It remains to examine
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^X1muX1m&52^muX2X1um&

52S ab1
qm2q2m

q2q21

lq12m2l21qm21

q2q21 D
3^mum& ~26!

where we have used the notion of conjugation defined by
*-structure ~20!. Substituting in forab and usingt̄521
2t, we need to check whether

v5 l 21 l 1utu22S qm2q2m

q2q21

lq12m2l21qm21

q2q21 D .0.

This can be expressed as

v5 l 21 l 1utu22

sinS 2p~ l 2k!

2l 11 D sinS 2p~ l 111k!

2l 11 D
sin2S 2p

2l 11D

5 l 21 l 1utu21

sin2S 2p~ l 2k!

2l 11 D
sin2S 2p

2l 11D
which is manifestly positive. The same is true for the spec
cases on the edges (m50,N21). Similar results are ob-
tained for^X2muX2m&. There is one additional relation tha
comes from demanding invariance of the inner product un
X1

N ,

^X2
N 0u0&2^0u~X2

N !* 0&50,

which leads to the condition

ubu252 )
j 50

N21

s~ j !

where

s~ j ![ab1
qm2q2m

q2q21

lq12m2l21qm21

q2q21
.

This fixesa andb up to an overall phase. Under these co
ditions, the cyclic irreducible representations are unitary
arbitraryN.

D. qdSÕCFT proposal

Underlying our proposal that, at the quantum level, t
isometry group of two-dimensional de Sitter space should
q deformed lies of course the idea that dS2 itself should be
similarly deformed, to produce a geometry on whi
Uq„su(1,1)…R has a natural action. At the classical level, d2
can be understood as the quotient of the isometry gr
SU(1,1) by the non-compactU(1) associated with one o
the boost generators, and so, at the quantum level, on
8-6
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naturally led to considerUq„su(1,1)…R /U(1). Similar con-
structions have been explored in@35,43#. We will make some
additional comments about thisq-deformed geometry in the
concluding section, but a more detailed analysis is left
future work.

Our overall proposal is then that theN-dimensional rep-
resentations described above can be used to formulate a
correspondence between a gravitational theory in a b
q-deformed de Sitter geometry and aq-deformed holo-
graphic CFT. We emphasize that the representations in q
tion are unitary for arbitraryN, and in theN→` limit, they
make contact with the reformulation of the classical dS/C
correspondence in terms of unitary principal series repre
tations discussed in Sec. III. We believe this provides
promising microscopic framework to account for the fin
entropy of de Sitter space.

E. Relation to ‘‘the trouble with de Sitter space’’

Now that we have aq-deformed version of the theor
with finite dimensional representations, we can reanalyze
arguments of@28,44# arguing for quasi-periodic matrix ele
ments for any description of de Sitter compatible with fin
entropy, Hermiticity of the static patch Hamiltonian, and c
variance under the classical symmetries. In the static p
with coordinates

ds25
1

cosh2r
~2dts

21dr2!

the sl(2,R) generators take the form

L052
]

]ts

L212L1522 coshtssinhr
]

]ts
22 sinhtscoshr

]

]r

L11L2152 coshtssinhr
]

]ts
12 coshtscoshr

]

]r
.

Thus the static patch Hamiltonian is to be identified with

Hs52 iL 052 i ~X11X2!/2. ~27!

The argument of@28,44# proceeds by analyzing the gener
matrix element of a Hermitian boost generatorL5 iL 21
5(X22X11H)/2, which obeys

@Hs ,L#5 iL .

The classical argument proceeds by studying

^cueiH steiLe2 iH stuc&5^cueiLe2t
uc&

with uc& a general state. This matrix element approaches
t→`. On the other hand, under the assumption thatHs has a
discrete spectrum, the authors of@28,44# show the matrix
element must be quasi-periodic in time, and so in particu
cannot approach a constant.
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In our q-deformed framework, however,e2 iL is not in the
universal enveloping algebra, so the argument does no
through. Instead one is restricted to operators built out
products ofK, K21, X1 andX2 . Since the spectrum ofHs
in our representations is manifestly discrete, correlation fu
tions are guaranteed to display the expected qu
periodicity. The main virtue of our approach is that this
achieved without giving up the Hermiticity ofHs .

V. DISCUSSION

In this paper we have made two main points. First,
have emphasized that, as observed in@15#, the dS/CFT cor-
respondence must be formulated in terms of principal se
representations of the isometry-conformal group, as oppo
to the standard highest-weight representations usually c
sidered in CFT. Such a reformulation of dS/CFT is natu
from the bulk point of view, since quantization of a scal
field on dSd yields representations of the former, and not t
latter, type. In particular, the ordinary Klein-Gordon inn
product directly coincides with the scalar product of the pr
cipal series representations, and differs from the one con
ered in@4,38#, which is on the other hand associated with t
usual CFT notion of adjoint. But the reformulation is in fa
also natural from the perspective of the boundary theo
because the putative dual CFT lives on a (d21)-dimensional
space that is Euclidean from the start, and is not as in
usual case obtained by analytic continuation from an or
nally Lorentzian spacetime. The relevant conformal group
consequentlySO(d,1) and notSO(d21,2) @15#. Most im-
portantly, the principal series representations are unitary
in the new formulation one avoids the problems associa
with the non-unitarity of the highest-weight representatio
that appear in@1#.

Of course, one of the motivations of@4,38# for concentrat-
ing on a bulk inner product that differs from the ordinary o
was to try to obtain a framework that departs from the st
dard perturbative quantization of the scalar field on dS spa
and has consequently at least some chance of making co
with the finite-dimensional~or at least discrete-energy! Hil-
bert space that the finite entropy of de Sitter seems to hin
@23,24,27,28,31#. Our second main point in this paper ha
been that it is possible to achieve this goal without los
contact with the principal series story, as long as we
willing to give up the classical symmetries and trade th
for a q-deformed version, withq a root of unity. We gladly
pay this price because in exchange we have obtained a fi
dimensional framework that ismanifestly unitary.

Thus far, a precise description of theq-deformed de Sitter
geometry and its spacetime physics is lacking, but let
make a few general comments based on the structure o
algebra and the representations we are considering. We
to return to this set of issues in more detail in future wo
The cyclic relation~22! implies that all irreducible represen
tations are finite dimensional. The indexk that labels our
basis of statesuk&8 is interpreted as momentum around t
circle in the classical limit, so theq deformation can be
thought of as enforcing an ultraviolet cutoff on this mome
tum. Thus the Euclidean boundary space of the dS/CFT
8-7
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respondence, dual to this momentum, can be roughly tho
of as a discrete set of points.2 Likewise, one deduces th
spectrum of the operatorsX1 andX2 must also be discrete
with an ultraviolet cutoff of orderN. This implies the same is
true of the Hamiltonian~27!, so it seems the time direction o
the bulk de Sitter spacetime also becomes discretized.

Systems with finite dimensional Hilbert spaces unde
Poincare´ recurrence, as has been discussed extensively in
context of de Sitter spacetime in@23,28,31,44,45#. If the di-
mension of the Hilbert space iseS whereS is the statistical
mechanical entropy, then there will be a recurrence timet r
}eS. Likewise energy measurements will always be unc
tain at order 1/t r5e2S. In our setup, if the dimension o
Hilbert space is of the same order of that of a sin
q-deformed representation, we would obtain the same r
tions with N5eS.

Of course so far we have only considered the propertie
a single irreducible representation. One might expect the
Hilbert space to be built out of arbitrary tensor products
these representations, which would enlarge the numbe
states to infinity. Interactions are built using the fusion ru
for these representations, which have been thoroughly s
ied in @46,47#. However as we have said, space should
thought of as a finite number of points, so we are far fro
the situation where we have a spacetime with a well-defi
asymptotic region where multi-particle states can be b
neglecting interactions. Nevertheless, even if we assume
this infinite-dimensional Hilbert space is the correct desc
tion, the energy eigenvalues can remain discrete, which
still lead to Poincare´ recurrence@45# and, more importantly,
can be compatible with the finite entropy of de Sitter spa
@28#. In the static patch, a cutoff is naturally implemented
the form of a Boltzmann weighting of states at finite te
perature, so the entropy can be accounted for by a fi
number of states below an energy of order the Hubble s
@28#.3

2See@37# for an interesting set of related examples ofq-deformed
spaces.

3We should also bear in mind that the condition that the space
be close to de Sitter space in the past and future in a suit
classical limit could translate into a cutoff on the number of sta
relevant to the de Sitter entropy calculation. Conversely, the
Hilbert space may then contain states that do not approach de S
in the past and/or future as one takes the classical limit.
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Let us describe this in a little more detail. To isolate t
states defined on the causal diamond of an observer on
north pole of de Sitter, it is necessary to trace over modes
the southern diamond@4#. This can be implemented by view
ing the modes on the southern diamond as a thermofi
double of modes on the northern diamond@28#. Provided we
start in the Euclidean vacuum, integrating out the south
modes then gives rise to a thermal Boltzmann density ma
for the northern diamond modes. To make contact with t
paper, eigenfunctions ofL0 with v.0 should be viewed as
static patch modes on the northern diamond, and likew
v,0 modes correspond to the southern diamond. The b
to boundary map places these modes in the Euclid
vacuum, so for the classical version of the dS/CFT cor
spondence described in Sec. III, the same story will ca
over. With a better understanding of theq-deformed de Sitter
geometry, and the bulk to boundary map in particular,
hope a similar story will also hold in theq-dS/CFT case.

Most of the ideas studied in this paper generalize direc
to higher-dimensional de Sitter space. In particular, the c
sical de Sitter isometry groupsSO(d,1) have unitary princi-
pal series representations. The unitary norm is naturally
fined on functions on thed21 sphere, which we identify
with the holographic boundary. The adjoint on this nor
again differs from that proposed in@4,38#, as also empha-
sized in@15#. We conjecture there will likewise be a sensib
q deformation of the classical isometry group and that
associatedq-deformed holographic conformal field theor
based on a deformation of the unitary principal series rep
sentations will be dual to a gravitational theory in the bu
q-deformed de Sitter geometry. We hope to further elabor
on the details of this higher-dimensional correspondence
future work.
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