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First, we review a result in our previous paper, of how a ten-dimensional superparticle, taken off-shell, has
a hidden eleven-dimensional super Poincaymmetry. Then, we show that the physical sector is defined by
three first-class constraints which preserve the full eleven-dimensional symmetry. Applying the same concepts
to the eleven-dimensional superparticle, taken off-shell, we discover a hidden twelve-dimensional super Poin-
caresymmetry that governs the theory.
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I. FROM TEN TO ELEVEN DIMENSIONS {Qu.Qa}=2(Dap, [Qu.P,1=0, [p,.p,]=0, (1.2

In Ref. [1], we showed that the quantum algebra of a i
ten-dimensional superparticle, taken off shell, contains a [x*,p,]=id", [Q,.x*]=—=(y*P 1Q),, (1.3
nonlinear realization of the eleven-dimensional super Poin- 2
carealgebra, with some additional constraints. In this sec-
tion, we review the procedure outlined in R¢L] and we 1
write the constraints in a fully covariant fashion. [x#,x"]=— —Q{¥*".p}Q. 1.9

As a starting point, one can take for instance the Brink- 16p
Schwarz actiorf3] for a ten-dimensional massless superpar-r,
ticle. The phase space of such a particle is spanned by ﬂLEE

i i [ « i i . . L .
canonical variablex”, 6, and their respective momenta has an Interesting noncommutativity in the spacetime coor-

Pu: Ta, Wherex, p are vectors in ten dimensions afid 7  yinates Its consistency can be verifigd by checking that

bglong .each tq a Majorana-Weyl representation of the tenz) jacobi identities are verified.
dimensional Clifford algebra.

X o . . Next, we consider the following elements of the algebra:
The straightforward quantization of this phase space is
impeded by the presence of constraints, namely JH=(—p?)Vix#(—p?)1 (1.5

p?=0, d,=m,—(p6),=0. (1.1

is quantum algebra in ten dimensions is free of con-
raints. It contains the ten-dimensional supertranslations and

JW=(xFp”—x"p*)+ SH7, (1.6
As in Ref. [1], we make the choice of ignoring the first

constraint, because we want to describe the quantum me- Q.,=(—-p>) YpQ),, (1.7
chanics of a particle off-shell. We retain instead the Fermi-

onic constraints. Off-shell, they are second class and can Behere

treated by an extension of the Dirac quantization method

[2,3]: first we reduce by half the number of Fermionic de- v —i ’

grees of freedom using the constraifts,=(p6),.], then = 16p2 Q{r*".p1Q. 1.8

we compute the Dirac brackets for the remaining variables

and finally we quantize the Dirac brackets. From them, we can construct the generators of an eleven-

It is interesting to express the remaining Fermionic gendimensional super Poincaségebra as follows[1]:
erators in terms of the supersymmetry genera@ys m,
+(pb),=2m,. If we do that, the quantum algebra that we PM=(p# P0=p?), (1.9
obtain is the following:

2Whenever square roots appear it is understood that both signs
There are some subtleties in extending Dirac’s method to supemay occur in front of them, so that in particul&@= + \/— p?
space, but they can be overcome for a class of algebras, of whictpans the whole range of momentum in the extra dimension. To
ours is one. avoid cluttering our notation we omit the extra.
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IMN— (gur Jml0= iy (1.10 Specifically, Eq(2.1) encodes in the new algebra the defini-
tion (1.9 of P in terms of quantities in the old algebra, and
5 pQ).,, similarly Eq.(2.2) encodes Eq(1.11.
Qa=| Q,.Q.= > | (1.11 The algebra has also a constraint that encodes the defini-
V=P tion (1.10. It is easy to write it in a ten-dimensional covari-

where the indice$1 andN now range from 0 to 10, and the ant way by combining Eqd1.5), (1.6, and(1.8),

index A is the index of a Majorana representation of the
Clifford algebra in eleven dimensiorislt is a matter of
straightforward computation to show thHatJ andQ indeed
satisfy the super Poincaragebra in one more dimension
than we started with. We write its commutation and anticom- 16p2
mutation relations at the end of the next section.

Note that this eleven-dimensional algebra is realized nonThis constraint contains a nontrivial relation between the
linearly in the original ten-dimensional algebra, but it alsoBosonic and the Fermionic parts of the eleven-dimensional
contains it, because among its generators are in particulalgebra. It also allows us to expre¥¢” in terms ofJ#, p*
Jr=Jm10 p, and Q, which in turn generate the original andQ,, making explicit the fact that the constrained eleven-
algebra’ Hence the two algebras are actually the same. Thigimensional algebra has the same number of independent
apparent paradox is resolved once we realize that the negenerators as the algebra in ten dimensions.
algebra is not free. In the next section we describe the con- It is desirable to express Eq2.4) in an eleven-
straints it is subject to. dimensionally covariant form. For that purpose, first we re-

Note also that so far we have assumed a timelike momenarite every quantity in the constraint explicitly as a generator
tum for the off-shell particle, so thaf—p? is real. More of the eleven-dimensional algebra, then we perform a few
generally we should allow also an off-shell spacelike mo-algebraic steps and we obtain
mentum. In that case the extra dimension is timelike because
the momentum in the additional dimension is purely imagi- V10 110 1oumy. | ==
nary and given by+/p?. In the latter case, all our construc- SR JTTPE A JTEP :E(QVM Q+Qy*Q).
tions can be extended and the corresponding formulas can be (2.5
obtained by analytic continuatiog/—p®—i/p? from the
ones given below. In the following, we will let it be under- The left-hand side of E¢2.5) can be written as 8 W0+,
stood that when/— p? is real the extra dimension is space- with
like, and when it is imaginary the extra dimension is time-
like.

J,U.V_(_ p2)*l/4(\]/.LpV_JVp/.L)(_ p2)7l/4

Qf{»*". b1 Q. (2.4

WLMN J<LMPN>_ 1

3 (I"“MPN+ permutations.® (2.6)

IIl. CONSTRAINTS

Here and in the following, the angular brackets indicate com-
plete antisymmetrization. To rewrite covariantly the right-
hand side, we need to find spinor bilinears with tensorial
PMPNun=0, (2.1  transformation properties. Let us define

To begin with, the eleven-dimensional algebra satisfies
the constraints

M B — o 0 1
PP (I'w)a Qe=0, (2.2) 9=0'C, C=< o 0)'
where 7y is the Minkowski metric in eleven dimensions,
the last dimension taken to be spacelike, andItMeform a
representation of the Clifford algebra in eleven dlmensmns

whose expression in terms of,; matrices(and their anti-
. ooy
chiral counterpartyaﬁ) is

0 hs 1 0
M= 10—
r (V’Z'ﬁ 0>,r (o _1). 2.3

The matrix C is chosen so that it satisfiesT'M¢c'

—(I'™T. Then QI'M1"MpQ transform& as an antisym-
metric p tensor under the Lorentz group in eleven dimen-
sions. An explicit computation shows that the right-hand side
of Eq. (2.5) is 3x S with

SLMNE 3><16QI"LMNQ (27)

3We have indicated both the ten-dimensional operafrsnd the
eleven-dimensional operat@, with the same letter. However, it  °In four dimensions, Eq(2.6) is the dual of the Pauli-Lubaki
should be clear from the context which is which. In particular in thevector, so thatw-MN should be thought of as its generalization to
following two sections all the instances of the let@rrefer to the  higher dimensions.
eleven-dimensional Majorana spinor. 6'M1Mp indicates the antisymmetric combination pfgamma
4x# can be expressed in terms &f by inverting Eq.(1.5). matrices,I" ~M1...'"Mp>,
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so that the third constrain{2.4) reads simply W'%”  ving the constraints in the lightcone gauge of the eleven-
=S Furthermore, the equality holds also for the otherdimensional superparticle, which also indicates the same set
components ofW and S. This can be checked by explicit of quantum states in a fixed gauge; namely 128 bosons and
computation in ten-dimensional language and, again, it is 428 fermions consisting of only the $@ covariant trans-
consequence solely of E(R.4). In conclusion, the third con- verse degrees of freedom of the supergravity multiplet,

straint(2.4) can be written as gij »Aijk ... Incidentally, in the context of the 11D super-
particle, we should emphasize that our approach provides a
LMN_—\p/LMN LMN_
AT =W =S =0. (2.9 ghost-free S@,1) covariant quantization of the 11D super-

tparticle. This displays more symmetry as compared to the

It should be clear from the previous line of reasoning thaghost-free light-cone quantization.

not all components of Eq2.8) are independent of one an-
other. Indeed the number of independent components has to

be that of Eq(2.4) from which we started. That number is A. Counting constraints covariantly
10 To count correctly the number of independent constraints
) in Eq. (2.8), we need to take into account that not all com-
2 ponents of that equation are independent. One way to show

hat this is the case is to show that there is a constraint on the
onstraint. Indeed it can be checked that

ALMNO= A <LMNpO>_ o (2.13

There is a more elegant and fully covariant way to see thal
the number of independent components in @) is indeed

A

2 by virtue of the definition ofA"MN alone, without using the
condition AYMN=0. It holds trivially for theW part of A,
while a brief computation is required to show that it holds
jalso for theS part! Therefore Eq(2.13 is an honest con-
r.'s_tramint on the constraint. Again, not all components of Eq.
(2.13 are independent of one another and indeed they are
subject to a constraint themselves, namely

and we show it in the next subsection.

Thus, the conclusion of our analysis is that the Hilber
space of a ten-dimensional superparticle taken off-shell
also the Hilbert space of the eleven-dimensional super Poi
carealgebra

[PM,PN]:O, [PMaQA]:Oy
ALMNOPEA<LMNOF>P>:07 (2.14)
[PM, INQ]=j yMpPN_j xMNPQ (2.9
o i and so on.
{Qa,Qs}=2Prg, [I"N,Qal==(I'MNQ), There is an end to this chain of constraints, because each
2 9 of the constraints is completely antisymmetric in its indices
(210 and so it can have at most 11 indices. Incidentally, the op-
MN JPQ—j MPJNQ_; MQJNP i NQJMP_; NPJMQ eration of adding a power @ and antisymmetrizing can be
PRI ]=1m7 A A ' ‘22 11 thought of as a cohomological operation, akin to taking the
' exterior derivative in De Rham cohomology. To count the

constrained as follows: correct number of degrees of freedom then, we ought to start
, LN from the end. The last constraintAs-t "‘11=0. Because of
P°=0, PQ=0, A-""=0. (2.12  antisymmetry, this has only

The first two constraints are well known in the context of
the massless superparticle in eleven dimensions. The last 11 -1
constraintALtMN=0, and some additional ones to be dis- 11/
cussed in the next section, are newly realized. As is well
known, the spectrum of quantum states that satisfy the first———

two cons_,traints_, is precis_ely the supergrayity mu_ItipIet i 7Eor instance, one can start with the equatiqi®, Iz M) Q
eleyen dlme'n3|ons, consisting of the rr_lgtggN, 3-index —Q[P,I'Mr"Ms]Q=0, which follow from the constrainPQ=0,
antisymmetric tensof vy, and the gravitinayy . The last  4ng evaluate the anticommutator or commutator using the Clifford
constraint, and the additional ones discussed in the next S€Ggebra. From this one can show ti@ <M1 Mp-1QPMp> =0 and

tion, are also satisfied covariantly by this supermultiplet. QIMr-Mp.10) Py, =0 for an arbitrary number of indices. Apply-

In fact, other than the 11D supergravity multiplet, there _ - N _
are no other supermultiplets that satisfy these constraintd]9 this top=1 we deriveQQ=0. In addition, it is possible to

This can be seen by solving the constraints explicitly inshow thatQI'"'v"¥»Q vanishes by itself fop=2,5,6,9, which
terms of the 10D unconstrained degrees of freedom, whicgorresponds to the vanishing of the D-brane Eharges in the 11D
correspond to the off-shell 10D superparticle whose quanturguperalgebra. Thep=1,10 cases are simplQI'"Q=32P",
states correspond to the 11D supergravity multiplet but iQI'™1Mw0Q=32¢My"Mupy, . while the remaining casep

a 10D notation. This point can also be understood by sol=3,4,7,8 satisfy the above constraints nontrivially.
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independent components and it constrains the previous equ8e again we find that the supersymmetry transformations

tion in the chainAtr t10=0, so that the latter has only vanish once we assume the constraints to hold, and therefore
that the states that satisfy the constraints are invariant under

(11) B ( 11) —10-1 the supersymmetry transformations as well. Hence, the con-

10 11/ straints are such that they preserve the full symmetry of the

_ super Poincaralgebra. In addition, the commutatder an-
independent components. These are the number of comp@commutators of the constraints with one another can be
nents that should be subtracted from the number of COMPQspomputed using Eqg3.1), (3.2) and (3.3). One finds that
nents in the previous equation yet, and so on backwardg,ey yanish modulo the constraints themsel{®s with co-

along the chginhCOF?s;quently,.the numbir of independeniicients that depend on the dynamical variablés other
components in the third constraig.8) must be words, the constraints are first class. They generate some

11 11 11 11 11 10 supergroup of transformations.
( ) _ 4 - 4 :( ) We should point out that the value 65L(A'-MN) depends
3 4 5 10 11 2 critically on the choice of coefficient fa8-MN in Eq. (2.7).

With a different coefficient, there would be residual pieces
which are not proportional to any of the constraints. How-
ever, when the coefficient is chosen to be precisely as in Eq.
(2.7), a cancellation occurs betweefyp(W-"N) and some
Of the three constraints that the eleven-dimensional algeterms in 5,S-"N and the only term left is the one given in
bra is subject to, the third appears somewhat peculiar, espeq. (3.3).
cially on account of the coefficient entering the definition of  More importantly, we should note that the interplay of the
S-MN. We found that some light can be shed by examiningconstraints is more interesting for supersymmetry transfor-
the transformation properties of the constraints under superations, because now the variation of the third constraint
symmetry. 8o(A"MN) vanishes only modulo the second constré,
Before we do that, let us begin with a premise. In theand similarly 55(PQ) vanishes only moduld®?. In other

previous section, we expressed the constraints on the elevewords, AYMN=0 is consistent with supersymmetry only if
dimensional algebra as the vanishing of tensorial and spinave also requird?Q=0. Similarly for PQ and P2,

rial quantities in eleven dimensions. As such, the constraints |et us also mention that in four dimensions a generaliza-
are automatically consistent with the Lorentz part of the al4jon of the Pauli-Lubaski vector was discussed in Refs.

gebra, in Fhe sense that their v_ariation under Lore_:ntzt&g]_ It was given asCa=Wa—(i/8)67a75Q, where W,
transformation vanishes once we impose the constraints_1 .~ najed and the Latin indices are four-dimensional
themselves. More specifically, space-time indices. If we specialize our off-shell superpar-
i ticle approach to four dimension{gith hidden five dimen-
8;,P2=0, &,(PQ)==I'"NpQ, sional symmetry; our five dimensionalA*MN has a four di-

2 mensional component'™"~ ¢'M"3A . which we can attempt

to compare taC, . We find thatA , is differeﬂt fromC, by an
additional crucial termA ,=C,+ (i1/8p%) p,QpPysQ. The su-

and these variations are zero mod#,A"MN. persymmetry variation ofC, is §qCa= —(i/2)ysQpa.

A different way to put it, is that if we represent the algebraHowever, the supersymmetry variation Af is qA,=0.
on a Hilbert space of states, the states that satisfy the cofror this reason the constraiat,=0, or more generally the
straints are invariant under the Lorentz subalgebra. The sanfve dimensionalA-""=0 can be imposed without breaking

holds for the translations, because all constraints commutgupersymmetry in five dimensions. In more general represen-
with P, tations where\ ;# 0, we note that\, commutes wittp, and

A? commutes also with the Lorentz generators. /Sois a

5pP?=0, 6p(PQ)=0, spA-MN=0. (3.2  Casimir invariant of the full super Poincasdgebra in four
dimensions. For comparison to R€f8,9] one may also con-

The next natural step is to check what happens with th&tryct from theA , the tensorCp,=p.A,— ppA, Which co-
supersymmetry transformations. We find the following: incides with p,Cp— pyCa. ThenC,,C2P is also a Casimir

for the full algebra related td2. The eigenvalue of,,C?"
8o(P?)=0, 06o(PQ)g=2PCrg, is proportional toY (Y + 1) whereY is integer or half integer.

Y was called “superspin” in Refd.8,9].

as expected.

Ill. ROLE OF SUPERSYMMETRY

§;ALMN=j pRLASMN, ... (3.)

i
5Q(ALMN)=—1—2(FLMNPQ)A- 3.3
IV. FROM ELEVEN TO TWELVE DIMENSIONS
8We define the Lorentz transformations &§-)=[JRS-]. Simi- We repeat the reasoning of the previous sections by taking
larly 8p(-)=[PR,-]anddq(-)=[Qa,-] for bosons={Q,,-} for ~ as the starting point the off-shell eleven-dimensional super-
fermions. particle. The dynamical quantum operators of interest are the
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11-component vectorsX{,P,,) and the supercharg®, wheree" is antisymmetric and:*?>=—¢,,=+1. The non-
which is a 32-component spinor in eleven-dimensionalinear algebra above may now be rewritten as a nonlinear
spacetime. By following the same procedure, the nonlineaextension of theN=2 eleven-dimensional super Poincare
qguantum algebra that we obtain has a similar form to thealgebra consistent with @),

ten-dimensional one,

{QA!QB}Z_Z(PC)AB! [QA,PM]ZO, [PM,PN]ZO, {QIA’ jB}:_25”(PC)AB_28”(_Pz)lIZCABl
4.7

. i [Qh.Pu]=0. [Pu.Pn]=0, (4.10
[XM.Pul=ioN, [QaXM]==5(T"P7'Qa, (42

[IM Py]=i(—P?)Y2sY,

- Q{r"™,p1Q. (4.3 .

M yN7—

[X%.x 16P* . i .
[M,Qu]= " 5&"(TVQ))a,

Note that we are now using the 832 gamma matriceEM
given above. We inserted explicitly the charge conjugation
matrix C which satisfie’ "'I'MC=—(I''")T, and have de- [IM JN]={JMN, (4.11)
fined Q=Q'C. The matrices ["C),z, (IMNC),p,
('M1-Msc) ., are 32¢32 symmetric, and I(MNC),4,
(IMNLXC) 5 are 32¢ 32 antisymmetric. This algebra has no
constraints. The first line is the standard eleven-dimension
super Poincaralgebra, and the rest is a new nonlinear ex-
tension for the case of the off-shell superparticlEhe con-
sistency of this algebra can be verified as in Réfl by JMN=(—p2)~ V4 gMpN_ jNpM)(_ p2)—1/4
checking that all Jacobi identities hold.

Next, as before, we consider the following elements of the

The JMN which was given above in terms ¥, is rewritten
Jn terms ofM PM, andQ}, in the SO(10,1x SO(2) cova-
flant notation as

i — :
MN
algebra: + To/-p? PZQIr Qlejj. (4.12
JME(_PZ)]'MXM(_Pz)lM, (44)
By using the nonlinear algebra above, it is straightforward to
IMN= (XMPN—XNPM) + SMN, (4.9 show thatI"N satisfies the standard Lorentz algebra in 11

_ o1 dimensions and is the generator of 11D Lorentz transforma-
Qa=(—P%) " 4PQ)a, (4.6)  tions for all the 11D vectors and spinors that have appeared

so far above.
It is also possible to construct the generators of a twelve-
i dimensional superalgebra from the unconstrained opera-
SMN=_—QII'"N pP1Q. 470 tors PYJY.Q,, as follows. We construct the twelve-
16P?2 dimensional operators as

where

Note thatQ, and Q, are both in the 32-component spinor

_(pM pli_ [ p2
representation, unlike the ten-dimensional case where PT=(PY,P=—-P9), (4.13
(Qa,b&) were in different representations, namely
(16,16°). Therefore, we will use an additional indéx 1,2 JMn= (JMN gM.11= gM) (4.14

to identify Q= (Qa,Q,) as two supercharges that belong to
aN=2 supersymmetry in 11 dimensions. These two super-

charges satisfy the SO(10;2)80(2) covariant constraint e %(Q}ﬁiQiF %{[1“(_ P2)-12p]Q1 .

(PQHa—(—P)%1Q)=0, (4.9 4.15
and SMN takes the SO(2) invariant form
MN_ L =g Gom (@102 = (O L+i(~ P?) ¥2P]),.
S __WQF Qe 49 2 2 (4.16

*The XM become commutative on shell, since thg@=0 for the | ne indicesmandn now range from 0 to 11, and the indices
massless superparticle. a,a denote the complex spinors of SO(11,1) which age
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can be computed covariantly in 12 dimensions as in the pre-

algebra in 11 dimensions now takes the form of the lineawious section,

12-dimensional super Poincaatgebra given below:
{Ga, 06} =2(P)ah, [Pm.Pn]=0, (4.17

[Jmnlpl]:i(zmn)ka,

[da,Pm]=0,

i
[Jmn,qa]ZE(rmnq)a, [Jmn,\]kl]:if:r;n,kl\]rs, (4_1&

twelve dimensions with T™) ;= ((I') ag, — i 8ag), While

the second line contains the expected commutation prope

ties of the SO(11,1) generatdf", with

(Emn):(: 77mlaﬂ_ nnlam’ (4_19
fInkl= mksN 5L — (ke 1) ]—[me>n], (4.20
(F™ap=((TMN) g, (T H=ITM) ). (4.21

The antichiral counterparts of the matriceE™),;, and
(r'm,, above are respectively

(I ap=(T™) ag,i Sap),

(T™3=((TMN) g, (TM3=—iTM) 0g).

(4.22
(4.23

12

12 12
> ( . )(—1)k+1=55=(1—1)12—{—1+

1

il

(4.27)

This is the same number of components as in @&ql2),
namely 11X 10/2=55.

The supermultiplet of the quantum states that provide a
Fbpresentation of the constrained 12D super Poina@ebra
can be easily computed in the 8D) covariant lightcone
Ejauge. After solving all the constraints explicitly, the degrees
of freedom reduce tod',p',x® where the SQLO) vectors
x',p' are canonical and the 32-components gt [two
SQO(10) spinorg satisfy the Clifford algebrdx?, x*} =25%".
Therefore the quantum states drgp') where « indicates
25 bosons and ¥ fermions corresponding to the two spinor
representations of S32).

These are precisely the quantum states of the first massive
level of the 11D supermembrane, as computed in RHf.
They also correspond to the first massive level of the type-
IIA closed string, which gives a first signal of the relation-
ship to the 11DM theory as given in Ref5].

The S@10) covariant multiplets of bosons and fermions
given in Ref.[4] are massive 11D states but, through the
present work, they are now being interpreted as massless in
12 dimensions. These'2+21° states provide a representa-

This algebra is subject to the three 12D covariant constraintson of the 12D constrained super Poincaigebra or of the

P™P,,=0, Pp(I');,q,=0, A™"=0, (4.24

unconstrained 11D nonlinear superalgebra.
We emphasize that'2+ 2'° are just the transverse $ID)
components of covariant fields in 12 dimensions. By extend-

where the last two are a 12D covariant rewriting of the 11Djng the tensor and spinor indices of these states to covariant

constraints in Eqs(4.8), (4.12. The tensorA™ is defined
by AIMn=w!mn—gmn “\whereW'™" and S™" are the gener-
alized Pauli-Lubaski and spin tensors in 12D,

1
W'm”sJ<'mP">E§(J'mP”¢ permutations,

(4.295

We see that the constraint in E@.12 corresponds to
i .
prpll v1ilpu 1lpuprv_ i) A s~YO)) — 1imn_
Jurptiy grtipr JHupr— el Qly QI =3A 0.
(4.26

The number of independent components in the tedsBF

12D indices, one should be able to identify the ($01)
covariant tensors and spinors that describe the 12D massless
supermultiplet and provide a representation of the con-
strained super Poincamdgebra covariantly. In turn, by re-
duction from 12 to 11, these can also be understood as 11D
covariant states that correspond to the first massive level of
the supermembrane.

V. REMARKS

We have shown that there is a sense in which the super
Poincarealgebra in twelve dimensions exists: it leads to a
nonlinear algebra in eleven dimensions which contains the
11D super Poincaralgebra and which is interpreted as the
off-shell superparticle in eleven dimensions, as given in Egs.
(4.1)—(4.3). This algebra necessarily contains a noncommu-
tative spacetime in eleven dimensiopX#,X”]# 0. The al-
gebra is represented on the quantum states of the first mas-
sive level of the 11D supermembrane, or first massive level

ONote that if the off-shell momentum in eleven dimensions is of the type-IIA closed superstring which has a close relation-

spacelike, then we would obtain tweal chiral spinors in twelve

dimensions belonging respectively 3@ and32' representations of

S0O(10,2). Indeed the analytic continuationsgpf andaél for P?
positive are both real.

ship to 11DM theory.

The 11D aspect is an indication ™ theory, while the
12D aspect hints a possible relationshig=teheory[6] or S
theory[7].
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In the enlarged space including the extra dimension thdight on the meaning of supersymmetry in dimensions higher
algebra is the standard super Poincalgebra, but with co- than 11™
variant constraints. We found that some of the constraints
were unfamiliar. For example, in 11 dimensions the con-
straintsP2=0 andPQ=0 are standard, but the constraints . ¥Ve[ 8613]9 \I/%ry grateful t? Sergiot Fdergafa SéEOintinth%Ut
AMiM2-My— 0 for p=3,4, ... ,11were not noticed before. ~€IS.16,9]. I.B. was In part supported by a grant be-
The story is similar in the twelve-dimensional case, with theFGO3'84ER4016.8' Hg is grateful to the CERN TH division

. Mo or hospitality while this work was performed. C.D. was sup-

new constraintsA™™ "M =0 for p=34,...12. These 4red in part by the Turkish Academy of Sciences in the
new A’s commute with the translation generatétsand su-  framework of the Young Scientist ProgranCD/TUBA—
persymmetry generatof3. In general they would be related GEBIP/20@-1-7. A.P. and B.Z. were supported in part by
to additional quantum numbers that label the representatioihe DOE under contract DE-AC03-76SF00098 and in part by
But in our case we have a special representation in which thée NSF under grant 22386-13067.
additional quantum numbers all vanish. In this representation
all constraints are solved explicitly by writing the algebra as , o _
a nonlinear algebra in one lower dimension. The representsi- V\{lthout.glvmg the details we state the result for. the case of 9 to
. . . . 0 dimensions, which could be done as an exercise by the reader.
tion space that realizes the algebra is the massless particle

the hiaher di . hich is also int ted h ﬁ‘FPle structure is similar. Namely, the nonlinear nine dimensional
€ higher dimension, which 1S alSo Interpreted as the ol gpey N=1 superalgebra is related to the type IIA constrained

shell particle in one lower dimension. o super Poincaralgebra in ten dimensions. The representation space

It is clear from the explicit discussion in ten and consists of the massless states of type IIA supergravity. Similarly
eleven dimensions that the same kind of analysis can bgome aspects of the case of 4 to 5 dimensions is briefly discussed at
applied in any number of dimensions. This could shedhhe end of Sec. lIl.
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