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First, we review a result in our previous paper, of how a ten-dimensional superparticle, taken off-shell, has
a hidden eleven-dimensional super Poincare´ symmetry. Then, we show that the physical sector is defined by
three first-class constraints which preserve the full eleven-dimensional symmetry. Applying the same concepts
to the eleven-dimensional superparticle, taken off-shell, we discover a hidden twelve-dimensional super Poin-
carésymmetry that governs the theory.
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I. FROM TEN TO ELEVEN DIMENSIONS

In Ref. @1#, we showed that the quantum algebra of
ten-dimensional superparticle, taken off shell, contains
nonlinear realization of the eleven-dimensional super Po
caré algebra, with some additional constraints. In this s
tion, we review the procedure outlined in Ref.@1# and we
write the constraints in a fully covariant fashion.

As a starting point, one can take for instance the Brin
Schwarz action@3# for a ten-dimensional massless superp
ticle. The phase space of such a particle is spanned by
canonical variablesxm, ua, and their respective moment
pm , pa , wherex, p are vectors in ten dimensions andu, p
belong each to a Majorana-Weyl representation of the
dimensional Clifford algebra.

The straightforward quantization of this phase space
impeded by the presence of constraints, namely

p250, da[pa2~p” u!a50. ~1.1!

As in Ref. @1#, we make the choice of ignoring the firs
constraint, because we want to describe the quantum
chanics of a particle off-shell. We retain instead the Fer
onic constraints. Off-shell, they are second class and ca
treated by an extension of the Dirac quantization meth1

@2,3#: first we reduce by half the number of Fermionic d
grees of freedom using the constraints@pa5(p” u)a#, then
we compute the Dirac brackets for the remaining variab
and finally we quantize the Dirac brackets.

It is interesting to express the remaining Fermionic g
erators in terms of the supersymmetry generatorsQa[pa
1(p” u)a52pa . If we do that, the quantum algebra that w
obtain is the following:

1There are some subtleties in extending Dirac’s method to su
space, but they can be overcome for a class of algebras, of w
ours is one.
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$Qa ,Qb%52~p” !ab , @Qa ,pm#50, @pm ,pn#50, ~1.2!

@xm,pn#5 idn
m , @Qa ,xm#52

i

2
~gmp”21Q!a , ~1.3!

@xm,xn#52
1

16p4
Q$gmn,p” %Q. ~1.4!

This quantum algebra in ten dimensions is free of co
straints. It contains the ten-dimensional supertranslations
has an interesting noncommutativity in the spacetime co
dinates. Its consistency can be verified@1# by checking that
all Jacobi identities are verified.

Next, we consider the following elements of the algeb

Jm[~2p2!1/4xm~2p2!1/4, ~1.5!

Jmn[~xmpn2xnpm!1Smn, ~1.6!

Q̃ȧ[~2p2!21/2~p”Q!ȧ , ~1.7!

where

Smn[
2 i

16p2
Q$gmn,p” %Q. ~1.8!

From them, we can construct the generators of an elev
dimensional super Poincare´ algebra2 as follows@1#:

PM5~pm,P10[A2p2!, ~1.9!

r-
ch

2Whenever square roots appear it is understood that both s
may occur in front of them, so that in particularP1056A2p2

spans the whole range of momentum in the extra dimension
avoid cluttering our notation we omit the extra6.
©2004 The American Physical Society07-1
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JMN5~Jmn,Jm,10[Jm!, ~1.10!

QA5S Qa ,Q̃ȧ[
~p”Q!ȧ

A2p2 D , ~1.11!

where the indicesM andN now range from 0 to 10, and th
index A is the index of a Majorana representation of t
Clifford algebra in eleven dimensions.3 It is a matter of
straightforward computation to show thatP, J andQ indeed
satisfy the super Poincare´ algebra in one more dimensio
than we started with. We write its commutation and antico
mutation relations at the end of the next section.

Note that this eleven-dimensional algebra is realized n
linearly in the original ten-dimensional algebra, but it al
contains it, because among its generators are in partic
Jm[Jm,10, pm and Qa which in turn generate the origina
algebra.4 Hence, the two algebras are actually the same. T
apparent paradox is resolved once we realize that the
algebra is not free. In the next section we describe the c
straints it is subject to.

Note also that so far we have assumed a timelike mom
tum for the off-shell particle, so thatA2p2 is real. More
generally we should allow also an off-shell spacelike m
mentum. In that case the extra dimension is timelike beca
the momentum in the additional dimension is purely ima
nary and given byiAp2. In the latter case, all our construc
tions can be extended and the corresponding formulas ca
obtained by analytic continuationA2p2→ iAp2 from the
ones given below. In the following, we will let it be unde
stood that whenA2p2 is real the extra dimension is spac
like, and when it is imaginary the extra dimension is tim
like.

II. CONSTRAINTS

To begin with, the eleven-dimensional algebra satis
the constraints

PMPNhMN50, ~2.1!

PM~GM !A
BQB50, ~2.2!

wherehMN is the Minkowski metric in eleven dimension
the last dimension taken to be spacelike, and theGM form a
representation of the Clifford algebra in eleven dimensio
whose expression in terms ofgab

m matrices~and their anti-
chiral counterpartgȧḃ

m ) is

Gm5S 0 gab
m

gȧḃ
m 0 D , G105S 1 0

0 21D . ~2.3!

3We have indicated both the ten-dimensional operatorsQa and the
eleven-dimensional operatorQA with the same letter. However, i
should be clear from the context which is which. In particular in t
following two sections all the instances of the letterQ refer to the
eleven-dimensional Majorana spinor.

4xm can be expressed in terms ofJm by inverting Eq.~1.5!.
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Specifically, Eq.~2.1! encodes in the new algebra the defin
tion ~1.9! of P in terms of quantities in the old algebra, an
similarly Eq. ~2.2! encodes Eq.~1.11!.

The algebra has also a constraint that encodes the de
tion ~1.10!. It is easy to write it in a ten-dimensional covar
ant way by combining Eqs.~1.5!, ~1.6!, and~1.8!,

Jmn2~2p2!21/4~Jmpn2Jnpm!~2p2!21/4

52
i

16p2
Q$gmn,p” %Q. ~2.4!

This constraint contains a nontrivial relation between
Bosonic and the Fermionic parts of the eleven-dimensio
algebra. It also allows us to expressJmn in terms ofJm, pm

andQa , making explicit the fact that the constrained eleve
dimensional algebra has the same number of indepen
generators as the algebra in ten dimensions.

It is desirable to express Eq.~2.4! in an eleven-
dimensionally covariant form. For that purpose, first we
write every quantity in the constraint explicitly as a genera
of the eleven-dimensional algebra, then we perform a f
algebraic steps and we obtain

JmnP101Jn10Pm1J10mPn5
i

16
~QgmnQ̃1Q̃gmnQ!.

~2.5!

The left-hand side of Eq.~2.5! can be written as 33W10mn,
with

WLMN[J,LMPN.[
1

3!
~JLMPN6permutations!.5 ~2.6!

Here and in the following, the angular brackets indicate co
plete antisymmetrization. To rewrite covariantly the righ
hand side, we need to find spinor bilinears with tenso
transformation properties. Let us define

Q̄[QTC, C5S 0 1

21 0D .

The matrix C is chosen so that it satisfiesCGMC †

52(GM)T. Then Q̄GM1¯M pQ transforms6 as an antisym-
metric p tensor under the Lorentz group in eleven dime
sions. An explicit computation shows that the right-hand s
of Eq. ~2.5! is 33S10mn, with

SLMN[2
i

3316
Q̄GLMNQ, ~2.7!

5In four dimensions, Eq.~2.6! is the dual of the Pauli-Luban´ski
vector, so thatWLMN should be thought of as its generalization
higher dimensions.

6GM1¯M p indicates the antisymmetric combination ofp gamma
matrices,G,M1

¯GM p..
7-2
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so that the third constraint~2.4! reads simply W10mn

5S10mn. Furthermore, the equality holds also for the oth
components ofW and S. This can be checked by explic
computation in ten-dimensional language and, again, it
consequence solely of Eq.~2.4!. In conclusion, the third con
straint ~2.4! can be written as

DLMN[WLMN2SLMN50. ~2.8!

It should be clear from the previous line of reasoning t
not all components of Eq.~2.8! are independent of one an
other. Indeed the number of independent components ha
be that of Eq.~2.4! from which we started. That number is

S 10

2 D .

There is a more elegant and fully covariant way to see
the number of independent components in Eq.~2.8! is indeed

S 10

2 D ,

and we show it in the next subsection.
Thus, the conclusion of our analysis is that the Hilb

space of a ten-dimensional superparticle taken off-she
also the Hilbert space of the eleven-dimensional super P
caréalgebra

@PM,PN#50, @PM,QA#50,

@PM,JNQ#5 ihMQPN2 ihMNPQ ~2.9!

$QA ,Q̄B%52P” AB , @JMN,QA#5
i

2
~GMNQ!A

~2.10!

@JMN,JPQ#5 ihM PJNQ2 ihMQJNP1 ihNQJM P2 ihNPJMQ

~2.11!

constrained as follows:

P250, P” Q50, DLMN50. ~2.12!

The first two constraints are well known in the context
the massless superparticle in eleven dimensions. The
constraintDLMN50, and some additional ones to be d
cussed in the next section, are newly realized. As is w
known, the spectrum of quantum states that satisfy the
two constraints is precisely the supergravity multiplet
eleven dimensions, consisting of the metricgMN , 3-index
antisymmetric tensorALMN , and the gravitinocA

M . The last
constraint, and the additional ones discussed in the next
tion, are also satisfied covariantly by this supermultiplet.

In fact, other than the 11D supergravity multiplet, the
are no other supermultiplets that satisfy these constra
This can be seen by solving the constraints explicitly
terms of the 10D unconstrained degrees of freedom, wh
correspond to the off-shell 10D superparticle whose quan
states correspond to the 11D supergravity multiplet bu
a 10D notation. This point can also be understood by s
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ving the constraints in the lightcone gauge of the elev
dimensional superparticle, which also indicates the same
of quantum states in a fixed gauge; namely 128 bosons
128 fermions consisting of only the SO~9! covariant trans-
verse degrees of freedom of the supergravity multip
gi j ,Ai jk ,ca

i . Incidentally, in the context of the 11D supe
particle, we should emphasize that our approach provide
ghost-free SO~9,1! covariant quantization of the 11D supe
particle. This displays more symmetry as compared to
ghost-free light-cone quantization.

A. Counting constraints covariantly

To count correctly the number of independent constra
in Eq. ~2.8!, we need to take into account that not all com
ponents of that equation are independent. One way to s
that this is the case is to show that there is a constraint on
constraint. Indeed it can be checked that

DLMNO[D,LMNPO.50, ~2.13!

by virtue of the definition ofDLMN alone, without using the
condition DLMN50. It holds trivially for theW part of D,
while a brief computation is required to show that it hol
also for theS part.7 Therefore Eq.~2.13! is an honest con-
straint on the constraint. Again, not all components of E
~2.13! are independent of one another and indeed they
subject to a constraint themselves, namely

DLMNOP[D,LMNOPP.50, ~2.14!

and so on.
There is an end to this chain of constraints, because e

of the constraints is completely antisymmetric in its indic
and so it can have at most 11 indices. Incidentally, the
eration of adding a power ofP and antisymmetrizing can b
thought of as a cohomological operation, akin to taking
exterior derivative in De Rham cohomology. To count t
correct number of degrees of freedom then, we ought to s
from the end. The last constraint isDL1¯L1150. Because of
antisymmetry, this has only

S 11

11D 51

7For instance, one can start with the equationsQ̄$P” ,GM1¯M p%Q

5Q̄@P” ,GM1¯M p#Q50, which follow from the constraintP” Q50,
and evaluate the anticommutator or commutator using the Cliff

algebra. From this one can show thatQ̄G,M1¯M p21QPM p.50 and

Q̄GM1¯M p11QPM p11
50 for an arbitrary number of indices. Apply

ing this to p51 we deriveQ̄Q50. In addition, it is possible to

show thatQ̄GM1¯M pQ vanishes by itself forp52,5,6,9, which
corresponds to the vanishing of the D-brane charges in the

superalgebra. Thep51,10 cases are simpleQ̄GMQ532PM,

Q̄GM1¯M10Q532eM1¯M11PM11
, while the remaining casesp

53,4,7,8 satisfy the above constraints nontrivially.
7-3
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independent components and it constrains the previous e
tion in the chainDL1¯L1050, so that the latter has only

S 11

10D 2S 11

11D 51021

independent components. These are the number of com
nents that should be subtracted from the number of com
nents in the previous equation yet, and so on backwa
along the chain. Consequently, the number of independ
components in the third constraint~2.8! must be

S 11

3 D 2S 11

4 D 1S 11

5 D 2¯2S 11

10D 1S 11

11D 5S 10

2 D ,

as expected.

III. ROLE OF SUPERSYMMETRY

Of the three constraints that the eleven-dimensional a
bra is subject to, the third appears somewhat peculiar, e
cially on account of the coefficient entering the definition
SLMN. We found that some light can be shed by examin
the transformation properties of the constraints under su
symmetry.

Before we do that, let us begin with a premise. In t
previous section, we expressed the constraints on the ele
dimensional algebra as the vanishing of tensorial and sp
rial quantities in eleven dimensions. As such, the constra
are automatically consistent with the Lorentz part of the
gebra, in the sense that their variation under Lore
transformations8 vanishes once we impose the constrai
themselves. More specifically,

dJP
250, dJ~P” Q!5

i

2
GMNP” Q,

dJD
LMN5 ihRLDSMN1¯, ~3.1!

and these variations are zero moduloP” Q,DLMN.
A different way to put it, is that if we represent the algeb

on a Hilbert space of states, the states that satisfy the
straints are invariant under the Lorentz subalgebra. The s
holds for the translations, because all constraints comm
with P,

dPP250, dP~P” Q!50, dPDLMN50. ~3.2!

The next natural step is to check what happens with
supersymmetry transformations. We find the following:

dQ~P2!50, dQ~P” Q!B52P2CAB ,

dQ~DLMN!52
i

12
~GLMNP” Q!A . ~3.3!

8We define the Lorentz transformations asdJ(•)[@JRS,•#. Simi-
larly dP(•)[@PR,•# anddQ(•)[@QA ,•# for bosons,[$QA ,•% for
fermions.
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So again we find that the supersymmetry transformati
vanish once we assume the constraints to hold, and there
that the states that satisfy the constraints are invariant u
the supersymmetry transformations as well. Hence, the c
straints are such that they preserve the full symmetry of
super Poincare´ algebra. In addition, the commutators~or an-
ticommutators! of the constraints with one another can
computed using Eqs.~3.1!, ~3.2! and ~3.3!. One finds that
they vanish modulo the constraints themselves~but with co-
efficients that depend on the dynamical variables!. In other
words, the constraints are first class. They generate s
supergroup of transformations.

We should point out that the value ofdQ(DLMN) depends
critically on the choice of coefficient forSLMN in Eq. ~2.7!.
With a different coefficient, there would be residual piec
which are not proportional to any of the constraints. Ho
ever, when the coefficient is chosen to be precisely as in
~2.7!, a cancellation occurs betweendQ(WLMN) and some
terms indQSLMN and the only term left is the one given i
Eq. ~3.3!.

More importantly, we should note that the interplay of t
constraints is more interesting for supersymmetry trans
mations, because now the variation of the third constra
dQ(DLMN) vanishes only modulo the second constraintP” Q,
and similarly dQ(P” Q) vanishes only moduloP2. In other
words, DLMN50 is consistent with supersymmetry only
we also requireP” Q50. Similarly for P” Q andP2.

Let us also mention that in four dimensions a generali
tion of the Pauli-Luban´ski vector was discussed in Ref
@8,9#. It was given asCa5Wa2( i /8)Q̄gag5Q, where Wa
5 1

2 «abcdp
aJcd, and the Latin indices are four-dimension

space-time indices. If we specialize our off-shell superp
ticle approach to four dimensions~with hidden five dimen-
sional symmetry!, our five dimensionalDLMN has a four di-
mensional componentD lmn;« lmnaDa which we can attempt
to compare toCa . We find thatDa is different fromCa by an
additional crucial term,Da5Ca1( i /8p2)paQ̄p”g5Q. The su-
persymmetry variation ofCa is dQCa52( i /2)g5Qpa .
However, the supersymmetry variation ofDa is dQDa50.
For this reason the constraintDa50, or more generally the
five dimensionalDLMN50 can be imposed without breakin
supersymmetry in five dimensions. In more general repres
tations whereDaÞ0, we note thatDa commutes withpb and
D2 commutes also with the Lorentz generators. SoD2 is a
Casimir invariant of the full super Poincare´ algebra in four
dimensions. For comparison to Refs.@8,9# one may also con-
struct from theDa the tensorCab[paDb2pbDa which co-
incides with paCb2pbCa . Then CabC

ab is also a Casimir
for the full algebra related toD2. The eigenvalue ofCabC

ab

is proportional toY(Y11) whereY is integer or half integer.
Y was called ‘‘superspin’’ in Refs.@8,9#.

IV. FROM ELEVEN TO TWELVE DIMENSIONS

We repeat the reasoning of the previous sections by tak
as the starting point the off-shell eleven-dimensional sup
particle. The dynamical quantum operators of interest are
7-4
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11-component vectors (XM,PM) and the superchargeQA
which is a 32-component spinor in eleven-dimensio
spacetime. By following the same procedure, the nonlin
quantum algebra that we obtain has a similar form to
ten-dimensional one,

$QA ,QB%522~P” C!AB , @QA ,PM#50, @PM ,PN#50,
~4.1!

@XM,PN#5 idN
M , @QA ,XM#52

i

2
~GMP” 21Q!A , ~4.2!

@XM,XN#52
1

16P4
Q̄$GMN,P” %Q. ~4.3!

Note that we are now using the 32332 gamma matricesGM

given above. We inserted explicitly the charge conjugat
matrix C which satisfiesC 21GMC52(GM)T, and have de-
fined Q̄[QTC. The matrices (GMC)ab , (GMNC)ab ,
(GM1¯M5C)ab are 32332 symmetric, and (GMNLC)ab ,
(GMNLKC)ab are 32332 antisymmetric. This algebra has n
constraints. The first line is the standard eleven-dimensio
super Poincare´ algebra, and the rest is a new nonlinear e
tension for the case of the off-shell superparticle.9 The con-
sistency of this algebra can be verified as in Ref.@1# by
checking that all Jacobi identities hold.

Next, as before, we consider the following elements of
algebra:

JM[~2P2!1/4XM~2P2!1/4, ~4.4!

JMN[~XMPN2XNPM !1SMN, ~4.5!

Q̃A[~2P2!21/2~P” Q!A , ~4.6!

where

SMN[
2 i

16P2
Q̄$GMN,P” %Q. ~4.7!

Note thatQ̃A and QA are both in the 32-component spin
representation, unlike the ten-dimensional case wh
(Qa ,Q̃ȧ) were in different representations, name
(16,16* ). Therefore, we will use an additional indexi 51,2
to identify QA

i 5(QA ,Q̃A) as two supercharges that belong
a N52 supersymmetry in 11 dimensions. These two sup
charges satisfy the SO(10,1)3SO(2) covariant constraint

~P” Qi !A2~2P2!1/2« i j QA
j 50, ~4.8!

andSMN takes the SO(2) invariant form

SMN52
i

16A2P2
Q̄iGMNQj« i j , ~4.9!

9TheXM become commutative on shell, since thenp”Q50 for the
massless superparticle.
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where« i j is antisymmetric and«1252«12511. The non-
linear algebra above may now be rewritten as a nonlin
extension of theN52 eleven-dimensional super Poinca´
algebra consistent with SO(2),

$QA
i ,QB

j %522d i j ~P” C!AB22« i j ~2P2!1/2CAB ,

@QA
i ,PM#50, @PM ,PN#50, ~4.10!

@JM,PN#5 i ~2P2!1/2dN
M ,

@JM,QA
i #52

i

2
« i j ~GMQj !A ,

@JM,JN#5 iJMN. ~4.11!

TheJMN which was given above in terms ofXM, is rewritten
in terms ofJM,PM, andQA

i in the SO(10,1)3SO(2) cova-
riant notation as

JMN5~2P2!21/4~JMPN2JNPM !~2P2!21/4

1
i

16A2P2
Q̄iGMNQj« i j . ~4.12!

By using the nonlinear algebra above, it is straightforward
show thatJMN satisfies the standard Lorentz algebra in
dimensions and is the generator of 11D Lorentz transform
tions for all the 11D vectors and spinors that have appea
so far above.

It is also possible to construct the generators of a twel
dimensional superalgebra from the unconstrained op
tors PM,JM,QA

i , as follows. We construct the twelve
dimensional operators as

Pm5~PM,P11[A2P2!, ~4.13!

Jmn5~JMN,JM ,11[JM !, ~4.14!

qa5
1

A2
~QA

11 iQA
2 !5

1

A2
$@11 i ~2P2!21/2P” #Q%A ,

~4.15!

q̄ȧ5
1

A2
~Q̄A

12 iQ̄A
2 !5

1

A2
$Q̄@11 i ~2P2!21/2P” #%A .

~4.16!

The indicesm andn now range from 0 to 11, and the indice
a,ȧ denote the complex spinors of SO(11,1) which are32
7-5
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and 32* .10 It can then be shown that theN52 nonlinear
algebra in 11 dimensions now takes the form of the lin
12-dimensional super Poincare´ algebra given below:

$qa ,q̄ḃ%52~P” !aḃ , @qa ,Pm#50, @Pm ,Pn#50, ~4.17!

@Jmn,Pl #5 i ~Smn!k
l Pk,

@Jmn,qa#5
i

2
~Gmnq!a , @Jmn,Jkl#5 i f rs

mn,klJrs, ~4.18!

where the first line is the standard supersymmetry algebr
twelve dimensions with (Gm)aḃ5((GM)AB ,2 idAB), while
the second line contains the expected commutation pro
ties of the SO(11,1) generatorJmn, with

~Smn!k
l 5hmldk

n2hnldk
m , ~4.19!

f rs
mn,kl5@hmkd r

nds
l 2~k↔ l !#2@m↔n#, ~4.20!

~Gmn!ab5~~GMN!AB , ~GM ,115 iGM !AB!. ~4.21!

The antichiral counterparts of the matrices (Gm)aḃ and
(Gmn)ab above are respectively

~Gm! ȧb5~~GM !AB ,idAB!, ~4.22!

~Gmn! ȧḃ5~~GMN!AB , ~GM ,1152 iGM !AB!. ~4.23!

This algebra is subject to the three 12D covariant constra

PmPm50, Pm~Gm! ȧbqb50, Dmnl50, ~4.24!

where the last two are a 12D covariant rewriting of the 1
constraints in Eqs.~4.8!, ~4.12!. The tensorDmnl is defined
by D lmn5Wlmn2Slmn, whereWlmn andSlmn are the gener-
alized Pauli-Luban´ski and spin tensors in 12D,

Wlmn[J, lmPn.[
1

3!
~JlmPn6permutations!,

Slmn[2
i

3316
q̄G lmnq. ~4.25!

We see that the constraint in Eq.~4.12! corresponds to

JmnP111Jn11Pm1J11mPn2
i

16
« i j Q̄igmnQj53D11mn50.

~4.26!

The number of independent components in the tensorD lmn

10Note that if the off-shell momentum in eleven dimensions
spacelike, then we would obtain tworeal chiral spinors in twelve
dimensions belonging respectively to32 and328 representations o

SO(10,2). Indeed the analytic continuations ofqa and q̄ȧ for P2

positive are both real.
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ts

can be computed covariantly in 12 dimensions as in the p
vious section,

(
k53

12 S 12

k D ~21!k115555~121!122F211S 12

1 D 2S 12

2 D G .
~4.27!

This is the same number of components as in Eq.~4.12!,
namely 11310/2555.

The supermultiplet of the quantum states that provid
representation of the constrained 12D super Poincare´ algebra
can be easily computed in the SO~10! covariant lightcone
gauge. After solving all the constraints explicitly, the degre
of freedom reduce toxi ,pi ,xa where the SO~10! vectors
xi ,pi are canonical and the 32-components ofxa @two
SO~10! spinors# satisfy the Clifford algebra$xa,xb%52dab.
Therefore the quantum states areua,pi& wherea indicates
215 bosons and 215 fermions corresponding to the two spino
representations of SO~32!.

These are precisely the quantum states of the first mas
level of the 11D supermembrane, as computed in Ref.@4#.
They also correspond to the first massive level of the ty
IIA closed string, which gives a first signal of the relatio
ship to the 11DM theory as given in Ref.@5#.

The SO~10! covariant multiplets of bosons and fermion
given in Ref. @4# are massive 11D states but, through t
present work, they are now being interpreted as massles
12 dimensions. These 2151215 states provide a represent
tion of the 12D constrained super Poincare´ algebra or of the
unconstrained 11D nonlinear superalgebra.

We emphasize that 2151215 are just the transverse SO~10!
components of covariant fields in 12 dimensions. By exte
ing the tensor and spinor indices of these states to cova
12D indices, one should be able to identify the SO~11,1!
covariant tensors and spinors that describe the 12D mas
supermultiplet and provide a representation of the c
strained super Poincare´ algebra covariantly. In turn, by re
duction from 12 to 11, these can also be understood as
covariant states that correspond to the first massive leve
the supermembrane.

V. REMARKS

We have shown that there is a sense in which the su
Poincare´ algebra in twelve dimensions exists: it leads to
nonlinear algebra in eleven dimensions which contains
11D super Poincare´ algebra and which is interpreted as th
off-shell superparticle in eleven dimensions, as given in E
~4.1!–~4.3!. This algebra necessarily contains a noncomm
tative spacetime in eleven dimensions,@Xm,Xn#Þ0. The al-
gebra is represented on the quantum states of the first m
sive level of the 11D supermembrane, or first massive le
of the type-IIA closed superstring which has a close relati
ship to 11DM theory.

The 11D aspect is an indication ofM theory, while the
12D aspect hints a possible relationship toF theory@6# or S
theory @7#.
7-6
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HIDDEN TWELVE-DIMENSIONAL SUPER POINCARE´ . . . PHYSICAL REVIEW D69, 106007 ~2004!
In the enlarged space including the extra dimension
algebra is the standard super Poincare´ algebra, but with co-
variant constraints. We found that some of the constra
were unfamiliar. For example, in 11 dimensions the co
straintsP250 andP” Q50 are standard, but the constrain
DM1M2¯M p50 for p53,4, . . . ,11were not noticed before
The story is similar in the twelve-dimensional case, with t
new constraintsDm1m2¯mp50 for p53,4, . . .,12. These
new D ’s commute with the translation generatorsP and su-
persymmetry generatorsQ. In general they would be relate
to additional quantum numbers that label the representa
But in our case we have a special representation in which
additional quantum numbers all vanish. In this representa
all constraints are solved explicitly by writing the algebra
a nonlinear algebra in one lower dimension. The represe
tion space that realizes the algebra is the massless partic
the higher dimension, which is also interpreted as the
shell particle in one lower dimension.

It is clear from the explicit discussion in ten an
eleven dimensions that the same kind of analysis can
applied in any number of dimensions. This could sh
e

10600
e

ts
-

e

n.
e
n

s
a-
in

f-

e
d

light on the meaning of supersymmetry in dimensions hig
than 11.11
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