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Cosmological perturbations in a big-crunch-big-bang space-time
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A prescription is developed for matching general relativistic perturbations across singularities of the type
encountered in the ekpyrotic and cyclic scenarios, i.e., a collision between orbifold planes. We show that there
exists a gauge in which the evolution of perturbations is locally identical to that in a model space-time
(compactified Milne modZ,) where the matching of modes across the singularity can be treated using a
prescription previously introduced by two of us. Using this approach, we show that long wavelength, scale-
invariant, growing-mode perturbations in the incoming state pass through the collision and become scale-
invariant growing-mode perturbations in the expanding hot big-bang phase.
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[. INTRODUCTION guantities(density, curvaturediverge there. However, in the
situation encountered in the ekpyrotic and cyclic brane world

The big-bang singularity is one of the most vexing models, for the background solution the situation is far less
puzzles in modern cosmology. Tracing time backwards, theevere[1,2]. When two boundary branes collide, even
field equations of general relativity break down in an apparthough thisis the big-bang singularity in the conventional
ently irretrievable manner some %40 years ago when (Einstein framé description, in the background solution the
the density of matter and the curvature of space-time divergelensity of matter and the space-time curvature of the branes
Cosmic inflation does not ameliorate this disaster, but ratheremain finite. Conservation of total energy and momentum
tempts us to ignore it by just assuming that the Universeacross the collision may be consistently impo$2# and,
somehow emerged from the singularity in an inflationaryonce the densities of radiation and matter generated on the
state, and that subsequent inflation washed out all of thbranes at the collision are fix¢dy microscopic physigsthe
details of the big bang and how inflation began. outgoing state is uniquely determined.

A more fundamental point of view is that the singularity is  However, while the background geometry describing a
a manifestation of the breakdown of general relativity atboundary brane collision seems to be well behaved, it is still
short distances, which needs to be properly dealt with in anathematically singular in the sense that one dimension dis-
more consistent cosmology. String theory and M theory ar@ppears at one instant of time. The space-time ceases to be
important suggestions as to what a more fundamental theoryausdorff[5], and since the dimensionality of the spatial
might look like, improving on general relativity, for example, slice is only three at this moment, it is not a good Cauchy
by providing consistent perturbativ@matrices that include surface. More worryingly, perturbations generally diverge as
graviton processes. If string theory is a consistent, unitarypne approaches the singularity, as the result of the cosmo-
S-matrix theory, as it is believed to be, then it is reasonable tdogical blueshift associated with the collapse of the extra
expect that the cosmic singularity should be resolved withirdimension. Nevertheless, the situation is more manageable
string theory, or a future development of it, in a satisfactorythan it appears to be at first sight. In certain gauges, the
way. In particular, for every “out” state there should be at metric perturbations only diverge logarithmically in tirf@,
least one “in” state. The question arises: What could theand the canonical momenta associated with the perturbations
“in” state have been which produced the hot big bang?  and certain other perturbation variables actually remain finite

In recent papers, we have explored a concrete, detailedt the singularity.
proposal for answering this deep question. In the ekpyrotic Around the brane collision, the space-time geometry may
[1] and cyclic[2] Universe models, the origin of scale invari- be modeled by a simpler space-time which we shall refer to
ant density perturbations and the flatness, homogeneity arab “compactified Milne modZ,.” This is locally flat away
horizon puzzles of the standard cosmology are all explainefrom the singularity, and may be embedded within
without recourse to a burst of high energy primordial infla- Minkowski space-time as shown in Fig. 1. The model space-
tion [1,2]. Instead, these puzzles are solved by physical protime may be thought of as describing the collision of two
cesses occurring prior to the hot big bdrg-4], in a highly  tensionles<Z, branes separated by a flat bulk. In a study of
economical way employing today’s observed cosmologicafree fields on this space-time, two of us shovw&tithat the
constant in an integral manner. However, key to the succesonstruction of a unitary map between incoming and outgo-
of these new scenarios is a consistent passage through theg states is not only possible but essentially unique. As we
big-bang singularity. review in Sec. Il, the basic idea is to employ normal propa-

At first sight, passing safely through a big crunch/biggation of free fields on the Minkowski covering space-time.
bang transition seems impossible because many physic@his rule was showf7] to satisfy many desirable properties.
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FIG. 2. The definition of a space-time manifold is that when
viewed “up close” (left figure), it should appear to be locally flat.
We define singular space-times of the type we are interested in here
natesT andY are expressed @&=t coshy andY=t sinhy, where @S space-times for which there exists a single coordinate system
the Lorentz-invariant coordinateis constant on the dashed lines. C0Vering the neighborhood of the singularity in both the incoming
The colliding brane space-time is constructed in two steps. First th@nd outgoing space-times, within which the collision event appears
y coordinate is compactified by identifyingwith y+ 2y,, to pro- Iocglly |d_ent|c_al to thg |deaI|ze_d S|t_uat|o_n of tensionl&sbranes
duce the double-conical space-time shown at the right. Second, tf2!liding in Minkowski space-timeright figure).
circular sections of these cones are orbifolded byZhasymmetry
y—2y,—Y. The two fixed points of th&, symmetry are two ten- €mbedding coordinates in which the geometry appears lo-
sionless branes moving at a relative speed of tanhwhich collide  cally identical to that describing the model space-time con-
and pass through one anothertat0. sisting of the collision of two tensionless branes, i.e. com-

pactified Milne modZ,. This set of embedding coordinates,

For example, it defines a vacuum two-point function of thelocally unique up to Lorentz transformations, connects the
Hadamard form which is also time reversal invariant. And incontracting and expanding phases on either side of the
this idealized situation with no interactions, there turns out tdounce. The fact that fields may propagate across the singu-
be no particle production associated with passage througlarity in the model space-time shown in Fig. 1 and, at the
the singularity. Some first steps were taken towards studyingame time, unitarity and all the other desirable physical prop-
interactions and these were shown to lead to finite answerrties of massless fields propagating in ordinary Minkowski
provided the coupling constant vanishes sufficiently rapidlyspace-time can be maintaingt] makes this minimal exten-
near the collision event. sion of general relativity that we propose both reasonable

The purpose of the present paper is to extend these ideand physically sensible.
to a study of full general relativistic perturbations in space- In close analogy with the definition of a space-time mani-
times possessing singularities of the type shown in Fig. 1fold, we shall define “locally” by insisting that the first two
The usual definition of a space-time manifold is that it is aterms in a series expansion of the metric perturbatisps-
metric space which appears locally flat. This means that iifically the constant and logarithmic teriisehave precisely
the neighborhood of any poiftit should always be possible as free gravitational waves would in a compactified Milne
to choose a coordinate system in whighthe metric aPis  mod Z, space-time. The main work of the paper will be to
the Minkowski metric, andb) the first derivatives of the demonstrate that this condition may be precisely formulated,
metric with respect to each coordinate vanistPafThe in-  at least for the lowest energy modes, and that it completely
clusion of singular points of the type shown in Fig. 1 re-fixes the power series expansion in the Lorentz-invariant dis-
quires an extension of these rules. In particular, the usuabncet=+T?—Y? from the singularity. Within the coordi-
notion of general coordinate invariance becomes mor@ate systems so constructed for the incoming and outgoing
subtle. A description of the incoming and outgoing spacespace-times, we find a unique rule for matching gravitational
times, away from the singularity, should be completely inde-perturbations, in a manner entirely analogous to the matching
pendent of coordinates since only the intrinsic geometry matef free scalar fields in the model space-time, as discussed in
ters. However, connecting the two halves of the space-tim&ef. [7].
across the singularity requires a correspondence between the The matching procedure we propose is more subtle than
“incoming” and “outgoing” coordinate systems. What this that usually adopted in general relativity. Even in situations
means in practice is that after solving for the metric andwhere the matter stresses change suddenly on some physi-
brane perturbations using general relativity in the upper andally prescribed space-like surfa¢lr example in a phase
lower halves(which may be done in any gaug®ne needs transition, it is normally only necessary to match the spatial
to choose a set of coordinates, or gauge, common to botthree-metric and its normal time derivative, without worry-
halves within which the matching is to be performed. ing about the detailed behavior of the solutions of the field

Our proposal for extending general relativity to this type equations. In our case, the metric perturbations diverge at the
of singularity is illustrated in Fig. 2. The idea is to insist that singularity. One might attempt to cut the divergence off by
the upper and lower halves be connected via a smooth set pasting the incoming and outgoing space-times together on

FIG. 1. Locally, the collision of two branes may be embedded in
Minkowski space-time. The usual Minkowski space-time coordi-
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some arbitrary surface slightly away from the singularity, butquently pointed out, however, that this null result is atypical
it is not known how to do this in a coordinate-invariant man-in the sense that, for most choices of matching surfaces, scale
ner inevitably leading to ambiguous, and usually cutoff-invariant growing perturbations coming in would match to
dependent answers. In contrast, our procedure for masslessale invariant growing perturbations coming oi8].
fields including gravitational waves on compactified Milne  Some of the alternative proposals are designed specifi-
mod Z, can be formulated in terms of analytic continuation, cally for four-dimensional theories in which the bounce from
which is automatically coordinate invariant, or in terms of acontraction to expansion occurs at a non-zero value of the
real continuation in an embedding Minkowski space withscale factof14,15 (see also Ref16]). This is accomplished
asymptotically flat boundary conditions, also a coordinateby arranging for the equation of stateto violate the null
invariant prescription. Both methods produce the same cutofnergy condition near the bounce, i< —1. We empha-
independent result. Notice also that both involve global assize that the ekyprotic and cyclic scenarios and the consid-
pects of the space-time, and cannot be stated as a purely log@tions here do not fall into this category. The bounce in
matching rule. This seems to be the inevitable price one halsig. 1 corresponds to the zero scale factor in the four-
to pay for evolving through a singularity where a Cauchydimensional effective theory and the four-dimensional effec-
surface does not exist. tive equation of state parameter is strictly positive before the

We have in mind of course, an application of this proposalcollision.
to the types of cosmological singularities encountered in ek- Our approach is to choose a class of gauges in which the
pyrotic and cyclic models in which two boundary branesgeometry around the collision event appears locally identical
collide as shown in Fig. 1. In particular we wish to track to that describing linearized perturbations around the model
scale-invariant perturbations developed via the ekpyrotispace-time, compactified Milne maty. Then we match the
mechanisnj1,6] in the incoming state across the singularity perturbations according to the procedure of R&f.for that
and into the outgoing hot big-bang phase. The conclusion a$pace-time. An important feature of our choice of coordi-
our work is that with the prescription adopted here, scalenates is that the collision eventsamultaneousn Milne time
invariant, growing mode perturbations produced during theand occurs at the background valie0 both for the incom-
pre-big-bang phasgl,2,4] pass through the bounce and be-ing and outgoing state. That is, the limits-0~ in the in-
come scale-invariant growing mode perturbations in the lateoming state ant— 0" in the outgoing state correspond to
Universe. the same physical space-time surface.

Let us briefly comment on the relation of this paper to In the course of our analysis we shall uncover the problem
previous studies by ourselves and others. Our first attemptith matching the curvature perturbation on comovitog
[6] at matching perturbations across the transition was basezbnstant energy densijtglices in the four-dimensional effec-
entirely on the study of the four-dimensional effective theory.tive theory,{,, across the bounce. We shall show tfigtis
As we shall see, this is not sufficient to describe the bouncendeed conserved on long wavelengths both before and after
which is really five dimensional. Nevertheless, in that workthe bounce and, furthermore, that on long wavelengths it is
we observed that certain perturbation variables, such as thefjual to the comoving curvature perturbations on the branes
comoving energy density perturbatiep, were finite at the (.. Why then are these variables not conserved across the
singularity and could be matched across it. The pregam  bounce? The reason, detailed in Sec. VD, is that the brane
far more sophisticatgdpproach confirms this element of the collision event isnot simultaneousn the comoving or con-
procedure. The problem is thawvo matching conditions are stant energy density time slicing. This is a disaster in terms
needed in the four-dimensional effective theory and the firsof matching. In these coordinate systems, the0* andt
time derivative ofe,, turns out not to be independent ¢, —0~ space-like surfaces do not physically coincide and
itself because the differential equation is singulartat0. therefore perturbations should certaintypt match across
This leads to an ambiguity in the second matching conditionthem. We find that the collision event is displaced from the
Based on simplicity, we proposed matching the second de==0"* and t=0" surfaces in these slicings by a scale-
rivative and obtained an outgoing scale-invariant spectruminvariant time delay, within which all the information regard-
However, we did not have any real physical justification foring the growing mode perturbation is contained. A determi-
this choice. nation of the collision-synchronous time slices is only

There were criticisms and alternative proposals for matchpossible within the full five-dimensional theory, and our final
ing conditions[8], including the idea that one should match result for the spectrum of growing mode perturbations in-
the curvature perturbation on comovif@ constant densily  volves five-dimensional parameters which cannot be re-
slices[9—11], a procedure which is often useful in the con- expressed in purely four-dimensional terms.
text of nonsingular, expanding four-dimensional cosmology. Distinct but closely related are problems raised in recent
In our setting, the comoving curvature perturbation is loga-attempts to directly study string theory on compactified
rithmically divergent at the singularify6,12], but if one dis-  Milne space-times analogous to that shown in Fi§l7,1§.
regards this and proceeds to match its long wavelength, corgince these types of backgrounds are locally flat, one can
stant component, this proposal results in the growing, scalesolve[19] the tree level field equations of string theory to all
invariant perturbations present in the pre-big-bang phaserders ina’, away from the singularity. It is then tempting to
being matched to a pure decaying mode in the outgoing statealculate string scattering processes using a Lorentzian gen-
[10,11. The result is a complete absence of long wavelengtleralization of standard orbifold techniques to this time-
density perturbations in the big-bang phase. It was subsalependent case. Calculations have been performed in analo-
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gous backgrounds, for example, the null orbifold and “null- for field theory[7] have been applied to constructing string

brane” backgrounds[17,20] possessing some remaining theory on similar backgroundf29] with less pessimistic

supersymmetry. The result is that tree level scattering ampliconclusions than the above cited work30]. Other ap-

tudes develop infrared divergences which have been attritproaches and methods have also been develppid We

uted to the backreaction of the geometry near the singularitf)ave continued to develop a simpler field-theoretic approach
It is unclear what the physical significance of these resultdecause it is considerably more manageable and may yield

are yet. The breakdown of string perturbation theory seem8elpful physical insight. We hope that further developments

to indicate that nonlinear effects must be taken into accounf String theory can be used to check and develop the ap-

But such nonlinear effects are not necessarily disastrous fdifach presented here. o

cosmology. For example, since the collision takes place on a | "€ remainder of the paper builds in stages towards a full

very short time scale, one plausible possibility is that non-alculation of the propagation of_cosmplogical perturbations
through a bounce of the ekpyrotic/cyclic type:

linearities result in the production of microscopic black holes . ) X ' . )
at the collision. This would be consistent with the conclusion Ve first consider the propagation of scalar fields in a fixed

that perturbative string theory breaks down, but it would beP@ckground corresponding to two tensionl&ssbranes col-
unimportant for cosmology. The black holes would radiate!ding in a flat bulk as discussed in Ref] (Sec. 1).
and decay rapidly after the bounce without having a signifi- We next consider Imeanzed gravitational perturbations of
cant effect on the long wavelength perturbations that are retl® Same model space-tini®ec. IV). ,
evant cosmologically. Fmally, we cqn&der the fuII—quwn calculation 'of cosmo-
The classical theory may provide some insight. For exJogical perturbations fo_r two coll!dmg branes with tension
ample, consider classical general relativity with a scalar field@"d @ warped bulk. This calculation leads to our central re-
As the Universe contracts towards a big crunch singularitySUlt for the amplitude of the scale-invariant perturbations
the gradients of the energy density diverge and one might bBfopagating across the singularity into the hot big-bang
tempted to argue that gradient terms would dominate th@hase(Sec. V. ,
dynamics. However, this conclusion is believed to be wrong. Various tools are developed along the way. Section Il
Instead, the behavior of the metric and fields becomes uld€velops the moduli space approximation for two colliding
tralocal [21]. Spatial derivatives become less important adlranes in a negative cosmological constant §G& which
the Universe contracts and, at each point in space, the georf® Shall study as our canonical example. We extend this
etry follows a homogeneoubut in general anisotropi@vo- formalism, shpwmg for example that it is exact for empty
lution. This occurs because, although the gradient termBranes at arbitrary speed and curvature. In Appendix A we
grow, the homogeneous terms grow faster. A description O§hovy that the fo_ur-d|men5|0nal eﬁecnve_the_ory consistently
this subtle situation may well be difficult using string pertur- Predicts the projected Weyl tensor contribution to the effec-
bation theory, which relies, for example, upon the existencd!Ve Einstein equations on the branes, and is in agreement
of a globally good gauge. However, as we shall explain i with the recently de_veloped_ covariant curvature” approach
the conclusions, there is a simple classical picture of wheré33] @ well as earlier metric-based approacf®s33. We
the nonlinearities lead to. And within this picture, we see tha@S0 match the parameters of four-dimensional effective
the nonlinear corrections would hardly alter our final match-tN€ory for the homogeneous flat background solution to the
ing result. parameters of the .f|ve-Q|menS|.onaI theory. Appen@x B _d|s—
We should also note that the string theoretic calculation$USSes the gauge invariant variables for the five-dimensional
have only so far been possible in certain special models fof’€0Ty and how the position of the branes depends on the
which the technical tools needed are available. In particula€noice of gauge. Appendix C works out the detailed back-
they have all been done in the context of ten-dimensiona@round geometry near the bounce in a coordinate system
string theory at fixed coupling, using Lorentzian orbifolding, CONvenient for the perturbation calculations. Appendix D
with one of thenine string theory spatial dimensions shrink- ¢Oncemns the choice of gauge required to have the brane col-
ing away and reappearing. However, this setup is quite diflision §|multaneous at all values of the noncompact coordi-
ferent from the case proposed for the ekpyrotic model, wher@atesx.
thetenthspatial dimensioriof 11-dimensional supergravity
separating the two boundary branes, was supposed to cak: PROPAGATION OF SCALAR FIELDS IN A COLLISION
lapse and reappear. The 11-dimensional theory reduces, at OF TENSIONLESS BRANES
fixed, small brane separation, to string thep22] at weak
coupling. But in the time-dependent situation we are inter- The idealized space-time we shall use as a model for the
ested in, the coupling would actually vanish as the brane§ingularity is just Minkowski space-time subject to two iden-
meet. This situation is qualitatively different from the ex- tifications[36]. Expressing the usual Minkowski coordinates
amples which have been studied so far. In particular, thé@sT=tcoshy andY =t sinhy, the line element is
infinities encountered in Ref$17] are proportional to the .
string coupling. But in the ekpyrotic model the coupling van- ds’=—dT2+dY?+dx?=—dt?+t2dy?+dx?. (1)
ishes at the singularity.
Progress in the investigation of such singularities withinThe incoming and outgoing regionissx0 andt>0, respec-
string theory[23] continues to be an active fie[@4-28. tively, are the two halves of Milne space-tirel X R®. We
Analytic continuation methods related to those we employedhow compactify they coordinate by identifying under boosts,
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which correspond to translations ypny—y+2y,. We refer T
to the resulting space as compactified Milne space-time, or :
MEXR3. Finally we introduce two tensionle&s branes by
identifying fields under reflection across the cirgler 2y,
—y giving the orbifolded spacé1©/Z,x R, or compacti-
fied Milne modZ,. The branes are separated by a coordinate
distanceAy =y, which is the rapidity associated with their
relative speed. Later in the paper it will be convenient to
choose a Lorentz frame in which the branes are located at
equal and opposite values p& *+yy/2. Note that any field
which is even under th&, must obey Neumann boundary
conditionsdy¢=0 on the two branes.

The problem of propagating a free quantum field through
a big-crunch—big-bang singularity of the type shown in Fig.
1 was considered in Ref7]. The equation of motion for a
scalar field on the background) is

Lol
o+t —o+ S o+kie=0, ()
t t FIG. 3. Continuation of left and right moving modes. A free
R field propagating in the lower quadrant may be decomposed into
wherek, is the momentum in thg direction andk thatinthe  |eft and right movers as it approaches the past light cone of the
uncompactifiedz directions. origin T=Y=0. The left movers are regular across-T<0 and
In this paper our main interest is in the lowest excitationsmay be continued into the left quadra¥it<0,[T|<|Y|. The right
corresponding to the modes of the four-dimensional effectivénovers are regular across the right segmént—T>0 and may be
theory. In this compactified Milne setup these modes are thgontinued into the right quadrat>0,[T|<|Y|. If we impose van-
y-independent fields, trivially satisfying Neumann boundary'Sh'”g bour_ld_ar_y conditions at large Lorentz-invariant separation
conditions on the branes and periodicity yn For these from the origin in the left and right quadra_nts, then once we know
modes, Eq.(2) is just Bessel's equation with index=0. the left mover in the left quadrant, the right mover on the null

: . . segmentY=—T<0 is uniquely determined, and similarly the left
Lh(ektt)wzeu;i?r:gfé?cjsﬂ]):ﬁl?)igtii:;’glons ady(kt) and mover onY=T>0. One thereby obtains a unique matching rule
0 ]

from the incoming, lower quadrant to the outgoing, upper one.
and the above continuation implies that
Qout= —Qin+2(y—In2)Pin,  Pou=Pin- 5

The canonical momentum of the fidid¢ is actually propor-
where y is Euler’'s constant 0.57... . Thepositive (nega-  tional to signf)P. Hence, the field momentum reverses at
tive) frequency outgoing modeg ™) (7)) are those which  t=0 with this matching rule. Note, however, that the con-
tend to the adiabatic positiv@egative frequency solutions stant termQ is not preserved acro$s-0. Hence this match-

Jo(Kt)~1+---, No(kt)~ %[In(kt)+ y—In2]+--,
(€©))

ast—o, They are proportional to the Hankel functibif)z) ing rule is not simply time reversal &=0, and there is an
=Jo—iNg (H{"=J34+iN,), and converge rapidly to zero in arrow of time acros$=0. . . S
the lower(uppe half complext plane. If we split the quan- There is another way of looking at this rule which is il-

lustrated in Fig. 3. Take a field configuration on one copy of
he incoming wedge and repeatedly reflect it through the

oundary branes to fill out the lower quadrant. The resulting
configuration obeys the field equatigeven with nonlinear
interaction$, as long as the equation B, invariant. The
%olutions to the field equation then naturally split into left
and right movers as one approaches the light cone. The left
movers are regular of=—T and the right movers oY
=T. Each can therefore be uniquely matched across the ap-
propriate segments of the past and future light cone of the
singularity (Fig. 3).

In this way, incoming data in the lower quadrant uniquely

determines the left moving modes entering the left quadrant
and the right moving modes entering the right quadrant. The

tum field (p(t,ff) into its positive and negative frequency
parts, they are well defined, respectively, in the lower an
upper half complex plane. The unique analytic continuation
from negative to positive values ofis then to continue the
positive frequency part below and the negative frequenc
above the singularity dt=0. Continuing the expressioi3)
around a small semicircle beloi# 0 one infers the relation
HP (kt)=—H{Y(—kt) giving the positive frequency mode
function at negative values of We can translate this into a
matching rule for the fieldp by writing ¢=3ay{™)+H.c.,
with a arbitrary and complex. The asymptotic behavior of the
field ¢ is then found to be

¢~Qint+ Piplnklt], t—0", solutions in the left and right quadrants may be fully speci-
fied by choosing boundary conditions. It is natural to demand
©~Qoutt Poudnklt], t—07, (4)  that the fields vanish at space-like infinity. Once the solution
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in the left and right quadrants is determined then the leflabove, is unusually subtle for singular space-times such as
movers from the right quadrant and the right movers fromwe are dealing with. The second is that the bulk space-time is
the left quadrant may be uniquely matched to the left andhot globally Minkowski space-time but is warped and has
right movers in the upper quadrant, completely determininghon-negligibley dependence. Of course, this is related via
the solution in the outgoing state. Again, in the context of ourlsrael matchingdsee, e.g. Ref37)) to the fact that the brane
model space-time compactified Milne mdd, this prescrip- tensions are nonzero.
tion yields exactly the same matching ry®. The advan- We want to solve the linearized Einstein field equations
tage of this derivation is that it gives the clearest explanatiorfor five-dimensional gravity coupled to a pair of colliding
for the sign change in the constant contribut@nbetween  orbifold (Z,) branes. For the cosmological applications, we
the “in” and “out” states. This is just due to our having need to follow the system from times well before the brane
imposed a “reflecting” boundary condition at space-like in- collision, when the scale-invariant perturbations were gener-
finity. Since in passing from the lower to the upper quadrantted, through the collision and into the far future. In general
one such reflection is involved, a relative minus sign is acthis would involve solving a system of coupled partial dif-
quired. And as we shall explain in Sec. 1V, precisely the samderential equations iy andt for the bulk gravitational fields
matching rule may be applied for gravitational perturbationswith mixed boundary conditions following from the Israel
on compactified Milne mod,. In this case one can see that matching conditions on the branes, and would be well be-
the condition of asymptotic flatness imposed in the two unyond an analytic treatment.
physical quadrants is actually coordinate invariant. However, there is a powerful tool we can call upon which
In the case of cosmological interest where the branes havaakes the task surprisingly tractable: the moduli space ap-
tension and the bulk is warped, the sign chang®ah Eq.  proximation.
(5) is still guaranteed provided two reasonable conditions are
fulfilled. Assume that the low energy modes in the space-like
regions(which are just the analytic continuation of the cor-
responding modes in the lower quadrant, obtained by setting On general grounds one expects the long wavelength, low
t=is andy=p—iw/2, whereT=ssinhp andY=scoshp)  energy modes of the system to be described by a four-
depend only ors ass—0 (i.e. behave as the Kaluza-Klein dimensional effective theory, and we are only interested in
zero modep Second, assume that the mode selected by thw energy incoming states which are well described by this
imposed boundary condition at space-like infinity behavestheory. We shall show that the four-dimensional effective
nears=0, asD+In(k]s) with D a model-dependent con- theory may be consistently used to predict the brane geom-
stant. This is the generic behavior—for compactified Milneetries all the way to collision, thereby providing boundary
mod Z, we haveD=y—In2. Then it is straightforward to data for the bulk five-dimensional equations which we solve
show by explicit calculation that matching the left/right mov- as an expansion ihabout the collision event. After the col-
ers across the light cone from the lower quadrant into thdision, the four-dimensional effective theory plays an equally
left/right quadrants and then into the upper quadrant, on@mportant role, enabling us to track the behavior of perturba-
obtainsP,,=P;, and Q.= — Qin+2DP;,. Hence we see tions into the far future of the collision eveffig. 4). The
the sign change d is universal but the coefficiem is not.  technique we describe forms the basis for our analysis of the
It is important to emphasize that all of these arguments fosingularity described in later sections, but it is also of con-
the matching rulé5) involve the detailedjlobal structure of  siderable generality and use in its own right, since almost all
the embedding space-time. In particular e ln2 term in  of the late Universe phenomenology of brane worlds can be
Eq. (5) is peculiar to the Minkowski embedding space-time most efficiently described using the effective theory alone.
appropriate for compactified Milne mad,. If the embed- In this paper we concentrate on the simplest two-brane
ding space-time is warped, the corresponding constant wouldborld model consisting of one positive and one negative
be altered to some constabt as explained above. Fortu- tension brane bounding a bulk with a negative cosmological
nately it shall turn out that for the case we are interested ingonstantA = —6MZ/L? wherel is the AdS radius andg
Pin<Qj, at long wavelengths and hence we are insensitivehe five-dimensional Planck mass. If the brane tensions
to the value oD. The correspondend®,,~ — Qin is, how-  are fine tuned to the special valuessMZ/L, the system
ever, universal as argued above and therefore reliable even fllows a two-parameter family of static solutions in which
the warped case. It turns out that this sign change is cruciahe scale factor on each brane is a free parameter, or modu-
in allowing scale invariant growing perturbations to propa-|ys. The idea of the moduli space approach is that such pa-
gate across the singularity, in the absence of radiation. Furameters are promoted to space-time-dependent fields within
thermore, the sign change is interesting and important in thghe four-dimensional effective theory. In passing, we note
nonlinear theory, as we explain in the conclusions. that many of the methods we use in this paper should in
principle extend to more complicated theories, such as the
Horava-Witten theory, in which the family of static solutions
exists without the need for a fine tuning of the brane ten-
In subsequent sections we shall extend the matching rulsions.
just discussed for free scalar fields to full general relativistic In Khoury et al.[1], the effective action for the moduli in
perturbations. There are two major complications. The first ighis system was computed in the low velocity approximation,
the gauge invariance of general relativity which, as explainednd shown to be equivalent to Einstein gravity plus a scalar

A. The moduli space approximation

Ill. THE 4D EFFECTIVE THEORY

106005-6



COSMOLOGICAL PERTURBATIONS IN A BIG- . .. PH®BICAL REVIEW D 69, 106005 (2004

TA [ 1 P2 K ¢
/ TeMALTT 3eME b2 pt

: (6

+ wherep_. is the densitynot including the tensignof matter
g vV g vV or radiation confined to the brané, is the brane scale
““ ““ factor, andH - is the induced Hubble constant on the posi-
tive (negative tension brane. We work in units such that the
coefficient of the Ricci scalar in the five-dimensional Ein-
stein action isM3/2. The last term is the “dark radiation”
Y term, where the constadtis related to the mass of the black
> hole in the Schwarzchild-AdS solution discussed in Appen-
dix C.

We shall show that the solutions to these equations are
precisely reproduced by a four-dimensional effective theory,
with the only approximation necessary being that the density
of matter or radiation confined to the brangs, be much
smaller than the magnitudes of the brane tensions, so that the
p2i terms in Eq.(6) are negligible. For the particular con-
cerns in this paper, namely the accurate calculation of the
long wavelength curvature perturbation on the branes, it is
reassuring that the four-dimensional effective theory descrip-
tion is such a well-controlled approximation, even at large
brane velocities, in the long wavelength limit.

FIG. 4. The world lines of the positive and negative tension  Choosing conformal time on each brane, and neglecting
branes are plotted for some fixed value of the uncompactified cootthe p? terms Eqs(6) become
dinatesx. The four-dimensional effective theory is used to predict
the intrinsic geometries of the positive and negative tension branes, 1
i.e. their space-time metriag,, andg,,,, according to Eq(10). bf= + —3p+bi—Kbi+C,
The four-dimensional effective theory is used to describe the in- 3M5
coming and outgoing perturbed branes far to the past or future of
the collision event. The brane metrics also provide boundary data 1
for the five-dimensional bulk metric which we solve for as a power b'?=— 3 p_b*— Kb? +¢, (7
series expansion in time about the collision event. 3Mg

) . - where the prime denotes conformal time derivative. The cor-
field which couples non-minimally to the matter on each . : . , "
responding acceleration equations fof and b” , from

brane(see also Refl38]). The derivation given here, while ) . . ) - .
more specific to the simplest brane models, is both Sirnplewhlch C disappears, are derived by differentiating equations

) - ~(7) and usingd(pb*) =b3(p—3P)db, with P being the pres-
and more powerful. It shows that th_e_same Eﬁe.‘“."’e aCtIOr,iure of matter or radiation on the branes. We now show that
actually has a broader range of validity than originally an-

e . ’ these two equations can be derived from a single action pro-
ticipated, turning out to be exact for empty brane configura

. ) ) 4 . vided we equate the conformal times on each brane. Con-

tions with cosmological symmetry, for arbitrary spatial cur- gijer the action

vature and velocity(or expansion rate When matter is

present, the effective theory is a good approximation as long

as the density of matter is small compared to the brane ten- S=f dtNd®X[ —3M3L(N"2b/2—Kb2)—p,b%

sion. The fact that the four-dimensional effective theory is so

accurate is likely to be a special feature associated with the +3L(N‘2b’_2—Kbi)—p_b‘l], 8

lack of bulk degrees of freedom in the simplest brane world

model we are focusing on: for configurations with cosmo-whereN is a lapse function introduced to make the action

logical symmetry, a generalized Birkhoff theordi39,40  time reparametrization invariant. Varying with respecbto

holds which guarantees that no radiation is emitted into theand then settindN=1 gives the correct acceleration equa-

bulk. tions forb”. andb” following from Eq. (7). These equations
Consider a positive or negative tension brane with cosmoare equivalent to Eq7) up to two integration constants. The

logical symmetry but which moves through the five- constraint equation, following from varying with respectNo

dimensional bulk. The motion through the warped bulk in-and then settingl=1, is just the difference of the two equa-

duces expansion or contraction of the scale factor on th&ons(7) and ensures that one combination of the integration

brane. As shown in Ref36], the scale factor on the brane constants is correct. The constars then seen to be just the

obeys a “modified Friedmann” equation, remaining constant of integration of the resulting system of
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equations and can in effect be determined by the solutions affhere we have defined the effective four-dimensional Planck
equations of motion following from the actid®) [41]. massM2=(87G,) *=M3L.

Having shown that the modified Friedmann equations
(with the neglect op? terms follow from an action in which
C does not appear, we are now able to change variables to
those in which the system appears as conventional Einstein For most of this paper we shall only study the especially
gravity coupled to a scalar field plus matter. We rewrite thesimple case of radiation on the bran@ghich are 3+1 di-
action(8) in terms of a four-dimensional effective scale fac- mensiongl. The matter action is then independentdofs a
tor a and a scalar fields, defined byb, =acosh(#/\6), result of the conformal invariance of radiation in-2 di-
b_=—asinh(¢/ \/6), Clearly,a and ¢ transform as a scale mensions, and this will greatly simplify our analysis. But as
factor and as a scalar field under rescalings of the spatid@n aside let us for a moment consider nonrelativistic matter

coordinatex. To interpreté more physically, note that for ©n the branes. Then there is a non-minimal COUP'!”Q_W’ith
static branes the bulk space-time is perfect anti—de Sittdfading to a source term in the scalar field equation:

space with line elememtY2+e2"L(—dt2+dx?). The sepa-

B. Branes with non-zero matter density

4 4
1 1
ration between the branes is given lb~=L In(a,/a ) Pp=—= cos}‘( i) T+ Z sin)—( i) T,
=L In[—coth(¢//6)], sod tends from zero to infinity ag 4 G - 4 NG >
tends from minus infinity to zero. (12

In terms ofa and ¢, the action(8) becomes

L where primes denote derivatives and thel(*) are the
3| (52 2 252 traces of the stress tensors for matter on the two branes con-
3MgL(a”-Kah)+ 22 ¢%|+Smi ) tracted with respect to the relevant brane metric. It is inter-
esting to see how these results compare with what is known
which is recognized as the action for Einstein gravity withabout brane world gravity from prior studi¢42]. For per-
line elemenia?(t)(—dt?+ 7i;dx'dx’), ¥;; being the canoni- fect fluids, the effective matter Lagrangia@3] reads
cal metric onH3, S? or E? with curvatureK, and a mini-  — [d*x\/—g~p. . Hence matter on the branes couples to the
mally coupled scalar fieldb. The matter actiorsS,, is con-  four-dimensional(Einstein frame effective theory in the
ventional, except that the scale factor appearing is not theombination p,=coshg/\/6)*p. +sinh(@/\/6)*p_ . As the
Einstein-frame scale factor but instead =a cosh(@/\6) inter-brane distance grows, the fiefiitends to zero. Since
andb_=—asinh(¢/\/6) on the positive and negative ten- the cosh tends to unity, we see that a matter source on the
sion branes, respectively. positive tension brane with physical densjiy contributes
Now we wish to make use of two very powerful prin- the same amount to the density seen by Einstein gravity in
ciples. The first is the assertion that even in the absence afe four-dimensional effective theory. Furthermore, from Eq.
symmetry, the low energy modes of the five-dimensional12), the coupling of such matter to the dilaton vanishes as
theory should be describable with a four-dimensional effec<. Hence the dilaton decouples and ordinary Einstein gravity
tive action. The second is that since the original theory wasgs reproduced in this limit. Matter on the negative tension
coordinate invariant, the four-dimensional effective actionbrane behaves very differently. If its density as seen by Ein-
must be coordinate invariant too. Since the five-dimensionastein gravity in the four-dimensional effective theorypis,
theory is local and causal, it is reasonable to expect thesgen its physical density on the brane is much larger,
properties in the four-dimensional theory. Furthermore, if the~ ¢~ 4p,, and from Eq.(12) it sources the dilaton field as
relation between the four-dimensional induced metrics on they~1p,. Hence at smalip the source for the dilaton diverges
branes and the four-dimensional fieldse. the four- and Einstein gravity is never reproduced.
dimensional effective metric and the scalar fieljl is local The derivation we have just given of the four-dimensional
(as one expects for the long wavelength, low energy modesffective action starting from the modified Friedmann equa-
we are interested )nthen covariance plus agreement with tions is in the present context both simpler and more power-

S=f dtd®x

the above results forces the relation to be ful than previous derivations. It shows that the induced ge-
ometries on the branes are correctly predicted for branes with
g,,=[cost{¢/6)1%05%, g,,=[—sinh(¢/\6)1%g3%.  cosmological symmetry, for arbitrary curvature and speed of

(10) the branes provided only that thé matter terms are negli-
gible. For these cosmological backgrounds, the four-

When we couple matter to the brane metrics, these expregtimensional effective theory accurately describes the brane
sions should enter the action for matter confined to the posicollision even though from the Einstein frame point of view
tive and negative tension branes respectively. Likewise Wguch a collision is highly singular in the sense that the 4D
can from(9) and covariance immediately infer the effective effective scale factom tends to zero and the Riemanh
action for the four-dimensional theory: tends to minus infinity in finite time. Nevertheless, the brane
geometries and densities describedg;jx andp-. are finite
o T and well behaved at all times.
TSmlg 1+ Smla"], One surprising point about the map from five dimensions

(1)  to four is that the effective theory with a scalar field sourced

M3 1
s-| d4xJ—_g(7“R— S0,8)°
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by the combined energy density,=coshg/\6)*p. br=1xA,7+r,7, (15
+sinh(¢/\/6)*p_ manages to correctly predict the solutions

to the Friedmann equations on each brane even though these we see that with the choice of normalization for the scale
are separately sourced Iy, andp_. This is possible be- factora made in Eq(13), the brane scale factors are unity at
cause of the integration constants. In the four-dimensionatollision. For comparison, in Ref2] we parametrized the
effective theory the basic equations can be taken to be theadiation density appearing in the four-dimensional effective
Friedmann equationa(?= . ..) which has one integration theory using the Hubble constaHt at equal density of the
constant and the scalar field equati¢a®¢’)’=...] which  radiation and scalar kinetic energy,=(2r4)3’2/A}1’2. Also,

has two. So there is a three-parameter set of solutions, alhe parameteHs used there to describe the contraction rate
though one of these is not physical as it is just a rescaling obf the fifth dimension may be expressed, for low radiation
a. On the other hand, the two-brane Friedmann equationgensities at collisory.L?<1, and slow velocities as/,.
have two integration constants along with the additional con- \We may now directly compare the predictiofiss) with
stantC which is the dark radiation term. Consequently wethe exact five-dimensional solution given in E¢€23 of
have a precise match between the integration constanfppendix C, equating the terms linear irto obtain

showing that there is a one-to-one map between the solutions

of the two sets of equations. In performing an explicit check L2(r,—r_)
we find that the missing information on how much matter is A4=(1/L)( It ———
contained on each brane is contained in the integration con-

stants for the dilaton equation.

tani(yo/2),

L(ro+r_)

M= e
C. Relation between 4D effective theory 12 tanhtyo/2)
and 5D brane parameters

(16)

The five-dimensional background we seek to describe\:NhereyO is the rapidity associated with the relative velocity

consists of two parallel, flaZ,-symmetric three-branes ?géhrzotl)i;i::)is 3;:;1"5'0%: t:;gg Ot))r:?gr;t Iic;[lrl]iiigﬁlu'(l?hcgse
bounding a bulk with a negative cosmological constant. In ¥ . o .
éormulas are the exact expressions for the four-dimensional

branes are assumed to be empty. In the ekpyrotic scenario rameters ir_1 tefms of the fi\2/e-dimensional parameter.s ne-
is assumed that the brane collision event fills them with ra9 ecting contributions of ordes™. In fact, at leading order in

diation. In this section we shall see how to describe this’, they are better than this since to this order the four-

background setup in terms of the four-dimensional effec:tived'mens'onaI predlct|or_1 IS exact. .

theory, and in particular we shall determine precise relation For Iater.purp.oses it will also be useful to define the frac-
between the parameters of the four- and five-dimensional onal density mismatch on the two branes as
theories. The two brane geometries are determined according

to formulas(10), and the background solution relevant post- f Fe—r- 17)
collision is assumed to consist of two flat, parallel branes re+r_’

with radiation densitiesp.. The corresponding four-

dimensional effective theory has radiation dengity and a  so that we have

massless scalar field with kinetic energy dengity. It is

convenient to work in units where the four-dimensional re- 12fr,
duced Planck mas#,=(87G) %2 is unity. The four- ry—r-=——tantyo/2). (18
dimensional Friedmann equation in conformal time then
reads
D. Four-dimensional perturbation equations
arzzl(pra4+p¢a4)E4A4 ra+ A_j , (13 In this section we describe the perturbations of the brane-
3 a world system in terms of the four-dimensional effective

. theory. The only cases we consider in detail are where the
where we have defined the constaftsandr,, and used the pranes are empty or carry radiation. The conformal invari-
fact that the massless scalar kinetic enepgy<a °. The  ance of radiation in four dimensions greatly simplifies mat-
reason for this choice of constants will become clear momeners since the scalar field then has no direct coupling to the

tarily. . ~radiation and hence the latter evolves as a free fluid in the
The solution to Eq(13) and the massless scalar field four-dimensional effective theory. We elaborate on the sig-
equation @°¢')" =0 is nificance of this conformal invariance in Sec. VIC.

We shall now describe the scalar perturbations, in longi-
tudinal (conformal Newtoniah gauge with a spatially flat
background where the scale factor and the scalar field are
given by (14). The perturbed line element is
From these solutions, we reconstruct the scale factors on the
branes according to Eq€L0), obtaining d?=a?(7)[ — (1+2®)dr2+(1-2¥)dx?]. (19

A4T

g

2 _ 2
a“=4A,7(1+r,7), 2In
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Since there are no anisotropic stresses in the linearized (66 S
theory, we haveb=V (see, e.g. Ref43]). 5¢,=2(—,— ) Vg=—r. (23
A complete set of perturbation equations consists of the ¢
radiation fluid equations, the scalar field equation of motion _ o
and the Einstein momentum constraint: From Egs.(20) above(and usings’=a™ <) it follows that
5= — = (kP —30") 3 o\ o2l _%¢
==z (K%, 8= 50| =2k vr—? . (24
1
vl = 7 5 +d Maintaining the adiabaticity conditiof22) up to order k)2

then requires that the fractional velocity perturbations for the
scalar field and the radiation should be equgk= 5¢/¢’.
Expressing the radiation velocity in terms 6, the mo-
mentum constrainfithe last equation i20)] then yields

(8¢)"+2H(6)' =—K*(5¢) +4¢' @’

2 1
¢’+H¢=§azprvr+ >¢'(89), (20)
2 p\ Y 2D +HD)
. I . . op~|1+5— _—, (25
where primes denote derivatives,s, is the fractional per- 3 py &'

turbation in the radiation density, is the scalar potential for

its velocity, i.e.v,=Vu,, 8¢ is the perturbation in the scalar wherep,=3¢'%a 2
field, and from Eq(14) we have the background quantities = The above equations may be used to determine the lead-

H=a'la=(1+2r,7)/[27(1+71,47)], and ing terms in an expansion ifk7| of all the quantities of
V= 7(1+r,47)]. interest about the singularity. In order to compare with Ref.

We are interested in solving these equations in the lon§6], we shall choose to parametrize the expansions in terms
wavelength limit,|k7|<1. There are only two independent Of the parameters describing the comoving energy density
solutions to Egs(20), namely a growing and a decaying Perturbatione,=—3H ~2k*®, which has the following se-
mode, provided that we specify that the perturbations aréies expansion about=0:
adiabatic Recall that the idea of adiabaticity in the cosmo-
logical context is that for long wavelength perturbations, €m=€oD(7) + €:E(7), (26)
there should be nothing in the state of the matter to locally
distinguish one region of the Universe from another. At eactwheree, ande, are arbitrary constants, and
spatial location the evolution of the densities of all the dif-
ferent fluids(radiation, baryons, dark matjeshare a single 1.,
history in which each fluid evolves with the scale factor D(7)=1-2r,7— sk Inlkr|+ ...,
according to dp;=—3(p;+P;)dIna=—3p,(1+w)dIna
wherep; is its density,P; is its pressure anal; parametrizes
the equation of state. Likewise the total density evolves as
dp=—-3(p+P)dIna=—-3p(1+w)da. Since the history is
parametrized uniquely by the scale facépran adiabatic per-
turbation can be thought of as arising from a fluctuation

E(r)=7"+.... (27

For adiabatic perturbations, we obtain

2

dIna. Hence solving all the above equations ®in a, one S.—edl — 9 B Eln|kq-|+ E_ E r_4 te i
finds 0 a8 4 4K2) Pak?

i 1) =1 N 21 +O(7,7In|k7])

(1+w)  (I+w)’ '~ @D
3
for adiabatic perturbations. vy=€o| —5—(1—r47) | +O(7,7Ink7]),
¢ 0 4k2 4
For the case at hand, the components of the background T
energy density in the four-dimensional effective theory are
scalar kinetic energy, witw,=1, and radiation, withw, 2 5 o
=1, It follows that for adiabatic perturbations, at long wave- 6r=35041 07 In[k]),
lengths we must have
3 vr=v4+0(7,7Ink7]),
3 3 15r3 3

In longitudinal gauge, the fractional energy density perturba- P=eo| - 8K2,2 + E|”|k7| + 8 K2 gk
tion and the velocity potential perturbation in the scalar field
(considered as a fluid wittv=1) are given by +O(7,7Inlk7]),
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=

——(1-2r,7)+ Eiln|k7-|+_+ ——

(5¢) 8 1 1 13h21) ds?= —dt?+t2dy?+ dx?, (29)
~€| g 22 3
8k27 8 8k

but with y identified under translationg—y+2y,, and the
reflectiony—2y,—y. The orbifold fixed points located at
! ==*yy/2 are the trajectories of two tensionless orbifold
— €, +O(7,7Inlk7|), Y==Yo J . ; :
branes. In Sec. Il we considered matching a scalar field
across the singularity in this space-tifitéd and now we gen-
1 1 1 gralize the methods considered there to the case of gravita-
§4M:__62+60 _(k2+1&i)+—|n|kT|) t|0na| Wa\_/esl' ) i ) ) . X
’ 2k? 8k? 4 A gravitational wave in five dimensions has five indepen-
dent propagating components. If thedependence may be
+0O(7,7Inlk]), (28) ignored these five components split up in synchronous gauge
into tensor ¢g;j), vector (5g;,) and scalar §g,,) compo-
where(, is the spatial curvature perturbation on comovingnents, possessing two, two and one propagating degree of
slices[43]. freedom, respectively. As usual in four-dimensional cosmo-
In an expanding Universe the adiabatic growing modeogical perturbation theory the most interesting piece is the
corresponds to a curvature perturbation, conveniently paranscalar as this transforms nontrivially under coordinate trans-
etrized by, . The decaying mode perturbation is really a formations and couples to the matter density perturbations.
local time delay since the big bang, to whi¢lhy, is insen-  The tensor pieces are especially simple since they are trivi-
sitive but® is not. As detailed in Refl6], in a contracting ally gauge invariant and decouple from the matter. Finally,
Universe these modes switch roles so that the time delaghe vector pieces only couple to the curl component of the
mode is the growing perturbation and the curvature perturmatter velocities and not to the matter density perturbation.
bation is the decaying perturbation as one approaches the bithey require a separate analysis which will not be given
crunch. here. Furthermore, in our setup the vector modes are natu-
The perturbations generated in the ekpyrotic/cyclic scerally projected out becauség;, must be odd under thg,.
narios consist of growing mode scale-invariant perturbationglence the vector modes must vanish on the branes, and this
in the incoming state with no decaying mode componentis why there are no vector degrees of freedom in the four-
These perturbations are parametrized &yk? having a  dimensional effective theory.
scale invariant spectrum, and since there is no decaying We shall, therefore, need only to consider the scalar sector
mode, {4\ is zero on long wavelengths. After the collision, in what follows. The form we take for the five-dimensional
from the four-dimensional effective theory view the Universecosmological background metric is
is expanding. Now, the growing mode perturbation is propor- ) 5 o o 5 .
tional to the long wavelength part f,,, . The key question ds?=n*(t,y)(—dt*+t?dy?) +b?(t,y) ;dxdx, (30)
is whether with our five-dimensional prescription matchesand e write the most eneral scalar metric perturbation
the growing mode in the incoming state onto the growing b \tNth'WI 9 P
mode in the outgoing state, parametrizedZQy, , with non- about this as

zero amplitude. For this to occur, the long wavelength piece gs2—n2(t y)[—(1+2®)dt2— 2Wdtdy+t?(1—2I)dy?
of {4 must jump across the bounce. We shall see below that

this indeed occurs. —2V,adx'dt+2t2V, Bdydx]
+b2(t,y)[(1-2V) 8 — 2V,V, xJdx'dx. (31)
IV. PROPAGATION OF GRAVITATIONAL
PERTURBATIONS IN A COLLISION For perturbations otM X R® it is straightforward to find a
OF TENSIONLESS BRANES gauge in which the metric takes the form

In this section we consider the propagation of metric per-
turbations through a collision of tensionless branes where the ds’=
background space-time is precise¥y ©/Z,x R3. The analy-
sis follows closely Sec. Il, which considered the propagation
of generic scalar fields in this same background. The results
here are essential to our analysis for the physically relevant
case of colliding branes with tensid8ec. \j since our ap- and y satisfies a massless scalar equation of motion on
proach is based on finding a gauge where the propagation o# ©x R®. To be precise, the gauge is
metric perturbations through the bounce is as close as pos-
sible to the case for fixed tensionless branes. a=B=0, I'=d-V¥-Kk?%,

In this problem it is simplest to choose coordinates in
which the branes remain at fixed locations and all the fluc-
tuations in the geometry are accounted for by the bulk metric
perturbations. Recall that, ignoring gravity, the background
metric is W=0. (33

4

1—|—3

kz)()(—dt2+t2dy2)

2 S
+ 1—5 dx'dx!, (32

2 2 1 2
(ngk)(, \I’=§k)(,
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Notice that the non-zero variables can all be relategyto (3) We use the conditions if38) to propagate all per-

according to turbation variables through the collision.
2 (4) We match onto the four-dimension@hoduli) theory
(F,¢>,\If)=<— §,+ §,+ 3 k2. (34)  to determine the cosmological results for long wavelength
perturbations.

We shall, henceforth, refer to these as the “Milne ratio con-  opne might worry that the four-dimensional effective
ditions.” Furthermore, imposing th&, symmetry, we obtain theory we use to predict the boundary data for five-

Neumann boundary conditions on dimensional general relativity breaks down close to the
, —0 35 bounce. However, there are reasons to expect the effective
X'(y=)=0, (39 theory remains accurate as an approximation to general rela-

tivity even at small times. First, in Kaluza-Klein theory, the
effective four-dimensional theory is a consistent truncation
and hence provides exact solutions of the five-dimensional
theory even in situations of strong curvature and anisotropy.
In our case, as the branes come close, the warp factor should
x(t,y)=Q+P In|k|, (36) become irrelevant so that 'the Kaluza-!(lein picture should
become more and more valid. Second, in the approach to the
with Q and P being arbitrary constants, just like the case ofsingularity in general relativitj44] (based on the classic
scalar fields in Sec. Il. Our matching proposal for all theBKL work [21]), the decomposition of fields according to
perturbation modes is then simply the analogue of the scaldfimensional reduction does correctly predict the asymptotics
field rule given in Sec. Il, namely, of the solutions in the limit as—0. This suggests that the
effective field theory indeed captures the correct behavior of
full five-dimensional gravity near the singularity. In our de-
tailed study of the linearized theory, we shall find a remark-
a@ble consistency between the predictions of the four-

where y. = *yy/2 are the locations of the twd, fixed
points.

In the model space-time, the lowest energy modeyfis
y independent and has the asymptotic form

Qout=—Qint2(y—In2)Pin, Poui=Pin. (37

These relations are sufficient to determine the metric fluctua®’ ; . :
tions after the bounce. dimensional effective theory nedr=0 and the full five-

In later applications, we are only interested in the |ong_d|men5|onal cosmological perturbation equations, and these

wavelength part of the spectrum, and, for the cases of inteigonsistency checks are the main justification for our use of
est, P is suppressed b compared taQ. As a result, we the effective theory all the way to the brane collision. Of
obtain the approximate matching rule ' ’ course, the use of five-dimensional general relativity near the

singularity may itself be doubted since stringy corrections
Qout=—Qin, Pour=Pin- (3g)  may be large there. But this objection can only be addressed

in a detailed calculation within a string or M-theory context,
The key conditiong33) through(35) are satisfied precisely which is beyond the scope of the present paper.
for all time in a compactified Milne mo&, background. We first infer the boundary geometry in longitudinal
When tension is added to the brane and the bulk is warpeg@lauge(Sec. VA for which there is a simple and precise
our approach is to find a gauge which takes us as close @orrespondence between the four-and five-dimensional per-
possible to these conditions in the limit agends to zero, turbations and both are completely gauge fixsee also Ap-
where the same matching rule may then be applied. pendix B. However, in this gauge the metric perturbations

diverge much more rapidlyas 1t%) than a massless scalar

V. 5D COSMOLOGICAL PERTURBATIONS FOR BRANES ~ Néart=0. We shall need to transform to a gauge whiee
WITH TENSION IN A WARPED BACKGROUND all the components of the metric are only logarithmically
divergent andb) in which the components of the metric are

Our strategy for computing propagation of perturbationsin the same ratios and obey the same boundary conditions
when the branes are dynamical and have ten@orthe bulk  asymptotically az—0, as for the perturbed model space-
is warped is conceptually simple: time with two tensionless branes it ©/Z,x R? (Sec. V Q.
In this gauge we can treat the components as massless fields
eand match across the singularity as in SedSkc. VD.

We wish to emphasize that the choice of gauge we are

(1) We use the four-dimensional effectivenoduli)
theory described in Sec. Il to provide boundary data for th

five-dimensional bulk fields. In particular, we will be inter- King is fully five-di . land i o ke that
ested in the case where a nearly scale-invariant perturbatio axing Is fully ve-gimensional and Is quite uniike that usu-
[ly made in four-dimensional cosmology for several rea-

has been generated well before the bounce when the fouf: ; . i
sons. In four-dimensional cosmology, the matter present is

dimensional effective theory is an excellent approximation, .
as occurs in ekpyrotic and cyclic models. often US?d to .defme a gauge—.for examplg, one may ghoqse
gauges in which the total density or velocity perturbation is
(2) In the five-dimensional theory, we find a gauge zero. However, in the five-dimensional bulk there is never
which approaches the Milne conditiof®3) through(35) as  any matter present, just the cosmological term which is con-
t—0. In the gauge, the perturbation variables satisfy thestant and, therefore, does not define any preferred time slic-

massless scalar field equations of motion. ing. One might choose surfaces of constant extrinsic curva-
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ture, but these are not in any way preferred by the physics 1

involved. Instead, our approach focuses on the asymptotic b _=d,+ —cotr(¢/\/€) o,
geometry near=0, and identifying it with the model space- V6

time M/Z,XR3. In addition to approximating the model
space-time, it is essential that, for the same gauge choice, the
brane collision besimultaneousat all x, so that thet=0"
andt=0" surfaces physically coincide. We shall show that
our gauge choice satisfies this latter criterion, but the stan©ne subtlety in utilizing these formulas is thadi, and 6¢
dard four-dimensional gauge choices, e.g., constant densigre expressed as functions of four-dimensional conformal

V_=P,— icotw/@)a(p. (42)
J6

or velocity gauges, do not. time, then they give the correct predictions fbr. and¥ ..
on the branes in terms of the conformal time on each
A. Longitudinal gauge moduli predictions brane. However, when we use them as boundary values of

hi . ish he four-di ional eff the five-dimensional metric it will be necessary to consider
In this section we wish to use the four-dimensional effec-y " (b perturbation variables as functions of the five-

tive (moduli) theory discussed in Sec. Il to infer the bound- dimensional timet entering in the background metr{g0).

ary da_lta for_the five-dimensional b.ulk pgrturbationg. IN anYThe brane conformal times may be expressed in termspf
four-dimensional gauge, the four-dimensional metric pertur'mtegrating

bationh,, and scalar field perturbatioA¢ determine the

induced metric perturbations on the brarfesa related but t  dt

not equivalent gaugevia the formulag(10): =f qltys)’ (43

h> =h,,+2(InQ.) 46 , 39
pr =Nyt 2000 456, 39 whereq=b/n. So, for example, the boundary value of the

where O, =cosh@/\6) and Q_=—sinh(@/\/6) and the bulk metric perturbationb, on the positive tension brane is
: . . . e + given explicitly by

metric perturbations are fractional i.6g,,=ah,,, 69,,

=b%h>,.

This formula is particularly easy to use in five- q)L(t:y+):(D4( f q(t,y+)1dt)

dimensional longitudinal gaug€Our definition follows that

of Ref. [45], where many useful formulas are giveihis 1
gauge may always be chosen, and it is completely gauge +%tan!‘{ d>(f Q(t.Y+)ldt)/ \/6}
fixed as we explain in Appendix B. In this gauge the five-
dimensional metric takes the form
X o fq(t,yuldt), (44)
dg?=n?(t,y)[ — (1+2® )dt?—2W, dtdy

Ft2(1— 2T )dy2]+ b3(t,y)[(1— 2V, ) & Jdx dx. wherey. is the location of the positive tension brane. As
' . noted, in this gauge even when we include perturbations the
(40) branes are static and the Israel matching conditions are easily

) . ) . found to be
Furthermore, as explained in Appendix B, in the absence of
anisotropic stresses the brane trajectories are unperturbed in b’ L
this gauge. An immediate consequence is that the four- F(yt): igntpt ,
dimensional longitudinal gauge scalar perturbation variables
® . and¥. , describing perturbations of theducedgeom- q’ L
etry on each brane E(yi): iint(pi +p) (45)

_h2 2 o2
ds? =b2 (7.)[—(1+20.)d7s +(1-2¥.)dx’], ( for the background solution and

are _prec_:isely the boundary v_alues of the five-dimensional W (y.)= EW,_IEnt( Spi =T p-),
longitudinal gauge perturbationd_.=® (y.) and V. b 6
=V, (y+). Using Egs(39) and(41) we find for the induced )
perturbations , n d L .
Pilys)=—| 5+ o /Wewgnt(dp —T'p2)
D, =P,+ 1t K ¢/\6) 5 L
=®yT —=1an ’ _ +
. J6 =5 nt(apE —Tip.),
1 b’Lt
‘I’+=<D4—%tamf¢/@>5¢, Wi (ys)= === (p=+p2)of (46)
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for the perturbations, where the right-hand sides are alécale factor(),(¢)a on the positive tension brane and
evaluated ay=y. , the locations of the positive and nega- ) _(¢)a on the negative tension brane with notation as in
tive tension brane¢From now on a prime shall denotédy  the previous section. Conservation of the radiation density on
and a dot shall denot&/dt.) We can re-expres#/, on the each brane reduces at long wavelengths dp. =
branes as —4p.dina—4p.din Q.. Likewise we have for the radia-
tion density in the four-dimensional effective thealy,=
W (y-)=(9?)"vi, (47 —4p,dIna. Hence solving fordIna as in Sec. 11D, we

. o . . infer the adiabaticity condition for radiation on the branes to
whereuv is the longitudinal gauge velocity perturbation of pe

the matter on each brane. From this one sees, for example,
that for empty braned)V, vanishes on the branes. 0+=0,—4(InQ.) ,6¢. (50

As long as the bulk matter is isotropic, as it is in our case, ] . . . .
the Einstein equations lead to a constraint which may bd he equation for conservation of energy in four dimensions

written can be written in the forni45]
1 _ 2 _ . 1
A 48 fa= 5K, (51
In longitudinal gauge this read45]
where
L=o, -V, (49
everywhere in the bulk. This is the five-dimensional ana- §B=‘I’—3(l—+w)5 (52)

logue of the well known four-dimensional no-shear condition

® =V in longitudinal gauge. Equatio9) serves to define s the gauge-invariant variable measuring the spatial curva-
I, on the branes in longitudinal gauge. Consequently weyre perturbation on constant density hypersurfaces, as origi-
have sufficient boundary data for all the components of theya|ly defined by Bardeef6]. The quantityv, is the gauge
five-dimensional metric in this gauge. We can then performnyariant scalar velocity potential, equal to the velocity po-
an arbitrary five-dimensional diffeomorphism to infer the tential in longitudinal gaugéso thatViv, is the scalar part of
boundary data in any gauge we choose. Equivalently, Eghe velocity perturbation

(49) may be interpreted as a condition in any gauge by using At long wavelengthsk—0, Eq. (51) implies that/g is

the gauge invariant variables defined in Appendix B. conserved, provided the velocity perturbation does not grow
with scale. This property is very powerful since it means that
B. Stress energy conservation under most circumstances, as long as modes remain outside

In this paper we consider perturbations in the “in” state the horlzon_g’B can be tnvu_ally_extrapolated from the early to
the late Universe, where it gives the amplitude of the grow-

which may be described as local fluctuations in a single sca . : . : : .
lar field ¢ representing the inter-brane separation. We ard"9 mode adiabatic density perturbation, the main quantity of

interested in long wavelength modes which are completel?bﬁ_irvatfnal |crj1t(?re.§t tosdzay. i I hb
frozen-in during the collision event. Hence the local pro- e above definitior(52) applies equally on each brane

cesses describing the production of radiation at the bounc%nd in the foyr-dlmenspnal effective theory,_prowded the
. . > . terms on the right hand side are appropriately interpreted. On
should be identical at eack, and in the usual sense em-

the b , h
ployed in cosmology, described in Sec. IlI D, the perturba- © branes, we have

tions should be “adiabatic.” 1

As is well known, the conservation of stress energy leads (g +=V.— 25: , (53
to powerful constraints on adiabatic density perturbations, in
particular implying that the amplitude of the growing mode
perturbation cannot be altered on super-horizon scales.
this section we discuss this constraint and show how it im
plies the spatial curvature of comovirigr constant energy
density slices is conserved on large scales both for the brane V.=V,—(INQ.) 466, (54)
geometries and for the four-dimensional effective theory. We a o
shall restrict ourselves to considering only radiation on eacland the adiabaticity conditio50) we see that the four-
brane. This considerably simplifies the analysis becausg@imensional effective value of Bardeen’s variahjg =0,
when the matter on each brane is conformally invariant, as- 1, is in fact identical tolg - on long wavelengths.
explained above, in the four-dimensional effective theory the Qur final result will in fact more naturally emerge in
scalar field decouples from the matter and can be treated arms of another gauge invariant variable, the curvature per-

an independent fluid. turbation on comoving slices, emphasized by Mukhanov and
First we need to generalize the usual notion of adiabaticothers[43]. This is defined as

ity to deal with perturbations in the radiation densities on
each brane. As mentioned above, radiation couples to the {n="Y+Hu, (55

where 6. are the fractional perturbations in the radiation
lfensities on each brane, add. is the perturbation in the
brane spatial metric. Usin@2), written as
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with v the velocity potential an@{=d In a(7)/dr the confor- 10 ax\ 1  bayx

mal Hubble constant. Again this may be interpreted on either Viy=—— —(t—) - ——3=

brane or in the four-dimensional effective theory. But adia- tat\ at) 2 gy2 bt

baticity requires that the fluid velocities be identical on long , 2.2

wavelengths for each fluid component. Therefore we must + E b_ ‘?_X_ Q)(:O (58)
havev . =v,= 8¢/ ¢’ [from (23)]. This is also seen to be t2 b dy p2 '

consistent with(51) and the equality of the Bardeen variables

{s,+={p4 Which we have just shown. This result is remarkable in that it is independent of the pre-

The scale factors on each brane are related to the fougise details of the background bulk geometry and the form of
dimensional effective scale factor vin. =) .a. Recalling the stress energy in the bulk, assuming only that no aniso-
that the conformal times on the branes are the same as thatfifpic stresses are present.

the effective theory, we havll,=H. —(In€).) 4¢ .. Using The remaining gauge freedom is of the form{— x*
Va=0+=04=0¢l(¢ ;) we find + & where
b?. 2
Ima=V st Hav =Y+ Hov—(INQL) 45¢ §t=¥§i §y=—n2—t2 5, (59)

provided that® also satisfies a massless scalar field equation
iji—"—Htvq’)! (56)

V2£5=0. (60)

which is just{y - . So for adiabatic perturbations and at Sincey transforms agy— x+ £°, andy is zero in longitudi-
long wavelengths, the comoving curvature perturbations omal gauge, it follows thaj in the gauge we use is, in fact,
the branes are both equal to that in the four-dimensionaprecisely the value of the spatial coordinate transformation
effective theory. As is well known, the latter is conserved for¢® needed to get to a gauge satisfyitg7) from five-
adiabatic perturbations at long wavelengths. It follows thatdimensional longitudinal gauge. Furthermogeand &Y may
away from the bounce;y - are both conserved as well. As be inferred fromy= & via Egs.(59).
we discussed in the Introduction, and will detail below, this  To completely fix the gauge within the family specified by
doesnot imply they are conserved across the bounce. (57), we need to specify boundary conditions for the figld
We will use (56) below, but we should point out one mi- on the two branes, and initial conditions on some space-like
nor subtlety. We shall be performing all our calculations insurface. As a first guess, one might consider choosing to fix
five-dimensional timet, not four-dimensional conformal the gauge by specifying Neumann boundary conditions on
time. The velocityv , is not a scalar under coordinate trans-the branesi.e. y'(t,y-)=0] for all time, as in Sec. IV. One
formations, and we shall need to multiply, by a factor ofg  can easily prove that in this gauge, as in the longitudinal
when we re-interpret Eq.56) in terms of the five- gauge, the brane trajectories are unperturbed. This follows
dimensional time. from the formula(59) upon settingé®= y as noted above.
This is very important: it follows that in this Neumann gauge
the brane collision is simultaneous and occurs at precisely

=0 for all x. Furthermore, the Neumann gauge(t,y+)

Our philosophy is to evolve cosmological perturbations=0 for all t is a good gauge in the sense that none of the
through the bounce in a “Milne gauge” where they behavemetric components diverge worse than logarithmically.
as closely as possible to gravitational waves &h°/Z, However, it turns out that setting (t,y. ) =0 for all time
X R?, as described in Sec. IV. Then, we can use the samig too strong a condition. One cannot choose Neumann gauge
matching condition$38) to determine the perturbation spec- for all time and also have
trum after the bounce.

The Milne gauge we use is chosen to match the gauge W=0+O(t,tIn[kt|) (61)
choice(33) in Sec. IV up to corrections of ordérandt In|kt]|

C. Transformation to Milne gauge

due to the finite brane tension, radiation densities and the 2,
warp factor. We still have enough coordinate freedom to set o= §k x+O(ttinfkt]) (62)
three linear combinations of the metric perturbations equal to
zero for allt, and we choose 1
V= §|<2X+ O(t,t Infkt]), (63)
a=B=0, I'=d—V¥—K?. (57)

consistent with the behavior in the model space-ti3® at

leading order int andt In|kt|. The resolution is simple: we
A remarkable feature of this choice is that the constrainheed to perform a small gauge transformation away from
equation(49) implies thaty obeys the equation for a mass- Neumann gauge in which we maintain only the asymptotic
less scalar field on the unperturbed background for all timesvanishing of the proper normal derivative gfast tends to
From Egs.(57) and(B5) in Appendix B, we find zero, i.e. we impose that
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n~ %t 1y (yo)=0+O(t,tInlkt|) (64) (65). As we have already explained, in our chosen class of
gaugesy satisfies the massless scalar equatio® at all
on the two branes. With this choice we are able to impose alimes. To specify a complete solution we need to specify
of the conditions in(63) as well as(57). This small gauge both Cauchy data on some constamypersurface between
transformation away from Neumann gauge shifts the locathe two-brane world sheets, plus boundary conditions on the
tions of the branesy., but only by a finite amount. As two branes. The boundary data will be obtained from the
discussed in Appendix D, this means that the rapidities of théour-dimensional effective theory, and we make the conjec-
branes are perturbed in our chosen gauge, but the collisiolure that the bulk solution which is consistent with these data
event is still simultaneous. will behave neart=0 like a Kaluza-Klein zero mode on
Our reason for expecting that we can choose a gaugat ©/Z,x R3, which is to say that the perturbations should
specified by Eqs(63) and (64) is that when the branes ap- be independent of ast tends to zero. In practice this means
proach the warp factor should become increasingly irrelevanive will look for a solution which is asymptotically of the
and the real background space-time should asymptoticallform y=Q+ P In|kt|, independent of. This assumption for-
approach the model space-timie/Z,x R3. We expect the mally provides the Cauchy data once we detern@nand P
low energy modes we are interested in to behave as the lowsee below
est Kaluza-Klein modes in this limit, i.e. becoming indepen- At higher orders int, we shall allow for arbitrary Neu-
dent ofy. Within the class of gauges specified by /) we  mann boundary conditions, which we shall parameterize as
shall indeed see that there are solutions for the perturbations
in which all the perturbation components behave IRe
+ P In|kt| ast tends to zero. The Milne ratio conditid84)
turns out to be automatically satisfied by the coefficients of
the logarithms. Fixing the constant terms to be in the MilneAs explained above, we shall adjust the coefficiemfsto
ratios further fixes the gauge up to a residual two-parametesbtain the correct Milne ratios. Note that there can be no
family and imposing asympotically Neumann boundary con-O(1) term since we are assuming thais asymptotically of
ditions (64) on both branes then completely fixes the gaugethe form y=Q+ P Int, independent of, and theO(t) term
Imposing asymptotically Neumann boundary conditionsis prohibited by our conditior{64). In principle we could
turns out to have various other natural consequences. Faiso includet Int andt?Iint terms but we shall find that the
example, in this gauge all the metric perturbation compo-Milne ratio conditions(34) are sufficient to rule these terms
nents possess identical asymptotic behagiier constant and  out.
logarithmic term$ on the two branes, astends to zero, The form of the series expansion fgr, implied by its
consistent with their behavior as a lowest Kaluza-Kleinequation of motion(58), is
mode. Furthermore, there is a simple geometrical conse- )
quence of this choice which we explain in Appendix D, x(t,y)={Q+[f;(y) +cycoshy+c,sinhy]t
namely that in this gauge the perturbations to the embedding 2 3
(T,Y) coordinates of the brane collision event actually van- iy t/2+0()}
ish so the branes collide at precisely the background values 1
of TandY. +PInlkt[| 1—- Zk2t2+ o(t?) |, (67)
The non-zero perturbations in our chosen class of gauges

are®, ¥, Wandy along withI" which is fixed by the gauge where f;(y) and f,(y) are two functions ofy that are ob-
choice(57). All the gauge freedom is contained in the solu- tained as solutions of second order differential equations in
tion for x. To see this we note that if we know the solutionswith boundary conditions derived froif66). We choose to
for y we can immediately infe®, ¥ andW from the values  definef; so thatf;(y.)=0. Therefore ify satisfies the as-
in longitudinal gauge via the formulas from Appendix B, ymptotically Neumann conditiori64) on both branes, we
Egs.(B5), which with Eq.(57) imply must havec,=c,=0. A geometrical interpretation of this
condition is explained in Appendix D.

1
X' (y.)= §a§t2+ o(t3,t3In|kt|). (66)

O, — (2 )_E 2 n'[g®y’ Using the expressions fds(t,y) given in Appendix C,
“PLT )T AT T ) Eq. (C23, in the equation of motiott58), for y, we find at
ordert™?! the following differential equation must be satis-
qéX, fied by f,(y):
W=W_—(g*x)" —t? = | Yo
n_ g _ 2 e
fi—f1 2L sinhy, (6+r,L )cos)‘(y+ 5
b ) b’ qZXr
V="V + qu BT (65 —(6—rL2)cosI'(y— %) =0. (68)
Here as aboveg=b/n. A similar equation forf, is found at ordet®. The solutions

Our goal then is simply to determingto sufficient order are messy in general but simpler when no radiation is
in t to be able to compute all the other components from Eqspresent; for example, in this case we have
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3P

(y)= W(y,)—¥(y_)=0(p3L?). (72)
1(Y)=351 coshyo/2)

y coshy — ( 1+ %tanh%) sinhy

Since the moduli space approximation was derived neglect-
(69)  ing p2L* corrections, to the order we can trust the calcula-

By substituting(67) into (58) and imposing the boundary tion, ¥ is equal at the two brane locations. The difference of
conditions (66) at each order, the solution foy up tot® ~ ® on the two branes is not automatically zero at leading
corrections is completely determined in terms of the fourorder, however, and setting it to zero provides the additional
constants in totalQ, P, anda; . From this solution fory, ~ €quation needed to determine the third constant.

metric perturbations at leading ordertinon each brane. up toO(t?) and the leading order behavior of the other com-
Let us start by determining the spatial curvature perturbaPonents of the metric is completely determined. Explicitly
tion ¥ on each brane. From Eq&6) and (65) we find we find[47]
! ’ ’ tan}’(y /2) .
b . b’ 9%y V(t)= t)+ €0 0 1 —sinh(yy)
qr:§4M+qB(qX_U¢)_Ft_2_ (70) (1)=Zam(b) 32<2L2cosﬁ(y0/2){ g yo—sinh(yo)]

, s , , —L*(r,—r_)[—3yo+sinh(yo)]}
We require thatV be only logarithmically divergent. Since -
from Egs. (28) we have thaw ,=3e,/(4k?*r)+0O(1), di- +O(p= L2t tIn[kt]). (73
verging ast” ! ast—0, we see from Eq(67) and the ex- i ) i , i
pressions for the background metric functions in Appendix cSINce'V is one of the variables which we match in our cho-

: . . . sen gauge, it follows that our prescription is quite different to
that only y can cancel that divergence, which requires that matching the comoving curvature perturbatigiy four-

dimensional effective theory. As we shall explain, the addi-

_ ﬁ (71) tional terms in(73) allow the propagation of growing mode
4Kk2° perturbations across the singularity.
This condition ensures that the curvattrein our gauge and D. Matching proposal
the comoving curvaturg,  in the four-dimensional effec- The requirement that around the collision event the geom-

tive theory only differ by.a constant at leading orde.rtjn etry looks locally likeM €/Z,x R® has completely fixed the
However, it shall be very important that the constan'F IS NONyayge in the incoming and outgoing states. As elaborated in
zero. As we shall see, the constant represents the time del"i!)f)pendix D, the asymptotically Neumann boundary condi-
between the two time slicings, and it is the key to Wiy, tjon (64) further ensures that the collision event is simulta-

jumps across the singularity. neous in our gauge, an essential property for matching per-

We shall now show that it is pPssibIe to choose the threg,pations since the space-like surfaces definedt by0*
remaining gauge constar@anda; so that the metric takes angt— 0~ then physically coincide.
the canonical Milne gauge form asymptoticallytagnds to Furthermore, as we have discussed this gauge is special in
zero. First, in this gauge all the metric perturbations behavenat the induced geometry on each brane is asymptotically
as Q+Plnlkt|, ast tends to zero, but with different con- the same at collision. In general if a brane is moving, the
stantsQ and P for each component. Substituting Eq67)  values of the bulk perturbatiort and ¥ evaluated on the
and (71) into Eq. (65), with ¥ given from Eq.(56), ®. pranes differ from the induced valueb. and ¥. . The
given from Eq.(44) andW,_ given from Eq.(47), one finds  gifferences are given by N N
that the logarithmic terms are actually all in the correct
Milne ratios Eq.(34), and also thawV vanishes to leading b2 n’
order, independently of the undetermined constants. Further- PemP(ys)=——Z X
more, the logarithmic terms obep(y.)—P(y_)=0 and n°t
P(y,)—Y(y_)=0, consistent with our assumption that the
Kaluza-Klein zero mode dominates.

The gauge constan@, a; anda, do, however, affect the
t-independent constant terms in each metric perturbation
component. Two of the constants are fixed once one sets tlgncen’/n«t andb’/bot ast—0, in the presence of matter
constant terms in® and ¥ to their Milne ratio values on the branes, if we make the requirement that the metrics on
(2/3)k?x and (1/3k?y. We also want to ensure that all com- each brane are asymptotically identical this fixe5=0
ponents of the metric perturbations behave asymptotically- O(t?), which is what we have required. Physically this
like a Kaluza-Klein zero mode, becoming independeny of seems a natural choice of gauge because when two ordinary
ast tends to zero. We check this by comparing the values obranes collide, the induced geometries are identical at the
@, ¥ andW on the two branes. The difference ¥fon the  collision moment. This interpretation is also consistent with
two branes turns out to be independent of the choice of ththe predictions from the four-dimensional effective
gauge constants ddends to zero, theory where the brane metrics are given tg/;V

b? b’

‘I’:—‘I’(Y¢)=+n2—tzg)('-
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=[cosh@/\/€)]zgw and g’yz[—sinh(¢/\/€)]zgw. Since  synchronous surfaces in our gauge, and those of the
the collision corresponds /f:ﬁ—>—°0, in the limit there is no  comoving/constant density surfaces. The key to our result is

difference between the two conformal factors, and the brangat in the comoving or constant density gauge the time de-
geometries appear identical. lay betweent=0 and the actual brane collision event has a
So in the gauge we have fixed by the requirement that th&cale invariant spectrum. .
perturbations behave asymptotically like those on the model N fact, using Egs(28) and(73) to find Q and P before
space-timeM/Z,X R, the collision event is synchronous, and after the bounce for all components of the metric pertur-
the Milne ratio conditions are satisfied, the boundary condiPations and matching according to the rule given in B8
tions are asymptotically Neumann, and the geometries ofeSults inZ, v inheriting two separate scale-invariant long
each brane are asymptotically the same both before and aft&avelength contributions in the post-singularity state. The
the collision. Our matching proposal amounts to relating théirst occurs as a direct consequence of the sign change in Eq.
geometry on these chosen time slices across the collision. Wé8), and is independent of the amount of radiation generated
believe that these are sufficiently desirable properties to jusat the singularity. The second is proportional to the differ-
tify this as the natural gauge in which to perform the match-ence in the densities of the radiation on the two branes. At
ing, and from now on we shall take this to be our complete€ading order in velocities we have
gauge fixed matching gauge.

Let_ us now return to our final f_ormula73) t_o infer its AL :i € (Vv ) (r+—r_)eoV§ut
meaning in the context of ekpyrotic and cyclic models. In M B4 2 2 Tin T Tout 30Kk2
those scenariogs] the quantitye,/k? has an approximately
scale-invariant long wavelength spectrum in the incoming +0O(r- V3, VoL "2 p2L?), (77)

state. The first point to make is that even in an in-state with
no radiation present the dimensionless curvature perturbationhereV;, andV,,; are the relative velocities of the branes
on spatial slicegl in our gauge has a scale invariant spec-before and after collision. Note that sinBec ¢y, matchingP

trum, since is in fact equivalent to matching, across the collision as
proposed in Ref[6]. In terms of four-dimensional param-
Wogt 9eptanh(yy/2) eters defined in Sec. llIC, including, given in Eg.(18)
=64M

16k2L2cosH(y /2)[y0_3in“y0)]' (74 defining the abundance of the radiation and the fractional
0 density mismatchf defined in Eq.(17), we find again at

Recall thaty, is the relative rapidity an¥;,=tanhg) is the  eading order in velocities

incoming relative velocity between the two branes. Then, at

small velocities this gives 3 €

_ 360 qugut
A§4,M_aﬁ

16k L

(Vh+Va)— (78

3 €& 4,
‘I’—§4,M—@W in- (75 This is our final result, relevant to tracking perturbations
across the singularity in the ekpyrotic and cyclic models. We
We may interpret this geometrically as follows. In the ab-See it consists of two essentially independent terms. The first
sence of radiation there is no real meaning to the curvaturt$ proportional to the radiation density mismatch on the two
perturbation on the branes but if we imagine that there is &ranes after collision. Note that just such a mismatetth
small density of radiation coming in, and the perturbationsmore radiation on the negative tension branas required in

are adiabatic, we can infer the comoving curvature perturbaorder to enable the cyclic solution of R¢2] to work. The
tion on the brane;. y, so Eq.(75) becomes for long wave- second term exists, however, even in the limit of no radiation

lengths generated on the branes. As we have noted above, it is non-
zero even ifV;,=V,, and it originates in the sign change
3 € ., of the parameteQ in our matching rule, which yields an
V.o=0+n— akszvm' (76)  arrow of time across the collision as explained in Sec. II.

Going back to the original formulé73) in which we have

not made the small velocity approximation, we note that both

mthe radiation-dependent and radiation-independent terms
Sossess a well defined limit as the brane collision becomes

arelativistic (as the rapidityyg— ),

Since{. v and¥ are the spatial curvature perturbations of
the branes as respectively measured in the comoving ti
slicing and in our chosen time sliciri@ which the collision
is att=0), it must be that the additional piece arises from
time translation between the two gauges. That this is so is
verified when one traces back the origin of this term to the Lo~ ﬂ<_+ M)
second term in Eq(70). As explained in the Introduction, Ml aLs 8
comoving gauge(or equivalent constant energy density

gauge are bad gauges to match in because the brane collRecall, we need the radiation densities on the branes to be
sion is not simultaneous in those gauges. Since our prescripauch smaller than their tension, ik, L?<1, in order that

tion is to propagat&” across the collision, the jump . is  the four-dimensional effective theory be valiGec. IlI).

due to the time delay occurring between the collision-Therefore in the high velocity limit, the radiation-

(79
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independent term dominates. Conversely, from &), in  have seen that the metric components typically behave as 1
the low velocity limit[with (r . —r_)L? fixed] the radiation-  + ¢In|t| ast—0. This is just the smalk expansion oft|e,
dependent term dominates. the generic behavior expected in the full nonlinear Kasner
We should stress once more that the dependence upa@wlutions of general relativity that describe the generic ap-
parameters in Eqg.(78) indicates its thoroughly five- proach to a space-like singularity. The natural extension of
dimensional origin. It cannot be expressed in purely four-our proposal to the nonlinear theory is, therefore, that we
dimensional terms. In previous woflé] with Khoury and  should match the Kasner exponents across the singularity. As
Ovrut, two of us employed a more naive matching prescripin the linear theory, the canonical momenta associated with
tion framed entirely in terms of the four-dimensional effec-the three-metric are finite and our proposal amounts to
tive theory. This prescription was based upon using the comatching them with a sign flip. But our matching proposal in
moving energy density perturbatiep,, which is finite at the  Ed. (5) also reverses the long wavelength component of the
singularity, as the matching variable. Unfortunately, since theeonstant term in the metric perturbation. Generalizing to the
differential equation governing,, is singular att=0, the  nhonlinear case, we may anticipate that when the metric tends
first time derivative ofe,, is not an independent quantity at to the Kasner form with spacelike component=?|t|”,
the collision and hence could not be independently matchedvith Q and P of order €, these components will match to
Instead we proposed matching the second time derivativee” °|t|” in the outgoing state. I¢ is small as expected in the
This has the virtue of at least yielding a dimensionally cor-ekpyrotic/cyclic scenarios, nonlinear corrections will be of
rect result, but it is ambiguous since there are other choicegrder e? and hence negligible.
of finite variables. Now we understand the source of the Strongly supporting the idea of a local matching rule is
ambiguity better. There is simply not enough informationthe classic conjecture that in general relativity the behavior
present in the four-dimensional theory to fix the gauge. Fopf the metric and fields becomes ultralocal in the approach to
that, the five-dimensional picture is essential as we have sedhis type of singularity21]. That is, the spatial derivatives
here. become unimportant and the geometry at each point in space
In summary, we have found that a spectrum of scale infollows a homogeneous Friedmann-Robertson-Walker evolu-
variant, growing, long wavelength perturbations generallytion that just depends on local conditions. One might worry
propagate across the singularity even in the limit when ndhat contraction also leads to chaotic mixmaster behavior in
radiation is produced. The radiation-independent contribuwhich the Universe moves from one kind of Kasner contrac-
tion rests upon the sign change®fn the matching rulg5).  tion to another and the Kasner exponents change unpredict-
If radiation is produced at the bounce, then, for the longably. However, the existence of mixmaster behavior depends
wavelength modes we are interested in, we believe it is reaen the number and types of fields. We discuss elsewHiéie
sonable to model the production of radiation as occurrindiow the mixmaster behavior is naturally suppressed in ek-
suddenly, taking into account the conservation of energy angyrotic and cyclic models.
momentum as was done in RE2]. In this case, we find an Finally, with a precise matching rule for propagating per-
additional contribution to the long wavelength scale-turbations through the singularity in place, we believe that
invariant perturbations emerging from the singularity, whichthe cyclic and ekpyrotic models are now on firmer footing. A
is proportional to the difference in the radiation densities ordetailed study applying the above results to these cosmologi-
the two branes. cal scenarios will be given elsewhegr9].
Note addedSince the appearance of this work, Craps and
Ovrut[50] have investigated the propagation of perturbations
VI. CONCLUSIONS within string theory in a class of backgrounds possessing

In this paper we have developed an unambiguous and, w¥9-¢runch-big-bang singularities qualitatively similar to
believe, compelling rule for matching perturbations acrosdnose studied here. In a certain limit, the _space-tlm_es_th_ey
the types of singularity encountered in the ekpyrotic and cyStudy reduce to compactified Milne space-time. In this limit
clic Universe scenarios. In the simplest realization of thesdn€Y Obtain results identical to those discussed here and in
scenarios, involving the collision of tw#, branes in a bulk Ref. [7]. The agreement is gratifying. Howc_ever, their string
with a negative cosmological constant, we have shown thd{'€C"Y €xamples have not yet been studied beyond linear
the proposed rule leads unambiguously to a spectrum eory, within which there is no significant difference be-

scale invariant growing density perturbations in the ensuin ween string theory cal_culations anq those .in field j[heory.
hot big-bang phase, even in the limit when only a small hey have not yet studied perturbations of fields which are

amount of radiation is produced at the collision. The resulfiMe varying in the background, and which therefore couple

provides support for a key assumption of the ekpyrotic and© metric perturbations, as we have here. Nevertheless these
cyclic models. and other examples are very instructive and we are fully in

We have dealt here only with the linear theory, treatingagreement with them about the importance of performing

the perturbations as free massless fields which we matcﬁ]alculations of the type reported here within string and M
across the singularity. This treatment clearly is not fully con-t"€0Y:

sistent since the perturbations are divergent at the singularity
and nonlinear effects must become important there. How-
ever, there are reasons to expect that in the nonlinear theory, We would like to thank Martin Bucher, Ruth Durrer, Chris

a similar matching rule will apply. In the linear theory, we Gordon, Steven Gratton, Stephen Hawking, Gustavo Niz,
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G.=*—T,,~E,.. (A5)
APPENDIX A: PROJECTED EINSTEIN EQUATION 4

In Sec. Ill we derived the four-dimensional effective ac- F'0M nNow on we shall for convenience use units whdrg

tion for solutions with cosmological symmetry and then used~ (87C) 2is unity. As a consequence of the Bianchi iden-
general coordinate invariance to infer the covariant modulfities it follows that in this “low energy” approximation the
space action. While we have shown that this approach recoy?!lowing condition must be true:
ers the cosmological solutions perfectly at low densities, we .
have obtained the low energy effective action describing the V.E% =0, (A6)

enerallasymmetricgl case by simply assuming locality and . . . .
igmposing c)(/)variance. While t)r/ns ispp)I/ausibIe it fc'Js impor)t/ant to SINCEE,,, is conserved and traceless it means that the influ-
check it explicitly. This has in fact been done in RER3— ence of the bulk on the brane geometry is |Qent|cal in form to
35,51 which further clarify the conditions under which the that Of the stress energy of a conformal field theory. If we
moduli approximation is valid. We shall compare the resultd®K for @ cosmological solution, the vanishing trace condi-
of these works with those of the moduli space approach. t|%n tells us that the only non-zero componentskf are

We shall first show that the effective theory we have de-Eo=f(b) and Ej=—3f(b)4j, wheref(b) is an arbitrary

rived satisfies one non-trivial check. One way of formulatingfunction of the scale factor on the brane. In addition the
a low energy theory for the brane geometries is the so-callegondition thatV,E% , =0 tells us thaf (b) =C/b* and so the
Gauss-Codazzi formalism developed in R&O]. Here we  effect of this term is gravitationally indistinguishable from
take the five-dimensional Einstein equations and projectadiation, and it may be thought of as a dark radiation term.
them onto the brane to infer an equation for the brane geomFhis is the import of Birkhoff's theorem in the bulk, viewed

etry. One finds from the brane.
The moduli space approximation as we have developed it

provides a precise prediction fEriV. A non-trivial check on

= E ) wvt Wsiy— S (A1) this approximation is that the predicted valuesyf, is trace-
5 5 less. This condition of tracelessness is built in at the start in

L _ ~the other formalismf33-35, but is a nontrivial check of our

whereT ,, is the stress-energy on the brane, not includingapproach. We can compute the trace by simply conformally

the tgnsion. This looks like t_h_e four-dimensional EinStei”transforming the trace of the Einstein equation in the four-

equations except for two additional source terms. One corgimensional effective theory. Writing the brane metrics as

tains stress energy squared terms, 9= dxdx’=02g,,dx“dx” we find
mv FIuv
! b oqapd o E*,=—Gt ,=T.=R.*T.
Suv= 15T Tur™ 7 Tua ot 579u(3TagT B—T12), p tpm xR
6
(A2) - f( R- Q—VZQ+> 7.
whereT=T?, , and the seconH ;, is obtained from project- ) Q0 600
ing the “electric” part of the bulk Weyl tensor onto the brane :Q+2[ —T4+(V¢)2( 1—6( 6),¢¢) B (Qt) ¢V2¢}
ax™ 9xB +T
,=———Eas, Eas=Cacson®n®, (A3 ==
" axX* ax” AB AB ACBD ( )
—0.3 -1 ——G(Qt)‘q’v% +T (A7)
wheren” is the normal to the brane. Note that by definition = 4 Q. -

E,., is symmetric. Since this term contains information about

the second y” derivatives of the bulk geometry we cannot where T.=T% , and in the last step we have us€l,
calculate it in any purely four-dimensional way and so al-=coshg/\/6), Q_= —sinh(#/\/6). Finally, making use of
though the above equations strongly resemble Einstein'the equation of motion for the scalar field

equations they are purely formal. However, we can construct

one purely four-dimensional equation becaksg does sat- 1 1 B
isfy the exact condition Vih=— Z(Qi),cﬁﬁ - Z(Qi),dﬂ- - (A8)
EZ ,=0. (A4)  we find that
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E% ,=0. (A9) and on the negative tension brane
It is interesting to note that the intermediate steps in this P 1 (1+d)? .
calculationrequire that the conformal factors on the positive EE,=—T2,(1+ Y Thy

and negative tension branes are of the forms described above
involving coshg/\/6) or sinhgy/\/6).

In order to compute the projected Weyl curvature in gen-
eral it is helpful to work at the level of the action. We start 3 1 1
with the action for the four-dimensional effective theory 2 u - oo 2

+ 2 BT D) (V(I)VVCD 5 S(V_D)“|.

S=J d4x\/—_g(%[R—(V¢)2]+Q‘i£++Q4£ . (A10) (A15)

1 — 2
~ g (VEV, 08V @)

i i . i An especially interesting limit of these equations is obtained
To get the action for the metric on the positive tension branqJy $—0 implying ¥ —1 and®— which corresponds to
we simply perform the conformal transformation, taking Usyye gistance between the branes becoming infinite. Providing
out of Einstein frame we can neglect the derivative terms, we see that in this limit
Q2 matter on the positive tension brane couples to the brane
- a4, [Cao-4 0+ _ 20-1_ 2 geometry by means of the conventional four-dimensional
S fd =00 ( 2 [R: 60, Va0, = (V. )] Einstein equations, whereas the geometry on the negative
tension brane is dominated by its coupling to matter on the
+Qiﬁ++ﬂiﬁ—) (A11) posit.ive ten.sion_brane,. and will onl_y start to look Ii.ke con-
ventional Einstein gravity if a “stabilization” mechanism ex-
ists which freezesp to a constant value. In the latter case,
then defining® =072 and performing an integration by stress energy on each brane acts like a dark matter source for
parts we obtain the following action for the metric on the gravity on the other brane.
positive tension brane: These equation§A15) describe matter interacting in an
unconventional way with gravity, and yield a more compli-
s, = | d*=q, cated perturbation theory than usual. Our approach makes it
T N7 9+ clear that it is simpler to work with the effective four-
dimensional theory in Einstein frame with a scalar field with
a canonical kinetic term, and then simply to use the map
9,,,=[cosh@/\6)]%g,, and g, =[—sinh(@/\6)]°g,, to
infer the brane geometries. The only sense in which this
and a similar calculation on the negative tension brane detheory differs from conventional four-dimensional physics is
fining d=0"2 gives that the different forms of matter couple non-minimally to
gravity through the scalar field.

1( 5
5| VR:— m(ﬂ‘“

+ L.+ (1-W)°L_|, (A12)

— 4,, | 1( 3 2
S- Jd X 9[2 PR+ 2(1+<I>)(V7(D) APPENDIX B: GAUGE INVARIANT VARIABLES

As in four dimensions the cosmological symmetry of the
background metric allows us to find a set of gauge invariant
variables, which facilitates the comparison of two different
These results are in perfect agreement with the low energgauges. What the natural gauge invariant variables are de-
approximation developed in Reff34,35 using a metric- pends on the form of the background and our definition
based approach and in R¢83] using the covariant curva- closely follows, but is not identical to, those in R§44].
ture formalism. After deriving the equations of motion by ~ We begin with the background metric written in the form
varying these actions we can simply read off the predictions o
for the projected Weyl tensor on the positive tension brane as  ds*=n?(t,y)(—dt*+t?dy?) +b%(t,y) §;;dx'dx. (B1)

+£_+(1+c1>)25_}. (A13)

Ev e 1 1) (1—‘1’)2_'_“ We shall only consider spatially flat cosmologies for simplic-
v T+ ) ') v ity but the generalization to closed and open universes is
n easy. The most general scalar metric perturbation can be
- W(VWW_ §“V2 W) written as
3 ds’=n?[—(1+2®)dt?—2wWdtdy+t3(1—2I)dy?]
+ 2 . .
T2Va-v) (V’i‘wv V=58V v)7 ), — 2V,adx dt+ 2t2V Bdydy
(A14) +b2[(1-2V) 68— 2V,V, xJdx'dx, (B2)
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writing the perturbed metric agag+hag Wheregag is the V=V,
background metric, then under a gauge transformatidon

—xA+ ¢A the metric perturbation transforms as

hag—hag—9acdsé®—OpcdaéC—E°9cOnp-

Since a five-vectog, has three scalar degrees of freedgim

& and &=V, only four of the seven functions
(®,I''W,a,B,¥,x) are physical. This immediately tells us
that we expect to be able to define four gauge invariant vari=

We define this to be five-dimensional longitudinal gauge and
so we see that the gauge invariant variables equal the values
of the metric perturbations in longitudinal gauge, in perfect
analogy with four-dimensional cosmological perturbation
theory. This gauge is characterized by being spatially isotro-
pic in thex' coordinates but in general there will be a non-
zerot-y component of the metric.

(B3)

ables constructed from the metric alone. BetlenotedA/ it

andA’ denotedA/dy. Under a gauge transformation each of

the variables transforms as

n/

T
n n

r—r+ 'V+lt+ th+ s
—PHET T8 e+ O

W—W— &'t 12¢Y,
b2.

a—a—E+ =&,
n2

2

b
BHB-%V—W?S,

!

b
t R
‘I’—>\If+§b+§ b

x—x+&.

It is then relatively easy to construct the following gauge

invariant quantities:

o —p -n _n
H = —d—ad_——p—,
Inv n ﬁn

~ 1. .n .n
Liny =T+ p"+ rata+p -,

Win, = W—a' +123,

!

b. b’
q’inv:q,+ Ba—l— Fﬁ,

Position of branes

In general, the locations ip of the perturbed branes will
be different in different gauges, and it is very important to
understand this location in each case. Remarkably, in the
case where the brane matter has no anisotropic stress this is
easy to establish. Start in the gauge= y=0. From the
above transformation rules we can see that we can always go
to this gauge using onlg' and ¢° transformation. This then
leaves us with the freedom to perform ag{transformation
such that the position of each brane remains unperturbed.
Then working out the Israel matching conditions we find that
B on the branes is related to the anisotropic part of the
brane’s stress energy. So if we are considering only perfect
fluids, for which the shear vanishes, then the Israel matching
condition givesB(y=y-)=0. We can then go to longitudi-
nal gauge &=pB=yx=0) with the transformationty= g
alone. But since8 vanishes on the branes, so d@gs im-
plying that the brane trajectories are unperturbed. So we see
that for the special case of matter with no anisotropic stress
the locations of the branes in longitudinal gauge are their
unperturbed valueg=y.. . We can then infer the position of
the branes in an arbitrary gauge by means of the above gauge

(B4) transformations to be

y=Y.+—p, (B5)

wherey.. are the background values. In particular, in the
class of Milne gauges we have defined ) the branes are
located at

q2
y=y:—t—zx’- (B6)

APPENDIX C: BIRKHOFF'S THEOREM
AND THE BACKGROUND METRIC

The bulk geometry considered in this paper solves the
five-dimensional Einstein’s equations sourced by a pure

where a=a— (b¥n?)y and B=8+ (b¥n??)y’. We then Negative cosmological constant. For the background solution
see that there is a special gauge definedybya= =0 in  We restrict to solutions possessing cosmological symmetry

which
(Dinvzq)!
1_‘inv:rl!

Winv :W1

on three-dimensional spatial slices. In close analogy to the
familiar situation for spherical symmetry in+31 dimen-
sions, a Birkhoff-type theorem guarantees that, in our case,
away from the branes the background must take the form of
either anti—de SittefAdS) space-time, Schwarshild-AdS or
AdS with a naked singularity. In each case the metric may be
written as
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r? an r? 2 N? .
ds’=| S +k—=| dr’—| —+k-=|dT? ds’=——(—d7?+dy?) +A%dx. (CY
r L r fofl
+riy;dxdx, (€D Now we sett=+e*" to describe the post-or pre-collision

space-times, respectively, and defida?(t,y)=N?/(f’ ")

where u is the mass of the black hole;; is the canonical andb?(t,y)=A? to obtain

metric on S, H® or E3, with k the corresponding spatial

curvature, andL is the AdS radius defined by\=

—6M2/L? with Mg the five-dimensional Planck mass. We

are most interested in the case 0, for which itis usefulto  \yhich is the form used in this paper.

phange variables fromto Yobt.ai.ned by setting the first term We now show that we can always choose the functions

in Eq. (CD) to equaldY?, obtaining to make the branes static in the new coordinates. To see this
note that the new spatial coordinate

ds?=n?(t,y)(—dt?+t2dy?) + b2(t,y)dx%,  (C9)

ds?=dY2—N(Y)2dT2+A(Y)2dx?, (C2)
1
where for AdS y(M2)=5[t(T+2) =1 (T-2)] (C10
A(Y)?2=N(Y)?=exd 2Y/L], (€3 itself satisfies the massless field equation in two dimensions.
) . ) If the two-brane trajectories a@&=2Z..(T) in theT,Z coor-
for Schwarzschild-AdS with a horizon &t=0 dinates, then it follows from the general theory of the wave
equation that we can always sol(@10) for arbitrary chosen
sinh(2Y/L)? p ys SONELO y

_ y(T,Z) on two specified timelike curvesd=Z_(T). In par-
cosh2Y/L) "’ ticular we are free to choose constant valyesy, on the
(C4 positive tension brane ang=y_ on the negative tension
] ) . brane. Even after this choice there is additional coordinate
and for AdS with a naked singularity at=0 freedom, since to determine the solution y§iT,Z) we need
to specify additional Cauchy data, for example onTa
(C5) =const surface.
In practice we find it is straightforward to solve these
equations as a power seriestiriThe Israel matching condi-
For any configuration of branes possessing cosmologicalons on the two-branes in Birkhoff coordinates read
symmetry, even if the branes move the Birkhoff theorem
guarantees that the bulk geometry takes one of the three p-L?
forms above[39,40. In our case, where the branes are tanHZYi/L):(liT) VI-N"2(Y.)(dY. /dT)?,
Z,-symmetric and have their tensions tuned to allow static (C11)
empty brane solutions, the only bulk solution that is consis-
tent with moving branes is the Schwarzshild-AdS solutionyhere p. are the densities of matter or radiation on the
Consequently this is the background five-dimensional metrigranes. In our case, when only radiation is present, and we
we use in this paper. normalize the brane scale factors to be unity at colligitfn
Technically, in order to study the perturbations it is muchgec. 110, we havep. =r. /A%(Y.). Equation(C11) is a
simpler if one changes coordinates to those in which thgjrst order differential equation for the brane trajectories
branes are static and the bulk is time dependent. That it i (1), allowing them to be straightforwardly determined as

always possible to choose such a coordinate system may Bgyior series inT. Likewise we may solve explicitly foZ,
seen as follows. Start with the Birkhoff-frame metfic2)

with A andN given by Eq.(C4). First, change variables from L
Y to Z defined bydZ=dY/N, with Z chosen to be zero at the Z(Y)= >
collision event, so that

A(Y)2=cosh2Y/L) and N(Y)?

cosh2Y/L)?

AY)?=sinh2YIL),  N(Y)?*=-gor.

P
tan (x)+2In

x+1/| (C12

wherex?=cosh(/L), and hence obtai# . (T) as a Taylor

ds?=N2(—dT?+dZ?)+A%dx?, (C6)  series inT. From Eq.(C10) we obtain

whereN and A are now functions oZ. Defining light-cone 1

coordinatesT . = T+Z we have ye=o i [T+Zo(D]-F[T-Z-(D]}, (C13
ds?=N2(—dT,dT_)+A2dx2. (C?  which we may differentiate with respect T noting that the

y. are constant, to obtain
We now recognize that the form of this metric is invariant
under the light-cone coordinate transformation*y fLT+HZ(ML1+VL(D]=f[T-Z(T)][1-V(T)],
=f.(TxZ), which takes the metric to the form (C19
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whereV..(T)=[dZ.(T)/dT] are the brane velocities. These b’ 1 L

two equations may be simultaneously solved as a power se- ntb_ L 6P (C2)
ries in T with the ansatzf' (z)=z *+f%+flz+....

They are both trivially satisfied at ordd¥ *. At each sub-  For the purposes of our analysis it will be convenient to
sequent poweT", n=0 one obtains two equations which fix gefine the Lorentz frame we work in to be that in which the
the two constantsf % . Finally, writing f.(z2)=c.+Inz vy coordinates of the branegheir rapidities are y.—

+f9z+f1Z/2+ ..., with c. constants, we can write the =y /2. Recall, we also define the parametersto be the
equation fory. and take the limifT—0 on the right hand densities of radiation on each brape at collision, and we
side to obtain treat these as free parameters. Through a direct series solu-
tion of the five-dimensional Einstein equations, imposing the
y =E(c e )+ Eln 1+V. _ l(c )+ 6B Israel matching condition&C21) at each order i, we obtain
=2t 2 1+, 2t T a the following solution for the background geometry near
(C15 =o0:
where 6% are the rapidities of the positive and negative ten- b(t,y)= 1+ (b;sinhy+b,coshy)t
sion branes in the Birkhoff frame. Likewise we obtdfor
t>0) +(eg+ e;sinh 2y + e,cosh 3)t?/2,
. %(c++c,)+lnt. c16 n(t,y)=1+(d;sinhy+d,coshy)t

+ (kog+kysinh 2y + k,cosh 3/)t?/2, (C22)

Settingt=+e*" as we do fot>0 ort<0, respectively, and
choosingy,=—y_ (i.e. the Lorentz frame in which the
branes have equal and opposite spgetien fixesc, =
—c_=—3(6%+6%)=—6°. Now one may invert the equa- b,=
tionsr+=y="f_.(TxZ) to expressl +Z as a Taylor series in
teY for t>0 (or te™Y for t<0) and similarlyT—Z as a
Taylor series inte™¥ (or te¥). For example, post-collision
one obtains

where the constant parameters are given by

12+L%(r,—r_)

1oL sechiyo/2),

L
b,= 1—2(r L +r_)coseclyy/2),

T+z=te’e” +0(t), T-Z=te Ye "+O(?), CA-LA(r, 1)
(ciy 4L

equations which will be useful in Appendix D. Hence we
completely determine the metric function$ andb? as Tay-
lor series inte? andte™. Finally, by rescaling andx we
can also ensure that in the new coordinateét,y)=1
+0(t) andb(t,y)=1+0(t). 1 s s s

As a check of this procedure, or indeed an alternative to= _2[(_6+L ro)*+(6+Ly)
it, one can directly solve Einstein’s equations in the frame in
which the branes are static. The extrinsic curvature is given +2(—6+L2%r_)(6+L2r)coshy,+36(coshdy—1)]
by

secliy/2),

d,=— Z(r++r_)cosecloy0/2),

X (cosechyy)?,

1
Kwdx"dx”=maygwdxﬂdx” 1 ,
&= ol —4-L%(re—r)](r. +r_)cosechyy),

=%[—(n2)’dt2+(bz)’d§<’2], (C18
and so the Israel matching conditions e 12Lz{(24+4L2(r_—r+)+2L4r+r_
1 1 +[—24—4L%(r_—r )+ L*r* +r%)]coshyo!
K”VZZ_I\/Ig(T”V_ §g’”T§>' (€19 X (cosechy)?,

tell us that 1
ko= @[ZH LYra+r2)+2(—12+L% _r )coshy,

(C20

Il
|~

+1
w|
°

I+

+1
N ™
o°
I+

+3 cosh 3/,](cosechyy)?,
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1 s= (¢, coshy + c,sinhy)t,
k1=—1—2(r++r,)coseckyo[5L2(r,—r+)+125ecry0], §= (cacoshy+czsinhy)

1 &=— %(clsinhy+ c,coshy),
ko= ——{—24+10L% ,r_+[24+5L%r% +r%)]coshyo}
12 £'=(cycoshy+ c,sinhy).
X (cosechyy)?. (C23 o . _
This is part of the gauge freedom described by the solutions
to Egs.(59) and(60). Although &Y diverges neat=0, this is
merely a reflection of the singular nature of the Milrieyj
The two arbitrary gauge constartg andc, in Eq. (67) coordinate system. In terms of the Birkhoff frargY coor-
parametrizing the violation of the asymptotically Neumanndinates defined in Appendix C, we find
boundary conditior{64) have a simple geometrical interpre-
tation: they describe the displacement of the collision event ST= £§t+ ﬂgy
in the T,Y plane. Recall that in the Neumann gauge, dis- at ay >’
cussed in Sec. V E, the brane trajectories are unperturbed and
are described by the equatiogs=y. =const. If we now Y .
gauge transform to an asymptotically Neumann gauge, in oY=—¢ +W§y-
which the normal derivatives ~*t 1y’ (t,y.) deviate from
zero at ordet as in Eq.(67), we see that the gauge transfor- Then using Eq(C17) given in Appendix C and EqgD1)

mation from conformal Newtonian gauge to the Milne gaugeone infers the displacement of the collision event
we are in involves a divergentcoordinate displacement of

APPENDIX D: MEANING OF THE CONSTANTS c¢; AND ¢,

&'=—0g?x'/t?, which tends to— (c,sinhy-+c,coshy)/t plus ST = (c,cosh#B—c,sinh6B),

a finite part ag tends to zero. I£;=c,=0, then the pertur-

bation in the brang coordinates¥(y-.) is finite. The rapidi- SY=N(Y,)(c sinhg®—c coshﬁ)

ties of the two branes are perturbed, but the collision event e 2 ’ (D)

itself is still simultaneous as in Neumann gauge.

In the remainder of this appendix we provide a geometriindependent ofy and hence holding for both branes. Here
cal interpretation of the two constants and c,, showing  N(Y,) is the value of the lapse functidgiven in Appendix
that they parametrize the displacement of the brane collisiog) at the collision value o¥ in the Birkhoff frame, and/® is
event away from its background location in the embeddinghe mean rapidity of the two branes in that frame. Therefore
coordinatesT,Y, at eachx. all the gauge transformatioi1) does is to move the colli-

If we start from Neumann gauge with=c,=0, we may sion event around by an arbitrary finite displacement in the
introducec, andc, via the following gauge transformation: T,Y plane.
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