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Cosmological perturbations in a big-crunch–big-bang space-time
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A prescription is developed for matching general relativistic perturbations across singularities of the type
encountered in the ekpyrotic and cyclic scenarios, i.e., a collision between orbifold planes. We show that there
exists a gauge in which the evolution of perturbations is locally identical to that in a model space-time
~compactified Milne modZ2) where the matching of modes across the singularity can be treated using a
prescription previously introduced by two of us. Using this approach, we show that long wavelength, scale-
invariant, growing-mode perturbations in the incoming state pass through the collision and become scale-
invariant growing-mode perturbations in the expanding hot big-bang phase.
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I. INTRODUCTION

The big-bang singularity is one of the most vexin
puzzles in modern cosmology. Tracing time backwards,
field equations of general relativity break down in an app
ently irretrievable manner some 1.431010 years ago when
the density of matter and the curvature of space-time dive
Cosmic inflation does not ameliorate this disaster, but ra
tempts us to ignore it by just assuming that the Unive
somehow emerged from the singularity in an inflationa
state, and that subsequent inflation washed out all of
details of the big bang and how inflation began.

A more fundamental point of view is that the singularity
a manifestation of the breakdown of general relativity
short distances, which needs to be properly dealt with i
more consistent cosmology. String theory and M theory
important suggestions as to what a more fundamental th
might look like, improving on general relativity, for exampl
by providing consistent perturbativeS matrices that include
graviton processes. If string theory is a consistent, unit
S-matrix theory, as it is believed to be, then it is reasonable
expect that the cosmic singularity should be resolved wit
string theory, or a future development of it, in a satisfacto
way. In particular, for every ‘‘out’’ state there should be
least one ‘‘in’’ state. The question arises: What could t
‘‘in’’ state have been which produced the hot big bang?

In recent papers, we have explored a concrete, deta
proposal for answering this deep question. In the ekpyr
@1# and cyclic@2# Universe models, the origin of scale invar
ant density perturbations and the flatness, homogeneity
horizon puzzles of the standard cosmology are all explai
without recourse to a burst of high energy primordial infl
tion @1,2#. Instead, these puzzles are solved by physical p
cesses occurring prior to the hot big bang@1–4#, in a highly
economical way employing today’s observed cosmolog
constant in an integral manner. However, key to the succ
of these new scenarios is a consistent passage throug
big-bang singularity.

At first sight, passing safely through a big crunch/b
bang transition seems impossible because many phy
0556-2821/2004/69~10!/106005~26!/$22.50 69 1060
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quantities~density, curvature! diverge there. However, in the
situation encountered in the ekpyrotic and cyclic brane wo
models, for the background solution the situation is far le
severe @1,2#. When two boundary branes collide, eve
though thisis the big-bang singularity in the convention
~Einstein frame! description, in the background solution th
density of matter and the space-time curvature of the bra
remain finite. Conservation of total energy and moment
across the collision may be consistently imposed@2# and,
once the densities of radiation and matter generated on
branes at the collision are fixed~by microscopic physics!, the
outgoing state is uniquely determined.

However, while the background geometry describing
boundary brane collision seems to be well behaved, it is
mathematically singular in the sense that one dimension
appears at one instant of time. The space-time ceases
Hausdorff @5#, and since the dimensionality of the spati
slice is only three at this moment, it is not a good Cauc
surface. More worryingly, perturbations generally diverge
one approaches the singularity, as the result of the cos
logical blueshift associated with the collapse of the ex
dimension. Nevertheless, the situation is more manage
than it appears to be at first sight. In certain gauges,
metric perturbations only diverge logarithmically in time@6#,
and the canonical momenta associated with the perturbat
and certain other perturbation variables actually remain fin
at the singularity.

Around the brane collision, the space-time geometry m
be modeled by a simpler space-time which we shall refe
as ‘‘compactified Milne modZ2.’’ This is locally flat away
from the singularity, and may be embedded with
Minkowski space-time as shown in Fig. 1. The model spa
time may be thought of as describing the collision of tw
tensionlessZ2 branes separated by a flat bulk. In a study
free fields on this space-time, two of us showed@7# that the
construction of a unitary map between incoming and out
ing states is not only possible but essentially unique. As
review in Sec. II, the basic idea is to employ normal prop
gation of free fields on the Minkowski covering space-tim
This rule was shown@7# to satisfy many desirable propertie
©2004 The American Physical Society05-1
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For example, it defines a vacuum two-point function of t
Hadamard form which is also time reversal invariant. And
this idealized situation with no interactions, there turns ou
be no particle production associated with passage thro
the singularity. Some first steps were taken towards study
interactions and these were shown to lead to finite answ
provided the coupling constant vanishes sufficiently rapi
near the collision event.

The purpose of the present paper is to extend these i
to a study of full general relativistic perturbations in spac
times possessing singularities of the type shown in Fig
The usual definition of a space-time manifold is that it is
metric space which appears locally flat. This means tha
the neighborhood of any pointP it should always be possibl
to choose a coordinate system in which~a! the metric atP is
the Minkowski metric, and~b! the first derivatives of the
metric with respect to each coordinate vanish atP. The in-
clusion of singular points of the type shown in Fig. 1 r
quires an extension of these rules. In particular, the us
notion of general coordinate invariance becomes m
subtle. A description of the incoming and outgoing spa
times, away from the singularity, should be completely ind
pendent of coordinates since only the intrinsic geometry m
ters. However, connecting the two halves of the space-t
across the singularity requires a correspondence betwee
‘‘incoming’’ and ‘‘outgoing’’ coordinate systems. What thi
means in practice is that after solving for the metric a
brane perturbations using general relativity in the upper
lower halves~which may be done in any gauge!, one needs
to choose a set of coordinates, or gauge, common to
halves within which the matching is to be performed.

Our proposal for extending general relativity to this ty
of singularity is illustrated in Fig. 2. The idea is to insist th
the upper and lower halves be connected via a smooth s

FIG. 1. Locally, the collision of two branes may be embedded
Minkowski space-time. The usual Minkowski space-time coor
natesT andY are expressed asT5t coshy andY5t sinhy, where
the Lorentz-invariant coordinatet is constant on the dashed line
The colliding brane space-time is constructed in two steps. First
y coordinate is compactified by identifyingy with y12y0, to pro-
duce the double-conical space-time shown at the right. Second
circular sections of these cones are orbifolded by theZ2 symmetry
y→2y02y. The two fixed points of theZ2 symmetry are two ten-
sionless branes moving at a relative speed of tanhy0, which collide
and pass through one another att50.
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embedding coordinates in which the geometry appears
cally identical to that describing the model space-time c
sisting of the collision of two tensionless branes, i.e. co
pactified Milne modZ2. This set of embedding coordinate
locally unique up to Lorentz transformations, connects
contracting and expanding phases on either side of
bounce. The fact that fields may propagate across the si
larity in the model space-time shown in Fig. 1 and, at t
same time, unitarity and all the other desirable physical pr
erties of massless fields propagating in ordinary Minkow
space-time can be maintained@7# makes this minimal exten
sion of general relativity that we propose both reasona
and physically sensible.

In close analogy with the definition of a space-time ma
fold, we shall define ‘‘locally’’ by insisting that the first two
terms in a series expansion of the metric perturbations~spe-
cifically the constant and logarithmic terms! behave precisely
as free gravitational waves would in a compactified Mil
mod Z2 space-time. The main work of the paper will be
demonstrate that this condition may be precisely formulat
at least for the lowest energy modes, and that it comple
fixes the power series expansion in the Lorentz-invariant
tance t5AT22Y2 from the singularity. Within the coordi-
nate systems so constructed for the incoming and outgo
space-times, we find a unique rule for matching gravitatio
perturbations, in a manner entirely analogous to the match
of free scalar fields in the model space-time, as discusse
Ref. @7#.

The matching procedure we propose is more subtle t
that usually adopted in general relativity. Even in situatio
where the matter stresses change suddenly on some p
cally prescribed space-like surface~for example in a phase
transition!, it is normally only necessary to match the spat
three-metric and its normal time derivative, without worr
ing about the detailed behavior of the solutions of the fi
equations. In our case, the metric perturbations diverge a
singularity. One might attempt to cut the divergence off
pasting the incoming and outgoing space-times togethe

-

e

he

FIG. 2. The definition of a space-time manifold is that wh
viewed ‘‘up close’’ ~left figure!, it should appear to be locally flat
We define singular space-times of the type we are interested in
as space-times for which there exists a single coordinate sys
covering the neighborhood of the singularity in both the incom
and outgoing space-times, within which the collision event appe
locally identical to the idealized situation of tensionlessZ2 branes
colliding in Minkowski space-time~right figure!.
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COSMOLOGICAL PERTURBATIONS IN A BIG- . . . PHYSICAL REVIEW D 69, 106005 ~2004!
some arbitrary surface slightly away from the singularity, b
it is not known how to do this in a coordinate-invariant ma
ner inevitably leading to ambiguous, and usually cuto
dependent answers. In contrast, our procedure for mas
fields including gravitational waves on compactified Miln
mod Z2 can be formulated in terms of analytic continuatio
which is automatically coordinate invariant, or in terms o
real continuation in an embedding Minkowski space w
asymptotically flat boundary conditions, also a coordina
invariant prescription. Both methods produce the same cu
independent result. Notice also that both involve global
pects of the space-time, and cannot be stated as a purely
matching rule. This seems to be the inevitable price one
to pay for evolving through a singularity where a Cauc
surface does not exist.

We have in mind of course, an application of this propo
to the types of cosmological singularities encountered in
pyrotic and cyclic models in which two boundary bran
collide as shown in Fig. 1. In particular we wish to tra
scale-invariant perturbations developed via the ekpyr
mechanism@1,6# in the incoming state across the singular
and into the outgoing hot big-bang phase. The conclusio
our work is that with the prescription adopted here, sca
invariant, growing mode perturbations produced during
pre-big-bang phase@1,2,4# pass through the bounce and b
come scale-invariant growing mode perturbations in the
Universe.

Let us briefly comment on the relation of this paper
previous studies by ourselves and others. Our first atte
@6# at matching perturbations across the transition was ba
entirely on the study of the four-dimensional effective theo
As we shall see, this is not sufficient to describe the boun
which is really five dimensional. Nevertheless, in that wo
we observed that certain perturbation variables, such as
comoving energy density perturbationem were finite at the
singularity and could be matched across it. The present~and
far more sophisticated! approach confirms this element of th
procedure. The problem is thattwo matching conditions are
needed in the four-dimensional effective theory and the fi
time derivative ofem turns out not to be independent ofem
itself because the differential equation is singular att50.
This leads to an ambiguity in the second matching conditi
Based on simplicity, we proposed matching the second
rivative and obtained an outgoing scale-invariant spectr
However, we did not have any real physical justification
this choice.

There were criticisms and alternative proposals for mat
ing conditions@8#, including the idea that one should matc
the curvature perturbation on comoving~or constant density!
slices@9–11#, a procedure which is often useful in the co
text of nonsingular, expanding four-dimensional cosmolo
In our setting, the comoving curvature perturbation is log
rithmically divergent at the singularity@6,12#, but if one dis-
regards this and proceeds to match its long wavelength,
stant component, this proposal results in the growing, sc
invariant perturbations present in the pre-big-bang ph
being matched to a pure decaying mode in the outgoing s
@10,11#. The result is a complete absence of long wavelen
density perturbations in the big-bang phase. It was sub
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quently pointed out, however, that this null result is atypic
in the sense that, for most choices of matching surfaces, s
invariant growing perturbations coming in would match
scale invariant growing perturbations coming out@13#.

Some of the alternative proposals are designed spe
cally for four-dimensional theories in which the bounce fro
contraction to expansion occurs at a non-zero value of
scale factor@14,15# ~see also Ref.@16#!. This is accomplished
by arranging for the equation of statew to violate the null
energy condition near the bounce, i.e.,w,21. We empha-
size that the ekyprotic and cyclic scenarios and the con
erations here do not fall into this category. The bounce
Fig. 1 corresponds to the zero scale factor in the fo
dimensional effective theory and the four-dimensional eff
tive equation of state parameter is strictly positive before
collision.

Our approach is to choose a class of gauges in which
geometry around the collision event appears locally ident
to that describing linearized perturbations around the mo
space-time, compactified Milne modZ2. Then we match the
perturbations according to the procedure of Ref.@7# for that
space-time. An important feature of our choice of coor
nates is that the collision event issimultaneousin Milne time
and occurs at the background valuet50 both for the incom-
ing and outgoing state. That is, the limitst→02 in the in-
coming state andt→01 in the outgoing state correspond
the same physical space-time surface.

In the course of our analysis we shall uncover the probl
with matching the curvature perturbation on comoving~or
constant energy density! slices in the four-dimensional effec
tive theory,z4, across the bounce. We shall show thatz4 is
indeed conserved on long wavelengths both before and a
the bounce and, furthermore, that on long wavelengths
equal to the comoving curvature perturbations on the bra
z6 . Why then are these variables not conserved across
bounce? The reason, detailed in Sec. V D, is that the br
collision event isnot simultaneousin the comoving or con-
stant energy density time slicing. This is a disaster in ter
of matching. In these coordinate systems, thet→01 and t
→02 space-like surfaces do not physically coincide a
therefore perturbations should certainlynot match across
them. We find that the collision event is displaced from t
t501 and t502 surfaces in these slicings by a scal
invariant time delay, within which all the information regard
ing the growing mode perturbation is contained. A determ
nation of the collision-synchronous time slices is on
possible within the full five-dimensional theory, and our fin
result for the spectrum of growing mode perturbations
volves five-dimensional parameters which cannot be
expressed in purely four-dimensional terms.

Distinct but closely related are problems raised in rec
attempts to directly study string theory on compactifi
Milne space-times analogous to that shown in Fig. 1@17,18#.
Since these types of backgrounds are locally flat, one
solve@19# the tree level field equations of string theory to a
orders ina8, away from the singularity. It is then tempting t
calculate string scattering processes using a Lorentzian
eralization of standard orbifold techniques to this tim
dependent case. Calculations have been performed in an
5-3
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TOLLEY, TUROK, AND STEINHARDT PHYSICAL REVIEW D69, 106005 ~2004!
gous backgrounds, for example, the null orbifold and ‘‘nu
brane’’ backgrounds@17,20# possessing some remainin
supersymmetry. The result is that tree level scattering am
tudes develop infrared divergences which have been at
uted to the backreaction of the geometry near the singula

It is unclear what the physical significance of these res
are yet. The breakdown of string perturbation theory see
to indicate that nonlinear effects must be taken into acco
But such nonlinear effects are not necessarily disastrous
cosmology. For example, since the collision takes place o
very short time scale, one plausible possibility is that no
linearities result in the production of microscopic black ho
at the collision. This would be consistent with the conclus
that perturbative string theory breaks down, but it would
unimportant for cosmology. The black holes would radia
and decay rapidly after the bounce without having a sign
cant effect on the long wavelength perturbations that are
evant cosmologically.

The classical theory may provide some insight. For
ample, consider classical general relativity with a scalar fie
As the Universe contracts towards a big crunch singula
the gradients of the energy density diverge and one migh
tempted to argue that gradient terms would dominate
dynamics. However, this conclusion is believed to be wro
Instead, the behavior of the metric and fields becomes
tralocal @21#. Spatial derivatives become less important
the Universe contracts and, at each point in space, the ge
etry follows a homogeneous~but in general anisotropic! evo-
lution. This occurs because, although the gradient te
grow, the homogeneous terms grow faster. A description
this subtle situation may well be difficult using string pertu
bation theory, which relies, for example, upon the existe
of a globally good gauge. However, as we shall explain
the conclusions, there is a simple classical picture of wh
the nonlinearities lead to. And within this picture, we see t
the nonlinear corrections would hardly alter our final matc
ing result.

We should also note that the string theoretic calculati
have only so far been possible in certain special models
which the technical tools needed are available. In particu
they have all been done in the context of ten-dimensio
string theory at fixed coupling, using Lorentzian orbifoldin
with one of thenine string theory spatial dimensions shrin
ing away and reappearing. However, this setup is quite
ferent from the case proposed for the ekpyrotic model, wh
the tenthspatial dimension~of 11-dimensional supergravity!,
separating the two boundary branes, was supposed to
lapse and reappear. The 11-dimensional theory reduce
fixed, small brane separation, to string theory@22# at weak
coupling. But in the time-dependent situation we are int
ested in, the coupling would actually vanish as the bra
meet. This situation is qualitatively different from the e
amples which have been studied so far. In particular,
infinities encountered in Refs.@17# are proportional to the
string coupling. But in the ekpyrotic model the coupling va
ishes at the singularity.

Progress in the investigation of such singularities with
string theory@23# continues to be an active field@24–28#.
Analytic continuation methods related to those we emplo
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for field theory@7# have been applied to constructing strin
theory on similar backgrounds@29# with less pessimistic
conclusions than the above cited works@30#. Other ap-
proaches and methods have also been developed@31#. We
have continued to develop a simpler field-theoretic appro
because it is considerably more manageable and may y
helpful physical insight. We hope that further developme
of string theory can be used to check and develop the
proach presented here.

The remainder of the paper builds in stages towards a
calculation of the propagation of cosmological perturbatio
through a bounce of the ekpyrotic/cyclic type:

We first consider the propagation of scalar fields in a fix
background corresponding to two tensionlessZ2 branes col-
liding in a flat bulk as discussed in Ref.@7# ~Sec. II!.

We next consider linearized gravitational perturbations
the same model space-time~Sec. IV!.

Finally, we consider the full-blown calculation of cosmo
logical perturbations for two colliding branes with tensio
and a warped bulk. This calculation leads to our central
sult for the amplitude of the scale-invariant perturbatio
propagating across the singularity into the hot big-ba
phase~Sec. V!.

Various tools are developed along the way. Section
develops the moduli space approximation for two collidi
branes in a negative cosmological constant bulk@32# which
we shall study as our canonical example. We extend
formalism, showing for example that it is exact for emp
branes at arbitrary speed and curvature. In Appendix A
show that the four-dimensional effective theory consisten
predicts the projected Weyl tensor contribution to the eff
tive Einstein equations on the branes, and is in agreem
with the recently developed ‘‘covariant curvature’’ approa
@33# as well as earlier metric-based approaches@34,35#. We
also match the parameters of four-dimensional effect
theory for the homogeneous flat background solution to
parameters of the five-dimensional theory. Appendix B d
cusses the gauge invariant variables for the five-dimensio
theory and how the position of the branes depends on
choice of gauge. Appendix C works out the detailed ba
ground geometry near the bounce in a coordinate sys
convenient for the perturbation calculations. Appendix
concerns the choice of gauge required to have the brane
lision simultaneous at all values of the noncompact coo
natesxW .

II. PROPAGATION OF SCALAR FIELDS IN A COLLISION
OF TENSIONLESS BRANES

The idealized space-time we shall use as a model for
singularity is just Minkowski space-time subject to two ide
tifications@36#. Expressing the usual Minkowski coordinate
asT5t coshy andY5t sinhy, the line element is

ds252dT21dY21dxW252dt21t2dy21dxW2. ~1!

The incoming and outgoing regions,t,0 andt.0, respec-
tively, are the two halves of Milne space-timeM3R3. We
now compactify they coordinate by identifying under boosts
5-4
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COSMOLOGICAL PERTURBATIONS IN A BIG- . . . PHYSICAL REVIEW D 69, 106005 ~2004!
which correspond to translations iny, y→y12y0. We refer
to the resulting space as compactified Milne space-time
M C3R3. Finally we introduce two tensionlessZ2 branes by
identifying fields under reflection across the circle,y→2y0
2y giving the orbifolded spaceM C/Z23R3, or compacti-
fied Milne modZ2. The branes are separated by a coordin
distanceDy5y0 which is the rapidity associated with the
relative speed. Later in the paper it will be convenient
choose a Lorentz frame in which the branes are locate
equal and opposite values ofy56y0/2. Note that any field
which is even under theZ2 must obey Neumann boundar
conditions]yw50 on the two branes.

The problem of propagating a free quantum field throu
a big-crunch–big-bang singularity of the type shown in F
1 was considered in Ref.@7#. The equation of motion for a
scalar field on the background~1! is

ẅ1
1

t
ẇ1

ky
2

t2 w1kW2w50, ~2!

whereky is the momentum in they direction andkW that in the
uncompactifiedxW directions.

In this paper our main interest is in the lowest excitatio
corresponding to the modes of the four-dimensional effec
theory. In this compactified Milne setup these modes are
y-independent fields, trivially satisfying Neumann bounda
conditions on the branes and periodicity iny. For these
modes, Eq.~2! is just Bessel’s equation with indexn50.
The two linearly independent solutions areJ0(kt) and
N0(kt), behaving for small positivet as

J0~kt!;11•••, N0~kt!;
2

p
@ ln~kt!1g2 ln 2#1•••,

~3!

whereg is Euler’s constant 0.577 . . . . Thepositive ~nega-
tive! frequency outgoing modesc (1) (c (2)) are those which
tend to the adiabatic positive~negative! frequency solutions
as t→`. They are proportional to the Hankel functionH0

(2)

5J02 iN0 (H0
(1)5J01 iN0), and converge rapidly to zero i

the lower~upper! half complext plane. If we split the quan-
tum field w(t,xW ) into its positive and negative frequenc
parts, they are well defined, respectively, in the lower a
upper half complext plane. The unique analytic continuatio
from negative to positive values oft is then to continue the
positive frequency part below and the negative freque
above the singularity att50. Continuing the expressions~3!
around a small semicircle belowt50 one infers the relation
H0

(2)(kt)52H0
(1)(2kt) giving the positive frequency mod

function at negative values oft. We can translate this into
matching rule for the fieldw by writing w5(ac (1)1H.c.,
with a arbitrary and complex. The asymptotic behavior of t
field w is then found to be

w;Qin1Pinln kutu, t→02,

w;Qout1Poutln kutu, t→01, ~4!
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and the above continuation implies that

Qout52Qin12~g2 ln 2!Pin , Pout5Pin . ~5!

The canonical momentum of the fieldutuẇ is actually propor-
tional to sign(t)P. Hence, the field momentum reverses
t50 with this matching rule. Note, however, that the co
stant termQ is not preserved acrosst50. Hence this match-
ing rule is not simply time reversal att50, and there is an
arrow of time acrosst50.

There is another way of looking at this rule which is
lustrated in Fig. 3. Take a field configuration on one copy
the incoming wedge and repeatedly reflect it through
boundary branes to fill out the lower quadrant. The result
configuration obeys the field equation~even with nonlinear
interactions!, as long as the equation isZ2 invariant. The
solutions to the field equation then naturally split into le
and right movers as one approaches the light cone. The
movers are regular onY52T and the right movers onY
5T. Each can therefore be uniquely matched across the
propriate segments of the past and future light cone of
singularity ~Fig. 3!.

In this way, incoming data in the lower quadrant unique
determines the left moving modes entering the left quadr
and the right moving modes entering the right quadrant. T
solutions in the left and right quadrants may be fully spe
fied by choosing boundary conditions. It is natural to dema
that the fields vanish at space-like infinity. Once the solut

FIG. 3. Continuation of left and right moving modes. A fre
field propagating in the lower quadrant may be decomposed
left and right movers as it approaches the past light cone of
origin T5Y50. The left movers are regular acrossY5T,0 and
may be continued into the left quadrantY,0,uTu,uYu. The right
movers are regular across the right segmentY52T.0 and may be
continued into the right quadrantY.0,uTu,uYu. If we impose van-
ishing boundary conditions at large Lorentz-invariant separa
from the origin in the left and right quadrants, then once we kn
the left mover in the left quadrant, the right mover on the n
segmentY52T,0 is uniquely determined, and similarly the le
mover onY5T.0. One thereby obtains a unique matching ru
from the incoming, lower quadrant to the outgoing, upper one.
5-5
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TOLLEY, TUROK, AND STEINHARDT PHYSICAL REVIEW D69, 106005 ~2004!
in the left and right quadrants is determined then the
movers from the right quadrant and the right movers fr
the left quadrant may be uniquely matched to the left a
right movers in the upper quadrant, completely determin
the solution in the outgoing state. Again, in the context of o
model space-time compactified Milne modZ2, this prescrip-
tion yields exactly the same matching rule~5!. The advan-
tage of this derivation is that it gives the clearest explana
for the sign change in the constant contributionQ, between
the ‘‘in’’ and ‘‘out’’ states. This is just due to our having
imposed a ‘‘reflecting’’ boundary condition at space-like i
finity. Since in passing from the lower to the upper quadr
one such reflection is involved, a relative minus sign is
quired. And as we shall explain in Sec. IV, precisely the sa
matching rule may be applied for gravitational perturbatio
on compactified Milne modZ2. In this case one can see th
the condition of asymptotic flatness imposed in the two
physical quadrants is actually coordinate invariant.

In the case of cosmological interest where the branes h
tension and the bulk is warped, the sign change ofQ in Eq.
~5! is still guaranteed provided two reasonable conditions
fulfilled. Assume that the low energy modes in the space-
regions~which are just the analytic continuation of the co
responding modes in the lower quadrant, obtained by set
t5 is and y5r2 ip/2, whereT5s sinhr andY5s coshr)
depend only ons as s→0 ~i.e. behave as the Kaluza-Klei
zero modes!. Second, assume that the mode selected by
imposed boundary condition at space-like infinity behav
near s50, as D1 ln(kusu) with D a model-dependent con
stant. This is the generic behavior—for compactified Mil
mod Z2 we haveD5g2 ln 2. Then it is straightforward to
show by explicit calculation that matching the left/right mo
ers across the light cone from the lower quadrant into
left/right quadrants and then into the upper quadrant,
obtainsPout5Pin andQout52Qin12DPin . Hence we see
the sign change ofQ is universal but the coefficientD is not.

It is important to emphasize that all of these arguments
the matching rule~5! involve the detailedglobal structure of
the embedding space-time. In particular theg2 ln 2 term in
Eq. ~5! is peculiar to the Minkowski embedding space-tim
appropriate for compactified Milne modZ2. If the embed-
ding space-time is warped, the corresponding constant w
be altered to some constantD as explained above. Fortu
nately it shall turn out that for the case we are interested
Pin!Qin at long wavelengths and hence we are insensi
to the value ofD. The correspondenceQout'2Qin is, how-
ever, universal as argued above and therefore reliable ev
the warped case. It turns out that this sign change is cru
in allowing scale invariant growing perturbations to prop
gate across the singularity, in the absence of radiation.
thermore, the sign change is interesting and important in
nonlinear theory, as we explain in the conclusions.

III. THE 4D EFFECTIVE THEORY

In subsequent sections we shall extend the matching
just discussed for free scalar fields to full general relativis
perturbations. There are two major complications. The firs
the gauge invariance of general relativity which, as explain
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above, is unusually subtle for singular space-times such
we are dealing with. The second is that the bulk space-tim
not globally Minkowski space-time but is warped and h
non-negligibley dependence. Of course, this is related v
Israel matching~see, e.g. Ref.@37#! to the fact that the brane
tensions are nonzero.

We want to solve the linearized Einstein field equatio
for five-dimensional gravity coupled to a pair of collidin
orbifold (Z2) branes. For the cosmological applications, w
need to follow the system from times well before the bra
collision, when the scale-invariant perturbations were gen
ated, through the collision and into the far future. In gene
this would involve solving a system of coupled partial d
ferential equations iny and t for the bulk gravitational fields
with mixed boundary conditions following from the Isra
matching conditions on the branes, and would be well
yond an analytic treatment.

However, there is a powerful tool we can call upon whi
makes the task surprisingly tractable: the moduli space
proximation.

A. The moduli space approximation

On general grounds one expects the long wavelength,
energy modes of the system to be described by a fo
dimensional effective theory, and we are only interested
low energy incoming states which are well described by t
theory. We shall show that the four-dimensional effecti
theory may be consistently used to predict the brane ge
etries all the way to collision, thereby providing bounda
data for the bulk five-dimensional equations which we so
as an expansion int about the collision event. After the col
lision, the four-dimensional effective theory plays an equa
important role, enabling us to track the behavior of pertur
tions into the far future of the collision event~Fig. 4!. The
technique we describe forms the basis for our analysis of
singularity described in later sections, but it is also of co
siderable generality and use in its own right, since almost
of the late Universe phenomenology of brane worlds can
most efficiently described using the effective theory alon

In this paper we concentrate on the simplest two-bra
world model consisting of one positive and one negat
tension brane bounding a bulk with a negative cosmolog
constantL526M5

3/L2 whereL is the AdS radius andM5

the five-dimensional Planck mass. If the brane tensionss6

are fine tuned to the special values66M5
3/L, the system

allows a two-parameter family of static solutions in whic
the scale factor on each brane is a free parameter, or m
lus. The idea of the moduli space approach is that such
rameters are promoted to space-time-dependent fields w
the four-dimensional effective theory. In passing, we n
that many of the methods we use in this paper should
principle extend to more complicated theories, such as
Horava-Witten theory, in which the family of static solution
exists without the need for a fine tuning of the brane te
sions.

In Khoury et al. @1#, the effective action for the moduli in
this system was computed in the low velocity approximatio
and shown to be equivalent to Einstein gravity plus a sca
5-6
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COSMOLOGICAL PERTURBATIONS IN A BIG- . . . PHYSICAL REVIEW D 69, 106005 ~2004!
field which couples non-minimally to the matter on ea
brane~see also Ref.@38#!. The derivation given here, while
more specific to the simplest brane models, is both sim
and more powerful. It shows that the same effective act
actually has a broader range of validity than originally a
ticipated, turning out to be exact for empty brane configu
tions with cosmological symmetry, for arbitrary spatial cu
vature and velocity~or expansion rate!. When matter is
present, the effective theory is a good approximation as l
as the density of matter is small compared to the brane
sion. The fact that the four-dimensional effective theory is
accurate is likely to be a special feature associated with
lack of bulk degrees of freedom in the simplest brane wo
model we are focusing on: for configurations with cosm
logical symmetry, a generalized Birkhoff theorem@39,40#
holds which guarantees that no radiation is emitted into
bulk.

Consider a positive or negative tension brane with cosm
logical symmetry but which moves through the fiv
dimensional bulk. The motion through the warped bulk
duces expansion or contraction of the scale factor on
brane. As shown in Ref.@36#, the scale factor on the bran
obeys a ‘‘modified Friedmann’’ equation,

FIG. 4. The world lines of the positive and negative tens
branes are plotted for some fixed value of the uncompactified c

dinatesxW . The four-dimensional effective theory is used to pred
the intrinsic geometries of the positive and negative tension bra
i.e. their space-time metricsgmn

1 and gmn
2 , according to Eq.~10!.

The four-dimensional effective theory is used to describe the
coming and outgoing perturbed branes far to the past or futur
the collision event. The brane metrics also provide boundary d
for the five-dimensional bulk metric which we solve for as a pow
series expansion in time about the collision event.
10600
er
n
-
-

g
n-
o
e

d
-

e

-

-
e

H6
2 56

1

3M5
3L

r61
r6

2

36M5
62

K

b6
2 1

C
b6

4
, ~6!

wherer6 is the density~not including the tension! of matter
or radiation confined to the brane,b6 is the brane scale
factor, andH6 is the induced Hubble constant on the po
tive ~negative! tension brane. We work in units such that th
coefficient of the Ricci scalar in the five-dimensional Ei
stein action isM5

3/2. The last term is the ‘‘dark radiation’
term, where the constantC is related to the mass of the blac
hole in the Schwarzchild-AdS solution discussed in Appe
dix C.

We shall show that the solutions to these equations
precisely reproduced by a four-dimensional effective theo
with the only approximation necessary being that the den
of matter or radiation confined to the branes,r6 be much
smaller than the magnitudes of the brane tensions, so tha
r6

2 terms in Eq.~6! are negligible. For the particular con
cerns in this paper, namely the accurate calculation of
long wavelength curvature perturbation on the branes, i
reassuring that the four-dimensional effective theory desc
tion is such a well-controlled approximation, even at lar
brane velocities, in the long wavelength limit.

Choosing conformal time on each brane, and neglec
the r2 terms Eqs.~6! become

b18
251

1

3M5
3L

r1b1
4 2Kb1

2 1C,

b28
252

1

3M5
3L

r2b2
4 2Kb2

2 1C, ~7!

where the prime denotes conformal time derivative. The c
responding acceleration equations forb19 and b29 , from
which C disappears, are derived by differentiating equatio
~7! and usingd(rb4)5b3(r23P)db, with P being the pres-
sure of matter or radiation on the branes. We now show
these two equations can be derived from a single action
vided we equate the conformal times on each brane. C
sider the action

S5E dtNd3x@23M5
3L~N22b18

22Kb1
2 !2r1b1

4

13L~N22b28
22Kb1

2 !2r2b2
4 #, ~8!

whereN is a lapse function introduced to make the acti
time reparametrization invariant. Varying with respect tob6

and then settingN51 gives the correct acceleration equ
tions forb19 andb29 following from Eq.~7!. These equations
are equivalent to Eq.~7! up to two integration constants. Th
constraint equation, following from varying with respect toN
and then settingN51, is just the difference of the two equa
tions ~7! and ensures that one combination of the integrat
constants is correct. The constantC is then seen to be just th
remaining constant of integration of the resulting system

r-

t
s,

-
of
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TOLLEY, TUROK, AND STEINHARDT PHYSICAL REVIEW D69, 106005 ~2004!
equations and can in effect be determined by the solution
equations of motion following from the action~8! @41#.

Having shown that the modified Friedmann equatio
~with the neglect ofr2 terms! follow from an action in which
C does not appear, we are now able to change variable
those in which the system appears as conventional Eins
gravity coupled to a scalar field plus matter. We rewrite
action~8! in terms of a four-dimensional effective scale fa
tor a and a scalar fieldf, defined byb15a cosh(f/A6),
b252a sinh(f/A6). Clearly,a andf transform as a scale
factor and as a scalar field under rescalings of the sp
coordinatesxW . To interpretf more physically, note that fo
static branes the bulk space-time is perfect anti–de S
space with line elementdY21e2Y/L(2dt21dxW2). The sepa-
ration between the branes is given byd5L ln(a1 /a2)
5L ln@2coth(f/A6)#, so d tends from zero to infinity asf
tends from minus infinity to zero.

In terms ofa andf, the action~8! becomes

S5E dtd3xF23M5
3L~ ȧ22Ka2!1

1

2
a2ḟ2G1Sm , ~9!

which is recognized as the action for Einstein gravity w
line elementa2(t)(2dt21g i j dxidxj ), g i j being the canoni-
cal metric onH3, S3 or E3 with curvatureK, and a mini-
mally coupled scalar fieldf. The matter actionSm is con-
ventional, except that the scale factor appearing is not
Einstein-frame scale factor but insteadb15a cosh(f/A6)
and b252a sinh(f/A6) on the positive and negative ten
sion branes, respectively.

Now we wish to make use of two very powerful prin
ciples. The first is the assertion that even in the absenc
symmetry, the low energy modes of the five-dimensio
theory should be describable with a four-dimensional eff
tive action. The second is that since the original theory w
coordinate invariant, the four-dimensional effective acti
must be coordinate invariant too. Since the five-dimensio
theory is local and causal, it is reasonable to expect th
properties in the four-dimensional theory. Furthermore, if
relation between the four-dimensional induced metrics on
branes and the four-dimensional fields~i.e. the four-
dimensional effective metric and the scalar fieldf) is local
~as one expects for the long wavelength, low energy mo
we are interested in!, then covariance plus agreement wi
the above results forces the relation to be

gmn
1 5@cosh~f /A6 !#2gmn

4d , gmn
2 5@2sinh~f /A6 !#2gmn

4d .

~10!

When we couple matter to the brane metrics, these exp
sions should enter the action for matter confined to the p
tive and negative tension branes respectively. Likewise
can from~9! and covariance immediately infer the effectiv
action for the four-dimensional theory:

S5E d4xA2gS M4
2

2
R2

1

2
~]mf!2D 1S m

2@g2#1S m
1@g1#,

~11!
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where we have defined the effective four-dimensional Pla
massM4

25(8pG4)215M5
3L.

B. Branes with non-zero matter density

For most of this paper we shall only study the especia
simple case of radiation on the branes~which are 311 di-
mensional!. The matter action is then independent off as a
result of the conformal invariance of radiation in 311 di-
mensions, and this will greatly simplify our analysis. But
an aside let us for a moment consider nonrelativistic ma
on the branes. Then there is a non-minimal coupling withf,
leading to a source term in the scalar field equation:

]2f52
1

4 FcoshS f

A6
D 4G

,f

T12
1

4 FsinhS f

A6
D 4G

,f

T2,

~12!

where primes denotef derivatives and theT(6) are the
traces of the stress tensors for matter on the two branes
tracted with respect to the relevant brane metric. It is int
esting to see how these results compare with what is kno
about brane world gravity from prior studies@42#. For per-
fect fluids, the effective matter Lagrangian@43# reads
2*d4xA2g6r6 . Hence matter on the branes couples to
four-dimensional~Einstein frame! effective theory in the
combinationr45cosh(f/A6)4r11sinh(f/A6)4r2 . As the
inter-brane distance grows, the fieldf tends to zero. Since
the cosh tends to unity, we see that a matter source on
positive tension brane with physical densityr1 contributes
the same amount to the density seen by Einstein gravit
the four-dimensional effective theory. Furthermore, from E
~12!, the coupling of such matter to the dilaton vanishes
f. Hence the dilaton decouples and ordinary Einstein gra
is reproduced in this limit. Matter on the negative tensi
brane behaves very differently. If its density as seen by E
stein gravity in the four-dimensional effective theory isr4,
then its physical density on the brane is much larger,r2

;f24r4, and from Eq.~12! it sources the dilaton field a
f21r4. Hence at smallf the source for the dilaton diverge
and Einstein gravity is never reproduced.

The derivation we have just given of the four-dimension
effective action starting from the modified Friedmann equ
tions is in the present context both simpler and more pow
ful than previous derivations. It shows that the induced
ometries on the branes are correctly predicted for branes
cosmological symmetry, for arbitrary curvature and speed
the branes provided only that ther2 matter terms are negli
gible. For these cosmological backgrounds, the fo
dimensional effective theory accurately describes the br
collision even though from the Einstein frame point of vie
such a collision is highly singular in the sense that the
effective scale factora tends to zero and the Riemannf
tends to minus infinity in finite time. Nevertheless, the bra
geometries and densities described bygmn

6 andr6 are finite
and well behaved at all times.

One surprising point about the map from five dimensio
to four is that the effective theory with a scalar field sourc
5-8



ns
h

n
t

,
g
ion
on
e

an
io
c
is
o

ib
s
I
th
io
ra
hi
iv
on
n
d
st
e

-

re

e

e

ld

t

ale
at

ive

te
on

ty

e
nal
ne-

ur-

c-

ne-
ve
the
ri-

at-
the
the
ig-

gi-

are

COSMOLOGICAL PERTURBATIONS IN A BIG- . . . PHYSICAL REVIEW D 69, 106005 ~2004!
by the combined energy densityr45cosh(f/A6)4r1

1sinh(f/A6)4r2 manages to correctly predict the solutio
to the Friedmann equations on each brane even though t
are separately sourced byr1 and r2 . This is possible be-
cause of the integration constants. In the four-dimensio
effective theory the basic equations can be taken to be
Friedmann equation (a825 . . . ) which has one integration
constant and the scalar field equation@(a2f8)85 . . . # which
has two. So there is a three-parameter set of solutions
though one of these is not physical as it is just a rescalin
a. On the other hand, the two-brane Friedmann equat
have two integration constants along with the additional c
stantC which is the dark radiation term. Consequently w
have a precise match between the integration const
showing that there is a one-to-one map between the solut
of the two sets of equations. In performing an explicit che
we find that the missing information on how much matter
contained on each brane is contained in the integration c
stants for the dilaton equation.

C. Relation between 4D effective theory
and 5D brane parameters

The five-dimensional background we seek to descr
consists of two parallel, flatZ2-symmetric three-brane
bounding a bulk with a negative cosmological constant.
the incoming state, as they head towards a collision,
branes are assumed to be empty. In the ekpyrotic scenar
is assumed that the brane collision event fills them with
diation. In this section we shall see how to describe t
background setup in terms of the four-dimensional effect
theory, and in particular we shall determine precise relati
between the parameters of the four- and five-dimensio
theories. The two brane geometries are determined accor
to formulas~10!, and the background solution relevant po
collision is assumed to consist of two flat, parallel bran
with radiation densitiesr6 . The corresponding four
dimensional effective theory has radiation densityr r , and a
massless scalar field with kinetic energy densityrf . It is
convenient to work in units where the four-dimensional
duced Planck massM45(8pG)21/2 is unity. The four-
dimensional Friedmann equation in conformal time th
reads

a825
1

3
~r ra

41rfa4![4A4S r 41
A4

a2 D , ~13!

where we have defined the constantsA4 andr 4, and used the
fact that the massless scalar kinetic energyrf}a26. The
reason for this choice of constants will become clear mom
tarily.

The solution to Eq.~13! and the massless scalar fie
equation (a2f8)850 is

a254A4t~11r 4t!, f5A3

2
lnS A4t

~11r 4t! D . ~14!

From these solutions, we reconstruct the scale factors on
branes according to Eqs.~10!, obtaining
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b6516A4t1r 4t, ~15!

so we see that with the choice of normalization for the sc
factora made in Eq.~13!, the brane scale factors are unity
collision. For comparison, in Ref.@2# we parametrized the
radiation density appearing in the four-dimensional effect
theory using the Hubble constantHr at equal density of the
radiation and scalar kinetic energy,Hr5(2r 4)3/2/A4

1/2. Also,
the parameterH5 used there to describe the contraction ra
of the fifth dimension may be expressed, for low radiati
densities at collison,r6L2!1, and slow velocities as 2A4.

We may now directly compare the predictions~15! with
the exact five-dimensional solution given in Eqs.~C23! of
Appendix C, equating the terms linear int to obtain

A45~1/L !S 11
L2~r 12r 2!

12 D tanh~y0/2!,

r 45
L~r 11r 2!

12 tanh~y0/2!
, ~16!

wherey0 is the rapidity associated with the relative veloci
of the branes at collisionV5tanh(y0) andr 6 is the value of
the radiation densityr6 on each brane at collision. Thes
formulas are the exact expressions for the four-dimensio
parameters in terms of the five-dimensional parameters
glecting contributions of orderr2. In fact, at leading order in
t they are better than this since to this order the fo
dimensional prediction is exact.

For later purposes it will also be useful to define the fra
tional density mismatch on the two branes as

f 5
r 12r 2

r 11r 2
, ~17!

so that we have

r 12r 25
12f r 4

L
tanh~y0/2!. ~18!

D. Four-dimensional perturbation equations

In this section we describe the perturbations of the bra
world system in terms of the four-dimensional effecti
theory. The only cases we consider in detail are where
branes are empty or carry radiation. The conformal inva
ance of radiation in four dimensions greatly simplifies m
ters since the scalar field then has no direct coupling to
radiation and hence the latter evolves as a free fluid in
four-dimensional effective theory. We elaborate on the s
nificance of this conformal invariance in Sec. VI C.

We shall now describe the scalar perturbations, in lon
tudinal ~conformal Newtonian! gauge with a spatially flat
background where the scale factor and the scalar field
given by ~14!. The perturbed line element is

ds25a2~t!@2~112F!dt21~122C!dxW2#. ~19!
5-9
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TOLLEY, TUROK, AND STEINHARDT PHYSICAL REVIEW D69, 106005 ~2004!
Since there are no anisotropic stresses in the linear
theory, we haveF5C ~see, e.g. Ref.@43#!.

A complete set of perturbation equations consists of
radiation fluid equations, the scalar field equation of mot
and the Einstein momentum constraint:

d r852
4

3
~k2v r23F8!

v r85
1

4
d r1F

~df!912H~df!852k2~df!14f8F8

F81HF5
2

3
a2r rv r1

1

2
f8~df!, ~20!

where primes denotet derivatives,d r is the fractional per-
turbation in the radiation density,v r is the scalar potential fo
its velocity, i.e.vW r5¹W v r , df is the perturbation in the scala
field, and from Eq.~14! we have the background quantitie
H[a8/a5(112r 4t)/@2t(11r 4t)#, and
A51/@t(11r 4t)#.

We are interested in solving these equations in the l
wavelength limit,uktu!1. There are only two independen
solutions to Eqs.~20!, namely a growing and a decayin
mode, provided that we specify that the perturbations
adiabatic. Recall that the idea of adiabaticity in the cosm
logical context is that for long wavelength perturbation
there should be nothing in the state of the matter to loc
distinguish one region of the Universe from another. At ea
spatial location the evolution of the densities of all the d
ferent fluids~radiation, baryons, dark matter! share a single
history in which each fluid evolves with the scale factora
according to dr i523(r i1Pi)d ln a523ri(11wi)d ln a
wherer i is its density,Pi is its pressure andwi parametrizes
the equation of state. Likewise the total density evolves
dr523(r1P)d ln a523r(11w)da. Since the history is
parametrized uniquely by the scale factora, an adiabatic per-
turbation can be thought of as arising from a fluctuat
d ln a. Hence solving all the above equations ford ln a, one
finds

d i

~11wi !
'

d

~11w!
, i 51, . . .N, ~21!

for adiabatic perturbations.
For the case at hand, the components of the backgro

energy density in the four-dimensional effective theory
scalar kinetic energy, withwf51, and radiation, withwr
5 1

3 . It follows that for adiabatic perturbations, at long wav
lengths we must have

df'
3

2
d r . ~22!

In longitudinal gauge, the fractional energy density pertur
tion and the velocity potential perturbation in the scalar fi
~considered as a fluid withw51) are given by
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df52S ~df!8

f8
2F D , vf5

df

f8
. ~23!

From Eqs.~20! above~and usingf8}a22) it follows that

S df2
3

2
d r D 8

52k2S v r2
df

f8
D . ~24!

Maintaining the adiabaticity condition~22! up to order (kt)2

then requires that the fractional velocity perturbations for
scalar field and the radiation should be equal:v r'df/f8.
Expressing the radiation velocity in terms ofdf, the mo-
mentum constraint@the last equation in~20!# then yields

df'S 11
2

3

r r

rf
D 21S 2~F81HF!

f8
D , ~25!

whererf5 1
2 f82a22.

The above equations may be used to determine the l
ing terms in an expansion inuktu of all the quantities of
interest about the singularity. In order to compare with R
@6#, we shall choose to parametrize the expansions in te
of the parameters describing the comoving energy den
perturbation,em52 2

3 H 22k2F, which has the following se-
ries expansion aboutt50:

em5e0D~t!1e2E~t!, ~26!

wheree0 ande2 are arbitrary constants, and

D~t!5122r 4t2
1

2
k2t2lnuktu1 . . . ,

E~t!5t21 . . . . ~27!

For adiabatic perturbations, we obtain

df5e0S 2
9

4k2t2 2
3

8
lnuktu1

1

4
2

3

4

r 4
2

k2D 1e2

3

4k2

1O~t,t lnuktu!

vf5e0S 3

4k2t
~12r 4t!D 1O~t,t lnuktu!,

d r5
2

3
df1O~t2,t2lnuktu!,

v r5vf1O~t,t lnuktu!,

F5e0S 2
3

8k2t2 1
3

16
lnuktu1

15

8

r 4
2

k2D 2e2

3

8k2

1O~t,t lnuktu!,
5-10
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~df!

A6
5e0S 3

8k2t2 ~122r 4t!1
1

16
lnuktu1

1

8
1

13

8

r 4
2

k2D
2e2

1

8k2 1O~t,t lnuktu!,

z4,M52
1

2k2
e21e0S 1

8k2
~k2116r 4

2!1
1

4
lnuktu D

1O~t,t lnuktu!, ~28!

wherez4,M is the spatial curvature perturbation on comovi
slices@43#.

In an expanding Universe the adiabatic growing mo
corresponds to a curvature perturbation, conveniently par
etrized byz4,M . The decaying mode perturbation is really
local time delay since the big bang, to whichz4,M is insen-
sitive butF is not. As detailed in Ref.@6#, in a contracting
Universe these modes switch roles so that the time d
mode is the growing perturbation and the curvature per
bation is the decaying perturbation as one approaches th
crunch.

The perturbations generated in the ekpyrotic/cyclic s
narios consist of growing mode scale-invariant perturbati
in the incoming state with no decaying mode compone
These perturbations are parametrized bye0 /k2 having a
scale invariant spectrum, and since there is no deca
mode,z4,M is zero on long wavelengths. After the collisio
from the four-dimensional effective theory view the Univer
is expanding. Now, the growing mode perturbation is prop
tional to the long wavelength part ofz4,M . The key question
is whether with our five-dimensional prescription match
the growing mode in the incoming state onto the grow
mode in the outgoing state, parametrized byz4,M , with non-
zero amplitude. For this to occur, the long wavelength pi
of z4,M must jump across the bounce. We shall see below
this indeed occurs.

IV. PROPAGATION OF GRAVITATIONAL
PERTURBATIONS IN A COLLISION

OF TENSIONLESS BRANES

In this section we consider the propagation of metric p
turbations through a collision of tensionless branes where
background space-time is preciselyM C/Z23R3. The analy-
sis follows closely Sec. II, which considered the propagat
of generic scalar fields in this same background. The res
here are essential to our analysis for the physically relev
case of colliding branes with tension~Sec. V! since our ap-
proach is based on finding a gauge where the propagatio
metric perturbations through the bounce is as close as
sible to the case for fixed tensionless branes.

In this problem it is simplest to choose coordinates
which the branes remain at fixed locations and all the fl
tuations in the geometry are accounted for by the bulk me
perturbations. Recall that, ignoring gravity, the backgrou
metric is
10600
e
-

y
r-
big

-
s
t.

g

r-

s

e
at

r-
e

n
lts
nt

of
s-

-
ic
d

ds252dt21t2dy21dxW2, ~29!

but with y identified under translationsy→y12y0, and the
reflection y→2y02y. The orbifold fixed points located a
y56y0/2 are the trajectories of two tensionless orbifo
branes. In Sec. II we considered matching a scalar fi
across the singularity in this space-time@7# and now we gen-
eralize the methods considered there to the case of gra
tional waves.

A gravitational wave in five dimensions has five indepe
dent propagating components. If they dependence may b
ignored these five components split up in synchronous ga
into tensor (dgi j ), vector (dgiy) and scalar (dgyy) compo-
nents, possessing two, two and one propagating degre
freedom, respectively. As usual in four-dimensional cosm
logical perturbation theory the most interesting piece is
scalar as this transforms nontrivially under coordinate tra
formations and couples to the matter density perturbatio
The tensor pieces are especially simple since they are t
ally gauge invariant and decouple from the matter. Fina
the vector pieces only couple to the curl component of
matter velocities and not to the matter density perturbati
They require a separate analysis which will not be giv
here. Furthermore, in our setup the vector modes are n
rally projected out becausedgiy must be odd under theZ2.
Hence the vector modes must vanish on the branes, and
is why there are no vector degrees of freedom in the fo
dimensional effective theory.

We shall, therefore, need only to consider the scalar se
in what follows. The form we take for the five-dimension
cosmological background metric is

ds25n2~ t,y!~2dt21t2dy2!1b2~ t,y!d i j dxidxj , ~30!

and we write the most general scalar metric perturbat
about this as

ds25n2~ t,y!@2~112F!dt222Wdtdy1t2~122G!dy2

22¹iadxidt12t2¹ibdydxi #

1b2~ t,y!@~122C!d i j 22¹i¹jx#dxidxj . ~31!

For perturbations onM C3R3 it is straightforward to find a
gauge in which the metric takes the form

ds25S 11
4

3
k2x D ~2dt21t2dy2!

1F S 12
2

3
k2x D d i j 12kikjxGdxidxj , ~32!

and x satisfies a massless scalar equation of motion
M C3R3. To be precise, the gauge is

a5b50, G5F2C2k2x,

F5
2

3
k2x, C5

1

3
k2x,

W50. ~33!
5-11
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Notice that the non-zero variables can all be related tox
according to

~G,F,C!5S 2
2

3
,1

2

3
,1

1

3D k2x. ~34!

We shall, henceforth, refer to these as the ‘‘Milne ratio co
ditions.’’ Furthermore, imposing theZ2 symmetry, we obtain
Neumann boundary conditions onx,

x8~y6!50, ~35!

where y656y0/2 are the locations of the twoZ2 fixed
points.

In the model space-time, the lowest energy mode forx is
y independent and has the asymptotic form

x~ t,y!5Q1P lnuktu, ~36!

with Q andP being arbitrary constants, just like the case
scalar fields in Sec. II. Our matching proposal for all t
perturbation modes is then simply the analogue of the sc
field rule given in Sec. II, namely,

Qout52Qin12~g2 ln 2!Pin , Pout5Pin . ~37!

These relations are sufficient to determine the metric fluc
tions after the bounce.

In later applications, we are only interested in the lon
wavelength part of the spectrum, and, for the cases of in
est, P is suppressed byk2 compared toQ. As a result, we
obtain the approximate matching rule

Qout52Qin , Pout5Pin . ~38!

The key conditions~33! through~35! are satisfied precisely
for all time in a compactified Milne modZ2 background.
When tension is added to the brane and the bulk is warp
our approach is to find a gauge which takes us as clos
possible to these conditions in the limit ast tends to zero,
where the same matching rule may then be applied.

V. 5D COSMOLOGICAL PERTURBATIONS FOR BRANES
WITH TENSION IN A WARPED BACKGROUND

Our strategy for computing propagation of perturbatio
when the branes are dynamical and have tension~so the bulk
is warped! is conceptually simple:

~1! We use the four-dimensional effective~moduli!
theory described in Sec. III to provide boundary data for
five-dimensional bulk fields. In particular, we will be inte
ested in the case where a nearly scale-invariant perturba
has been generated well before the bounce when the f
dimensional effective theory is an excellent approximati
as occurs in ekpyrotic and cyclic models.

~2! In the five-dimensional theory, we find a gaug
which approaches the Milne conditions~33! through~35! as
t→0. In the gauge, the perturbation variables satisfy
massless scalar field equations of motion.
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~3! We use the conditions in~38! to propagate all per-
turbation variables through the collision.

~4! We match onto the four-dimensional~moduli! theory
to determine the cosmological results for long wavelen
perturbations.

One might worry that the four-dimensional effectiv
theory we use to predict the boundary data for fiv
dimensional general relativity breaks down close to
bounce. However, there are reasons to expect the effec
theory remains accurate as an approximation to general
tivity even at small times. First, in Kaluza-Klein theory, th
effective four-dimensional theory is a consistent truncat
and hence provides exact solutions of the five-dimensio
theory even in situations of strong curvature and anisotro
In our case, as the branes come close, the warp factor sh
become irrelevant so that the Kaluza-Klein picture sho
become more and more valid. Second, in the approach to
singularity in general relativity@44# ~based on the classi
BKL work @21#!, the decomposition of fields according t
dimensional reduction does correctly predict the asympto
of the solutions in the limit ast→0. This suggests that th
effective field theory indeed captures the correct behavio
full five-dimensional gravity near the singularity. In our d
tailed study of the linearized theory, we shall find a rema
able consistency between the predictions of the fo
dimensional effective theory neart50 and the full five-
dimensional cosmological perturbation equations, and th
consistency checks are the main justification for our use
the effective theory all the way to the brane collision. O
course, the use of five-dimensional general relativity near
singularity may itself be doubted since stringy correctio
may be large there. But this objection can only be addres
in a detailed calculation within a string or M-theory contex
which is beyond the scope of the present paper.

We first infer the boundary geometry in longitudin
gauge~Sec. V A! for which there is a simple and precis
correspondence between the four-and five-dimensional
turbations and both are completely gauge fixed~see also Ap-
pendix B!. However, in this gauge the metric perturbatio
diverge much more rapidly~as 1/t2) than a massless scala
neart50. We shall need to transform to a gauge where~a!
all the components of the metric are only logarithmica
divergent and~b! in which the components of the metric a
in the same ratios and obey the same boundary condit
asymptotically ast→0, as for the perturbed model spac
time with two tensionless branes inM C/Z23R3 ~Sec. V C!.
In this gauge we can treat the components as massless
and match across the singularity as in Sec. II~Sec. V D!.

We wish to emphasize that the choice of gauge we
making is fully five-dimensional and is quite unlike that us
ally made in four-dimensional cosmology for several re
sons. In four-dimensional cosmology, the matter presen
often used to define a gauge—for example, one may cho
gauges in which the total density or velocity perturbation
zero. However, in the five-dimensional bulk there is nev
any matter present, just the cosmological term which is c
stant and, therefore, does not define any preferred time
ing. One might choose surfaces of constant extrinsic cur
5-12
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ture, but these are not in any way preferred by the phy
involved. Instead, our approach focuses on the asymp
geometry neart50, and identifying it with the model space
time M/Z23R3. In addition to approximating the mode
space-time, it is essential that, for the same gauge choice
brane collision besimultaneousat all xW , so that thet502

and t501 surfaces physically coincide. We shall show th
our gauge choice satisfies this latter criterion, but the s
dard four-dimensional gauge choices, e.g., constant den
or velocity gauges, do not.

A. Longitudinal gauge moduli predictions

In this section we wish to use the four-dimensional effe
tive ~moduli! theory discussed in Sec. III to infer the boun
ary data for the five-dimensional bulk perturbations. In a
four-dimensional gauge, the four-dimensional metric per
bation hmn and scalar field perturbationdf determine the
induced metric perturbations on the branes~in a related but
not equivalent gauge! via the formulas~10!:

hmn
6 5hmn12~ ln V6! ,fdfgmn , ~39!

where V15cosh(f/A6) and V252sinh(f/A6) and the
metric perturbations are fractional i.e.dgmn5a2hmn , dgmn

6

5b6
2 hmn

6 .
This formula is particularly easy to use in five

dimensional longitudinal gauge.~Our definition follows that
of Ref. @45#, where many useful formulas are given.! This
gauge may always be chosen, and it is completely ga
fixed as we explain in Appendix B. In this gauge the fiv
dimensional metric takes the form

ds25n2~ t,y!@2~112FL!dt222WLdtdy

1t2~122GL!dy2#1b2~ t,y!@~122CL!d i j #dxidxj .

~40!

Furthermore, as explained in Appendix B, in the absence
anisotropic stresses the brane trajectories are unperturb
this gauge. An immediate consequence is that the fo
dimensional longitudinal gauge scalar perturbation variab
F6 andC6 , describing perturbations of theinducedgeom-
etry on each brane

ds6
2 5b6

2 ~t6!@2~112F6!dt6
2 1~122C6!dxW2#,

~41!

are precisely the boundary values of the five-dimensio
longitudinal gauge perturbationsF6[FL(y6) and C6

[CL(y6). Using Eqs.~39! and~41! we find for the induced
perturbations

F15F41
1

A6
tanh~f/A6!df,

C15F42
1

A6
tanh~f/A6!df,
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F25F41
1

A6
coth~f/A6!df,

C25F42
1

A6
coth~f/A6!df. ~42!

One subtlety in utilizing these formulas is that ifF4 anddf
are expressed as functions of four-dimensional confor
time, then they give the correct predictions forF6 andC6

on the branes in terms of the conformal timet6 on each
brane. However, when we use them as boundary value
the five-dimensional metric it will be necessary to consid
all the perturbation variables as functions of the fiv
dimensional timet entering in the background metric~30!.
The brane conformal times may be expressed in terms oft by
integrating

t65E
0

t dt

q~ t,y6!
, ~43!

whereq[b/n. So, for example, the boundary value of th
bulk metric perturbationFL on the positive tension brane i
given explicitly by

FL~ t,y1!5F4S E q~ t,y1!21dtD
1

1

A6
tanhFfS E q~ t,y1!21dtD Y A6G

3dfS E q~ t,y1!21dtD , ~44!

where y1 is the location of the positive tension brane. A
noted, in this gauge even when we include perturbations
branes are static and the Israel matching conditions are e
found to be

b8

b
~y6!56

L

6
ntr6 ,

q8

q
~y6!56

L

2
nt~p61r6! ~45!

for the background solution and

CL8~y6!5
ḃ

b
WL7

L

6
nt~drL

62GLr6!,

FL8~y6!52S ṅ

n
1

]

]t
DWL7

L

3
nt~drL

62GLr6!

7
L

2
nt~dpL

62GLp6!,

WL~y6!56
b2Lt

n
~p61r6!vL

6 ~46!
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for the perturbations, where the right-hand sides are
evaluated aty5y6 , the locations of the positive and neg
tive tension branes.~From now on a prime shall denote]/]y
and a dot shall denote]/]t.! We can re-expressWL on the
branes as

WL~y6!5~q2!8vL
6 , ~47!

wherevL
6 is the longitudinal gauge velocity perturbation

the matter on each brane. From this one sees, for exam
that for empty branes,WL vanishes on the branes.

As long as the bulk matter is isotropic, as it is in our ca
the Einstein equations lead to a constraint which may
written

G1
12G2

250. ~48!

In longitudinal gauge this reads@45#

GL5FL2CL ~49!

everywhere in the bulk. This is the five-dimensional an
logue of the well known four-dimensional no-shear conditi
F5C in longitudinal gauge. Equation~49! serves to define
GL on the branes in longitudinal gauge. Consequently
have sufficient boundary data for all the components of
five-dimensional metric in this gauge. We can then perfo
an arbitrary five-dimensional diffeomorphism to infer th
boundary data in any gauge we choose. Equivalently,
~49! may be interpreted as a condition in any gauge by us
the gauge invariant variables defined in Appendix B.

B. Stress energy conservation

In this paper we consider perturbations in the ‘‘in’’ sta
which may be described as local fluctuations in a single s
lar field f representing the inter-brane separation. We
interested in long wavelength modes which are comple
frozen-in during the collision event. Hence the local pr
cesses describing the production of radiation at the bou
should be identical at eachxW , and in the usual sense em
ployed in cosmology, described in Sec. III D, the perturb
tions should be ‘‘adiabatic.’’

As is well known, the conservation of stress energy le
to powerful constraints on adiabatic density perturbations
particular implying that the amplitude of the growing mo
perturbation cannot be altered on super-horizon scales
this section we discuss this constraint and show how it
plies the spatial curvature of comoving~or constant energy
density! slices is conserved on large scales both for the br
geometries and for the four-dimensional effective theory.
shall restrict ourselves to considering only radiation on e
brane. This considerably simplifies the analysis beca
when the matter on each brane is conformally invariant
explained above, in the four-dimensional effective theory
scalar field decouples from the matter and can be treate
an independent fluid.

First we need to generalize the usual notion of adiaba
ity to deal with perturbations in the radiation densities
each brane. As mentioned above, radiation couples to
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scale factorV1(f)a on the positive tension brane an
V2(f)a on the negative tension brane with notation as
the previous section. Conservation of the radiation density
each brane reduces at long wavelengths todr65
24r6d ln a24r6d ln V6 . Likewise we have for the radia
tion density in the four-dimensional effective theorydr45
24r4d ln a. Hence solving ford ln a as in Sec. III D, we
infer the adiabaticity condition for radiation on the branes
be

d65d424~ ln V6! ,fdf. ~50!

The equation for conservation of energy in four dimensio
can be written in the form@45#

żB5
1

3
k2vL , ~51!

where

zB5C2
1

3~11w!
d ~52!

is the gauge-invariant variable measuring the spatial cu
ture perturbation on constant density hypersurfaces, as o
nally defined by Bardeen@46#. The quantityvL is the gauge
invariant scalar velocity potential, equal to the velocity p
tential in longitudinal gauge~so that¹ivL is the scalar part of
the velocity perturbation!.

At long wavelengthsk→0, Eq. ~51! implies thatzB is
conserved, provided the velocity perturbation does not gr
with scale. This property is very powerful since it means th
under most circumstances, as long as modes remain ou
the horizonzB can be trivially extrapolated from the early t
the late Universe, where it gives the amplitude of the gro
ing mode adiabatic density perturbation, the main quantity
observational interest today.

The above definition~52! applies equally on each bran
and in the four-dimensional effective theory, provided t
terms on the right hand side are appropriately interpreted.
the branes, we have

zB,65C62
1

4
d6 , ~53!

where d6 are the fractional perturbations in the radiatio
densities on each brane, andC6 is the perturbation in the
brane spatial metric. Using~42!, written as

C65C42~ ln V6! ,fdf, ~54!

and the adiabaticity condition~50! we see that the four-
dimensional effective value of Bardeen’s variable,zB,4[F4
2 1

4 d4 is in fact identical tozB,6 on long wavelengths.
Our final result will in fact more naturally emerge i

terms of another gauge invariant variable, the curvature
turbation on comoving slices, emphasized by Mukhanov a
others@43#. This is defined as

zM5C1Hv, ~55!
5-14
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COSMOLOGICAL PERTURBATIONS IN A BIG- . . . PHYSICAL REVIEW D 69, 106005 ~2004!
with v the velocity potential andH[d ln a(t)/dt the confor-
mal Hubble constant. Again this may be interpreted on eit
brane or in the four-dimensional effective theory. But ad
baticity requires that the fluid velocities be identical on lo
wavelengths for each fluid component. Therefore we m
havev65v45df/f8 @from ~23!#. This is also seen to be
consistent with~51! and the equality of the Bardeen variabl
zB,65zB,4 which we have just shown.

The scale factors on each brane are related to the f
dimensional effective scale factor viab65V6a. Recalling
that the conformal times on the branes are the same as th
the effective theory, we haveH45H62(ln V6),ff,t . Using
v45v65vf5df/(f ,t) we find

zM ,4[C41H4v45C41H6v62~ ln V6! ,fdf

5C61H6vf , ~56!

which is just zM ,6 . So for adiabatic perturbations and
long wavelengths, the comoving curvature perturbations
the branes are both equal to that in the four-dimensio
effective theory. As is well known, the latter is conserved
adiabatic perturbations at long wavelengths. It follows t
away from the bounce,zM ,6 are both conserved as well. A
we discussed in the Introduction, and will detail below, th
doesnot imply they are conserved across the bounce.

We will use ~56! below, but we should point out one m
nor subtlety. We shall be performing all our calculations
five-dimensional timet, not four-dimensional conforma
time. The velocityvf is not a scalar under coordinate tran
formations, and we shall need to multiplyvf by a factor ofq
when we re-interpret Eq.~56! in terms of the five-
dimensional timet.

C. Transformation to Milne gauge

Our philosophy is to evolve cosmological perturbatio
through the bounce in a ‘‘Milne gauge’’ where they beha
as closely as possible to gravitational waves onM C/Z2
3R3, as described in Sec. IV. Then, we can use the sa
matching conditions~38! to determine the perturbation spe
trum after the bounce.

The Milne gauge we use is chosen to match the ga
choice~33! in Sec. IV up to corrections of ordert andt lnuktu
due to the finite brane tension, radiation densities and
warp factor. We still have enough coordinate freedom to
three linear combinations of the metric perturbations equa
zero for all t, and we choose

a5b50, G5F2C2k2x. ~57!

A remarkable feature of this choice is that the constra
equation~49! implies thatx obeys the equation for a mas
less scalar field on the unperturbed background for all tim
From Eqs.~57! and ~B5! in Appendix B, we find
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¹2x52
1

t

]

]t S t
]x

]t D1
1

t2

]2x

]y2
23

ḃ

b

]x

]t

1
3

t2

b8

b

]x

]y
2

k2b2

n2
x50. ~58!

This result is remarkable in that it is independent of the p
cise details of the background bulk geometry and the form
the stress energy in the bulk, assuming only that no an
tropic stresses are present.

The remaining gauge freedom is of the formxm→xm

1jm where

j t5
b2

n2
j̇s, jy52

b2

n2t2
j8s, ~59!

provided thatjs also satisfies a massless scalar field equa

¹2js50. ~60!

Sincex transforms asx→x1js, andx is zero in longitudi-
nal gauge, it follows thatx in the gauge we use is, in fac
precisely the value of the spatial coordinate transformat
js needed to get to a gauge satisfying~57! from five-
dimensional longitudinal gauge. Furthermore,j t andjy may
be inferred fromx5js via Eqs.~59!.

To completely fix the gauge within the family specified b
~57!, we need to specify boundary conditions for the fieldx
on the two branes, and initial conditions on some space-
surface. As a first guess, one might consider choosing to
the gauge by specifying Neumann boundary conditions
the branes@i.e. x8(t,y6)50] for all time, as in Sec. IV. One
can easily prove that in this gauge, as in the longitudi
gauge, the brane trajectories are unperturbed. This foll
from the formula~59! upon settingjs5x as noted above
This is very important: it follows that in this Neumann gau
the brane collision is simultaneous and occurs at preciset

50 for all xW . Furthermore, the Neumann gaugex8(t,y6)
50 for all t is a good gauge in the sense that none of
metric components diverge worse than logarithmically.

However, it turns out that settingx8(t,y6)50 for all time
is too strong a condition. One cannot choose Neumann ga
for all time and also have

W501O~ t,t lnuktu! ~61!

F5
2

3
k2x1O~ t,t lnuktu! ~62!

C5
1

3
k2x1O~ t,t lnuktu!, ~63!

consistent with the behavior in the model space-time~33! at
leading order int and t lnuktu. The resolution is simple: we
need to perform a small gauge transformation away fr
Neumann gauge in which we maintain only the asympto
vanishing of the proper normal derivative ofx as t tends to
zero, i.e. we impose that
5-15
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n21t21x8~y6!501O~ t,t lnuktu! ~64!

on the two branes. With this choice we are able to impose
of the conditions in~63! as well as~57!. This small gauge
transformation away from Neumann gauge shifts the lo
tions of the branes,y6 , but only by a finite amount. As
discussed in Appendix D, this means that the rapidities of
branes are perturbed in our chosen gauge, but the colli
event is still simultaneous.

Our reason for expecting that we can choose a ga
specified by Eqs.~63! and ~64! is that when the branes ap
proach the warp factor should become increasingly irrelev
and the real background space-time should asymptotic
approach the model space-timeM/Z23R3. We expect the
low energy modes we are interested in to behave as the
est Kaluza-Klein modes in this limit, i.e. becoming indepe
dent ofy. Within the class of gauges specified by Eq.~57! we
shall indeed see that there are solutions for the perturbat
in which all the perturbation components behave likeQ
1P lnuktu as t tends to zero. The Milne ratio condition~34!
turns out to be automatically satisfied by the coefficients
the logarithms. Fixing the constant terms to be in the Mi
ratios further fixes the gauge up to a residual two-param
family and imposing asympotically Neumann boundary co
ditions ~64! on both branes then completely fixes the gau

Imposing asymptotically Neumann boundary conditio
turns out to have various other natural consequences.
example, in this gauge all the metric perturbation com
nents possess identical asymptotic behavior~i.e. constant and
logarithmic terms! on the two branes, ast tends to zero,
consistent with their behavior as a lowest Kaluza-Kle
mode. Furthermore, there is a simple geometrical con
quence of this choice which we explain in Appendix
namely that in this gauge the perturbations to the embed
(T,Y) coordinates of the brane collision event actually va
ish so the branes collide at precisely the background va
of T andY.

The non-zero perturbations in our chosen class of gau
areF, C, W andx along withG which is fixed by the gauge
choice~57!. All the gauge freedom is contained in the sol
tion for x. To see this we note that if we know the solutio
for x we can immediately inferF, C andW from the values
in longitudinal gauge via the formulas from Appendix B
Eqs.~B5!, which with Eq.~57! imply

F5FL2~q2
z
ẋ !2

ṅ

n
q2ẋ1

n8

n S q2x8

t2 D ,

W5WL2~q2ẋ !82t2S q2
z
x8

t2 D ,

C5CL1
ḃ

b
q2ẋ2

b8

b

q2x8

t2
. ~65!

Here as above,q[b/n.
Our goal then is simply to determinex to sufficient order

in t to be able to compute all the other components from E
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~65!. As we have already explained, in our chosen class
gaugesx satisfies the massless scalar equation~58! at all
times. To specify a complete solution we need to spec
both Cauchy data on some constantt hypersurface between
the two-brane world sheets, plus boundary conditions on
two branes. The boundary data will be obtained from
four-dimensional effective theory, and we make the conj
ture that the bulk solution which is consistent with these d
will behave neart50 like a Kaluza-Klein zero mode on
M C/Z23R3, which is to say that the perturbations shou
be independent ofy ast tends to zero. In practice this mean
we will look for a solution which is asymptotically of the
form x5Q1P lnuktu, independent ofy. This assumption for-
mally provides the Cauchy data once we determineQ andP
~see below!.

At higher orders int, we shall allow for arbitrary Neu-
mann boundary conditions, which we shall parameterize

x8~y6!5
1

2
a2

6t21O~ t3,t3lnuktu!. ~66!

As explained above, we shall adjust the coefficientsa2
6 to

obtain the correct Milne ratios. Note that there can be
O(1) term since we are assuming thatx is asymptotically of
the formx5Q1P ln t, independent ofy, and theO(t) term
is prohibited by our condition~64!. In principle we could
also includet ln t and t2ln t terms but we shall find that the
Milne ratio conditions~34! are sufficient to rule these term
out.

The form of the series expansion forx, implied by its
equation of motion~58!, is

x~ t,y!5$Q1@ f 1~y!1c1coshy1c2sinhy#t

1 f 2~y!t2/21O~ t3!%

1P lnuktuS 12
1

4
k2t21O~ t3! D , ~67!

where f 1(y) and f 2(y) are two functions ofy that are ob-
tained as solutions of second order differential equationsy
with boundary conditions derived from~66!. We choose to
define f 1 so thatf 18(y6)50. Therefore ifx satisfies the as-
ymptotically Neumann condition~64! on both branes, we
must havec15c250. A geometrical interpretation of this
condition is explained in Appendix D.

Using the expressions forb(t,y) given in Appendix C,
Eq. ~C23!, in the equation of motion~58!, for x, we find at
order t21 the following differential equation must be sati
fied by f 1(y):

f 192 f 12
P

2L sinhy0
F ~61r 1L2!coshS y1

y0

2 D
2~62r 2L2!coshS y2

y0

2 D G50. ~68!

A similar equation forf 2 is found at ordert0. The solutions
are messy in general but simpler when no radiation
present; for example, in this case we have
5-16



y

u

th

ba

e

C
at

-

on
e

re
s

av
-

c

he

e

tio
t

-
al
f
o

th

ect-
la-
of

ing
nal

m-
tly

o-
to

di-
e

m-

d in
di-
ta-
per-

ial in
ally
the

r
s on

is
nary
the
ith
e

COSMOLOGICAL PERTURBATIONS IN A BIG- . . . PHYSICAL REVIEW D 69, 106005 ~2004!
f 1~y!5
3P

2L cosh~y0/2! Fy coshy2S 11
y0

2
tanh

y0

2 D sinhyG .
~69!

By substituting~67! into ~58! and imposing the boundar
conditions ~66! at each order, the solution forx up to t3

corrections is completely determined in terms of the fo
constants in total:Q, P, anda2

6 . From this solution forx,
Eq. ~65! then determines all the other components of
metric perturbations at leading order int, on each brane.

Let us start by determining the spatial curvature pertur
tion C on each brane. From Eqs.~56! and ~65! we find

C5z4,M1q
ḃ

b
~qẋ2vf!2

b8

b

q2x8

t2
. ~70!

We require thatC be only logarithmically divergent. Sinc
from Eqs. ~28! we have thatvf53e0 /(4k2t)1O(1), di-
verging ast21 as t→0, we see from Eq.~67! and the ex-
pressions for the background metric functions in Appendix
that only ẋ can cancel that divergence, which requires th

P5
3e0

4k2
. ~71!

This condition ensures that the curvatureC in our gauge and
the comoving curvaturez4,M in the four-dimensional effec
tive theory only differ by a constant at leading order int.
However, it shall be very important that the constant is n
zero. As we shall see, the constant represents the time d
between the two time slicings, and it is the key to whyz4,M
jumps across the singularity.

We shall now show that it is possible to choose the th
remaining gauge constantsQ anda2

6 so that the metric take
the canonical Milne gauge form asymptotically ast tends to
zero. First, in this gauge all the metric perturbations beh
as Q1P lnuktu, as t tends to zero, but with different con
stantsQ and P for each component. Substituting Eqs.~67!
and ~71! into Eq. ~65!, with CL given from Eq.~56!, FL
given from Eq.~44! andWL given from Eq.~47!, one finds
that the logarithmic terms are actually all in the corre
Milne ratios Eq.~34!, and also thatW vanishes to leading
order, independently of the undetermined constants. Furt
more, the logarithmic terms obeyF(y1)2F(y2)50 and
C(y1)2C(y2)50, consistent with our assumption that th
Kaluza-Klein zero mode dominates.

The gauge constantsQ, a1
6 anda2

6 do, however, affect the
t-independent constant terms in each metric perturba
component. Two of the constants are fixed once one sets
constant terms inF and C to their Milne ratio values
(2/3)k2x and (1/3)k2x. We also want to ensure that all com
ponents of the metric perturbations behave asymptotic
like a Kaluza-Klein zero mode, becoming independent oy
ast tends to zero. We check this by comparing the values
F, C andW on the two branes. The difference ofC on the
two branes turns out to be independent of the choice of
gauge constants ast tends to zero,
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C~y1!2C~y2!5O~r6
2 L2!. ~72!

Since the moduli space approximation was derived negl
ing r6

2 L4 corrections, to the order we can trust the calcu
tion, C is equal at the two brane locations. The difference
F on the two branes is not automatically zero at lead
order, however, and setting it to zero provides the additio
equation needed to determine the third constant.

The result of these calculations is that the solution forx
up toO(t3) and the leading order behavior of the other co
ponents of the metric is completely determined. Explici
we find @47#

C~ t !5z4,M~ t !1
e0tanh~y0/2!

32k2L2cosh2~y0/2!
$18@y02sinh~y0!#

2L2~r 12r 2!@23y01sinh~y0!#%

1O~r6
2 L2,t,t lnuktu!. ~73!

SinceC is one of the variables which we match in our ch
sen gauge, it follows that our prescription is quite different
matching the comoving curvature perturbationz4,M four-
dimensional effective theory. As we shall explain, the ad
tional terms in~73! allow the propagation of growing mod
perturbations across the singularity.

D. Matching proposal

The requirement that around the collision event the geo
etry looks locally likeM C/Z23R3 has completely fixed the
gauge in the incoming and outgoing states. As elaborate
Appendix D, the asymptotically Neumann boundary con
tion ~64! further ensures that the collision event is simul
neous in our gauge, an essential property for matching
turbations since the space-like surfaces defined byt→01

and t→02 then physically coincide.
Furthermore, as we have discussed this gauge is spec

that the induced geometry on each brane is asymptotic
the same at collision. In general if a brane is moving,
values of the bulk perturbationsF and C evaluated on the
branes differ from the induced valuesF6 and C6 . The
differences are given by

F62F~y6!52
b2

n2t2

n8

n
x8

C62C~y6!51
b2

n2t2

b8

b
x8.

Sincen8/n}t andb8/b}t ast→0, in the presence of matte
on the branes, if we make the requirement that the metric
each brane are asymptotically identical this fixesx850
1O(t2), which is what we have required. Physically th
seems a natural choice of gauge because when two ordi
branes collide, the induced geometries are identical at
collision moment. This interpretation is also consistent w
the predictions from the four-dimensional effectiv
theory where the brane metrics are given bygmn

1

5-17
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5@cosh(f/A6)#2gmn and gmn
2 5@2sinh(f/A6)#2gmn . Since

the collision corresponds tof→2`, in the limit there is no
difference between the two conformal factors, and the br
geometries appear identical.

So in the gauge we have fixed by the requirement that
perturbations behave asymptotically like those on the mo
space-timeM/Z23R3, the collision event is synchronou
the Milne ratio conditions are satisfied, the boundary con
tions are asymptotically Neumann, and the geometries
each brane are asymptotically the same both before and
the collision. Our matching proposal amounts to relating
geometry on these chosen time slices across the collision
believe that these are sufficiently desirable properties to
tify this as the natural gauge in which to perform the mat
ing, and from now on we shall take this to be our compl
gauge fixed matching gauge.

Let us now return to our final formula~73! to infer its
meaning in the context of ekpyrotic and cyclic models.
those scenarios@6# the quantitye0 /k2 has an approximately
scale-invariant long wavelength spectrum in the incom
state. The first point to make is that even in an in-state w
no radiation present the dimensionless curvature perturba
on spatial slicesC in our gauge has a scale invariant spe
trum, since

C5z4,M1
9e0tanh~y0/2!

16k2L2cosh2~y0/2!
@y02sinh~y0!#. ~74!

Recall thaty0 is the relative rapidity andVin[tanh(y0) is the
incoming relative velocity between the two branes. Then
small velocities this gives

C5z4,M2
3

64

e0

k2L2
Vin

4 . ~75!

We may interpret this geometrically as follows. In the a
sence of radiation there is no real meaning to the curva
perturbation on the branes but if we imagine that there
small density of radiation coming in, and the perturbatio
are adiabatic, we can infer the comoving curvature pertur
tion on the brane,z6,M , so Eq.~75! becomes for long wave
lengths

C65z6,M2
3

64

e0

k2L2
Vin

4 . ~76!

Sincez6,M andC are the spatial curvature perturbations
the branes as respectively measured in the comoving
slicing and in our chosen time slicing~in which the collision
is at t50), it must be that the additional piece arises from
time translation between the two gauges. That this is s
verified when one traces back the origin of this term to
second term in Eq.~70!. As explained in the Introduction
comoving gauge~or equivalent constant energy dens
gauge! are bad gauges to match in because the brane c
sion is not simultaneous in those gauges. Since our pres
tion is to propagateC across the collision, the jump inz6 is
due to the time delay occurring between the collisio
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synchronous surfaces in our gauge, and those of
comoving/constant density surfaces. The key to our resu
that in the comoving or constant density gauge the time
lay betweent50 and the actual brane collision event has
scale invariant spectrum.

In fact, using Eqs.~28! and ~73! to find Q and P before
and after the bounce for all components of the metric per
bations and matching according to the rule given in Eq.~38!
results inz4,M inheriting two separate scale-invariant lon
wavelength contributions in the post-singularity state. T
first occurs as a direct consequence of the sign change in
~38!, and is independent of the amount of radiation genera
at the singularity. The second is proportional to the diff
ence in the densities of the radiation on the two branes
leading order in velocities we have

Dz4,M5
3

64

e0

k2L2
~Vin

4 1Vout
4 !2

~r 12r 2!e0Vout
2

32k2

1O~r 6V3,V5L22,r6
2 L2!, ~77!

whereVin and Vout are the relative velocities of the brane
before and after collision. Note that sinceP}e0, matchingP
is in fact equivalent to matchinge0 across the collision as
proposed in Ref.@6#. In terms of four-dimensional param
eters defined in Sec. III C, includingr 4 given in Eq. ~18!
defining the abundance of the radiation and the fractio
density mismatchf defined in Eq.~17!, we find again at
leading order in velocities

Dz4,M5
3

64

e0

k2L2
~Vin

4 1Vout
4 !2

3e0

16k2

f r 4Vout
3

L
. ~78!

This is our final result, relevant to tracking perturbatio
across the singularity in the ekpyrotic and cyclic models.
see it consists of two essentially independent terms. The
is proportional to the radiation density mismatch on the t
branes after collision. Note that just such a mismatch~with
more radiation on the negative tension brane! was required in
order to enable the cyclic solution of Ref.@2# to work. The
second term exists, however, even in the limit of no radiat
generated on the branes. As we have noted above, it is
zero even ifVin5Vout , and it originates in the sign chang
of the parameterQ in our matching rule, which yields an
arrow of time across the collision as explained in Sec.
Going back to the original formula~73! in which we have
not made the small velocity approximation, we note that b
the radiation-dependent and radiation-independent te
possess a well defined limit as the brane collision becom
relativistic ~as the rapidityy0→`),

Dz4,M'
e0

k2 S 9

4L2 1
~r 12r 2!

8 D . ~79!

Recall, we need the radiation densities on the branes to
much smaller than their tension, i.e.r 6L2!1, in order that
the four-dimensional effective theory be valid~Sec. III!.
Therefore in the high velocity limit, the radiation
5-18
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COSMOLOGICAL PERTURBATIONS IN A BIG- . . . PHYSICAL REVIEW D 69, 106005 ~2004!
independent term dominates. Conversely, from Eq.~78!, in
the low velocity limit @with (r 12r 2)L2 fixed# the radiation-
dependent term dominates.

We should stress once more that the dependence u
parameters in Eq.~78! indicates its thoroughly five-
dimensional origin. It cannot be expressed in purely fo
dimensional terms. In previous work@6# with Khoury and
Ovrut, two of us employed a more naive matching presc
tion framed entirely in terms of the four-dimensional effe
tive theory. This prescription was based upon using the
moving energy density perturbationem , which is finite at the
singularity, as the matching variable. Unfortunately, since
differential equation governingem is singular att50, the
first time derivative ofem is not an independent quantity a
the collision and hence could not be independently match
Instead we proposed matching the second time deriva
This has the virtue of at least yielding a dimensionally c
rect result, but it is ambiguous since there are other cho
of finite variables. Now we understand the source of
ambiguity better. There is simply not enough informati
present in the four-dimensional theory to fix the gauge.
that, the five-dimensional picture is essential as we have s
here.

In summary, we have found that a spectrum of scale
variant, growing, long wavelength perturbations genera
propagate across the singularity even in the limit when
radiation is produced. The radiation-independent contri
tion rests upon the sign change ofQ in the matching rule~5!.
If radiation is produced at the bounce, then, for the lo
wavelength modes we are interested in, we believe it is
sonable to model the production of radiation as occurr
suddenly, taking into account the conservation of energy
momentum as was done in Ref.@2#. In this case, we find an
additional contribution to the long wavelength sca
invariant perturbations emerging from the singularity, whi
is proportional to the difference in the radiation densities
the two branes.

VI. CONCLUSIONS

In this paper we have developed an unambiguous and
believe, compelling rule for matching perturbations acro
the types of singularity encountered in the ekpyrotic and
clic Universe scenarios. In the simplest realization of th
scenarios, involving the collision of twoZ2 branes in a bulk
with a negative cosmological constant, we have shown
the proposed rule leads unambiguously to a spectrum
scale invariant growing density perturbations in the ensu
hot big-bang phase, even in the limit when only a sm
amount of radiation is produced at the collision. The res
provides support for a key assumption of the ekpyrotic a
cyclic models.

We have dealt here only with the linear theory, treati
the perturbations as free massless fields which we m
across the singularity. This treatment clearly is not fully co
sistent since the perturbations are divergent at the singul
and nonlinear effects must become important there. H
ever, there are reasons to expect that in the nonlinear the
a similar matching rule will apply. In the linear theory, w
10600
on

-

-

o-

e

d.
e.
-
es
e

r
en

-
y
o
-

g
a-
g
d

-

n

e
s
-
e

at
of
g
ll
lt
d

ch
-
ity
-
ry,

have seen that the metric components typically behave a
1e lnutu as t→0. This is just the smalle expansion ofutue,
the generic behavior expected in the full nonlinear Kas
solutions of general relativity that describe the generic
proach to a space-like singularity. The natural extension
our proposal to the nonlinear theory is, therefore, that
should match the Kasner exponents across the singularity
in the linear theory, the canonical momenta associated w
the three-metric are finite and our proposal amounts
matching them with a sign flip. But our matching proposal
Eq. ~5! also reverses the long wavelength component of
constant term in the metric perturbation. Generalizing to
nonlinear case, we may anticipate that when the metric te
to the Kasner form with spacelike components;eQutuP,
with Q and P of order e, these components will match t
e2QutuP in the outgoing state. Ife is small as expected in th
ekpyrotic/cyclic scenarios, nonlinear corrections will be
ordere2 and hence negligible.

Strongly supporting the idea of a local matching rule
the classic conjecture that in general relativity the behav
of the metric and fields becomes ultralocal in the approac
this type of singularity@21#. That is, the spatial derivative
become unimportant and the geometry at each point in sp
follows a homogeneous Friedmann-Robertson-Walker ev
tion that just depends on local conditions. One might wo
that contraction also leads to chaotic mixmaster behavio
which the Universe moves from one kind of Kasner contr
tion to another and the Kasner exponents change unpre
ably. However, the existence of mixmaster behavior depe
on the number and types of fields. We discuss elsewhere@48#
how the mixmaster behavior is naturally suppressed in
pyrotic and cyclic models.

Finally, with a precise matching rule for propagating pe
turbations through the singularity in place, we believe th
the cyclic and ekpyrotic models are now on firmer footing.
detailed study applying the above results to these cosmol
cal scenarios will be given elsewhere@49#.

Note added. Since the appearance of this work, Craps a
Ovrut @50# have investigated the propagation of perturbatio
within string theory in a class of backgrounds possess
big-crunch–big-bang singularities qualitatively similar
those studied here. In a certain limit, the space-times t
study reduce to compactified Milne space-time. In this lim
they obtain results identical to those discussed here an
Ref. @7#. The agreement is gratifying. However, their strin
theory examples have not yet been studied beyond lin
theory, within which there is no significant difference b
tween string theory calculations and those in field theo
They have not yet studied perturbations of fields which
time varying in the background, and which therefore cou
to metric perturbations, as we have here. Nevertheless t
and other examples are very instructive and we are fully
agreement with them about the importance of perform
calculations of the type reported here within string and
theory.
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APPENDIX A: PROJECTED EINSTEIN EQUATION

In Sec. III we derived the four-dimensional effective a
tion for solutions with cosmological symmetry and then us
general coordinate invariance to infer the covariant mod
space action. While we have shown that this approach re
ers the cosmological solutions perfectly at low densities,
have obtained the low energy effective action describing
general~asymmetrical! case by simply assuming locality an
imposing covariance. While this is plausible it is important
check it explicitly. This has in fact been done in Refs.@33–
35,51# which further clarify the conditions under which th
moduli approximation is valid. We shall compare the resu
of these works with those of the moduli space approach

We shall first show that the effective theory we have d
rived satisfies one non-trivial check. One way of formulati
a low energy theory for the brane geometries is the so-ca
Gauss-Codazzi formalism developed in Ref.@50#. Here we
take the five-dimensional Einstein equations and pro
them onto the brane to infer an equation for the brane ge
etry. One finds

Gmn
6 56

1

M5
3L

Tmn
6 1

1

M5
6

Smn
6 2Emn

6 , ~A1!

whereTmn
6 is the stress-energy on the brane, not includ

the tension. This looks like the four-dimensional Einste
equations except for two additional source terms. One c
tains stress energy squared terms,

Smn5
1

12
T Tmn2

1

4
TmaTn

a1
1

24
gmn~3TabTab2T2!,

~A2!

whereT5Tl
l , and the secondEmn

6 is obtained from project-
ing the ‘‘electric’’ part of the bulk Weyl tensor onto the bran

Emn5
]xA

]xm

]xB

]xn
EAB , EAB5CACBDnCnD, ~A3!

wherenA is the normal to the brane. Note that by definitio
Emn is symmetric. Since this term contains information abo
the second ‘‘y’’ derivatives of the bulk geometry we canno
calculate it in any purely four-dimensional way and so
though the above equations strongly resemble Einste
equations they are purely formal. However, we can const
one purely four-dimensional equation becauseEmn does sat-
isfy the exact condition

E6
m

m50. ~A4!
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The moduli space approximation only works in the limit
which the stress energy of the matter on the brane is m
smaller than the brane tension. This amounts to neglec
the T2 terms in the above action leaving

Gmn
6 56

1

M4
2

Tmn
6 2Emn

6 . ~A5!

From now on we shall for convenience use units whereM4
5(8pG)21/2 is unity. As a consequence of the Bianchi ide
tities it follows that in this ‘‘low energy’’ approximation the
following condition must be true:

¹mE6
m

n50. ~A6!

SinceEmn is conserved and traceless it means that the in
ence of the bulk on the brane geometry is identical in form
that of the stress energy of a conformal field theory. If w
look for a cosmological solution, the vanishing trace con
tion tells us that the only non-zero components ofEn

m are
E0

05 f (b) and Ej
i 52 1

3 f (b)d j
i , where f (b) is an arbitrary

function of the scale factor on the brane. In addition t
condition that¹mE6

m
n50 tells us thatf (b)5C/b4 and so the

effect of this term is gravitationally indistinguishable fro
radiation, and it may be thought of as a dark radiation te
This is the import of Birkhoff’s theorem in the bulk, viewe
from the brane.

The moduli space approximation as we have develope
provides a precise prediction forEmn

6 . A non-trivial check on
this approximation is that the predicted value ofEmn

6 is trace-
less. This condition of tracelessness is built in at the star
the other formalisms@33–35#, but is a nontrivial check of our
approach. We can compute the trace by simply conform
transforming the trace of the Einstein equation in the fo
dimensional effective theory. Writing the brane metrics
gmn

6 dxmdxn5V6
2 gmndxmdxn we find

Em
m52G6

m
m6T65R66T6

5V6
22S R2

6

V6
¹2V6D6T6

5V6
22F2T41~¹f!2S 126

~V6! ,ff

V6
D2

6~V6! ,f

V6
¹2fG

6T6

5V6
22S 2T42

6~V6! ,f

V6
¹2f D6T6 , ~A7!

where T65T6
m

m and in the last step we have usedV1

5cosh(f/A6), V252sinh(f/A6). Finally, making use of
the equation of motion for the scalar field

¹2f52
1

4
~V1

4 ! ,fT12
1

4
~V2

4 ! ,fT2, ~A8!

we find that
5-20
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E6
m

m50. ~A9!

It is interesting to note that the intermediate steps in t
calculationrequire that the conformal factors on the positiv
and negative tension branes are of the forms described a
involving cosh(f/A6) or sinh(f/A6).

In order to compute the projected Weyl curvature in ge
eral it is helpful to work at the level of the action. We sta
with the action for the four-dimensional effective theory

S5E d4xA2gS 1

2
@R2~¹f!2#1V1

4 L11V2
4 L2D . ~A10!

To get the action for the metric on the positive tension bra
we simply perform the conformal transformation, taking
out of Einstein frame

S5E d4xA2g1V1
24S V1

2

2
@R126V1¹1

2 V1
212~¹1f!2#

1V1
4 L11V2

4 L2D , ~A11!

then definingC5V1
22 and performing an integration b

parts we obtain the following action for the metric on t
positive tension brane:

S15E d4xA2g1F1

2 S CR12
3

2~12C!
~¹1C!2D

1L11~12C!2L2G , ~A12!

and a similar calculation on the negative tension brane
fining F5V2

22 gives

S25E d4xA2g2F1

2 S FR21
3

2~11F!
~¹2F!2D

1L21~11F!2L2G . ~A13!

These results are in perfect agreement with the low ene
approximation developed in Refs.@34,35# using a metric-
based approach and in Ref.@33# using the covariant curva
ture formalism. After deriving the equations of motion b
varying these actions we can simply read off the predicti
for the projected Weyl tensor on the positive tension brane

E1
m

n5T1
m

nS 12
1

C D2
~12C!2

C
T2

m
n

2
1

C
~¹1

m ¹n
1C2dn

m¹1
2 C!

2
3

2

1

C~12C! S ¹1
m C¹n

1C2
1

2
dn

m~¹1C!2D ,

~A14!
10600
s

ve

-

e

e-

y

s
s

and on the negative tension brane

E2
m

n52T2
m

nS 11
1

F D2
~11F!2

F
T1

m
n

2
1

F
~¹2

m ¹n
2F2dn

m¹2
2 F!

1
3

2

1

F~11F! S ¹2
m F¹n

2F2
1

2
dn

m~¹2F!2D .

~A15!

An especially interesting limit of these equations is obtain
by f→0 implying C→1 andF→` which corresponds to
the distance between the branes becoming infinite. Provid
we can neglect the derivative terms, we see that in this li
matter on the positive tension brane couples to the br
geometry by means of the conventional four-dimensio
Einstein equations, whereas the geometry on the nega
tension brane is dominated by its coupling to matter on
positive tension brane, and will only start to look like co
ventional Einstein gravity if a ‘‘stabilization’’ mechanism ex
ists which freezesf to a constant value. In the latter cas
stress energy on each brane acts like a dark matter sourc
gravity on the other brane.

These equations~A15! describe matter interacting in a
unconventional way with gravity, and yield a more comp
cated perturbation theory than usual. Our approach mak
clear that it is simpler to work with the effective four
dimensional theory in Einstein frame with a scalar field w
a canonical kinetic term, and then simply to use the m
gmn

1 5@cosh(f/A6)#2gmn and gmn
2 5@2sinh(f/A6)#2gmn to

infer the brane geometries. The only sense in which t
theory differs from conventional four-dimensional physics
that the different forms of matter couple non-minimally
gravity through the scalar field.

APPENDIX B: GAUGE INVARIANT VARIABLES

As in four dimensions the cosmological symmetry of t
background metric allows us to find a set of gauge invari
variables, which facilitates the comparison of two differe
gauges. What the natural gauge invariant variables are
pends on the form of the background and our definit
closely follows, but is not identical to, those in Ref.@44#.

We begin with the background metric written in the for

ds25n2~ t,y!~2dt21t2dy2!1b2~ t,y!d i j dxidxj . ~B1!

We shall only consider spatially flat cosmologies for simpl
ity but the generalization to closed and open universes
easy. The most general scalar metric perturbation can
written as

ds25n2@2~112F!dt222Wdtdy1t2~122G!dy2#

22¹iadxidt12t2¹ibdydxi

1b2@~122C!d i j 22¹i¹jx#dxidxj , ~B2!
5-21
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TOLLEY, TUROK, AND STEINHARDT PHYSICAL REVIEW D69, 106005 ~2004!
writing the perturbed metric asgAB1hAB wheregAB is the
background metric, then under a gauge transformationxA

→xA1jA the metric perturbation transforms as

hAB→hAB2gAC]BjC2gBC]AjC2jC]CgAB . ~B3!

Since a five-vectorjA has three scalar degrees of freedomj t,
jy and j i5¹ij

s, only four of the seven functions
(F,G,W,a,b,C,x) are physical. This immediately tells u
that we expect to be able to define four gauge invariant v
ables constructed from the metric alone. LetȦ denote]A/]t
andA8 denote]A/]y. Under a gauge transformation each
the variables transforms as

F→F2 j̇ t2j t
ṅ

n
2jy

n8

n
,

G→G1j8y1
1

t
j t1j t

ṅ

n
1jy

n8

n
,

W→W2j8t1t2j̇y,

a→a2j t1
b2

n2
j̇s,

b→b2jy2
b2

n2t2
j8s,

C→C1j t
ḃ

b
1jy

b8

b
,

x→x1js. ~B4!

It is then relatively easy to construct the following gau
invariant quantities:

F inv5F2 ȧ̃2ã
ṅ

n
2b̃

n8

n
,

G inv5G1b̃81
1

t
ã1ã

ṅ

n
1b̃

n8

n
,

Winv5W2ã81t2ḃ̃,

C inv5C1
ḃ

b
ã1

b8

b
b̃,

where ã5a2(b2/n2)ẋ and b̃5b1(b2/n2t2)x8. We then
see that there is a special gauge defined byx5a5b50 in
which

F inv5F,

G inv5G,

Winv5W,
10600
i-

f

C inv5C.

We define this to be five-dimensional longitudinal gauge a
so we see that the gauge invariant variables equal the va
of the metric perturbations in longitudinal gauge, in perfe
analogy with four-dimensional cosmological perturbati
theory. This gauge is characterized by being spatially iso
pic in thexi coordinates but in general there will be a no
zero t-y component of the metric.

Position of branes

In general, the locations iny of the perturbed branes wil
be different in different gauges, and it is very important
understand this location in each case. Remarkably, in
case where the brane matter has no anisotropic stress th
easy to establish. Start in the gaugea5x50. From the
above transformation rules we can see that we can alway
to this gauge using onlyj t andjs transformation. This then
leaves us with the freedom to perform anyjy transformation
such that the position of each brane remains unperturb
Then working out the Israel matching conditions we find th
b on the branes is related to the anisotropic part of
brane’s stress energy. So if we are considering only per
fluids, for which the shear vanishes, then the Israel match
condition givesb(y5y6)50. We can then go to longitudi
nal gauge (a5b5x50) with the transformationjy5b
alone. But sinceb vanishes on the branes, so doesjy, im-
plying that the brane trajectories are unperturbed. So we
that for the special case of matter with no anisotropic str
the locations of the branes in longitudinal gauge are th
unperturbed valuesy5y6 . We can then infer the position o
the branes in an arbitrary gauge by means of the above g
transformations to be

y5y62b̃, ~B5!

where y6 are the background values. In particular, in t
class of Milne gauges we have defined in~57! the branes are
located at

y5y62
q2

t2
x8. ~B6!

APPENDIX C: BIRKHOFF’S THEOREM
AND THE BACKGROUND METRIC

The bulk geometry considered in this paper solves
five-dimensional Einstein’s equations sourced by a p
negative cosmological constant. For the background solu
we restrict to solutions possessing cosmological symm
on three-dimensional spatial slices. In close analogy to
familiar situation for spherical symmetry in 311 dimen-
sions, a Birkhoff-type theorem guarantees that, in our ca
away from the branes the background must take the form
either anti–de Sitter~AdS! space-time, Schwarshild-AdS o
AdS with a naked singularity. In each case the metric may
written as
5-22
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ds25S r 2

L2
1k2

m

r 2D 21

dr22S r 2

L2
1k2

m

r 2D dT2

1r 2g i j dxidxj , ~C1!

wherem is the mass of the black hole,g i j is the canonical
metric on S3, H3 or E3, with k the corresponding spatia
curvature, andL is the AdS radius defined byL5
26M5

3/L2 with M5 the five-dimensional Planck mass. W
are most interested in the casek50, for which it is useful to
change variables fromr to Y obtained by setting the first term
in Eq. ~C1! to equaldY2, obtaining

ds25dY22N~Y!2dT21A~Y!2dxW2, ~C2!

where for AdS

A~Y!25N~Y!25exp@2Y/L#, ~C3!

for Schwarzschild-AdS with a horizon atY50

A~Y!25cosh~2Y/L ! and N~Y!25
sinh~2Y/L !2

cosh~2Y/L !
,

~C4!

and for AdS with a naked singularity atY50

A~Y!25sinh~2Y/L !, N~Y!25
cosh~2Y/L !2

sinh~2Y/L !
. ~C5!

For any configuration of branes possessing cosmolog
symmetry, even if the branes move the Birkhoff theore
guarantees that the bulk geometry takes one of the t
forms above@39,40#. In our case, where the branes a
Z2-symmetric and have their tensions tuned to allow sta
empty brane solutions, the only bulk solution that is cons
tent with moving branes is the Schwarzshild-AdS solutio
Consequently this is the background five-dimensional me
we use in this paper.

Technically, in order to study the perturbations it is mu
simpler if one changes coordinates to those in which
branes are static and the bulk is time dependent. That
always possible to choose such a coordinate system ma
seen as follows. Start with the Birkhoff-frame metric~C2!
with A andN given by Eq.~C4!. First, change variables from
Y to Z defined bydZ5dY/N, with Z chosen to be zero at th
collision event, so that

ds25N2~2dT21dZ2!1A2dxW2, ~C6!

whereN andA are now functions ofZ. Defining light-cone
coordinatesT65T6Z we have

ds25N2~2dT1dT2!1A2dxW2. ~C7!

We now recognize that the form of this metric is invaria
under the light-cone coordinate transformation,t6y
5 f 6(T6Z), which takes the metric to the form
10600
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ee
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-
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ds25
N2

f 18 f 28
~2dt21dy2!1A2dxW2. ~C8!

Now we sett56e6t to describe the post-or pre-collisio
space-times, respectively, and definet2n2(t,y)5N2/( f 18 f 28 )
andb2(t,y)5A2 to obtain

ds25n2~ t,y!~2dt21t2dy2!1b2~ t,y!dxW2, ~C9!

which is the form used in this paper.
We now show that we can always choose the functionsf 6

to make the branes static in the new coordinates. To see
note that the new spatial coordinate

y~T,Z!5
1

2
@ f 1~T1Z!2 f 2~T2Z!# ~C10!

itself satisfies the massless field equation in two dimensio
If the two-brane trajectories areZ5Z6(T) in the T,Z coor-
dinates, then it follows from the general theory of the wa
equation that we can always solve~C10! for arbitrary chosen
y(T,Z) on two specified timelike curvesZ5Z6(T). In par-
ticular we are free to choose constant valuesy5y1 on the
positive tension brane andy5y2 on the negative tension
brane. Even after this choice there is additional coordin
freedom, since to determine the solution fory(T,Z) we need
to specify additional Cauchy data, for example on aT
5const surface.

In practice we find it is straightforward to solve the
equations as a power series int. The Israel matching condi
tions on the two-branes in Birkhoff coordinates read

tanh~2Y6 /L !5S 16
r6L2

6
DA12N22~Y6!~dY6 /dT!2,

~C11!

where r6 are the densities of matter or radiation on t
branes. In our case, when only radiation is present, and
normalize the brane scale factors to be unity at collision~cf.
Sec. III C!, we haver65r 6 /A4(Y6). Equation~C11! is a
first order differential equation for the brane trajectori
Y6(T), allowing them to be straightforwardly determined
Taylor series inT. Likewise we may solve explicitly forZ,

Z~Y!5
L

2 F tan21~x!1
1

2
lnS x21

x11D G , ~C12!

wherex2[cosh(2Y/L), and hence obtainZ6(T) as a Taylor
series inT. From Eq.~C10! we obtain

y65
1

2
$ f 1@T1Z6~T!#2 f 2@T2Z6~T!#%, ~C13!

which we may differentiate with respect toT, noting that the
y6 are constant, to obtain

f 18 @T1Z6~T!#@11V6~T!#5 f 28 @T2Z6~T!#@12V6~T!#,
~C14!
5-23
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whereV6(T)[@dZ6(T)/dT# are the brane velocities. Thes
two equations may be simultaneously solved as a power
ries in T with the ansatzf 68 (z)5z211 f 6

0 1 f 6
1 z1 . . . .

They are both trivially satisfied at orderT21. At each sub-
sequent powerTn, n>0 one obtains two equations which fi
the two constantsf 6

n . Finally, writing f 6(z)5c61 ln z
1f 6

0 z1f 6
1 z2/21 . . . , with c6 constants, we can write th

equation fory6 and take the limitT→0 on the right hand
side to obtain

y65
1

2
~c12c2!1

1

2
lnS 11V6

11V6
D5

1

2
~c12c2!1u6

B ,

~C15!

whereu6
B are the rapidities of the positive and negative te

sion branes in the Birkhoff frame. Likewise we obtain~for
t.0)

t5
1

2
~c11c2!1 ln t. ~C16!

Settingt56e6t as we do fort.0 or t,0, respectively, and
choosingy152y2 ~i.e. the Lorentz frame in which the
branes have equal and opposite speeds!, then fixesc15

2c252 1
2 (u1

B 1u2
B )[2uB. Now one may invert the equa

tions t6y5 f 6(T6Z) to expressT1Z as a Taylor series in
tey for t.0 ~or te2y for t,0) and similarly T2Z as a
Taylor series inte2y ~or tey). For example, post-collision
one obtains

T1Z5teyeuB
1O~ t2!, T2Z5te2ye2uB

1O~ t2!,

~C17!

equations which will be useful in Appendix D. Hence w
completely determine the metric functionsn2 andb2 as Tay-
lor series intey and te2y. Finally, by rescalingt and xW we
can also ensure that in the new coordinates,n(t,y)51
1O(t) andb(t,y)511O(t).

As a check of this procedure, or indeed an alternative
it, one can directly solve Einstein’s equations in the frame
which the branes are static. The extrinsic curvature is gi
by

Kmndxmdxn5
1

2nt
]ygmndxmdxn

5
1

2nt
@2~n2!8dt21~b2!8dxW2#, ~C18!

and so the Israel matching conditions

Kmn5
1

2M5
3 S Tmn2

1

3
gmnTl

lD , ~C19!

tell us that

n8

n2t
5

1

L
7

L

3
r67

L

2
p6 , ~C20!
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b8

ntb
5

1

L
6

L

6
r6 . ~C21!

For the purposes of our analysis it will be convenient
define the Lorentz frame we work in to be that in which t
y coordinates of the branes~their rapidities! are y65
6y0/2. Recall, we also define the parametersr 6 to be the
densities of radiation on each braner6 at collision, and we
treat these as free parameters. Through a direct series
tion of the five-dimensional Einstein equations, imposing
Israel matching conditions~C21! at each order int, we obtain
the following solution for the background geometry neat
50:

b~ t,y!511~b1sinhy1b2coshy!t

1~e01e1sinh 2y1e2cosh 2y!t2/2,

n~ t,y!511~d1sinhy1d2coshy!t

1~k01k1sinh 2y1k2cosh 2y!t2/2, ~C22!

where the constant parameters are given by

b15
121L2~r 12r 2!

12L
sech~y0/2!,

b25
L

12
~r 11r 2!cosech~y0/2!,

d15
42L2~r 12r 2!

4L
sech~y0/2!,

d252
L

4
~r 11r 2!cosech~y0/2!,

e05
1

36L2
@~261L2r 2!21~61L2r 1!2

12~261L2r 2!~61L2r 1!coshy0136~cosh 2y021!#

3~cosechy0!2,

e15
1

12
@242L2~r 12r 2!#~r 11r 2!cosech~y0!,

e252
1

12L2
$~2414L2~r 22r 1!12L4r 1r 2

1@22424L2~r 22r 1!1L4~r 2
4 1r 1

4 !#coshy0%

3~cosechy0!2,

k05
1

6L2
@211L4~r 1

2 1r 2
2 !12~2121L4r 2r 1!coshy0

13 cosh 2y0#~cosechy0!2,
5-24
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k152
1

12
~r 11r 2!cosechy0@5L2~r 22r 1!112 sechy0#,

k25
1

12L2
$224110L4r 1r 21@2415L4~r 1

2 1r 2
2 !#coshy0%

3~cosechy0!2. ~C23!

APPENDIX D: MEANING OF THE CONSTANTS c1 AND c2

The two arbitrary gauge constantsc1 and c2 in Eq. ~67!
parametrizing the violation of the asymptotically Neuma
boundary condition~64! have a simple geometrical interpre
tation: they describe the displacement of the collision ev
in the T,Y plane. Recall that in the Neumann gauge, d
cussed in Sec. V E, the brane trajectories are unperturbed
are described by the equationsy5y65const. If we now
gauge transform to an asymptotically Neumann gauge
which the normal derivativesn21t21x8(t,y6) deviate from
zero at ordert as in Eq.~67!, we see that the gauge transfo
mation from conformal Newtonian gauge to the Milne gau
we are in involves a divergenty coordinate displacement o
jy52q2x8/t2, which tends to2(c1sinhy1c2coshy)/t plus
a finite part ast tends to zero. Ifc15c250, then the pertur-
bation in the braney coordinatesjy(y6) is finite. The rapidi-
ties of the two branes are perturbed, but the collision ev
itself is still simultaneous as in Neumann gauge.

In the remainder of this appendix we provide a geome
cal interpretation of the two constantsc1 and c2, showing
that they parametrize the displacement of the brane collis
event away from its background location in the embedd
coordinatesT,Y, at eachxW .

If we start from Neumann gauge withc15c250, we may
introducec1 andc2 via the following gauge transformation
ys

e

f
n-

ys

y
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js5~c1coshy1c2sinhy!t,

jy52
1

t
~c1sinhy1c2coshy!,

j t5~c1coshy1c2sinhy!.

This is part of the gauge freedom described by the soluti
to Eqs.~59! and~60!. Althoughjy diverges neart50, this is
merely a reflection of the singular nature of the Milne (t,y)
coordinate system. In terms of the Birkhoff frameT,Y coor-
dinates defined in Appendix C, we find

dT5
]T

]t
j t1

]T

]y
jy,

dY5
]Y

]t
j t1

]Y

]y
jy.

Then using Eq.~C17! given in Appendix C and Eqs.~D1!
one infers the displacement of the collision event

dT5~c1coshuB2c2sinhuB!,

dY5N~Yc!~c1sinhuB2c2coshuB!,
~D1!

independent ofy and hence holding for both branes. He
N(YC) is the value of the lapse function~given in Appendix
C! at the collision value ofY in the Birkhoff frame, anduB is
the mean rapidity of the two branes in that frame. Theref
all the gauge transformation~D1! does is to move the colli-
sion event around by an arbitrary finite displacement in
T,Y plane.
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