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Supergravity analysis of the hybrid inflation model from a D3-D7 system
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Slow-roll inflation is a beautiful paradigm, yet the inflaton potential can hardly be sufficiently flat when
unknown gravitational effects are taken into account. However, the hybrid inflation models construbted in
=4, N=1 supergravity can be consistent witfi=2 supersymmetry, and can be naturally embedded into
string theory. This article discusses the gravitational effects carefully in the string model, ufirg4a
supergravity description. We adopt the D3-D7 system of type IIB string theory compactified on a
K3xT?/Z, orientifold for definiteness. It turns out that the slow-roll parameter can be sufficiently small
despite the nonminimal Kder potential of the model. The conditions for this to happen are given in terms of
string vacua. We also find that the geometry obtained by blowing up the singularity, which is necessary for the
positive vacuum energy, is stabilized by introducing certain three-form fluxes.
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I. INTRODUCTION the vacuum energy is carried only by the D term. Thus, the
inflaton potential is not expected to be sufficiently flat. This
Slow-roll inflation is a beautiful paradigm, in which not is called thes problem.
only the flatness and homogeneity of the Universe but also It is remarkable that the hybrid inflation model iv= 1
the origin of the scale-invariant density perturbation is un-supersymmetrySUSY) is consistent wittD =4, N'=2 rigid
derstood. However, it is not easy to obtain a scalar potentisSUSY [7]. The inflaton belongs to a vector multiplet &f
V that satisfies the slow-roll condition] =2 SUSY, and its interactions, including the'lidar poten-
tial, are highly constrained. Thus, it was argued Th that
the /=2 SUSY might ease the problem. However, it was
far from clear howN'=2 SUSY can coexist with chiral

n= 1

M2\ 1{MpV'\2
P <, eE—( f/' ) <1,

V(o)=vg|1+c +c’

Mp

_ o quarks and leptons iD =4 theories.
whereV' and V" are the first and second derivatives \6f Superstring theory is a promising candidate for the quan-
=2.4x10'® GeV. Suppose that there is a vacuum enef@y tional corrections look like, once a vacuum configuration is
and then one can see that even gravitational corrections fixed. Thus, it is quite important in its own right to consider
) SUSY and higher-dimensional spacetime are generic ingre-
i) i, @) dients of string theory, and hence it is a plausible framework
Mp
o o SUSY; enhancedv=2 SUSY can coexist with othek’=1

are not allowed by the slow-roll conditions if the coefficients Supersymmetric sectors owing to the internal spacetime_
sensitive even to phys_ics at the Planck scale, and can_beﬁzz SUSY is realized by a D3-D7 system placed on a local
good probe in uncovering the fundamental laws of physics.geometry ALEX C. Thus, this framework of type 1B string
models ofD =4, N=1 supergravity SUGRA) [3—6]. Thus,  really be flat even when the internal dimensions are compac-
the inflaton potential is protected from radiative correctionstified and gravitational effects are taken into account. Note
gravitational corrections. In SUGRA as an effective-field- M, -suppressed corrections are neglected, is not sufficient to
theory approach, no assumption except symmetry is imposeske the flatness of the inflaton potential.

with respect to the inflaton, antflp is the Planck scale tum theory of gravity. One can work out what the gravita-
the potential whether it can realize slow-roll inflation. Moreover, extended
in accommodating the hybrid inflation model with’=2
c,c’ are of the order of unity. Thus, slow-roll inflation is It was shown in[8] that the hybrid inflation model with
The hybrid inflation mode{2] is realized by quite simple  theory enables us to examine if the inflaton potential can
However,D=4, N=1 SUGRA is not enough to control the that an analysis at the level of rigid SUSY, where
on ultraviolet physics. Thus, higher-order terms are expected This article is organized as follows. In Sec. Il, we describe

in the Kénler potential withO(1) coefficients: how the hybrid inflation model can be embedded in a local
xtx)2 part of a realistic Calabi-Yau compactification of type 11B

K =X X +k( ) T 3) string theory. After that, we show that short-distance effects

Mgl in the inflaton potential are not harmful, partly because of a

translational invariance of the local geometry AXE, and
whereX is a chiral multiplet containing the inflatot. The  partly because of a property specific to string theory. In Sec.
second term contributes to the slow-roll paramejeunless I, we adoptK3Xx T2 as a toy model of a Calabi-Yau three-
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fold, and show that in thd=4 SUGRA description the able to move along th€ direction. On the other hand, the
potential is flat in the presence of dynamical gravity, consis:\/=1 vector multiplet is usually the only Kaluza-Klein zero
tent with the intuitive picture obtained in string theory. The mode from the D7-D7 open string, and, in particular, the
special form of the Khler potential and interactions derived coordinate of the D7-brane in ti@ direction is fixed. Other
from string theory play a crucial role there. In Sec. IV, anparticles such as quarks and leptons can be realized by the
explicit model that stabilizes nonzero Fayet-lliopoulos pa-iocal construction of D-branes at another place in the Calabi-
rameters is given in Sec. IV A. The slow-roll parameteis  Yau threefold, as ifil5]. Thus, the noncompact model above
evaluated for the model, and we obtain a condition that leadsan be embedded as a local model of a realistic Calabi-Yau
to slow-roll inflation in Sec. IV B. compactification.

We note that an articlg9] was submitted to the e-print  The world-sheet amplitude of string theory is expanded in
archive when we were completing this article. It has someyowers of the string couplings. The expansion begins with

overlap with this article in subjects discussed. the sphere amplitude, which is proportionalgop?. In par-
There was an errdiin identification of closed-string zero icylar M.% is proportional toggz.
modes with fields in SUGRAIn the first e-print version of The disk amplitude comes at the next-to-leading order

this article, which was pointed out [10].} It is corrected in
this version, yet the main stream of logrelated to inflation
has not been changed from the first version.

gs’l. It is calculated by restricting the boundary of the world

sheet to the fractional D3-brane. The kinetic term of the in-

flaton arises at this level, and hence its coefficient is propor-

tional to gs‘l. The kinetic term of the (1) vector field, the

ll. STRING THEORY SETUP AND SHORT-DISTANCE N=2 SUSY partner of the inflaton, also has a coefficient
EFFECTS IN INFLATON POTENTIAL proportional tog;l. Thus, the W1) gauge coupling constant

The low-energy spectrum consists of &k 2 SUSY vec- 9 s related tags via g?~gs. The vacuum energy also arises
tor multiplet (X,V) when a space-filling fractional D3-brane at this level. Therefore, the vacuum energy is proportional to
is moving in ALEX C. The fractional D3-brane is regarded 9s~9°> whenMg~g; ? is factored out from the scalar po-
as a D5-brane wrapped on a two-cycle of the ALE spacdential (see also the discussion at the end of this seftion
[11], and hence is trapped at a tip of the ALE space. When a We are interested only in the disk amplitude whose
space-filling D7-brane is further introduced and stretched ifpoundary is on the D3-brane. The D7-brane is irrelevant, and
the ALE direction, /=2 SUSY is preserved, and one mass-0nly the local background geometry around the D3-brane,

less hypermultiplet, Q) arises from strings connecting the ALEXC, is relevant to the disk amplitude. Since AKE
D3 and D7 branes. The D7-D7 open string and closed strinﬁas translational invariance in th@ direction, the transla-

are not dynamical degrees of freedom because of the infinit onal invariance is respected in the disk amplitude. Thus, the
volume of ALEX C. The superpotential is given by amplitude does not depend on the position of the D3-brane.
' Therefore, the disk amplitude does not induce the inflaton

W=/2g(QXQ— £2X), 4 potential.

\/—g(Q Q=) @ The cylinder amplitude is at the next ordgE,. The one-
and there may be a Fayet-lliopoulos D tefiw — £2D. The ~ l0op amplitude of the open string and the amplitude ex-
inflaton isX, which corresponds to the distance between th&€hanging closed string at the tree level are contained here.

D3- and D7-branes in th€ direction. When the D3-brane The inflaton potential comes from a cylinder with one end on
comes close enough to the D7-brane, iX¥s|{|.¢ the the D3-brane and the other on the D7-branes. The amplitude

D3-D7 open-string modesy, Q) become tachyonic and be- contains a potential logarithmic in the distandeetween the

gin to condense, a D3-D7 bound state is formed, the vacuurﬁ’;i\?ébcrgprz‘tizs'? rff]te_lr_]ﬁglrecgrrgsgggdtsertr?];hga?:ﬁ'rioogxr_a'
energy g2/2x (|2£%%?+ &%) disappears, and the inflation : Ping

comes to an end. There is no massless moduli irZhonE;\rI:lt'alg l')nr' The_y gre |3tebrpretedh as t_he fotr(_:es betwieg

this vacuum, and this is the reason why the fractional bran € two b-branes Induced by exchanging stnngy excite

is adopted. The Fayet-lliopoulos parametersStates at the tree level. These terms are suppressed very much

(-2Im{22Ref% £%) are nonzero when a singularity when t-he D-branes are sgparated by.a distance longer than
the string length~ \a'. Finally, there is also a term qua-

C?/7y, is blown up to be a smooth ALE spaf#2].2 >0 . . N
Type IIB string theory has to be compactified on a Calabi__drat|c in the inflatorr. This potential is induced by exchang-

: ; ; ; less twisted sector fields; both the fractional D3-
Yau threefold in order to obtain dynamical gravity. The D7- INg mass -
brane should be wrapped on a homomorphic four-cycle Sé)rr]aarrlegsand the D7-brane carry twisted Ramond-Ramond
that theD=4, N'=1 SUSY is preservefil4]. We consider Pgtt' : Il the ab togeth h btained
that there is a point on the four-cycle around which the local utting afl the above together, we have obtaine
geometry of the Calabi-Yau threefold is ADMEC. The frac-
tional D3-brane is trapped at the tip of the ALE space and is £~(g;2~M§|)[R+gS(<9r)2

—gs(1+gsinr—gee "+ggr?+--)], (9
We are grateful to the authors of Rg10].
2See alsd13], where the vacuum energy is given by the vacuum
expectation value of thB field. wherea’ is set to unity and is the distance between the two
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D-branes. Let us now rescale the inflatoso that the kinetic P)[(\ are momentum maps, which rough|y Correspond toOhe
term is canonicaly= \/gsrM py. Then the scalar potential is  term (Killing potential) and theF-term potentialk! are Kill-

given by ing vectorsL? is roughly the scalar partner of theth vec-
tor field, f{* its covariant derivative with respect to thth
VeegM §>| 1+g, In(i) —ge ol(\GMp) scalar of the vector multiplets, amgi« andh,, the metric of
Mp, the vector multiplets and hypermultiplets, respectively. See
2 2 3 [16] for more details.
o g .
+| — +O(gs)(_ +0 _) ] (6) Let us define
Pl Mp Mp

LAE eKV/ZXA, (8)

The correct mass dimension of the scalar potential is restored
by multiplying quantities that have been set to unity, includ- Wo=X (P1+iP2), (9)

ing «’ and the volume of the compactified manifold. Note

that the short-distance effects appear only as the exponefereK, is the Kaler potential of vector multiplets. Then
tially damping potential. This is partly because the localine first term of Eq(7) becomesev|gW,|? for hypermul-
translational invariance of the internal space dimensions fortiplets, and the second contaig$V|dW,|2 for N=1 chiral
bids the potential from the disk amplitude. This is also be'components of\'=2 vector multiplets. The last term con-
cause the cylinder amplitude is interpreted as the Yukaw@ains_3eKv|W0|2. Thus, the\'=2 SUGRA scalar potential

potential induced by heavy states, and hence the shorfz ot completely different from that of'=1 SUGRA. See
distance(ultravioled effects is irrelevant unless the D3-brane 17] for more details about the relation betwegv=2

is in a short distance from the D7-brane in the internal spacgjgra andV=1 SUGRA. We come back to this issue at
dimensions. This kind of picture is hardly obtained without,o ang of this section.

assuming string theory. The logarithmic correction is not e n= 1 chiral multipletX in Sec. 11, identified with the
harmful Wh?” the coupling is suff|C|entIy smal!, Just as I jaqaton, belongs to aw=2 vector multiplet. Thus, one of
field theolretlcal model§4]. The quadratlc potential induced the XV's is approximatelyX. The A’=2 hypermultiplet

by the twisted-sector exchange, which can be the only harm-_~ — . .
ful effect, is suppressed in certain string vacua as shown iﬁQ'Q) in Sec. Il is in the momentum maps as
Sec. IV. Although the volume of the Calabi-Yau threefold has

o . 3_ Al
not been treated carefully, it is also shown in Secs. Il and IV Pi=(e®)+[QI*~[Q[*+---, (10
that this parameter is irrelevant to the flatness of the inflaton o
potential. i(P1+iP2), =i(el+ie?)+2QQ+- - -. (12)
IIl. D=4 SUGRA ANALYSIS OF THE INFLATON The Fayet-lliopoulos parameters are now obtained as the
POTENTIAL vacuum expectation value$VEVs) (e™ (m=1,2,3) of

_ ‘massless fields in the closed-string secti¢e!+ie?)
Both the Planck scale and the Kaluza-Klein scale are fi— —272 and<e3):§2. The first term of Eq(7) contains

nite, as well as the string scale, when the internal dimensions
are compactified. We show in this section that the inflaton
potential still reflects the translational invariance of the local
geometry, and is sufficiently flat, even in the low-energy ef- ) —
fectiveD =4 SUGRA description obtained after the compac-"hich prevents the D3-D7 open-string mod&3,Q) from

tification. In particular, the inflaton potential does not grow condensing during the inflation becaug¢) is large. The

exponentially for large field value, even when the vacuum/cuum energyand the inflaton potentiabluring the infla-

energy is carried by thE term. It is another purpose of this 10N IS (are provided by the last two terms
section and of Sec. IV to examine the volume-parameter I
(in)dependence of the potential, which was neglected in the (907 M —3L* AL )(PAPY), (13
previous section.

We adoptK 3x T? as the model of a Calabi-Yau threefold. as we see explicitly in this section. Although the first term
It surely contains ALEXC as a local geometry, but it also also contributes to the inflaton potential, we show in Sec. IV
preserves extended SUSY. Thus, the analysis based dhat this contribution is negligible in certain string vacua.
K3X T2 has a limited meaning. However, this toy model has Let us suppose that the inflaton potential comes domi-
another virtue that we can analyze more precisely owing téantly from Eq.(13). Then we only have to know the special
the extended SUSY. Furthermore, a related discussion igeometry, which determinegii*fiAf.E*—3|_*A|_E, to see

92(|XQI2+|XQJ?), (12)

found at the end of this section. whether the inflaton potential is flat. Therefore, we just as-
The scalar potential of thB =4, N’=2 SUGRAis given  sume in this section that the positiy®’ P) is realized, and
by [16] postpone discussing how the momentum maps are deter-
B mined until Sec. IV. Section IV A discusses how to stabilize
V:4huukxk§LA|—*z+(g”*fiAij*—3L*AL2)PXP§- nonzero(e™’s in Egs. (10) and (11) by examining the

(7) quaternionic geometry of hypermultiplets. Section IV B ex-
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plains when the first term in Eq7), which contains the The kinetic terms of the bulk particles and the D3-brane
guadratic term in Eq(6), is not harmful to the slow-roll are given by[18]
condition.

— ) —
4,S4,S N |9, T+ (xaﬂy:yaﬂx)/2| N d,Ud,U

Special geometry of the vector multiplets (S—S)? (T-T)2 (U-U)?
and Calabi-Visentini basis

We begin by determining the Kier metric of the moduli n (9, X+Ud,y)(d,x+Ud,y)

space of vector multipletéspecial geometny After that, a (U—U)(T-T)

symplectic vector X(A,FE) is chosen suitably and ] ) ] o
after Kaluza-Klein reductiof.The cross term in the kinetic

ij* A 2 _ * A1 3N . .
(g7 fifj.—3L" L") in the potentiak13) is calculqted. tetrm of T has its origin in the Wess-Zumino term on the
As we see later, one cannot capture the essential reason Btoranes

the flatness in this SUGRA analysis without considering
carefully the interaction of the inflaton with other vector
multiplets arising from the closed-string sector. There are J Cff,?xy
three N'=2 vector multiplets in the low-energy effective b3
theory when type I1IB theory is compactified on 1
K3XxT?/Z,. Here,Z, is generated by)(— 1) LRz, where = - EJ d*x(9,C ) €77 (Xd,Y = Y3,X).
Ry reflects the coordinates @f. The three complex scalars
in these multiplets are denoted & T, and U; S=C g, (18
+igs !, ImTegS 'vol(K3), andU is the complex structure
of T?. We adopt a convention in which imaginary parts of all
S T, andU are positive. ~ 1
The kinetic terms of these fields are determined ffa8i, T=T+ Eyizi (19
since a modeT dual to ours(type | theory compactified on
K3xT?) is discussed there. We take tfieduality transfor-
mation from[18], and find that the kinetic term is given by

17

(9,X)(d,y)dx*AdX"/AdxP/A\dx”

Now, a new coordinate

is introduced, and is regarded as one of the special coor-
dinates;T is no longer a special coordinate. TheHer po-

= = — tential for the metriq17) is given by
3,53,S N a,Ta,T N d,Ua,U

(S-92% (T-T)? (U-U)?

14 - - _ _

o Ky=—log(i(S—S)(T-T)(U—-U)—(Z-2)?/2))
(20)

after Kaluza-Klein reduction and Weyl rescaling. All the sca- o o -

lar fields are chosen to be dimensionless, and these terms =—log(i(S=S)(T-T)(U—-U)), (21

become a part of th® =4 Lagrangian when multiplied by ]

M2,. This metric of the special geometry, which is the targetand this Kaler potential is derived from a prepotential

space of the nonlinear model of the scalar components, is ~ )

obtained from a Khler potential F=-STU+SZ/2. (22)

Thus, the newly introduced is in the correct set of special
coordinates, along wits,U, andZ. Note that the complexi-
fied coupling of the gauge field on the D3-braneSsas
desired. The special geometry obtained here turns out to be

Ky=—log[i(S—S)(T-T)(U-U)], (15
which can be derived from a prepotential

F=-STU. (16) SuU(1,1) SQ2,3

X .
Let us now introduce D3-branes to this system. The coor- S0(2) - SA2)xS5A3)
dinates of the D3-branes dff are denoted byx;,y;)~(X;  One of the special coordinate® which factorizes in Eq.
+1yi)~(X;,yi+1). We introduce a complex scaldy=x;  (20), parametrizeSU(1,1)/SO(2).
+Uy;. The twisted Ramond-Ramon&R) charge does not  The symplectic sectiofd = (X*,F,) of the special mani-
vanish when there is only one fractional D3-brane. But thefold is given by
RR charge can be canceled in a system where D7-branes and
other fractional D3-branes are introduced. They will be scat- XA=(1,S,T,U Z), (24)
tered at different points iff>. We are interested in only ohe
of the fractional D3-braneg=27,, which corresponds tX
in Sec. II. “The relative normalization between the bulk particl&T(U)
and the D-bran€ is not precise. It turns out, however, that the
slow-roll parametery is independent of the normalization. Thus,
3Since we are interested only in the disk-level potential in thiswe do not pay attention to the numerical coefficients, say, of the last
section, other D-branes are irrelevant to the inflaton potential.  term, very much in this article.

(23
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F\=(STU-SZ/2,~TU+Z%2,~SU,~ST,S2).
(25)

Although the symplectic transformation df? does not

change the Khaler potential, a different choice of basis leads

to different coupling with hypermultiplefsl9]. We choose a
base in which the bidoublet representatiorsdf(1,1) acting
on SandSU(1,1)CS0O(2,2)CS(O(2,3) acting onU is real-
ized in the coordinateX”. This is for the same reason as in

PHYSICAL REVIEW D69, 106001 (2004

Z—Z+e, (TU-Z%2)—(TU-Z%2)—e€Z,

(31)
Z—Z+€e'U, T—T+€Z. (32
The translational symmetry 6f? is now part of SO(2,3)
isometry along withSQ(2,2)=SL,RX SL,R.
There is another interesting feature in E88). Notice
that theF-term andD-term scalar potentials are completely

[20,10. Choosing a suitable symplectic transformation, onedifferent inD=4, N=1 SUGRA, namely,

finds that
A 1-SU  S+U -1-SU -S+U 2| 2
\/E y \/E ] \/E 1 \/E L] L]
e T(1-SU)+SZ2 T(-S-U)+Zz%2
A \/E ’ \/E y
T(1+SU)—SZ2 T(S-U)+z%2
— - ,SZ|.
V2 V2
(27

This is the so-called Calabi-Visentini basis.

Now that we have holomorphic symplectic sectiéh
=(XA,F2) in a suitable basis, it is straightforward to calcu-
late the potentia(13). One finds that

(g £, —3ekvx* AXE) PXPY

- ﬁAEmPXPEM,z:o ..... st 5 mgPA-4PA-4

_y
V2 ImT

X
—T(PX:0+PX:2)PX:4+

\/flm

X(PA_1+Pi_3)Pi_4, (28
where **=diag(1,1- 1,— 1). The Kaler potential(20) is
far from minimal, and the holomorphic symplectic section
in Egs.(26),(27) exhibits an intricate mixture of the special
coordinates. However, the inflaton potenti@8) is com-
pletely independent of the inflaton fiel] when(P,P,) is

V= kv Kn(gl" DWW, D Wi —3|Wy[?),  Vp=g?D[2

(33
However, the\’'=2 scalar potential28) “becomes™
Vie1,= (g1 DWoDjx W5 — 3| Wol?)
“="Vp inEq. (33), (34)
where
W, =" e Kn2w,, (35
while
Vy—3=0¢P3?=Vp inEq. (33), (36)

when the relatior§28) holds. Thus, the flat potential obtained
in Eqg. (28) may still be expected when the internal manifold
is not K3XT? but a Calabi-Yau threefold with local
ALE X C geometry. Then, an important consequence is that
the inflaton potential is not growing exponentially at large
field value, no matter how much the vacuum energy is car-
ried by theF term in realistic models.

IV. MODULI STABILIZATION AND SLOW-ROLL
CONDITIONS

In the previous section, we assumed tfRf _,PX_,) is
nonzero. It is, however, realized as VEVs of dynamical
fields, and would have vanished if those fields were not sta-
bilized. Thus, we need to ensure that the nonzero VEVs of
the dynamical fields are stabilized.

It has been clarified22,23 that most of the moduli are
stabilized by introducing three-form fluxes. Moduli that are

nonzero. This result shows that the flat inflaton potential isot stabilized by the three-form fluxes can also be stabilized
not lifted when the internal dimensions are compactified antby nonperturbative effects. Thus, it is not the main focus of
the Planck scal¢as well as the string scaleecomes finite. our attention whether moduli are stabilized or not. Rather,
See also Sec. IV for a discussion related to the second linghe question is whether the stabilized Fayet-lliopoulos pa-
which depends linearly on the inflaton. rameter can be nonzero.

The translational symmetry in ti@ direction, or in theT? Another important aspect of the moduli stabilization in
direction, is preserved in the kinetic term of the bostf®,  models of inflation is that an extra inflaton potential is ge-
where a scalar RE from the Ramond-Ramond four-form nerically generated when stabilized heavy moduli are inte-
potential is also shifted: grated out. Since even Planck-suppressed corrections are
29 harmful to the flatness of the inflaton potential, extra contri-

X—X+e, ReT—ReT—ey/2,

y—y+e', ReT—ReT+e'x/2, (30 Here we keep quotation marks because there is a subtlety in

defining the Kaler potentialK,; for quaternionic geometry. See
or in terms of the special coordinates [21] for more details.
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TABLE I. (Some of the moduli particles are classified in terms of two differafit 2 SUSYs. Particles
in the right column are odd under the orientifold projectirand are projected out. stands for a two-cycle
in K3 andy for a one-cycle off2. Q) is the global holomorphic three-form @fY;.

N=2 hypermultiplet
of K3xT%7,

N=2 vector multiplet
of K3xT%7,

N=2 hypermultiplet ofCY, JsCc®

N=2 vector multiplet ofC Y3

Suv:
el+ie?=/5,0

JsB.JsC@
fgyC(A')

e’=[swks

butions to the potential are also harmful when they are suppreserved. They are stabilized by the scalar potei(28al,
pressed by masses of moduli. It also happens that the stahithere they are contained in the momentum mBjs The
lizing potential sometimes constrains moduli as functions ofkcalar partners of the vector fields, which are certain linear
the inflaton. Thus, the VEVs of moduli can change duringcombinations oiX*'s (A =0,1,2,3) in Eq(26), also become
the inflation, and the dynamics of the inflation can be differ-massive when tha&/=2 SUSY is preserved. Their mass term
ent from the ordinary one. Therefore, the moduli stabilizationarises from the first term of Ed7), because thé'\'s are

is an important ingredient of the inflation model in string nonzero foru:j'gyylc(“)'s_

theory[24].

We introduce the fluxes so that the Killing vectors for

One can analyze the effects of introducing the fluxes in=2 3 are turned on. This is because we do not want vacuum

terms ofD =4 gauged SUGRA23]. We adoptK3XT? as a
toy model of the Calabi-Yau threefold in this secti@xcept

instability that arises due to the positive sign¢f> in Eq.
(28). The Killing vectors we introduce latéand correspond-

in Sec. IVQ, to see explicitly how the nonzero Fayet- jng fluxeg preserveN'=2 SUSY. Thus, all the moduli men-
lliopoulos parameters are stabilized and how the inflaton igioned above acquire masses.

mixed with other moduli.

Other moduli, including the volumes &3 andT?, are

The kinetic term of the Ramond-Ramond four-form po- not stabilized in the toy model discussed in Secs. IVA and

tential and the Chern-Simons term are

1 1 1 2
J ollf’xE dC(4)—§C(2)/\dB+ EB/\dC(Z)

+ f c*AdBAdC? (37)

in the D=10 action of type IIB theory. When the type IIB
theory is compactified oiK3XxT?/Z,, the dimensional re-
duction of this action contains

1 1
d*xs [ f C®+ —f dB fc@)
f 2| sy 2 27'< ) y

1 2
_ (2)
2.[2y'<dc >fyByu '

where 2, denote two-cycles of th&3 manifold andvy,y’
one-cycles off 2. The quantitied’s ,,(dB) and [s,,(dC®)

(39)

IV B. However, those moduli can be stabilized in the general
framework of V=1 supersymmetric vacua, and we just as-
sume that they are stabilized at finite values and do not cause
extra problems. A related discussion is found in Secs. IVB
and IV C.

In Sec. IVA, we discuss in detail the potential stabilizing
the Fayet-lliopoulos parameterlow-up modes e™(m
=1,2,3). The potential is roughly given by

\Y [|P% _,(function of e™s)|?

T 2ImT
+| P _ 3(function of e™s)|?]
1 —
+ Tms|PXA:4:inflaton(ex+fun0tion of (Q,Q)+-- )%,
(39

where the first two terms arise from turning on nontrivial
Killing vectors for the bulk gauge fields, and the last term is

are the numbers of flux quanta penetrating the three-cyclefor the gauge field on the fractional D3-brane. The first two
3 X y' and are nonzero. Thus, the Killing vectors of the vec-terms fix the vacuum 0é™s so thatP5 and P} vanish. The

tor fields (in D=4 effective theory f,C,, and [,B,, act
nontrivially in the direction of the scalafy ,,,C™). The in-

second line of Eq(28), which is omitted here, also vanishes.
On the other hand, the effective Fayet-lliopoulos parameters

troduction of fluxes turns on gauge coupling of the vectorP}|5 5— do not vanish, because the functionedfs can be

fields originating in the closed string sector.
The Ramond-Ramond scalafs.,,C*) are absorbed by

the vector fieldd B, through the Higgs mechanism in Eq.

(38). The Fayet-lliopoulosD-term parameter®®= [ wys

different for P, 3 and for P,, as we show explicitly in Sec.
IV A. In particular, the positive vacuum energy for the infla-
tion is stabilized(\when the volumes of botk3 andT? are
finite). The purpose of Sec. IV A is to show explicitly that

are scalaV=1 SUSY partners of the Ramond-Ramond sca-P, ; andP, can be different functions of the blow-up param-

lars [x,,,C™ (see Table), and hence th®-term param-
eters are also stabilized by the fluxes as long asAthel
SUSY is preserved. The Fayet-lliopoulBsterm parameters
el+ie?=[s(s are also stabilized when thé=2 SUSY is

eters.

In Sec. IV B, we discuss the mixing of the inflaton with
moduli SandU that is caused by the moduli stabilization. It
turns out that there is no extra mass term generated by this
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mixing. Although the inflaton mass does not vanish, we se€(®) The N'=2 SUSY is preserved when the Killing vectors
that there is a flux configuration where the inflaton mass isyre chosen as in Eqgt0),(41).

sufficiently small. The introduction of the Killing vectorg40) and(41) cor-
responds to introducing three-form fluxes in fhe=10 pic-
A. Quaternionic geometry of the hypermultiplets ture. One can determine the fluxes in the=10 picture
and stabilization of the positive vacuum energy through Eq.(38), but we do not pursue this issue further in

i . this article. The Killing vectors are sufficient information for
The Fayet-lliopoulos parameters are realized by VEVs ofater purposes.

a hypermultiplet. There are 20 hypermultiplets coming from  The Killing vectors are given, and now the momentum
the closed string sector, when the type IIB theory is compacmaps are obtained 23,27

tified onK3x T?/7Z,. The 80 scalars consist of the moduli of " A

K3 metric e (m=1,2,3,a=1,...,19) [25], 3+19=22 Pl = wik!= 0ink§ + wiak] . (43
scalars c™(m=1,2,3) andc?® (a=1,...,19) from the
Ramond-Ramond four-form, arel 24, which is the volume
of T2. There are 19 anti-self-dual two-cycles in #8 mani-

Here, o* is the su(2)g connection associated with the
guaternionic manifold, which is given by

fold, and each of them has a triplet modefi® (m=1,2,3) 0= dc"+ 0 dc?+ - - -
describing the blow-up of the cycle. The Fayet-lliopoulos ¢ ¢
parameters we are interested in af& (m=1,2,3) for one :eas(\/re.etxmdcm_exadca )+ (x=1,2,3).
of these cyclesone ofae{1,...,19).
In order to stabilize nonzero Fayet-lliopoulos parameters, (44

one has to know the quaternionic geometry for a wider rang . ma
of the moduli space, not just around the orbifold limit. Theq‘-he ellipses stand for one-forde™ and d¢. Thus, the

global geometry of the quaternionic manifold is momentum maps are obtained:

SO(4,20)/SO(4)x SO(20) [26]. The global parametrization x T xL 1
of this manifold, where the coordinates a&"¢,c™, c?, ¢), A-a=e’(grlte-e —get), (45)
is explicitly described irf20]. X2

Massless modes from the D3-D7 open string are also hy- Pi_s=e’(giVl+e-e' —ge®). (46)
permultiplets, and thus the total quaternionic geometry is - .
spanned by 80 coordinates of the bulk modes and extra cdhll €™''s ande™'s are stabilized and their VEVs are deter-
ordinates of the open-string modes. The metric of the totamined by requiring the potentialP()?+ (P3) to be mini-
quaternionic space is not known. However, the D3-D7 operinized. Their VEVs are
string is given a large mass via Ed.2) and its VEV is zero

during the inflation. Therefore, it is sufficient to know the ol g22_ 91 a7
geometry of the submanifold where the VEVs of open string T \/ﬁ
92— 01

modes are zero, as long as we are concerned about the sta-
bilization of the positive vacuum energy during the inflation.

We introduce the following Killing vectors: \/1+(e11)2= \/1+(e22)2: 92 (48)
[2_ 2’
Ky=2=01dcm=1+020ca=1 (91<0>), (40) 927G

e2l= 3l—gl2_g32_( (49)

Kr—3=01dem=2+Qgodca=2. 41 . . .
A=s= drdem=2 T Gaden 4D and in particular, we see that the Fayet-lliopoulos parameters

can really be nonzero at the stabilized vacuum.

- o a
The Killing vectors above are constant shifts in &feandc The Killing vector associated with =4, i.e., the inflaton,

directions, and it is easy to see that they are isometry; the

metric of the quaternionic geometry is as follows: IS given by
Kp=4=03dca=2+1(Qdqg—Qdg) +H.c., (50)
ds’=de’+ 2, e?(J1+e e mndcn+emad0a)2 and the momentum maps are roughly given by E#8). and
m

(12), where thee™s in Egs.(10) and (11) are replaced by
e®g;e™. Thus, the positive vacuum energy’ _,P}_,) is

ba

+2 e?*(dcmeMat+dcyi+ele )2 stable during the inflatiothere, T ande™ ¢ are assumed to

é be stabilizedl The vacuum energy is given by

b

+> (VIre e dea—e™dItele )2, 1o et gf

am Pcos— (e’gze 2) = > 593 (51

ImS ImS g2—
42) 92— 0;

We have minimizedP’ _,|? and|P% _|? without consid-
which does not depend af” and c?. This isometry is the ering the potential fronP,_,, and evaluated the potential
remnant of the gauge symmetry adding an exact four-form térom P, _, at the vacuum determined B, _, and P, _5.
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This treatment is justified when the mass of the modliR ~ The former eigenstate is dominantlX*=% since g,
(denoted bym,) is sufficiently larger than the Hubble param- <g;,g,, and the other has the (ma&sgigenvalue sup-

eter of the inflationH=/p.od (V3Mp) = Vpcos i.€., pressed by d,—g;)/(g,+91).
The (mass) of X? and [X3+g3/(g,+g,)X*] are not
H2 0%(e)%ImS g2 vol(K3) smaller than the squared Hubble parameter because
—~ ~ =1
2 2_ 2\ 12 2 2_ 204 A2y
mg  [(92—9D/9.17ImT/(e)*  (92—91)"/(9193) g2¢ 202+ 01 _ e2¢ , 92

(52 m?= =H?  (56)

Im 89192—91 ~ims¥ 93— g?
This is also a necessary condition for an inflation model.
Otherwise the value of the Fayet-lliopoulos parametersThus, the modulSandU are determined by
would change considerably along the evolution of the infla-

tion. 93
X?=0 and X3=-——Xx* (57)
92t
B. Inflaton-moduli mixing and slow-roll conditions

. . A=4__ .
We have assumed so far that the first term in @y does as functions of the inflatoX™~"=Z. In particular,

not play an important role. This term, however, contains a

potential corresponding to the quadratic term in Ej.and ImS=1—
hence can be harmful to the evolution of the inflaton. There-

fore, let us now turn our attention to this term and determine

in what circumstances it is not harmful. whereZ is assumed to be real for simplicity.

The vacuum of the hypermultiplets is determined from the The moduliSandU are integrated out, i.e., the relations
potential (28) in the previous subsection. Now it turns out (57) are substituted into the potentiés3)+(51). The net
that (h,,k'{k%) does not vanish. Thus, this term generateseffect of integrating out heavy moduli is to replace $with
mass terms to the scalar particles in the vector multipletsEd. (58) in Eg. (51) and the original inflatorX*=Z with a

2

9 T (58

—Z
2(9:1+92)

The mass term is given by linear combination oiX® andX* in Eq. (53). The inflatonZ
is canonically normalized, and now we finally obtain the
020 c’+s?>  2sc total effective action relevant to the inflation.
2\t 2\t
—m2l 19712 3 2
NG c’+s?>  2sc £=Mpy 92| (1+ 4(gl+gz)ZZ )
X e H((@ X (@X3+ g XN 25c @42 2 2
2 gl 192791 201 o 91 5
Xe E T + gSZ + 2 293 '
9.3 92701192701 95— 9]
X
(92X3+93X4) | ®3 (59
whereZ is the canonically normalized inflaton. Thus, the
where X" =234 are those in Eq(26) and abbreviated nota- y

slow-roll condition(1) implies that
tions c?>=g5/(g5—g?) ands’=g?/(g5—g?) are introduced. (1) imp

Here, the metri¢42), the Killing vectors(40), (41), (50), and
the Kanler potential(21) are used along with Eq8). The
first line of the above potential leads' =2 to zero. The mass
matrix in the second line is diagonalized:

1
=3

— 2 g2vol(K3
(o] 91) g3 vol( )<1. (60)

(9219112 4(g,+9,)?

The first term is sufficiently small when the two flux quanta

] _ , 92+0; g, andg, are degenerate by 10%. Under this condition, the
eigenvalue: (c+s) T 0o—0; blow-up parameters of th&3 manifold are
. 1 S ell=e?= \[ 2 —=(2-3), (61)
elgenstateiﬁ[(gfr g1) X"+ gsX"], (54) 92— 01
whereg;~g,~g. The second term, which comes from the
. lue: 5 92701 inflaton dependence of the string coupling, is sufficiently
eigenvalue: (c—s) 0.1, small when the above condition and E§2) are satisfied.

It is also easy to see that the other slow-roll parameisr
1 also sufficiently small under the above condition. The second
eigenstate:—[ (g,— gq) X3+ gsX*]. (55 line in Eq.(28), which has linear dependence on the inflaton,
V2 contributes toe by
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H2ImS lized by the effective superpotential induced by fluk28]
€~ F @ =7 (62)
° W= Q/\G=fQ<fG>—fQ<JG>, (63)
CYs A B B A
It has been assumed so far that the volume of the torus
e 2% does not hav& dependence. If it were stabilized as a 2
function of the inflatonz, the inflaton potential in Eq(59) G=dC'”—-SdB (64)

would be no longer flat. Therefore, the conditions for the

slow-roll inflation are(i) the T2 volume is stabilized inde-
pendently fromz, (ii) the flux quantag,; andg, are degen-
erate by 10%, andii) the flux quantay;~g, are sufficiently

large so that the moduli mass is larger than the Hubble p

rameter.
The volume of the torue=2¢ is irrelevant to the slow-roll
condition. Thus, it can be arbitrarfrom the viewpoint of

where thefg{)’s are written as functions of the.{)’s. Thus,
in particular, the Fayet-lliopouloF term e'+ie?=[sQys
=f2yQCY3 and the chiral multipleS are stabilized by this

as'uperpotential. The stable minimum ijCYs depends on

the fluxes introduced and can be nonzero. On the other hand,
the Fayet-lliopoulos D-term parameter €= [ywys

phenomenology and, in particular, can be moderately large =/ x@cy, IS not stabilized through this superpotentié).

so that the exponential terms in E®) are sufficiently sup-
pressed.
The two moduliS andU change through Eq57) as the

But nonperturbative effects of gauge theories might help in
stabilizing these moduli.
It is surely possible that all the moduli are stabilized and

value of the inflatorz changes. However, the slow-roll con- that the effective Fayet-lliopoulos parameters are nonzero.

dition implies that the resulting changes $andU are not
significant.

However, this is not enough for the model of inflation. Let us
suppose that the moduli stabilization in E§4) is effec-

Finally, one remark is in order here. The coordinate of thetively described by the following superpotential:
D3-braneZ=X* explicitly appears in the scalar potential,
and it looks as if the origin of the torus has a physical mean-
ing. This is actually an artifact of our treatment, where we
focused on only one fractional D3-brane. When all the
D-branes relevant to the twisted RR-charge cancellation ar¢here = denotes a modulus chiral multiplet whose VEV
introduced, we expect that the potential will be a functionprovides the Fayet-lliopoulos parameter, afg, M, and{
only of the distance between those D-branes. We consideérre numerical parameters. Then, the total system is governed
that the “Z” we used in this article is an approximation, in by
some sense, to the distance between the fractional D3-brane
and one of those D7-branes.

Winoaui=Mo+Mo(E=¢?)?+0((E-%)°%), (69

W= 29X(QQ— E) + Woqui (66)

C. Moduli stabilization in generic Calabi-Yau manifold . . .
) ) and the effective superpotential obtained after the modulus
Some of the results obtained in Secs. IVA and IVB areg s integrated out contains a mass term of the inflaton

specific to the choice df3X T2 as the Calabi-Yau threefold. Thus, the inflaton potential is no longer flat.
Thus, we go back to the most generic setup described at the Thjs is not the case when the effective model of the
beginning of Sec. I, where the Calabi-Yau threefold is re-modulj stabilization(65) is replaced by
quired only to have local geometry ALEC, and discuss
issues relevant to the moduli stabilization again.

Let us start with the type 1IB theory compactified on a
Calabi-Yau threefold without space-filling D-branes. Moduli

Wmoduli: X' X function = ),

(67)

particles are classified intd/=2 SUSY multiplet$ There
areh?® vector multiplets (4Q,/2C%) andh™* hypermul-
tiplets (fsCY), . [sw),(fsB,/sC?)), whereA andX de-

whereX’ is another modulus. One linear combination>of
and X' is integrated out, while the other combination re-
mains light and plays the role of the inflaton. The toy model

note three-cycles and two-cycles of the Calabi-Yau threefoldof the moduli stabilization given in Secs. IVA and IVB is

respectively. There is another hypermultiplétS=C(©
+ie %), (Bsp ,CEED))). When three-form fluxes and O3-
planes are introduced, onl{y=1 SUSY can be preserved,
and\'=1 multipletsf oC%), (f3B,/sC®)) and B4p,Ci3)
are projected out. Th&/=1 chiral multiplets/ ,Q) are stabi-

SNote that the eight SUSY charges of thi&=2 SUSY are not the

partly described by this superpotentiXl* =3 plays the role
of X',

One of the remarkable features of the hybrid inflation
model[3-6] is that there is ddiscret¢ R symmetry, under
which X carriesR charge 24,7]. Thus, if there is a moduli
stabilization that preserves suchdiscret¢ R symmetry, as
in the superpotentidl67), the effective superpotential of the
inflaton is still constrained by thR symmetry even after the

same subset of the 32 SUSY charges of the type 1B theory as thog®oduli are integrated out, and the inflaton potential remains

of the N=2 SUSY in Sec. lll. Only four SUSY charges\i= 1
SUSY) belong to both. See Table I.

flat. Therefore, the string realization of th-invariant
moduli stabilization deserves further investigation.
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