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Supergravity analysis of the hybrid inflation model from a D3-D7 system
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Slow-roll inflation is a beautiful paradigm, yet the inflaton potential can hardly be sufficiently flat when
unknown gravitational effects are taken into account. However, the hybrid inflation models constructed inD
54, N51 supergravity can be consistent withN52 supersymmetry, and can be naturally embedded into
string theory. This article discusses the gravitational effects carefully in the string model, using aD54
supergravity description. We adopt the D3-D7 system of type IIB string theory compactified on a
K33T2/Z2 orientifold for definiteness. It turns out that the slow-roll parameter can be sufficiently small
despite the nonminimal Ka¨hler potential of the model. The conditions for this to happen are given in terms of
string vacua. We also find that the geometry obtained by blowing up the singularity, which is necessary for the
positive vacuum energy, is stabilized by introducing certain three-form fluxes.
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I. INTRODUCTION

Slow-roll inflation is a beautiful paradigm, in which no
only the flatness and homogeneity of the Universe but a
the origin of the scale-invariant density perturbation is u
derstood. However, it is not easy to obtain a scalar poten
V that satisfies the slow-roll conditions@1#

h[
MPl

2 V9

V
!1, e[

1

2 S MPlV8

V D 2

!1, ~1!

whereV8 and V9 are the first and second derivatives ofV
with respect to the inflaton, andMPl is the Planck scale
.2.431018 GeV. Suppose that there is a vacuum energyv0

4,
and then one can see that even gravitational correction
the potential

V~s!5v0
4F11cS s

MPl
D1c8S s

MPl
D 2

1•••G ~2!

are not allowed by the slow-roll conditions if the coefficien
c,c8 are of the order of unity. Thus, slow-roll inflation i
sensitive even to physics at the Planck scale, and can
good probe in uncovering the fundamental laws of physi

The hybrid inflation model@2# is realized by quite simple
models ofD54, N51 supergravity~SUGRA! @3–6#. Thus,
the inflaton potential is protected from radiative correctio
However,D54, N51 SUGRA is not enough to control th
gravitational corrections. In SUGRA as an effective-fie
theory approach, no assumption except symmetry is impo
on ultraviolet physics. Thus, higher-order terms are expec
in the Kähler potential withO(1) coefficients:

K5X†X1k
~X†X!2

MPl
2

1•••, ~3!

whereX is a chiral multiplet containing the inflatons. The
second term contributes to the slow-roll parameterh, unless
0556-2821/2004/69~10!/106001~10!/$22.50 69 1060
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the vacuum energy is carried only by the D term. Thus,
inflaton potential is not expected to be sufficiently flat. Th
is called theh problem.

It is remarkable that the hybrid inflation model inN51
supersymmetry~SUSY! is consistent withD54, N52 rigid
SUSY @7#. The inflaton belongs to a vector multiplet ofN
52 SUSY, and its interactions, including the Ka¨hler poten-
tial, are highly constrained. Thus, it was argued in@7# that
theN52 SUSY might ease theh problem. However, it was
far from clear howN52 SUSY can coexist with chira
quarks and leptons inD54 theories.

Superstring theory is a promising candidate for the qu
tum theory of gravity. One can work out what the gravit
tional corrections look like, once a vacuum configuration
fixed. Thus, it is quite important in its own right to consid
whether it can realize slow-roll inflation. Moreover, extend
SUSY and higher-dimensional spacetime are generic in
dients of string theory, and hence it is a plausible framew
in accommodating the hybrid inflation model withN52
SUSY; enhancedN52 SUSY can coexist with otherN51
supersymmetric sectors owing to the internal spacetime.

It was shown in@8# that the hybrid inflation model with
N52 SUSY is realized by a D3-D7 system placed on a lo
geometry ALE3C. Thus, this framework of type IIB string
theory enables us to examine if the inflaton potential c
really be flat even when the internal dimensions are comp
tified and gravitational effects are taken into account. N
that an analysis at the level of rigid SUSY, whe
MPl-suppressed corrections are neglected, is not sufficien
see the flatness of the inflaton potential.

This article is organized as follows. In Sec. II, we descri
how the hybrid inflation model can be embedded in a lo
part of a realistic Calabi-Yau compactification of type II
string theory. After that, we show that short-distance effe
in the inflaton potential are not harmful, partly because o
translational invariance of the local geometry ALE3C, and
partly because of a property specific to string theory. In S
III, we adoptK33T2 as a toy model of a Calabi-Yau three
©2004 The American Physical Society01-1
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fold, and show that in theD54 SUGRA description the
potential is flat in the presence of dynamical gravity, cons
tent with the intuitive picture obtained in string theory. Th
special form of the Ka¨hler potential and interactions derive
from string theory play a crucial role there. In Sec. IV,
explicit model that stabilizes nonzero Fayet-Iliopoulos p
rameters is given in Sec. IV A. The slow-roll parameterh is
evaluated for the model, and we obtain a condition that le
to slow-roll inflation in Sec. IV B.

We note that an article@9# was submitted to the e-prin
archive when we were completing this article. It has so
overlap with this article in subjects discussed.

There was an error~in identification of closed-string zero
modes with fields in SUGRA! in the first e-print version of
this article, which was pointed out in@10#.1 It is corrected in
this version, yet the main stream of logic~related to inflation!
has not been changed from the first version.

II. STRING THEORY SETUP AND SHORT-DISTANCE
EFFECTS IN INFLATON POTENTIAL

The low-energy spectrum consists of anN52 SUSY vec-
tor multiplet (X,V) when a space-filling fractional D3-bran
is moving in ALE3C. The fractional D3-brane is regarde
as a D5-brane wrapped on a two-cycle of the ALE sp
@11#, and hence is trapped at a tip of the ALE space. Whe
space-filling D7-brane is further introduced and stretched
the ALE direction,N52 SUSY is preserved, and one mas
less hypermultiplet (Q,Q̄) arises from strings connecting th
D3 and D7 branes. The D7-D7 open string and closed st
are not dynamical degrees of freedom because of the infi
volume of ALE3C. The superpotential is given by

W5A2g~Q̄XQ2z2X!, ~4!

and there may be a Fayet-Iliopoulos D termL52j2D. The
inflaton isX, which corresponds to the distance between
D3- and D7-branes in theC direction. When the D3-brane
comes close enough to the D7-brane, i.e.,X&uzu,j, the
D3-D7 open-string modes (Q,Q̄) become tachyonic and be
gin to condense, a D3-D7 bound state is formed, the vacu
energy g2/23(u2z2u21j4) disappears, and the inflatio
comes to an end. There is no massless moduli
this vacuum, and this is the reason why the fractional br
is adopted. The Fayet-Iliopoulos paramete
(22 Imz2,2 Rez2,j2) are nonzero when a singularit
C2/ZM is blown up to be a smooth ALE space@12#.2

Type IIB string theory has to be compactified on a Cala
Yau threefold in order to obtain dynamical gravity. The D
brane should be wrapped on a homomorphic four-cycle
that theD54, N51 SUSY is preserved@14#. We consider
that there is a point on the four-cycle around which the lo
geometry of the Calabi-Yau threefold is ALE3C. The frac-
tional D3-brane is trapped at the tip of the ALE space and

1We are grateful to the authors of Ref.@10#.
2See also@13#, where the vacuum energy is given by the vacuu

expectation value of theB field.
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able to move along theC direction. On the other hand, th
N51 vector multiplet is usually the only Kaluza-Klein zer
mode from the D7-D7 open string, and, in particular, t
coordinate of the D7-brane in theC direction is fixed. Other
particles such as quarks and leptons can be realized by
local construction of D-branes at another place in the Cala
Yau threefold, as in@15#. Thus, the noncompact model abov
can be embedded as a local model of a realistic Calabi-
compactification.

The world-sheet amplitude of string theory is expanded
powers of the string couplinggs . The expansion begins with
the sphere amplitude, which is proportional togs

22 . In par-
ticular, MPl

2 is proportional togs
22 .

The disk amplitude comes at the next-to-leading or
gs

21 . It is calculated by restricting the boundary of the wor
sheet to the fractional D3-brane. The kinetic term of the
flaton arises at this level, and hence its coefficient is prop
tional to gs

21 . The kinetic term of the U~1! vector field, the
N52 SUSY partner of the inflaton, also has a coefficie
proportional togs

21 . Thus, the U~1! gauge coupling constan
g is related togs via g2;gs . The vacuum energy also arise
at this level. Therefore, the vacuum energy is proportiona
gs

1;g2 when MPl
2 ;gs

22 is factored out from the scalar po
tential ~see also the discussion at the end of this section!.

We are interested only in the disk amplitude who
boundary is on the D3-brane. The D7-brane is irrelevant,
only the local background geometry around the D3-bra
ALE3C, is relevant to the disk amplitude. Since ALE3C
has translational invariance in theC direction, the transla-
tional invariance is respected in the disk amplitude. Thus,
amplitude does not depend on the position of the D3-bra
Therefore, the disk amplitude does not induce the infla
potential.

The cylinder amplitude is at the next order,gs
0 . The one-

loop amplitude of the open string and the amplitude e
changing closed string at the tree level are contained h
The inflaton potential comes from a cylinder with one end
the D3-brane and the other on the D7-branes. The amplit
contains a potential logarithmic in the distancer between the
two D-branes. This potential corresponds to the one-loop
diative correction in@4#. There are also terms damping e
ponentially inr. They are interpreted as the forces betwe
the two D-branes induced by exchanging stringy exci
states at the tree level. These terms are suppressed very
when the D-branes are separated by a distance longer
the string length;Aa8. Finally, there is also a term qua
dratic in the inflatonr. This potential is induced by exchang
ing massless twisted sector fields; both the fractional D
branes and the D7-brane carry twisted Ramond-Ram
charges.

Putting all the above together, we have obtained

L;~gs
22;MPl

2 !@R1gs~]r !2

2gs~11gs ln r 2gse
2r1gsr

21••• !#, ~5!

wherea8 is set to unity andr is the distance between the tw
1-2
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D-branes. Let us now rescale the inflatonr so that the kinetic
term is canonical;s[AgsrM Pl . Then the scalar potential i
given by

V}gsMPl
2 H 11gs lnS s

MPl
D2gse

2s/~AgsMPl!

1S s

MPl
D 2

1O~gs!S s

MPl
D 2

1OF S s

MPl
D 3G J . ~6!

The correct mass dimension of the scalar potential is rest
by multiplying quantities that have been set to unity, inclu
ing a8 and the volume of the compactified manifold. No
that the short-distance effects appear only as the expo
tially damping potential. This is partly because the loc
translational invariance of the internal space dimensions
bids the potential from the disk amplitude. This is also b
cause the cylinder amplitude is interpreted as the Yuka
potential induced by heavy states, and hence the sh
distance~ultraviolet! effects is irrelevant unless the D3-bran
is in a short distance from the D7-brane in the internal sp
dimensions. This kind of picture is hardly obtained witho
assuming string theory. The logarithmic correction is n
harmful when the coupling is sufficiently small, just as
field theoretical models@4#. The quadratic potential induce
by the twisted-sector exchange, which can be the only ha
ful effect, is suppressed in certain string vacua as show
Sec. IV. Although the volume of the Calabi-Yau threefold h
not been treated carefully, it is also shown in Secs. III and
that this parameter is irrelevant to the flatness of the infla
potential.

III. DÄ4 SUGRA ANALYSIS OF THE INFLATON
POTENTIAL

Both the Planck scale and the Kaluza-Klein scale are
nite, as well as the string scale, when the internal dimens
are compactified. We show in this section that the infla
potential still reflects the translational invariance of the lo
geometry, and is sufficiently flat, even in the low-energy
fectiveD54 SUGRA description obtained after the compa
tification. In particular, the inflaton potential does not gro
exponentially for large field value, even when the vacu
energy is carried by theF term. It is another purpose of thi
section and of Sec. IV to examine the volume-parame
~in!dependence of the potential, which was neglected in
previous section.

We adoptK33T2 as the model of a Calabi-Yau threefol
It surely contains ALE3C as a local geometry, but it als
preserves extended SUSY. Thus, the analysis based
K33T2 has a limited meaning. However, this toy model h
another virtue that we can analyze more precisely owing
the extended SUSY. Furthermore, a related discussio
found at the end of this section.

The scalar potential of theD54, N52 SUGRA is given
by @16#

V54huvkL
u kS

v LLL* S1~gi j * f i
L f j*

S
23L* LLS!PL

x PS
x .

~7!
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PL
x are momentum maps, which roughly correspond to theD

term~Killing potential! and theF-term potential,kL
u are Kill-

ing vectors,LL is roughly the scalar partner of theLth vec-
tor field, f i

L its covariant derivative with respect to thei th
scalar of the vector multiplets, andgi j * andhuv the metric of
the vector multiplets and hypermultiplets, respectively. S
@16# for more details.

Let us define

LL[eKV/2XL, ~8!

W0[XL~P11 iP2!L , ~9!

whereKV is the Kähler potential of vector multiplets. Then
the first term of Eq.~7! becomeseKVu]W0u2 for hypermul-
tiplets, and the second containseKVu]W0u2 for N51 chiral
components ofN52 vector multiplets. The last term con
tains23eKVuW0u2. Thus, theN52 SUGRA scalar potentia
is not completely different from that ofN51 SUGRA. See
@17# for more details about the relation betweenN52
SUGRA andN51 SUGRA. We come back to this issue
the end of this section.

TheN51 chiral multipletX in Sec. II, identified with the
inflaton, belongs to anN52 vector multiplet. Thus, one o
the XL’s is approximatelyX. The N52 hypermultiplet
(Q,Q̄) in Sec. II is in the momentum maps as

PL
3 5^e3&1uQu22uQ̄u21•••, ~10!

i ~P11 iP2!L5 i ^e11 ie2&12QQ̄1•••. ~11!

The Fayet-Iliopoulos parameters are now obtained as
vacuum expectation values~VEVs! ^em& (m51,2,3) of
massless fields in the closed-string sector;i ^e11 ie2&
522z2 and ^e3&5j2. The first term of Eq.~7! contains

g2~ uXQu21uXQ̄u2!, ~12!

which prevents the D3-D7 open-string modes (Q,Q̄) from
condensing during the inflation because^X& is large. The
vacuum energy~and the inflaton potential! during the infla-
tion is ~are! provided by the last two terms

~gi j * f i
L f j*

S
23L* LLS!^PL

x PS
x &, ~13!

as we see explicitly in this section. Although the first ter
also contributes to the inflaton potential, we show in Sec.
that this contribution is negligible in certain string vacua.

Let us suppose that the inflaton potential comes do
nantly from Eq.~13!. Then we only have to know the speci
geometry, which determinesgi j * f i

L f j*
S

23L* LLS, to see
whether the inflaton potential is flat. Therefore, we just
sume in this section that the positive^PL

x PS
x & is realized, and

postpone discussing how the momentum maps are de
mined until Sec. IV. Section IV A discusses how to stabili
nonzero ^em& ’s in Eqs. ~10! and ~11! by examining the
quaternionic geometry of hypermultiplets. Section IV B e
1-3
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plains when the first term in Eq.~7!, which contains the
quadratic term in Eq.~6!, is not harmful to the slow-roll
condition.

Special geometry of the vector multiplets
and Calabi-Visentini basis

We begin by determining the Ka¨hler metric of the moduli
space of vector multiplets~special geometry!. After that, a
symplectic vector (XL,FS) is chosen suitably and
(gi j * f i

L f j*
S

23L* LLS) in the potential~13! is calculated.
As we see later, one cannot capture the essential reas

the flatness in this SUGRA analysis without consider
carefully the interaction of the inflaton with other vect
multiplets arising from the closed-string sector. There
three N52 vector multiplets in the low-energy effectiv
theory when type IIB theory is compactified o
K33T2/Z2. Here,Z2 is generated byV(21)FLRT2, where
RT2 reflects the coordinates ofT2. The three complex scalar
in these multiplets are denoted byS, T, and U; S5C(0)

1 igs
21 , Im T}gs

21vol(K3), andU is the complex structure
of T2. We adopt a convention in which imaginary parts of
S, T, andU are positive.

The kinetic terms of these fields are determined from@18#,
since a modelT dual to ours~type I theory compactified on
K33T2) is discussed there. We take theT duality transfor-
mation from@18#, and find that the kinetic term is given b

]mS]mS̄

~S2S̄!2
1

]mT]mT̄

~T2T̄!2
1

]mU]mŪ

~U2Ū !2
~14!

after Kaluza-Klein reduction and Weyl rescaling. All the sc
lar fields are chosen to be dimensionless, and these te
become a part of theD54 Lagrangian when multiplied by
MPl

2 . This metric of the special geometry, which is the targ
space of the nonlinears model of the scalar components,
obtained from a Ka¨hler potential

KV52 log@ i ~S2S̄!~T2T̄!~U2Ū !#, ~15!

which can be derived from a prepotential

F52STU. ~16!

Let us now introduce D3-branes to this system. The co
dinates of the D3-branes onT2 are denoted by (xi ,yi);(xi
11,yi);(xi ,yi11). We introduce a complex scalarZi5xi
1Uyi . The twisted Ramond-Ramond~RR! charge does no
vanish when there is only one fractional D3-brane. But
RR charge can be canceled in a system where D7-branes
other fractional D3-branes are introduced. They will be sc
tered at different points inT2. We are interested in only one3

of the fractional D3-branesZ5Z1, which corresponds toX
in Sec. II.

3Since we are interested only in the disk-level potential in t
section, other D-branes are irrelevant to the inflaton potential.
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The kinetic terms of the bulk particles and the D3-bra
are given by@18#

]mS]mS̄

~S2S̄!2
1

u]mT1~x]my2y]mx!/2u2

~T2T̄!2
1

]mU]mŪ

~U2Ū !2

1
~]mx1U]my!~]mx1Ū]my!

~U2Ū !~T2T̄!
~17!

after Kaluza-Klein reduction.4 The cross term in the kinetic
term of T has its origin in the Wess-Zumino term on th
D-branes

E
D3

Cmnxy
(4) ~]rx!~]sy!dxm`dxn`dxr`dxs

52
1

2E d4x~]rCmnxy
(4) !emnrs~x]sy2y]sx!.

~18!

Now, a new coordinate

T̃5T1
1

2
yiZi ~19!

is introduced, andT̃ is regarded as one of the special coo
dinates;T is no longer a special coordinate. The Ka¨hler po-
tential for the metric~17! is given by

KV52 log„i ~S2S̄!„~ T̃2TD !~U2Ū !2~Z2Z̄!2/2……
~20!

52 log„i ~S2S̄!~T2T̄!~U2Ū !…, ~21!

and this Kähler potential is derived from a prepotential

F52ST̃U1SZ2/2. ~22!

Thus, the newly introducedT̃ is in the correct set of specia
coordinates, along withS,U, andZ. Note that the complexi-
fied coupling of the gauge field on the D3-brane isS, as
desired. The special geometry obtained here turns out to

SU~1,1!

SO~2!
3

SO~2,3!

SO~2!3SO~3!
. ~23!

One of the special coordinatesS, which factorizes in Eq.
~20!, parametrizesSU(1,1)/SO(2).

The symplectic sectionV5(XL,FL) of the special mani-
fold is given by

XL5~1,S,T̃,U,Z!, ~24!

s

4The relative normalization between the bulk particles (S,T,U)
and the D-braneZ is not precise. It turns out, however, that th
slow-roll parameterh is independent of the normalization. Thu
we do not pay attention to the numerical coefficients, say, of the
term, very much in this article.
1-4
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FL5~ST̃U2SZ2/2,2T̃U1Z2/2,2SU,2ST̃,SZ!.
~25!

Although the symplectic transformation ofV does not
change the Ka¨hler potential, a different choice of basis lea
to different coupling with hypermultiplets@19#. We choose a
base in which the bidoublet representation ofSU(1,1) acting
on S andSU(1,1),SO(2,2),SO(2,3) acting onU is real-
ized in the coordinatesXL. This is for the same reason as
@20,10#. Choosing a suitable symplectic transformation, o
finds that

XL5S 12SU

A2
,2

S1U

A2
,
212SU

A2
,
2S1U

A2
,ZD , ~26!

FL5S 2
T̃~12SU!1SZ2/2

A2
,2

T̃~2S2U !1Z2/2

A2
,

2
T̃~11SU!2SZ2/2

A2
,2

T̃~S2U !1Z2/2

A2
,SZD .

~27!

This is the so-called Calabi-Visentini basis.
Now that we have holomorphic symplectic sectionV

5(XL,FS) in a suitable basis, it is straightforward to calc
late the potential~13!. One finds that

~gi j * f i
L f j*

S
23eKVX* LXS!PL

x PS
x

52hLS
1

2 ImT
PL

x PS
x uL,S50, . . . ,31

1

2 ImS
PL54

x PL54
x

2
x

A2 ImT
~PL50

x 1PL52
x !PL54

x 1
y

A2 ImT

3~PL51
x 1PL53

x !PL54
x , ~28!

wherehLS5diag(1,1,21,21). The Kähler potential~20! is
far from minimal, and the holomorphic symplectic sectionV
in Eqs.~26!,~27! exhibits an intricate mixture of the speci
coordinates. However, the inflaton potential~28! is com-
pletely independent of the inflaton fieldZ, when ^P4P4& is
nonzero. This result shows that the flat inflaton potentia
not lifted when the internal dimensions are compactified a
the Planck scale~as well as the string scale! becomes finite.
See also Sec. IV for a discussion related to the second
which depends linearly on the inflaton.

The translational symmetry in theC direction, or in theT2

direction, is preserved in the kinetic term of the bosons~17!,
where a scalar ReT from the Ramond-Ramond four-form
potential is also shifted:

x→x1e, ReT→ReT2ey/2, ~29!

y→y1e8, ReT→ReT1e8x/2, ~30!

or in terms of the special coordinates
10600
e

s
d

e,

Z→Z1e, ~ T̃U2Z2/2!→~ T̃U2Z2/2!2eZ,
~31!

Z→Z1e8U, T̃→T̃1e8Z. ~32!

The translational symmetry ofT2 is now part ofSO(2,3)
isometry along withSO(2,2).SL2R3SL2R.

There is another interesting feature in Eq.~28!. Notice
that theF-term andD-term scalar potentials are complete
different in D54, N51 SUGRA, namely,

VF5eKV1KH~gi j * DiW1Dj* W1* 23uW1u2!, VD5g2uDu2.

~33!

However, theN52 scalar potential~28! ‘‘becomes’’5

Vx51,25eKV~gi j * DiW0Dj* W0* 23uW0u2!

‘‘ 5 ’’ VF in Eq. ~33!, ~34!

where

W1‘‘ 5 ’’ e2KH/2W0 , ~35!

while

Vx535gsuP3u25VD in Eq. ~33!, ~36!

when the relation~28! holds. Thus, the flat potential obtaine
in Eq. ~28! may still be expected when the internal manifo
is not K33T2 but a Calabi-Yau threefold with loca
ALE3C geometry. Then, an important consequence is t
the inflaton potential is not growing exponentially at lar
field value, no matter how much the vacuum energy is c
ried by theF term in realistic models.

IV. MODULI STABILIZATION AND SLOW-ROLL
CONDITIONS

In the previous section, we assumed that^PL54
x PS54

x & is
nonzero. It is, however, realized as VEVs of dynamic
fields, and would have vanished if those fields were not s
bilized. Thus, we need to ensure that the nonzero VEVs
the dynamical fields are stabilized.

It has been clarified@22,23# that most of the moduli are
stabilized by introducing three-form fluxes. Moduli that a
not stabilized by the three-form fluxes can also be stabili
by nonperturbative effects. Thus, it is not the main focus
our attention whether moduli are stabilized or not. Rath
the question is whether the stabilized Fayet-Iliopoulos
rameter can be nonzero.

Another important aspect of the moduli stabilization
models of inflation is that an extra inflaton potential is g
nerically generated when stabilized heavy moduli are in
grated out. Since even Planck-suppressed corrections
harmful to the flatness of the inflaton potential, extra con

5Here we keep quotation marks because there is a subtlet
defining the Ka¨hler potentialKH for quaternionic geometry. Se
@21# for more details.
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TABLE I. ~Some of! the moduli particles are classified in terms of two differentN52 SUSYs. Particles
in the right column are odd under the orientifold projectionZ2 and are projected out.S stands for a two-cycle
in K3 andg for a one-cycle ofT2. V is the global holomorphic three-form ofCY3.

N52 hypermultiplet N52 vector multiplet
of K33T2/Z2 of K33T2/Z2

N52 hypermultiplet ofCY3 *SCSmn
(4) , e35*SvK3 *SB,*SC(2)

N52 vector multiplet ofCY3 e11 ie25*SgV *SgC(4)
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butions to the potential are also harmful when they are s
pressed by masses of moduli. It also happens that the s
lizing potential sometimes constrains moduli as functions
the inflaton. Thus, the VEVs of moduli can change duri
the inflation, and the dynamics of the inflation can be diff
ent from the ordinary one. Therefore, the moduli stabilizat
is an important ingredient of the inflation model in strin
theory @24#.

One can analyze the effects of introducing the fluxes
terms ofD54 gauged SUGRA@23#. We adoptK33T2 as a
toy model of the Calabi-Yau threefold in this section~except
in Sec. IV C!, to see explicitly how the nonzero Faye
Iliopoulos parameters are stabilized and how the inflaton
mixed with other moduli.

The kinetic term of the Ramond-Ramond four-form p
tential and the Chern-Simons term are

E d10x
1

2 UdC(4)2
1

2
C(2)`dB1

1

2
B`dC(2)U2

1E C(4)`dB`dC(2) ~37!

in the D510 action of type IIB theory. When the type IIB
theory is compactified onK33T2/Z2, the dimensional re-
duction of this action contains

E d4x
1

2 U]mE
Sgg8

C(4)1
1

2ESg8
^dB&E

g
Cgm

(2)

2
1

2ESg8
^dC(2)&E

g
BgmU2

, ~38!

where S denote two-cycles of theK3 manifold andg,g8
one-cycles ofT2. The quantities*Sg8^dB& and*Sg8^dC(2)&
are the numbers of flux quanta penetrating the three-cy
S3g8 and are nonzero. Thus, the Killing vectors of the ve
tor fields ~in D54 effective theory! *gCgm and *gBgm act
nontrivially in the direction of the scalar*Sgg8C

(4). The in-
troduction of fluxes turns on gauge coupling of the vec
fields originating in the closed string sector.

The Ramond-Ramond scalars*Sgg8C
(4) are absorbed by

the vector fields*gBgm through the Higgs mechanism in Eq
~38!. The Fayet-IliopoulosD-term parameterse35*SvK3
are scalarN51 SUSY partners of the Ramond-Ramond s
lars *Sgg8C

(4) ~see Table I!, and hence theD-term param-
eters are also stabilized by the fluxes as long as theN51
SUSY is preserved. The Fayet-IliopoulosF-term parameters
e11 ie25*SVK3 are also stabilized when theN52 SUSY is
10600
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preserved. They are stabilized by the scalar potential~28!,
where they are contained in the momentum mapsPL

x . The
scalar partners of the vector fields, which are certain lin
combinations ofXL’s (L50,1,2,3) in Eq.~26!, also become
massive when theN52 SUSY is preserved. Their mass ter
arises from the first term of Eq.~7!, because thekL

u ’s are
nonzero foru5*Sgg8C

(4)’s.
We introduce the fluxes so that the Killing vectors forL

52,3 are turned on. This is because we do not want vacu
instability that arises due to the positive sign ofhLS in Eq.
~28!. The Killing vectors we introduce later~and correspond-
ing fluxes! preserveN52 SUSY. Thus, all the moduli men
tioned above acquire masses.

Other moduli, including the volumes ofK3 andT2, are
not stabilized in the toy model discussed in Secs. IV A a
IV B. However, those moduli can be stabilized in the gene
framework ofN51 supersymmetric vacua, and we just a
sume that they are stabilized at finite values and do not ca
extra problems. A related discussion is found in Secs. IV
and IV C.

In Sec. IV A, we discuss in detail the potential stabilizin
the Fayet-Iliopoulos parameters~blow-up modes! em(m
51,2,3). The potential is roughly given by

V;
1

2 ImT
@ uPL52

x ~ function of em’s!u2

1uPL53
x ~ function of em’s!u2#

1
1

2 ImS
uPL545 inflaton

x
„ex1function of ~Q,Q̄!1•••…u2,

~39!

where the first two terms arise from turning on nontriv
Killing vectors for the bulk gauge fields, and the last term
for the gauge field on the fractional D3-brane. The first tw
terms fix the vacuum ofem’s so thatP2

x andP3
x vanish. The

second line of Eq.~28!, which is omitted here, also vanishe
On the other hand, the effective Fayet-Iliopoulos parame
P4

xuQ,Q̄50 do not vanish, because the function ofem’s can be
different for P2,3 and for P4, as we show explicitly in Sec
IV A. In particular, the positive vacuum energy for the infl
tion is stabilized~when the volumes of bothK3 andT2 are
finite!. The purpose of Sec. IV A is to show explicitly tha
P2,3 andP4 can be different functions of the blow-up param
eters.

In Sec. IV B, we discuss the mixing of the inflaton wit
moduli S andU that is caused by the moduli stabilization.
turns out that there is no extra mass term generated by
1-6
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mixing. Although the inflaton mass does not vanish, we
that there is a flux configuration where the inflaton mass
sufficiently small.

A. Quaternionic geometry of the hypermultiplets
and stabilization of the positive vacuum energy

The Fayet-Iliopoulos parameters are realized by VEVs
a hypermultiplet. There are 20 hypermultiplets coming fro
the closed string sector, when the type IIB theory is comp
tified onK33T2/Z2. The 80 scalars consist of the moduli
K3 metric ema (m51,2,3,a51, . . .,19) @25#, 3119522
scalars cm(m51,2,3) and ca (a51, . . .,19) from the
Ramond-Ramond four-form, ande22f, which is the volume
of T2. There are 19 anti-self-dual two-cycles in theK3 mani-
fold, and each of them has a triplet moduliema (m51,2,3)
describing the blow-up of the cycle. The Fayet-Iliopoul
parameters we are interested in areema (m51,2,3) for one
of these cycles~one ofaP$1, . . . ,19%).

In order to stabilize nonzero Fayet-Iliopoulos paramete
one has to know the quaternionic geometry for a wider ra
of the moduli space, not just around the orbifold limit. T
global geometry of the quaternionic manifold
SO(4,20)/SO(4)3SO(20) @26#. The global parametrization
of this manifold, where the coordinates are (ema,cm,ca,f),
is explicitly described in@20#.

Massless modes from the D3-D7 open string are also
permultiplets, and thus the total quaternionic geometry
spanned by 80 coordinates of the bulk modes and extra
ordinates of the open-string modes. The metric of the to
quaternionic space is not known. However, the D3-D7 op
string is given a large mass via Eq.~12! and its VEV is zero
during the inflation. Therefore, it is sufficient to know th
geometry of the submanifold where the VEVs of open str
modes are zero, as long as we are concerned about the
bilization of the positive vacuum energy during the inflatio

We introduce the following Killing vectors:

kL525g1]cm511g2]ca51 ~g1,g2!, ~40!

kL535g1]cm521g2]ca52. ~41!

The Killing vectors above are constant shifts in thecm andca

directions, and it is easy to see that they are isometry;
metric of the quaternionic geometry is as follows:

ds25df21(
m

e2f~A11e•et
mn

dcn1emadca!2

1(
a

e2f~dcmema1dcbA11et
•e

ba
!2

1(
a,m

~A11e•et
mn

dena2embdA11et
•e

ba
!2,

~42!

which does not depend oncm and ca. This isometry is the
remnant of the gauge symmetry adding an exact four-form
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C(4). TheN52 SUSY is preserved when the Killing vecto
are chosen as in Eqs.~40!,~41!.

The introduction of the Killing vectors~40! and~41! cor-
responds to introducing three-form fluxes in theD510 pic-
ture. One can determine the fluxes in theD510 picture
through Eq.~38!, but we do not pursue this issue further
this article. The Killing vectors are sufficient information fo
later purposes.

The Killing vectors are given, and now the momentu
maps are obtained by@23,27#

PL
x 5vu

xku5vcm
x kL

cm
1vca

x kL
ca

. ~43!

Here, vx is the su(2)R connection associated with th
quaternionic manifold, which is given by

vx5vcm
x dcm1vca

x dca1•••

5ef~A11e•et
xm

dcm2exadca !1••• ~x51,2,3!.

~44!

The ellipses stand for one-formdema and df. Thus, the
momentum maps are obtained:

PL52
x 5ef~g1A11e•et

x1
2g2ex1!, ~45!

PL53
x 5ef~g1A11e•et

x2
2g2ex2!. ~46!

All em1’s andem2’s are stabilized and their VEVs are dete
mined by requiring the potential (P2

x)21(P3
x)2 to be mini-

mized. Their VEVs are

e115e225
g1

Ag2
22g1

2
, ~47!

A11~e11!25A11~e22!25
g2

Ag2
22g1

2
, ~48!

e215e315e125e3250, ~49!

and in particular, we see that the Fayet-Iliopoulos parame
can really be nonzero at the stabilized vacuum.

The Killing vector associated withL54, i.e., the inflaton,
is given by

kL545g3]ca521 i ~Q]Q2Q̄]Q̄!1H.c., ~50!

and the momentum maps are roughly given by Eqs.~10! and
~11!, where theem’s in Eqs. ~10! and ~11! are replaced by
efg3em2. Thus, the positive vacuum energy^PL54

x PL54
x & is

stable during the inflation~here,T and e2f are assumed to
be stabilized!. The vacuum energy is given by

rcos5
1

Im S
~efg3e22!25

e2f

Im S

g1
2

g2
22g1

2
g3

2 . ~51!

We have minimizeduPL52
x u2 anduPL53

x u2 without consid-
ering the potential fromPL54, and evaluated the potentia
from PL54 at the vacuum determined byPL52 and PL53.
1-7
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This treatment is justified when the mass of the moduliema

~denoted byme) is sufficiently larger than the Hubble param
eter of the inflationH[Arcos/(A3MPl).Arcos, i.e.,

H2

me
2
;

g3
2^e&2/Im S

@~g2
22g1

2!/g2#2/Im T/^e&2
;

g3
2 vol~K3!

~g2
22g1

2!4/~g1
4g2

2!
&1.

~52!

This is also a necessary condition for an inflation mod
Otherwise the value of the Fayet-Iliopoulos paramet
would change considerably along the evolution of the in
tion.

B. Inflaton-moduli mixing and slow-roll conditions

We have assumed so far that the first term in Eq.~7! does
not play an important role. This term, however, contain
potential corresponding to the quadratic term in Eq.~6! and
hence can be harmful to the evolution of the inflaton. The
fore, let us now turn our attention to this term and determ
in what circumstances it is not harmful.

The vacuum of the hypermultiplets is determined from
potential ~28! in the previous subsection. Now it turns o
that ^huvkL

u kS
v & does not vanish. Thus, this term genera

mass terms to the scalar particles in the vector multipl
The mass term is given by

e2f

Im S Im T Im U F „~g1X2!†,~g2X2!†
…S c21s2 2sc

2sc c21s2D
3S g1X2

g2X2D 1„~g1X3!†,~g2X31g3X4!†
…S c21s2 2sc

2sc c21s2D
3S g1X3

g2X31g3X4D G , ~53!

whereXL52,3,4 are those in Eq.~26! and abbreviated nota
tions c2[g2

2/(g2
22g1

2) ands2[g1
2/(g2

22g1
2) are introduced.

Here, the metric~42!, the Killing vectors~40!, ~41!, ~50!, and
the Kähler potential~21! are used along with Eq.~8!. The
first line of the above potential leadsXL52 to zero. The mass
matrix in the second line is diagonalized:

eigenvalue: ~c1s!25
g21g1

g22g1
,

eigenstate:
1

A2
@~g21g1!X31g3X4#, ~54!

eigenvalue: ~c2s!25
g22g1

g21g1
,

eigenstate:
1

A2
@~g22g1!X31g3X4#. ~55!
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The former eigenstate is dominantlyXL53 since g3
!g1 ,g2, and the other has the (mass)2 eigenvalue sup-
pressed by (g22g1)/(g21g1).

The (mass)2 of X2 and @X31g3 /(g21g1)X4# are not
smaller than the squared Hubble parameter because

m2*
e2f

Im S
g1

2 g21g1

g22g1
*

e2f

Im S
g3

2
g1

2

g2
22g1

2
5H2. ~56!

Thus, the moduliS andU are determined by

X250 and X352
g3

g21g1
X4 ~57!

as functions of the inflatonXL545Z. In particular,

Im S512S g3

2~g11g2!
ZD 2

1•••, ~58!

whereZ is assumed to be real for simplicity.
The moduliS andU are integrated out, i.e., the relation

~57! are substituted into the potential~53!1~51!. The net
effect of integrating out heavy moduli is to replace ImS with
Eq. ~58! in Eq. ~51! and the original inflatonX45Z with a
linear combination ofX3 andX4 in Eq. ~53!. The inflatonZ
is canonically normalized, and now we finally obtain th
total effective action relevant to the inflation.

L.MPl
2 F u]Z̃u22S 11

g3
2 vol~K3!

4~g11g2!2
Z̃2D

3e2fS 1

2

g22g1

g21g1
U 2g1

g21g1
g3Z̃U2

1
g1

2

g2
22g1

2
g3

2D G ,

~59!

where Z̃ is the canonically normalized inflaton. Thus, th
slow-roll condition~1! implies that

h.
1

2 S g22g1

~g21g1!/2D
2

1
g3

2 vol~K3!

4~g11g2!2
!1. ~60!

The first term is sufficiently small when the two flux quan
g1 andg2 are degenerate by 10%. Under this condition,
blow-up parameters of theK3 manifold are

e115e225A g

g22g1
*~223!, ~61!

whereg1;g2;g. The second term, which comes from th
inflaton dependence of the string coupling, is sufficien
small when the above condition and Eq.~52! are satisfied.

It is also easy to see that the other slow-roll parametere is
also sufficiently small under the above condition. The seco
line in Eq.~28!, which has linear dependence on the inflato
contributes toe by
1-8
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e;
H2

me
2

Im S

^e&4
&h. ~62!

It has been assumed so far that the volume of the to
e22f does not haveZ dependence. If it were stabilized as
function of the inflatonZ, the inflaton potential in Eq.~59!
would be no longer flat. Therefore, the conditions for t
slow-roll inflation are~i! the T2 volume is stabilized inde-
pendently fromZ, ~ii ! the flux quantag1 andg2 are degen-
erate by 10%, and~iii ! the flux quantag1;g2 are sufficiently
large so that the moduli mass is larger than the Hubble
rameter.

The volume of the toruse22f is irrelevant to the slow-roll
condition. Thus, it can be arbitrary~from the viewpoint of
phenomenology!, and, in particular, can be moderately lar
so that the exponential terms in Eq.~6! are sufficiently sup-
pressed.

The two moduliS andU change through Eq.~57! as the
value of the inflatonZ changes. However, the slow-roll con
dition implies that the resulting changes ofS andU are not
significant.

Finally, one remark is in order here. The coordinate of
D3-braneZ5X4 explicitly appears in the scalar potentia
and it looks as if the origin of the torus has a physical me
ing. This is actually an artifact of our treatment, where
focused on only one fractional D3-brane. When all t
D-branes relevant to the twisted RR-charge cancellation
introduced, we expect that the potential will be a functi
only of the distance between those D-branes. We cons
that the ‘‘Z’’ we used in this article is an approximation, i
some sense, to the distance between the fractional D3-b
and one of those D7-branes.

C. Moduli stabilization in generic Calabi-Yau manifold

Some of the results obtained in Secs. IV A and IV B a
specific to the choice ofK33T2 as the Calabi-Yau threefold
Thus, we go back to the most generic setup described a
beginning of Sec. II, where the Calabi-Yau threefold is
quired only to have local geometry ALE3C, and discuss
issues relevant to the moduli stabilization again.

Let us start with the type IIB theory compactified on
Calabi-Yau threefold without space-filling D-branes. Mod
particles are classified intoN52 SUSY multiplets.6 There
areh2,1 vector multiplets (*AV,*ACAm

(4)) andh1,1 hypermul-
tiplets „(*SCSmn

(4) ,*Sv),(*SB,*SC(2))…, whereA andS de-
note three-cycles and two-cycles of the Calabi-Yau threef
respectively. There is another hypermultiplet„(S[C(0)

1 ie2f),(B4D ,C4D
(2))…. When three-form fluxes and O3

planes are introduced, onlyN51 SUSY can be preserved
andN51 multiplets*ACAm

(4) , (*SB,*SC(2)) and (B4D ,C4D
(2))

are projected out. TheN51 chiral multiplets*AV are stabi-

6Note that the eight SUSY charges of thisN52 SUSY are not the
same subset of the 32 SUSY charges of the type IIB theory as t
of the N52 SUSY in Sec. III. Only four SUSY charges (N51
SUSY! belong to both. See Table I.
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lized by the effective superpotential induced by fluxes@28#

W5E
CY3

V`G5E
A
VK E

B
GL 2E

B
VK E

A
GL , ~63!

G[dC(2)2SdB, ~64!

where the*BV ’s are written as functions of the*AV ’s. Thus,
in particular, the Fayet-IliopoulosF term e11 ie25*SVK3
5*SgVCY3

and the chiral multipletS are stabilized by this

superpotential. The stable minimum of*AVCY3
depends on

the fluxes introduced and can be nonzero. On the other h
the Fayet-Iliopoulos D-term parameter e35*SvK3
5*SvCY3

is not stabilized through this superpotential~64!.
But nonperturbative effects of gauge theories might help
stabilizing these moduli.

It is surely possible that all the moduli are stabilized a
that the effective Fayet-Iliopoulos parameters are nonz
However, this is not enough for the model of inflation. Let
suppose that the moduli stabilization in Eq.~64! is effec-
tively described by the following superpotential:

Wmoduli5M01M2~J2z2!21O„~J2z2!3
…, ~65!

where J denotes a modulus chiral multiplet whose VE
provides the Fayet-Iliopoulos parameter, andM0 , M2, andz
are numerical parameters. Then, the total system is gove
by

W5A2gX~QQ̄2J!1Wmoduli, ~66!

and the effective superpotential obtained after the modu
J is integrated out contains a mass term of the inflatonX.
Thus, the inflaton potential is no longer flat.

This is not the case when the effective model of t
moduli stabilization~65! is replaced by

Wmoduli5X83function~J!, ~67!

whereX8 is another modulus. One linear combination ofX
and X8 is integrated out, while the other combination r
mains light and plays the role of the inflaton. The toy mod
of the moduli stabilization given in Secs. IV A and IV B i
partly described by this superpotential;XL53 plays the role
of X8.

One of the remarkable features of the hybrid inflati
model @3–6# is that there is a~discrete! R symmetry, under
which X carriesR charge 2@4,7#. Thus, if there is a moduli
stabilization that preserves such a~discrete! R symmetry, as
in the superpotential~67!, the effective superpotential of th
inflaton is still constrained by theR symmetry even after the
moduli are integrated out, and the inflaton potential rema
flat. Therefore, the string realization of theR-invariant
moduli stabilization deserves further investigation.

se
1-9
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