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Inhomogeneous chiral symmetry breaking in noncommutative four-fermion interactions

Paolo Castorirfa
Department of Physics, University of Catania and INFN, Sezione di Catania, Via S. Sofia 64, 1-95123, Catania, Italy

Giuseppe Riccobete
Scuola Superiore di Catania, via S. Paolo 73, 1-95123, Catania, Italy

Dario Zappala
INFN, Sezione di Catania, and Department of Physics, University of Catania, Via S. Sofia 64, 1-95123, Catania, Italy
(Received 24 February 2004; published 28 May 2004

The generalization of the Gross-Neveu model for noncommutativé 3pace-time has been analyzed. We
find indications that chiral symmetry breaking occurs for an inhomogeneous background as in the Larkin-
Ovchinnikov-Fulde-Ferrell phase in condensed matter.
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I. INTRODUCTION the fermionic condensate, is not constant in space-time.
We consider the generalization of the cutoff Gross-Neveu
The idea of noncommutative space-time coordinates ifGN) model[15] to 3+ 1 noncommutative coordinates and,
physics dates back to the 1940K. Recently, due to the by using the formalism of the effective potential for compos-
discovery of Seiberg and Wittdi2] of a map(SW map that  ite operators introduced by Cornwall, Jackiw and Tomboulis
relates noncommutative to commutative gauge theorie$CJT) [16], in the Hartree-Fock approximation we find that,
there has been increasing interest in studying the impact ¢fue to noncommutativity i.e.,
noncommutativity on fundamental as well as phenomeno-
logical issueg3]. (X, X, ]=16,,, (1)
Moreover, the idea of noncommutative space coordinates
has been applied in condensed matter and in particular to thiere are indications for a transition to a non-uniform chiral
theory of electrons in a magnetic field projected to the lowessymmetry breaking state similar to the LOFF one.
Landau level and to the quantized Hall eff¢ét. The paper is organized as follows. In Sec. Il we general-
Another interesting feature of noncommutative field theo-ize the GN model to the noncommutative case and briefly
ries, also related to condensed matter, is that noncommutgeview the CJT formalism; Sec. Il is devoted to a prelimi-
tivity could represent a tool to describe the transition be-nary analysis of the occurrence of the transition to the non-
tween ordered and disordered phases with inhomogeneousiform phase; the energy difference between the two phases
order parameters. In particular, the phase structure®f  is computed in Sec. IV; and Sec. V contains some comments
theory has been recently discus$éé-11], and, in[6,9-11,  and the conclusions.
strong indications for a phase transition to a non-uniform
stripe phase, due to noncommutativity, were noted.
Originally the transition to an inhomogeneous phase was
considered in fermionic system to build a new non-uniform |n this section we shall summarize the formalism of the
superconducting state in condensed maftire Larkin-  effective action for composite operatdeee[16] for detailg
Ovchinnikov-Fulde-FerrelLOFF) phasé[12]. The interest-  and consider the simpler generalization of the GN model to
ing result is that the inhomogeneous phase can be morge noncommutative case.
stable than the homogeneous BCS state with many relevant For a fermionic field and for a composite operator, such as

phenomenological consequences. This phenomenon has a@(x) ¥(y)), the CJT effective actiolf (G) is given by
been reconsidered in the analysis of the QCD phase structure

and it has been proposed that, at large density, the QCD

ground state is a color crystalline supercondu¢i8] that

could be found in the core of a pulsdor a recent review see )

[14)). whereG(x,y) is the full connected propagator of the theory,
In this paper we investigate if a noncommutative fieldS IS the free massless propagator

theoretical model for interacting fermions shows a transition

to an inhomogeneous phase where the order parameter, i.e., iISTH(x—y)=—45"(x~y) ()]

II. NONCOMMUTATIVE GROSS-NEVEU MODEL

T[(G)=—iTrInSG =i TrS1G+T»(G)+i Tr1, (2)

andI',(G) is given by all two particle irreducible vacuum

*Electronic address: paolo.castorina@ct.infn.it graphs in the theory with propagator set equalGfx,y).
"Electronic address: riccobz@yahoo.it The effective action is recovered by extremiziigG) with
*Electronic address: dario.zappala@ct.infn.it respect toG and the Hartree-Fock approximation corre-
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sponds to retaining only the lowest order contribution in the The breaking of the chiral symmetry requires that the so-
coupling constant td',(G) (see[16)). lution of the equation which minimizes the energy,

We shall apply this formalism to evaluate the effective
potential for the noncommutative generalization of the GN

model which, in the commutative case, is defined by the ' (G) =0, (8)
chiral symmetric Lagrangian density: oG
LX) =g+ 9(4h)?. (4) is such tha{G(p), ys} #O0.

It is impossible to study the transition to the new phase
with the most general class of propagat@sand we shall
imit ourselves to a Rayleigh-Ritz variational approads],

where, however, a meaningful ansatz @requires at least
some physical indications on its asymptotic behaviors.
— = — — First of all, let us remember that in the planar approxima-
Vatballptbp— Vo> Vo> bg* bhp tion, i.e.,#A2—o0, where the noncommutative effects essen-
i tially disappeaf17], the generalization proposed in E®)
=ex;{2 2 0,,,0% (? gives an analogous result to that of the standard GN model.
1=l In this case the translational invariant full propagator can
be conveniently parametrized HE5]

The canonical generalization of the model to the noncom
mutative case is obtained by substituting the standard pro
uct with the star (Moyal) product, defined as i
=1,...,4)[17]

X(a(X0) PalX2) 5(X3) (X)) |x =x -

The effect of the star product on the Feynman rules of the d*p (p+m)
o= | e, (9

theory is an additional momentum dependence in the inter- (2.4 p2—m

action vertices for the “nonplanar” diagram&ee [17]), (2m)

while the “planar” diagrams have the same structure as in

the commutative theory. However, in the Hartree-Fock apwherem is a constant which is determined by the minimum

proximation ofl",(G), the generalization in Eq5) does not  equation of the effective potential

introduce any “nonplanar” diagram due to the spin structure

of the four fermion interactions and the corresponding calcu-

lation of the effective action is not different from the com- B f dp m 10

mutative GN case. —49 )4 pP+m? (10
Analogous to the noncommutative version of {@éN)

scalar mode[18], we can consider a more general expres-

sion for the noncommutative four fermion interactions However, for finitedA?, it easy to check that the ansatz

which, in the planar limit, essentially reduces to the commudn Ed. (9) is inconsistent with the minimum condition. In-

tative GN model, but maintains genuine noncommutativedeed, by inserting in Eq2) the expression fof',(G) given

contributions, i.e., nonplanar diagrams, also at lowest ordeih Ed. (7), and by using the parametrization in Ef), the

in T'»(G). minimum equation for the mass turns out @s Euclidean
The simplest generalization is obtained by considering th&nomenta

Lagrangian density

L(X) = b+ Qib* tha* gt = Qa® Yig* Yra* Y. f 1+ 2/ 11
B Vs [ 5 6 9(2)4p z(+e) 11)

In the standard case the addition of the second term is trivial

since it reduces to a redefinition of the coupligngnd adding ~ and the solutiorm=const=0 is ruled out by genuine non-
a chemical potential contribution which disappears in thecommutative effects.

infinite volume limit. However, in the noncommutative case, Therefore, we first improve the previous ansatz in @g.

it also gives tol",(G), in the Hartree-Fock approximation, a by introducing the following, translational invariant, param-
nonplanar term which introduces the noncommutative efétrization of the full propagator:

fects. In momentum spadé,(G) turns out to be

T',(G)=g[TrG(p)TrG(k)(1+e**P)—2 TrG(p)G(k)], G(x y):iJ d*p [p+M(p?)] ey (12
(

(7) 2m)® P M(p?2°

wherek/\p=k,6,,p, and the traces are over all the quan-

tum numbers. To obtain the previous expressionligfG), where the explicit dependence on the momentum has been
it has been assumed that the full fermion propag&px,y) introduced in the parametric functiovi (p?).

is a translational invariant quantity. We shall comment on Then, the minimum equation fdvi(p?) is (again in Eu-

this point in the following section. clidean momenta
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d*k  M(k? r dt M(p?)? M(p?)?
M(pz):4gf 2 ( )22 _E:l:f P 2'”(1+ (pz)>_ 2 (p)2 2}
(2m)* K*+M (k%) \Y (2m)* p p=+M(p?)
d*k M(k?) d*p d*k
+8 f ek P (13 +8 f —
9 2m* KB+ M(K?)? (13 9 2mtl 2me
2 2
To complete the Rayleigh-Ritz variational ansatz for the M(p")M (k%) (1+2e/\P
propagator and to evaluate the effective potential, one needs [p®+M(p*)?1[k*+M(k*)%] '
to know at least the asymptotic behaviors of the solution (19)

M (p?) for large and smal(Euclidean momenta.
In Eq. (13) thep dependence is due to the second integralyynereV is the four-dimensional volume
. . . . 2 "
since the first one is a constant for any functibt(p®), As in the GN model, one finds the chiral symmetry break-
which ensures the convergence in the infrared region. ing for gA? larger than some critical valueg(?).. The

However, the noncommutative tereH‘_ i (?ouples the in- parameteM , depends on the coupling constant anddaxt,
frared and ultraviolet asymptotic behaviors: due to the StroNGnd. for gAZ—oo. M .

oscillating factor, for smalp the integration region is domi- However, the singular behavior & (p?) for smallp sug-
nated by 'Iargek and vice versa. Then one has to proceed in %ests[19] a possible non-uniform background and, as we
self-consistent way. One expects that, for lapgghe non-  gha)| giscuss in the next section, the translationally invariant

_commutative effects are negligible and a reasonable behav'?fropagator used so far should be considered as an approxi-
IS mation of a deeper dynamics.

M(p%)—M,, (14)
I1l. INDICATIONS FOR AN INHOMOGENEOUS CHIRAL

whereM , is a constant. Then, by E¢L3), one obtain$6,9] SYMMETRY BREAKING PHASE

As observed in the previous section, the leading behavior
KAp for smallp of M(p?) is =1/(6#%p?). This signalgdespite the
er . (15 translationally invariant approximatipmhat the one particle
irreducible two point function is singular gs—0 and this

To simplify the calculations, the antisymmetric matrix Physically amounts to a long range frustratigg(x) ¢/(x))
8, is assumed to be of the form oscillates in sign for large [6,9,19. Then the possible phase

transition should be to an ordered inhomogeneous phase,
where translational invariance is broken and the noncommu-

d*p My

M(p?)|,_. 8f—
(P*)]p—0—89 (277)4[)2TM§

0 1

orv = g( ® 14 (16) tativity requires a nonuniform order parameter and a more
-10 general ansatz for the full propagator with respect to Eg.

_ _ _ o (12).
and the integration can be easily performggi9] it gives In the general case the order parameter is givendbys(
the spinorial index
) 29 1
M(p )|pﬁ0—>?M002p21 17) dp dK

(h(X) (X)) = f v s e Pet G, (p,k)
which shows the leading behavior for smplldiscussed in (2m) (2m) (20)
detail in[6,9], due to the known IR/UV connectidi7]. One

can self-consistently verify that, by inserting B42) inthe 54 it s 4 constant for the translationally invariant case, i.e.,

gap equation Eq(15), the leading behavior oM (p?) for _ _ :
largep is a constant, as initially assumed. Then, a good anG(p'q) 6*(p=K)G(p). On the other hand, in the planar

limit one has
satz forM(p?), which reproduces the asymptotic behaviors m
of the exact solution of the gap equation, turns out to be lim G(p,k)=6%p—K)G(p) (21)
1 p L
0A2~>oo
M(p?) =M 1+2g—2—2 (18
P 0 w26 p°l’ whereGy,(p) is the translationally invariant solution of the

planar theory in Eq(9).

Equationg12) and(18) represent the Rayleigh-Ritz varia-  Then, if one analyzes the problem for finite and large
tional parametrization of the full propagator and the constanfA?, where the noncommutative effects stdet us remem-
parameteM , has to be determined by minimizing the en- ber that in cutoff unitsp/A,k/A<1), one can use the fol-
ergy density. In this translationally invariant case the relatiodowing approximation foiG(p,k):
between the energy densiB/and the effective actioh'r, is
well known[16] and one has G(p,k)=86*p—K)Gri(p)+F4(p.,k), (22
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where Gt,(p) is a translationally invariant function which despite its non-translational invariance, implies that the right
depends or¥A? and reduces 1@, (p) for OA°— o, and hand side of Eq(28) is an energy density.
For P—0, due to the large oscillating factors in the inte-

lim Fy(p,k)=0. (23 grands, the behavior of\T")t is dominated by the integra-
A2 o0 tion regions of largg andk and it turns out that
Now, for x—o, the dominant contribution to
— . . (AT)nT O
((X) o9(X) ) comes from the regiop=k, i.e., v ZE' (29
_ d*p . . o . .
X) (X)) = G +F,(p,p)]. (24 This result gives an indication of a transition to a nonuni-
(a0 f (217)4[ (P +Fdp.p]. (24 form background related to the nontranslationally invariant

ansatz in Eq(25). However, the CJT effective action has a

In other words, a translationally invariant approximation clear physical interpretation as the energy density of the sys-
mimics the right behavior for largeand, for large but finite  tem,E, only for space-time translationally invariant propaga-
¢, there is only a small deviation from the planar theory.tors [see Eq.(19)]. For static but not space translationally
Then, the results of the previous section give a good startinfhvariant systems;I'(G)|gwic= 761, Where 7 is the time
point to describe the fermionic condensate in thesenterval and&; is the total energy16]. Therefore, the study
asymptotic regions, where one expects oscillating correctiongf a possible phase transition to an inhomogeneous state, due
to the constant background. This suggests the foIIowing fornﬂo noncommutative effects, should, more Correcﬂy, be per-

of the full non-translational invariant propagator to orderformed by taking 6y =0, 6;;#0 with i,j=1,2,3, and by
1/6* in Euclidean momenta: using the time independent formalism. This is the subject of
[—p+M(p) ] (p—k) 1 the next section.
Gy(p,k)= +5(8%(p—k—P)
/P p*+M(p?)? 2'7P IV. STATIC FORMALISM
+68%(p—k+P))(P?A(p,k) + P*B(p,k)), The static formalism was developed[ib6] only for sca-

(25) lar fields and, in the Appendix, we extend it to the case of
fermionic fields. The static propagator can be written as
where all quantities are expressed in cutoff units, and where o
the four-vectorP=P/6 and|P|=1, M(p?) is given by Eq. G(%.9)=G(0X.y) =] f dolwy—y-f+m
(18) andA(p,k) andB(p,k) are, at this stage, generic func- Y)=GOXy) =1 | 57 w2—F2
tions. (30
By replacing this propagator in E@2), in the Hartree-

Fock approximation with interaction given in E@), itturns  where F(x,y)=(f2+m?)Y4x,y) and the two functions
out that, to ordeO(1/¢%), f(x,y) andm(x,y) describe the general time translationally
invariant solution of the gap equatidsee the Appendjx

- -

— 4
T(G)=I(G)r+PYAD)nT, (26 The energy of the systedy is
where the non-translationally invariant correctioAI{) .
depends only on the functiofd(p,k), which we choose as Er= —4mf d3x[Tr(Spm)G(x,x)]‘1
—k+M(k?) do
AP K= 1z a2 @7 - f d’ Tr<spm>[ f 5= 700G(©,%X)
to preserve the spin structure of the translationally invariant e s o
propagatoi 20]. —iy-VG(XY)| | ~T2G)lstatics (31)
After a straightforward calculation one obtains the follow- x=y

ing form of ihe correction: where I',(G) | staiic COrresponds to the last term in E@),

evaluated in the static limit.

(AF)NT:4 P4f d*p d* By following the same steps as in the four dimensional
\% 2m*) (2m)* calculation of Secs. Il and llI, we initially consider, for the
static propagator in the commutative case, the ansatz
M (p?)M (k?)
[p?+M(p?)?I[(k*+M(k*)?] G(p)= Yp—7y-p+m (32
x @ 1(PTR/\P(1 4 2P/ k) (29) 2p°

One should note that the remarkable factorization of the volwith constantm and p°= \/p2+m?, which gives the gap
ume factorV, which follows from the ansatz in Eq25), equation of the GN model in the static limit:
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dp
(2m)3

m=39f

m

(33

1/524_[“2

If one considers the previous ansatz @&rin the noncom-
mutative model in Eq(6), the gap equation turns out to be

m
m=29f —
(2m)° g2+ m?

which rules out a solution with constant and requires a
more general ansatz, whemehas a parametric dependence

onp, i.e.,

dp

(1+2eP, (34

. P y-p+m(p)

G(p)= — (35)

2Vp*+m(p)?

The gap equation is now
] d*p  m(p) nE

m(k)=2gf - —(1+2eP"%), (36)

(2m)° \p2+m(p)?

with a self-consistent asymptotic solution
m(k)—mg, k—o, (37)
- gmo

m(k — T 5 S k—>0, 38
O T (39)

wherem, is a constant, the positio#i’ = €' 6, defines the

vector § and X indicates the standard vector product. With
the ansatz

PHYSICAL REVIEW D69, 105024 (2004
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| L |
-0.03; 0.1

FIG. 1. The energy densitl at (A2g/27%)=2.5 for the planar
theory (dashed ling and for the noncommutative non-
translationally invariant case f@tA?=12 (a), 15 (b), 18 (c).

neous phase, since the latter always has lower energy than
the (translationally invarianthomogeneous one.

The qualitative agreement between the static calculation
and the approach in Sec. Il is expected due to the following
points: (i) we are considering only a slowly varying back-
ground with fluctuation amplitude suppressed by powers of
1/0; (ii) the non-trivial factorization of the volum¥ in Eq.

(28) makes possible a physically meaningful evaluation of
the non-translationally invariant correction to the energy
density.

In both casegstatic and non-statjc the energy density
difference between these two phases is of o@¢g/6*%),
while the difference with respect to the planar theory is much
larger. Then, for convenience, in Fig. 1 we plef’(G)/V,

- g in the non-static calculation, for the planar theory and for the
m(k)=mp 1+ — T (39 non-translationally invariant case, and in Fig. 2 it is shown
7 [kx f) that the noncommutative effects decrease the critical cou-
and by following the same arguments given in Sec. I, it isPling constant with respect to the planar GN model.

straightforward to show that the energy of the system, evalu- According to point(i), one can easily evaluate tixede-
ated by the nontranslationally invariant ansatz for the static

propagator
0,~,0 coZ g
yp —y-p+tmp .. . 1 I
B(p—k)+ =((p—k—P)
2\p2+m(p)? 2
+8%(p—k+P))(P?A"(p,k) + P*B' (p,k)),
(40)

whereA’(p,k) is, in analogy to the four dimensional case,
y°kO— y-k+m(k)

2Vk%+m(k)?

A'(p,k)=

(41)

turns out to be lower than in the noncommutative translation-

ally invariant case by terms of ordgr 6*.

Therefore, the previous calculation gives a clear indica-
tion that the noncommutative effects are responsible for théneory (dashed

0.01 T T T

-0.01

|
0.3

| | |
-0.025 0.1 0.2

M,

FIG. 2. The energy densit at (A%g/2w?)=2 for the planar
ling and for the noncommutative non-

occurrence of chiral symmetry breaking in an inhomoge-ranslationally invariant case fatA?=8 (solid line).
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pendence of the vacuum condensate to o@igl/62), which gator asG(x,y)=G(0x,y). To obtain the form ofG(Xx,y),

turns out to be we recall that the functional derivative ®f with respect to
_ 5 _ the propagator is related, as explained in detdll#l, to the
<l/f(X)</f(X)>:(1+CP COS(PX))<'#L/’>T| ' (42) bilocal SOUI’Cd(()Z,);),
wherec is a constant, and Whe(d_u/f)ﬂ is the constant order 8T'(4,G) ..
parameter evaluated in the translationally invariant case. oo X YoK(xy),  (A2)
5G(X0_ yO1le)
V. COMMENTS AND CONCLUSIONS and therefore, from the explicit derivation of the effective

Our computation of the CJT effective action shows thatacnon’ one gets

chiral symmetry breaking occurs for an inhomogeneous _ L. 5

phase, due to the noncommutative nature of the four fermion G~ 1(X,y)= —|6(x0—y0)K(x,y)+S‘154(x—y)+E,

interactions considered in E(). The energy difference be- (A3)

tween the inhomogeneous and homogeneous phases, which

both include the noncommutative corrections, is of ordemwhich shows that the most general form®f (x,y) is

0O(g/#*. The order parameter has an oscillatinglepen- N ..

dence of ordeiO(g/6?), superposed on the constant back- G~ *(Xo—Yo0.X.Y)=&"(Xo— Yo) ¥8°(X—Y)

ground of the translationally invariant phase. . e e s s
These results are essentially based on the non- +i8(Xo—Yo)y- f(X,y) Fim(x,y),

translationally invariant ansatz for the full propagator in Egs. (A4)

(25 and (27). Let us notice that, in the commutativer1 o L

dimensional GN model, non-translationally invariant effectswheref(x,y) andm(x,y) are generic functions of the spatial

were introduced if21] and a transition to the inhomoge- coordinates and all the dependencesof(x,y) on the tem-

neous crystal phase at non-zero chemical potential was olporal coordinates is contained in the delta functiéfx,

tained. —Yo) and its derivative. From EqA4) one gets the Fourier
In [6,9] for the noncommutative scalar case, it was ob-transform ofefl(xo—yo,i,ﬁ) with respect to the variable

served that boson condensation does not occur in the mogg—y,,

k=0 but there is a total depletion to=Q where ((x))

«cos(@Qx). Analogously, in the fermionic case, our ansatz in G Ywx g)zf

Eqg. (25 corresponds to Cooper pairs with a non-zero total o

momentum, as happens in the LOFF phase in condensed

matter. The latter point provides an indication that the non- = —iwyyd(x—y+iy-f(x,y)+im(x,y)

commutative cutoff field theory could be applied to describe

+Oc . - -
dxge' “%GY(xq,X,y)

the features of the transition to inhomogeneous phases. (A5)
which can be functionally invertel®2]:
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partially supported by the INFN Bruno Rossi exchange pro- Finally, the static propagator is obtained by integration,
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- - s ([do wyo—';hl?-km .-
APPENDIX Gxy)=GOxy)=i | 5— TS F (x.y)
In this appendix we derive the energy for time, but not .
space, translationally invariant fermionic systems with La- _ (yoF —y-f+m) i)? (A7)
grangian given in Eq(6), in terms of the static propagator 2F e

G(x,y) and we closely follow the procedure outlined[i6]
for the scalar theory. The total energy is related to the effec
tive action, computed in the static limit,

Incidentally, we note that the trace over the spin indices
gives

S 2m\ . .
Er(G(X,y)) 7= —T(G(X,Y))| static- (A1) Tr(spinC(X,Y) = ?)(x,y). (A8)

The static limit of the effective action is obtained by tak- We are now able to evaluate the effective action in the
ing the time translationally invariant propagat@(x,y) static limit and, for simplicity, we shall restrict the following

=G(Xo—Yo.X,Yy) at equal timex,=Y, and by re-expressing calculation to a constant masgx,y) = ms3(x—y). We start
I' in terms of the static propagator, defined by the full propa-by considering the first term in the general expressioh of
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Eq. (2), namely—i TrinG %, where the trace refers to both . b g 45 s
space-time and spin indicéae neglect in Eq(2) the loga- —1 Trspiny | d™XdY[46™(x—Y)]G(Xo—Yo:X%,Y)
rithm of the free propagatd which gives a constant contri-

bution to the effective actidnWith the help of Eq(A5) one . do . - >
gets[16] ; P of EAlAS) ='Tf<spin>f d’x fﬂ?’o(_'w)G(w, X)
[ axo [aax [ 79 NG Ywxy — yVG(0X,y)
I Xo X _xﬂTr(spin)n(G (w,X,y)) L -
+o0 S
=—mfdmfd%f gﬁmeF% =—4mfdmfdﬁﬁ%mﬁumnl
—0 LT
=2fd%fd%F&§) —Vmwmfd%fd%iﬁG&&)ﬂ» (A10)
1 X=y

.. Finally, the term corresponding tb, in the Hartree-Fock
:4mf dXof A3 Tr(epinyG (X, X) ], (A9)  approximation is straightforwardly computed by replacing
G(Xo—Y0.%,Y)|x,=y, With G(x,y). By collecting the various
where we have used E@A8) to replaceF in the last step.  contributions to the effective action, namely E¢a9) and
The second term to compute in E@) is —i TrS G (A10) plusTI', in the Hartree-Fock approximation, we get the

which yields, after integrating by parts, expression for the energy shown in E§1).
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