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Inhomogeneous chiral symmetry breaking in noncommutative four-fermion interactions
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The generalization of the Gross-Neveu model for noncommutative 311 space-time has been analyzed. We
find indications that chiral symmetry breaking occurs for an inhomogeneous background as in the Larkin-
Ovchinnikov-Fulde-Ferrell phase in condensed matter.
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I. INTRODUCTION

The idea of noncommutative space-time coordinates
physics dates back to the 1940s@1#. Recently, due to the
discovery of Seiberg and Witten@2# of a map~SW map! that
relates noncommutative to commutative gauge theor
there has been increasing interest in studying the impac
noncommutativity on fundamental as well as phenome
logical issues@3#.

Moreover, the idea of noncommutative space coordina
has been applied in condensed matter and in particular to
theory of electrons in a magnetic field projected to the low
Landau level and to the quantized Hall effect@4#.

Another interesting feature of noncommutative field the
ries, also related to condensed matter, is that noncomm
tivity could represent a tool to describe the transition b
tween ordered and disordered phases with inhomogen
order parameters. In particular, the phase structure oflF4

theory has been recently discussed@5–11#, and, in@6,9–11#,
strong indications for a phase transition to a non-unifo
stripe phase, due to noncommutativity, were noted.

Originally the transition to an inhomogeneous phase w
considered in fermionic system to build a new non-unifo
superconducting state in condensed matter@the Larkin-
Ovchinnikov-Fulde-Ferrell~LOFF! phase# @12#. The interest-
ing result is that the inhomogeneous phase can be m
stable than the homogeneous BCS state with many rele
phenomenological consequences. This phenomenon has
been reconsidered in the analysis of the QCD phase struc
and it has been proposed that, at large density, the Q
ground state is a color crystalline superconductor@13# that
could be found in the core of a pulsar~for a recent review see
@14#!.

In this paper we investigate if a noncommutative fie
theoretical model for interacting fermions shows a transit
to an inhomogeneous phase where the order parameter
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the fermionic condensate, is not constant in space-time.
We consider the generalization of the cutoff Gross-Nev

~GN! model @15# to 311 noncommutative coordinates an
by using the formalism of the effective potential for compo
ite operators introduced by Cornwall, Jackiw and Tombou
~CJT! @16#, in the Hartree-Fock approximation we find tha
due to noncommutativity i.e.,

@xm ,xn#5 iumn , ~1!

there are indications for a transition to a non-uniform chi
symmetry breaking state similar to the LOFF one.

The paper is organized as follows. In Sec. II we gene
ize the GN model to the noncommutative case and brie
review the CJT formalism; Sec. III is devoted to a prelim
nary analysis of the occurrence of the transition to the n
uniform phase; the energy difference between the two pha
is computed in Sec. IV; and Sec. V contains some comme
and the conclusions.

II. NONCOMMUTATIVE GROSS-NEVEU MODEL

In this section we shall summarize the formalism of t
effective action for composite operators~see@16# for details!
and consider the simpler generalization of the GN mode
the noncommutative case.

For a fermionic field and for a composite operator, such

^c̄(x)c(y)&, the CJT effective actionG(G) is given by

G~G!52 i Tr ln SG212 i Tr S21G1G2~G!1 i Tr 1, ~2!

whereG(x,y) is the full connected propagator of the theor
S is the free massless propagator

iS21~x2y!52]”d4~x2y! ~3!

and G2(G) is given by all two particle irreducible vacuum
graphs in the theory with propagator set equal toG(x,y).
The effective action is recovered by extremizingG(G) with
respect toG and the Hartree-Fock approximation corr
©2004 The American Physical Society24-1
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sponds to retaining only the lowest order contribution in
coupling constant toG2(G) ~see@16#!.

We shall apply this formalism to evaluate the effecti
potential for the noncommutative generalization of the G
model which, in the commutative case, is defined by
chiral symmetric Lagrangian density:

L~x!5 i c̄]”c1g~ c̄c!2. ~4!

The canonical generalization of the model to the nonco
mutative case is obtained by substituting the standard p
uct with the star ~Moyal! product, defined as (i , j
51, . . . ,4) @17#

c̄acac̄bcb→c̄a* ca* c̄b* cb

5expF i

2 (
i , j

umn]xi

m]xj

n G
3~ c̄a~x1!ca~x2!c̄b~x3!cb~x4!!uxi5x . ~5!

The effect of the star product on the Feynman rules of
theory is an additional momentum dependence in the in
action vertices for the ‘‘nonplanar’’ diagrams~see @17#!,
while the ‘‘planar’’ diagrams have the same structure as
the commutative theory. However, in the Hartree-Fock
proximation ofG2(G), the generalization in Eq.~5! does not
introduce any ‘‘nonplanar’’ diagram due to the spin structu
of the four fermion interactions and the corresponding cal
lation of the effective action is not different from the com
mutative GN case.

Analogous to the noncommutative version of theO(N)
scalar model@18#, we can consider a more general expre
sion for the noncommutative four fermion interactio
which, in the planar limit, essentially reduces to the comm
tative GN model, but maintains genuine noncommutat
contributions, i.e., nonplanar diagrams, also at lowest or
in G2(G).

The simplest generalization is obtained by considering
Lagrangian density

L~x!5 i c̄]”c1gc̄a* ca* c̄b* cb2gc̄a* c̄b* ca* cb .
~6!

In the standard case the addition of the second term is tr
since it reduces to a redefinition of the couplingg and adding
a chemical potential contribution which disappears in
infinite volume limit. However, in the noncommutative cas
it also gives toG2(G), in the Hartree-Fock approximation,
nonplanar term which introduces the noncommutative
fects. In momentum spaceG2(G) turns out to be

G2~G!5g@Tr G~p!Tr G~k!~11eik`p!22 TrG~p!G~k!#,
~7!

wherek`p5kmumnpn and the traces are over all the qua
tum numbers. To obtain the previous expression forG2(G),
it has been assumed that the full fermion propagatorG(x,y)
is a translational invariant quantity. We shall comment
this point in the following section.
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The breaking of the chiral symmetry requires that the
lution of the equation which minimizes the energy,

dG~G!

dG
50, ~8!

is such that$G(p),g5%Þ0.
It is impossible to study the transition to the new pha

with the most general class of propagatorsG and we shall
limit ourselves to a Rayleigh-Ritz variational approach@16#,
where, however, a meaningful ansatz forG requires at least
some physical indications on its asymptotic behaviors.

First of all, let us remember that in the planar approxim
tion, i.e.,uL2→`, where the noncommutative effects esse
tially disappear@17#, the generalization proposed in Eq.~6!
gives an analogous result to that of the standard GN mo

In this case the translational invariant full propagator c
be conveniently parametrized as@16#

Gpl~x,y!5 i E d4p

~2p!4

~p”1m!

p22m2 e2 ip(x2y), ~9!

wherem is a constant which is determined by the minimu
equation of the effective potential

m54gE d4p

~2p!4

m

p21m2 . ~10!

However, for finiteuL2, it easy to check that the ansa
in Eq. ~9! is inconsistent with the minimum condition. In
deed, by inserting in Eq.~2! the expression forG2(G) given
in Eq. ~7!, and by using the parametrization in Eq.~9!, the
minimum equation for the mass turns out as~in Euclidean
momenta!

m54gE d4p

~2p!4

m

p21m2 ~112eik`p! ~11!

and the solutionm5constÞ0 is ruled out by genuine non
commutative effects.

Therefore, we first improve the previous ansatz in Eq.~9!
by introducing the following, translational invariant, param
etrization of the full propagator:

G~x,y!5 i E d4p

~2p!4

@p”1M ~p2!#

p22M ~p2!2 e2 ip(x2y), ~12!

where the explicit dependence on the momentum has b
introduced in the parametric functionM (p2).

Then, the minimum equation forM (p2) is ~again in Eu-
clidean momenta!
4-2
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M ~p2!54gE d4k

~2p!4

M ~k2!

k21M ~k2!2

18gE d4k

~2p!4

M ~k2!

k21M ~k2!2 eik`p. ~13!

To complete the Rayleigh-Ritz variational ansatz for t
propagator and to evaluate the effective potential, one ne
to know at least the asymptotic behaviors of the solut
M (p2) for large and small~Euclidean! momenta.

In Eq. ~13! thep dependence is due to the second integ
since the first one is a constant for any functionM (p2),
which ensures the convergence in the infrared region.

However, the noncommutative termeik`p couples the in-
frared and ultraviolet asymptotic behaviors: due to the str
oscillating factor, for smallp the integration region is domi
nated by largek and vice versa. Then one has to proceed i
self-consistent way. One expects that, for largep, the non-
commutative effects are negligible and a reasonable beha
is

M ~p2!→M u , ~14!

whereM u is a constant. Then, by Eq.~13!, one obtains@6,9#

M ~p2!up→0→8gE d4p

~2p!4

M u

p21M u
2 eik`p. ~15!

To simplify the calculations, the antisymmetric matr
umn is assumed to be of the form

umn5uS 0 1

21 0D ^ 1d/2 ~16!

and the integration can be easily performed;@6,9# it gives

M ~p2!up→0→
2g

p2 M u

1

u2p2 , ~17!

which shows the leading behavior for smallp, discussed in
detail in@6,9#, due to the known IR/UV connection@17#. One
can self-consistently verify that, by inserting Eq.~17! in the
gap equation Eq.~15!, the leading behavior ofM (p2) for
largep is a constant, as initially assumed. Then, a good
satz forM (p2), which reproduces the asymptotic behavio
of the exact solution of the gap equation, turns out to be

M ~p2!5M uF11
2g

p2

1

u2p2G . ~18!

Equations~12! and~18! represent the Rayleigh-Ritz varia
tional parametrization of the full propagator and the const
parameterM u has to be determined by minimizing the e
ergy density. In this translationally invariant case the relat
between the energy densityE and the effective actionGTI is
well known @16# and one has
10502
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2E5
GTI

V
5E d4p

~2p!4 F2 lnS 11
M ~p2!2

p2 D24
M ~p2!2

p21M ~p2!2G
18gE d4p

~2p!4E d4k

~2p!4

3
M ~p2!M ~k2!

@p21M ~p2!2#@k21M ~k2!2#
~112eik`p!,

~19!

whereV is the four-dimensional volume.
As in the GN model, one finds the chiral symmetry brea

ing for gL2 larger than some critical value (gL2)c . The
parameterM u depends on the coupling constant and onuL2,
and, foruL2→`, M u→m.

However, the singular behavior ofM (p2) for smallp sug-
gests@19# a possible non-uniform background and, as
shall discuss in the next section, the translationally invari
propagator used so far should be considered as an app
mation of a deeper dynamics.

III. INDICATIONS FOR AN INHOMOGENEOUS CHIRAL
SYMMETRY BREAKING PHASE

As observed in the previous section, the leading beha
for smallp of M (p2) is .1/(u2p2). This signals~despite the
translationally invariant approximation! that the one particle
irreducible two point function is singular asp→0 and this
physically amounts to a long range frustration:^c̄(x)c(x)&
oscillates in sign for largex @6,9,19#. Then the possible phas
transition should be to an ordered inhomogeneous ph
where translational invariance is broken and the noncom
tativity requires a nonuniform order parameter and a m
general ansatz for the full propagator with respect to E
~12!.

In the general case the order parameter is given by (a is
the spinorial index!

^c̄~x!ac~x!a&5E d4p

~2p!4E d4k

~2p!4
e2 ipxe1 ikxGaa~p,k!

~20!

and it is a constant for the translationally invariant case, i
G(p,q)5d4(p2k)G(p). On the other hand, in the plana
limit one has

lim
uL2→`

G~p,k!5d4~p2k!Gpl~p!, ~21!

whereGpl(p) is the translationally invariant solution of th
planar theory in Eq.~9!.

Then, if one analyzes the problem for finite and lar
uL2, where the noncommutative effects start~let us remem-
ber that in cutoff unitsp/L,k/L,1), one can use the fol
lowing approximation forG(p,k):

G~p,k!.d4~p2k!GTI~p!1Fu~p,k!, ~22!
4-3
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where GTI(p) is a translationally invariant function whic
depends onuL2 and reduces toGpl(p) for uL2→`, and

lim
uL2→`

Fu~p,k!50. ~23!

Now, for x→`, the dominant contribution to

^c̄(x)ac(x)a& comes from the regionp.k, i.e.,

^c̄~x!c~x!&.E d4p

~2p!4
@GTI~p!1Fu~p,p!#. ~24!

In other words, a translationally invariant approximati
mimics the right behavior for largex and, for large but finite
u, there is only a small deviation from the planar theo
Then, the results of the previous section give a good star
point to describe the fermionic condensate in the
asymptotic regions, where one expects oscillating correct
to the constant background. This suggests the following fo
of the full non-translational invariant propagator to ord
1/u4 in Euclidean momenta:

Gu~p,k!5
@2p”1M ~p2!#d4~p2k!

p21M ~p2!2 1
1

2
~d4~p2k2P!

1d4~p2k1P!!~P2A~p,k!1P4B~p,k!!,

~25!

where all quantities are expressed in cutoff units, and wh
the four-vectorP5 P̂/u and uP̂u51, M (p2) is given by Eq.
~18! andA(p,k) andB(p,k) are, at this stage, generic fun
tions.

By replacing this propagator in Eq.~2!, in the Hartree-
Fock approximation with interaction given in Eq.~6!, it turns
out that, to orderO(1/u4),

G~G!5G~G!TI1P4~DG!NT , ~26!

where the non-translationally invariant correction (DG)NT
depends only on the functionA(p,k), which we choose as

A~p,k!5
2k”1M ~k2!

k21M ~k2!2 , ~27!

to preserve the spin structure of the translationally invari
propagator@20#.

After a straightforward calculation one obtains the follo
ing form of the correction:

~DG!NT

V
54gP4E d4p

~2p!4E d4k

~2p!4

3
M ~p2!M ~k2!

@p21M ~p2!2#@~k21M ~k2!2#

3e2 i (p1k)`P~112e2ip`k!. ~28!

One should note that the remarkable factorization of the v
ume factorV, which follows from the ansatz in Eq.~25!,
10502
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despite its non-translational invariance, implies that the ri
hand side of Eq.~28! is an energy density.

For P→0, due to the large oscillating factors in the int
grands, the behavior of (DG)NT is dominated by the integra
tion regions of largep andk and it turns out that

~DG!NT

V
.

g

u4
. ~29!

This result gives an indication of a transition to a nonu
form background related to the nontranslationally invaria
ansatz in Eq.~25!. However, the CJT effective action has
clear physical interpretation as the energy density of the s
tem,E, only for space-time translationally invariant propag
tors @see Eq.~19!#. For static but not space translational
invariant systems,2G(G)ustatic5tET , where t is the time
interval andET is the total energy@16#. Therefore, the study
of a possible phase transition to an inhomogeneous state
to noncommutative effects, should, more correctly, be p
formed by takingu0i50, u i j Þ0 with i , j 51,2,3, and by
using the time independent formalism. This is the subjec
the next section.

IV. STATIC FORMALISM

The static formalism was developed in@16# only for sca-
lar fields and, in the Appendix, we extend it to the case
fermionic fields. The static propagator can be written as

G~xW ,yW !5G~0,xW ,yW !5 i E dv

2p Fvg02gW • fW1m

v22F2 G ~xW ,yW !,

~30!

where F(xW ,yW )5( f 21m2)1/2(xW ,yW ) and the two functions
f (xW ,yW ) andm(xW ,yW ) describe the general time translationa
invariant solution of the gap equation~see the Appendix!.

The energy of the systemET is

ET524mE d3x@Tr(spin)G~xW ,xW !#21

2E d3x Tr(spin)F E dv

2p
g0vG~v,xW ,xW !

2 igW •¹W G~xW ,yW !U
xW5yW

G2G2~G!ustatic, ~31!

where G2(G)ustatic corresponds to the last term in Eq.~2!,
evaluated in the static limit.

By following the same steps as in the four dimension
calculation of Secs. II and III, we initially consider, for th
static propagator in the commutative case, the ansatz

G~pW !5
g0p02gW •pW 1m

2p0
~32!

with constantm and p05ApW 21m2, which gives the gap
equation of the GN model in the static limit:
4-4
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m53gE d3p

~2p!3

m

ApW 21m2
. ~33!

If one considers the previous ansatz forG, in the noncom-
mutative model in Eq.~6!, the gap equation turns out to b

m52gE d3p

~2p!3

m

ApW 21m2
~112eipW `kW !, ~34!

which rules out a solution with constantm and requires a
more general ansatz, wherem has a parametric dependen
on pW , i.e.,

G~pW !5
g0p02gW •pW 1m~pW !

2ApW 21m~pW !2
. ~35!

The gap equation is now

m~kW !52gE d3p

~2p!3

m~pW !

ApW 21m~pW !2
~112eipW `kW !, ~36!

with a self-consistent asymptotic solution

m~kW !→m0 , k→`, ~37!

m~kW !→ gm0

p2ukW3uW u2
, k→0, ~38!

wherem0 is a constant, the positionu i j 5e i jkuk defines the
vectoruW and 3 indicates the standard vector product. W
the ansatz

m~kW !5m0F11
g

p2

1

ukW3uW u2G ~39!

and by following the same arguments given in Sec. III, it
straightforward to show that the energy of the system, ev
ated by the nontranslationally invariant ansatz for the st
propagator

Gu~pW ,kW !5
g0p02gW •pW 1m~pW !

2ApW 21m~pW !2
d3~pW 2kW !1

1

2
~d3~pW 2kW2PW !

1d3~pW 2kW1PW !!~PW 2A8~pW ,kW !1PW 4B8~pW ,kW !!,

~40!

whereA8(pW ,kW ) is, in analogy to the four dimensional case

A8~pW ,kW !5
g0k02gW •kW1m~kW !

2AkW21m~kW !2
, ~41!

turns out to be lower than in the noncommutative translati
ally invariant case by terms of orderg/u4.

Therefore, the previous calculation gives a clear indi
tion that the noncommutative effects are responsible for
occurrence of chiral symmetry breaking in an inhomog
10502
u-
ic

-

-
e
-

neous phase, since the latter always has lower energy
the ~translationally invariant! homogeneous one.

The qualitative agreement between the static calcula
and the approach in Sec. III is expected due to the follow
points: ~i! we are considering only a slowly varying bac
ground with fluctuation amplitude suppressed by powers
1/u; ~ii ! the non-trivial factorization of the volumeV in Eq.
~28! makes possible a physically meaningful evaluation
the non-translationally invariant correction to the ener
density.

In both cases~static and non-static!, the energy density
difference between these two phases is of orderO(g/u4),
while the difference with respect to the planar theory is mu
larger. Then, for convenience, in Fig. 1 we plot2G(G)/V,
in the non-static calculation, for the planar theory and for
non-translationally invariant case, and in Fig. 2 it is sho
that the noncommutative effects decrease the critical c
pling constant with respect to the planar GN model.

According to point~i!, one can easily evaluate thex de-

FIG. 1. The energy densityE at (L2g/2p2)52.5 for the planar
theory ~dashed line! and for the noncommutative non
translationally invariant case foruL2512 (a), 15 (b), 18 (c).

FIG. 2. The energy densityE at (L2g/2p2)52 for the planar
theory ~dashed line! and for the noncommutative non
translationally invariant case foruL258 ~solid line!.
4-5
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pendence of the vacuum condensate to orderO(1/u2), which
turns out to be

^c̄~x!c~x!&5~11cP2cos~Px!!^c̄c&TI , ~42!

wherec is a constant, and where^c̄c&TI is the constant orde
parameter evaluated in the translationally invariant case.

V. COMMENTS AND CONCLUSIONS

Our computation of the CJT effective action shows th
chiral symmetry breaking occurs for an inhomogeneo
phase, due to the noncommutative nature of the four ferm
interactions considered in Eq.~6!. The energy difference be
tween the inhomogeneous and homogeneous phases, w
both include the noncommutative corrections, is of ord
O(g/u4). The order parameter has an oscillatingx depen-
dence of orderO(g/u2), superposed on the constant bac
ground of the translationally invariant phase.

These results are essentially based on the n
translationally invariant ansatz for the full propagator in E
~25! and ~27!. Let us notice that, in the commutative 111
dimensional GN model, non-translationally invariant effe
were introduced in@21# and a transition to the inhomoge
neous crystal phase at non-zero chemical potential was
tained.

In @6,9# for the noncommutative scalar case, it was o
served that boson condensation does not occur in the m
k50 but there is a total depletion tok5Q where ^f(x)&
}cos(Qx). Analogously, in the fermionic case, our ansatz
Eq. ~25! corresponds to Cooper pairs with a non-zero to
momentum, as happens in the LOFF phase in conden
matter. The latter point provides an indication that the n
commutative cutoff field theory could be applied to descr
the features of the transition to inhomogeneous phases.
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APPENDIX

In this appendix we derive the energy for time, but n
space, translationally invariant fermionic systems with L
grangian given in Eq.~6!, in terms of the static propagato
G(xW ,yW ) and we closely follow the procedure outlined in@16#
for the scalar theory. The total energy is related to the eff
tive action, computed in the static limit,

ET„G~xW ,yW !…t52G„G~x,y!…ustatic. ~A1!

The static limit of the effective action is obtained by ta
ing the time translationally invariant propagatorG(x,y)
5G(x02y0 ,xW ,yW ) at equal timex05y0 and by re-expressing
G in terms of the static propagator, defined by the full prop
10502
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gator asG(xW ,yW )5G(0,xW ,yW ). To obtain the form ofG(xW ,yW ),
we recall that the functional derivative ofG with respect to
the propagator is related, as explained in detail in@16#, to the
bilocal sourceK(xW ,yW ),

dG~f,G!

dG~x02y0 ;xW ,yW !
52

1

2
d~x02y0!K~xW ,yW !, ~A2!

and therefore, from the explicit derivation of the effectiv
action, one gets

G21~x,y!52 id~x02y0!K~xW ,yW !1S21d4~x2y!1
dG2

dG
,

~A3!

which shows that the most general form ofG21(x,y) is

G21~x02y0 ,xW ,yW !5d8~x02y0!g0d3~xW2yW !

1 id~x02y0!gW • fW~xW ,yW !1 im~xW ,yW !,

~A4!

wherefW(xW ,yW ) andm(xW ,yW ) are generic functions of the spatia
coordinates and all the dependence ofG21(x,y) on the tem-
poral coordinates is contained in the delta functiond(x0
2y0) and its derivative. From Eq.~A4! one gets the Fourie
transform ofG21(x02y0 ,xW ,yW ) with respect to the variable
x02y0,

G21~v,xW ,yW !5E
2`

1`

dx0eivx0G21~x0 ,xW ,yW !

52 ivg0d3~xW2yW1 igW • fW~xW ,yW !1 im~xW ,yW !

~A5!

which can be functionally inverted@22#:

G~v,xW ,yW !5 i S vg02gW • fW1m

v22F2 D ~xW ,yW !, ~A6!

whereF(xW ,yW )5( f 21m2)1/2(xW ,yW ).
Finally, the static propagator is obtained by integration

G~xW ,yW !5G~0,xW ,yW !5 i E dv

2p Fvg02gW • fW1m

v22F2 G ~xW ,yW !

5
~g0F2gW • fW1m!

2F
~xW ,yW !. ~A7!

Incidentally, we note that the trace over the spin indic
gives

Tr(spin)G~xW ,yW !5S 2m

F D ~xW ,yW !. ~A8!

We are now able to evaluate the effective action in
static limit and, for simplicity, we shall restrict the followin
calculation to a constant massm(xW ,yW )5md3(xW2yW ). We start
by considering the first term in the general expression ofG in
4-6
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Eq. ~2!, namely2 i Tr ln G21, where the trace refers to bot
space-time and spin indices@we neglect in Eq.~2! the loga-
rithm of the free propagatorSwhich gives a constant contri
bution to the effective action#. With the help of Eq.~A5! one
gets@16#

2 i E dx0E d3xE
2`

1`dv

2p
Tr(spin)ln~G21~v,xW ,yW !!

522i E dx0E d3xE
2`

1`dv

2p
ln~v22F2!

52E dx0E d3xF~xW ,xW !

54mE dx0E d3x@Tr(spin)G~xW ,xW !#21, ~A9!

where we have used Eq.~A8! to replaceF in the last step.
The second term to compute in Eq.~2! is 2 i Tr S21G

which yields, after integrating by parts,
n-
,’’

J.

B
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2 i Tr(spin)E d4xd4y@]”d4~x2y!#G~x02y0 ;xW ,yW !

5 i Tr(spin)E d4xF E dv

2p
g0~2 iv!G~v,xW ,xW !

2gW ¹W G~0,xW ,yW !U
xW5yW

G
524mE dx0E d3x@Tr(spin)G~xW ,xW !#21

2 i Tr(spin)E dx0E d3xgW •¹W G~xW ,yW !U
xW5yW

. ~A10!

Finally, the term corresponding toG2 in the Hartree-Fock
approximation is straightforwardly computed by replaci
G(x02y0 ,xW ,yW )ux05y0

with G(xW ,yW ). By collecting the various
contributions to the effective action, namely Eqs.~A9! and
~A10! plusG2 in the Hartree-Fock approximation, we get th
expression for the energy shown in Eq.~31!.
n-
.
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