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Tests and applications of Migdal’'s particle path-integral representation for the Dirac propagator
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We derive some nonperturbative results ifr 1 and 2+1 dimensions within the context of the particle
path-integral representation for a Dirac field propagator in the presence of an external field, in a formulation
introduced by Migdal. We consider the specific properties of the path-integral expressions corresponding to the
(1+1)- and (2+1)-dimensional cases, presenting a derivation of the chiral anomaly in the former and of the
Chern-Simons current in the latter. We also discuss particle propagation in constant electromagnetic field

backgrounds.
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[. INTRODUCTION cussed in more detail, and a local action representation suit-

able for them is introduced. At the end of this section, the

Particlelike path-integral representations have been usegduivalence between the path-integral representation and the
in quantum field theory for a long time, starting with the standard formulation is explicitly shown to be true order by
pioneering work of Schwingdrl]. In this approach, the ob- order in perturbation theory.
jects of interest are expressed in terms of path integrals over Going beyond the perturbative expansion, in Sec. Ill we
particle trajectories in proper time, something which is closePresent derivations of the chiral anomaly i1 dimensions
in spirit to Feynman’s propagator approgd@j than to stan- and of the Chern-Simons term int2l dimensions; these are
dard quantum field theory methods. Indeed, a propagator &0 nonperturbative tests that, as we shall see, reproduce the
always susceptible to a dual interpretation: it can be underProper results.
stood as the result of an average over field configurations, The propagation in a constant electromagnetic field back-
but also as a sum over proper-time “first-quantize@e.,  ground in 2+ 1 dimensions is discussed in Sec. IV, by evalu-
particlelike) paths. ating the exact Fermionic determinant in the present formu-

This representation has been more recently applied to thigtion. Finally, in Sec. V we present our conclusions.
derivation of many interesting results, since its use provides
a framework which often becomes convenient for the intro-
duction of nonstandard calculation techniq{@ls One of the
reasons for this is that the interaction term appears in an
exponential form, and this can make it possible, sometimes, \We shall present here, for the sake of completeness, a
to integrate out the field that mediates the interaction. derivation of the particle path-integral representation for the

For the case of nonzero spin fields, different proposals fofermion propagator in an external Abelian gauge field. Be-
the integral over first-quantized trajectories have been adsides, the procedure will emphasize some specific aspects of
vanced. Since they usually involve different sets of variablesthe 2+1- and 1+ 1-dimensional cases, such as, for example,
the task of relating them is far from trivial, unless it is un- the realization of the spin degrees of freedom. We shall also
dertaken at a purely formal level. Concrete calculations, ombtain the standard perturbative expansion within this frame-
the other hand, are always useful in order to understand thgork.
properties of each formulation on a deeper level.

With that in mind, in this article, we consider the particu- o
lar case of the path-integral representation for Dirac fields A. Derivation of the general formula
introduced by Migdal in Ref{4], and apply it as a tool for The propagator for a massive Dirac field dnEuclidean
the derivation of some nonperturbative results in some quardimensions, in an Abelian gauge field background, is of
tum field theory models in £ 1 and 2+ 1 dimensions. course determined by th&uclidean actionS;,

This article is organized as follows: in Sec. Il we present

II. PATH-INTEGRAL REPRESENTATION
FOR THE PROPAGATOR

a detailed derivation of Migdal's representation, in a way R B ey
which is adapted to the applications that we consider after- St A) = | AR +m) o, (1)
wards. The (#1)- and (2+1)-dimensional cases are dis-

where theD=—id+eA and they matrices are Hermitian
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A, is an Abelian gauge field, regarded here as external, and N-1
e is a coupling constant with the dimensions of <X|U(T)|Y>=f [T d%
[masg“~— 972, k=1

The Dirac propagatoG(x,y) is the kernel of the inverse x(xN,l|e“[V(N‘l)'D+m]|xN,2>~ ..
of the operator defining the quadratic form$n, namely

PL(x|e” LMD mxy_,)

X (Xp|@ ™ V2)-Drml|y
G(X,Y) = () ¥(y)) =(X|(D+m) ]y), ) X(x;|e” ) DEml|yy, )

Then we may write the exact equation:
where we have adopted Schwinger’s conventiothK |y) for

K(x,y), the kernel of an operatdt in coordinate space, and N1

we have omitted the spinorial indices, although it should be <X|U(T)|Y>:f kHl dx
evident from the context thdix|K|y) is a 2x2 matrix for -
d=2 andd=3, and a 4«4 matrix whend=4. N

L1 xilexpt=ely(1)-D+ml}x ) |,

Assumingm>0, we may introduce the exponential rep- XP
resentation:
9
x|(D+m) 1 :jde <|U(T 4 where we have definedy=x and Xo=Y. For each of the
(i€ )y 0 Uiy @ factors under the scope of the ordering operator, we see that

(x|emD-Drmly )
defined by the operator

U(T) = ex — T(D+m)] ©) :f dpi(x|p)(pile O LMy ) (10

which, for N>1, may be approximated by
which acts on functional and spinorial spaces. Note that the

presence of a strictly positive massis required for Eq(4) (x|emD-Brmiy, )

to be correct, since we are implicitly assuming the boundary d

conditionU(+)=0, at least in the weak limit sense. ZJ P Qi1 (=X _1) g eli 7(1)- [y + €A, _ 1)+ m]}
A functional integral representation can be naturally intro- (2m)d ’

duced to deal with the operatbi(T), in spite of the fact that

U(T) is not the exponential of &onstant timesself-adjoint 11)

operator. As usual, in a first step, one splits up the “tinfe”

) . - . where we have ignored terms which give no contribution in
into a numbeN of intervals of sizee, with T=Ne. Namely, ¢ g

the N— oo limit.

The integration variablep, is then shifted: p,—p,
(XIU(D)]y)=(x|{exd — e(D+m)T}N|y), (6) —eA(x,_1), with the effect of disentangling the gauge field
from the y matrices:

and then one introduces spectral resolutions of the identity at (x,|e Ly -DEml iy

the intermediate pointg; , X5, ... XN_1,
dd
N1 zf 5 p)'dei[p|—eA(x|>]~<x.—x.1)e—e[w<l>~p|+m1.
e T
<X|U(T)|Y>:f ( I1 ddxk)<x|e (b+m)|XN—1>
k=1 (12)
X(xn-1]e” @ M]xy_5) - - Inserting this expression into E(), one sees that
X<X2|efe(|z>+m)|xl><xl|efe(lz)+m)|y>_ (7) N-1 N ddp N
| o
<x|U<T>|y>zf ( 1 ddxk)(H d)eﬂ%“f"*'-"ﬂ
It should be kept in mind that the matrix elements on the k=1 1=1(2m)

right-hand side of Eq(7) do not commute with each other;

the reason is of course that each factor isatrixin spinorial

space rather than a numbéas the abbreviated notation xXP
might suggest Those factorsan, however, be regarded as _
commuting objects, if they are put inside a “chronological” wherex,=(x;,—x,_,)/e. The time dependence of thema-
ordering symbolP, and they matrices are simultaneously trices may now be ignored, since the ordering along the sub-
given an(auxiliary) dependence on a discrete time index divisions of T is fully determined by the labell® of the p,

that keeps track of their relative positions: which is adjoined toy; .

N

e, iv)py

I=1

N

e-ice XA (13)
=1
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Taking the continuum limitN— oo with T=Ne fixed, one O(T)=e TP, (18
obtains the exadalbeit forma) expression
which has the eigenvalues TP, where|p|=\p,p,..
(xIU(T)|y>=f Dppxefgdr[ip-kfm] Qn the other hand, even for a sloyvly varyipg , inter-
esting effects may, and indeed do, arise as a consequence of
i Tdrbrief ek A the existence of nonintegrable Berry’s phases, which is a
xPle”HolPle~ielod™()-AXMI - (14)  \yay this representation has for displaying the nontrivial spin
of the field, in the adiabatic approximation.
where F_or a slowly varyingpﬂ(_r), a_nd assum_ingpﬁ(r)aﬁo to
g § § avoid degeneracy, the adiabatic approximation can be ap-
d®p(T) d*x(7)d%p() plied to obtain an expression far(T). If the initial (two-
d P (15) component state is an eigenstate @f0), it will, in this
(277') 0<7<T (277) N . N - A X
approximation, remain an instantaneous eigenstate during the

When used in combination with E¢), Eq. (14) yields the evolution. At this point, we introduce an explicit convention

representation for the fermion propagator we were lookind®" the d=3 y matrices: yo=03, y1=01, and y,=oy,
here o;, with j=1,2,3, denote the usual Pauli matrices.

DpDx=

for:
With this convention, they verify the relation:
® x(T)=x o .
(x|(lZ)+m)‘1|y>=f de DpDxelodlip x—m YuYo= Ol i€ mm - (19
0 x(0)=y
. A : Denoting by|v (7)) the instantaneous eigenstates at time
—ifTdrp1 a—iefidmx(7) - AX(1)] - : .
XPle Vo Ple %o \ 7, with the eigenvalues |p(7)|, respectively, we then have
(16) the adiabaticb (T),
. . . . g T

where we have indicated explicitly the boundary conditions q)(T):e.m(T)—fo d7|p(7)\]|v+(7)><v+(o)|

satisfied by the paths that have to be integrated out.

It is worth noting the role played by the extddp inte-
gration in the measure, E4l5): each phase-space volume +ei[yf(T)+f
factord?pd’ is dimensionless, thus the mass dimension of 0
the measure is determined by the exdf@ factor. Hence the
measure has units ¢fmasg®. Combining this fact with the
property[self-evident in Eq(16)] that T has dimensions of to each state. . . .

[masg ™!, we see that the propagator has the dimensions of . The 'normallzed mstantaneous elge_nstdte§(r)> can,
a[mas3? !, as it should bétwice the mass dimensions of a with suitable phase conventions, be written as
fermion field.

T

ey _ (1)) v_(0)], (20)

wherey..(T) denotes the nonintegrable phase corresponding

Cos@efi[as(ﬂ/z]
B. Adiabatic approximation and spin degrees of freedom |v+(7')>=
. . . % .
The fact that the functional integral describes the propa- Sinﬂeu[qsm/z]
gation of a spinning particle manifests itself in the existence 2
of a path-ordered factor,
_0(1)
T —sin——e " [4(/2]
O(T)=P[e ol 17)
lv_(7)= :
. . o(r) . P
whose properties we shall discuss now. cosTe'[‘/’(T) 1

The d=3 case is very special, sinee(T) allows for a 21)
quite straightforward interpretation as thguantum evolu-
tion operator for a spin-1/2 in thregpatialdimensions, in the where |p|, 6, and ¢ are the spherical coordinates of the
presence of a time-dependent homogeneous “magneti\t;ectorp '
field” p,(7). Of course, “evolution” is here understood to K’

mean evolution in the fictitious time. The three compo- po(7)=|p(7)|cosh(r),
nents ofp,, are then regarded as the spatial components of a
magnetic fieldB=(B;,B,,B3), with By=p;, B,=p,, B3 p1(7)=|p(7)|sinb(7)cose(7),
=Po-
It should be obvious that, within the crudest infrared ap- p,(7)=|p(7)|sin@(7)sin(7).
proximation where only constam, trajectories contribute, (22)

O (T) will not exhibit any interesting behavior regarding its
spin aspect. Indeed, for a constant magnetic field, one knowBhen, the spinning nature of the field is evident from the
that phasesy.(T), which are given explicitly by
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(T d with a constanB, we may take the; axis along the direc-
y=(T)=i fo dr(v(7)| E_|U¢(T)> tion of B, and writeH as follows:
_ ta_aat
_+1JTd deb(7) ; s H=B(a'a—aa'), (26)
__E o TTCOi (7')] ( )

wherea and a' are Fermionic operatora’=0, (a')?=0,

, , {a,a’}=1, andB=|B|. Of course, in this two-dimensional
For a closed patlt in the evolution ofp,,(7), Hilbert space, those operators may be understood as defined
by the matrices

1 1
(T =t—Jd cos¢9=i—f d¢/\dcosb, (24
y+(M=25 do 3) 508 (24 -

10

a= , al=

0 1
0 O)' @7
whereS(C) is a regular surface with as the boundary. Note
that a closed path appears when the integral is evaluated with _ ) )
boundary conditions for the momenta, typically periodic,The kernell of the evolut|_on operator can be written in '_[he
rather than the coordinates. holomorphic representation, where the operators defined
It is clear, either in its form23) or (24), that the phases aPOVe act on the space of “analytic” f“,”Ct'orfE/gf):_a
y. do correspond to actions that can be used for the quarit P& Where & is a Grassmann variable, withbe C, with
tization of a spin-1/2 degree of freeddii, in the presence the scalar product:
of an external magnetic field, in three spatial dimensions.
The reason for their appearance here is of course the fact that
the Lorentz group in 2 1 dimensions has been mapped into
SO(3) by the Wick rotation. Those groups have different sets
of irreducible representations. The sgirene, however, has The action of the operators &— d; , a'—¢, and it is trivial
a similar meaning and properties for both of them. to check that they are adjoint to each other for the scalar
It is interesting to compare the situation here with the oneproduct defined in Eq(28).
in 1+ 1 dimensions, where the representation of Dirac's al- The kernel of exp{iTH) can then be represented as a
gebra is also constructed in terms 0k2 matrices, but only  functional integral,
two of them appear ip(7). It only takes a little amount of
thought to see that the phases(T) vanish in this case. _ _ _
Finally, we comment on the-81-dimensional case. Now (Elexp(—iTH)| €)= J D¢DEexd —S(6,6)], (29
the v matrices in the irreducible representation are of44
order, however, it is obvious that the eigenvalde€Tl) are
still given by the expressioe™ TP, where |p|=p,p,..
The main(and important difference with the lower dimen- o T o
sional cases is thabeing they matrices of order %4), S(§,§)=§(T)§(T)+f dr &(r)&(r)—2iBE(T)&(7)+iB],
each eigenvalue is doubly degenerated. 0
Thus the Berry's connection shall be given by a non- (30)
Abelian SU?2) gauge field, and as a consequence the expres-
sion for the adiabatic phases cannot be given as explicitly agnd the paths in the functional integtab) verify the bound-
for the 2+ 1-dimensional case. ary conditionsé(T)=¢ and ¢(0)=¢.
Things are different when the magnetic field depends on
C. Local action representations in 2+1 and 1+1 dimensions ~ time, since then the Hamiltonian cannot, in general, be di-
agonalized by the same similarity transformation at all times.

It may be desirable, in some contexts, to have a pathjygeed, for a generat-dependenp,,, we have to deal with
integral representation fofx|U(T)|y) where the paths are o Hamiltonian

integrated with a local weight, that can be defined in terms of
an action functional. It is clear that the factd(T) is an _ fo .
obstruction to that goal, and that a suitable local action rep- H(7)=2po(7)a’a—po(7)+[ps(7) +ipa(7)]a
resentation for that object would immediately solve the prob- +[pi(7)—ip,(7)]a. (32)
lem.

Recalling the magnetic field analogy already used in thg¢ ie 404 is to implement the adiabatic approximation, it is
previous subsection, we try to use Grassmann variables Qo convenient to usk (7) in terms of its canonical diag-
represent the kernel for thl(T) operator. That this can be

done for a spin-1/2 particle in aonstantmagnetic-field
background is a well-known fact. Indeed, for a Hamiltonian
of the form

<t@=fd@§ﬁﬁ5ma. (28)

where

onal form:
H(7n)=[p(7)|V (1) a3V(7), (32
H=B-o (250  where
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o(r) . o(r) dure of “completing the square.” Indeed, there is a differ-
-~ aile(n2] i _( —i[é(n)/2] ; o ;
cos——¢e sin——¢ ence with the usual Gaussian integral in the fact that the
V(7)= source terms mix Grassmann anghumber variables. Be-
_0(7) i[6(7)/2] 6(7) Sile(n)12] sides, except for the case when the adiabatic approximation
—sin e cos e : .
2 2 is used, the local action has the somewhat unpleasant prop-

(33 erty of having a nonvanishing Grassmann parity. However,
that property is also present in other formulations of the par-

is a unitary matrix that changes the basis to the instantaneoyg|e path integral, since it is an unavoidable feature of any
eigenstates. If now a functional integral representation is inspinning particle propagator: the fact that it should be a ma-
troduced, and the adiabatic approximation is made, it is evigrix in some internal space means that we cannot do with a
dent to realize that the evolution operator will be similar t0 purely c-number action.
the one of the cas€9), except for the fact that there will The corresponding result for the propagator i 1 di-
arise a contribution proportional to t_he diagonal elements ofnensions comes at no extra price; indeed, adopting the con-
9. V'(1)V(7), and these are again the Berry's phaseSyention thaty, is represented by, andy, by o,, we see

Namely, one obtains that the analog of Eq.31) is now
(§|<I>(T)|E)=fDgDEexp[—S@(g,ET)], (34) H(7)=[po(7) +ip1(7)]a+[po(7) —ipi()]a’. (39
where Thus, in 1+1 dimensions, we have
- = T o[ . o [ X(T)=x,&(T)=¢ _
Sq>(§,§:T)=§(T)§(T)+fO dr| &(7)é(7) X|(D+m)~Hy) fo dex(O)zy‘m)ngprDgDé
de(7) xexd —S(px.&&T)], (40)

1 —
_i(po(T)_ 5 cose<r>)§(r>§(r>

where

: 1de(7) —
+i| po(7) = 5 —g-—c0s0(7) [£(7)&(7) |. _ T o . _
S=§(T)§(T)+J drf —ip-x+m+£&E—i(potips)é
(35 0
If no approximation is implemented, an exact path- —i(po—ipy)é+iex-Al. (41)
integral representation can still be written; it corresponds to
using an action D. Perturbative expansion
_ _ T _ An important check the functional representation must
So(&,ET)=E(T)ET) + jo dr{§&—ipo(£E—E&8) pass is that it should reprodudat least the perturbative,
smalle, expansion for the fermion propagator in an external
—i(py+ipy)é—i(pi—ipa)El. (36) field. To do that, we expand the exponential inside the func-

tional integral of Eq.(16). Using the symbolj(x,y) to de-
This can be inserted into E¢L6), to derive the local action Note the functional integral representatid), we see that
representation:

= (X=X = _ gx.y)= 2 GM(xy), (42)
<XI(D+m)‘1Iy>:f de _ _DpDXDEDE n=0
0 x(0)=y,£(0)=¢
_ whereG () is the zeroth-order term,
XeXd—S(p,X,g,g;T)], (37)

GOx,y)
where

%© X(T)=x T, - T
_ T _ _ =f dTJ DpDxelodrlip-x-mpfg=ifodrb(n)]
S(p,X,&,ET)=E(MET) + JO dr—ip-x+m+£&¢ o xO=y

(43

—ipo(£€— €€ —i(py+i
Pol ¢ fgj (Pl P2)é which, as shown in Ref[7], correctly reproduces the free
—i(py—ipy)é+iex-Al. (38)  propagator:

An important remark is in order regarding the last expres- d3p elPxy)
sion. In spite of the fact that the Grassmannian part of the g(O)(x,y):f . (44)
action looks Gaussian, it cannot be integrated by the proce- (2m)2 ip+m
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There is an auxiliary identity involving the functional inte-  The term of orden is given by
gral that appears in expressiofid) for the free propagator

that shall be useful in what follows. It can be derived from —ie)" (= T
the fact that the integral GM(x,y)= f dTJ dry
X(T)=x Taeip-x—m] oy a—if1d7p(z X(T)=x :
jx(0)=y Dprefo Lip ]P[e Io B )] (45) f dTnf (M= Dppxégdr[illx—m]
x(0)=y
is independentof the boundary values of the momentum. i ()
Thus XPle Vi x, (t)A, [X(T1)]- -
0 fX(T)_XDpr ) efgdf[ip-kfm]pe*ifgd‘fﬁ (46) Xx,un( Tn)A,un[X(Tn)]- (49

x(0)=y opL(T)

) ) The integral over the “intermediate times", ... ,7, is
and an analogous equation fofT) —p(0). Then we derive  opyiously symmetric under permutations of the For each
the identities possible ordering among them, we now select the maximum

X(T)=x _ L . time, irrespective of the ordering among the remai_ning times.
f DppxxM(T)efodT['P'X*m]Pe*'fodTﬁ We then rename that maximum time as;:” Obviously,
x(0)=y there aren possible contributions to take into account, thus

X(T)=x o . we may writeG (" in the equivalent way,
— yuf DprXéOdT[ip-X*m]fpe*ifod‘r[ﬁ (47)

x(0)=y 0y
n
and g (n— 1)'j dTJ dTlJ drz:-
= . x(T)=x -
J 0 " DpDx,(0)el irlipx-mlpg-iffdrb J dr, f DpDxele 1o xri
X(0)=y " x(0)=y
X(T)=x . . “i Y Y ( 1) -
:L(O)y Dppxefgdfllp-x—m]pe—Ifgdfbyﬂ_ (48) XP(e Mo P)X( 1) ALX(71)]
XX(7q) - ALX(70)], (50)

It is important to remember that the functional integral has a

matrixlike weight, so thaty, cannot be freely commuted where the times;, with i #1, haver; as their new upper
with it. Besides, in both of the previous expressions, oneya|ue.

cannot movekﬁ(T) and >'<M(O) out of the integral symbol, The paths being integrated out in the path integral can
since their values are integrated out, because they are ntiten be split at the time; by an application of the “super-
fixed by the boundary conditions oq),. Finally, both Egs. position principle” for path integrals, which then requires the
(47) and (48) can also be easily proven to hold true in the value of x(7) at the timer,; to be integrated over all its
safer, regulated context of the discretized path integral.  possible values(7)=z. Using also Eq(48), we see that

X(T)=x o
G0 (x,y)= o f at| ar, f dryeo- | an, [ a2 " pppxeTtn o
(n— 1) x(77)=2

. X(Tl):Z 7. .
xP[e"fIIdTp]A(z)J' DpDxelodrip-x-m
x(0)=y

XPLe o9 IX(75) - A[X(72) ]+ X( ) - ALX(7)]. (52)

Focusing now on the two time integrals which involve the variaflesd 7;, we see that their order of integration can be
interchanged, if one properly modifies the integration ranges:

) T ) )
[Car[(ary = [(on ... o
0 0 0 n

Interchanging those two integrations, and making also some trivial rearrangements, we see that
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x(T)=x o )
GM(x,y)= —|eJ d®z f d71J dTJ DpDxel 7 47ip x=mip(g-if7 dr)

X(r)=z
oot f d f d JX(H) “DpDxelgdspx-m
T T xe o "R
T : "oy
xP(e ™)X (12)- AX(72)]- - - X(7n) - ALX() ] (53
|
Noting that I1l. CHIRAL ANOMALY AND CHERN-SIMONS CURRENT
X(T)=x In this section we perform another test on the method,
f de Dppxeﬂldr[ip~>'<—m]p[e—if11drp(r)] with the derivation of two nonperturbative objects: the chiral
x(1))=2 anomaly in &1 dimensions and the Chern-Simons term in

2+1 dimensions. They have of course been evaluated in the
particle functional integral framewofl6]; our aim is to show
_ . o how to obtain them directly from the functional integral rep-
and recalling the expression for the oraecontribution, Eq.  resentation(16), by evaluating the corresponding vacuum
(49), we are led to the relation currents. Besides, the role of the regularization is, as we shall
see, more transparent in this calculation.

We shall first deal with the chiral anomaly int1l dimen-
sions, since this example already exhibits all the difficulties
and properties of the evaluation of topological terms in this

(Yn=1), which is, indeed, equivalent to the usual perturbafepresentatmn Moreover, we shall use a gauge invariant

=gO(x,2) (54)

GM(xy)= f 26O (x,2)ie A2 D(zy) (55

tive expansion for the propagator: Pauli-Villars regularization, that can be introduced smoothly
within the representation we are dealing with, since it re-
g(n):g(O)_ieg(O)Ag(0)+(ie)zg(O)Ag(O)Ag(0)+ . quire.s the introduction ofjust) one fermion propagator-.
(56) It is very well known[8,9] that.4, the anomalous diver-

gence of the axial currerd® = ¢y, ysi,

It should be evident that the fact that we have not used the 5
“local action” representation is not crucial to the previous 9,3, () = A(X), (58)
derivations. It is, indeed, possible to encompass all the
changes that proceeding otherwise would produce. The maff@y be obtained from the regulated trace of shematrix,
differences arise of course in relatiot#7) and (48), since ~namely,
one does not have thg matrices. It is, however, far from
difficult to see that, in the corresponding local action repre-
sentation, the equivalent identities relate integrals with com-

ponents oko(T) to integrals with Grassmann variables. For where

A(X)= lim A, (x), (59

A—oe

example,

ki) AA(X)——Ztr{ s <le( )IX) ] (60)

f DpDXDEDE————(T)exf —S(p.X,£ & T)] _ _ _ _

wheref is a function chosen in order to tame the UV diver-
L . gences, which means that it has to satisfy
=f DpDxDEDEE(T)exd —S(p.x,£,6T)],  (57)
f(0)=1, f(xo)=f'(*x0o)=f@(*+0)=...=0,
(61)

where both integrals are evaluated with the boundary condi-
tionsx(0)=y, x(T)=y and £(0)=¢, &T)=&. Of course, this is a gauge-invariant regularization, and,
’ ’ moreover, the results, are independent of the detailed form of

On the other hand, integrals involving will be related to . o . o
Grassmann bilinears. We shall not proceed, however, wnﬁ' as long as it verifies the previous conditidi83. The par

2y—1; ; i
the derivation of the perturbative expansion in that settingtICUIar choicef (u) = (1+u) ~is very convenient, since we

tan use a simple fractions decomposition and the factthat
since it would necessarily require, at some point, to reintro-

duce they matrices. anticommutes withy,, to write Eq.(60) as follows:

We wish to stress, however, that a perfectly consistent
perturbative expansion could be built in terms of the local A(X)=—21r
. . . . - A Vs
representation, without using thematrices explicitly.

o1 (62)
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Then we apply the general expressid®), with x=y and o gt
m=A, to write the fermion propagator that appears in Eq. Ar(x)= _Zfo dtJ Dp tr{ysPle” (MModble)]}
(62) as a particle path integral, obtaining

Xe—ief‘ods[aliap(s)]-A

S
x(0)+ j ds 5/ié‘p(~s)]}

x(T)=x 0

AA(x)=—2Af de DpDxelodrlip-x-Al
0

x(0)=x

, X f/DgedeS“P'H]. (68)
X trf ,y57)[e—ifgdrﬁ(r)]}e—iefgdrx(r) AIX(7)]

(63)  The functional integral ovef, including the constraint, can
be explicitly evaluated, for example, by including the con-
The constantA may be absorbed in a redefinition ®f t  Straint through the addition diet) another Lagrange multi-
=AT is now a dimensionless “time,” while we also intro- Plier, i.e.,
duces= A7 for the “proper time” that appears inside the
integrals. Then, expressing all the functions in terms of the ' i
new variables, f Dyelosip-¢ 1]:J' DZJ'

d’w
e'fods(p'g+w‘§)e7t
27)?

(

_ = [O=x oS bdslip - (dwds) 1] d?w
AA(x)——ZfO dtL(o)=XDpDX 0 =f S p+wlet. (69
(2m)?

—(i/A)[Edsh(s —iefLdsX(s)- A[X(s
xtr{ysPle Hoisk le Tt @, It should be noted tha#[ p—w] is a functional, and that
(64)  the integral ovew is a relic of the constraint over thé

integration. Thus we arrive to a more tractable expression for
where thex which appears in the boundary conditions doesthe anomaly,
not have to be integrated, but it is tlifixed) value corre-
sponding to the argument of the current operator. o d’w o
Following a similar techniquébut a different notationto ~ Ax(X)=— 2f dte‘tf zf Dp tr(ysPe” (MM odsh)
the one used in Ref6] to evaluate thep vacua term, we 0 (2m)
introduce the change of variables:

Xe—ief},ds[ﬁ/iap(s)] A

x(O)+J'Od~s[§/i§p(’é)]}5[p+w]'
X,(8)=x,(0)+ fo ds¢,(s), x(0)=x, (65) (70)

A simple power-counting argument shows that by expanding
which has a trivial Jacobian, so thBx=D¢, and Eq.(64)  the e dependent term in the exponential, only the first-order
becomes term will contribute whem\ — 0. Moreover, in that term just

the one which is of order 2 in the functional derivative over

o . p survives(as it is seera posterior). Thus thep integration
Ar(x)= —ZJO dtJ DpDLeloddip- 1] can also be explicitly performed:
Xtr{ysqe*(iIA)desb(s)]} Ar) = ATy (A~), (71)
s whereT ,, is a constant tensor, given explicitly by
. t o oh
@~ i8S dsi(s)- Alx(0) + J dsg(s)] (66)
° d2W 0 t s
TW=—2ief J dte‘tj dsj ds’
It is important to note that the boundary conditions %an (2m)2J0 0 0
Eqg. (63) mean that th& variable has to verify the constraints
5°®[p]
t , |p: —w? (72)
f dsZ,(s)=0, u=01; (67) 9P(8)9P,(S")
0

where

the existence of those constraints will be indicated Byim .
the integral symbol, when rewriting theintegral of Eq.(64) D[ p]=tr ysPe~ (/MSodshs)] (73
in terms of the new variables.

Then we take advantage of the fact that the result has tandp in Eq. (72) is set equal to the constantw after the
be a local polynomial imA, to write functional differentiation.

105022-8



TESTS AND APPLICATIONS OF MIGDAL's PARTICIE . . . PHYSICAL REVIEW D 69, 105022 (2004

For the evaluation o’ we note that

wvs T, [p]=t( ,yﬂrpe—(i/A)fgdsb(s)]_ (82)
e -
TW=i _ 2J dtt2ettf YsVu¥s el(t/A)é)] More explicitly,
(27) ,
e d 1 @3
d2 R W T T € V)\f tr ; 83
ST i " f dt 2 e '[! Né], (74) g A e [ (a-ie)?

(2m)?J0

A standard evaluation of the momentum integral yields
where we have used that

e
YuYv= Ol Fi€u, s, (79 Runm =7 €un- 849
with | the identity matrix. Finally, Finally,
2e d?w 1 e
Tw:_fu (277')2 i 3| (76 \JM:%EMV)\(?VA)\, (85
A which again reproduces the correct result.

It is worth noting that no extra regularization has been
introduced in order to regularize the anomaly and the Chern-
Simons term, which is different from previous calculations in
this context. Some of them seem to indicate that a space

The w integration is convergent and its result is proportional
to A2, which cancels out thd ~2 factor,

T =—¢ —| ax —3x resolution scale plays an important role. We have seen, how-
my wr = Jo (1+x)3 ever, that the usual UV regulator does the trick.
e IV. PROPAGATION IN A CONSTANT
= ;éw' (77) ELECTROMAGNETIC FIELD

We calculate here the Fermionic determinant for a mas-
sive Dirac field in the presence of an external constant elec-
tromagnetic field, in 21 Euclidean dimensions. We define

Then we conclude that the anomal{(x) has the proper
result, namely,

A(X) = e,”aMA (x). (78) exl —I'(A)]=de(D+m), (86)

where the gauge field entering the covariant derivative is
Note that, because of the gauge invariant regularization prasuch that
cedure, we already knew that,, had to be proportional to
€uv- a,A,—d,A,=F,,=const (87)

Let us conclude this section with the evaluation of a re-
lated object: the vacuum Chern-Simons current for the Abeln @ symmetric or coordinate gauge, we can adopt the con-
lian case, in 2-1 dimensions, as determined by the parity figuration
anomaly. The vacuum Chern-Simons current, in a Pauli- 1 1
Villars-like regularization, is given by A ()=~ EFMXVZEEWVFPXV_ (89)
J,(¥) ==ty XD+ M)~ Hx)], (79

We consider here a gauge-field configuration where only two
whereM —, and all the objects are assumed to be define¢domponents oA\, are nonvanishing, and lead to a constant
in 2+1 Euclidean dimensions. An entirely analogous deri-electromagnetic field. The parity-odd part of the effective

vation yields action is zero for this sort of configuration, since
‘]M(X)Z_RMV)\aVA)\ (ANOO)! (80) Ap,f,u,vpaVAp:AM’ii,u:O' (89)
where To evaluatel'(A), we use an integral representation for
the logarithm; as usual we apply the formula
8°T ,[p]
—i— f . f dte” f ds'——— =dT
(2m) SpA(S)3p,(S) In(a/b)=—f — (e Ta—g"Th) (90)
(81 oT
with (Re(@)>0, Rep)>0) so that
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T'(A)=I'(A)-T(0) l(p)= 5“')”]%} Dxlezexp( ieﬁofOTdilxz

=fmd%rTr[e‘T(ﬁ’*m)—e‘T(é““)]. (92) T _
0 +i fo dT[Xl(T)pl(T)+X2(T)p2(T)])- (96)

Introducing then the particle path-integral representation, we

see that . - . .
Introducing now an auxiliary variabl, and the velocity;

dT T for the x, coordinate we have
F(A):f?e*mf Dp tr(Peod™h)
0

T | —5""de12>2> '”Fde
Xﬁifdfp#-x#, ©2 (P)=dlp'l5—| 5 ~PiiDxexp ieFo . 7L1(7)Xo(7)

« j DxelieDI ™, F .,
0

T
which differs from Eq(91) by an(infinite) field-independent +if dr{Z1(7)[pa( T)+W1]+X2(T)p2(7')})a 97)
constant. 0

We now proceed to evaluatgp], the Gaussian integral
over periodicx,(7) paths in Eq(92). After an integration by  wherew; is independent of. Integrating now ovex, and
parts, {1 we arrive at

ie (T ~ -
|[p]=f DXGXF(—ZJdTXM(T)f,WFpXV(T) Lo Lofdw i(T.
x(0)=x =siph— | =% —
(©)=x(T) 0 I(p) 5[p]277f 271_[dXZ(O)exp(eT:OJOdrpl(r)pz(r)

T .
~i [ dax(n)- b +x(0)-[o(T) - p(0)]. .
i —wy[po(T) — p2(0)]) : (98)
(93 eFo

The role of the last term is, after integrating ovd0), to . . .
enforce the conditiop(0)=p(T). We can then erase that The integral ovex,(0) is proport|ona'l to the total Igngth of
term when evaluating[ p], while keeping in mind the fact the space._ On the other hand,~ the integral olv@rglv_e_s a
that the remaining functional integrébver p) in Eq. (92) delta function which producege&zo factor, and an additional
must the be evaluated with periodic boundary conditions fofotal length factor. So we arrive at

p(7).
We now decompose,,(7) into parallel &l) and trans- v ~ -1/

~ . _ _eF0€jk(97.

verse ') components alon§, I[p]=d&[p' ek, der( —)
(217)2 27i
X,,(7) =X, (1) +x4(7), (94) .
(i/2eFg) | drpjeias

therequ(r) is the projection ok ,(7) along the direction of X etieero fo PIEikP, (99

Fu andxﬁ(r) its orthogonal componenix{ -F=0). It is
evident that the parallel component does not appear in thghere v is the total (infinite) space time volume. For the

quadratic part of the exponent in H§3), so that its integra-  gake of simplicity, we shall assume in what follows that
tion yields a functionab of the derivative of the longitudinal cE->0
0 .

component of the momentum: Using the resul{99), we may now calculate the remain-

L ing functional integral ovep, in Eq. (92). Indeed, the lon-
[[p]= é[p”]—f Dx* gitudinal component op shall be constant, so it can be ex-
27 )i 0)=x-(M) tracted out of the path-ordering symbol, while for the two
U (L transverse components we take advantage of the following
X @(1€/2)] o4, €p,F pX,, ~ f OdTX;Lp,u, (95  fact: functional integrating an ordered product of transverse

components with the quadratic weight above amounts to tak-
whereL is the(infinite) size of the integration in the parallel N9 & trace over the Hilbert space corresponding to the two
direction. The Gaussian integral over the two remainingnoncommuting operatong, andp,:

components ok can now be performed, and the result may
be written in terms of the two transverse components of the

momentum. Using a coordinate system such thaand p, [P1,p2]=—ieF,. (100
denote the transverse components, wﬁij@points in the 0
direction, we see that More explicitly, we repeatedly use the property
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:
j Dp*Plpi,(71)- P (frn)]e(”zeFo)J d7pj€jid Py
p(0)=p(T) ! n 0
_ T
poLe(iIZGFO)f dijejk(ngk
0
=Trpi,(70)- - Pi ()], (101

where the indices; - - - i, can only take the values 1 and 2. A
possible way to prove Eq101) is to write its left-hand side
in operatorial form. Since the Hamiltonian that dictatesthe

evolution vanishes, the expression on the right-hand side fol-

lows.
Thus we arrive to the following expression fbA):

V »dT
—e
ot T

~ = dpg NI
I'(A)= eFy 7mTJ, ETr(e*'T'ﬁe*'Wopo).

(2m)?
(102

In terms of the representatiofy=03, y;=04, and vy,
=o0,, we have

V _ C>OdT +:>0dp0
I'(A)= eFo —e—mTf —
(277)2 ot T —w 27T
XTr[e"iT 2eFgag- iTPoos], (103
where
. (0 a
= . 10
=l g (104

with a=(p,—ip,)/ V2eF, and[a,a’]=1. Since the inte-
gration overpg is over an interval symmetric about 0, we use
the fact that

+edpy
f —Wsm(TpO):O (105
to write
V _ o dT +°0d po
I'(A)=—¢eF, —e*mTf —
22 ot T o 2w
X cog Tpg) Tre T V2eFoa]. (106

On the other hand, it is simple to show that the operator

|

has the eigenvalues \/ﬁ withn=+1,+2, ..., and no de-
generacy. Thus

a
0

0

’

al

(107)

PHYSICAL REVIEW D 69, 105022 (2004

V _ (=dT
I'A)=—ekF,
a2 o*

+edp
e*mTfo —Ocos(TpO)

2w
X >, cogT(2eF,n) 2.
n=1

T

(108

We take advantage of the explicit dependence of this result
on the external field to subtract the zero-field contribution,

- vV _ (=dT
I'(A)=—eF —e

’772 T

=dpg

—co9q T
0 2m <Tpo)

-mT
0.

x >, {cogT(2eFyn)?3—11,
n=—1

(109
and after performing th& integration,
Voo +=dPg (Po— Kn)*+m?
rAa)=- eFo>, f — | In| ———
(2m)? n=1Jo 2w p3+m?
(pO+Kn)2+m2
+In| ——| |, (110
po+m?

where we introducedc,= ZeEOn. Finally, the contribu-
tions may be rearranged into the expression

+00de
S | 5

n=1

V

[
(277)2e

T(A)=-

2, .2, 22 2 2
(Po+ M+ kp)“—4pgxn,
XIn

(110)

(p5+m?)?

The direction of the(constant Euclidean fieldl~:# is arbi-

trary; we may of course replade, everywhere byF|. The
momentum integral is along the “longitudinal” direction,
which does not necessarily coincide with the zé&nmelike)
one. Then

\Y,

+=dpy
eF —

Efo 2m

0
n=1

T(A)=-

(2m)?

(pf+m?+ 2e[F|n)?—8pfe|F|n

XIn

|

(112

(pf+m?)?

which has an explicitly covariant and frame independent
form. The fact that the result depends only on the square of
the mass, and not on its sign, confirms that the parity-odd
term vanishes for this field configuration. In other words, the
spectral asymmetry is zero.

Integrating over the momentum one arrives at a sum of
the form
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o cases, we have seen that the exact results are obtained.
E Vm+2e|F|n, (113 We also considered particle propagation in a constant
n=1 electromagnetic field, deriving an expression for the effective
: . . . . action using Migdal's representation.
which can be analytically continued to the Hurwitz function s yind of calculations provide, we believe, further sup-
and so it agrees .W'th the result of previous calculatidrs). port for the use of these representations in the derivation of
The 1+1-dimensional case can be obtained at no cost. uantum field theory results, either analytically or numeri-

Thg representation for t_he Dirac propagator in terms o.fgally. The developments presented here can also be useful for
path integrals used above is not the only possible one. It igye"\yorld line in practice given, for instance, the problems
possible to de'.“"e thg full ferml'on propagator by using a Selyith renormalization in general and the difficulties of the
of Grassmannian variables which carry all the spin informaeconq.order formalism with external fermions and spectral

tion and avoids the presence of the path ordering Operat%{symmetry originated by the Dirac operator such as the

[10,6,11,12 This will be discussed separately in detail. Chern-Simons term.
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