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Tests and applications of Migdal’s particle path-integral representation for the Dirac propagator
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We derive some nonperturbative results in 111 and 211 dimensions within the context of the particle
path-integral representation for a Dirac field propagator in the presence of an external field, in a formulation
introduced by Migdal. We consider the specific properties of the path-integral expressions corresponding to the
(111)- and (211)-dimensional cases, presenting a derivation of the chiral anomaly in the former and of the
Chern-Simons current in the latter. We also discuss particle propagation in constant electromagnetic field
backgrounds.
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I. INTRODUCTION

Particlelike path-integral representations have been u
in quantum field theory for a long time, starting with th
pioneering work of Schwinger@1#. In this approach, the ob
jects of interest are expressed in terms of path integrals
particle trajectories in proper time, something which is clo
in spirit to Feynman’s propagator approach@2# than to stan-
dard quantum field theory methods. Indeed, a propagato
always susceptible to a dual interpretation: it can be und
stood as the result of an average over field configuratio
but also as a sum over proper-time ‘‘first-quantized’’~i.e.,
particlelike! paths.

This representation has been more recently applied to
derivation of many interesting results, since its use provi
a framework which often becomes convenient for the int
duction of nonstandard calculation techniques@3#. One of the
reasons for this is that the interaction term appears in
exponential form, and this can make it possible, sometim
to integrate out the field that mediates the interaction.

For the case of nonzero spin fields, different proposals
the integral over first-quantized trajectories have been
vanced. Since they usually involve different sets of variab
the task of relating them is far from trivial, unless it is u
dertaken at a purely formal level. Concrete calculations,
the other hand, are always useful in order to understand
properties of each formulation on a deeper level.

With that in mind, in this article, we consider the partic
lar case of the path-integral representation for Dirac fie
introduced by Migdal in Ref.@4#, and apply it as a tool for
the derivation of some nonperturbative results in some qu
tum field theory models in 111 and 211 dimensions.

This article is organized as follows: in Sec. II we prese
a detailed derivation of Migdal’s representation, in a w
which is adapted to the applications that we consider af
wards. The (111)- and (211)-dimensional cases are di
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cussed in more detail, and a local action representation s
able for them is introduced. At the end of this section, t
equivalence between the path-integral representation and
standard formulation is explicitly shown to be true order
order in perturbation theory.

Going beyond the perturbative expansion, in Sec. III
present derivations of the chiral anomaly in 111 dimensions
and of the Chern-Simons term in 211 dimensions; these ar
two nonperturbative tests that, as we shall see, reproduce
proper results.

The propagation in a constant electromagnetic field ba
ground in 211 dimensions is discussed in Sec. IV, by eva
ating the exact Fermionic determinant in the present form
lation. Finally, in Sec. V we present our conclusions.

II. PATH-INTEGRAL REPRESENTATION
FOR THE PROPAGATOR

We shall present here, for the sake of completenes
derivation of the particle path-integral representation for
fermion propagator in an external Abelian gauge field. B
sides, the procedure will emphasize some specific aspec
the 211- and 111-dimensional cases, such as, for examp
the realization of the spin degrees of freedom. We shall a
obtain the standard perturbative expansion within this fram
work.

A. Derivation of the general formula

The propagator for a massive Dirac field ind Euclidean
dimensions, in an Abelian gauge field background, is
course determined by the~Euclidean! actionSf ,

Sf~ c̄,c,A!5E ddxc̄~D” 1m!c, ~1!

where theD52 i ]1eA and theg matrices are Hermitian
and verify the Clifford algebra:

$gm ,gn%52dmn . ~2!
©2004 The American Physical Society22-1
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Am is an Abelian gauge field, regarded here as external,
e is a coupling constant with the dimensions
@mass# (42d)/2.

The Dirac propagatorG(x,y) is the kernel of the inverse
of the operator defining the quadratic form inSf , namely

G~x,y!5^c~x!c̄~y!&5^xu~D” 1m!21uy&, ~3!

where we have adopted Schwinger’s convention:^xuKuy& for
K(x,y), the kernel of an operatorK in coordinate space, an
we have omitted the spinorial indices, although it should
evident from the context that̂xuKuy& is a 232 matrix for
d52 andd53, and a 434 matrix whend54.

Assumingm.0, we may introduce the exponential re
resentation:

^xu~D” 1m!21uy&5E
0

`

dT^xuU~T!uy& ~4!

defined by the operator

U~T!5exp@2T~D” 1m!#, ~5!

which acts on functional and spinorial spaces. Note that
presence of a strictly positive massm is required for Eq.~4!
to be correct, since we are implicitly assuming the bound
conditionU(1`)50, at least in the weak limit sense.

A functional integral representation can be naturally int
duced to deal with the operatorU(T), in spite of the fact that
U(T) is not the exponential of a~constant times! self-adjoint
operator. As usual, in a first step, one splits up the ‘‘time’T
into a numberN of intervals of sizee, with T5Ne. Namely,

^xuU~T!uy&5^xu$exp@2e~D” 1m!#%Nuy&, ~6!

and then one introduces spectral resolutions of the identit
the intermediate pointsx1 ,x2 , . . . ,xN21 ,

^xuU~T!uy&5E S )
k51

N21

ddxkD ^xue2e(D” 1m)uxN21&

3^xN21ue2e(D” 1m)uxN22&•••

3^x2ue2e(D” 1m)ux1&^x1ue2e(D” 1m)uy&. ~7!

It should be kept in mind that the matrix elements on
right-hand side of Eq.~7! do not commute with each othe
the reason is of course that each factor is amatrix in spinorial
space rather than a number~as the abbreviated notatio
might suggest!. Those factorscan, however, be regarded a
commuting objects, if they are put inside a ‘‘chronologica
ordering symbolP, and theg matrices are simultaneousl
given an~auxiliary! dependence on a discrete time indexk,
that keeps track of their relative positions:
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^xuU~T!uy&5E S )
k51

N21

ddxkDP@^xue2e[g(N)•D1m] uxN21&

3^xN21ue2e[g(N21)•D1m] uxN22&•••

3^x2ue2e[g(2)•D1m] ux1&

3^x1ue2e[g(1)•D1m] uy&#. ~8!

Then we may write the exact equation:

^xuU~T!uy&5E S )
k51

N21

ddxkD
3PF)

l 51

N

^xl uexp$2e@g~ l !•D1m#%uxl 21&G ,

~9!

where we have definedxN[x and x0[y. For each of the
factors under the scope of the ordering operator, we see

^xl ue2e[g( l )•D1m] uxl 21&

5E ddpl^xl upl&^pl ue2e[g( l )•D1m] uxl 21& ~10!

which, for N@1, may be approximated by

^xl ue2e[g( l )•D1m] uxl 21&

.E ddpl

~2p!d
eipl•(xl2xl 21)e2e$ ig( l )•[ pl1eA(xl 21)1m] %,

~11!

where we have ignored terms which give no contribution
the N→` limit.

The integration variablepl is then shifted: pl→pl
2eA(xl 21), with the effect of disentangling the gauge fie
from theg matrices:

^xl ue2e[g( l )•D1m] uxl 21&

.E ddpl

~2p!d
ei [ pl2eA(xl )] •(xl2xl 21)e2e[ ig( l )•pl1m] .

~12!

Inserting this expression into Eq.~9!, one sees that

^xuU~T!uy&.E S )
k51

N21

ddxkD S )
l 51

N ddpl

~2p!dD ee(
l 51

N

[ ipl• ẋl2m]

3PFe2e(
l 51

N

ig( l )•plGe2 i ee(
l 51

N

ẋl•A(xl 21), ~13!

whereẋl[(xl2xl 21)/e. The time dependence of theg ma-
trices may now be ignored, since the ordering along the s
divisions ofT is fully determined by the label ‘‘l ’’ of the pl
which is adjoined tog l .
2-2
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Taking the continuum limit,N→` with T5Ne fixed, one
obtains the exact~albeit formal! expression

^xuU~T!uy&5E DpDxe*0
Tdt[ ip• ẋ2m]

3P@e2 i *0
Tdtp” #e2 ie*0

Tdt ẋ(t)•A[x(t)] , ~14!

where

DpDx[
ddp~T!

~2p!d
)

0,t,T

ddx~t!ddp~t!

~2p!d
. ~15!

When used in combination with Eq.~4!, Eq. ~14! yields the
representation for the fermion propagator we were look
for:

^xu~D” 1m!21uy&5E
0

`

dTE
x(0)5y

x(T)5x

DpDxe*0
Tdt[ ip• ẋ2m]

3P@e2 i *0
Tdtp” #e2 ie*0

Tdt ẋ(t)•A[x(t)] ,

~16!

where we have indicated explicitly the boundary conditio
satisfied by the paths that have to be integrated out.

It is worth noting the role played by the extraddp inte-
gration in the measure, Eq.~15!: each phase-space volum
factor ddpddx is dimensionless, thus the mass dimension
the measure is determined by the extraddp factor. Hence the
measure has units of@mass#d. Combining this fact with the
property@self-evident in Eq.~16!# that T has dimensions o
@mass#21, we see that the propagator has the dimension
a @mass#d21, as it should be~twice the mass dimensions of
fermion field!.

B. Adiabatic approximation and spin degrees of freedom

The fact that the functional integral describes the pro
gation of a spinning particle manifests itself in the existen
of a path-ordered factor,

F~T!5P@e2 i *0
Tdtp” (t)#, ~17!

whose properties we shall discuss now.
The d53 case is very special, sinceF(T) allows for a

quite straightforward interpretation as the~quantum! evolu-
tion operator for a spin-1/2 in threespatialdimensions, in the
presence of a time-dependent homogeneous ‘‘magn
field’’ pm(t). Of course, ‘‘evolution’’ is here understood t
mean evolution in the fictitious timet. The three compo-
nents ofpm are then regarded as the spatial components
magnetic fieldB5(B1 ,B2 ,B3), with B15p1 , B25p2 , B3
5p0 .

It should be obvious that, within the crudest infrared a
proximation where only constantpm trajectories contribute
F(T) will not exhibit any interesting behavior regarding i
spin aspect. Indeed, for a constant magnetic field, one kn
that
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F~T!5e2 iTp•g, ~18!

which has the eigenvaluese7 iTupu, whereupu[Apmpm.
On the other hand, even for a slowly varyingpm , inter-

esting effects may, and indeed do, arise as a consequen
the existence of nonintegrable Berry’s phases, which i
way this representation has for displaying the nontrivial s
of the field, in the adiabatic approximation.

For a slowly varyingpm(t), and assumingpm(t)Þ0 to
avoid degeneracy, the adiabatic approximation can be
plied to obtain an expression forF(T). If the initial ~two-
component! state is an eigenstate ofp” (0), it will, in this
approximation, remain an instantaneous eigenstate during
evolution. At this point, we introduce an explicit conventio
for the d53 g matrices:g05s3 , g15s1 , and g25s2 ,
where s j , with j 51,2,3, denote the usual Pauli matrice
With this convention, they verify the relation:

gmgn5dmnI 1 i emnlgl . ~19!

Denoting byuv6(t)& the instantaneous eigenstates at tim
t, with the eigenvalues6up(t)u, respectively, we then hav
the adiabaticF(T),

F~T!.ei [g1(T)2E
0

T

dtup(t)u] uv1~t!&^v1~0!u

1ei [g2(T)1E
0

T

dtup(t)u] uv2~t!&^v2~0!u, ~20!

whereg6(T) denotes the nonintegrable phase correspond
to each state.

The normalized instantaneous eigenstatesuv6(t)& can,
with suitable phase conventions, be written as

uv1~t!&5S cos
u~t!

2
e2 i [f(t)/2]

sin
u~t!

2
ei [f(t)/2]

D
uv2~t!&5S 2sin

u~t!

2
e2 i [f(t)/2]

cos
u~t!

2
ei [f(t)/2]

D ,

~21!

where upu, u, and f are the spherical coordinates of th
vectorpm ,

p0~t!5up~t!ucosu~t!,

p1~t!5up~t!usinu~t!cosf~t!,

p2~t!5up~t!usinu~t!sinf~t!.
~22!

Then, the spinning nature of the field is evident from t
phasesg6(T), which are given explicitly by
2-3
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g6~T!5 i E
0

T

dt^v6~t!u
d

dt
uv6~t!&

56
1

2E0

T

dt
df~t!

dt
cos@u~t!#. ~23!

For a closed pathC in the evolution ofpm(t),

g6~T!56
1

2EC
df cosu56

1

2ES(C)
df`d cosu, ~24!

whereS(C) is a regular surface withC as the boundary. Note
that a closed path appears when the integral is evaluated
boundary conditions for the momenta, typically period
rather than the coordinates.

It is clear, either in its form~23! or ~24!, that the phases
g6 do correspond to actions that can be used for the qu
tization of a spin-1/2 degree of freedom@5#, in the presence
of an external magnetic field, in three spatial dimensio
The reason for their appearance here is of course the fact
the Lorentz group in 211 dimensions has been mapped in
SO(3) by the Wick rotation. Those groups have different s
of irreducible representations. The spin-1

2 one, however, has
a similar meaning and properties for both of them.

It is interesting to compare the situation here with the o
in 111 dimensions, where the representation of Dirac’s
gebra is also constructed in terms of 232 matrices, but only
two of them appear inp” (t). It only takes a little amount of
thought to see that the phasesg6(T) vanish in this case.

Finally, we comment on the 311-dimensional case. Now
the g matrices in the irreducible representation are of 434
order, however, it is obvious that the eigenvaluesF(T) are

still given by the expressione7 iTupu, where upu[Apmpm.
The main~and important! difference with the lower dimen
sional cases is that~being theg matrices of order 434),
each eigenvalue is doubly degenerated.

Thus the Berry’s connection shall be given by a no
Abelian SU~2! gauge field, and as a consequence the exp
sion for the adiabatic phases cannot be given as explicitl
for the 211-dimensional case.

C. Local action representations in 2¿1 and 1¿1 dimensions

It may be desirable, in some contexts, to have a pa
integral representation for̂xuU(T)uy& where the paths are
integrated with a local weight, that can be defined in terms
an action functional. It is clear that the factorF(T) is an
obstruction to that goal, and that a suitable local action r
resentation for that object would immediately solve the pr
lem.

Recalling the magnetic field analogy already used in
previous subsection, we try to use Grassmann variable
represent the kernel for theF(T) operator. That this can b
done for a spin-1/2 particle in aconstant magnetic-field
background is a well-known fact. Indeed, for a Hamiltoni
of the form

H5B•s ~25!
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with a constantB, we may take thex3 axis along the direc-
tion of B, and writeH as follows:

H5B~a†a2aa†!, ~26!

where a and a† are Fermionic operators:a250, (a†)250,
$a,a†%51, andB5uBu. Of course, in this two-dimensiona
Hilbert space, those operators may be understood as de
by the matrices

a5S 0 0

1 0D , a†5S 0 1

0 0D . ~27!

The kernel of the evolution operator can be written in t
holomorphic representation, where the operators defi
above act on the space of ‘‘analytic’’ functionsf (j)5a
1bj wherej is a Grassmann variable, witha,bPC, with
the scalar product:

~ f ,g!5E djdj̄ej̄j f ~j!g~j!. ~28!

The action of the operators isa→]j , a†→j, and it is trivial
to check that they are adjoint to each other for the sca
product defined in Eq.~28!.

The kernel of exp(2iTH) can then be represented as
functional integral,

^juexp~2 iTH !u j̄&5E DjDj̄ exp@2S~j,j̄ !#, ~29!

where

S~j,j̄ !5 j̄~T!j~T!1E
0

T

dt@ j̄~t!j̇~t!22iB j̄~t !j~t!1 iB#,

~30!

and the paths in the functional integral~29! verify the bound-
ary conditionsj(T)5j and j̄(0)5 j̄.

Things are different when the magnetic field depends
time, since then the Hamiltonian cannot, in general, be
agonalized by the same similarity transformation at all tim
Indeed, for a generalt-dependentpm , we have to deal with
the Hamiltonian

H~t!52p0~t!a†a2p0~t!1@p1~t!1 ip2~t!#a

1@p1~t!2 ip2~t!#a†. ~31!

If the goal is to implement the adiabatic approximation, it
then convenient to useH(t) in terms of its canonical diag
onal form:

H~t!5up~t!uV†~t!s3V~t!, ~32!

where
2-4
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V~t!5S cos
u~t!

2
ei [f(t)/2] sin

u~t!

2
e2 i [f(t)/2]

2sin
u~t!

2
ei [f(t)/2] cos

u~t!

2
e2 i [f(t)/2]

D
~33!

is a unitary matrix that changes the basis to the instantan
eigenstates. If now a functional integral representation is
troduced, and the adiabatic approximation is made, it is
dent to realize that the evolution operator will be similar
the one of the case~29!, except for the fact that there wil
arise a contribution proportional to the diagonal elements
]tV

†(t)V(t), and these are again the Berry’s phas
Namely, one obtains

^juF~T!u j̄&5E DjDj̄ exp@2SF~j,j̄;T!#, ~34!

where

SF~j,j̄;T!5 j̄~T!j~T!1E
0

T

dtF j̄~t !j̇~t!

2 i S p0~t!2
1

2

df~t!

dt
cosu~t! D j̄~t !j~t!

1 i S p0~t!2
1

2

df~t!

dt
cosu~t! D j~t!j̄~t!G .

~35!

If no approximation is implemented, an exact pa
integral representation can still be written; it corresponds
using an action

SF~j,j̄;T!5 j̄~T!j~T!1E
0

T

dt@ j̄ j̇2 ip0~jj̄2 j̄j !

2 i ~p11 ip2!j2 i ~p12 ip2!j̄ #. ~36!

This can be inserted into Eq.~16!, to derive the local action
representation:

^xu~D” 1m!21uy&5E
0

`

dTE
x(0)5y,j̄(0)5 j̄

x(T)5x,j(T)5j

DpDxDjDj̄

3exp@2S~p,x,j,j̄;T!#, ~37!

where

S~p,x,j,j̄;T!5 j̄~T!j~T!1E
0

T

dt@2 ip• ẋ1m1 j̄ j̇

2 ip0~jj̄2 j̄j !2 i ~p11 ip2!j

2 i ~p12 ip2!j̄1 ieẋ•A#. ~38!

An important remark is in order regarding the last expr
sion. In spite of the fact that the Grassmannian part of
action looks Gaussian, it cannot be integrated by the pro
10502
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dure of ‘‘completing the square.’’ Indeed, there is a diffe
ence with the usual Gaussian integral in the fact that
source terms mix Grassmann andc-number variables. Be-
sides, except for the case when the adiabatic approxima
is used, the local action has the somewhat unpleasant p
erty of having a nonvanishing Grassmann parity. Howev
that property is also present in other formulations of the p
ticle path integral, since it is an unavoidable feature of a
spinning particle propagator: the fact that it should be a m
trix in some internal space means that we cannot do wit
purely c-number action.

The corresponding result for the propagator in 111 di-
mensions comes at no extra price; indeed, adopting the
vention thatg0 is represented bys1 andg1 by s2 , we see
that the analog of Eq.~31! is now

H~t!5@p0~t!1 ip1~t!#a1@p0~t!2 ip1~t!#a†. ~39!

Thus, in 111 dimensions, we have

^xu~D” 1m!21uy&5E
0

`

dTE
x(0)5y,j̄(0)5 j̄

x(T)5x,j(T)5j

DpDxDjDj̄

3exp@2S~p,x,j,j̄;T!#, ~40!

where

S5 j̄~T!j~T!1E
0

T

dt@2 ip• ẋ1m1 j̄ j̇2 i ~p01 ip1!j

2 i ~p02 ip1!j̄1 ieẋ•A#. ~41!

D. Perturbative expansion

An important check the functional representation m
pass is that it should reproduce~at least! the perturbative,
small-e, expansion for the fermion propagator in an extern
field. To do that, we expand the exponential inside the fu
tional integral of Eq.~16!. Using the symbolG(x,y) to de-
note the functional integral representation~16!, we see that

G~x,y!5 (
n50

`

G (n)~x,y!, ~42!

whereG (0) is the zeroth-order term,

G (0)~x,y!

5E
0

`

dTE
x(0)5y

x(T)5x

DpDxe*0
Tdt[ ip• ẋ2m]P@e2 i *0

Tdtp” (t)#,

~43!

which, as shown in Ref.@7#, correctly reproduces the fre
propagator:

G (0)~x,y!5E d3p

~2p!3

eip•(x2y)

ip” 1m
. ~44!
2-5
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There is an auxiliary identity involving the functional inte
gral that appears in expression~43! for the free propagato
that shall be useful in what follows. It can be derived fro
the fact that the integral

E
x(0)5y

x(T)5x

DpDxe*0
Tdt[ ip• ẋ2m]P@e2 i *0

Tdtp” (t)# ~45!

is independentof the boundary values of the momentum
Thus

05E
x(0)5y

x(T)5x

DpDx
d

dpm~T!
e*0

Tdt[ ip• ẋ2m]Pe2 i *0
Tdtp” ~46!

and an analogous equation forp(T)↔p(0). Then we derive
the identities

E
x(0)5y

x(T)5x

DpDxẋm~T!e*0
Tdt[ ip• ẋ2m]Pe2 i *0

Tdtp”

5gmE
x(0)5y

x(T)5x

DpDxe*0
Tdt[ ip• ẋ2m]Pe2 i *0

Tdtp” ~47!

and

E
x(0)5y

x(T)5x

DpDxẋm~0!e*0
Tdt[ ip• ẋ2m]Pe2 i *0

Tdtp”

5E
x(0)5y

x(T)5x

DpDxe*0
Tdt[ ip• ẋ2m]Pe2 i *0

Tdtp”gm . ~48!

It is important to remember that the functional integral ha
matrixlike weight, so thatgm cannot be freely commute
with it. Besides, in both of the previous expressions, o
cannot moveẋm(T) and ẋm(0) out of the integral symbol
since their values are integrated out, because they are
fixed by the boundary conditions onxm . Finally, both Eqs.
~47! and ~48! can also be easily proven to hold true in t
safer, regulated context of the discretized path integral.
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The term of ordern is given by

G (n)~x,y!5
~2 ie!n

n! E
0

`

dTE
0

T

dt1•••

3E
0

T

dtnE
x(0)5y

x(T)5x

DpDxe*0
Tdt[ ip• ẋ2m]

3P@e2 i *0
Tdtp” (t)# ẋm1

~t1!Am1
@x~t1!#•••

3 ẋmn
~tn!Amn

@x~tn!#. ~49!

The integral over the ‘‘intermediate times’’t1 , . . . ,tn is
obviously symmetric under permutations of thet i . For each
possible ordering among them, we now select the maxim
time, irrespective of the ordering among the remaining tim
We then rename that maximum time as ‘‘t1 .’’ Obviously,
there aren possible contributions to take into account, th
we may writeG (n) in the equivalent way,

G (n)~x,y!5
~2 ie!n

~n21!! E0

`

dTE
0

T

dt1E
0

t1
dt2•••

3E
0

t1
dtnE

x(0)5y

x(T)5x

DpDxe*0
Tdt[ ip• ẋ2m]

3P~e2 i *0
Tdtp” !ẋ~t1!•A@x~t1!#•••

3 ẋ~tn!•A@x~tn!#, ~50!

where the timest i , with iÞ1, havet1 as their new upper
value.

The paths being integrated out in the path integral c
then be split at the timet1 by an application of the ‘‘super-
position principle’’ for path integrals, which then requires th
value of x(t) at the timet1 to be integrated over all its
possible valuesx(t1)5z. Using also Eq.~48!, we see that
be
G (n)~x,y!5
~2 ie!n

~n21!! E0

`

dTE
0

T

dt1E
0

t1
dt2•••E

0

t1
dtnE d3zE

x(t1)5z

x(T)5x

DpDxe*t1

T dt[ ip• ẋ2m]

3P@e2 i *t1

T dtp” #A” ~z!E
x(0)5y

x(t1)5z

DpDxe*
0

t1dt( ip• ẋ2m)

3P@e2 i *
0

t1dtp” # ẋ~t2!•A@x~t2!#••• ẋ~tn!•A@x~tn!#. ~51!

Focusing now on the two time integrals which involve the variablesT andt1 , we see that their order of integration can
interchanged, if one properly modifies the integration ranges:

E
0

`

dTE
0

T

dt1•••5E
0

`

dt1E
t1

`

dT•••. ~52!

Interchanging those two integrations, and making also some trivial rearrangements, we see that
2-6
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G (n)~x,y!52 ieE d3zE
0

`

dt1E
t1

`

dTE
x(t1)5z

x(T)5x

DpDxe*t1

T dt[ ip• ẋ2m]P~e2 i *t1

T dtp” !

3A” ~z!
~2 ie!n21

~n21!! E
0

t1
dt2•••E

0

t1
dtnE

x(0)5y

x(t1)5z

DpDxe*
0

t1dt( ip• ẋ2m)

3P~e2 i *
0

t1dtp” !ẋ~t2!•A@x~t2!#••• ẋ~tn!•A@x~tn!#. ~53!
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Noting that

E
t1

`

dTE
x(t1)5z

x(T)5x

DpDxe*t1

T dt[ ip• ẋ2m]P@e2 i *t1

T dtp” (t)#

5G (0)~x,z! ~54!

and recalling the expression for the order-n contribution, Eq.
~49!, we are led to the relation

G (n)~x,y!52E d3zG (0)~x,z!ieA” ~z!G (n21)~z,y! ~55!

(;n>1), which is, indeed, equivalent to the usual perturb
tive expansion for the propagator:

G (n)5G (0)2 ieG (0)A” G(0)1~ ie!2G (0)A” G (0)A” G(0)1•••.
~56!

It should be evident that the fact that we have not used
‘‘local action’’ representation is not crucial to the previou
derivations. It is, indeed, possible to encompass all
changes that proceeding otherwise would produce. The m
differences arise of course in relations~47! and ~48!, since
one does not have theg matrices. It is, however, far from
difficult to see that, in the corresponding local action rep
sentation, the equivalent identities relate integrals with co
ponents ofẋm(T) to integrals with Grassmann variables. F
example,

E DpDxDjDj̄
~ ẋ11 i ẋ2!

2
~T!exp@2S~p,x,j,j̄;T!#

5E DpDxDjDj̄ j̄~T!exp@2S~p,x,j,j̄;T!#, ~57!

where both integrals are evaluated with the boundary co
tions x(0)5y, x(T)5y and j̄(0)5 j̄, j(T)5j.

On the other hand, integrals involvingẋ0 will be related to
Grassmann bilinears. We shall not proceed, however, w
the derivation of the perturbative expansion in that setti
since it would necessarily require, at some point, to rein
duce theg matrices.

We wish to stress, however, that a perfectly consist
perturbative expansion could be built in terms of the lo
representation, without using theg matrices explicitly.
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III. CHIRAL ANOMALY AND CHERN-SIMONS CURRENT

In this section we perform another test on the meth
with the derivation of two nonperturbative objects: the chi
anomaly in 111 dimensions and the Chern-Simons term
211 dimensions. They have of course been evaluated in
particle functional integral framework@6#; our aim is to show
how to obtain them directly from the functional integral re
resentation~16!, by evaluating the corresponding vacuu
currents. Besides, the role of the regularization is, as we s
see, more transparent in this calculation.

We shall first deal with the chiral anomaly in 111 dimen-
sions, since this example already exhibits all the difficult
and properties of the evaluation of topological terms in t
representation. Moreover, we shall use a gauge invar
Pauli-Villars regularization, that can be introduced smoot
within the representation we are dealing with, since it
quires the introduction of~just! one fermion propagator.

It is very well known@8,9# that A, the anomalous diver-
gence of the axial currentJm

5 5c̄gmg5c,

]mJm
5 ~x!5A~x!, ~58!

may be obtained from the regulated trace of theg5 matrix,
namely,

A~x!5 lim
L→`

AL~x!, ~59!

where

AL~x!522 trH g5F ^xu f S iD”

L D ux&G J , ~60!

wheref is a function chosen in order to tame the UV dive
gences, which means that it has to satisfy

f ~0!51, f ~6`!5 f 8~6`!5 f (2)~6`!5•••50.
~61!

Of course, this is a gauge-invariant regularization, a
moreover, the results, are independent of the detailed form
f, as long as it verifies the previous conditions@8#. The par-
ticular choicef (u)5(11u2)21 is very convenient, since we
can use a simple fractions decomposition and the fact thag5
anticommutes withgm to write Eq.~60! as follows:

AL~x!522 trH g5F ^xu
L

D” 1L
ux&G J . ~62!
2-7
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Then we apply the general expression~16!, with x5y and
m5L, to write the fermion propagator that appears in E
~62! as a particle path integral, obtaining

AL~x!522LE
0

`

dTE
x(0)5x

x(T)5x

DpDxe*0
Tdt[ ip• ẋ2L]

3tr$g5P@e2 i *0
Tdtp” (t)#%e2 ie*0

Tdt ẋ(t)•A[x(t)] .

~63!

The constantL may be absorbed in a redefinition ofT: t
5LT is now a dimensionless ‘‘time,’’ while we also intro
duce s5Lt for the ‘‘proper time’’ that appears inside th
integrals. Then, expressing all the functions in terms of
new variables,

AL~x!522E
0

`

dtE
x(0)5x

x(t)5x

DpDxe*0
t ds[ ip•(dx/ds)21]

3tr$g5P@e2( i /L)*0
t dsp” (s)#%e2 ie*0

t dsẋ(s)•A[x(s)] ,

~64!

where thex which appears in the boundary conditions do
not have to be integrated, but it is the~fixed! value corre-
sponding to the argument of the current operator.

Following a similar technique~but a different notation! to
the one used in Ref.@6# to evaluate theu vacua term, we
introduce the change of variables:

xm~s!5xm~0!1E
0

s

ds̃zm~ s̃!, x~0![x, ~65!

which has a trivial Jacobian, so thatDx5Dz, and Eq.~64!
becomes

AL~x!522E
0

`

dtE DpDze*0
t ds[ ip•z21]

3tr$g5P@e2( i /L)*0
t dsp” (s)#%

3e2 ie*0
t dsz(s)•A[x(0)1E

0

s

ds̃z( s̃)] . ~66!

It is important to note that the boundary conditions forx in
Eq. ~63! mean that thez variable has to verify the constrain

E
0

t

dszm~s!50, m50,1; ~67!

the existence of those constraints will be indicated by a8 in
the integral symbol, when rewriting thex integral of Eq.~64!
in terms of the new variables.

Then we take advantage of the fact that the result ha
be a local polynomial inA, to write
10502
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AL~x!522E
0

`

dtE Dp tr$g5P@e2( i /L)*0
t dp” (s)#%

3e2 ie*0
t ds[d/ idp(s)] •AF x(0)1E

0

s

ds̃[d/ idp( s̃)] G
3E 8Dze*0

t ds[ ip•z21]. ~68!

The functional integral overz, including the constraint, can
be explicitly evaluated, for example, by including the co
straint through the addition of~yet! another Lagrange multi-
plier, i.e.,

E 8Dze*0
t ds[ ip•z21]5E DzE d2w

~2p!2
ei *0

t ds(p•z1w•z)e2t

5E d2w

~2p!2
d@p1w#e2t. ~69!

It should be noted thatd@p2w# is a functionald, and that
the integral overw is a relic of the constraint over thez
integration. Thus we arrive to a more tractable expression
the anomaly,

AL~x!522E
0

`

dte2tE d2w

~2p!2
E Dp tr~g5Pe2( i /L)*0

t dsp” !

3e2 ie*0
t ds[d/ idp(s)] •AF x(0)1E

0

s

ds̃[d/ idp( s̃)] Gd@p1w#.

~70!

A simple power-counting argument shows that by expand
the e dependent term in the exponential, only the first-ord
term will contribute whenL→`. Moreover, in that term just
the one which is of order 2 in the functional derivative ov
p survives~as it is seena posteriori!. Thus thep integration
can also be explicitly performed:

AL~x!.]mAn~x!Tmn ~L;`!, ~71!

whereTmn is a constant tensor, given explicitly by

Tmn522ieE d2w

~2p!2
E

0

`

dte2tE
0

t

dsE
0

s

ds8

3
d2F@p#

dpn~s!dpm~s8!
up52v , ~72!

where

F@p#5tr@g5Pe2( i /L)*0
t dsp” (s)#, ~73!

and p in Eq. ~72! is set equal to the constant2v after the
functional differentiation.
2-8
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For the evaluation ofTmn , we note that

Tmn5 i
e

L2
E d2w

~2p!2
E

0

`

dtt2e2ttr@g5gmgnei (t/L)v” #

52emn

e

L2
E d2w

~2p!2
E

0

`

dt t2 e2ttr@ei (t/L)v” #, ~74!

where we have used that

gmgn5dmnI 1 i emng5 , ~75!

with I the identity matrix. Finally,

Tmn52emn

2e

L2
E d2w

~2p!2
trF 1

S 12
i

L
v” D 3G . ~76!

Thev integration is convergent and its result is proportion
to L2, which cancels out theL22 factor,

Tmn52emn

e

p
E

0

`

dx
123x

~11x!3

5
e

p
emn . ~77!

Then we conclude that the anomalyA(x) has the proper
result, namely,

A~x!5
e

p
emn]mAn~x!. ~78!

Note that, because of the gauge invariant regularization
cedure, we already knew thatTmn had to be proportional to
emn .

Let us conclude this section with the evaluation of a
lated object: the vacuum Chern-Simons current for the A
lian case, in 211 dimensions, as determined by the par
anomaly. The vacuum Chern-Simons current, in a Pa
Villars-like regularization, is given by

Jm~x!52tr@gm^xu~D” 1M !21ux&#, ~79!

whereM→`, and all the objects are assumed to be defin
in 211 Euclidean dimensions. An entirely analogous de
vation yields

Jm~x!.2Rmnl]nAl ~L;`!, ~80!

where

Rmnl52 i
e

L
E d3w

~2p!3
E

0

`

dte2tE
0

s

ds8
d2Gm@p#

dpl~s!dpn~s8!
up5v

~81!

with
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Gm@p#5tr@gmPe2( i /L)*0
t dsp” (s)#. ~82!

More explicitly,

Rmnl52
e

L3
emnlE d3w

~2p!3
trF 1

~12 iv” !3G . ~83!

A standard evaluation of the momentum integral yields

Rmnl5
e

2p
emnl . ~84!

Finally,

Jm5
e

2p
emnl]nAl , ~85!

which again reproduces the correct result.
It is worth noting that no extra regularization has be

introduced in order to regularize the anomaly and the Che
Simons term, which is different from previous calculations
this context. Some of them seem to indicate that a sp
resolution scale plays an important role. We have seen, h
ever, that the usual UV regulator does the trick.

IV. PROPAGATION IN A CONSTANT
ELECTROMAGNETIC FIELD

We calculate here the Fermionic determinant for a m
sive Dirac field in the presence of an external constant e
tromagnetic field, in 211 Euclidean dimensions. We defin

exp@2G~A!#5det~D” 1m!, ~86!

where the gauge field entering the covariant derivative
such that

]mAn2]nAm5Fmn5const. ~87!

In a symmetric or coordinate gauge, we can adopt the c
figuration

Am~x!52
1

2
Fmnxn5

1

2
emrnF̃rxn . ~88!

We consider here a gauge-field configuration where only
components ofAm are nonvanishing, and lead to a consta
electromagnetic field. The parity-odd part of the effecti
action is zero for this sort of configuration, since

Amemnr]nAr5AmF̃m50. ~89!

To evaluateG(A), we use an integral representation f
the logarithm; as usual we apply the formula

ln~a/b!52E
0

`dT

T
~e2Ta2e2Tb! ~90!

(Re(a).0, Re(b).0) so that
2-9
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G̃~A![G~A!2G~0!

5E
0

`dT

T
Tr@e2T(D” 1m)2e2T(]”1m)#. ~91!

Introducing then the particle path-integral representation,
see that

G~A!5E
0

dT

T
e2mTE Dp tr~Pe2 i *0

Tdtp” !

3E Dxe( ie/2)*0
Tdt ẋmFmnxn1 iE

0

T

dtpmẋm, ~92!

which differs from Eq.~91! by an~infinite! field-independent
constant.

We now proceed to evaluateI @p#, the Gaussian integra
over periodicxm(t) paths in Eq.~92!. After an integration by
parts,

I @p#5E
x(0)5x(T)

Dx expS ie

2 E0

T

dtxm~t!emrnF̃rẋn~t!

2 i E
0

T

dtx~t!• ṗ~t!1x~0!•@p~T!2p~0!# D .

~93!

The role of the last term is, after integrating overx(0), to
enforce the conditionp(0)5p(T). We can then erase tha
term when evaluatingI @p#, while keeping in mind the fac
that the remaining functional integral~over p) in Eq. ~92!
must the be evaluated with periodic boundary conditions
p(t).

We now decomposexm(t) into parallel (xi) and trans-
verse (x') components alongF̃,

xm~t!5xm
i ~t!1xm

'~t!, ~94!

wherexm
i (t) is the projection ofxm(t) along the direction of

F̃m , and xm
'(t) its orthogonal component (x'

•F̃50). It is
evident that the parallel component does not appear in
quadratic part of the exponent in Eq.~93!, so that its integra-
tion yields a functionald of the derivative of the longitudina
component of the momentum:

I @p#5d@ ṗi#
L

2pEx'(0)5x'(T)
Dx'

3e( ie/2)*0
Tdtxm

'emrnF̃rẋn
'

2 iE
0

T

dtxm
' ṗm

'

, ~95!

whereL is the~infinite! size of the integration in the paralle
direction. The Gaussian integral over the two remain
components ofx can now be performed, and the result m
be written in terms of the two transverse components of
momentum. Using a coordinate system such thatp1 and p2

denote the transverse components, whileF̃m points in the 0
direction, we see that
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I ~p!5d@ ṗi#
L

2pE Dx1Dx2expS ieF̃0E
0

T

dt ẋ1x2

1 i E
0

T

dt@ ẋ1~t!p1~t!1 ẋ2~t!p2~t!# D . ~96!

Introducing now an auxiliary variablew1 and the velocityz1
for the x1 coordinate we have

I ~p!5d@ ṗi#
L

2pE dw1

2p
Dz1Dx2expS ieF̃0E

0

T

dtz1~t!x2~t!

1 i E
0

T

dt$z1~t!@p1~t!1w1#1 ẋ2~t!p2~t!% D , ~97!

wherew1 is independent oft. Integrating now overx2 and
z1 we arrive at

I ~p!5d@ ṗi#
L

2pE dw1

2p E dx2~0!expS i

eF̃0
E

0

T

dt ṗ1~t!p2~t!

1 i
1

eF̃0

w1@p2~T!2p2~0!# D . ~98!

The integral overx2(0) is proportional to the total length o
the space. On the other hand, the integral overw1 gives a
delta function which produces aeF̃0 factor, and an additiona
total length factor. So we arrive at

I @p#5d@ ṗi#
V

~2p!2
eF̃0FdetS 2eF̃0e jk]t

2p i
D G21/2

3e( i /2eF̃0)E
0

T

dtpje jk]tpk, ~99!

where V is the total ~infinite! space time volume. For the
sake of simplicity, we shall assume in what follows th
eF̃0.0.

Using the result~99!, we may now calculate the remain
ing functional integral overpm in Eq. ~92!. Indeed, the lon-
gitudinal component ofp shall be constant, so it can be e
tracted out of the path-ordering symbol, while for the tw
transverse components we take advantage of the follow
fact: functional integrating an ordered product of transve
components with the quadratic weight above amounts to
ing a trace over the Hilbert space corresponding to the
noncommuting operatorsp̂1 and p̂2 :

@ p̂1 ,p̂2#52 ieF̃0 . ~100!

More explicitly, we repeatedly use the property
2-10
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E
p(0)5p(T)

Dp'P@pi 1
~t1!•••pi n

~tn!#e( i /2eF̃0)E
0

T

dtpje jk]tpk

E Dp'e( i /2eF̃0)E
0

T

dtpje jk]tpk

5Tr@ p̂i 1
~t1!••• p̂i n

~tn!#, ~101!

where the indicesi 1••• i n can only take the values 1 and 2.
possible way to prove Eq.~101! is to write its left-hand side
in operatorial form. Since the Hamiltonian that dictates tht
evolution vanishes, the expression on the right-hand side
lows.

Thus we arrive to the following expression forG(A):

G~A!5
V

~2p!2
eF̃0E

01

` dT

T
e2mTE

2`

` dp0

2p
Tr~e2 iTp”̂e2 iTg0p0!.

~102!

In terms of the representationg05s3 , g15s1 , and g2
5s2 , we have

G~A!5
V

~2p!2
eF̃0E

01

` dT

T
e2mTE

2`

1`dp0

2p

3Tr@e2 iTA2eF̃0âe2 iTp0s3#, ~103!

where

â5S 0 â

â† 0
D ~104!

with â5( p̂12 i p̂2)/A2eF̃0 and @ â,â†#51. Since the inte-
gration overp0 is over an interval symmetric about 0, we u
the fact that

E
2`

1` dp0

2p
sin~Tp0!50 ~105!

to write

G~A!5
V

2p2
eF̃0E

01

` dT

T
e2mTE

0

1`dp0

2p

3cos~Tp0!Tr@e2 iTA2eF̃0â#. ~106!

On the other hand, it is simple to show that the operator

â5S 0 â

â† 0
D ~107!

has the eigenvalues6An, with n561,62, . . . , and no de-
generacy. Thus
10502
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G~A!5
V

p2
eF̃0E

01

` dT

T
e2mTE

0

1`dp0

2p
cos~Tp0!

3 (
n51

`

cos@T~2eF̃0n!1/2#. ~108!

We take advantage of the explicit dependence of this re
on the external field to subtract the zero-field contribution

G̃~A!5
V

p2
eF̃0E

01

` dT

T
e2mTE

0

`dp0

2p
cos~Tp0!

3 (
n51

`

$cos@T~2eF̃0n!1/2#21%, ~109!

and after performing theT integration,

G̃~A!52
V

~2p!2
eF̃0(

n51

`

E
0

1`dp0

2p F lnS ~p02kn!21m2

p0
21m2 D

1 lnS ~p01kn!21m2

p0
21m2 D G , ~110!

where we introducedkn5A2eF̃0n. Finally, the contribu-
tions may be rearranged into the expression

G̃~A!52
V

~2p!2
eF̃0(

n51

`

E
0

1`dp0

2p

3 lnF ~p0
21m21kn

2!224p0
2kn

2

~p0
21m2!2 G . ~111!

The direction of the~constant! Euclidean fieldF̃m is arbi-
trary; we may of course replaceF̃0 everywhere byuF̃u. The
momentum integral is along the ‘‘longitudinal’’ direction
which does not necessarily coincide with the zero~timelike!
one. Then

G̃~A!52
V

~2p!2
eF̃0(

n51

`

E
0

1`dpi

2p

3 lnF ~pi
21m212euF̃un!228pi

2euF̃un

~pi
21m2!2 G ,

~112!

which has an explicitly covariant and frame independ
form. The fact that the result depends only on the square
the mass, and not on its sign, confirms that the parity-o
term vanishes for this field configuration. In other words, t
spectral asymmetry is zero.

Integrating over the momentum one arrives at a sum
the form
2-11
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(
n51

`

Am12euF̃un, ~113!

which can be analytically continued to the Hurwitz functio
and so it agrees with the result of previous calculations@13#.
The 111-dimensional case can be obtained at no cost.

The representation for the Dirac propagator in terms
path integrals used above is not the only possible one.
possible to derive the full fermion propagator by using a
of Grassmannian variables which carry all the spin inform
tion and avoids the presence of the path ordering oper
@10,6,11,12#. This will be discussed separately in detail.

V. CONCLUSIONS

We have shown that the path-integral representation~16!
is, when expanded in powers of the coupling consta
equivalent to the usual perturbative series.

Besides, we performed two different kinds of nonpert
bative tests: first, we evaluated the axial anomaly in 111
dimensions and the Chern-Simons term in 211 dimensions.
Amusingly enough, the path integral is particularly suited
the evaluation of those objects in a Pauli-Villars regulari
tion scheme, and a subsequent large mass~cutoff! expansion.
Our calculation focuses in the currents, so we can have
fect control of the gauge invariance of the results. For b
. D

p.
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cases, we have seen that the exact results are obtained
We also considered particle propagation in a const

electromagnetic field, deriving an expression for the effect
action using Migdal’s representation.

This kind of calculations provide, we believe, further su
port for the use of these representations in the derivation
quantum field theory results, either analytically or nume
cally. The developments presented here can also be usefu
the world line in practice given, for instance, the problem
with renormalization in general and the difficulties of th
second-order formalism with external fermions and spec
asymmetry originated by the Dirac operator such as
Chern-Simons term.
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