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Note on gauge theory on a fuzzy supersphere
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We construct a supermatrix model whose classical background gives a two-dimensional honcommutative
supersphere. Quantum fluctuations around it give the supersymmetric gauge theories on the fuzzy supersphere
constructed by Klimik. This model has a parametgrthat can tune the masses of the particles in the model
and interpolate various supersymmetric gauge theories on the sphere.
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[. INTRODUCTION independent formulations of the matrix model which are ex-
pected to give constructive definitions of string thepty].
Matrix models have been vigorously studied to under- In the previous papefl5], we constructed a supersym-
stand the nonperturbative aspects of string theories. In matrisetric gauge theory on a fuzzy two-supersphere based on a
models of the Ishibashi-Kawai-Kitazawa-Tsuchigi&KT ) supermatrix model. This model has a classical solution rep-
type [1], background space-time appears dynamically as #&esenting a fuzzy supersphere and we obtained a supersym-
classical background of matrices and their fluctuationgmetric gauge theory on the fuzzy two-supersphere expanding
around the classical solution are regarded as gauge and méte supermatrices around the classical background. In a com-
ter fields on the space-time. In particular, matrix models demutative limit this model is, however, different from the or-
scribe noncommutative gauge theories when the classicdinary gauge theory iD =2, e.g., the action includes higher
background of matrices are noncommutati2é In this ap-  derivative terms and the fermions transform as spirepre-
proach the construction of the open Wilson loop and backsentation under theu(2) isometry group or§?. These dif-
ground independence of the noncommutative gauge theoridsrences originated from the fact that we did not impose
are clarified[3]. appropriate constraints on the supermatrices to eliminate ex-
Noncommutative gauge theories appear on D-branes itra degrees of freedom. Supermatrix formulation of super-
string theories in a constant Neveu-Schwarz—Neveusymmetric gauge theories is similar to the covariant super-
Schwarz(NS-N§ two-form B background 4,5], where the space approach for the ordinary supersymmetric gauge
bosonic space-time coordinates become noncommutativéheories[18] because each supermatrix corresponds to the
Recently it was suggested that the nonanticommutativity o€onnection superfields on the superspace as we saw in our
the fermionic coordinates on the superspace appears in striqggevious papef15]. In the covariant superspace approach
theories in a background of the Ramond-Ram@R&) or  various constrains are imposed on the connections to elimi-
graviphoton field strength6—8]. Since the nonanticommu- nate redundant degrees of freedom, but in our model we
tative fermionic coordinates can be described(®ypeima-  could not impose appropriate conditions. After we wrote the
trices, it is expected thasupeimatrix models will play an  previous papef15], we noticed Klimak’s paper[11] where
important role in investigating various aspects of field theo-he constructed a supersymmetric gauge theory on the fuzzy
ries on the noncommutative superspace. There are analysgspersphere by using a method of differential forms and im-
of noncommutative superspace by using supermatricegosing suitable constraints on the connection superfields. A
[9-15|. Supersymmetric actions for scalar multiplets on thecrucial point of his construction is the use of enlarged
fuzzy two-supersphere were constructed in R@fbased on osp(2|2) algebra. The globalV=1 supersymmetry algebra
theosp(1]|2) graded Lie algebra. Furthermore, a graded dif-on the fuzzy supersphere ésp(1|2). By adding the cova-
ferential calculus on the fuzzy supersphere is discussed inant derivativesosp(1|2) is enlarged tasp(2|2) because
Ref. [10]. Supersymmetric gauge theories on this noncomithe supersymmetry generators and the covariant derivatives
mutative superspace were studied in R&l] by using dif- do not anticommute on the fuzzy supersphePsp(2|2)
ferential forms on it. In Ref[12], noncommutative super- algebra can be regarded &¢=2 superalgebras on the
spaces and their flat limits are studied by using the gradedphere. Starting from the connection superfields on this
Lie algebrasosp(1|2), osp(2|2), andpsu(2|2). Recently A=2 superspace, he found the correct constraints to
the concept of noncommutative superspace based on a supebtain a supersymmetric gauge theory on the fuzzy
matrix was also introduced in proving the Dijkgraaf-Vafa supersphere.
conjecture as the largh reduction[16]. The supermatrix In this paper we reformulate Klini’s gauge theory on
model was also studied from the viewpoint of background-fuzzy supersphere in terms of supermatrix models. Very in-
terestingly, Klimak’s gauge theory can be obtained from a
supermatrix model whose classical solution gives noncom-
*Electronic address: satoshi.iso@kek.jp mutative supersphere. Its quantum fluctuations become the-
"Electronic address: umetsu@post.kek.jp supersymmetric gauge theory proposed by him. In a commu-
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tative limit, by taking a Wess-Zumino-like gauge, this model@ction contains a parameter which can tune masses of par-
. . ticles in the model.

becomes the ordinary supersymmetric gauge theo§?oim

the paper we use the manifes8y)(3) covariant coordinates Il. osp(1]2) AND osp(2|2) ALGEBRAS

and decompose the bosonic figldinto the normal compo- The graded commutation relations of thep(2|2) alge-
nent ¢ and tangential componerat,-(z) on the sphere. The bra are given by

" A “ A A 1 ~ A~ A 1 n
[li I ]=leiil g, [Ii!va]zz(ai)ﬁavﬂi {Uarvﬁ}zi(co'i)aﬁlii

~A A 1 ~ o A 1 N ~ A 1 A
{va1dﬁ}:_zcaﬁyv [Iiida]zz(ai)ﬁadﬁl {daidﬁ}:_i(cai)aﬂliy

[A‘y!l’}a]:aav [A‘yvaa]:l’}ai [AY!,I\i]:O! (21)

Wherei\i (| :1’2,3) andry are bosonic generators, aﬁq panded by these polynomials. A useful basis for the expan-
andd, (a=1,2) are fermionic onesC—ic, is the charge SION are the matrix superspherical harmonigs(1® M),
conjugation matrix. Th@sp(1|2) subalgebra consists of the
generatorsl; and v,. Irreducible representations of the _ o 1

osp(1]2) algebra[19] are characterized by values of the (ZiZi+CagVuVp) Yen(I o) =k| k+ 5) Y108,
second Casimir operatoK,=1il;+C,p0,05=L(L+3), 2.5
where quantum numbeére 7_ /2 is called superspin. Each

representation obsp(1|2) consists of spi. andL+ 3 rep-

resentations of theu(2) subalgebra generated by. The LY (1D o) =mYg (10 o). (2.6
dimension of the representation is=4L + 1. These repre-

sentations are also the so-called atypical representations of . ) .
0sp(2|2), where osp(1|2) algebra can be enlarged to The superspherical harmonics should be properly normalized

X ) (L) (L) )
osp(2|2) algebra by adding extra generators with the samé&l0l- Then®(Ii~",v;”) can be expressed as a series of su-
size matrices. The representation matrices of the generatoP§rspherical harmonics,

d, andy can be written as second-order polynomials of the

superspinL representation matricef™ and v{") of the 2L
osp(1]2) generators, oIV = > Yo (1P 0D, (29
k=0372,1; .-
1 1 L, L 1
Y =— Copriivi+2LiL+ 5|, (22
L+1/4 2 where the Grassmann parity of the coefficignt, depends

on the gradings of the spherical harmonics. We can map the
d®) = 1 (o) {l_(L) U(L)}_ 2.3 supermatrixdb(li("),vg')) to a function on the superspace
©2(L+14) TR TR (X ,6,) by

The conditionK,=L(L + 1/2) defines a two-dimensional
supersphere. Consider the polynomidigl™) (V) of the DL O % 0.)= S x. g 58
representation matrices ®f- and v with superspinL. (17 va) = 6 (X b) %1 ankicn( i 6a). (2.8
These polynomials are (4+1)X(4L+1) supermatrices.

Let us denote the space spannedify(™) ,v(")) as 4, . The S _ _ _ _
0sp(1]2) algebra acts opd, . In particular we denote the wherey (X, 8,) is the ordinary superspherical function. A

adjoint action of thepsp(1|2) generators as product of supermatrices is mapped to a noncommutative
star product of functions on the fuzzy supersph@@.
o=V 0], V.o=[o0 o] (2.4 In constructions of field theories on the fuzzy super-
1 I H ’ o a . .

sphere, theosp(2|2) generatorgd, and y play important
A, can be decomposed into irreducible representations undesles. The adjoint action af,, on supermatrices is the cova-
the adjoint action of theosp(1]2) algebra as @30 1@ riant derivative on the fuzzy supersphere. The kinetic terms
.- @®2L—3®2L. The dimension of this space is I(4 for a scalar multiplet on the supersphere are constructed by
+1)% and thus any (B+1)X (4L+ 1) matrices can be ex- using these generatof8].
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Ill. SUPERSYMMETRIC GAUGE THEORY ON FUZZY
SUPERSPHERE

In this section we reformulate Klifik's construction of a and the rest adl,;,=M—My . Since all the components
supersymmetric gauge theory on fuzzy supersphetgin = Ais ®a, ., andW are supermatrices and can be expanded
terms of supermatrices. We construct a supermatrix moddl terms of superspirL spherical harmonics, they can be
which has a classical solution representing the fuzzy supefegarded as superfields on the fuzzy supersphere. The super-
sphere, and by expanding supermatrices around this bacRiatrix M is shown to correspond to the covariant derivatives
ground we will obtain a supersymmetric gauge theory giverPn the V=2 extended supersphere. Then we define *field

My=Al)+C 0,007, (3.5

by Klimcik. strength” as

This formulation has similarities to the covariant super- d d
space approa}ch in the ordinary supersymmetric gauge theory.c — p« M — M LMy SM-=-wm y
Namely, we first introduce larger degrees of freedom, corre- 2 2

sponding to the connection superfields on the fuzzy super-
sphere. In order to eliminate redundant degrees of freedom, _
we need to impose appropriate constraints on them. After
fixing extra gauges, we will obtain necessary degrees of free-
dom to describe a supersymmetric gauge theory on the non- +
commutative supersphere.

We first consider direct products of two vector spaces of
supermatrices4, and. A, .. L' can be taken as any super- +
spin. On the other hand, should be taken large in order to
take a commutative limit. Each element is aL(41)(4L’ ,
+1)X(4L+1)(4L' +1) supermatrix. We then consider a ®d§3L )+
special type of supermatrix which can be written as

1 ! (L)
Z(Gic)aﬂ{wa!lpﬂ}_ ZAI ®Ii

1 1 (L,)
- ZCa,B['vzla ,W]_ ZCa,B‘Pa ®Uﬁ

1 1 1
E(Uic)aﬁ[Ai !l//a]—’_ anﬁ[(Puz !W]_ Ecaﬂl//a)

- ! (L"
_anﬁ{¢aa¢ﬁ}_§w ®7 y (36)

A wheredg=1 anddy=3 are Dynkin numbers.
M :g Xa® T, (3.1) In order to eliminate redundant superfields, we follow the
prescription in Ref.[11] and impose a constraint for the
whereX, e A, is a general supermatrix aid is the super- 0SP(1[2) part of the field strength to vanish,
spin L’ representation matrix of thesp(2|2) generators;

TA:{|i(L’) ' UEYL’) , dEYL’), (71, Among them, we can define Fly= %(Uic)aﬁ{%'%}_ %Ai) ®|i(L/)
two kinds of products; and *,
A 1 1
(Xa®TA) - (Yg@TB)=(—1)IT1IVelX . Y TATE, - _t wy_
(3.2 4Caﬁ['lla,W] 4Caﬁ(,oa ®vy '=0.
(Xa2 TA)* (Yg®TB) = (—1) T IVelX, Yy [ TA, T8}, 3.7
3.3 This constraint breaks thesp(2|2) covariant structure, but
where |TA| and |Yg| are the gradings off and Yg, still preserves the covariance undesp(1/2) of the model.
respectively: From this constrainty; and ¢, can be solved in terms af,
The supermatrixM defined above can be expanded ex-andW as
plicitly as
Ai:(o-ic)aﬁ{(pa!lpﬁ}! (38)

M=A &I+ Cop0,00 L)~ Copp,@df)

a

o= —[¢a,W]. (3.9

Moreover, we need to constrain further redundant degrees of

) freedomW by the following condition:
Here A; andW are (4.+1)X(4L+1) even supermatrices,

and ¢, and ¢, are (A +1)X(4L+1) odd supermatrices.
L’ is arbitrary, thus one may sét'=3 for simplicity. M
satisfies the graded reality conditid*=M, that is,Aii
=A, ¢i=C,ppp, ¥-=C,z65 and W =W. For the defi- 1
nition of f, see the appendix of Rdfl5]. We denote the =Cupthatfpt ZWZ
osp(1]|2) part ofM asMy,,

1 ,
—gWwe ¥ (3.4

S—— VIR
T s )

=L(L+1/2), (3.10

YIn the papef11], * is meant for **—*" but in our paper we use Where STy, represents taking a supertrace with respect to
* product as * or *M according to operated supermatrices. the superspirL’ representation matrices. This constraint is
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alsoosp(1]2) invariant. In a commutative limit, this equa- dg dy
tion can be solved to eliminat, as will be seen. Fa=Mce*Mo=Muye*Mua+ 5" M= 5" My =0,
We now start from the following action for the superma- (3.20
trix M: '
where M, is the osp(1]2) part of M. Then the field
S=Sr2+ BScs, (3.1)  strength(3.6) becomes
Se2=STnF-F), 3.1 ~ o~ dg~ ~ ~
F2=STIF-F) @12 MC|*M+M*MC|+?GM —(MHC|*MH+MH*MHC|
Sc STV(ZM (M*M) y (My*M )+dG|v| M d
e —_ . _—— . * —_— . _ _ _ _ _
s 3 g TR 2 +7HMH F MM =M My, (3.21)
dy B B
N 7MH' Mu (3.13 whereM, is theosp(1|2) part ofM. In this form, terms in

the first and second parentheses, respectively, coincide with
where 3 is a real constant parameter adg andd, were  5°M and 8"My, in Klim¢ik’s notation[11] and thus this is
defined above. This action is invariant under the followingnothing but the field strength defined by him.
osp(1|2) supersymmetry transformation: Expanding each component of the supermatrices around
o the classical background,
oM [C(IB)\B@)UQ ' M], (314) Aizli(L)—’_Ai’ (pa:U(aL)—’_;éa! l//a:dg_)—i_zbaa
where a parametex, is a (4L+1)X(4L+1) grading ma-

trix multiplied by a Grassmann parametey, W=y + W, (3.22
~ (1., O F|4. andScg become
No=Mhg : (3.19
0 -1

%wicuﬁ([li‘” Dol =[de) A

Flue=
In addition to the supersymmetry, this action is invariant un-
der theU (2L +1|2L) gauge transformation,

+ %caﬁ<[v£}> W=V 9u]) - %cw?ﬂa odj”)
SM=[M,H®1], (3.16
1 w7 (L) = 1 (L")
whereH e u(2L+1|2L), H*=—H. We note thatS¢> and | = 2 Capva” bgr Hidp”  oph) — gW @y,
Scs are independently invariant under the supersymmetry
and gauge transformations. (3.23

Then we solve the equation of motion of the above action
and expand the supermatrid around a classical solution. _ } Loy =~~~
The classical solution represents the background space-timescs_ 4L (L' +12)STi | 2(0iC)apAil e g}
and fluctuations are regarded as gauge fields on the space-

time. One of the classical solutions is given by —2C W@, gt —2(01C) uptha IV 5]
A=V =0 y=db), w=y0), +4(01C) gAY g} +2C 0 [ YV, g
(3.17 ~ ~ ~ ~ ~ o~
—2C W0l gt = 2C, s W(df o} —AA,
which represents a fuzzy supersphere. It should be noted that 1
the solution satisfies not only the equations of motion but —CQBEQTPB—ZCQ;;@“T/IB— vy 2l (3.24)
also the constraint63.7) and (3.10. M can be decomposed 2

into the classical backgroun@®.17) and fluctuationM as Note that the supermatricés, ¢, , ., andW are covariant

derivatives onN=2 superspace since they transform cova-

M=M¢+M, (3.18 riantly under theU (2L + 1|2L) gauge transformations.
VTR PTUE SIS (D P _ Because of the Const_ra|r(t3.7) and(3.10, ¢, is the only _
c =1 i apla B independent supermatrix and the others can be solved in

O Lo terms ofy,, ,
—CpdPedl)— = yLe . (31
B B 47 Y (3.19 % L~ ~ o~
AI_(UIC)aﬁ(Z{da ,wﬁ}-i-{(//a,l/fﬂ}), (3.2

Because of thesp(2|2) algebra the field strength for the - L o n -~
classical backgrount¥l ., vanishes, ¢o=—[dy” \WI+[V™, o] = [, W],  (3.20
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W~ 1 W ~ e~ Lle where 02=Ca3000ﬁ. The supermatrin]a is mapped to a
Caplds” ¥pl+ 717 Wit Cogihaihpt ZW"=0. spinor superfield that can be regarded as the spinor connec-
(3.27)  tion on the fuzzy supersphere. The field theory action derived
_ by these procedures is written in terms of this spinor super-
¥, is an odd supermatrix which can be expanded in terms ofield. The construction of the supersymmetric gauge theory
1M andv M. Thus it is regarded as a spinor superfield on theon the fuzzy supersphere given here is a natural extension of
fuzzy supersphere. Equati@B.27) represents a rather com- the covariant superspace approach for the ordinary super-

plicated quadratic constraint for supermatfigwhich cannot ~ Yang-Mills theory in a flat space-time.

be easily solvedor, eventually, implemented in numerical ~ Next we consider a commutative limit to see that our
simulations. Below, we shall solve and investigate it in the Model is indeed a noncommutative generalization of the or-
dinary supersymmetric gauge theory on sphere. A commuta-

tive limit is given by taking theL— limit, keeping the

Though fixing the classical background as above vioIate.g,adlus of the supersphere fixed. In this limit superfiefds

the originalosp(1|2) supersymmetry3.14), it can be com- andW are expanded as

pensated by appropriate(2L+1|2L) gauge transforma- ~

tions. Actually the action is invariant under the following Po(X,0)=74(X)+ (0,) ga,(X) b5
combined transformations:

commutative limitL—oo. For a while we treat both o/,
andW as independent variables.

1
~ 1= w = +| €u(X)+ —Xid m(x)) 6%, (3.39
SPa= 7N aW+Cp ) foig) o, (3.29 2r
5VV: Caﬁ)\ﬁﬁlZ/a'i‘ Caﬁ)\ﬁ[v(al‘) ,\7\/]. W(Xv 0) :W(X) + Caﬁga(x) 6,8
(3.29 1
The action is also invariant under gauge transformations, +( F(x)+ ;Xiaiw(x)) 0, (3.39
r

SU=[dP 4+, , H], sW=[yD+W,H], (3.3 :
Vo=lda™+ ¥, H] Ly 1330 wherer?=x;x; and ©=0,1,2,3.a,,w, F are bosonic and
for He u(2L +1|2L). These transformations are compatible 7« éa+ £ are fermionic fields. Thei(2L+1[2L) gauge
with the constraints. The fact that the model has thgP@rameter is also expanded as

osp(1|2) supersymmetry even after choosing the classical B 2
background can be also understood as the following. The H(x,0)=h(x)+ Capha(x) 65+ T(x) 67, (3.3

; (L) (L) ; . . .
elements with the formu;l; "+ Cophv” I u(2L+1j2L) The gauge transformation generatedH{x) is an ordinary

COHStEUte theo_sp(1|2) subalgebra. Thus th_e moﬂel c;rigi- gauge transformation while the others are supersymmetric
nally has two independentsp(1|2) symmetries. The clas- oyiansion of it. To fix these extra gauge degrees of freedom

sical background preserves a half of these symmetries Whicgenerated by, andf, we set the Wess-Zumino-like gauge
is given by the transformation8.28. “ '

Mapping from the supermatrix model to a noncommuta-iXing conditionC,, 56,415 =0; thus 7, =2a,=0. In the com-

tive field theory on the supersphere is performed by the sam@utative limit the constrain(3.27 can be solved a$V

method as ones used in RE5]. The classical solution$”  =2x;(aiC) ,50,¢5, SO that
and ng> are mapped to coordinates; (6,) on the super- )
sphere, w={,=0, F=-2(x-a)6". (3.37
" Here we used the fact that the fielgls andW scale ag)(1)
X = —\/7“ , (33D while d and ) scale asO(L) in L—c. By the gauge
L(L+1/2) fixing condition and the constraint, the independent fields are
1 now a;(x) and¢,(x).
0 =— 5\ (3.32 We then decomposa; into a scalar fieldp and a gauge

NI

where we set a radius of the supersphere to 1 for simplicity, a=n;p+al?, (3.39
that isx;x;+ C,z0,05=1. And d’") and y") are written as

second-order polynomials of and 6, according to(2.2) ~ Wheren; is a unit normal vector on the sphere angh(®
and (2.3). The adjoint actions of thesesp(2|2) generators =0 and al® is a tangential projection;a®=(g;
are mapped to the differential operators on the supersphere.nn;)a;. The U(1) field strength for the tangential com-
The supertrace becomes an integration on the superspheregionent is defined a6{?=R;a{®—Rja{”—ieja”’, where

field a® on &,

1 Ri=—ie€jn;dlan; are derivatives orf?. After straightfor-
STh—— EJ dexA205(x2+ 02— 1), (3.33 erfnrtd calculations, we obtain the action in the commutative
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L' (L' +1/2) 9 i [6,1,8,2]6=OR &, (3.47)
S= TJ dQ[gFi(jz)Fi(jZ)_Z(éijkniF](E))¢ .

[ 5)\1, 5)\2]ai(2): ®J Rjai(2)+ i GijkG)jaf(Z)

9 1 9 1
2_ T 42~ . . _ -
+Z(Ri¢) 4¢ 4(0'|C)aﬁ§aR|§B 4Caﬁ§a§ﬁ +Ri[@j(nj¢_a](2))], (3.48
=3B (& NiF@)p+ p2+C, 46 ,65,]1. (3.39 1
PLLGRNEIT O Capbeti] (81002 18,=ORE,+ 5 01(01) putis
This model consists of @ (1) gauge field which has no local (3.49
degrees of freedom, a scalar, and a Majorana fermion. There -~ _ _
is a free tunable paramet@. The mass of the fermion is with 0;= —%(criC)a_B)\a_A,g. We again note that the action
given by Vu(u—1) with w=(1+128)/9 because of has these symmetries independently of the parangter
In this paper we concentrated on the cas&¢1) gauge
(Coi)apRit (1= u)Cpp theory, but it is easily generalized to supersymmetric gauge
(Ea(X)Ep(Y))~ RR—a(a=1 (340 theory with theU (k) (k>1) group.
The massless Dirac operator is given by o;R;+ 1. The
second term i_rD comes from the_ spin con_ne(_:tion on the IV. SUMMARY AND DISCUSSIONS
sphere and thi® anticommutes with the chirality operator
oin; . By integrating out the scalar fiel@ it can be shown In this paper, we constructed a supersymmetric gauge

that the bosonic supersymmetric parteréohas the same theory on fuzzy supersphere from a supermatrix model. Our
mass. ForB=2/3 the action becomes the one given in Ref.construction of the supermatrix model is based on the pre-
[21]. On the other hand, fo8=—1/12 the mixing term be- scription given by Klimek [11]. We have shown that the
tween ¢ and a!? disappears. For both cases, bosonic anduzzy supersphere can be obtained as a classical solution of
fermionic excitations are massless. the supermatrix model and fluctuations around it become su-
Since the gauge fixing condition we chose is not invarianfPersymmetric gauge fields on the supersphere. Namely, both
under the supersymmetry transformatioi8s28, we must Of the Klimak's gauge theory and fuzzy supersphere back-
compensate them by the field-dependent gauge transformground are shown to be derivable from a single supermatrix.

tion with the following gauge parameter: In this sense, this model has background independence as
well as the other known gauge theories on honcommutative
ha=—Nad—i€ij(00) gah gnial?, (3.41)  space-time.

The formulation adopted here is similar to the so-called

1 covariant superspace approach to supersymmetric gauge
f=5(0iC)aphpnia- (3.42  theories on superspace. Namely we first introduce larger de-

grees of freedom, corresponding to connection superfields on

Then the supersymmetry transformations become the superspace, and then impose various constraints on the

superfields. In our case, we follow the prescription by
Klimcik and start from connection superfields 4f=2 su-
o\p=— E(Caﬁ)‘ﬁga)* (3.43 perspace on the sphere to obtAir= 1 supersymmetric field
theory. In this way, we can impose appropriate constraints to
i eliminate redundant fields. In our previous pap&s], we
s al?=— 5 €iikNj(0kC) aph péa started from less superfields corresponding to connections on
(3.44) N=1 but could not impose the appropriate constraint com-
patible withosp(1|2) global supersymmetry. This is in con-

1 i trast with the ordinary flat case where we can impose appro-
5@5—5)\& b+ EeijkniFflf)) priate constraints on the connection superfields Aoa 1
superspace.
Our construction may be generalizable to higher dimen-
+5(01)gal gRi - (3.49  sional curved cases. For example, it will be interesting to
consider a supermatrix model basedmsw(2|2) super Lie
The U(1) gauge transformation is given by algebra to obtain a supersymmetric gauge theory on noncom-
mutative superspace &fdS x S2,
saP=Rih, b6¢=05¢,=0. (3.46
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