
PHYSICAL REVIEW D 69, 105014 ~2004!
Note on gauge theory on a fuzzy supersphere
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Theory Division, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan
~Received 13 January 2004; published 20 May 2004!

We construct a supermatrix model whose classical background gives a two-dimensional noncommutative
supersphere. Quantum fluctuations around it give the supersymmetric gauge theories on the fuzzy supersphere
constructed by Klimcˇı́k. This model has a parameterb that can tune the masses of the particles in the model
and interpolate various supersymmetric gauge theories on the sphere.
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I. INTRODUCTION

Matrix models have been vigorously studied to und
stand the nonperturbative aspects of string theories. In ma
models of the Ishibashi-Kawai-Kitazawa-Tsuchiya~IKKT !
type @1#, background space-time appears dynamically a
classical background of matrices and their fluctuatio
around the classical solution are regarded as gauge and
ter fields on the space-time. In particular, matrix models
scribe noncommutative gauge theories when the class
background of matrices are noncommutative@2#. In this ap-
proach the construction of the open Wilson loop and ba
ground independence of the noncommutative gauge theo
are clarified@3#.

Noncommutative gauge theories appear on D-brane
string theories in a constant Neveu-Schwarz–Nev
Schwarz~NS-NS! two-form B background@4,5#, where the
bosonic space-time coordinates become noncommuta
Recently it was suggested that the nonanticommutativity
the fermionic coordinates on the superspace appears in s
theories in a background of the Ramond-Ramond~RR! or
graviphoton field strength@6–8#. Since the nonanticommu
tative fermionic coordinates can be described by~super!ma-
trices, it is expected that~super!matrix models will play an
important role in investigating various aspects of field the
ries on the noncommutative superspace. There are ana
of noncommutative superspace by using supermatr
@9–15#. Supersymmetric actions for scalar multiplets on t
fuzzy two-supersphere were constructed in Ref.@9# based on
theosp(1u2) graded Lie algebra. Furthermore, a graded d
ferential calculus on the fuzzy supersphere is discusse
Ref. @10#. Supersymmetric gauge theories on this nonco
mutative superspace were studied in Ref.@11# by using dif-
ferential forms on it. In Ref.@12#, noncommutative super
spaces and their flat limits are studied by using the gra
Lie algebrasosp(1u2), osp(2u2), andpsu(2u2). Recently
the concept of noncommutative superspace based on a s
matrix was also introduced in proving the Dijkgraaf-Va
conjecture as the largeN reduction @16#. The supermatrix
model was also studied from the viewpoint of backgroun
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independent formulations of the matrix model which are e
pected to give constructive definitions of string theory@17#.

In the previous paper@15#, we constructed a supersym
metric gauge theory on a fuzzy two-supersphere based
supermatrix model. This model has a classical solution r
resenting a fuzzy supersphere and we obtained a super
metric gauge theory on the fuzzy two-supersphere expan
the supermatrices around the classical background. In a c
mutative limit this model is, however, different from the o
dinary gauge theory inD52, e.g., the action includes highe
derivative terms and the fermions transform as spin-3

2 repre-
sentation under thesu(2) isometry group onS2. These dif-
ferences originated from the fact that we did not impo
appropriate constraints on the supermatrices to eliminate
tra degrees of freedom. Supermatrix formulation of sup
symmetric gauge theories is similar to the covariant sup
space approach for the ordinary supersymmetric ga
theories@18# because each supermatrix corresponds to
connection superfields on the superspace as we saw in
previous paper@15#. In the covariant superspace approa
various constrains are imposed on the connections to el
nate redundant degrees of freedom, but in our model
could not impose appropriate conditions. After we wrote t
previous paper@15#, we noticed Klimčı́k’s paper@11# where
he constructed a supersymmetric gauge theory on the fu
supersphere by using a method of differential forms and
posing suitable constraints on the connection superfield
crucial point of his construction is the use of enlarg
osp(2u2) algebra. The globalN51 supersymmetry algebr
on the fuzzy supersphere isosp(1u2). By adding the cova-
riant derivativesosp(1u2) is enlarged toosp(2u2) because
the supersymmetry generators and the covariant derivat
do not anticommute on the fuzzy supersphere.Osp(2u2)
algebra can be regarded asN52 superalgebras on th
sphere. Starting from the connection superfields on
N52 superspace, he found the correct constraints
obtain a supersymmetric gauge theory on the fuz
supersphere.

In this paper we reformulate Klimcˇı́k’s gauge theory on
fuzzy supersphere in terms of supermatrix models. Very
terestingly, Klimčı́k’s gauge theory can be obtained from
supermatrix model whose classical solution gives nonco
mutative supersphere. Its quantum fluctuations become
supersymmetric gauge theory proposed by him. In a com
©2004 The American Physical Society14-1
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tative limit, by taking a Wess-Zumino-like gauge, this mod

becomes the ordinary supersymmetric gauge theory onS2. In

the paper we use the manifestlySO(3) covariant coordinates

and decompose the bosonic fieldai into the normal compo-
nent f and tangential componentai

(2) on the sphere. The
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l action contains a parameter which can tune masses of
ticles in the model.

II. osp„1z2… AND osp„2z2… ALGEBRAS

The graded commutation relations of theosp(2u2) alge-
bra are given by
@ l̂ i , l̂ j #5 i e i jk l̂ k , @ l̂ i ,v̂a#5
1

2
~s i !bav̂b , $v̂a ,v̂b%5

1

2
~Cs i !ab l̂ i ,

$v̂a ,d̂b%52
1

4
Cabĝ, @ l̂ i ,d̂a#5

1

2
~s i !bad̂b , $d̂a ,d̂b%52

1

2
~Cs i !ab l̂ i ,

@ ĝ,v̂a#5d̂a , @ ĝ,d̂a#5 v̂a , @ ĝ, l̂ i #50, ~2.1!
an-

ized
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where l̂ i ( i 51,2,3) andĝ are bosonic generators, andv̂a

and d̂a (a51,2) are fermionic ones.C5 is2 is the charge
conjugation matrix. Theosp(1u2) subalgebra consists of th
generatorsl̂ i and v̂a . Irreducible representations of th
osp(1u2) algebra@19# are characterized by values of th
second Casimir operatorK̂25 l̂ i l̂ i1Cabv̂av̂b5L(L1 1

2 ),
where quantum numberLPZ>0/2 is called superspin. Eac
representation ofosp(1u2) consists of spinL andL1 1

2 rep-
resentations of thesu(2) subalgebra generated byl̂ i . The
dimension of the representation isN[4L11. These repre-
sentations are also the so-called atypical representation
osp(2u2), where osp(1u2) algebra can be enlarged
osp(2u2) algebra by adding extra generators with the sa
size matrices. The representation matrices of the genera
d̂a and ĝ can be written as second-order polynomials of
superspinL representation matricesl i

(L) and va
(L) of the

osp(1u2) generators,

g (L)52
1

L11/4FCabva
(L)vb

(L)12LS L1
1

2D G , ~2.2!

da
(L)5

1

2~L11/4!
~s i !ba$ l i

(L) ,vb
(L)%. ~2.3!

The conditionK̂25L(L11/2) defines a two-dimensiona
supersphere. Consider the polynomialsF( l i

(L) ,va
(L)) of the

representation matrices ofl i
(L) and va

(L) with superspinL.
These polynomials are (4L11)3(4L11) supermatrices
Let us denote the space spanned byF( l i

(L) ,va
(L)) asAL . The

osp(1u2) algebra acts onAL . In particular we denote the
adjoint action of theosp(1u2) generators as

L̂iF5@ l i
(L) ,F#, V̂aF5@va

(L) ,F#. ~2.4!

AL can be decomposed into irreducible representations u
the adjoint action of theosp(1u2) algebra as 0% 1

2 % 1%

•••% 2L2 1
2 % 2L. The dimension of this space is (4L

11)2 and thus any (4L11)3(4L11) matrices can be ex
of

e
ors
e

er

panded by these polynomials. A useful basis for the exp
sion are the matrix superspherical harmonicsYkm

S ( l i
(L) ,va

(L)),

~L̂iL̂i1CabV̂aV̂b!Ykm
S ~ l i

(L) ,va
(L)!5kS k1

1

2DYkm
S ~ l i

(L) ,va
(L)!,

~2.5!

L̂3Ykm
S ~ l i

(L) ,va
(L)!5mYkm

S ~ l i
(L) ,va

(L)!. ~2.6!

The superspherical harmonics should be properly normal
@10#. ThenF( l i

(L) ,va
(L)) can be expressed as a series of

perspherical harmonics,

F~ l i
(L) ,va

(L)!5 (
k50,1/2,1,•••

2L

fkmYkm
S ~ l i

(L) ,va
(L)!, ~2.7!

where the Grassmann parity of the coefficientfkm depends
on the gradings of the spherical harmonics. We can map
supermatrixF( l i

(L) ,va
(L)) to a function on the superspac

(xi ,ua) by

F~ l i
(L) ,va

(L)!→f~xi ,ua!5(
k,m

fkmykm
S ~xi ,ua!, ~2.8!

whereykm
S (xi ,ua) is the ordinary superspherical function.

product of supermatrices is mapped to a noncommuta
star product of functions on the fuzzy supersphere@20#.

In constructions of field theories on the fuzzy supe
sphere, theosp(2u2) generatorsd̂a and ĝ play important
roles. The adjoint action ofd̂a on supermatrices is the cova
riant derivative on the fuzzy supersphere. The kinetic ter
for a scalar multiplet on the supersphere are constructed
using these generators@9#.
4-2
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III. SUPERSYMMETRIC GAUGE THEORY ON FUZZY
SUPERSPHERE

In this section we reformulate Klimcˇı́k’s construction of a
supersymmetric gauge theory on fuzzy supersphere@11# in
terms of supermatrices. We construct a supermatrix mo
which has a classical solution representing the fuzzy su
sphere, and by expanding supermatrices around this b
ground we will obtain a supersymmetric gauge theory giv
by Klimčı́k.

This formulation has similarities to the covariant sup
space approach in the ordinary supersymmetric gauge th
Namely, we first introduce larger degrees of freedom, co
sponding to the connection superfields on the fuzzy su
sphere. In order to eliminate redundant degrees of freed
we need to impose appropriate constraints on them. A
fixing extra gauges, we will obtain necessary degrees of f
dom to describe a supersymmetric gauge theory on the
commutative supersphere.

We first consider direct products of two vector spaces
supermatrices,AL andAL8 . L8 can be taken as any supe
spin. On the other hand,L should be taken large in order t
take a commutative limit. Each element is a (4L11)(4L8
11)3(4L11)(4L811) supermatrix. We then consider
special type of supermatrix which can be written as

M5(
A

XA^ TA, ~3.1!

whereXAPAL is a general supermatrix andTA is the super-
spin L8 representation matrix of theosp(2u2) generators;

TA5$ l i
(L8) , va

(L8) , da
(L8) , g (L8)%. Among them, we can defin

two kinds of products,• and *,

~XA^ TA!•~YB^ TB!5~21! uTAuuYBuXAYB^ TATB,
~3.2!

~XA^ TA!* ~YB^ TB!5~21! uTAuuYBuXAYB^ @TA,TB%,
~3.3!

where uTAu and uYBu are the gradings ofTA and YB ,
respectively.1

The supermatrixM defined above can be expanded e
plicitly as

M5Ai ^ l i
(L8)1Cabwa ^ va

(L8)2Cabca ^ db
(L8)

2
1

4
W^ g (L8). ~3.4!

HereAi andW are (4L11)3(4L11) even supermatrices
and wa and ca are (4L11)3(4L11) odd supermatrices
L8 is arbitrary, thus one may setL85 1

2 for simplicity. M
satisfies the graded reality conditionM‡5M , that is, Ai

‡

5Ai , wa
‡5Cabwb , ca

‡5Cabcb and W‡5W. For the defi-
nition of ‡, see the appendix of Ref.@15#. We denote the
osp(1u2) part ofM asMH ,

1In the paper@11#, * is meant for *G2* H but in our paper we use
* product as *G or * H according to operated supermatrices.
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MH5Ai ^ l i
(L8)1Cabwa ^ va

(L8) , ~3.5!

and the rest asMH'[M2MH . Since all the component
Ai , fa , ca , andW are supermatrices and can be expand
in terms of superspinL spherical harmonics, they can b
regarded as superfields on the fuzzy supersphere. The s
matrix M is shown to correspond to the covariant derivativ
on theN52 extended supersphere. Then we define ‘‘fie
strength’’ as

F5M* M2MH* MH1
dG

2
M2

dH

2
MH

5S 1

4
~s iC!ab$ca ,cb%2

1

4
Ai D ^ l i

(L8)

1S 2
1

4
Cab@ca ,W#2

1

4
CabwaD ^ vb

(L8)

1S 1

2
~s iC!ab@Ai ,ca#1

1

4
Cab@wa ,W#2

1

2
CabcaD

^ db
(L8)1S 2

1

4
Cab$wa ,cb%2

1

8
WD ^ g (L8), ~3.6!

wheredG51 anddH5 3
2 are Dynkin numbers.

In order to eliminate redundant superfields, we follow t
prescription in Ref.@11# and impose a constraint for th
osp(1u2) part of the field strength to vanish,

FuH[S 1

4
~s iC!ab$ca ,cb%2

1

4
Ai D ^ l i

(L8)

1S 2
1

4
Cab@ca ,W#2

1

4
CabwaD ^ vb

(L8)50.

~3.7!

This constraint breaks theosp(2u2) covariant structure, bu
still preserves the covariance underosp(1u2) of the model.
From this constraint,Ai andwa can be solved in terms ofca
andW as

Ai5~s iC!ab$ca ,cb%, ~3.8!

wa52@ca ,W#. ~3.9!

Moreover, we need to constrain further redundant degree
freedomW by the following condition:

2
1

L8~L811/2!
STrL8~MH'•MH'!

5Cabcacb1
1

4
W2

5L~L11/2!, ~3.10!

where STrL8 represents taking a supertrace with respect
the superspinL8 representation matrices. This constraint
4-3
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also osp(1u2) invariant. In a commutative limit, this equa
tion can be solved to eliminateW, as will be seen.

We now start from the following action for the superm
trix M:

S5SF21bSCS, ~3.11!

SF25STr~F•F !, ~3.12!

SCS5STrS 2

3
M•~M* M !2

2

3
MH•~MH* MH!1

dG

2
M•M

2
dH

2
MH•MHD , ~3.13!

whereb is a real constant parameter anddG and dH were
defined above. This action is invariant under the followi
osp(1u2) supersymmetry transformation:

dM5@Cablb ^ va
(L8) , M #, ~3.14!

where a parameterla is a (4L11)3(4L11) grading ma-
trix multiplied by a Grassmann parameterl̃a ,

la5l̃aS 12L11 0

0 212L
D . ~3.15!

In addition to the supersymmetry, this action is invariant u
der theU(2L11u2L) gauge transformation,

dM5@M , H ^ 1#, ~3.16!

where HPu(2L11u2L), H‡52H. We note thatSF2 and
SCS are independently invariant under the supersymme
and gauge transformations.

Then we solve the equation of motion of the above act
and expand the supermatrixM around a classical solution
The classical solution represents the background space-
and fluctuations are regarded as gauge fields on the sp
time. One of the classical solutions is given by

Ai5 l i
(L) , wa5va

(L) , ca5da
(L) , W5g (L),

~3.17!

which represents a fuzzy supersphere. It should be noted
the solution satisfies not only the equations of motion
also the constraints~3.7! and ~3.10!. M can be decompose
into the classical background~3.17! and fluctuationM̃ as

M5Mcl1M̃ , ~3.18!

Mcl5 l i
(L)

^ l i
(L8)1Cabva

(L)
^ vb

(L8)

2Cabda
(L)

^ db
(L8)2

1

4
g (L)

^ g (L8). ~3.19!

Because of theosp(2u2) algebra the field strength for th
classical backgroundMcl vanishes,
10501
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Fcl5Mcl* Mcl2MHcl* MHcl1
dG

2
Mcl2

dH

2
MHcl50,

~3.20!

where MHcl is the osp(1u2) part of Mcl . Then the field
strength~3.6! becomes

F5S Mcl* M̃1M̃* Mcl1
dG

2
M̃ D2S MHcl* M̃H1M̃H* MHcl

1
dH

2
M̃HD1M̃* M̃2M̃H* M̃H , ~3.21!

whereM̃H is theosp(1u2) part ofM̃ . In this form, terms in
the first and second parentheses, respectively, coincide
dGM̃ anddHM̃H in Klimčı́k’s notation@11# and thus this is
nothing but the field strength defined by him.

Expanding each component of the supermatrices aro
the classical background,

Ai5 l i
(L)1Ãi , wa5va

(L)1w̃a , ca5da
(L)1c̃a ,

W5g (L)1W̃, ~3.22!

FuH' andSCS become

FuH'5F1

2
~s iC!ab~@ l i

(L) ,c̃a#2@da
(L) ,Ãi # !

1
1

4
Cab~@va

(L) ,W̃#2@g (L),w̃a#!2
1

2
Cabc̃aG ^ db

(L8)

1F2
1

4
Cab~$va

(L) ,c̃b%1$db
(L) ,w̃b%!2

1

8
W̃G ^ g (L8),

~3.23!

SCS5
1

4
L8~L811/2!STrLS 2~s iC!abÃi$c̃a ,c̃b%

22CabW̃$w̃a ,c̃b%22~s iC!abc̃a@ l i
(L) ,c̃b#

14~s iC!abÃi$da
(L) ,c̃b%12Cabw̃a@g (L),c̃b#

22CabW̃$va
(L) ,c̃b%22CabW̃$db

(L) ,w̃a%2Ãi Ãi

2Cabw̃aw̃b22Cabc̃ac̃b2
1

2
W̃2D . ~3.24!

Note that the supermatricesAi , fa , ca , andW are covariant
derivatives onN52 superspace since they transform cov
riantly under theU(2L11u2L) gauge transformations.

Because of the constraints~3.7! and~3.10!, c̃a is the only
independent supermatrix and the others can be solve
terms ofc̃a ,

Ãi5~s iC!ab~2$da
(L) ,c̃b%1$c̃a ,c̃b%!, ~3.25!

w̃a52@da
(L) ,W̃#1@g (L),c̃a#2@c̃a ,W̃#, ~3.26!
4-4
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Cab@da
(L) ,c̃b#1

1

4
$g (L),W̃%1Cabc̃ac̃b1

1

4
W̃250.

~3.27!

c̃a is an odd supermatrix which can be expanded in term
l i
(L) andva

(L) . Thus it is regarded as a spinor superfield on
fuzzy supersphere. Equation~3.27! represents a rather com
plicated quadratic constraint for supermatrixW̃ which cannot
be easily solved~or, eventually, implemented in numeric
simulations!. Below, we shall solve and investigate it in th
commutative limitL→`. For a while we treat both ofc̃a

andW̃ as independent variables.
Though fixing the classical background as above viola

the originalosp(1u2) supersymmetry~3.14!, it can be com-
pensated by appropriateu(2L11u2L) gauge transforma
tions. Actually the action is invariant under the followin
combined transformations:

dc̃a5
1

4
laW̃1Cbglg$vb

(L) ,c̃a%, ~3.28!

dW̃5Cablbc̃a1Cablb@va
(L) ,W̃#.

~3.29!

The action is also invariant under gauge transformations

dc̃a5@da
(L)1c̃a , H#, dW̃5@g (L)1W̃, H#, ~3.30!

for HPu(2L11u2L). These transformations are compatib
with the constraints. The fact that the model has
osp(1u2) supersymmetry even after choosing the class
background can be also understood as the following.
elements with the formui l i

(L)1Cablavb
(L) in u(2L11u2L)

constitute theosp(1u2) subalgebra. Thus the model orig
nally has two independentosp(1u2) symmetries. The clas
sical background preserves a half of these symmetries w
is given by the transformations~3.28!.

Mapping from the supermatrix model to a noncommu
tive field theory on the supersphere is performed by the s
method as ones used in Ref.@15#. The classical solutionsl i

(L)

and va
(L) are mapped to coordinates (xi ,ua) on the super-

sphere,

xi5
1

AL~L11/2!
l i
(L) , ~3.31!

ua5
1

AL~L11/2!
va

(L) , ~3.32!

where we set a radius of the supersphere to 1 for simplic
that isxixi1Cabuaub51. And da

(L) andg (L) are written as
second-order polynomials ofxi and ua according to~2.2!
and ~2.3!. The adjoint actions of theseosp(2u2) generators
are mapped to the differential operators on the supersph
The supertrace becomes an integration on the supersph

STrL→2
1

2pE d3xd2ud~x21u221!, ~3.33!
10501
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where u25Cabuaub . The supermatrixc̃a is mapped to a
spinor superfield that can be regarded as the spinor con
tion on the fuzzy supersphere. The field theory action deri
by these procedures is written in terms of this spinor sup
field. The construction of the supersymmetric gauge the
on the fuzzy supersphere given here is a natural extensio
the covariant superspace approach for the ordinary su
Yang-Mills theory in a flat space-time.

Next we consider a commutative limit to see that o
model is indeed a noncommutative generalization of the
dinary supersymmetric gauge theory on sphere. A comm
tive limit is given by taking theL→` limit, keeping the
radius of the supersphere fixed. In this limit superfieldsc̃a

andW̃ are expanded as

c̃a~x,u!5ha~x!1~sm!baam~x!ub

1S ja~x!1
1

2r 2
xi] iha~x!D u2, ~3.34!

W̃~x,u!5w~x!1Cabza~x!ub

1S F~x!1
1

2r 2
xi] iw~x!D u2, ~3.35!

where r 25xixi and m50,1,2,3. am , w, F are bosonic and
ha , ja , za are fermionic fields. Theu(2L11u2L) gauge
parameter is also expanded as

H~x,u!5h~x!1Cabha~x!ub1 f ~x!u2. ~3.36!

The gauge transformation generated byh(x) is an ordinary
gauge transformation while the others are supersymme
extension of it. To fix these extra gauge degrees of freed
generated byha and f, we set the Wess-Zumino-like gaug
fixing conditionCabuac̃b50; thusha5a050. In the com-
mutative limit the constraint~3.27! can be solved asW̃
52xi(s iC)abuac̃b , so that

w5za50, F522~x•a!u2. ~3.37!

Here we used the fact that the fieldsc̃a andW̃ scale asO(1)
while da

(L) and g (L) scale asO(L) in L→`. By the gauge
fixing condition and the constraint, the independent fields
now ai(x) andja(x).

We then decomposeai into a scalar fieldf and a gauge
field ai

(2) on S2,

ai5nif1ai
(2) , ~3.38!

where ni is a unit normal vector on the sphere andniai
(2)

50 and ai
(2) is a tangential projection;ai

(2)5(d i j

2ninj )aj . The U(1) field strength for the tangential com
ponent is defined asFi j

(2)5Riaj
(2)2Rjai

(2)2 i e i jkak
(2) , where

Ri52 i e i jkni]/]ni are derivatives onS2. After straightfor-
ward calculations, we obtain the action in the commutat
limit,
4-5
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4p E dVH 9

8
Fi j

(2)Fi j
(2)2

i

4
~e i jkniF jk

(2)!f

1
9

4
~Rif!22

1

4
f22

9

4
~s iC!abjaRijb2

1

4
Cabjajb

23b@ i ~e i jkniF jk
(2)!f1f21Cabjajb ,#J . ~3.39!

This model consists of aU(1) gauge field which has no loca
degrees of freedom, a scalar, and a Majorana fermion. T
is a free tunable parameterb. The mass of the fermion is

given byAm(m21) with m5(1112b)/9 because of

^ja~x!jb~y!&;
~Cs i !abRi1~12m!Cab

RiRi2m~m21!
. ~3.40!

The massless Dirac operator is given byD5s iRi11. The
second term inD comes from the spin connection on th
sphere and thisD anticommutes with the chirality operato
s ini . By integrating out the scalar fieldf it can be shown
that the bosonic supersymmetric parter ofj has the same
mass. Forb52/3 the action becomes the one given in R
@21#. On the other hand, forb521/12 the mixing term be-
tween f and ai

(2) disappears. For both cases, bosonic a
fermionic excitations are massless.

Since the gauge fixing condition we chose is not invari
under the supersymmetry transformations~3.28!, we must
compensate them by the field-dependent gauge transfo
tion with the following gauge parameter:

ha52laf2 i e i jk~sk!balbniaj
(2) , ~3.41!

f 5
1

2
~s iC!ablbnija . ~3.42!

Then the supersymmetry transformations become

dlf52
1

2
~Cablbja!, ~3.43!

dlai
(2)52

i

2
e i jknj~skC!ablbja ,

~3.44!

dlja52
1

2
laS f1

i

2
e i jkniF jk

(2)D
1

1

2
~s i !balbRif. ~3.45!

The U(1) gauge transformation is given by

dai
(2)5Rih, df5dja50. ~3.46!

The action~3.39! is invariant under these transformations.
can be shown that the commutation relations between
supersymmetry transformations generate the translation
S2 up to gauge transformations,
10501
re

.

d

t

a-

o
on

@dl1,dl2#f5Q iRif, ~3.47!

@dl1,dl2#ai
(2)5Q jRjai

(2)1 i e i jkQ jak
(2)

1Ri@Q j~njf2aj
(2)!#, ~3.48!

@dl1,dl2#ja5Q iRija1
1

2
Q i~s i !bajb ,

~3.49!

with Q i52 1
2 (s iC)abla

2lb
1 . We again note that the actio

has these symmetries independently of the parameterb.
In this paper we concentrated on the case ofU(1) gauge

theory, but it is easily generalized to supersymmetric ga
theory with theU(k) (k.1) group.

IV. SUMMARY AND DISCUSSIONS

In this paper, we constructed a supersymmetric ga
theory on fuzzy supersphere from a supermatrix model. O
construction of the supermatrix model is based on the p
scription given by Klimcˇı́k @11#. We have shown that the
fuzzy supersphere can be obtained as a classical solutio
the supermatrix model and fluctuations around it become
persymmetric gauge fields on the supersphere. Namely,
of the Klimčı́k’s gauge theory and fuzzy supersphere ba
ground are shown to be derivable from a single superma
In this sense, this model has background independenc
well as the other known gauge theories on noncommuta
space-time.

The formulation adopted here is similar to the so-cal
covariant superspace approach to supersymmetric ga
theories on superspace. Namely we first introduce larger
grees of freedom, corresponding to connection superfield
the superspace, and then impose various constraints on
superfields. In our case, we follow the prescription
Klimčı́k and start from connection superfields onN52 su-
perspace on the sphere to obtainN51 supersymmetric field
theory. In this way, we can impose appropriate constraint
eliminate redundant fields. In our previous paper@15#, we
started from less superfields corresponding to connection
N51 but could not impose the appropriate constraint co
patible withosp(1u2) global supersymmetry. This is in con
trast with the ordinary flat case where we can impose app
priate constraints on the connection superfields onN51
superspace.

Our construction may be generalizable to higher dim
sional curved cases. For example, it will be interesting
consider a supermatrix model based onpsu(2u2) super Lie
algebra to obtain a supersymmetric gauge theory on nonc
mutative superspace ofAdS23S2.
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@11# C. Klimčı́k, Commun. Math. Phys.206, 567 ~1999!; K. Vala-

vane, Class. Quantum Grav.17, 4491~2000!.
@12# M. Hatsuda, S. Iso, and H. Umetsu, Nucl. Phys.B671, 217

~2003!.
10501
.

tt.

@13# J.H. Park, J. High Energy Phys.09, 046 ~2003!.
@14# Y. Shibusa and T. Tada, Phys. Lett. B579, 211 ~2004!.
@15# S. Iso and H. Umetsu, Phys. Rev. D~to be published!,

hep-th/0311005.
@16# H. Kawai, T. Kuroki, and T. Morita, Nucl. Phys.B664, 185

~2003!; H. Kawai, T. Kuroki, and T. Morita, hep-th/0312026
@17# L. Smolin, hep-th/0006137; T. Azuma, S. Iso, H. Kawai, and

Ohwashi, Nucl. Phys.B610, 251 ~2001!.
@18# For example, S.J. Gates, M.T. Grisaru, M. Rocek, and W. S

gel, Front Phys.B58, 1 ~1983!; M.F. Sohnius, Phys. Rep.128,
39 ~1985!; J. Wess and J. Bagger,Supersymmetry and Supe
gravity ~Princeton University Press, Princeton, 1992!.

@19# A. Pais and V. Rittenberg, J. Math. Psychol.16, 2062~1975!;
@Erratum 17, 598 ~1976!#; M. Scheunert, W. Nahm, and V
Rittenberg,ibid. 18, 155 ~1977!; M. Marcu, ibid. 21, 1277
~1980!.

@20# A.P. Balachandran, S. Ku¨rkçüoǧlu, and E. Rojas, J. High En
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