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Coupling of fermions to the three-dimensional noncommutative CP~! model:
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We consider the coupling of fermions to the three-dimensional noncommutatiNe'GRodel. In the case
of minimal coupling, although the infrared behavior of the gauge sector is improved, there are dangerous
(quadrati¢ infrared divergences in the corrections to the two-point vertex function of the scalar field. However,
using superfield techniques we prove that the supersymmetric version of this model with “antisymmetrized”
coupling of the Lagrange multiplier field is renormalizable up to the first orderh The auxiliary spinor
gauge field acquires a nontriviglonloca) dynamics with generation of Maxwell and Chern-Simons noncom-
mutative terms in the effective action. Up td\lLlérder all divergences are only logarithmic so that the model
is free from nonintegrable infrared singularities.
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[. INTRODUCTION paper we will investigate such a possibility by coupling fer-

mions to the gauge field either minimally or in a supersym-

The renormalization problem is a central issue for themetric fashion. Of course, even in the case of minimal cou-
perturbative consistency of noncommutatiicC) field theo-  pling, the fermionic field and its bosonic counterpart must

ries. This is of course true for any field theory, but in thebelong to the same representation.

noncommutative setting renormalization becomes more Very interesting results emerge from our analysis. As we
stringent due to an unusual mixture of scales. In fact, a chaghall prove, due to the induction of a Chern-Simons term, the
acteristic phenomenon in such theories is the well-knowrf@uge potential becomes much less singular. However, in the
ultraviolet-infrared(UV-IR) mixing, which, being the source ¢@S€ of minimal coupling, in spite of the general smoothness
of nonintegrable IR divergencés] (for a review, sed2]), of the gauge potential, the radiative corrections to the self-

destroys most of the perturbative schemes. It is therefor&" "9y of the scalar field are stil plagued by nonintegrable

very important to find renormalizable noncommutative field”?frareoI singularities. .TO evadg this problem we the_n con-
sider a supersymmetric extension of the model. This is done

theories free from the mentioned infrared divergences. W?hrough the use of powerful superfield techniqUes?]

have recently P roved th'at, at Ieast_up to nng to leading Ord%hich enable us to demonstrate the absence of the dangerous
in 1/N, this requirement is satisfied by the UV-IR mixing up to order IX.

(2+1)-dimensional noncommutative version of the"CP Our work is organized as follows. In Sec. Il the inclusion
model if the basic field transforms in accord with the funda-5¢ fermion fields minimally coupled to the gauge field is
mental representation of the gauge grg8p For the same  examined. In Sec. Il the superfield formulation is intro-
model, we also investigated the situation where the basigyced, we fix the notation to be employed, and determine the
field belongs to the adjoint representation. In contrast withpropagators for the relevant fields. In Sec. IV we prove that
the fundamental representation, we found that for the adjointhe self-energy corrections of the scalar superfield are free
representation infrared divergences associated with nonplérom dangerous UV-IR mixing and in Sec. V we give a gen-
nar graphs are present. These infrared divergences indicaégal argument for the absence of these singularities in all
the breakdown of the model at higher orders dl.10ur  Green’s functions up to I order. A general overview of our
previous experience with the noncommutative versions ofesults and the conclusions are contained in Sec. VI.

the four-dimensional Wess-Zumino model], as well as

with the (2+1)-dimensional supersymmetric nonlinear

sigma model[5], suggests that the overall behavior of the II. MINIMAL COUPLING OF FERMIONS TO THE CP N~1
theory may be improved if fermions are included. In this MODEL

Assuming that the fermions have the same mass as their
bosonic counterparts, the action associated with the model
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whereg, andy,, a=1,...N, are scalar and two-component iN

Dirac fields, respectively. They transform according to either 2F(p)+Fnp(p)= 71— 1(p), (2.9
the left fundamental or the adjoint representation of the

gauge group. To keep uniformity throughout this work, we ) ) )
shall use the metrig;;=g,,= —go=1 and the Dirac ma- whereF was given in Eq(2.3) and the nonplanar pafyp is
trices to be employed in this section ay=io3, y'=o?,

andy?= o2, where theo’s are the Pauli matrices. The cova- -MVp?

riant derivative of the basic fields B, x=d,x+1A ,* x for Fap(P)=— —f (2.6)
x=o¢,¢ in the left fundamental representation, whereas
D.x=3d,x+iA *xx—ix*A, for x= ¢, in the adjoint rep-
resentation£, is the interaction Lagrangian which enforces  The functionf(p) is explicitly given by
a basic constraint for the, fields; its possible forms will be
given shortly. In addition, to evade unitarity problems, N
throughout this work we consider only space-space noncom- Hp) fld 1-e MYP \/T)—2 for p—0,
7 - —

mutativity. P=1, M aip? for pPsm.

: 2.7

A. The bosonic model
We begin by recalling some basic results of the pure For future use it is convenient to identify
CPY"! model, i.e., without fermiong3].
(1) For the left fundamental representation case, with d3k
=\*(g*o"—N/g), the two-point vertex functions of the f(p)=—167riJ—3I(k,p), (2.9
gauge and fields are, respectively, (27)
wv —  _ (AMYA2_ AV
Fo'(p)=— g (9" P"—p"p )Jodx Moo 22
sirf(kOp)
and [(k,p)= 2.9
P = e (k p)r ] 29
f d3k 1 1
F :N = .D
(p) (2m)? (Kt p2rm? ket m? andkOp=1/2k-P.

(2b) The interaction Lagrangiagd, has the same form

iN r1 1 as in the case of the left fundamental representation. The

(2.3 two-point vertex functions of thé, and \ fields are still
given by Eqgs(2.4) and(2.3), but now there exists a nonva-
nishing mixed two-point vertex function

=— | dx——r,
8w Jo M(x)

whereM (x) =[m?+ p?x(1—x)]Y2 Furthermore, the mixed
two-point vertex functiork , of the A, andA fields vanishes. 4%k okt
(2) For the adjoint representatlon there are two cases that F.(p)= J ( P)u e~ i2k0p
have to be distinguished. # (2m)% (K2+m?)[(k+p)?+m?]
(28 The part of the interaction Lagrangian that contains

Nis £,=A*[¢,¢'], . Here also the mixed two-point vertex Ng(p)
function F, vanishes. \/—f dx M\/_: Tpu (2.10
The two-point vertex function of tha , field is 477
iN (1—2x)2 - -
FE%(p)= — — 1 (g4"p?— pip") f dx B Incll-Jdlng fermlc?ns- | |
Am M Because of the inclusion of fermionic fields, the two-point
L vertex function of theA , field receives a new contribution:
1 -~
dX(TZ+M e“”?}, » 3k i i
o VP P (p)‘_NJ(z Y S m Y S g+ m
2.4
24 xJ(k,p), (2.11

in whichp,=6,,p" and 8, is the constant antisymmetric

matrix characterizing the noncommutatmty of the underly-whereJ(k,p) is equal to either 1 or 4 sttk(p) for the left

ing space. Notice that the above result is transversal but posandamental or the adjoint representation, respectively. In

sesses an infrared singularityfat 0. Eq. (2.1]) the subscripf was used to designate the fermionic
The two-point vertex function of the field is modified to  part. After some standard manipulations, we arrive at
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d3k K )2k“k”—2p”p”x(1—x)—g‘“’[kz—p2x(1—x)+m2]+ime“”"pp
@m3 P [K?+p2x(1—x) +m?]? '

Fé”(p)z—ZNfoldxf (2.12

For the left fundamental representation this produces the For the casg2b), due to the nonvanishing mixed two-

well-known resulf 13,14 point vertex function of the. andA,, fields, the computation
. of the gauge field propagator is much more involved than in
EE¥(p)= — m(ngz— p“p”)fldxx(l_x) the previous case. We fin@lso in the Landau gauge
2 0 M
m dx— A <p>=A(g =) AP AP,
+E€M Pppfo dXM (213) nv 1| Yuv p2 2MuMv 3MuMv

B A R P
For the adjoint representation, the use of?&fp)=[1 FAUBLPy PP T AP

—cos(Xp)J/2 leads to a planar contribution equal to twice PP,
the above result. The nonplanar contributierhich contains =(A1—p*P°A3)| 9= — | + (A +P%A3)D,D,
the factor cos(Rp)] gives
. +(As+P%A,) €,,P% (2.18
, iN 1 xX(1—-x) _ s
F’N‘pf(p)=;(g“”p2—p“p”)f dx—y—e B
0 wherep,= eaﬁyp%V and the coefficientg\;, i=1,...,5, are
e e functions ofp:
iN p*p” 1 1
ML PN VR P
™ P Jo VP? 47 1 1 4w g¥(p) 1
Al=—i—————, Ay=— —-
mN 1 1 1 2 2! 2 2 21
_ MmN PRI N f(p) pe+4m N h(p) p°+4m
o € p”fo dXM e . (2.19 (2.19
Thus, by adding the contributions from the bosonic and 47 4mPg3(p) 1
fermionic loops we get the total two-point vertex function of A= — ,
the gauge field as follows. N h(p)(p?)? p*+4m?
(1) For the left fundamental representatisum of Egs.
. Aj=i— , 2.2
F,u.v — _IN MV A2 _ ARV +2 MLVp 12( ! N h(p)pz p2+4m2 ( Q
(p)= 8 [(g*"p*—p*p¥) +2ime**’p,] oM
(2.15 and
(2) For the adjoint representatiggum of Eq.(2.4), twice 4m om 1
Eq. (2.13, and Eq.(2.14)] A= — -m 2.21)
CiN N f(p) p*(p?+4m?)’
F#¥(p)=——f(p)[(g*"p*— p*p*) +2ime*"*p,].
4ar where
(2.1
As can be seer#*(p) behaves smoothly gstends to zero. h(p)=—if(p)[P?9?%(p)+ f2(p)(p?+4m?)]. (2.22

Notice the presence of terms proportional €6’ in Eqs.

(2.13 and(2.16), which in the effective action correspond to  For Jarge momenta this propagator coincides with that in

the bilinear part of the noncommutative Chern-Simons termeq. (2.17), sinceg(p) exponentially decreases or strongly

From now on we will restrict our consideration to the adjoint 5gcijlates in that limit.

representation. o Notice that in both situations the gauge propagator is
For the casd2a) the propagator for tha field is A(D)  mych less singular than in the pure 6P model. This

=4mi/Nf(p) and the propagator for the gauge field in the smoothness of the infrared behavior comes as a direct effect

Landau gauge is of the generation of the Chern-Simons term which provided
N iy PP\ 2im ) ;tgﬁtjlsplacement from the origin of the usupf & 0) singu-
wrP)= Nf(p)(p2+4m?) ur p? p? CuroP” | For reference, we also quote the expressions foktard

(2.17  mixed (\,A,) propagators:
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m The Dirac matrices with both spinor indices as superscripts
—! V— @— Q arey™=(1,0°,— o) and satisfy{ y", y"} =2¢g™".
R The above action is invariant under the infinitesimal su-
b . pergauge transformation

FIG. 1. Order 1N contributions to the two-point vertex function 0p=i[K,dl,, on=i[K,7ls,
of the ¢ field. Continuous, dashed, and wavy lines represent the
propagators for the, A, andA,, fields, respectively. OA,=D K+i[K,A ], (3.2

47 £2(p) Wher_eK is the scalar superfield gauge parameter. We will
Ap)=— (p?+4m?), consider two cases, namely, tkemmutatorcase whera
N h(p) =1 andb=0 and theanticommutatorcase whera=0 and
b= 1. Notice that dynamical generation of mass occurs only
in the anticommutator cagéhe analysis is entirely similar to
(223 the one in5]). In the following we will be explicitly analyz-
ing the commutator case but we will also comment on the

Although we have improved the infrared behavior of theOther possibility. o _ _
A, propagator, we still have trouble with the radiative cor- As is well known, charge conjugatio@and parity are in
rections to the propagator for the field. In fact, whereas general broken for noncommutative field theorfiég]. No- .
Fig. 1(b) is finite (in the Landau gaugea direct calculation tice, hoyvever, that for the commutator case the above action
shows that the nonplanar parts of the graphs of Figg.and S Invariant under the “charge conjugation” transformation
1(c) are infrared quadratically divergent. Up toNLbrder ¢+ ¢, A,—A,, and »— — 7 and, as a consequence, the
they are the only infrared divergent diagrams contributing to'mixed propagator”(»A,) vanishes. This last conclusion
the self-energy ofp field. The sum of their nonplanar parts depends crucially on the way in which theand ¢ fields are
does not vanish and therefore, at higher orders, leads to ¢pupled. Had we used an anticommutator in the term multi-
breakdown of the N expansiori3]. To overcome this prob- plying the % field, then» would be even under charge con-
lem a further extension of the model is needed. This will bgugation and the mixed propagator would not vanish. For the
the subject of the following sections, where we discuss &ommutator case, an equivalent and useful form for the
supersymmetric extension of the noncommutativeVCpP above action is
model.

a7 f(p)g(p) <,~ ZmE)
A(p)= ip,+ .
N  h(p)

p2

_ [
¢a(D2_m)¢a_ E([d’arAa]**DaQSa

S=f d®z
I1l. THE NONCOMMUTATIVE SUPERSYMMETRIC
CcPN~! MODEL

_ 1
- . . —D%p*[A,, - = AN A[AL,
In the adjoint representation the noncommutative super- $a*[Aasdali) Z[QSEl LA, dale

field generalization of the CP* model is described bgsee
also[15,16 for supersymmetric extensions of its commuta- _ 7)*[¢a.¢a]*} (3.3

tive counterpait
S=-— J d°z
provide effective dynamics for the other field®mpare also
_ _ _ Nb with [5]). All fields belong to the adjoint representation of
+Mpadat n*(a[ da, ol TO{da, bPats) — 71—, the gauge group, which explains the commutators in the
9 terms involving the gauge field; these commutators cause
(3.1 sine factors in the corresponding vertices of the Feynman
_ graphs. Using the relationd¢)?=0, and ©?+m)(—D?
where ¢, with a=1,...N is a set of scalafsupeifields, ¢,  +m)=—DO+m? we obtain the free propagator for the sca-
are their complex conjugated onés, is a two-component lar fields
spinor gauge field, ang is a Lagrange multiplier superfield
which _implements the constraint{ ¢, ¢a}. = da* ¢a (Tda(z1) p(22)) =16,
+ ¢+ po,=N/g; a andb are parameters that control the two
possible orderings of the trilinear term containing thedo,

andgfields. Hereafter, we employ the same notation an
definitions as in[7] (see also a description of the three- To.(k K
dimensional superfield approach {17]). Concisely, A\? (Talke, 01) do(kz. 02))

1 As in the pure CP~! model, at the classical level only
E(D“¢a+i[qba,A“]*)*(Dadba—i[Aa,qba]*) the scalar fields are dynamical but quantum corrections may

D24+ m
b

2 ®(2,-2,), (3.4

d/vhich in momentum space reads

=1/2A“\,=1/2C*\yp\, for any spinor \* (and D? (2363 (Kat ko) (ke 01 bo(— ke 6,)), (3.5
=1/2D“D,), with C,z=—C*? an antisymmetric matrix ( 1K) Pa(Ky,01) bo( =K. 02))
normalized asCyy=—i, ¢,=?Cp,, and y*=C*y;.  where

105012-4



COUPLING OF FERMIONS TO THE THREE .. PHYSICAL REVIEW D 69, 105012 (2004

k+p
FIG. 2. Lowest order contribution to the propagator of the aux- k
iliary # field. Here the dashed line is for thgfield and the con-
tinuous line for thegp, , ¢, fields. a b
) FIG. 3. Lowest order contributions to the propagator of the aux-
_ - Dtm iliary A* field.
<¢a(ka01)¢b(_k192)>:_|5abm 612, (3.6
. S d3k
with 81,=6%(0,— 65). iS3a(p)=— f d°6,d°6, f (2m)?°
Let us now obtain the effective propagators for thand
A“ fields. First we turn to they field. The effective propa- XAY(—p,0;)AP(p, 6,)sir(kOp)
gator is generated by the supergraph of Fig. 2. The contribu- _
tion of this graph to the effective actionS, XD a1{Pal —K, 01) Pp(K, 62))

— 3 T 3 I — -
JLdpl(2m)"1S:(p) s K[( (kP 0) o — k. 62))5 o]

d%k _ .
iSz(p):ZNJ d201d202f Wl(k,p)(Derm) —[Dar{Pa(—k, 01) dp(K,02))D g,]
" X(Ga(k+ D0y G —K—p. )Y}, (3.1D

where the notatio ,; was used to indicate that the super-

PerformingD-algebra transformations in a way analogous tocovariant derivative is applied to the field whose Grassma-

the derivation of the effective propagator for thefield in ~ nian argument ig); . Taking into account the explicit form of
[5], we get the propagators, we have

X 81(D?+m) 81,m(—p,01) n(p.02). (3.7

N ; 2 2 dk @
sz<p>:5f<p>fd20n<—p,e><02+2m>n<p,a>, 'Ssa“’):Nfd 61d ‘94(2#)3‘\ (=p.64)
(3.8

X AP(p, 6,)sirt(kOp)

where f(p) was defined in Eq(2.7). From this expression Dal(DiﬁL m) (D§+ m)D g,

we can obtain the propagator for thgefield: )
propag hyef e 12(k+ e "
Ai D2-2m 2 2
D_,(D7+m)D D%+ m
<77(p’91) 77(_p'02)>: - Wm&_z. _ “1( 1 ) B2 . 1 S1l.
(p)(p m) (39) k2+m2 (k+p)2+m2
(3.12

This propagator is linearly divergent for smallsince in
this limit f(p)~ P> However, this divergence does not
bring difficulties since, for zero momentum, the radiative

Integrating by parts some of the spinor derivatives and using
the |dent|tyD32(k, 02) 5122 - D,Bl( - k, 01) 612, we arrive at

corrections to the two-point vertex function of thefield d3k
will also vanish(as a consequence of the sine factors at the is?:a(p):Nf d291d292f I (k,p)
verticeg. On the other hand, for high momenta the nonplanar (2m)®

contribution in Eq.(3.9 rapidly decreases. Therefore, when 2 2
analyzing the ultraviolet behavior of Feynman amplitudes we X[2(D1+m) 812D 01 (D1+m)D gy
can take just the asymptotic behavior of the planar part, X 81,A% —p, ;) AB(p, 6,)
which furnishes

+(Df+m) DI+ m)D g

-
<n(p,01)n(—p,02)>~—%D 2m512. (3.10 X 815(D*A,)(—p,01)AP(p,62)].  (3.13

Vp?
It is convenient to separat8;, into two parts,S3a=S(3?

Next, we turn to the effective propagator of the spinor+Si , whereiSSy) andiS{? are associated with the two
field A, . It is formed by the two contributions shown in Fig. terms in the square brackets of E®.13. Consider first
3. The first graph, depicted in Fig(e8, gives the following isgla) which, after transportingd? from one of the propaga-
contribution: tors to the other factors, becomes
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d3k In this expression we must keep only the term proportional
iSW(p)= NJ d201d202f o I(k,p) to D615(D3+m)D 4151, (the remaining part is a trace of an
(2m) odd number of derivatives and therefore vanish&hkus, af-
X {2ma;,D 1(D§+ m)D 4 ter manipulations similar to those done S\ﬁi), we find
af _ B d3k
X 61A%(— P, 01)A(p, 02) isgza)(p)=—Nf d'é’gf (277)3|(k’p)
+2512D§[Da1(D§+m)D31512Aa(_p,91)] 5
X[DYDA(—p,0)(k,;+mC,)AP(p,0)].
XAB(D,GZ)} (314) [ a( p )( vB yB) (p )]
(3.20
Now we employ the identityD,;,D3}=0 [7], which leads By adding Eqs(3.18 and (3.20 we can write the total con-
to tribution from Fig. 3a) as
d3k , d3k
i (l) — 2 2 i = —
|saa(p>_Nf d26,d ezf Sl kP) iSs5a(P) 2NJ d ef S

X{2814k?+m?)D 41D g1 51 A% —p,0)A%(P, 6,) X[(kz-l—mz)C A=, 0)AE(p,0)

+28;)(—Di+m)D 1D g
+(Kop+mMC,p)[D?A*(—p,0)]AP(p, 0)

X 51 D*A*(—p, 61)1AP(p,6,)}. (3.19
1
The use of the relationship + EDyDaAa(— p,0)(K,z+mC,z)AP(p,0) .
Da(_k,01)Dﬁ(_ka91):ka/3_caﬁD2(_k191) (3.19 (3.2)
now provides The algebraic manipulations for the grapii3are consider-
ably simpler and yield
d3k d®k  sirf(kOp)
iS(l)(p)=2Nf d26,d%6 J 1(k,p) : _ f
3a 1 2 (277)3 IS3b(p) ZN (277)3 (k+p)2+mzcaﬁ
X{812(k?+m?)(K,z—C,pD?) X AY(—p,0)AP(p, 0). (3.22
X 81 ,A(—p,01)AP(D, 6,) The complete two-point vertex function for thfe, field is

+8,(—D? m)(ka,g—Ca,;Dz) the sum of Eqs(3.21) and(3.22 and therefore reads

d3k
X 81 D*A%(—p,6:1)1A%(p,02)}.  (3.17) is3(p)=—2|\|f d29f(27)3|(k,p)(kyﬁ+mcyﬁ)

The only terms giving nonzero contributions are those
containing just on®? sinced;,D%8,,= d1,. Indeed, by em- X
ploying this identity and after integrating oveéy with the

[D?AY(—p,8)]AP(p,6)

help of the delta function, we obtain 1
+ DDA, (— p,e)Aﬂ(p,e)]. (3.23
d3k 2
iSSH(p) = —ZNJ' dz@f 2 )3I(k,p) Observe that the dangerous linear divergeraesvell as the
7 logarithmic oney present inS;, and Sz, were canceled in
X{(k*+m?)C,,zA%(—p,0)AP(p,0) the above resultcompare with[19]). As a consequence the
5 s free two-point vertex function of the gauge field does not
+(KaptMC,p)[DA“(—p, 0)JA"(p, 0)}. present UV-IR mixing. Furthermore, notice that the graphs in
(3.18 Figs. 2 and 3 cannot occur as subgraphs of more complicated
diagrams, i.e., they are “illegal” subgraphs, since they have
The second term of E43.13) is already been taken into account to construct the propagators
for the A* and 7 fields.
d3k The two-point vertex functio(3.23 allows us to find the
isgff(p):Nf dzeldzezf 2 )Sl(k,p) effective propagator. By recalling ER.8) and using that
a
X[(Di+m)d1DF+m)D f - I(k,p)k paﬂf o I(k
1 12D1 Bl (2m)° (k,p)Kag 2 ) 2n)p (k,p),
X 81AD*A,)(—p,01)AP(p,6,)]. (3.19 (3.29
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we obtain

N
Sy(P)= 152 | dOT(PIL—Pyst2mC,y]
X AP(p, 6)W(~p,6), (329

whereW? is the linear part of the field strength, i.e.,

1 1
W?=>DD7A,=5 DDA+ D?A”.  (3.26

2

After some straightforward manipulations E&.25 can
be rewritten as

_N d26f(p)AP(p,0)[ D2+ 2mW4(—p, 0
Sg(p)—ﬁ (P)AZ(p, )] m]Wg(—p, 0)

d26f(p)[WAW,+ 2mWFA ], (3.2

" 167

which is, of course, invariant under the linearized gauge
transformationsA“=D“K. The two terms in the last equal-

ity in Eq. (3.27 are nonlocal versions of the Maxwell and
Chern-Simons actions. In the commutative situation the ef-
fective action also contains nonlocal Maxwell and Chern-
Simons terms but in contrast with the above result in thaiiorgz

case the leading smallterms are local.

For quantization the above gauge freedom must be elimi-

nated. This is done by adding to E(.25 the following
gauge fixing action:

)—lf d?6 f(p)DPA4(p,0) DDA, (—p,6)
SGF(p - 32775 p B P, a p.o).
(3.289

Hence the pure gauge total quadratic action is

N d®p
SA“(p): - Ef (27T)3d20f(p)Aa(_ p:e)

1
X | DPD¥(D?+2m)+ ED“DBDZ Ag(p,0).

(3.29

This leads to the following effective propagator:

(A*(p,61)AP(—p,0,))
47mi [(D?-2m)DPD® D?D°D#
TNip) | pApPram) (922

S12,
(3.30

which can also be written as

PHYSICAL REVIEW D 69, 105012 (2004

<Aa( P, 01)A'B( -p, 02)>

Ari 2mp*? 1 é
= - - —|C*F
Nf(p)[ p*(p?+4m?) |p’+4m? p?
1 1 E\ s
+ —|———+—|p*D
p2 p2+4m2 p2 p
2mC*p ,
+ ————5D%| 5. 3.3
pz(p2+4m2) 12 ( :D

As for low momentaf (p) = P2 then the effective propaga-
tor (3.31) behaves as pf. Nevertheless, as in the nonsuper-
symmetric model, due to the sine factors in the vertices no
infrared divergence should arise from such behavior.

Aiming at a detailed investigation of the renormalization
properties of the model, we now examine the UV limit of the
above propagator. For high momenta we need to consider
only the planar contributions as the nonplanar ones decay
very rapidly. In this situatiorf (p) = 7/\/p?, so that

<Aa(p! 01)AB( -p, 02))
4i[ 1-¢ 1+¢
IRl
(3.32

—1 this expression assumes the simpler form

8i Cf

(A%(p,01)AP(—p, 0,)) = NWCSM- (3.33

The action of the Faddeev-Popov ghosts is

S,:=—l d®p d?6 f(p)(c'D?c—ic’'DYA,,c],)
P 32w @R
(3.39
yielding the ghost propagator
32r D?
c’'(p,0)c(—p,by))=—i— ———515. (3.3
(c'(p,0)c(—p,b2)) N p2f(p) 12- (3.39

A direct consideration of the supergraphs involving ghost
loops shows that they will begin to contribute only in the
1/N? order.

In the anticommutator case we notice that the two-point
vertex functions ofp,A, and the planar part of the fields
are the same as we calculated before but the nonplanar part
of the two-point vertex function of the field changes sign.
In addition to that, the additional effective action

e""'ﬁ’—2
anyAy( -p 9)D'877(p' 0)
\/r)—z
(3.39
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for the 7 field, the amplitude for the graph in Fig(& is
16w [ dk

iS1{P)= N | 2mp

f 420,020, — P, 01) bal P, 62)

FIG. 4. A potential contribution to the two-point vertex function 2
of the 5 andA,, fields. sin“(kOp)

><[(|<+ p)2+m?]f(k)(k?+4m?)

coming from the graph in Fig. 4 is induced, leading to a 5 5

nonvanishing mixed propagatéA 7). From the above ex- X(D*=2m)61(D+m)dy,. (4.1
pression one sees that any graph containing the mixed propa-

gator is superficially convergent; thus, to analyze the UV ) )

behavior of the Green’s functions we can discard such graphY doing the usuaD-algebra transformationgf. [5]) and
and use the same propagators as in the commutator case.feplacingf (k) by its asymptotic fornf (k) ~ =/ \k?, we get

16 [ dk
P _ 2 _ 2_
IV. RADIATIVE CORRECTIONS TO THE TWO-POINT 'Sla(p)—ﬁf (277)3j d%6 ¢a(—p,6)(D"—m)
VERTEX FUNCTION OF THE SCALAR FIELD
_ _ _ _ _ VkZsir?(kp)
At the next to leading order in B, the divergent contri- X (P, 0) 4.2)

butions to the two-point vertex function of thg field are
given by the graphs shown in Fig. 1, where continuous,
wavy, and dashed lines now represent the propagators for thvehich, by power counting, is only logarithmically divergent.
¢, A, , and »n superfields. Using the propagator in E§.9) The graph shown in Fig.(h) contributes

"kt p)2+m?](KP+4m?)

47 ¢ d3k sirf(kOp) 1 2m(p—k)«# 1 ¢
iSlb(p):_f 3jd2 10?6, 2., 2 2 2 = 2 2 2 s
N J (2m) f(p—k) ke+m*[(p—K)T(p—k)*+4m7] \(p—k)*+4m* (p—k)
1 1 £ . 2mCeP ,
- + —k)*PD2+ D
(07| (p—k7ram? " (p-k2| P (P—k)F(p—k)2+4m?] ~ |72
X[(D24+M)D 328120 $a(P, 01) al — P, 02) — D 41 (D?+M) S1264(P, 01)D peba( — P, 602)
+(D2+m)612Da¢a(p101)D,82$a(_p102)+Dal(D2+m)DB2512¢a(p101)$a(_pyez)]- 4.3
|
Superficially S;, contains linear divergences. However, 8m d3k 1
the UV leading term of,,,, after theD-algebra transforma- iS{})=— 3 f d?6,d6, sir*(kOp) ———
tions, turns out to be proportional to N J (2m) k“+m

(p—k)*P+C*PD? ,
612D 41D g1 (D=—m) 615

[(p—k)?]%?

d3k ) Kga sirf(kOp) 5 _ _
f (271_)3f d (k2)3/2 c ¢a(_p19)¢a(p,9), X¢a(pa01)¢a(_pa02)- (45)
44 We now apply the identit)/Dale:kalg—CaBD2 which
implies
which vanishes sinc@“ﬁkﬁa= 0. ThereforaS;in Eq. (4.3 8m d3k 1
is only logarithmically divergent. To obtain this divergent iS{})=— 5 f d26,026, sir(kOp) ——
part we delete the @? terms in the denominators of Eq. N J (2m) k"+m
(4.3) and replace (p—Kk) by its asymptotic form. We then (p—k)*A+C*Ap?2
have the sum of three contributions. 812[kaﬁD2+ Caﬂkz_mkaﬁ
. . [(p_k)2]3/2

(a) The term proportional to @. After the commutation
of D g, with D? and the use oD 4,8;,= — D 4,81, it contrib- —
utes with prrie maTe +MC,sD|S1oba(P, 01) ba(— P, 02). (4.6
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After contracting the loop into a point we arrive at the fol- coming from the graph in Fig.(it).

lowing divergent correction:

L s 1

|Slb=— (277)3j d<6,d 025|n2(kDp) o

— KK g+ CBC 6K -
[(p—k)2]32 0120a(P, 01) ha( — P, 02).

(4.7

Since —k*Pk,z+C*FC,zk?=2k?~2k?*=0 the term pro-
portional to 2n gives zero contribution.
(b) The term proportional to§+ 1) contributes

8 _
iS&?(p)=—N¢a(—p,0>(3DZ—m>¢a(p,o><1+§>

d3k sirf(kOp)
XJ 2 (C+m)[(p—k) 2172

(4.9
(c) The term proportional tog— 1) contributes

8 _
iS&?(m:—N¢a<—p,e>(DZ+m>¢a<p,0>(1—§>

d3k sirf(kOp)
XJ (2m)° (C+m)[(p—k) 212

4.9

By adding the UV leading(logarithmically divergent
parts ofi S(lzb (3) the total divergent contribution %, is

equal to
16 d3p
iSyy(p) = o )3fd20[<2+§>¢a(—p,a>oz
x$a<p,e>—m§¢a<—p,eﬁa(p,eﬂ

f d3k sir2(kOp)
X .
(@m)° [t )2+ m2] i

The linearly divergent part of the graph given in Figc)1

(4.10

in any gauge after th®-algebra transformations is propor-

tional to

d3k Kgq Sin?(kOp) _
f (27T)3fd20W p!0)¢a(p10)1
(4.11

which vanishes, being proportional @f‘f"kﬁa=0. However,

Cepa(—

there are logarithmically divergent contributions given by

32
iSlc(p):ﬁmf (2 )3jd20d’a( P, H)d’a(p 0)

J d3k sir?(kOp)
X )
(2m)°% [(k+ p)2+m?] VK2

(4.12

We conclude that the contribution to the effective action
arising from the sum of Eq%4.2), (4.10, and(4.12 is also
free of dangerous UV-IR mixing and has the form

. 6
ISyaP)==

xfdza $a(— . 6)(D2—m) Ba(p, 0)

f d3k sir’(kOp)
X 3 +1In
(2m)° [+ p)2+ m?] i
(4.13

where fin denotes the remaining terms, which are UV finite
and possess at most a logarithmic UV-IR infrared divergence
(actually, because of the sine factor, no infrared divergence
appears We see that the quadratic UV-IR infrared diver-
gence that occurred in the nonsupersymmetric version of the
model, discussed in Sec. Il, has disappeared under the
present supersymmetrization. After integration of the planar
part,S,, becomes

4(1+¢) f dp
(

N72e 2m)°3

Sya(p)= - [ @400

X (D2—m) ¢,(p, 0) +fin. (4.14

This divergence can be canceled with the help of an appro-
priate counterterm, which implies the following wave
function renormalization constant for the Kkinetic term

¢a(D2_m)$a:
4(1+¢)

mNe

Z=1+ , (4.15

so that in the gaugé= —1 the correction is finite.

V. THE GENERAL STRUCTURE OF DIVERGENCES
AND THE ABSENCE OF DANGEROUS UV-IR MIXING

We have explicitly verified that the two-point vertex func-
tions of the ¢ field up to first order in M do not produce
nonintegrable divergences. To further clarify the issue of
renormalizability up to order N, we start by calculating the
superficial degree of divergeneeof an arbitrary graphy. To
that end, let us denote the number of vertices
A% (Da¢a* d’a_ Da¢a* ¢a) by Vla of Aa*Aa* ¢a* d’a by
Vs, of p* p* b, by Vg, and off(p)c’+*D*[A,,c], by V..
Furthermore, leP ,,P,,P,,P. be the number of propaga-
tors (Gady), (A"AP)~DK2, (), (cc’)~DNK?, re
spectively. Each loop contributes towith 2 (3 for the mte-
gral overd®k, —1 because the contraction of a loop into a
point decreases the number Bf factors which could be
converted to momenta by.JEach¢, or A, propagator con-

tributes with—1 while each vertex/, brings3 since it con-
tains one spinor derivative, and each veriéx brings —3

due to the factoff(p). Therefore,w is
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1 theory are, up to this order, free from nonintegrable infrared
0=2L=Py=Pat Vi35 Ve, (6.)  UV-IR singularities. We hope that a similar situation occurs
at higher orders in the i/ expansion.
whereL designates the number of loops jn By using the There are more possibilities =0, namely,E,=4, or

Ey=4, orEp=E =2, 0rE,=1,E;=2, 0rE, =1, Ep=2,

well-known topological identity +V—P=1, this becomes
orE,=2, orEx=1,E4,=2,Ep=1, orEp=3, Ep=1. The

3 cases with eitheE,=4 or Ex=4 orEp=3 orE, =1, E5
0=2+Pp+P,+2(P,+P)— 5Vim5Ve =2 are particularly dangerous because they are potentially
logarithmically divergent but there is no available counter-
—2(Vo+V3)—Pa—P,. (5.2)  term to absorb these divergences. However, one can explic-

itly verify that in all these cases the integrands associated
The number of propagators may be expressed in terms ofith the divergent parts are odd in the loop momentum and
the number of external lineB 4 ,Ex ,E,,,E. and of the total therefore vanish under symmetric integration. Thus, up to
number of fieldsN,,Na,N, ,N. used to construcy as leading order of the N expansion, only the casds, =1,
E¢:2, or Ed,=2, EA:2! or EA:]-! Ed,:Z, ED:1 Imply
divergences.
P¢:§(N¢_E¢)’ PA:§(NA_ En), This means that we can construct effective interaction
terms for an effective Lagrangian of the gauge fi&ld

which are finite and proportional t§d®z(1/y1)(DA)2A2

1 1

P,=5(V3—E,), Pc=5(Nc—Eo). (5.3 andfd°z(DA)A2, which are needed to complete the induced
noncommutative Maxwell and Chern-Simons Lagrangians.

It is then easy to verify that The graph with two externay fields of orderN is given by
Fig. 2, and we already showed that it is finite. As for the

Ny=2(V1+Vo+V3), Np=Vi+2Vo+V, subleading graphs with two external fields, they could

modify only the effective propagator of thegfield at higher

N,=V3; N=2V,. (5.4) orders of the I expansion.

In the commutator case, due to the invariance of
By replacing Eqs(5.4) and(5.3) into Eq.(5.2), and after  the action(3.1) under charge conjugation, the contributions
taking into account thaw decreases bip/2 whenNp su-  proportional to 7A“A, vanish in any finite order of the

percovariant derivatives are moved to the external lines, onéxpansion. In particular, at the first order inNl/this
arrives at result can be seen directly, as it turns out to be propor-

tional to [d?6 d*p1d®p,A%(py,0)AL(P2,60) 7(—P1—P2.6)
1 sin(p;p,), which evidently vanishes.

¢~ > No- (5.9 To sum up, in the leading order ofN/the only logarith-

mic divergences in the theory are those proportional to
We immediately see thab in the theory cannot be larger ¢,¢,, which give origin to the wave function renormaliza-
than 1(it would be 2 only for vacuum supergraphs but thesetion of the ¢ field, those proportional ta¢,¢,, which, by
contributions vanish due to the properties of the integral ovea method similar to that employed [B8], can be shown to
Grassmann coordinat¢g]). We also note thakE , must be have the same Moyal structure as the corresponding vertex in
even in order to have afiso)scalar contribution. For the the classical actiofboth in the commutator and anticommu-

same reasonk, must either be even or if not it must be tator cases and those that are proportional #,¢,A%A,,
accompanied by an odd number of spinor supercovariant dggnq toAY(D ) ¢>a A% (D ¢a)

rlvil_t;]ves L s (2 or a2 o E It is easy to verify that the Moyal structure of the quantum

e casew=1 corresponds =2, 0rEp=2, or . . o — — .

=1, or Ep=Np=1 (with the numtfer of all other externnal corrections proportional Fd\ (Dada) da,A"$a(Dacba) is

lines in each case being zerHowever, we have alread preserved. For example, in the commutator case each super-
roved that the araph wgi]lﬂﬁ — 2 (depi t’ din Fig. Lar ty graph in such quantum corrections contains an odd number

proved that the graphs wita, = epicte g lareal triple vertices, and therefore they will furnish a product of

most Ioggnthmlcally qllvergent ar)d thz.it the sum (.)f thean odd number of sine factors; thus, ag5h we find that the

graphs W!thEAZZ (which are de'plcted in Fig.)3s finite lanar contribution can have only the form gyi(p,) where

a_md contrlbu_tgs only to the effectlve prc_)pagator of the gaug 1 and p, are two of the three incoming momenta. This

field. In addition, the graph witfe,,=1 is a tadpole graph phase factor also reproduces the corresponding Moyal struc-

which aL_Jtomatlca!Iy vanishes in t_he commutator  Casey o i, the classical action. However, an analogous proof of
whereas in the anticommutator case its effect is only taonfix . - )
the same fact for the quartic correctign¢,A“A, is much

as being the mass of thg superfield(compare with5]). As - ! : )
for the graph corresponding tB,=Np=1, which is for- More complicated. This problem will be considered else-
' where.

mally linearly divergent, its contribution is proportional to
fd%z D*A,,, which is of course zero.

From this discussion, we see that, up to the leading order
of the 1N expansion, all divergences in the theory are only In this paper we studied the minimal and supersymmetric
logarithmic. This means that the quantum corrections in thénclusion of fermions in the pure noncommutative \CP

1
~(E4+En)—E,—E

w=2—2(

VI. SUMMARY
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model. Although for both situations a great improvement inanalysig. Similarly to the noncommutative nonlinear sigma
the long distance behavior of the gauge two-point vertexmodel, nontrivial wave function renormalizations for the
function was achieved, the case of minimal coupling stillauxiliary » andA,, fields are expectefb].

presented an infrared nonintegrable singularity in the self- The wave function renormalization constant for the scalar
energy of the basic scalar field. To evade this problem thguperfield was shown to be gauge dependent whereas, due to
supersymmetric extension was also considered and Wgnarge conjugation invariance, the mixed two-point vertex
proved that, at least to lW/order, the supersymmetric model fynction of theA,, and 7 fields vanishes in the commutator

is free from a dangerous UV-IR mixing. This is a strong .5ge

indication that this supersymmetric model has a consistent A f,rther development of the model could consist in a

perturbative expansion. The theory exhibits very nontrivial |, etailed investigation of the higher orders of thi 1/

properties as the generation of a dynamics for the Spinog, \ansion. Also, it could be interesting to develop the ex-

cc_)nnection super_field, with both the Maxwell and the .Ch?m'tended supersymmetric generalization of this model by anal-
Simons terms being generated by the quantum contrlbutlon%

The ghost superfields which are generated also possess nﬁgﬁgglgrrl]dﬂr]r?aﬁgr ?nu?ttijpl)olg:s\(i?]n?biyzl "15 d?si?{gti:r? ntaining
trivial dynamics; however, they contribute to the quantum
corrections only at N2 and higher orders.

The analysis of the ultraviolet behavior unveiled some
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