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BPS preons, generalized holonomies, andDÄ11 supergravities
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We develop the BPS~Bogomol’nyi-Prasad-Sommerfield! preon conjecture to analyze the supersymmetric
solutions ofD511 supergravity. By relating the notions of Killing spinors and BPS preons, we develop a
moving G-frame method@G5GL(32,R), SL(32,R) or Sp(32,R)] to analyze their associated generalized
holonomies. As a first application we derive here the equations determining the generalized holonomies ofn
5k/32 supersymmetric solutions and, in particular, those solving the necessary conditions for the existence of
BPS preonic (n531/32) solutions of the standardD511 supergravity. We also show that there exist elemen-
tary preonic solutions, i.e., solutions preserving 31 out of 32 supersymmetries in a Chern-Simons type super-
gravity. We present as well a family of worldvolume actions describing the motion of pointlike and extended
BPS preons in the background of a D’Auria-Fre´ type OSp(1u32)-related supergravity model. We discuss the
possible implications for M theory.
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I. INTRODUCTION

A complete, algebraic classification of M-theo
Bogomol’nyi-Prasad-Sommerfield~BPS! states, based on th
number k of supersymmetries preserved by a given B
state, has been given in@1#. BPS states preservingk out of 32
supersymmetries are denotedn5k/32 states;k532 corre-
sponds to fully supersymmetric vacua. The observation@1#
~see also Sec. II! that BPS states that break 322k supersym-
metries can be treated as composites of those preservin
but one supersymmetry suggests that thek531 states might
be considered as fundamental constituents of M the
Thesen531/32 BPS states were accordingly namedBPS
preons@1#.

Interestingly enough, the notion of BPS preons may
extended to arbitrary dimensions, includingD54. In this
case, a pointlike BPS preon may be identified with a towe
massless higher spin fields of all possible helicities~see
@2–4# and references therein!.

The actual existence of preonic,n531/32 supersymmet
ric, BPS states as solitonic solutions of the stand
Cremmer-Julia-Scherk~CJS! D511 supergravity@5# has
been the subject of recent studies@6,7#. Although no obstruc-
tions for their existence have been found by geometric c
siderations based on the notion of generalized holonomy@6#
~see also@8–11#!, no n531/32 solutions were found either

In this paper we develop the notion of BPS preons
analyze the various supersymmetric solutions of the su
gravity equations. An5k/32 supersymmetric solution corre
sponds to a BPS state composed ofn5(322k) BPS preons.
The corresponding (322k) bosonic spinors la

r (r
51, . . . ,n) are orthogonal to thek Killing spinors eJ

a char-
acterizing then5k/32 solution,
0556-2821/2004/69~10!/105010~11!/$22.50 69 1050
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a51, . . .,32, J51, . . . ,k,

r 51, . . . ,~322k!.

Thus, BPS preonic spinors and Killing spinors provide
alternative~dual! characterization of an-supersymmetric so-
lution; either one can be used and, for solutions with sup
numerary supersymmetries@12,13#, the characterization pro
vided by BPS preons is a more economic one. Moreover,
use of both BPS preonic (la

r) and Killing (eJ
a) spinors

allows us to develop~in Sec. II! a moving G-framemethod,
which may be useful in the search for new supersymme
solutions of CJS supergravity.

We apply this movingG-frame method@in Sec. III, G
5SL(32,R)] to studying the generalized holonomies of C
supergravity and discuss the basic equations character
the still hypothetical BPS preonic solutions@Sec. IV B, G
5GL(32,R), SL(32,R) or Sp(32,R)]. Although no definite
answer to the question of the existence of BPS preonic s
tions for the standard CJS supergravity is given here, we
show ~in Sec. IV A! that n531/32 supersymmetric preoni
configurations solve the equations in the Chern-Simons~CS!
supergravity case@14# ~for a review, see@15#! i.e., that CS
supergravity does have preonic solutions.

Using the recent results@16,17# on a gauge-fixed form of
the action for dynamical supergravity interacting with d
namical superbrane sources~see Sec. IV C!, we also propose
~in Sec. IV D! a D511 worldvolume action for BPS preon
in the background of a D’Auria-Fre´ OSp(1u32)-related su-
pergravity@18# ~see also@19#!, a model allowing for an eco-
nomic ‘‘embedding’’ of the standardD511 CJS supergrav
ity.

In this paper we use a ‘‘mostly minus’’ metric
hab5(1,2, . . . ,2); the exterior derivatived acts from
the right, dVq5(1/q!)dxmq`•••`dxm1`dxn]nVm1•••mq

.

©2004 The American Physical Society10-1
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A. Equations of DÄ11 supergravity

The purely bosonic limit of the ‘‘free’’ CJS supergravit
equations is given by

EabªRab2
1

3
Fa[3]Fb

[3]1
1

36
habF [4]F

[4]50, ~2!

G8ªd* F42F4`F450, ~3!

dF4[0 ⇔ F45dA3 , ~4!

which include the Einstein equations with a contributi
from the energy-momentum tensor of the antisymme
gauge fieldAmnr(x) only, Eq. ~2!, as well as the free equa
tions ~3! and Bianchi identities~4! for the gauge field in
curvedD511 spacetime. Herea,b,c50, . . .,9,105m,n,r,

A35
1

3!
dxr`dxn`dxmAmnr~x!,

F45
1

4!
ed`ec`eb`eaFabcd~x!, ~5!

ea5dxmem
a(x), Fa[3]F

b[3][Fac1c2c3
Fbc1c2c3, etc. It is also

assumed that the torsion and the gravitino vanish,

Ta
ªDea5dea2eb`vL b

a50, ~6!

ca5dxmcm
a50, a51, . . .,32, ~7!

wherevL b
a is the Lorentz connection. Such equations p

sessnonsingularpp-wave solutions with supernumerary s
persymmetries@12,13#.

As the supergravity multiplet is the only one witho
higher spin fields inD511, no usual field-theoretical~space-
time! matter contribution to the right-hand sides~r.h.s.’s! of
Eqs. ~2!, ~3!, ~4! may appear. However, these equatio
might be modified by higher order corrections in curvatu
@20,21# ~a counterpart of the stringa8 corrections@22# in
D510, see also@23#!, or/and by the presence of sourc
from p-branes.

The n516/32 supersymmetric M2-brane solution ofD
511 supergravity~see@24,25# and references therein! pos-
sesses a singularity on the (211)-dimensional worldvolume
surfaceW211,M11, xm5 x̂m(j)[ x̂m(t,s1,s2) ~a caret indi-
cates a function of the worldvolume coordinates!. In other
words, it solves the Einstein field equationEab5Tab
2 1

9 habT c
c with a singular energy-momentum tensor dens

T ab}d3
„x2 x̂(j)… @42#. The gauge field equation also po

sesses a singular contributionJ8 in the r.h.s.,G85J8, similar
to that of the electric current to the r.h.s. of Maxwell equ
tions. In this sense, the M2-brane carries a supergra
counterpart of the electric charge in Maxwell electrodyna
ics ~see@26# for a discussion!.

The other basicn516/32 supersymmetric solution of th
CJS supergravity, the M5-brane~see @24,25,27# and Refs.
therein!, is a counterpart of the Dirac monopole, i.e. of t
magnetically charged particle. It is characterized by a mo
10501
c

-

s

-
ty
-
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fication of the Bianchi identities@Eq. ~4!# with the analogue
of a magnetic current on the r.h.s.,dF45J5.

The coincident M-brane solutions still possessn516/32
supersymmetry, while the intersecting brane solutions co
spond ton,16/32. Thus, as supernumerary supersymme
solutions (n.1/2) are known only for ‘‘free’’ CJS, it is rea-
sonable to consider first the ‘‘free’’ bosonic CJS equatio
~2!–~4!,~6!,~7! in the search for a hypothetical BPS preon
n531/32 solution.

Notice, however, that one should not exclude the poss
existence of a brane solution@i.e. solutions ofEab5Tab

2 1
9 habT c

c with a T ab}dp11
„x2 x̂(j)…] with supernumerary

supersymmetries, although certainly these solutions wo
describe quite unusual branes. The reason why the ‘‘s
dard’’ brane solutions~like M-waves, M2 and M5-branes in
D511) always break 1/2 of the supersymmetry is that th
k-symmetry projector~the bosonic part of which is identica
to the projector defining the preserved supersymmet

@28,29#! has the form (12Ḡ) with trḠ50, Ḡ25I . However,
worldvolume actions for branes with a different form for th
k-symmetry projector are known@30,31,4# although in an
enlarged superspace~see @32#!. A question arises, whethe
such actions may be written in usual spacetime or sup
space.

As a partial answer to this question, we present her
D511 spacetime action for a BPS preon in the backgrou
of a D’Auria-Frétype supergravity@18#. The experience pro-
vided by the usualD511 M-branes andD510 D-branes
together with the analysis@16,17# of the partial preservation
of local supersymmetry by the purely bosonic limit of th
super-p-brane action suggests that the existence of suc
preonic action implies thatn531/32 solitons should exist in
a D’Auria-Fré type model.

B. Killing spinors, generalized connection
and generalized holonomy

A bosonic solution of the CJS supergravity equations p
servingk out of 32 supersymmetries can be characterized
k independent bosonic spinors~Killing spinors!, eJ

a(x), J
51, . . . ,k, obeying the Killing spinor equation

DeJ
a5deJ

a2eJ
bvb

a50. ~8!

Thegeneralized connectionvb
a in Eq. ~8! includes, besides

the Lorentz~spin! connectionvL b
a51/4vL

abGab b
a, a tenso-

rial part tb
a5vb

a2vL b
a constructed from the field strengt

Fabcd, Eqs.~4!, ~5!,

vb
a5

1

4
vL

abGab b
a1

i

18
eaFab1b2b3

Gb1b2b3
b

a

1
i

144
eaGab1b2b3b4 b

aFb1b2b3b4. ~9!
0-2
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The Killing spinor equation~8! comes from the require
ment of invariance under supersymmetry of the pur
bosonic solution@Eq. ~7!# that requiresd«cm

a5D m«a50. In
OSp(1u32)-related supergravity models, including CS-ty
supergravities@14#, Dm and, hence, the Killing spinor equa
tion involve an sp(32)-valued vb

a connection (vba

ªCbgvg
a5v (ba)) which is a true connection, i.e., it is as

sociated with the actual gauge symmetry of the model.
In CJS supergravity, as well as in type IIBD510 super-

gravity, the gauge symmetry is restricted toSO(1,10), andv
in Eq. ~9! is not a true connection. However, the se
consistency~integrability! condition for Eq.~8!, DDeJ

a50
has the suggestive form@6,8#

eJ
bR b

a50, ~10!

in terms of thegeneralized curvature

R b
a5dvb

a2vb
g`vg

a. ~11!

Equations~8!,~10! formally possess aGL(32,R) gauge in-
variance withv transforming as aGL(32,R) connection.
However,GL(32,R) is not a gauge invariance of CJS supe
gravity, hence the name ‘‘generalized’’ connection and c
vature forv andR.

Notice that, in contrast, a rigidGL(k,R) transformation
acting on the indexI results in a redefinition of the Killing
spinorse I

a, i.e., in replacing the Killing spinors by indepen
dent linear combinations with constant coefficients. This
ge

s

10501
y

-
-

s

clearly allowed andGL(k,R) can be treated as a rigid sym
metry of the system ofk Killing spinors characterizing the
n5k/32 supersymmetric solution of any model.

A true connection takes values in the Lie algebraG of the
structure group Gof the principal fiber bundle. The curva
ture may take values in a smaller subalgebraH,G which is
associated with a proper subgroupH,G of the structure
group, theholonomy group. For generalized connectionsv
one may accordingly introduce the notion ofgeneralized ho-
lonomy group H,G @6# ~see also@7,8,10#!, such thatR b

a

PH ~while vb
aPG). In this light, the necessary conditio

for the existence ofk Killing spinors, Eq.~10!, can be treated
as a restriction on the generalized holonomy groupH
@6,7,10,11,13#.

It has been shown that for both CJSD511 supergravity
@7# and for type IIB supergravity@11#, the generalized ho-
lonomy groupH is a subgroup ofSL(32,R), H,SL(32,R).
As the generalized connections are clearly traceless in b
cases, one also hasG,SL(32,R).

For OSp(1u32)-related models including CS supergrav
ties @14# the ~true! structure group isG,Sp(32,R) and the
holonomy group isH,Sp(32,R).

A full expression for the generalized curvatureR a
b cor-

responding to purely bosonic solutions of CJS supergra
may be found e.g., in@9,33# ~see Appendix B of@9# and
references therein; there,hab and F correspond to2hab ,
22F). For our purposes here it is sufficient to note that t
R a

b obeys
i aR a
gGa

g
b52

1

4
ebRb[c1c2c3]G

c1c2c31
1

2
eaEabGa

b b1
i

36
ea~Ga

b1b2b316da
[b1Gb2b3] !a

b@* G8#b1b2b3

1
i

720
ea@dF4#b1 . . . b5

~Ga
b1 . . . b5110da

[b1Gb2 . . . b5] !a
b, ~12!
fy-
whereEab ,G8 are the r.h.s’s of the Einstein and the gau
field equations as defined in Eqs.~2!,~3! and i a is defined
by i aeb5da

b so that i.e., for Vp5(1/p!)eap` . . .
`ea1Va1 . . . ap

,

i aVp5
1

~p21!!
eap` . . . `ea2Vaa2 . . . ap

; ~13!

in particular i aR a
b5ebR aba

b. The equality~12! implies
that the set of thefree bosonic@Eq. ~7!# equations for the CJS
supergravity, Eqs.~2!, ~3!, ~4!, is equivalent to the following
simple equation for the generalized curvature of Eq.~11!,
ebR aba

gGa
g

b50 or

i aR a
gGa

g
b50, ~14!

since the r.h.s. of Eq.~12! is zero on account of the equation
of motion ~2!, ~3!, the Bianchi identity ~4! and that
Rb[c1c2c3]50 @sinceRabcd5Rcdab andDTa50 by Eq.~6!#.
II. KILLING SPINORS, PREONS AND GENERALIZED
G-FRAME

A. Killing spinors and BPS states

A BPS stateuBPS,k& described by a solitonic solution
preservingk supersymmetries is, schematically, one satis
ing

eJ
aQauBPS,k&50, J51, . . . ,k, k<31, ~15!

whereQa are the supersymmetry generators obeying

$Qa ,Qb%5Pab , @Qa ,Pbg#50 ~16!

a,b,g51,2, . . .,32,

so thatPab5Pba . The generalized momentumPab may be
decomposed e.g. in the basis ofD511 Spin(1,10) (32
332) Dirac matrices,
0-3
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Pab5PmGab
m 1ZmnGab

mn1Zm1 . . . m5
Gab

m1 . . . m5 , ~17!

giving then rise to the standardD511 momentumPm and to
the tensorial ‘‘central’’ charge generatorsZmn ,Zm1 . . . m5

of

the M-algebra$Qa ,Qb%5Pab . These generators may b
identified as topological charges@34# related to the M2- and
M5-branes~as well as to the M9-brane and KK7-brane of
theory @35#; see@29# for the role of the worldvolume gaug
fields of the M5-brane, and@32,36# for D-branes!.

B. BPS preons as constituents

A BPS preon@1# stateuBPS,31&[ul& is a state character
ized by a single bosonic spinorla ,

Pabul&5lalbul& ~18!

~hence the notationul&) or as a state preserving all supe
symmetries but one~hence the notationuBPS,31&) @1#. The
bosonic spinor parameterse I

a corresponding to the supe
symmetries preserved by a BPS preonul&,

e I
aQaul&50, I 51, . . .,31, ~19!

are ‘‘orthogonal’’ to the bosonic spinorla that labels it,

e I
ala50, I 51, . . . ,31 ~20!

~see below!. Identifying e I
a with 31 Killing spinors satisfy-

ing Eq. ~8!, one finds that Eq.~20! expresses the fact tha
these Killing spinors are orthogonal to thesingle bosonic
spinor la characterizing a hypothetical BPS preonic sol
tion.

For BPS statesuBPS,k& preservingk<30 supersymme-
tries ~15! one may introducen5322k bosonic spinorsla

r

corresponding to then broken supersymmetries. They ma
be treated as characterizingn BPS preons ul r&, r
51, . . . ,n, out of which the correspondingk/32 BPS state is
composed@1#.

To make this transparent, let us consider the eigenva
matrix pab of the generalized momentum operatorPab cor-
responding to the BPS stateuBPS,k& ~which is usually as-
sumed to be an eigenstate of the generalized momentum
having definite energy and definite brane charge!,
PabuBPS,k&5pab

(k)uBPS,k&. This is a symmetric matrix of
rank(pab

(k))5n5322k ~a relation justified below!. Hence
pab

(k) may be diagonalized by a general linear transformat
i.e.,

pab
(k)5ga

(g)p(g)(d)gb
(d) ~21!

with p(g)(d)5diag( . . . ). Moreover, asga
(g)PGL(n,R),

this diagonal matrix can be put in the form

~22!
10501
e

i.e.

n

where the number of nonvanishing elements, all11 or
21, is equal ton5rank(pab

(k)). However, the usual assump
tions for the supersymmetric quantum mechanics describ
BPS states do not allow for negative eigenvalues ofPab
5$Qa ,Qb% @p11521, e.g., would imply (Q1)2uBPS,k&
52uBPS,k&, contradicting positivity#. Thus, only positive
eigenvalues are allowed and

~23!

Substituting Eq.~23! into Eq. ~21!, one arrives at

pab
(k)5ga

(g)S 1

� 0

1

0

0 �

0

D
(g)(d)

gb
(d),

~24!

or, equivalently, denotingga
15la

1, . . . , ga
n5la

n,

PabuBPS,k&5 (
r 51

n5322k

la
rlb

r uBPS,k&

[~la
1lb

11 . . . 1la
nlb

n!uBPS,k&.

~25!

One sees using Eq.~16! that, if the preserved supersymm
tries correspond to the generatorseJ

aQa , J51, . . . ,k, Eq.
~15!, then

(
r 51

n5322k

e (J
ala

reK)
blb

r50, ~26!

which immediately implies

eJ
ala

r50, ~27!

J51, . . . ,k, r 51, . . . ,n,

making clear thatk5322n. This explains the relationn
5322k between the number of preonsn5rank(pab) and
the number of preserved supersymmetriesk. Thek531 case
(n51) is Eq.~20! for BPS preons.

Equation~25! may be looked at as a manifestation of t
composite structureof the n5k/32 BPS stateuBPS,k&,

uBPS,k&5ul1& ^ . . . ^ ul (322k)&, ~28!

where ul1&, . . . , uln& are BPS elementary, preonic stat
characterized by the spinorsla

1, . . . ,la
n, respectively.
0-4
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C. Moving G-frame

When a BPS stateuk& is realized as a solitonic solution o
supergravity, it is characterized byk Killing spinors eJ

b(x)
or by then5322k bosonic spinorsla

r(x) associated with
the n BPS preonic components of the stateuBPS,k&. The
Killing spinors and the preonic spinors are orthogonal,

eJ
ala

r50,

J51, . . . ,k, r 51, . . . ,n5322k ~29!

and, hence, may be completed to obtain bases in the sp
of spinors with upper and with lower indices by introducin
n5322k spinorswr

a andk spinorsua
L satisfying

ws
ala

r5ds
r , ws

aua
J50, eJ

aua
K5dJ

K. ~30!

Either of these two dual bases defines ageneralized moving
G-framedescribed by the nondegenerate matrices

ga
(b)5~la

s,ua
J!, g21

(b)
a5S ws

a

eJ
a D , ~31!

where (a)5(s,J)5(1, . . . ,322k;J51, . . . ,k). Indeed,
g21

(b)
ggg

(a)5d (b)
(a) is equivalent to Eqs.~30! and ~29!,

while

da
b5ga

(g)g21
(g)

b[la
rwr

b1ua
JeJ

b ~32!

provides the unity decomposition or completeness relatio
terms of these dual bases.

One may consider the dual basisg21
(b)

a to be con-
structed from the bosonic spinors inga

(b) by solving Eq.
~32! or g21g5I @Eqs.~30! and~29!#. Alternatively, one may
think of wr

a andua
J as being constructed fromeJ

a andla
r

through a solution of the same constraints. In this sensethe
generalized moving G-frame~31! is constructed from k Kill-
ing spinors eJ

a characterizing the supersymmetries pr
served by a BPS state (realized as a solution of the su
gravity equations) and from the n5322k bosonic spinors
la

r characterizing the BPS preons from which the BPS s
is composed.

Although many of the considerations below are gene
we shall be mainly interested here in the casesG
5SL(32,R) andG5Sp(32,R).

Clearly, in D511, the charge conjugation matrixCab

52Cba allows us to express the dual basisg21 in terms of
the original oneg or vice versa. In particular, in the preonic
k531 case one finds that, aslaCablb[0, la5Cablb has
to be expressed asla5l Ie I

a, for some coefficientsl I , I
51, . . .,31. In general~as e.g., in CJS supergravity wit
nonvanishingF4), the charge conjugation matrix is not ‘‘co
variantly constant,’’DCab522v [ab]5” 0. This relates the
coefficientsl I5laua

I to the antisymmetric~nonsymplectic!
part of the generalized connection,v [ab]5C[agvg

b] by
dl I2Al I52lav [ab]ub

I @43#. In OSp(1u32)-related mod-
elsv [ab]50 andA50, hencel I is constant and we may se
l I5d31

I using the global transformations ofGL(31,R),
10501
ces

in

r-

te

l,

which is a rigid symmetry of the system of Killing spinor
This allows us to identifyla itself with one of the Killing
spinors

G5Sp~32,R!: e I
a5~e i

a,la!, la
ªCablb , ~33!

i 51, . . .,30.

Without specifying a solution of the constraints~32! ~or
g21g5I ), the moving frame possesses aG5GL(32,R)
symmetry. One may impose as additional constraints deg)
51 or det(g21)51 reducingG to SL(32,R),

G5SL~32,R!: det~gb
(a)!515det~g(a)

21 b!. ~34!

For instance, in the preonic casek531 this would imply
wa51/(31)!«ab1 . . . b31ub1

1 . . . ub31

31. Such a frame is mos
convenient to study the bosonic solutions of CJS superg
ity.

III. GEOMETRY OF BPS PREONS AND
nÄkÕ32-SUPERSYMMETRIC SOLUTIONS

A. Generalized connection and movingG-frame

The Killing equation~8! for a n5k/32 supersymmetric
solution,

DeJ
a5deJ

a2eJ
bvb

a50, J51, . . . ,k, ~35!

implies the following equations for the other components
the movingG-frame:

Dla
r
ªdla

r1va
blb

r5la
sAs

r , ~36!

Dua
J
ªdua

J1va
bub

J5la
rBr

J , ~37!

Dwr
a
ªdwr

a2wr
bvb

a52Ar
sws

a2Br
JeJ

a,
~38!

a,b51, . . .,32;

J51, . . . ,k; r ,s51, . . . ,~322k!,

where As
r and Br

I are (322k)3(322k) and (322k)3k
arbitrary one-form matrices.

To obtain Eqs.~36!, ~37!, ~38! one can take firstly the
derivativeD of the orthogonality relations~29!, ~30!. After
using Eq.~35!, this results in

e I
aDla

r50, e I
aDua

J50, ~39!

ws
aDla

r52Dws
ala

r , ws
aDua

J52Dws
aua

J.
~40!

Then, for instance, to derive Eq.~36!, one uses the unity
decomposition~32! to expressDla

r through the contractions
ws

aDla
r ande I

aDla
r : Dla

r[la
sws

bDlb
r1ua

Ie I
bDlb

r .
The second term vanishes due to Eq.~39!, while the first one
is not restricted by the consequences of the Killing spin
equations and may be written as in Eq.~36! in terms of an
arbitrary formAs

r[ws
aDla

r .
0-5
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Notice that, using the unity decomposition~32!, one may
also solve formally Eqs.~35!, ~36!, ~37!, ~38! with respect to
the generalized connectionva

b,

va
b5Ar

sla
rws

b1Br
Jla

reJ
b2~dgg21!a

b, ~41!

wherega
(b) andg(b)

21 a are defined in Eq.~31! and, hence,

~dgg21!a
b5dla

rwr
b1dua

Ie I
b. ~42!

For a BPSn531/32, preonic configuration Eqs.~36!,
~37!,~38! read

Dlaªdla1va
blb5Ala , ~43!

Dua
I
ªdua

I1va
bub

I5BIla , ~44!

Dwa
ªdwa2wbvb

a52Awa2BIe I
a ~45!

and contain 1131532 arbitrary one-formsA andBI .
For G5SL(32,R) one may choose det(g)51, Eq. ~34!,

which implies tr(dgg21)ª(dgg21)a
a50. Then the

sl(32,R)-valued generalized connectionva
b (va

a50) al-
lowing for a n5k/32 supersymmetric configuration is dete
mined by Eq.~41! with Ar

r50,

G5SL~32,R!: Ar
r50. ~46!

In particular, thesl(32,R)-valued generalized connectio
allowing for a BPS preonic,n531/32, configuration, should
have the form

G5SL~32,R!, n531/32:

va
b5BIlae I

b2~dgg21!a
b ~47!

in terms of 31 arbitrary one-formsBI , I 51, . . .,31.
Assuming a definite form of the generalized connectio

e.g. the one characterizing bosonic solutions of the ‘‘fre
CJS supergravity equations~9!, one finds that Eqs.~41! be-
come differential equations fork Killing spinors eJ

a and n
5322k BPS preonic spinorsla

r once (dgg21)5dla
rwr

b

2ua
Ide I

b @Eq. ~42!# is taken into account.
On the other hand, one might reverse the argument

ask for the structure of a theory allowing forn5k/32 super-
symmetric solutions. This question is especially interest
for the case of BPS preonic andn530/32 solutions as, for
the moment, such solutions are unknown in the standarD
511 CJS andD510 type II supergravities.

B. Generalized holonomy for BPS preons and fornÄkÕ32
supersymmetric solutions

The simplest application of the movingG-frame construc-
tion above is to find an explicit form for the general soluti
of Eq. ~10!, which expresses the necessary conditions for
existence ofk Killing spinors. As the Killing spinor equation
~35! implies Eqs.~36!,~37!, one may solve instead the sel
consistency conditions for these equations,

DDla
r5R a

blb
r5la

s~dA2A`A!s
r , ~48!
10501
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DDua
I5R a

bub
I5la

r~dBr
I 1Bs

I `Ar
s!.

~49!

Using the unity decomposition~32!, which implies R a
b

5R a
glg

rwr
b1R a

gug
Ie I

b, one finds the following expres
sion for the generalized curvature:

R a
b5Gr

sla
rws

b1¹Br
I la

re I
b, ~50!

where

Gr
s
ª~dA2A`A!r

s, ~51!

¹Br
I
ªdBr

I 2Ar
s`Bs

I . ~52!

For k531, corresponding to the case of a BPS preon,
~50! simplifies to

R a
b5dAlawb1~dBI1BI`A!lae I

b. ~53!

Equations~50! and ~53! imply R a
b5la

r(•••) r
b and, thus,

clearly solve Eq.~10!, e I
bR b

a50.
The conditionsG,SL(32,R) and henceH,SL(32,R),

R a
a50 ~which is always the case for bosonic solutions

‘‘free’’ CJS and type IIB supergravities@7,11#!, imply Ar
r

50 in Eq. ~50! @see Eq.~46!#, while for k531 Eq. ~53!
simplifies to

H,SL~32,R!, k531: R a
b5dBIlae I

b. ~54!

Finally, for G,Sp(32,R) v [ab]50, the holonomy group
H,Sp(32,R), R ab

ªCagR g
b5R (ab), and Eq. ~54! re-

duces to

H,Sp~32,R!, k531: R a
b5dBlalb, ~55!

where only one arbitrary one-formB appears@to obtain
Eq. ~55! one has to keep in mind thate I

a5(e i
a,Cablb),

I 5( i ,31), Eq.~33!#. Equations (54),(55) solve Eq. (10) fo
preons when G5SL(32,R),Sp(32,R), respectively.

Equation ~50! with Ar
r50 @Eq. ~46!, and, hence, (dA

2A`A) r
r50] provides an explicit expression for the resu

of @7,11# on generalized holonomies ofk-supersymmetric so-
lutions of D511 and of D510 type IIB supergravity,
namely H,SL(322k,R) +Rk(322k). For a BPS preon
k531, andH,R31 as expressed by Eq.~54!. However, our
explicit expressions for the@sl(322k,R)*Rk(322k)#-valued
generalized curvaturesR a

b, Eqs. ~50!,~54!, given in terms
of the Killing spinorse I

b and bosonic spinorsla
r character-

izing the BPS preon contents of an5k/32 BPS state, may be
useful in searching for new supersymmetric solutions,
cluding preonicn531/32 ones. Some steps in this directio
are taken in the next section.
0-6
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IV. ON BPS PREONS IN DÄ11 CJS SUPERGRAVITY
AND BEYOND

A. BPS preons in Chern-Simons supergravity

The first observation is that the generalized curvature
lowing for a BPS preonic (k531 supersymmetric! configu-
ration for the case ofH,SL(32,R) holonomy, Eq.~54!, is
nilpotent,

R a
g`R g

b50 for H,SL~32,R!, k531. ~56!

As a result it solves the purely bosonic equations of a Che
Simons supergravity~see @14,15#, although our statemen
may be related to a more general version of a hypothet
Chern-Simons-like supergravity!,

R a
g1`Rg1

g2`Rg2

g3`Rg3

g4`Rg4

b50. ~57!

Clearly, the same is true forH,Sp(32,R),SL(32,R),
whereR is given by Eq.~55!. Thus, there exist BPS preon
solutions in CS supergravity theories, includin
OSp(1u32)-type ones.

Note that Eq.~56! follows in general for a preonic con
figuration only. For the configurations preservingk<30 of
the 32 supersymmetries, the bosonic equations of a CS
pergravity, Eqs.~57! reduce to@see Eqs.~51!,~52!#

Gs
s2`Gs2

s3`Gs3

s4`Gs4

s5`Gs5

r50,

Gs
s2`Gs2

s3`Gs3

s4`Gs4

r`¹Br
I50, ~58!

which are not satisfied identically forGr
r50. Equations~58!

are satisfied e.g., by configurations withGs
r50, for which

the generalized holonomy group is reduced down
H,R^ k(322k), R b

a5¹Br
I lb

re I
a.

Thus, only the preonic,n531/32, configurationsalways
solve the Chern-Simons supergravity equations~57!.
ic
el

r
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B. Searching for preonic solutions of ‘‘free’’ bosonic
CJS equations

We go back now to the question of whether BPSn
531/32~preonic! solutions exist for the standard CJS sup
gravity @5#. As it was noted in Sec. I A, this problem can b
addressed step by step, beginning by studying the existe
of preonic solutions for ‘‘free’’ bosonic CJS equations. T
this aim it is useful to observe@9# that these equations ma
be collected in a compact expression for the generalized
vature, Eq.~14!. The generalized curvature of a BPS preon
configuration satisfies Eq.~54!, and thus it solves the ‘‘free’’
bosonic CJS supergravity equations~14! if

i adBIe
I

aGa
a

b50. ~59!

Actually, Eq. ~54! in Eq. ~14! gives lai adBIe I
gGa

g
b50.

However, asla5” 0, this is equivalent to Eq.~59!.
Equation~59! contains a summedI 51, . . . ,31index and,

as a result, it is not easy to handle. It would be much ea
to deal with the expressionGa

a
gi aR g

b which, with Eq.~54!
is equal toGa

a
glgi adBJeJ

b. Indeed, (Gal)ai adBJeJ
b50,

for instance, would imply (Gal)ai adBJ50 which may be
shown to have only trivial solutions. However,Ga

a
gi aR g

b

Þ0 in generalfor a solution of the ‘‘free’’ bosonic CJS equa
tions @Eq. ~14!#,

Ga
a

gi aR g
b52

i

12
@DF̂a

b1O~FF !#, ~60!

whereD5eaDa is the Lorentz covariant derivative@not to be
confused withD defined in Eqs.~8!,~9!#,

F̂a
b5Fa1a2a3a4

~Ga1a2a3a4!a
b, ~61!

andO(FF) denotes the terms of second order inFc1c2c3c4
,

O~FF !5
1

~3! !24!
ea~Ga

b1b2b312da
[b1Gb2b3] !eb1b2b3[4][4 8]F

[4]F [48]1
2i

3
ea~Ga

b1b2b3b413da
[b1Gb2b3b4] !Fcdb1b2

Fcd
b3b4

1
8i

9
eaFabb1b2

Fb
b3b4b5

Gb1b2b3b4b5. ~62!
a-

e

Equation~54! then implies that for a hypothetical preon
solution of the ‘‘free’’ bosonic CJS equations, the gauge fi
strengthFabcd should be nonvanishing~otherwisedBJ50
andR a

b50, see above! and satisfy

Ga
a

glgi adBJeJ
b52

i

12
@DF̂a

b1O~FF !#. ~63!

Using Eq.~30!, Eqs. ~63! split into a set of restrictions fo
Fabcd,
d
@DF̂1O~FF !# a

blb50, ~64!

and equations fordBI ,

Ga
a

glgi adBI52
i

12
@DF̂1O~FF !# a

bub
I . ~65!

Equation (63) or, equivalently, Eqs. (64),(65) are the equ
tions to be satisfied by a CJS preonic configuration. Note that
if a nontrivial solution of the above equations with som
0-7
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Fabcd5” 0 and somedBI5” 0 is found, one would have then t
check in particular that such a solution satisfiesddBI50 and
D [eFabcd]50.

On the other hand, if the general solution of the abo
equation turned out to be trivial,dBI50, this would imply
R a

b50 and, thus, a trivial generalized holonomy grou
H51. However, this is the necessary condition for fully s
persymmetric,k532, solutions@8#. Hence a trivial solution
for Eqs. ~64!,~65! would indicate that a solution preservin
31 supersymmetries possesses all 32~thus corresponding to a
fully supersymmetric vacuum! and, hence, that there are n
preonic,n531/32 solutions of thefree bosonicCJS super-
gravity equations~2!, ~3!, ~4!, ~6!, and~7!.

If this happened to be the case, one would have to st
the existence of preonic solutions for the CJS supergra
equations with nontrivial right hand sides. These could
produced by corrections of higher order in curvatu
@20,21,23# ~a counterpart of the stringa8 corrections inD
510 @22#! and by the presence of sources~from some exotic
p-branes!.

C. On brane solutions and worldvolume actions

As far as supersymmetricp-brane solutions of supergrav
ity equations are concerned, one notices that for most of
known n51/2 supersymmetric solutions (n516/32 in D
511 andD510 type II cases! there also exist worldvolume
actions in the corresponding (D511 or D510 type II! su-
perspaces possessing 16k-symmetries, exactly the numbe
of supersymmetries preserved by the supergravity solito
solutions. Thek-symmetry-preserved supersymmetrycorre-
spondence was further discussed and extended for the ca
n,1/2 multi-brane solutions in@28,29#.

In this perspective one may expect that if preonicn
531/32 supersymmetric solutions of the CJS equations w
a source do exist, a worldvolume action possessing
k-symmetries should also exist in a curvedD511 super-
space. For a moment no such actions are known in thestan-
dard D511 superspace, but they are known in a supersp
enlarged with additional tensorial ‘‘central’’ charge coord
nates@30,31#. One might expect that the role of these ad
tional tensorial coordinates could be taken over by the t
sorial fields ofD511 supergravity. But this would imply tha
the corresponding action does not exist in the flat stand
D511 superspace as it would require a contribution from
above additional field degrees of freedom~replacing the ten-
sorial coordinate ones in the spirit of@32#!. This lack of a
clear flatstandardsuperspace limit hampers the way towar
a hypothetical worldvolume action for a BPS preon in t
usual curvedD511 superspace.

Nevertheless, a shortcut in the search for such an ac
may be provided by the recent observation@17# that the su-
perfield description of the dynamical supergravit
superbrane interacting system, described by the sum of
superfield action for supergravity~still unknown for D
510,11) and the super-p-brane action, is gauge equivalent
the much simpler dynamical system described by the sum
the spacetime, component action for supergravity and
actionfor the purely bosonic limitof the super-p-brane. This
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bosonic p-brane action carries the memory of being t
bosonic limit of a super-p-brane by still possessing 1/2 of th
spacetime local supersymmetries@16#; this preservation of
local supersymmetry reflects thek-symmetry of the original
super-p-brane action.

Thus thek-symmetric worldvolume actions for supe
p-branes have a clear spacetime counterpart: the pu
bosonic actions in spacetime possessing a part of local sp
time supersymmetry of a ‘‘free’’ supergravity theory.

This fact, although explicitly discussed for the standa
n51/2 superbranes in@17#, is general since it follows from
symmetry considerations only and thus it applies to any
perbrane, including a hypothetical preonic one. The num
of supersymmetries possessed by this bosonic brane a
coincides with the number ofk-symmetries of the paren
super-p-brane action. Moreover, these supersymmetries
extracted by a projector which may be identified with t
bosonic limit of thek-symmetry projector for the super
brane. With this guideline in mind one may simplify, in
first stage, the search for a worldvolume action for a B
preon in standard supergravity~or in a model minimally ex-
tending the standard supergravity! by discussing the bosoni
limit that such a hypothetical action should have.

D. BPS preons in D’Auria-Fré supergravity

Let us consider a symmetric spin-tensor one-formeab

5eba5dxmem
ab(x) transforming under local supersymmet

by

d«eab522ic (a«b), ~66!

whereca is a fermionic one-form,

ca5dxmcm
a~x!, ~67!

which we may identify with the gravitino. Let us consider fo
simplicity the worldline action~cf. @30#!

S5E
W1

la~t!lb~t!êab

5E dtla~t!lb~t!em
ab
„x̂~t!…]tx̂

m~t!, ~68!

wheret parametrizes the worldlineW1 in D511 spacetime,
êab

ªdt]tx̂
m(t)em

ab
„x̂(t)… andla(t) is an auxiliary spinor

field on the worldlineW1. The extended (p>1) object coun-
terpart of this worldline action is the following action fo
tensionlessp-branes~cf. @31#!:

Sp115E
Wp11

lalbr̂`êab

5E
Wp11

dp11jrklalbêm
ab]kx̂

m, ~69!
0-8
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where r̂(j) is a p-form auxiliary field, andrk(j) is the
worldvolume vector density~see @38#! related to r̂(j)
by r̂(j)5(1/p!)dj j p` . . . `dj j 1r j 1 . . . j p

(j)5(1/p!)dj j p

` . . . `dj j 1e j 1 . . . j pkr
k(j).

One easily finds that the action~68! possesses all but on
of the local spacetime supersymmetries@44#, Eq. ~66!, 31 for
a,b51, . . . ,32corresponding toD511. Indeed, perform-
ing a supersymmetric variationd« of Eq. ~68! assuming
d«la(t)50, one finds

d«S522i E
W1

ĉala~t!«̂blb~t!. ~70!

Thus, one sees thatd«S50 for the supersymmetry param
eters onW1 that obey@cf. Eq. ~20!#

«̂blb~t!50 @ «̂b
ª«b

„x̂~t!…#. ~71!

Clearly Eq.~71! possesses 31 solutions, which may be
pressed through worldvolume spinorsê I

a(t) ~the worldline
counterparts of the Killing spinors! orthogonal tola(t),
ê I

a(t)la(t)50, as

«̂b5« I~t!ê I
b, I 51, . . .,31, ~72!

for some arbitrary« I(t). The same is true for the tensionle
p-branes described by the action~69!.

Thus, the actions~68!, ~69! possess 31 of the 32 loca
spacetime supersymmetries~66! and, in light of the discus-
sion of the previous section, can be considered as the sp
time counterparts of a superspace BPS-preonic action~hypo-
thetical in the standard superspace but known@2,30,31# in
flat maximally enlarged or tensorial superspaces!.

The question that remains to be settled is the meanin
the symmetric spin-tensor one-formeab with the local super-
symmetry transformation rule~66! in D511 supergravity.
The contraction ofeab with Ga ,

ea5eabGab
a , ~73!

may be identified with theD511 vielbein. Decomposing
eab in the basis of theD511 Spin(1,10) gamma-matrices

eab5eba ~74!

5
1

32
eaGa

ab2
1

2!32
B1

abGab
ab

1
1

5!32
B1

a1 . . . a5Ga1 . . . a5

ab ,

one finds thateab also contains the antisymmetric tens
one-forms B1

ab(x)5dxmBm
ab(x) and B1

a1 . . . a5(x)

5dxmBm
a1 . . . a5(x). Such fields, moreover, with exactly th

same supersymmetry transformation rules, are involved
the D511 supergravity model by D’Auria and Fre´ @18#.

Thus the action~68! can be teated as a worldline actio
for a BPS preon in the background of the D’Auria-Fr´,
10501
-

ce-

of

in

OSp(1u32)-related ‘‘gauge’’ supergravity model. This migh
be regarded as an indirect indication of the existence of B
preonic n531/32 solutions in D’Auria-Fre´ D511 super-
gravity.

The possibility of having preonic actions in the standa
CJS supergravity requires additional study.

V. DISCUSSION AND OUTLOOK

In this paper we have studied the role of the BPS pre
notion @1# in the analysis of supersymmetric solutions ofD
511 supergravity. This notion suggests the movingG-frame
method, which we propose as a new tool in the search
supersymmetric solutions ofD511 andD510 supergravity.
We used this method here to make a step towards answe
whether the standard CJS supergravity@5# possesses a solu
tion preserving 31 supersymmetries, a solution that wo
correspond to a BPS preon state. Although this question
not been settled for the CJS supergravity case, we h
shown in our framework that preonic,n531/32 solutions do
exist in a Chern-Simons typeD511 supergravity@14#.

Although the main search for preonic solutions conce
the ‘‘free’’ bosonic CJS supergravity equations, one sho
not exclude other possibilities, both inside and outside
CJS standard supergravity framework. When, e.g., su
p-brane sources are included, the Einstein equation~2!, and
possibly the gauge field equations~3! and even the Bianch
identities ~4!, acquire r.h.s.’s. In this case@see Eq.~12!#, a
r.h.s. also appears in Eq.~14! and the situation would have t
be reconsidered. Another source of modification of the C
supergravity equations might be due to ‘‘radiative’’ corre
tions of higher order in curvature. Such modified equatio
might also allow for preonic solutions not present in t
unmodified ones. If it were found that only the inclusion
these higher-order curvature terms allows for preonic B
solutions, this would indicate that BPS preons cannot be s
in a classical low energy approximation of M theory an
hence, that they are intrinsically quantum objects.

The special role of BPS preons in the algebraic class
cation of all the M-theory BPS states@1# allows us to con-
jecture that they are elementary~quarklike! necessary ingre-
dients of any model providing a more complete descript
of M theory. In such a framework, if the standard supergr
ity did not containn531/32 solutions, neither in its ‘‘free’’
form, nor in the presence of a super-p-brane source, this
might just indicate the need for a wider framework for
effective description of M theory. Such an approach co
include Chern-Simons supergravities@14# and/or the use of
larger, extended superspaces~see @32,37# and references
therein!, in particular with additional tensorial coordinate
~also relevant in the description of massless higher-spin th
ries @2,3#!. In this perspective our observation that the BP
preonic configurations do solve the bosonic equations
Chern-Simons supergravity models looks interesting.

Note added. We mention that it might be interesting t
look at the role of vectors and higher order tensors that m
be constructed from the preonic spinorsla

r , in analogy with
the use of the Killing vectorsKIJ

a 5e IG
aeJ and higher order

bilinearse IG
a1•••aseJ made in Refs.@9,39–41#.
0-9
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@42# Notice that the tensorEab in Eq. ~2! is related to the l.h.s. of

the true Einstein equation of CJS supergravity,Ẽab , by Eab

5Ẽab2@1/(D22)#habẼc
c.

@43# To see this, one calculatesdl I5Dl I5(DCab)lbua
I

1Cab(Dlb)ua
I1CablbDua

I and uses Eqs.~43!,~44! to find
dl I5Al I12lav [ab]ub

I .
10501
@44# Notice that when a brane action is considered in a supergra
background, the local spacetime supersymmetry is not a gau
symmetry of that action but rather a transformation of t
background; it becomes a gauge symmetry only when a su
gravity action is added to the brane one so that supergravit
dynamical.
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