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We develop the BP$Bogomol'nyi-Prasad-Sommerfiglghreon conjecture to analyze the supersymmetric
solutions of D=11 supergravity. By relating the notions of Killing spinors and BPS preons, we develop a
moving G-frame method G=GL(32,R), SL(32,R) or Sp(32,R)] to analyze their associated generalized
holonomies. As a first application we derive here the equations determining the generalized holonamies of
=k/32 supersymmetric solutions and, in particular, those solving the necessary conditions for the existence of
BPS preonic {=31/32) solutions of the standafl=11 supergravity. We also show that there exist elemen-
tary preonic solutions, i.e., solutions preserving 31 out of 32 supersymmetries in a Chern-Simons type super-
gravity. We present as well a family of worldvolume actions describing the motion of pointlike and extended
BPS preons in the background of a D’Auria-Fype OS(1]32)-related supergravity model. We discuss the
possible implications for M theory.
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I. INTRODUCTION €%\, =0, (1)

, S a=1,...,32, J=1,...K,
A complete, algebraic classification of M-theory

Bogomol'nyi-Prasad-Sommerfiel[PS states, based on the r=1,...,(32-k).

numberk of supersymmetries preserved by a given BPSThus, BPS preonic spinors and Killing spinors provide an

state, has beef‘ given ft]. BPS states preser-vm:g)ut of 32 alternative(dual) characterization of a-supersymmetric so-
supersymmetries are denoted-k/32 statesk=232 corre- |y ion- either one can be used and, for solutions with super-
sponds to fully supersymmetric vacua. The observalldn  nymerary supersymmetrig$2,13, the characterization pro-
(see also Sec. )lthat BPS states that break-3R supersym-  vided by BPS preons is a more economic one. Moreover, the
metries can be treated as composites of those preserving alke of both BPS preonic\(,") and Killing (e;%) spinors

but one supersymmetry suggests thatkke31 states might allows us to develogin Sec. I) a moving G-framemethod,

be considered as fundamental constituents of M theorywhich may be useful in the search for new supersymmetric

These v=31/32 BPS states were accordingly nang@S  solutions of CJS supergravity. .
preons[1]. We apply this movingG-frame methodin Sec. Ill, G

. . =SL(32,R)] to studying the generalized holonomies of CJS
Interestingly epough,_ the npﬂon .of BRS preons may besupergravity and discuss the basic equations characterizing
extended to arbitrary dimensions, includilg=4. In this  the still hypothetical BPS preonic solutiofiSec. IV B, G
case, a pointlike BPS preon may be identified with a tower 0f=GL(32,]R), SL(32R) or Sp(32R)]. Although no definite
massless higher spin fields of all possible helicitiese  answer to the question of the existence of BPS preonic solu-
[2—4] and references thergin tions for the standard CJS supergravity is given here, we do
The actual existence of preonig=31/32 supersymmet- Show (in Sec. IV A) that v=31/32 supersymmetric preonic
ric, BPS states as solitonic solutions of the standarconfigurations solve the equations in the Chern-Sim@®
Cremmer-Julia-ScherKCJS D=11 supergravity[5] has Supergravity casgl4] (for a review, se¢15]) i.e., that CS
been the subject of recent studjés7]. Although no obstruc- Supergravity does have preonic solutions.
tions for their existence have been found by geometric con- USing the recent resulfd6,17 on a gauge-fixed form of

siderations based on the notion of generalized holonghy M€ gctilon forbdynamical supergravity‘énteraclting with dy-
s 811 — 31/32 soluti ; ither N@mical superbrane sourc&ee Sec. IV € we also propose
(see alsd8-11), no »=31/32 solutions were found either (in Sec. IV D aD=11 worldvolume action for BPS preons

In this paper we develop the notion of BPS preons 10 the background of a D'Auria-Fre©Sp(1|32)-related su-
analyze the various supersymmetric solutions of the supelsergravity[18] (see alsd19]), a model allowing for an eco-

gravity equations. Av=k/32 supersymmetric solution corre- nomic “embedding” of the standar® =11 CJS supergrav-
sponds to a BPS state composedef(32—k) BPS preons. iy,

The corresponding (32k) bosonic spinors \," (r In this paper we use a “mostly minus” metric,
=1, ... n) are orthogonal to th& Killing spinors e;* char-  5,,=(+,—, ...,—); the exterior derivatived acts from
acterizing thev=k/32 solution, the right, dQ,=(1/q9!)dx*a/\ - -/\dx“l/\dx”&,Q,Ll...#q.
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A. Equations of D=11 supergravity fication of the Bianchi identitiefEq. (4)] with the analogue
The purely bosonic limit of the “free” CJS supergravity ©f @ magnetic current on the r.h.8F,=s.
equations is given by The coincident M-brane solutions still possess 16/32

supersymmetry, while the intersecting brane solutions corre-
spond tor<<16/32. Thus, as supernumerary supersymmetric
solutions (>1/2) are known only for “free” CJS, it is rea-

sonable to consider first the “free” bosonic CJS equations

E..:=R —EF |:[31+i FF4=0, (2
ab ab™ 3a[3]"b 3677ab [4] )

Gg:=d*F,—F,/\F,=0, €©)] (2)—(4),(6),(7) in the search for a hypothetical BPS preonic,
v=31/32 solution.
dF,=0 < F,=dA;, (4) Notice, however, that one should not exclude the possible

existence of a brane solution.e. solutions ofE,,= 75,

which include the Einstein equations with a contribution c D+lpy o .
from the energy-momentum tensor of the antisymmetric MapZc” With @ Tpc 877 (x = X(£))] with supernumerary

gauge fieldA,, (x) only, Eq.(2), as well as the free equa- supersymmetries, although certainly these solutions would
HLUp 1 . 1

tions (3) and Bianchi identitieg4) for the gauge field in desc“ribe quite uousuol branes. The reason why the “otan—
curvedD =11 spacetime. Hera,b,c=0, . . .,9,10= u,v,p, dard” brane solutionglike M-waves, M2 and M5-branes in

D=11) always break 1/2 of the supersymmetry is that their
1 k-symmetry projectofthe bosonic part of which is identical
Ag= adx”/\dx”/\dx“Awp(x), to the projector defining the preserved supersymmetries
[28,29) has the form (+T') with trT’'=0, I'>=1. However,
1 i on bnra worldvolume actions for branes with a different form for the
Fa=7€ Ne®/Ne?/\eF gpod X), (5 k-symmetry projector are knowf80,31,4 although in an
enlarged superspadsee[32]). A question arises, whether
e?=dx“e,(x), FapaFPPI=F ¢ ¢ o FP%%%, etc. Itis also  such actions may be written in usual spacetime or super-
1%2~3

assumed that the torsion and the gravitino vanish, Space. _ _ _
As a partial answer to this question, we present here a
T2:=De?*=de?*— e’ Aw  ,2=0, (6)  D=11 spacetime action for a BPS preon in the background
of a D’Auria-Fretype supergravity18]. The experience pro-
wa:dxﬂd,zzoy a=1,...,32, (7) vided by the usuaD=11 M-branes and® =10 D-branes

together with the analysid6,17] of the partial preservation
wherew, ,2 is the Lorentz connection. Such equations pos-of local supersymmetry by the purely bosonic limit of the
sessnonsingularpp-wave solutions with supernumerary su- superp-brane action suggests that the existence of such a
persymmetrie$12,13. preonic action implies that=31/32 solitons should exist in

As the supergravity multiplet is the only one without a D’Auria-Fretype model.

higher spin fields irD =11, no usual field-theoreticé&pace-
time) matter contribution to the right-hand sidég<h.s.’s of
Egs. (2), (3), (4 may appear. However, these equations B. Killing spinors, generalized connection
might be modified by higher order corrections in curvature and generalized holonomy
[20,21] (a counterpart of the string’ corrections[22] in _ _ _ _
D=10, see alsd23]), or/and by the presence of sources A bosonic solution of the CJS supergravity equations pre-

from p-branes. servingk out of 32 supersymmetries can be characterized by
The »=16/32 supersymmetric M2-brane solution bf K independent bosonic spinotKilling spinors), €;%(x), J

=11 supergravitysee[24,25 and references thergipos- =1, - .. K, obeying the Killing spinor equation

sesses a singularity on the{2)-dimensional worldvolume

surfaceW? 1C M, x#=x#(&)=x*(r,0t,0?) (a caret indi- De,*=de;)*~ e w*=0. 8

cates a function of the worldvolume coordinatelm other
words, it solves the Einstein field equatioB,,= 7,
— % 77achc with a singular energy-momentum tensor densityThe generalized connectiomﬂa in EqQ. (8) includes, besides
o 63(x—X(£)) [42]. The gauge field equation also pos- the Lorentz(spin connectionw; 4= 1/40{"T 5 °, a tenso-
sesses a singular contributidp in the r.h.s.Gs=Jg, similar ~ Tal partts“=wg*— w4 constructed from the field strength
to that of the electric current to the r.h.s. of Maxwell equa-Fabca: Eds.(4), (5),
tions. In this sense, the M2-brane carries a supergravity

counterpart of the electric charge in Maxwell electrodynam-

ics (see[26] for a discussion 1

[ ab a ___na bibsby «
The other basia=16/32 supersymmetric solution of the wp" =7 @ Tap g™+ 758 Fap b0 7727
CJS supergravity, the M5-brarlsee[24,25,27 and Refs. .
thereir),. is a counterpart of the I?irac monopole, i.e. of the_ +I—eal’ bobopp. g FP1P2030a, 9
magnetically charged patrticle. It is characterized by a modi- 144" ~ abibob3by
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The Killing spinor equation(8) comes from the require- clearly allowed andsL(k,R) can be treated as a rigid sym-
ment of invariance under supersymmetry of the purelymetry of the system ok Killing spinors characterizing the
bosonic solutiofEq. (7)] that requiresd, ¢, =D ,e“=0. In  y=k/32 supersymmetric solution of any model.
OSp(1]|32)-related supergravity models, including CS-type A true connection takes values in the Lie algegraf the
supergravitieg14], D, and, hence, the Killing spinor equa- structure group Gof the principal fiber bundle. The curva-
tion involve an sp(32)-valued wz* connection ©P*  ture may take values in a smaller subalgeht@agG which is
:=CBwa“=w(ﬁ“)) which is a true connection, i.e., it is as- associated with a proper subgrotfiC G of the structure
sociated with the actual gauge symmetry of the model. group, theholonomy group For generalized connections

In CJS supergravity, as well as in type IB=10 super- one may accordingly introduce the notiong#neralized ho-
gravity, the gauge symmetry is restricted30(1,10), andw  lonomy group H-G [6] (see alsd7,8,10), such thatR z*
in Eg. (9) is not a true connection. However, the self- e H (while wz*eG). In this light, the necessary condition
consistency(integrability) condition for Eq.(8), DDe;*=0  for the existence ok Killing spinors, Eq.(10), can be treated

has the suggestive forf$,8] as a restriction on the generalized holonomy gradp
P [6,7,10,11,13
€"R p*=0, (10 It has been shown that for both CIIB=11 supergravity

[7] and for type IIB supergravity11], the generalized ho-

in terms of thegeneralized curvature lonomy groupH is a subgroup o6L(32,R), HCSL(32]R).

R g4=dwg— 0z \w,% (11)  As the generalized connections are clearly traceless in both
7 cases, one also h&C SL(32R).
Equations(8),(10) formally possess &L(32R) gauge in- For OS[(1]32)-related models including CS supergravi-

variance withw transforming as aGL(32,R) connection. ties[14] the (true) structure group iISSCSp(32,R) and the
However,GL(32R) is not a gauge invariance of CJS super-holonomy group iHCSp(32R).
gravity, hence the name “generalized” connection and cur- A full expression for the generalized curvatuRe,” cor-
vature forw andR. responding to purely bosonic solutions of CJS supergravity
Notice that, in contrast, a rigiL(k,R) transformation may be found e.g., i19,33] (see Appendix B of 9] and
acting on the index results in a redefinition of the Killing references therein; therey,, and F correspond to— 7,
spinorse; %, i.e., in replacing the Killing spinors by indepen- — 2F). For our purposes here it is sufficient to note that this
dent linear combinations with constant coefficients. This isR ,? obeys

1
iaRayFayﬁ: - —ebRb[

1 i
2 ]Fc1c2c3+§eaEabrzﬁ+ _ea(rab1b2b3+ 66[ab11-b2b3])aﬁ[* gs]blb2b3

36

C1C2C3

| b
+ mea[d F4]b1 N -b5(rabl obsy 105[c1 bz - bsly B, )

whereE,;,,Gg are the r.h.s’s of the Einstein and the gauge II. KILLING SPINORS, PREONS AND GENERALIZED

field equations as defined in Eq®),(3) andi, is defined G-FRAME
by i.e°=6) so that ie., for Q,=(L/p!)e®A ... A. Killing spinors and BPS states
/\ealﬂal,_.ap,

A BPS state|BPSk) described by a solitonic solution
1 preservingk supersymmetries is, schematically, one satisfy-
ian:(p_—l)leap/\ C /\eaZQaa2 B .ap; (13) Ing
€,“Q,/BPSky=0, J=1,...k k=31, (19
in particulari,R ,f=e"R ,p,”. The equality(12) implies
that the set of théree bosonic{I_Eq. (7)_] equations for the CJS whereQ,, are the supersymmetry generators obeying
supergravity, Eqsi2), (3), (4), is equivalent to the following

S|bmple Sq:%tLon for the generalized curvature of Ed), {Qu.Qp}=Pus. [Qu.Ps,1=0 (16)
€°R apn.'T?,”=0 or

iaR,T2F=0, (14) a,B,y=12,...32,

since the r.h.s. of Eq12) is zero on account of the equations so thatP,;=Pg,. The generalized momentuRy,; may be
of motion (2), (3), the Bianchi identity (4) and that decomposed e.g. in the basis Bf=11 Spin(1,10) (32
Ro(c =0 [sinceR,pcq= Regap andDT2=0 by Eq.(6)]. X 32) Dirac matrices,

162C3]
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P =P I*.+7 TH'+7 r#i--#s (17  Wwhere the number of nonvanishing elements, all or
apB ut ap uvt ap Ky M5 af ' . _ (k)
—1, is equal tm=rank(p,;). However, the usual assump-

giving then rise to the standaRi=11 momentunP, and to tions for the supersymmetric quantu_m m(_echanics describing
the tensorial “central” charge generatog,, . Z,,, of BPS states do not allow for negative eigenvaluesPqf

S Mg _ _ . 2
the M-algebra{Q,,Qgz}=P,;z. These generators may be ={Qa.Qpt [P1i=—1, eg, would imply Q1)|BPSK)

identified as topological charg¢34] related to the M2- and
M5-branes(as well as to the M9-brane and KK7-brane of M
theory[35]; see[29] for the role of the worldvolume gauge
fields of the M5-brane, an[82,36| for D-branes.

=—|BPSk), contradicting positivity. Thus, only positive
eigenvalues are allowed and

Piyp=diag(1,...,1,0,...,0).
—_— ———
B. BPS preons as constituents n=32—k k

A BPS preor{1] state|BPS31)=|\) is a state character- (23

ized by a single bosonic spinar,,

Substituting Eq(23) into Eg. (21), one arrives at

Paﬁ|)\>:)\a)\ﬁ|)\> (18)
1

(hence the notatiof\)) or as a state preserving all super- )
symmetries but onéhence the notatiofBPS31)) [1]. The N 0
bosonic spinor parameteks® corresponding to the super- ® 1 5
symmetries preserved by a BPS préai, pa,B:ga(y) 0 93( ),

€°Q.N)=0, 1=1,...,31, (19 0
are “orthogonal” to the bosonic spinor,, that labels it, (7(9)

€"\e=0, 1=1,...,31 (20 or, equivalently, denoting,*=X_,%, ..., 9.,"=\,",
(see below. Identifying €,“ with 31 Killing spinors satisfy- n=32—k
ing Eq. (8), one finds that Eq(20) expresses the fact that P IBPSK)= X \SIBPSk
these Killing spinors are orthogonal to tlséngle bosonic “Bl Sk) r§=:l “ ﬁ' Sk)
spinor A, characterizing a hypothetical BPS preonic solu-
tion. =(NNgH NN BPSK).
For BPS state$BPSk) preservingk<30 supersymme- (25)
tries (15) one may introduceé= 32—k bosonic spinors\ .\
corresponding to the broken supersymmetries. They may One sees using Eq16) that, if the preserved supersymme-

be treated as characterizing BPS preons|\"), r tries correspond to the generat&sQ,, J=1,... k, Eq.
=1, ... n, out of which the correspondirig32 BPS state is (15), then
composed1].
To make this transparent, let us consider the eigenvalue n=32-k
matrix p, of the generalized momentum operaRy, cor- 21 €Na €PN =0, (26)

responding to the BPS statBPSk) (which is usually as-
sumed to be an eigenstate of the generalized momentum, i

having definite energy and definite brane cha),gesﬁhmh immediately implies

PaB|BPkSk)=pgk[)3|BPSk>. This is a symmetric matrix of €%\, =0, 27)
rank(pgl)g)=n=32—k (a relation justified beloyv Hence

p&kg may be diagonalized by a general linear transformation J=1,...k r=1,...n,

ie.,

®W_ () (%) making clear thatk=32—n. This explains the relatiom
Pap=9e "Pn(99s (21)  =32—k between the number of preons- rank(p,p) and
, . the number of preserved supersymmetke$hek= 31 case
with p(,)»=diag(...). Moreover, asg,(” e GL(n,R), (n=1) is Eq.(20) for BPS preons.
this diagonal matrix can be put in the form Equation(25) may be looked at as a manifestation of the
composite structuref the v=k/32 BPS statéBP Sk),

p(y)(5)=diag(l,...,1,—1,...,—1,0,...,0), |BPSk>:|)\1>® ___®|)\(32_k)>’ (28)
n=32—-k k

where|\Y), ..., |\") are BPS elementary, preonic states
(22 characterized by the spinoks,}, ... \,", respectively.
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C. Moving G-frame

When a BPS statfk) is realized as a solitonic solution of
supergravity, it is characterized tyKilling spinors €;%(x)
or by then=32—k bosonic spinors\ ,'(x) associated with
the n BPS preonic components of the staBPSk). The
Killing spinors and the preonic spinors are orthogonal,

EJa)\ar: 0,

J=1,... k, r=1,...n=32—-k (29

PHYSICAL REVIEW 69, 105010(2004

which is a rigid symmetry of the system of Killing spinors.

This allows us to identifyA® itself with one of the Killing

spinors
G=Sp32R):

€“=(%\%), \":=C*\gz, (33

i=1,...,30.

Without specifying a solution of the constraini32) (or
g lg=1), the moving frame possessesG=GL(32R)
symmetry. One may impose as additional constraintsgdlet(
=1 or det@ ')=1 reducingG to SL(32R),

and, hence, may be completed to obtain bases in the spaces

of spinors with upper and with lower indices by introducing
n= 32—k spinorsw,* andk spinorsu," satisfying

J_

W'\ =85,  wg"u,’=0, (30

Either of these two dual bases definegemeralized moving
G-framedescribed by the nondegenerate matrices

a

: (31

a

(B) sy J -1 Ws
Ja ()\a Uy )v g (B)a
€

where (@)=(s,J)=(1,...,32-k;J=1,...K). Indeed,
9 Y579, =55 is equivalent to Eqgs(30) and (29),
while

5aﬁ:ga(Y)g_l(y)BE)\arWrﬁ+uaJéJ'B (32)

G=SL(32R): delg\’)=1=detg i?).

(39

For instance, in the preonic cage=31 this would imply
w=1/(31)leP1- Fawg b up 3L Such a frame is most
convenient to study the bosonic solutions of CJS supergrav-
ity.
Ill. GEOMETRY OF BPS PREONS AND
v=k/32-SUPERSYMMETRIC SOLUTIONS
A. Generalized connection and movings-frame

The Killing equation(8) for a v=k/32 supersymmetric

solution,

DEJa:dGJa_GJBwBa:O, \]:1, e ,k, (35)
implies the following equations for the other components of

the movingG-frame:

provides the unity decomposition or completeness relation in

terms of these dual bases.

One may consider the dual basisl(ﬁ)“ to be con-
structed from the bosonic spinors @,%") by solving Eq.
(32) or g~ *g=1 [Egs.(30) and(29)]. Alternatively, one may
think of w,* andu,’ as being constructed froey® and\
through a solution of the same constraints. In this sé¢hse
generalized moving @ame(31) is constructed from k Kill-
ing spinors €;“ characterizing the supersymmetries pre-

served by a BPS state (realized as a solution of the super-

gravity equations) and from the=n32—k bosonic spinors

A,  characterizing the BPS preons from which the BPS state

is composed

Although many of the considerations below are genera
we shall be mainly interested here in the cas8s
=SL(32R) andG=Sp(32R).

Clearly, in D=11, the charge conjugation matri@“?
= —CP“ allows us to express the dual bagis! in terms of
the original oneg or vice versaln particular, in the preonic
k=31 case one finds that, a5C*#\ ;=0, \*=C*#\ 4 has
to be expressed as®“=\'¢*, for some coefficients\', |
=1,...,31. In general(as e.g., in CJS supergravity with
nonvanishindg=,), the charge conjugation matrix is not “co-
variantly constant,”DC*=—2wl*f1+0. This relates the
coefficients\' =\ “u,' to the antisymmetri¢nonsymplectig
part of the generalized connectiom!*#1=Cl*?w Pl by
d\'=AN'=2)\ ,0!*Flug! [43]. In OSH(1|32)-related mod-
elswl*f1=0 andA=0, hence\' is constant and we may set
)\'=5'31 using the global transformations ofGL(31R),

DN, =0\, + 0, g =N CAS (36)
Du,’=du,’+ w,Pug’=\,'By, (37)
DWr“:ZdWr“—WrBwﬁa= —ArSWS“—BfGJ“,
(38)
a,f=1,...32;
J=1,...k r,s=1,...(32-k),

where A" and B,' are (32-k)x(32—k) and (32-k) xk

|arbitrary one-form matrices.

To obtain Eqgs.(36), (37), (38) one can take firstly the
derivative D of the orthogonality relation§29), (30). After
using Eq.(35), this results in

J

€°D\, =0, €Du,’=0, (39)

WDN = —Dw\ ', we*Du, = —Dwu,’.

(40

Then, for instance, to derive E@36), one uses the unity
decompositior(32) to expres<D\ " through the contractions
WD\, and €,“DN,": DA, =N, WPDN 5 +u,' €D\ g
The second term vanishes due to E2), while the first one

is not restricted by the consequences of the Killing spinor
equations and may be written as in E@6) in terms of an
arbitrary formAg' =w,*D\ .
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Notice that, using the unity decompositi¢d2), one may DDu,'=R fug =\, (dBl+BYAAS).
also solve formally Eq9.35), (36), (37), (38) with respect to (49)
the generalized connectian,?,

0, P=ASN S WE+B N, ef—(dgg h),p (4D Using the unity decompositioi32), which implies R ,#
“ “ “ “ =R N, WA+ R ,u. P, one finds the following expres-

whereg!? andg; * are defined in Eq(31) and, hence, sion for the generalized curvature:
-1 B: r B I ﬁ
(dgg 7)o" =dh,/w "+ dug e (42) R F=G N Wb+ VBN, (50
For a BPSv=31/32, preonic configuration Eq$36),
(37),(38) read where
DNoi=0\ o+ 0 PN g=AN,, 43
@ =TRa T @an R Al “3 G,S:=(dA—AAA) S, (51)
Du,'=du,'+ 0, fug'=B'\,, (44)
VB!:=dB!—A\B.. 52
DWa:=dWa_Wﬁa)Ba:_AWa_BIE|a (45) r r r S ( )
and contain ¥ 31=232 arbitrary one-form# andB'. For k=31, corresponding to the case of a BPS preon, Eq.

For G=SL(32R) one may choose deff=1, Eq.(34), (50) simplifies to
which implies trdgg 1):=(dgg 1),*=0. Then the
sl(32R)-valued generalized connectian,” (»,*=0) al- R B=dA\ Wh+ (dB'+B' AAN &P (53)
lowing for a v=k/32 supersymmetric configuration is deter- “ * ot
mined by Eq.(41) with A,"=0,

Equations(50) and (53) imply R ,#=\,"(---),? and, thus,
G=SL(32R): A'=0. (46)  clearly solve Eq(10), R z*=0.
The conditionsGCSL(32R) and henceHCSL(32R),

In particular, thesl(32,R)-valued generalized connection R _«=0 (which is always the case for bosonic solutions of

allowing for a BPS preonicy=31/32, configuration, should “free” CJS and type IIB supergravitie§7,11]), imply A,"

have the form =0 in Eq. (50 [see Eq.(46)], while for k=31 Eq. (53
simplifies to
G=SL(32R), v»=31/32:
0,F=B'\ e (dgg 1), 47 HCSL(32R), k=31: R A=dB\,f. (59
in terms of 31 arbitrary one-fornB', =1, .. .,31. Finally, for GCSp(32,R) w!“A1=0, the holonomy group

Assuming a definite form of the generalized connectionsHCsp(32R) RB:=C'R F=R (A and Eq.(54) re-

e.g. the one characterizing bosonic solutions of the “free”yces to Y ’

CJS supergravity equatiort8), one finds that Eq941) be-

come differential equations fde Killing spinors €;* and n

=32—k BPS preonic spinora," once dgg Y)=d\,'w,” HCSp32R), k=31: R, =dBA,\", (59
—u,'de,? [Eq. (42)] is taken into account.

On the other hand, one might reverse the argument andlhere only one arbitrary one-forrB appearsto obtain
ask for the structure of a theory allowing for=k/32 super-  £q (55) one has to keep in mind that = (€%, C*\ ),
symmetric solutions. This question is especially interesting —(i,31), Eq.(33)]. Equations (54),(55) solve Eq. (10) for
for the case of BPS preonic and=30/32 solutions as, for preons when G- SL(32,R),Sp(32,R), respectively
the moment, such solutions are unknown in the stan@ard = gquation (50) with A,'=0 [Eq. (46), and, hence, dA

=11 CJS and =10 type Il supergravities. —A/\A),"=0] provides an explicit expression for the results
of [7,11] on generalized holonomies kisupersymmetric so-
B. Generalized holonomy for BPS preons and fow=k/32 lutions of D=11 and of D=10 type |IB supergravity,
supersymmetric solutions namely HCSL(32—k,R) &RK®>"Y_ For a BPS preon

The simplest application of the moviig-frame construc- k=31, andHCR*! as expressed by E(]54)i( However, our
tion above is to find an explicit form for the general solution €XPlicit expressions for thesI(32—k, R) ¢ R¢?"]-valued
of Eq. (10), which expresses the necessary conditions for thgeneralized curvatureR ., Egs.(50),(54), given in terms
existence ok Killing spinors. As the Killing spinor equation ©f the Killing spinorse,” and bosonic spinors,” character-
(35) implies Eqgs.(36),(37), one may solve instead the self- 1ZINg the BPS preon contents ofva= k/32 BPS state, may be

consistency conditions for these equations, useful in searching for new supersymmetric solutions, in-
cluding preonicy=31/32 ones. Some steps in this direction
DDA, =R Phg =\ (dA-ANA)S, (48)  are taken in the next section.
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IV. ON BPS PREONS IN D=11 CJS SUPERGRAVITY B. Searching for preonic solutions of “free” bosonic
AND BEYOND CJS equations
A. BPS preons in Chern-Simons supergravity We go back now to the question of whether BRS

The first observation is that the generalized curvature al-_ 31/32(preonig solutions exist for the standard CJS super-

lowing for a BPS preonick=31 supersymmetrjcconfigu- gravity [5]. As it was noted in Sec. | A, this problem can be

. . addressed step by step, beginning by studying the existence
:illtpl)%rt]e?tr the case OHCSL(32[) holonomy, Eq.(54), is of preonic solutions for “free” bosonic CJS equations. To

this aim it is useful to observi®d] that these equations may
R/AR,F=0 for HCSL(32R), k=31. (56) be collected in a compact expression for the generalized cur-
vature, Eq(14). The generalized curvature of a BPS preonic
As a result it solves the purely bosonic equations of a Cherneonfiguration satisfies E¢54), and thus it solves the “free”
Simons supergravitysee [14,15], although our statement bosonic CJS supergravity equatiofis}) if
may be related to a more general version of a hypothetical , | apa B
Chern-Simons-like supergravity i,dBe “T%,”=0. (59

R AR, AR, BAR, AR, F=0.  (57)  Actually, Eq. (54) in Eq. (14) gives \ i dB'¢ T2, £=0.
However, as\ ,# 0, this is equivalent to Eq59).

Clearly, the same is true fadCSp(32R)CSL(32]R), Equation(59) contains a summeld=1, . . . ,3lindex and,
whereR is given by Eq.(55). Thus, there exist BPS preonic as a result, it is not easy to handle. It would be much easier
solutions in CS supergravity theories, including to deal with the expressioi?,”i ;R yﬁ which, with Eq.(54)
OSH1[32)-type ones. is equal tol'?,”\,i,dB’e;A. Indeed, [2\),idB’e,#=0,

Note that Eq.(56) follows in general for a preonic con- for instance, would imply [2\),i,dB’=0 which may be
figuration only. For the configurations preservikg30 of  shown to have only trivial solutions. Howevdi?,%i ;R yﬁ
the 32 supersymmetries, the bosonic equations of a CS sy:( in generafor a solution of the “free” bosonic CJS equa-
pergravity, Eqs(57) reduce tosee Eqs(51),(52)] tions [Eq. (14)],

G2/\Gg S3/\Gs */\Gg 55/\G, =0, |
FaayiaRyﬁz—1—2[D|3aﬁ+O(FF)], (60)
Gs2/\Gg,%/\Gs #/\Gs,"/\VB,' =0, (58)

which are not satisfied identically f@," =0. Equationg58) whereD =ef‘Da is thg Lorgntz covariant derivatijeot to be
are satisfied e.g., by configurations wiy' =0, for which ~ confused withD defined in Eqs(8),(9)],
the generalized holonomy group is reduced down to

HCR®k(327k), 'RBQZVBL)\ﬁrqa. FaB:FalazaSaA(FalazasaA)an (61
Thus, only the preonic,y=31/32, configurationglways
solve the Chern-Simons supergravity equatisia. and O(FF) denotes the terms of second Ordeﬁqc203c4.
1 a/T bybob [b11b,bg] [4]1e[4] Zia bybobgb [b1b,bsby] cd
O(FF):WG (Fa 172 3‘"25',;1 1'P2°3 )6b1b2b3[4][4/]F F +§e (Ta 17273 4+35a 17P2P3ba )FCdbleF bsb,
8 . b bybybgbyb
+ 5 € Fabbb,Fbghngl TS 62
|
Equation(54) then implies that for a hypothetical preonic [DE+O(FF)] aﬁ)\B:O, (64)

solution of the “free” bosonic CJS equations, the gauge field
strengthF ,,c4 should be nonvanishingotherwisedB’=0 ) |
andR ,#=0, see aboveand satisfy and equations fodB,

i .
I'2,'\,i,dB'=— DF+O(FF)] Aug'. (65)

i .
Faay)\yiadBJef:—1—2[DFaﬁ+O(FF)]. (63 1

Equation (63) or, equivalently, Egs. (64),(65) are the equa-
Using Eg.(30), Egs.(63) split into a set of restrictions for tions to be satisfied by a CJS preonic configuratidote that
F abeds if a nontrivial solution of the above equations with some
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Fabce® 0 and somelB' #0 is found, one would have then to bosonic p-brane action carries the memory of being the
check in particular that such a solution satisfies8'=0 and  bosonic limit of a supep-brane by still possessing 1/2 of the
DieFabcg=0- spacetime local supersymmetrigks]; this preservation of
On the other hand, if the general solution of the abovdocal supersymmetry reflects thesymmetry of the original
equation turned out to be triviat|B'=0, this would imply  superp-brane action.
R =0 and, thus, a trivial generalized holonomy group, Thus the k-symmetric worldvolume actions for super-
H=1. However, this is the necessary condition for fully su-p-branes have a clear spacetime counterpart: the purely
persymmetrick= 32, solutiong8]. Hence a trivial solution bosonic actions in spacetime possessing a part of local space-
for Egs. (64),(65) would indicate that a solution preserving time supersymmetry of a “free” supergravity theory.
31 supersymmetries possesses al{tBs corresponding to a This fact, although explicitly discussed for the standard,
fully supersymmetric vacuujrand, hence, that there are no »=1/2 superbranes ifl7], is general since it follows from
preonic, v=31/32 solutions of thdree bosonicCJS super- symmetry considerations only and thus it applies to any su-
gravity equationg2), (3), (4), (6), and(7). perbrane, including a hypothetical preonic one. The number
If this happened to be the case, one would have to studgf supersymmetries possessed by this bosonic brane action
the existence of preonic solutions for the CJS supergravitgoincides with the number ok-symmetries of the parent
equations with nontrivial right hand sides. These could besuperp-brane action. Moreover, these supersymmetries are
produced by corrections of higher order in curvatureextracted by a projector which may be identified with the
[20,21,23 (a counterpart of the string’ corrections inD bosonic limit of the k-symmetry projector for the super-
=10[22]) and by the presence of sourdé®m some exotic brane. With this guideline in mind one may simplify, in a
p-branes. first stage, the search for a worldvolume action for a BPS
preon in standard supergravigr in a model minimally ex-
. . tending the standard supergrayityy discussing the bosonic
C. On brane solutions and worldvolume actions limit that such a hypothepticgl acgzn should r?ave.
As far as supersymmetrigbrane solutions of supergrav-
ity equations are concerned, one notices that for most of the D. BPS preons in D’Auria-Fré supergravity
known v=1/2 supersymmetric solutionsy€16/32 in D
=11 andD =10 type Il casesthere also exist worldvolume
actions in the correspondindE 11 or D=10 type I) su-
perspaces possessing iésymmetries, exactly the number y
of supersymmetries preserved by the supergravity solitonic 5,e%F=—2iylagh) (66)
solutions. Thex-symmetry-preserved supersymmetoyre- ¢ ’
spondence was further discussed and extended for the case of

Let us consider a symmetric spin-tensor one-fogftf
zeﬁazdxﬂezﬁ(x) transforming under local supersymmetry

v<1/2 multi-brane solutions ifi28,29. where“ is a fermionic one-form,
In this perspective one may expect that if preonic
=31/32 supersymmetric solutions of the CJS equations with Y= dx“:p;‘j(x), (67)

a source do exist, a worldvolume action possessing 31

x-symmetries should also exist in a curvBd=11 super-  \yhich we may identify with the gravitino. Let us consider for

space. For a moment no such actions are known irst&e-  gimpjicity the worldline actior(cf. [30])

dard D=11 superspace, but they are known in a superspace

enlarged with additional tensorial “central” charge coordi-

nates[30,31. One might expect that the role of these addi- S:f A ( T))\B(T)éaﬁ

tional tensorial coordinates could be taken over by the ten- wt

sorial fields ofD =11 supergravity. But this would imply that

the corresponding action does not exist in the flat standard . R

D =11 superspace as it would require a contribution from the = f d7h (TN ()P (X(7)d XH(7), (68)

above additional field degrees of freed@raplacing the ten-

sorial coordinate ones in the spirit §82]). This lack of a . . . .

clear flatstandardsuperspace limit hampers the way towardsYVhereT pafametrlze§ the worldlin@/" in D=11 spacetime,

a hypothetical worldvolume action for a BPS preon in the€™?:=d7d x*(n)e;f(x(7)) and\ ,(7) is an auxiliary spinor

usual curved =11 superspace. field on the worldlinenV!. The extendedd=1) object coun-
Nevertheless, a shortcut in the search for such an actiot¢rpart of this worldline action is the following action for

may be provided by the recent observatjdi] that the su-  tensionlesgp-branes(cf. [31]):

perfield description of the dynamical supergravity-

superbrane interacting system, described by the sum of the A~

superfield action for supergravity(still unknown for D Sp+1= prH)‘a)‘BP/\eaB

=10,11) and the supgr-brane action, is gauge equivalent to

the much simpler dynamical system described by the sum of

the. spacetime, component gct_lon for supergravity an.d the :f dp+l§pk)\a)\ﬁézﬁak%ﬂl (69)

actionfor the purely bosonic limiof the superp-brane. This p+l
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where p(&) is a p-form auxiliary field, andpX(¢) is the ~OSH1|32)-related “gauge” supergravity model. This might

worldvolume vector density(see [38]) related to p(¢) be regarded as an indirect indication of the existence of BPS

by p(&)=(Up)AEA . Adghp,  (£)=(Upydge  brevits ™ 32 solutons in D'Auria-FreD=11 super-

AE -/\dfjlfjl...jpkpk(f)- The possibility of having preonic actions in the standard
One easily finds that the actid68) possesses all but one CJS supergravity requires additional study.

of the local spacetime supersymmetridd], Eq.(66), 31 for

a,B=1,...,32corresponding td=11. Indeed, perform-

. . 2 . V. DISCUSSION AND OUTLOOK
ing a supersymmetric variatiod, of Eq. (68) assuming

5.\ ,(7)=0, one finds In this paper we have studied the role of the BPS preon
notion[1] in the analysis of supersymmetric solutions»f
— o 5 B =11 supergravity. This notion suggests the mov@frame

0:5=—2 fwll’/j NalT)eTN(7). (70 method, which we propose as a new tool in the search for

supersymmetric solutions & =11 andD = 10 supergravity.
Thus, one sees thal,S=0 for the supersymmetry param- e ysed this method here to make a step towards answering

eters onW" that obey(cf. Eq. (20)] whether the standard CJS supergrayy possesses a solu-
5 ~p B tion preserving 31 supersymmetries, a solution that would
ePNp(1)=0 [e":=8"(X(7))]. (71)  correspond to a BPS preon state. Although this question has

. . not been settled for the CJS supergravity case, we have
Clearly Eq.(71) possesses 31 solutions, which may be €Xshown in our framework that preonie=31/32 solutions do

pressed through worldvolume spinarg'(7) (the worldline  eyist in a Chern-Simons typB = 11 supergravity 14].

counterparts of the Killing spinorsorthogonal tox ,(7), Although the main search for preonic solutions concerns
€% (1) (7)=0, as the “free” bosonic CJS supergravity equations, one should
R R not exclude other possibilities, both inside and outside the
eP=e'(r)egf, 1=1,...31, (720 CJS standard supergravity framework. When, e.g., super-

p-brane sources are included, the Einstein equa@pnand

for some arbitrary' (7). The same is true for the tensionless possibly the gauge field equatiof® and even the Bianchi
p-branes described by the acti¢8). identities (4), acquire r.h.s.’s. In this cadsee Eq.(12)], a

Thus, the actiong68), (69) possess 31 of the 32 local r.h.s. also appears in E(L4) and the situation would have to
spacetime supersymmetriéd6) and, in light of the discus- be reconsidered. Another source of modification of the CJS
sion of the previous section, can be considered as the spacsupergravity equations might be due to “radiative” correc-
time counterparts of a superspace BPS-preonic adtigno-  tions of higher order in curvature. Such modified equations
thetical in the standard superspace but kndy30,3] in  might also allow for preonic solutions not present in the
flat maximally enlarged or tensorial superspaces unmodified ones. If it were found that only the inclusion of

The question that remains to be settled is the meaning ahese higher-order curvature terms allows for preonic BPS
the symmetric spin-tensor one-forfi’ with the local super-  solutions, this would indicate that BPS preons cannot be seen
symmetry transformation rul€66) in D=11 supergravity. in a classical low energy approximation of M theory and,

The contraction o&*# with Iy, hence, that they are intrinsically quantum objects.
a appa The special role of BPS preons in the algebraic classifi-
e"=e"T g, (73)  cation of all the M-theory BPS staté4] allows us to con-

. . ) . . . jecture that they are elementajguarklike) necessary ingre-
m%y_ be identified with theD=11 vielbein. Decomposing gients of any model providing a more complete description
e in the basis of th& =11 Spin(1,10) gamma-matrices, of M theory. In such a framework, if the standard supergrav-
ity did not containv=31/32 solutions, neither in its “free”

e*P=gha (74) . .
form, nor in the presence of a supgibrane source, this
1 1 might just indicate the need for a wider framework for an
— _gareB_ _—_pgabrap effective description of M theory. Such an approach could
3272 21327 include Chern-Simons supergravitigs4] and/or the use of
1 larger, extended superspacésee [32,37 and references
+5|—”Bil"'a5l“§f,.a5' therein, in particular with additional tensorial coordinates

(also relevant in the description of massless higher-spin theo-
, B . . . ries[2,3]). In this perspective our observation that the BPS
one finds thateab also con:zgms the a”t'sym”;‘et“g tensor preonic configurations do solve the bosonic equations of
one-forms  Bi'(x)=dx*B,’(x)  and  Bi'""™(X)  Chern-Simons supergravity models looks interesting.
=dx“Bil'“35(x). Such fields, moreover, with exactly the  Note addedWe mention that it might be interesting to
same supersymmetry transformation rules, are involved itook at the role of vectors and higher order tensors that may
the D=11 supergravity model by D’Auria and Ff&8]. be constructed from the preonic spinarg, in analogy with
Thus the actior(68) can be teated as a worldline action the use of the Killing vector&,= ¢,I'2¢; and higher order
for a BPS preon in the background of the D’Auria-Fre bilinearse I'®  "3se; made in Refs[9,39-41.
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[42] Notice that the tensdE,;, in Eq. (2) is related to the l.h.s. of [44] Notice that when a brane action is considered in a supergravity

the true Einstein equation of CJS supergravify,, by E,p backgroundthe local spacetime supersymmetry is not a gauge
=E,,—[1/(D—2)]7apEcS. symmetry of that action but rather a transformation of the

[43] To see this, one calculatesi\'=D\' :(Dcaﬁ))\ﬁua' background; it becomes a gauge symmetry only when a super-
+ C“B(D)\B)ua' + C“'B)\ﬁ’Dua' and uses Eqg43),(44) to find gravity action is added to the brane one so that supergravity is
d\'=AN'+2) 0l Plug'. dynamical.
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