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Spontaneous breaking of Lorentz invariance
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We describe how a stable effective theory in which particles of the same fermion number attract may
spontaneously break Lorentz invariance by giving a nonzero fermion number density to the v@ndim
therefore dynamically generating a chemical potential jefithis mechanism yields a finite vacuum expecta-
tion vaIue(Zyﬂw), which we consider in the context of proposed models that require such a breaking of
Lorentz invariance in order to yield composite degrees of freedom that act approximately like gauge bosons.
We also make general remarks about how the background source providad/’bw could relate to work on
signals of Lorentz violation in electrodynamics.
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I. INTRODUCTION variant bare Lagrangians where the formation of a conden-

sate of particles of the same fermion number is energetically

Lorentz invariance(Ll), the fundamental symmetry of favorable, leading to a non-Lorentz invariant vacuum expec-
Einstein's special relativity, states that physical results shoulgation value(VEV) <$yu¢> £0.

not change after an experiment has been boosted or rotated. This breaking of LI can be thought of conceptually as the
In recent years, and particularly since the publication of workintroduction of a preferred frame: the rest frame of the fer-
on the possibility of spontaneously breaking LI in bosonicmion number density. If some kind of gauge coupling were
string field theory[1], there has been considerable interest inyq4ed to the theory without destroying this LI breaking, the
the prospect of violating LI. More recent motivations for fermion number density would also be a charge density, and

T o o Lo oS coaven e preleted flame woud be he res frame of  chargt
P g 9 background in which all processes are taking place. This

some have proposed as descriptions of physical space-tim(? i
. ) . allows us to make some very general remarks on the result
(se€[2] and references thergirand in certain supersymmet- ing LLviolati .
g LI-violating phenomenology for electrodynamics and on

ric theories considered by the string commurjig}, to the . wal limits © L gy nt VEV. Most
possibility of explaining puzzling cosmic ray measurementsSXPeNMeNtal imits o our non-Lorentz invariant VEV. Mos
of the work in this area, however, is left for future investiga-

by invoking small departures from IL#] or modifications to
special relativity itself5,6]. It has also been suggested that1oN-
anomalies in certain chiral gauge theories may be traded for
violations of LI andCPT[7].}

Our own interest in the subject began with a recent pro- [l. EMERGENT GAUGE BOSONS
p_osal[g] for addre_ssing the cosmological constant problem In 1963, Bjorken proposed a mechanism for what he
(i.e., how to explain the flatness or near flatness of the Unic_led the “dynamical generation of quantum electrodynam-

verse without qnnaturally flne tuning t_he parameters olf OUE (QED) [10]. His idea was to formulate a theory which
guantum theorigsby reviving an old idea for generating

: e . ; would reproduce the phenomenology of standard QED, with-
composite force-mediating particlgs0]. This sort of mecha- out invoking localU(1) gauge invariance as an axiom. In-

nism depends on the spontaneous breaking of LI. In the fol- d. Biork d Ki ith If-i ing f
lowing section of this paper we shall discuss this idea an&t.ea . Blorken proposed working with a seff-interacting fer-
ion field theory of the form

address some problems related to obtaining the required uk
breaking in the manner that has been proposed.

This leads us to investigate the question of how a reason- — — )
able quantum field theorynight spontaneously break LI. L=g(id —m)p— NPy )°. @
Borrowing from some old theoretical wofk1,12 as well as
from the recent research into color superconducti{/itg—

15], we argue for the existence of theories with Lorentz in-Bjorken then argued that in a theory such as that described
by Eg. (1), composite “photons” could emerge as Goldstone
bosons, resulting from the presence of a condensate that

*Electronic address: jenkins@theory.caltech.edu spontaneously broke Lorentz invariance. .

IThis is far from a thorough account of the rich scientific literature  Bjorken’s idea might not seem attractive today, since a
on Lorentz noninvariance. Extensions of the standard model havi1€ory such as Eq1) is not renormalizable, while the work
been proposed which are meant to capture the low-energy effects 6f 't Hooft and others has demonstrated that a locally gauge
whatever new high-energy physitstring theory, noncommutative invariant theory can always be renormalizgtb]. There
geometry, loop quantum gravity, etanight be introducing viola- would not appear to be, at this stage in our understanding of
tions of LI [8]. fundamental physics, any compelling reason to abandon lo-
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cal gauge invariance as an axiom for writing down interact-corresponding fermion bilinear make that Lagrangian classi-
ing quantum field theoriesFurthermore, the arguments for cally equivalent to Eq(2). In this case the new Lagrangian
the existence of a LI-breaking condensate in theories such agould be of the form

Eqg. (1) have never been solidFor Bjorken's most recent

revisiting of his proposal, in light of the theoretical develop-

i . - _
ments since 1963, s¢&9]). Lr=(n""+ 05 (y,0, = yud ) Y= YA+ Mg+ .
In 2002 Kraus and Tomboulis resurrected Bjorken’s idea
for a different purpose of greater interest to contemporary —Va(A2) =V (hY)+ ..., (3)

theoretical physics: solving the cosmological constant prob-

lem[9]. They proposed what Bjorken might call “dynamical WhereA2EAMAM and h2zhwhw_ The ellipses in Eq(3)

generation of linearized gravity.” In this scenario a compos-correspond to terms with other auxiliary fields associated

ite graviton would emerge as a Goldstone boson from thgith more complicated fermion bilinears that were also omit-

spontaneous breaking of Lorentz invariance in a theory ofg( in Eq.(2).

self-interacting fermions. _ We may then imagine that instead of having a single fer-
_ Being a Goldstong boson, suqh a graviton would be formion species we have one very heavy fermignand one

bidden from developing a potential and the existence of €Xfighter one ¢,. Since Eq.(3) has terms that couple both

act solutions with constant matter fields and a masslesgrmion species to the auxiliary fields, integrating gtwill
graviton would be assured. Then it would no longer be necinen produce kinetic terms fak* andh*”.

essary to fine tune the cosmological constant parameter in |, the case ofA* we can readily see that since it is mini-

order to obtain a flat or nearly flat spacetime, providing amga)ly coupled toy;, the kinetic terms obtained from inte-
p035|_ble solution to a pr(_)blem that plagues all mamstrear@raﬁng out the latter must be gauge invaridptovided a
theories of quantum gravity. gauge invariant cutoff is usgdTo lowest order in derivatives

o In [9]'htheh authors pogsider ferrEions gorl:pled to gaugie'oftA“, we must then get the standard photon Lagrangian
osons that have acquired masses beyond the energy scale of 2 _ :
q y 9y -O%F2, (where F,,=d,A,—d,A,). Since A* was also

interest. Then an effective low energy theory can be obtainepni‘;]

by integrating out those gauge bosons. We expect to obtaigon:?tﬁlilz giﬂ:?lﬁgstgewgzﬁnmg Itggl? Iiizvg’Eg{ low energies,
an effective Lagrangian of the form .

If A* has a nonzero VEV, LI is spontaneously broken,
producing three massless Goldstone bosons, two of which

—. — may be interpreted as photoksee[9] for a discussion of
L=y(id —m)yt n§=:l Nn(gry" )" how the exotic physics of the other extraneous “photon” can
be suppressedThe integrating out ofy; and the assumption
- —i - - an thath#” has a VEV, by similar arguments, yield a low energy
+r121 tn| 5 (Y= Y0¥ +---, (2} approximation to linearized gravity.

Fermion bilinears other than those we have written out
. ) explicitly in Eq. (2) have their own auxiliary fields with their
where we have explicitly written out only two of the power q,yn potentials. If those potentials do not themselves produce
series in fermion bilinears that we would in general expect ta,g\/s for the auxiliary fields, then there would be no further
get from integrating out the gauge bosons. Goldstone bosons, and one would expect, on general
One may then introduce an auxiliary field for each of grqngs, that those extra auxiliary fields would acquire
these fermion bilinears. In this example we shall assign the,asses of the order of the energy-momentum cutoff scale for
label A* to the auxiliary field corresponding wy*#, and  our effective field theory, making them irrelevant at low en-
the labelh*” to the field corresponding tas(i/2)(y,d,  ergies. _ _ o
—y,9,)¢. Itis possible to write a Lagrangian that involves T?]e breaking Ofl lewould be C;UC""“ for this km(ljl th
the auxiliary fields but not their derivatives, so that the alge/Mechanism, not only because we know experimentally that

braic equations of motion relating each auxiliary field to itsPhotons and gravitons are massless or very nearly massless,
but also because Weinberg and Witten have shown that a

Lorentz invariant theory with a Lorentz invariant vacuum
2We do know that in the 1980s Feynman regarded Bjorken's pro@Nd @ Lorentz covariant energy-momentum tensor does not
posal as a serious alternative to postulating local gauge invarianc@dmit @ composite gravitof20]. 3
For enlightening treatments of the principle of gauge invariance and L€t US concentrate on the simpler case of the auxiliary
its historical role in the development of modern physical theoriesfield A*. For the theory described by E@), the equation of

see[17,18. motion for A* is
3In the bargain, this scheme would appear to offer an unorthodox
avenue to a renormalizable quantum theory of linearized gravity, oL’ _
because the fermion self-interactions could be interpreted as coming AT Gy p—V' (A% 2A*=0. (4)
14

from the integrating out, at low energies, of gauge bosons that have

acquired large masses via the Higgs mechanism, so that linearized _

gravity would be the low energy behavior of a renormalizable  Solving for ¢y*¢ in Eq. (4) and substituting into both
theory. Eq. (2) and Eq.(3) we see that the condition for the
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LagrangiansC and £’ to be classically equivalent is a dif- VEV. Let us therefore turn our attention to considering what
ferential equation fo(A?) in terms of the coefficients,: ~ would be required so that one might reasonably expect a
fermion field theory to exhibit the kind of condensation that
~ would give a VEV to a certain fermion bilinear.
V(A2)=2A2[V'(A%)]— D, N22"A V' (A2)]2". (5) If we allowed ourselves to be guided by purely classical
n=1 intuition, it would seem likely that a VEV for a bilinear with

It is suggested ifi9] that for some values of, the re-  derivatives[such asy(i/2)(y,d,~ v,d,)%] might require
sulting potentialV(A2) might have a minimum away from nonstandard kinetic terms in the actibhether or not this

A?2=0, and that this would give the Ll-breaking VEV intuition is correct, we abandon consideration of such bilin-

needed. It seems to us, however, that a minimurv@%?)  €ars here as too complicated. B
away from the origin is not the correct thing to look for in  The simplest fermion bilinear is, of coursgy. Being a

order to obtain LI breaking. The Lagrangian in E8) con- | orentz scalar i)+ 0 will not break LI. This kind of VEV
tains A*’s not just in the potential but also in the “interac- was treated back in 1961 by Nambu and Jona-Lasinio, who
tion” term AMJy"w, which is not in any sense a small per- used it to spontaneously break chiral symmetry in one of the
turbation as it might be, say, in QED. In other words, theearly efforts to develop a theory of the strong nuclear inter-
classical quantity/(A?) is not a useful approximation to the actions, before the advent of quantum chromodynamics
guantum effective potential for the auxiliary field. (QCD) [11]. It might be useful to review the original work of

In fact, regardless of the values of thg, Eq.(5) implies  Nambu and Jona-Lasinio, as it may shed some light on the
that V(A?=0)=0, and also that at any point whevé(A?) study of the possibility of giving VEV’s to other fermion
=0 the potential must be zero. Therefore, the existence of ilinears that are not Lorentz scalars.
classical extremum af?=C=0 would imply thatV(C) In their original paper, Nambu and Jona-Lasinio start
=V(0), andunless the potential is discontinuous some-from a self-interacting massless fermion field theory and pro-
where, this would require that’ (and therefore alsd/) pose that the strong interactions be mediated by pions which
vanish somewhere between 0 a@dand so orad infinitum  appear as Goldstone bosons produced by the spontaneous
Thus the potential/ cannot have a classical minimum away breaking of the chiral symmetry associated with the transfor-
from A2=0, unless the potential has poles or some othefationy+—>exp{ay’)y. This symmetry breaking is produced
discontinuity. by a VEV for the fermion bilineary. In other words,

A similar observation applies to any fermion bilinear for Nambu and Jona-Lasinio originally proposed what, by close
which we might attempt this kind of procedure and thereforeanalogy to Bjorken’s idea, would be the “dynamical genera-
the issue arises as well when dealing with the proposd@]in  tion of the strong interactions>”
for generating the graviton. It is not possible to sidestep this Nambu and Jona-Lasinio start from a nonrenormalizable
difficulty by including other auxiliary fields or other fermion quantum field theory with a four-fermion interaction that re-
bilinears, or even by imagining that we could start, instead okpects chiral symmetry:
from Eq. (2), from a theory with interactions given by an
arbitrary, possibly nonanalytic function of the fermion bilin- — g — s = . 5.2
ear F(bilinear). The problem can be traced to the fact that L=igd =Sy = @y v 9)°]. (7)
the equation of motion of any auxiliary field of this kind will

always be of the form In order to argue for the presence of a chiral symmetry-

breaking condensate in the theory described by &g,
Nambu and Jona-Lasinio borrowed the technique of self-
consistent-field theory from solid state physisge, for in-
stance,[12]). If one writes down a Lagrangian with a free
and an interaction part.=Lq+ £;, ordinarily one would

0= —(bilinean — V' (field?) - 2 field. (6)

The point is that the vanishing of the first derivative of the
potential or the vanishing of the auxiliary field itself will
always, classically, imply that the fermion bilinear is zero. X . .
Classically at least, it would seem that the extrema of thdnen proceed to diagonaliz, and treat; as a perturbation.

potential would correspond to the same physical state as tH8 Self-consistent-field theory one instead rewrites the La-
zeroes of the auxiliary field. grangian asL=(Lq+ L) +(Li— Ls)= Lo+ L], whereLy is

a self-interaction term, either bilinear or quadratic in the
fields, such thal; yields a linear equation of motion. Now
L} is diagonalized and; is treated as a perturbation.

The complications we have discussed that emerge when In order to determine what the form g, is, one requires

one tries to implement LI breaking as proposefidhdo not,  that the perturbationZ/ not produce any additional self-
in retrospect, seem entirely surprising. A VEV for the auxil-

iary field would classically imply a VEV for the correspond-

ing fermion bilinear, and therefore a trick such as rewriting a 4recent theoretical work in cosmology has shown interest in sca-
theory in a form like Eq(3) should not, perhaps, be expected |ar field theories with such nonstandard kinetic terms. See, for in-
to uncover a physically significant phenomenon such as thetance[21-23.

spontaneous breaking of LI for a theory where it was not SHistorically, though, Bjorken was motivated by the earlier work
otherwise apparent that the fermion bilinear in question had af Nambu and Jona-Lasinio.

[1l. NAMBU AND JONA-LASINIO MODEL (REVIEW)
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This equation will always have the trivial solutiom

. - =0, which corresponds to the vanishing of the proposed self-
interaction termZ; . But if
2
. . . . o<—x<1 (11
FIG. 1. Diagrammatic Schwinger-Dyson equation. The double gA?

line represents the primed propagator, which incorporates the self-

energy term. The single line represents the unprimed propagator.

1PI' stands for the sum of one-particle irreducible graphs with thethen there may also be a nontrivial solution to EX0), i.e.,
primed propagator. a nonzerom for which the condition of self-consistency is

met. For a rigorous treatment of the relation between non-

energy effects. The name “self-consistent-field theory“ re_triVial solutions of this self-consistent equation and local ex-

flects the fact that in this techniqu is found by computing ~ trema in the Wilsonian effective potential for the correspond-

a self-energy via a perturbative expansion in fields that aling fermion bilinears, sef24] and the references therein.

ready are subject to that self-energy, and then requiring that In this model(which from now on we shall refer to as

such a perturbative expansion not yield any additional selfNJL), we see that if the interaction between fermions and

energy effects. antifermions is attractive g>0) and strong enough
Nambu and Jona-Lasinio proceed to make the ansatz thh2m*/gA?)<1] it might be energetically favorable to form

for Eq (7) the self-interaction term will be of the forrﬁs a fermion-antifermion condensate. This is reasonable to ex-

pect in this case because the particles have no bare mass and

thus the energy cost of producing them is small. The result-

ina the or (D) =i(B—m-L which corr n ing condensate would haye zero net ch.arge, as w_eII as zero
g the propagato’(p) =i(p—m) -, ch corresponds total momentum and spin. Therefore it must pair a left-

to the Lagrangianl(=(id# —m)¢ that incorporates the handed fermiony, = %(1— %) ¢ with the antiparticle of a

proposed self-energy term. right-handed fermionyg=2(1+ y®) ¢, and vice versa. This
The next step is to apply the self-consistency condition g Ve=z(1* )4,

using the Schwinger-Dyson equation for the propagator: 'S_the mass-term self-interactiod; = —myy=—m(y ¥
+ gy ) that NJL studies.

After QCD became the accepted theory of the strong in-
3'(X—Y)=3(X—Y)+Jd42 Sx-2)2'(0)S'(z—-y), teractions, the ideas behind the NJL mechanism remained
(8)  useful. Theuandd quarks are not masslegsor isu-d flavor
isospin an exact symmeinpbut their bare masses are be-
which is represented diagrammatically in Fig. 1. The primedieved to be quite small compared to their effective masses in
indicate quantities that correspond to a free Lagrandlgn baryons and mesons, so that the formationuaf and dd
that incorporates the self-energy term, whereas the unprimezbndensates represents the spontaneous breaking of an ap-
guantities correspond to the ordinary free Lagrangian proximate chiral symmetry. Interpreting the pidmghich are
ForX’ we will use the approximation shown in Fig. 2, valid fairly light) as the pseudo-Goldstone bosons generated by the
to first order in the coupling constagt spontaneous breaking of the approxim&tg(2);xX SU(2),
After Fourier transforming Eq(8) and summing the left chiral isospin symmetry down to justU(2), proved a fruit-
side as a geometric series, we find that the self-consistendyl line of thought from the point of view of the phenom-

= —m%//. Then, to first order in the coupling constagt
they proceed to compute the fermion self-eneXgyp), us-

condition may be written, in our approximation, as enology of the strong interactidh.
Condition Eq.(11) has a natural interpretation if we think
gmi d*p of the interaction in Eq(7) as mediated by massive gauge
m=%"0=——| 57— - (9 bosons with zero momentum and coupliegFor it to be
2T p—m-+ie

reasonable to neglect boson momentum in the effective

. ) . theory, the masg. of the bosons should bg>A. If €?
If we evaluate the momentum integral by Wick rotation <272 then g=e?/ u?<2m2/A2, which violates Eq.(11).

and regularize its divergence by introducing a Lorentz invari
ant energy-momentum cutaf®<A 2, we find
2m°m

m2 2
W 1—Plog ?'Fl

iy = = &4_ 0(g%)
SFor a treatment of this subject, including a historical note on the

FIG. 2. Diagrammatic equation for the primed self-energy. Weinfluence of the NJL model in the development of QCD, see Chap.
will work to first order in the fermion self-coupling constamt 19, Sec. IV in[25].

“Therefore for chiral symmetry breaking to happen, the cou-
pling e should be quite large, making the renormalizable
theory nonperturbative. This is acceptable because the factor
of 1/u? allows the perturbative calculations we have carried
out in the effective theory Eq(7). This is why the NJL
mechanism is modernly thought of as a model for a phenom-
enon of non-perturbative QCD.

=m . (10
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IV. AN NJL-STYLE ARGUMENT FOR BREAKING LI present and which has opposite signs for fermions and anti-
. fermions.
We have reviewed how NJL formulated a model that ex- The physical picture that emerges is now, hopefully,

hibited a nonzero VEV for the fermion bilinegry. Th_e next  earer a theory with a VEV foayﬂlp is one with a con-
simplest fermion bilinear that we might consideri#g*y;,  densate that has a nonzero fermion number. This means that
which was the one that Bjorken, Kraus, and Tomboulis cononly theories with some form of attractive interaction be-
sidered when they discussed the “dynamical generation ofiveen particles with the same sign in fermion number may
QED.” This particular fermion bilinear is especially interest- be expected to produce such a VEV. The situation is closely
ing because it corresponds to th&1) conserved current, analogous to BCS superconductivif)27], in which a
and also because it is the simplest bilinear with an odd numphonon-mediated attractive interaction between electrons al-
ber of Lorentz tensor indices, so that a non-zero VEV for itlows the presence of a condensate with nonzero electric
would break not only LI but also charg€), charge-parity ~ charge. Note that in the NJL model, the condensate was com-
(CP), and charge-parity-timéCPT) reversal invarianceC pgsed of fermion-antifermio_n pairs, and therefore clearly
andCP may not be symmetries of the Lagrangian, as indeedy°#)=0, which implies(y*)=0. It should now be
they are not in the standard model, but by a celebrated resyfyysically clear why a VEV forry*y would break not only
CPT must be an invariance of any reasonable the@ge || but alsoC, CP, andCPT.
[26] and references therginThis invariance, however, may  There is an easy way to write a theory which will have a
well be spontaneously broken, as it would be by any VEV\Ey for a U(1) conserved current: to couple a massive
with an odd number of Lorentz indices. . photon to such a current via a purely imaginary charge. To

Before proceeding, however, it may be advisable to try tosee this, let us write a Proca Lagrangian for a massive photon
develop some physical intuition about what would be re-fig|d with an external source:
quired for a fermion bilinear likesy* to exhibit a VEV. If
we choose a representation of the gamma matrix algebra and 1, % 5 .

. . — . o L=——-F +—A“—] A" (12

use it to write out (yy*y)? for an arbitrary bispinors, we 4 £ 2 K

may check that ¢y*#)2=0 for the choice of mostly nega-

_ _ _ = _ The equation of motion for the photon field is
tive metric g#’=diag(1-1,—1,—1). That is, yvy*¢ is

timelike. This has an intuitive explanation, based on the ob- 9, Fr=]"—u’A". (13
servation thatyy*y is a conserved fermion-number current _
density. Classically a charge densitynoving with a veloc- At energy scales well below the photon massthe ki-

ity v will produce a currenf*=(p,pv) (in units ofc=1). netic term —F¢ /4 may be neglected with respect to the

s . . 2p2 H
Therefore the relativistic requirement that the charge densit{1@ss termu“A%/2. We may then integrate out the photon at
not move faster than the speed of light in any frame of ref-2ero momentum by solving the equation of motion, ?@),
erence implies that?=0. Considerations of causality make for the photon fieldA* with its conjugate momenta*” set

it natural to expect that something similar would be true oft0 Z€ro, and substituting the result back into the Lagrangian
Jyﬂlp in Eq. (12). The resulting low-energy effective field theory

For any time-like Lorentz vectar* it is possible to find a has the Hamiltonian
Lorentz transformation that maps it to a veatdt* with only .2
one nonvanishing component’®. For a constant current Heﬁective:J_- (14)
densityj#, this means that foj* to be nonzero there must 2u?
be a charge density, which has a rest frame. Therefore we

only expect to see a VEV fOzEy”“iﬂ if our theory somehow ; . . : S
has a vacuum with a nonzero fermion number density. Thgurrent density, since in that case Eid) has its minimum

consequent spontaneous breaking of LI may be seen as tﬁéjﬂzoj BUt.'f we werg to !”na_ke the charge couplln.gz t.o the
introduction of a preferred reference frame: the rest frame oPhoton imaginary(e.g., j*=ieyy*y for e real, thenj< is
the vacuum charge. actually always negativieecall that ¢y y*)? is always posi-

In the literature of finite density quantum field theory andtive] and we get a “potential” with the wrong sign, so that
of color superconductivitysee, for instancd13] and[14]),  the energy can be made arbitrarily low by decreagihglf
the Lagrangians discussed are explicitly non-Lorentz invariwe makej* dynamical by adding to the Lagrangian terms
ant because they contain chemical potential terms of theorresponding to the field that sets up the current, we might

form f- %. This term appears in theories whose groundeXPect, for certain parameters in the theory, that the energy
state has a nonzero fermion number because, by the Pal@ minimized for a finite value of*. .
exclusion principle, new fermions must be added just above By making the charge purely imaginary, our effective
the Fermi surface, i.e., at energies higher than those alreadjeory at energy scales much lower than the photon mass
Occupied by the pre_existing fermionS, while hOK@ﬂ'\ICh will look similar to Eq (7), except that the four-fermion
can be thought of as antifermionshould be made by re- interaction in the effective Lagrangian will be
moving fermions at that Fermi surface. The result is an ene?(yy*)?/2,? (with an overall positive, rather than a nega-
ergy shift that depends on the number of fermions alreadyive, sign. What this means is that fermions are attracting

Nothing interesting happens if the source is a timelike
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At first sight it might appear as if the self-energy in Eq.
_Q_ (18) could not be used to argue for the breaking of LI, be-
&: + cause the shift in the integration variatie>k’ = (k°— f k)

would wipe outf dependence. This, however, is not the case,

FIG. 3. The four-fermion vertex in the self-interacting theory 55 \we will see. We may carry out thoek® integration, for
may be seen as the sum of two photon-mediated interactions with Which we must find the corresponding poles. These are lo-
massive photon that carries zero momentum and is coupled to tr@ated at
fermion via a purely imaginary charge.

=f+ k2 2

fermions and antifermions are attracting antifermions, rather Ko=Tx Vk“+m®. (19
than what we had in NJland in QED: attraction between a From now on, without loss of generality, we will takéo

fermion and an antifermion. Condensation, if it occurs, will be positive. The contour integral which results from closing
here produce a net fermion number, spontaneously breakirthe d° integral of Eq.(18) in the complex plain will vanish

7 =
C CP andCPT' , _ _unlessf<k?+m?, because otherwise both poles in Eq.
Let us analyze this situation again more rigorously using1g) will lie on the same side of the imaginary axis. In light
self-consistent-field theory methods, following Nambu andq the Feynman prescription used for the shifting of the poles
Jona-Lasinio. For this we gon5|der a fermion field with theaway from the real axis, it would then be possible to close
usual free LagrangiaCo=(id —mg)¢ and pose as our the contour at infinity so that there would be no poles in the

self-consistent ansatz: interior. The pole shifting prescription, through its effect on
L the dk® integral, is what introduces an actuatiependence
Ls=—(m—mg)pih— Ty . (15  into the expression for the self-energy.

By the Cauchy integral formula, we have
The corresponding momentum-space propagatorfpr

= Lo+ Ls is, therefore, 3 I22+m2y°+2m

2 VK2 +m?

-9
3(0)= —J d3k
473

S'(k)=i(k—fy°—m)~ 2 (16)
Now let us suppose that the interaction term looks like = 3
PP ><t9(\/k2+m2—f)—§y° , (20)
g J—
Li=5 Iy )2, (17)

where the second term in the right-hand side subtracts the

. ) contribution from closing the contour out at infinity in the
To obtain the Feynman rules corresponding to®@) we  complex plane(note the branch cut in the logarithm that

note that this is what we would obtain in massive QED if Weyesyjts from computing that part of the contour integral ex-

[)ep.lalczc;zd t2he ghargsz)/ |ezand the usual photon propagator plicitly). We will introduce the cutofk’<A? to make the

y ig#?lus, with g=e“/u”. Therefore, to compute the self- integral in Eq.(20) finite 8

energy we will rely on the identity represented in Fig(I8. ' '

QED the second diagram on the right-hand side of Fig. 3

would vanish by Furry’s theorem, but in our case the propa- g

gator in the loop will have a chemical potential term that

breaks theC invariance on which Furry’s theorem depends.
To leading order irg, the self-energy is

Carrying out thedk® integration separately from the spatial inte-
gral is legitimate and useful in light of the form of E@.8), which
does not lend itself naturally to Wick rotation. But the use of a
non-Lorentz invariant regulator may cause concern that any break-
) ing of LI we might arrive at could be an artifact of our choice of
d*k 3(ko_f)7’o+ 3kiy'—2m regulator. An alternative is to dimensionally regulate E2D) by
- — replacingd®k with d9~*k. The resulting equations are more com-
277)4 kg_kz_m2+f2_2fk0+'6a plicated and the dependence on the range of energies where our
(18) non-renormalizable theory is valid is obscured, but the overall ar-
R gument does not change. It is also possible to multiply the integrand
whereo (a function of|k|, f, andm) takes valuest1 so as in Eq. (18) by a cutoff in Minkowski spacef(A2+k2) = 6(A2
Ig poles_: posmvgk poles are shlfted down from the real g2- \2 e must impose the condition thig>k?— A2, yielding an
line, while negative poles are shifted up. additional, rather complicated term which does not affect the logic
of our discussion in this section. It should be pointed out that pre-
vious work on LI breaking has used 3-momentum cutoffs in com-
At one point, Dyson argued that such a theory with attractionputing self-energief30], although in that case there seems to be a
between particles of the same fermion number would be unstablphysical interpretation for such a cutoff which does not apply to the
and used this to suggest that perturbative series in QED might dipresent discussion. The original work of Nambu and Jona-Lasinio
verge after renormalization of the charge and n{@8. We will [11] considers cutoffs in Euclidean 4-momentum and in
address the issue of stability at the end of this section. 3-momentum, arriving in both cases at similar conclusions.

E(O)=2igJ (
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FIG. 4. Plots of the left-hand sidgn gray) and right-hand sidgin black) of equation Eq(25). Define a=g/2w2. For each plot the
parameters aréa) A =100, my=0, «=0.001. (b) A=100, my=15, «=0.001. (c) A=100, my=1200, «=0.001. (d) A=100, my=0,
a=0.002.(e) A=100, my=15, «=0.002.(f) A =200, my=15, «=0.001.

Note that the Heaviside step functiéiVk?+m?2—f) in (2 9 o o -
Eq. (20) is always unity ifm>f, so that there will be nd - ﬁ( —m°) (23
dependence at all in Eq20) unlessm=f. Assuming that
m=<f we have and

f+Vf2—m?

-9 _am A2 m2

o Cr_(f2_ 2 2\3/2.0 3 2_ 2 Myg— M= ——| m°log| ———=| +AVA“+m
3(0) 2772[ (f*—m?)*2y°+ mlog(f + Vf“—m*) o2 A+ JAZEm2

—milog(A + VAZ+m?) + mA VAZ+m?

—mfyf2—m?]. (21)
It is important to bear in mind that Eq&3) and (24) were
As before, we use the Schwinger-Dyson equation(BY.  written under the assumption thi=m. For f<m the f de-
and after summing up the right-hand side as a geometripendence of the self-energy in E(L8) disappears. The
series, we arrive at the self-consistency condition for outrivial, Lorentz invariant solutiorf =0 to the self-consistent
ansatz Eq(15): equations will always be present for amy as should be the

N e

. (24)

case when spontaneous breaking of a symmetry is observed.

mo—m—fy%=—3(0) Equation(23) can be readily solved fdras a function of
m (imposing the condition that be real and positiye and

g [ (2= m?)32,0 the resultingf(m) can be substituted into E¢R4) to yield
= = Y

27 gm f(m) + Vf2(m) —m? Nrca=
my—m= ——| m“log +AVA“+m
f+f2—m? P A+ VAZ+m?

+m°3log

A Az

—f(m)Vf2(m)—m?|. (25)

+mMAVAZ+m2—mfyf2—m?|. (22

Equation(25) cannot be solved algebraically, but we may
study some of its properties graphically. In Fig. 4 we have
Clearly Eqg.(22) will not admit a non-trivial solutionf plotted the left-hand side and the right-hand side of 2§)

#0 unlesgy is positive, which agrees with our intuition that for various values of the parameteyan, andA. As plot(a)
the theory must exhibit attraction between particles of thdllustrates,my=0 impliesm=0, i.e., we cannot dynamically
same fermion number. The self-consistent condition(Z8.  generate both a chemical potential and a mass termnfor
may be separated into two simultaneous equations: =my=0 we have
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FIG. 5. Plots of the left-hand sidén gray) and right-hand sidéin black of equation Eq(25). For all of thema=g/27%=0.01. (a)
A=my=2.(b) A=my=8. (c) A=my=12. (d) A=my=16.

f=m20g. (26) paper we offer an alternative approach that strengthens this
conclusion and that sheds further light on the issue of stabil-

Plot (b) in Fig. 4 shows a 82my<A for which the cor- ity.
respondingm will be significantly less tham,. Plot (c) in
the same figure illustrates that a very langg is needed V. CONSEQUENCES FOR EMERGENT PHOTONS
beforem>m,, but such solutions are not physically mean-
ingful becausam, itself is already well beyond the energy
scale for which our effective theory is supposed to hold. By
comparing plot(b) to plot (e) we may see the effect of in- L=¢(id —my) Y+ g(Ey“lJ/)z (29)
creasingg for a givenmg and A. A comparison of plotgb) 2
and (f) should illustrate the effect of increasing with the _
other parameters fixed. is equivalent to

The plots in Fig. 5 illustrate the progression, as the pa-
rameterA is increased for fixedr, from an unstable theory . .
in which bare masses), on the order ofA are mapped to L1=y(id —A=mo)y—
m>A, to a theory that maps such bare massemtoA.

Such an analysis of Eq25) reveals that the condition for  since we argued that E¢29) may spontaneously break
this mass stability is LI by giving a finite (¢y*4), we conclude thaA* in Eq.
(30) would also have a finite VEV, since, by the algebraic
equation of motion,

The theory

A2

29" (30)

71_2
<—<
0 oA ? 1 (27 B

A= —gyy"y. (31)

which is reminiscent of the condition E(L1) for chiral sym-
metry breaking in the NJL modééxcept that now the inter- This interpretation agrees with the observation that Eq.
action has the opposite sigrCombining Eq.(27) with Eq.  (30) has a vector boson field whose mass term carries the
(26) (which was exact fom, but may serve approximately wrong sign ifg>0, indicating that the zero-field state is not

for my smal) we arrive at the requirement a good vacuum. To find the correct vacuum for the theory we
must carry out the path integral over the fermion field to
0<f2< A2 (29 obtain the effective actiod’[A], and then minimize that

quantity. The fieldA* is minimally coupled taf, so that the

which would surely have to hold if our theory were stable.computation should proceed as in QED. By the Ward identity

Indeed, we may interpret E428) as saying that if we pick We do not expect a correction to the mass termAér as

physically good parameterg, m, and A, we will have a long as an adequate rggulato.r is used. But we do expect to

stable theory with finite chemical potentfalThe parameters get terms in the effective action that go AS and higher

for plots (a), (b), (d), (€), and(f) in Fig. 4 all give examples €ven powers of the auxiliary field. _

of such stable theories. As in NJL, the good parameters in- Since we have reason to believe that QED is stable for

volve g~ 2 Jarge with respect ta\, suggesting that Eq17) any value of the charge it therefore seems logical to expect

should be a low-energy approximation to a nonperturbativdhat the effective action foA* in Eq. (30) gives it a finite

interaction of a full renormalizable theory that allows attrac-time-like VEV, which would imply a finite VEV forgy* ¢ in

tion between particles of the same fermion number sign. the theory of Eq(29). We argued in the previous section that
The issue of how the form of the self-consistent equationgy must be large for the theory described by E2P) to be

will depend on the choice of regulator for the integral in Eq.stable. This too seems natural in light of E§0), because a

(18) is not an entirely straightforward matter. But it seems tolarge g makes theA? term small, so that the instability cre-

be a solid conclusion that, for positive fermion self-couplingated by it may be easily controlled by the interaction with the

g, the solutions to such self-consistent equations show th&ermions, yielding a VEV forA* that lies within the energy

presence of Ll-breaking vacua. In the next section of thigange of the effective theory.
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Armed with Eq.(30) it would seem possible to carry out diagrams computed with our modified photon propagator
the program proposed by Bjorken, and by Kraus and Tomwould produce results that depend strongly on what we took
boulis, in order to arrive at an approximation of QED in for a regulator. In fact the mass is physical and analogous to
which the photons are composite Goldstone bosons. It ithe effective photon mass first described by the London
conceivable that a complicated theory of self-interacting ferbrothers in their theory of the electromagnetic behavior of
mions, perhaps one with non-standard kinetic terms, mighsuperconductorg31]. [Using the language of particle phys-

similarly yield a VEV for 4(i/2)(y,d,— v,d,) ¥, allowing  ics we may say that, in the presence dfé1) gauge field,
the project of dynamically generating linearized gravity to gothe VEV {sy*#) spontaneously breaks the gauge invariance

forward. We leave this for future investigation. and gives a mass to the boson, as in the Higgs mechanism.
Photons in a superconductor propagate through a constant

VI. PHENOMENOLOGY OF LORENTZ VIOLATION electromagnetic source. In a simplified picture, we may think

BY A BACKGROUND SOURCE of it as a current density set up by the motion of charge

carriers of massn and chargee, moving with a velocityu.

A separate line of thought that might be pursued from thi LS ;
work concerns a phenomenology of Lorentz violation inSThe proper charge density jg. The proper velocity of the

- . _ it 2 .
electrodynamics with a background source. That is, we migh?Darge carmers ISy = (1,U)/Mv}— u®. The source is then
imagine that the fermions of the universe have some interad- ~ Po?” :fPﬁ)p /hm’ wherep” is the Clasf][caklme;ﬂgy mo-
tion that plays the role of Eq17) in giving a VEV to ¢y*, mentum of the charge carriers. We may thin Ndpo as

. " ) : deriving from the solutions to the parameters in a self-
and that in addition they haveua(l).gauge coupllngat this .{:onsistent equation such as we had in &t).
stage we have abandoned the project of producing composite

; X . The canonical energy momentuR¥ of the system is
photons. Then theU(1) gauge field may interact with a PA=mph+eAl=mi*/po+eAr. As is discussed in the su-

charged packgrpund an.d we would be breaI.<|ng Ll in elec, erconductivity literaturésee, for instance, Chap. 8[i82]),
trodynamics by introducing a preferred frame: the rest fram . :
he superconducting state has zero canonical energy momen-

of the background source. . .
The possibility of a vacuum that breaks LI and has non-tum’ which leads to the London equation

trivial optical properties has already been investigated in
[29,30. This work, however, deals with significantly more jh=— —A*, (35)
complicated models, both in terms of the interactions that m

spontaneously break LI and of the optical properties of the, . o . —— . .
resulting vacuum. To obtain a phenomenology for our owr$NIth this j* inserted into the right-hand side ef A=

. . . the wave equation for the photon field in the Lorenz gauge
simpler proposal, we consider a free photon Lagrangian o\(Eve find that we have a solution to the wave equation of a

the form massiveA* with no source and a mags>=epq/m:
1
LB — —F2 —j A¥, 32 e
° 4w du (32 azA”Jr—riOAM:O. (36)

wherej“=e(yy*), thought of as an external source. The

corresponding propagator for the free photon is If we solve forA* in Eq. (35) and substitute this back into

Eq. (33), we get that
(T{A*(X)A"(Y)}) =DE"(Xx=y) +(A*(x)) (A" (Y))}, 2
(39 (TIAX(OA(y)}) = DE (x—y)+ ——j#j*. (37
where D#”(x—vy) is the connected photon propagator and €l

(A#(x)); is the expectation value d&* in the presence of  \gtice that ifj“(x) is not constant, then Fourier transfor-

the external §l?urce. ) mation of the second term in E@37) will not yield, in
If we takej* constant and naively attempt to calculate theFeynman diagram vertices, the usual energy-momentum con-

i i Mg - . . ! . .
classical expectation value @ in the presence of & con- gering delta function. Therefore, presumed small violations
stant source by integrating the Green function for electrodyz energy or momentum conservation in electromagnetic

namics, we will get a volume divergence. We may attempt 1, esses could conceivably be parametrized by the space-
regulate this volume divergence by introducing a photon; .« variation of the background soure.

massy, which gives the result With Eq. (37) and a rule for external massive photon legs,
- one may then go ahead and calculate the amplitude for vari-
(AH(X)): :1__ (34) ous electromagnetic processes with this modified photon
J L propagator, and parametrize supposed observed violations of

LI (see[34-36) by j*. If we can make an estimate of the
(It is trivial to check that this is a solution to?A*+ u2A*
=j*, the wave equation for the massive photon field with &
source). This is not satisfactory because the disconnected °This line of thought could connect to work on LI violation from
term in Eq.(33) will be proportional tox* and Feynman variable couplings as discussed[B8].
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size of the mass of the background charges, experimental Abelian gauge theories such as QCD, which allows bound
limits on the photon mass<(2x10 eV according to states with nonzero baryon numheand(c) that it produces

[37]) will provide a limit on the VEV ofyy*y, in light of ~ something that could perhaps interest those who study the

Eq. (35). phenomenology of Lorentz violation in electrodynamics: the
breaking of LI by introducing a background source with its
VIl. OTHER POSSIBLE CONSEQUENCES own rest frame.
OF THIS MECHANISM All of these remain somewhat problematic beca@®ur

_ work applies directly not to the more interesting case of gen-
There are other consequences of a VE#/"“¢)#0 on  erating emergent gravitons, but only to photdi so far we
which we may speculate. Such a background may have co$myve not been able to produce models that spontaneously
mological effects, a line c.)f.thought yvhich might connect, for hreak LI that are significantly more natural than ER9),
instance, with(38]. Also, it is conceivable that such a VEV \yhich is a nonrenormalizable theory in which the fermion
might have some relation to the problem of baryogenes'sself-coupling has the opposite sign to what is obtained by

since it gives the background finite fermion number andinte : :
R . grating out a heavy(1) gauge bosoi and (c) it re-
spontaneously breakSPT, a violation which can ease the mains to be seen whether a phenomenology of electrody-

Sakharov condition of thermodynamical nonequilibrium namics with a background source is of any interest to the

[39]. ffort of explaining the supposed indications of Lorentz vio-

It has recently been suggested that the standard mod ton i . dat d oth s Th
might be formulated without a Higgs scalar field, by intro- ation In cosmic ray data and othér measurements. ihese are

ducing instead fermion self-interactions which do not destroy?!l réas that would need to be explored in order to make
the renormalizability of the theory if there are nonzero UV More concrete and useful the ideas presented here.
fixed points under the renormalization group operafibd.
That work, published after the first manuscript of the present
paper had appeared in the pre-print archive, might well relate ACKNOWLEDGMENTS
to the mechanism we have described, particularly in light of
what was discussed in the previous sections of this paper.  The author would like to thank his advisor, M. B. Wise,
All these tentative ideas are left for possible consideratiorfor his guidance, and P. Kraus, J. D. Bjorken, J. Jaeckel, H.
in the future. Ooguri, K. Sigurdson, and D. O'Connell for useful ex-
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We have presented a stable effective theory in which ) . . e .
chemical potential term is dynamically generated, thus sponwas financially supported in part by the California Institute

taneously breaking Llas well asC, CP, andCPT). The main of Technology.

reasons why this theory might be interesting are the follow-

ing: (a) that it might serve as the starting point for models

with emergent gauge bosond) that it could conceivably  %Recent work has shown interest in the possibility of introducing
point to LI breaking in other more natural theories that sharégermion self-couplings that respect nonperturbative renormalizabil-
its fundamental attribute: attraction between particles of thety [40]. This is possible in the presence of nonzero UV fixed points
same fermion number sigfsomething that is seen in non- of the renormalization group.
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