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Quantum effects of a massive 3-form coupled to a Dirac field
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The computation of the quantum vacuum pressure must take into account the contribution of zero-point
oscillations of a rank-three gauge fieldAmnr . This result was established in a previous paper where we
calculated both the Casimir pressure within a region of vacuum simulating a hadronic bag and the Wilson
factor for the three-index potential associated with the boundary of the bag. The resulting ‘‘volume law’’
satisfied by the Wilson loop is consistent with the basic confining requirement that the static interquark
potential increases with the distance between two test charges. As a sequel to that paper, we consider here the
coupling ofAmnr to the generic current of a matter field, later identified with the spin density current of a Dirac
field. In fact, one of the objectives of this paper is to investigate the impact of the quantum fluctuations ofAmnr

on the effective dynamics of the spinor field. The consistency of the field equations, even at the classical level,
requires the introduction of a mass term forAmnr . In this case, the Casimir vacuum pressure includes a
contribution that is explicitly dependent on the mass ofAmnr and leads us to conclude that the mass term plays
the same role as the infrared cutoff needed to regularize the finite volume partition functional previously
calculated in the massless case. Remarkably, even in the presence of a mass term,Amnr contains a mixture of
massless and massive spin-0 fields so that the resulting equation is still gauge invariant. This is yet another
peculiar, but physically relevant property ofAmnr since it is reflected in the effective dynamics of the spinor
fields and confirms the confining property ofAmnr already expected from the earlier calculation of the Wilson
loop.

DOI: 10.1103/PhysRevD.69.105005 PACS number~s!: 11.15.2q, 42.50.Lc
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I. INTRODUCTION

This is the third in a series of papers devoted to an
depth study of the classical and quantum properties o
rank-three gauge formAmnr in four spacetime dimension
@1,2#. In the preceding paper, hereafter referred to as II@2#,
we calculated the contribution to the vacuum pressure
Casimir energy density, due to the quantum fluctuations
masslessantisymmetric tensor gauge fieldAmnr with an as-
sociated field strength

Flmnr5] [lAmnr] ~1!

which represents, classically, a nonvanishing constant b
ground field.

Our motivation for investigating the quantum properti
of the generalized Maxwell field~1! was discussed in II.
Here, we simply recall that theF field may be related to two
central issues in modern theoretical physics, namely,~i! the
problem of dark matter or energy in the Universe via t
cosmological constant@1,3,4# and ~ii ! the outstanding prob
lem of color confinement in QCD via the ‘‘bag constan
@5,6#. Both constants, cosmological and hadronic, can be
fectively described by theAmnr field.

Apart from these physical considerations, theF field is
intriguing because of its deceptive simplicity. Here we ha
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essentially a ‘‘constant’’ disguised as a gauge field, a sit
tion all too familiar from the study of ‘‘electrodynamics’’ in
two spacetime dimensions@7#. In actual fact,a study of Amnr

is a study of the quantum vacuumand some caution shoul
be exercised before dismissing it. Thus, a consistent quan
formulation of this constant gauge field requires a modifi
tion of the ‘‘sum over histories approach’’ in the sense th
the path integral must take into account the whole family
constant field configurations having support only over
spacetime region with a finite volumeV

E @DF#d@]lFlmnr#expS 2
1

234!EV
d4xFlmnrFlmnrD

}E
2`

`

d f expS 2
f 2

2
VD ~2!

wheref is an arbitrary constant labeling each classical so
tion of the free field equations

]lFlmnr50. ~3!

While the generalized Maxwell field~1! propagates no
physical quanta, it gives rise to a static effect, namely
Casimir vacuum pressure that is inversely proportional to
volume of quantizationV. This result was confirmed by a
explicit calculation of the vacuum expectation value of t
energy-momentum tensor associated with theF field
©2004 The American Physical Society05-1
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^Tmn&ug5d5 K 1

3!
FmrstFn

rst2
1

234!
dmnFrstlFrstlL

5dmnS r01
1

2VD . ~4!

In the above expression,r0 represents a classical contrib
tion to the vacuum energy and plays the role of an infra
cutoff that is necessary in order to regularize the large v
ume behavior of the finite volume partition functionZ(V)
that was explicitly derived in II.

With hindsight, we recognize that the role of the infrar
cutoff r0 may be played by a mass term in the Lagrang
for the F field. In the first order formalism this Lagrangia
reads

L05
1

234!
FrstlFrstl2

1

4!
Flmnr] [lAmnr]

2
mA

2

233!
AmnrAmnr . ~5!

In spite of its unusual appearance, the above expression
Proca-type Lagrangian that describes a massive spin-0
@8#, with some qualifications. Indeed, the field equations

Flmnr5] [lAmnr] , ~6!

]lFlmnr2mA
2Amnr50. ~7!

From Eq.~7! follows the constraint equation

]lAlmn50 ~8!

due to the antisymmetry ofFlmnr . Substituting Eqs.~6! and
~8! into Eq. ~7! we arrive at the Klein-Gordon equation

~2]21mA
2 !Almn50. ~9!

On the other hand, the constraint~8! implies that

Almn5
1

mA
elmnr]rf, ~10!

so that the scalar fieldf satisfies the equation

~2]21mA
2 !~2]2!f50. ~11!

Several observations are in order here. First, it should
noted that in the massless case the Maxwell field stren
possesses no physical degrees of freedom in view of its
variance under the tensor gauge transformation

dAmnr5] [mlnr] . ~12!

In this connection, it is also worth observing that the Pro
equation forAmnr leads to a gauge invariant equation in sp
of the presence of a mass term. This is implicit in the form
Eq. ~11! due to the presence of the extra d’Alembertian. A
ternatively, in terms of the dual field
10500
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* Am[
1

3!
emnrsAnrs5

1

mA
]mf, ~13!

it follows from Eq. ~9! that

~2]21mA
2 !]m* Am50 ~14!

which is invariant under the dual gauge transformation

d * Am5
1

3!
emnrs] [nlrs] . ~15!

The advantage of using the first order formalism in t
path integral method as a means of getting around
lengthy Fadeev-Popov procedure@9# necessary to eliminate
those spurious degrees of freedom in the massless case
discussed in II. We note, incidentally, that the presence of
extra D’ Alambertian in the massive case may be constr
as further evidence of the confining properties of theAmnr

field already expected from the earlier calculation of the W
son loop@2#.

A general solution of the field equations, in the first ord
formulation, can be obtained after combining Eqs.~7! and
~10! into the single equation

]lFlmnr5mAemnrs]sf. ~16!

In Eq. ~16! the mass term plays the role of a source term
the Maxwell field. Accordingly, a formal expression fo
Flmnr is as follows:

Flmnr5elmnr f 2mA] [l
1

2]2
emnr] t]tf ~17!

wheref represents an arbitrary~constant! solution of the as-
sociated homogeneous equation. It is precisely this cons
background fieldf that gives rise to the Casimir effect tha
we have investigated in II and summarized at the beginn
of this Introduction.

Against this background, the purpose of this paper is tw
fold. First, we wish to investigate the contribution to th
vacuum pressure due to the quantum fluctuations of the m
sive three-index fieldAmnr . Our second objective is to in
vestigate the effective theory of a spinor field confined to
volume of quantization under the vacuum pressure gener
by the zero-point oscillations ofAmnr .

As anticipated earlier, we find the same volume dep
dence of the vacuum pressure as in the massless case, p
extra contribution that depends explicitly on the mass
Amnr and plays the same role of the phenomenological
rameterr0 reported in Eq.~4!. These results are obtained
Sec. II.

Section III is devoted to the calculation of the finite vo
ume effective action of a spinor field. Our motivation is th
the gauge invariance of theAmnr field in the massless cas
requires that its classical matter counterpart be given by
three-dimensional world history of a relativistic membran
At the quantum level this coupling may be naturally realiz
through the spin-density current of a Dirac field. Our over
5-2



v

ld
re
um

nt
fie
ia
s

ol
a

on

n

n
th

la

to

a

by
of
n

-

-

ro-
he
te-
sat-

ary

c-

q.
a

QUANTUM EFFECTS OF A MASSIVE 3-FORM COUPLED . . . PHYSICAL REVIEW D69, 105005 ~2004!
approach is nonperturbative to the extent that we sum o
all possible configurations ofAmnr in order to determine its
quantum effects on the effective dynamics of the spinor fie
Section IV concludes the paper with a summary of our
sults and an outlook of further research into the quant
properties of theAmnr field.

II. VACUUM FLUCTUATIONS OF THE MASSIVE Aµnr

FIELD

We have seen in the Introduction that there is a disco
nuity between the massless and massive case in the
equation forAmnr . In the massless case, there are no rad
tive degrees of freedom and the field strength describe
non-vanishing constant background field within a finite v
ume. There are, however, quantum vacuum fluctuations
sociated even with a constant gauge field and the corresp
ing vacuum energy/pressure is explicitly given by Eq.~4!
that was derived in II. In the massive case, on the other ha
there are physical quanta of spin-0 associated withAmnr . It
seems reasonable, therefore, to expect an additional co
bution to the Casimir energy density/pressure related to
mass ofAmnr . That this is the case can be seen by calcu
ing the finite volume partition functional

Z~V!5E @DF#@DA#d@]mAmnr#

3expS 2E d4xF 1

234!
FrstlFrstl

2
1

4!
Flmnr] [lAmnr]2

mA
2

233!
AmnrAmnrG D .

~18!

Note that the expression~18! explicitly takes into account the
constraint equation~8!.

Let us start the computation ofZ(V) from theA integra-
tion. Taking into account Eq.~10!, which is equivalent to the
constraint~8!, we find

Z~V!5E @DF#@Df#expS 2E d4xF 1

234!
FrstlFrstl

1
1

3!
~]lFlmnr!emnrs]sf2

mA
2

2
f2G D . ~19!

The form of Eq.~19! suggests that it may be convenient
split the F-field in the sum of two partsF̂lmnr and F̃lmnr

such that

Flmnr5F̂lmnr1F̃lmnr ~20!

]lF̂lmnr50, ~21!

]lF̃lmnrÞ0[hmnr, ]mhmnr50. ~22!

Accordingly, the functional integration overF is factor-
ized into an integration over divergence free paths times
10500
er

.
-

i-
ld
-
a

-
s-
d-

d,

tri-
e

t-

n

integration over the remaining histories parametrized
hmnr. The latter integration is restricted to the subspace
divergence freeh configurations by the consistency conditio
~22!

@DF#5@DF̂#d@]lF̂lmnr#@DF̃#@Dh#d@]lF̃lmnr

2hmnr#d@]mhmnr#. ~23!

Furthermore, Eq.~21! implies that the corresponding func
tional measure in Eq.~23! must involve only constant field
configurations, namely, arbitrary constant solutionsf of Eq.
~21! with dimensions@ f #5mass2,

@DF̂#d@]lF̂lmnr#}d f@DF̂#d@ F̂lmnr2 f elmnr#. ~24!

Therefore, integrating overF̂ means summing over all con
stantF̂-field configurations that satisfy the constraint~21!. It
seems worth observing, on the technical side, that this p
cedure of integration is identical to that introduced by t
authors in the case of a free point particle in which the in
gration over the momentum trajectories is constrained to
isfy the classical equations of motionqi̇(t)50 @10#. In both
cases, the functional integration is reduced to an ordin
integration, namely,@Dq#d@ q̇i(t)#→d3q/(2p)3. However,
by extracting an ordinary differentiald f out of the dimen-
sionless functional measure@DF# we have to rescale the
sum against an arbitrarily fixed standard measuremF

2 with
dimensions of a mass squared.

Taking all of the above into account, the partition fun
tional becomes

Z~V!5
1

mF
2E

2`

`

d f expS 2
f 2

2
VD E @Df#

3@Dhmnr#d@]mhmnr#exp~2S@hmnr,f#! ~25!

S@hmnr,f#5E d4xF2
1

233!
hmnr

1

2]2
hmnr

1
1

4!
felmnr] [lhmnr]2

mA
2

2
~]f!2G . ~26!

Sincehmnr is divergenceless by definition, as seen in E
~22!, our next step is to rewrite it as the Hodge dual of
longitudinal four-vector:

hmnr5emnrs]sj. ~27!

Then, integrating overf andj gives
5-3
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Z~V!5S 2p

VmF
4 D 1/2E @Df#@Dj#

3expS 2E d4xF1

2
]mj

1

2]2
]mj1

mA
2

2
~]2j!~]f!2G D

5S 2p

VmF
4 D 1/2E @Df#

3expS 2E d4xF1

2
f~2]21mA

2 !~2]2!fG D . ~28!

Note that this round of calculations has led us to a type
scalar field equation in the expression~28! that is precisely
of the form given in Eq.~11! discussed in the Introduction
Note, in particular, the characteristic presence of the dou
d’Alembertian that we have linked to the presence of a ga
invariant mass term. The remaining integration overf is
Gaussian and leads to the formal result

Z~V![S 2p

VmF
4 D 1/2

exp@2W~V!#

5S 2p

VmF
4 D 1/2

@det~2]2!~2]21mA
2 !#21/2.

~29!

In order to calculate the above determinant in clos
form, the usual procedure is to perform the calculation in
large volume limit, namely,VmA

4@1. In this limit, the spec-
trum of the operator2]21mA

2 can be treated as a continuu
so that the sum over the eigenvalues can be approximate
the following integral:

W~V!5
1

2
VE d4k

~2p!4
@ ln~k21mA

2 !1 ln k2#

52
1

2
VE d4k

~2p!4E0

`dt

t
$exp@2t~k21mA

2 !#

1exp~2tk2!%. ~30!

Let us consider first the mass dependent term. We will
at the end of this calculation that the finite part contributi
to W(V) is actually proportional tomA

4 . Anticipating this
result we drop altogether the contribution coming from lnk2

in the above expression. The expression~30! is divergent in
the limit t→0, i.e., in the short-distance regime. Therefore
is convenient to use the proper time regularization proced
to cast Eq.~30! in the following form:

We~V!52
1

2

1

~2p!2
Vm22eE

0

` dt

t31e
exp~2tmA

2 !,

~31!
10500
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where we have introduced a mass parameterm so thatW is a
dimensional. By rescaling the proper timex[tmA

2 , we ob-
tain

We~V!52
1

2

1

~2p!2
VmA

4S m2

mA
2 D 2eE

0

`

dxx232eexp~2x!

52
1

2

1

~2p!2
VmA

4S m2

mA
2 D 2e

G~222e! ~32!

where

G~222e!52
1

e~11e!~21e!
G~11e! ~33!

'2
1

2e F12S g1
3

2D e1 . . . G
~34!

g[2G8~0!5 Euler constant
~35!

and the expression in Eq.~34! refers to the limite→0. From
here we isolate the pole singularity from the convergent p
of the integral as follows:

We~V![W`1WReg. ~36!

W`[
1

4e

1

~2p!2
VmA

4 ~37!

WReg.[2
1

4

1

~2p!2
VmA

4F lnS m2

mA
2 D 1g1

3

2G . ~38!

Then, in the minimal subtraction scheme we obtain

ln ZReg.52
1

2
ln

VmA
4

2p
2

1

4

1

~2p!2
VmA

4F lnS mA
2

m2 D 2g2
3

2G .

~39!

With this result in hand we are finally able to calculate t
vacuum pressure as follows:

p[2
]

]V
ln ZReg.5

1

2V
1

1

4

1

~2p!2
mA

4F lnS mA
2

m2 D 2g2
3

2G .

~40!

This result should be compared with Eq.~4! in the Intro-
duction. Equation~4! represents the outcome of our calcul
tion in the massless case discussed in II. The first term in
~40! represents the Casimir contribution which dominates
small volumes and agrees with the previous result for
massless case. The second term represents a new con
tion that dominates in the large volume limit and correspon
5-4
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to the termr0 that appears in Eq.~4!. This comparison gives
an explicit expression forr0 in terms of theAmnr massmA
and regulator massm.

III. THE INTERACTING CASE

In the preceding paper, II, we have calculated the Wils
loop for the three-index potential associated with a bag w
a boundary represented by the three-dimensional world
tory of a closed spherical membrane. From the Wilson lo
we derived the static potential between two opposite po
on the surface of the bag and found it proportional to
volume enclosed by the surface. This ‘‘volume law’’ seem
natural extension of the area law found in the more conv
tional case of quantum chromodynamic strings and is con
tent with the basic underlying idea of confinement that
requires an infinite amount of energy to separate the
points @11#.

It is against this background computation that we wish
consider the coupling ofAmnr to a currentJmnr that is later
identified with the spin-density current of a Dirac fiel
Mathematically, this new situation amounts to taking as
new action

S5E d4xF 1

234!
FrstlFrstl2

1

4!
Flmnr] [lAmnr]

2
mA

2

233!
AmnrAmnr2

k

3!
AmnrJmnrG ~41!

from which we find the field equations

Flmnr5] [lAmnr] , ~42!

]lFlmnr2mA
2Amnr5kJmnr. ~43!

Equation~43! was studied in I where the introduction of
mass term was required by the consistency of the field eq
tions. As a matter of fact, without a mass term Eq.~43! is
inconsistent as a consequence of the antisymmetry ofFlmnr

unless the current on the right side is divergence free. T
couplingAmnr to a spinor field requires, in general, the pre
ence of a mass term. From Eq.~43! follows the new con-
straint equation

]lAlmn52
k

mA
2

]mJmnr[2
k

mA
2

j nr ~44!

where we have definedj nr as the divergence ofJmnr. A
formal solution of the constraint Eq.~44! is

Almn5
1

mA
elmnr]rf2

k

mA
2

] [l
1

]2
j mn] . ~45!

Substituting Eq.~45! into Eq.~43!, we arrive at the following
field equation:

]lFlmnr2mAemnrs]sf5kS Jmnr2] [m
1

]2
j nr] D . ~46!
10500
n
h
s-
p
ts
e
a
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a
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Therefore, in analogy to the free field case, Eq.~17!, a ge-
neric solution of Eq.~46! can be expressed as follows:

Flmnr5elmnr f 1mA] [l
1

]2
emnr] t]tf

1kS Jmnr2] [m
1

]2
j nr] D

[elmnr f 1mA] [l
1

]2
emnr] t]tf1k Ĵmnr.

~47!

Up until now, the nature of the three index current in t
above expressions has not been specified. In our prev
papers, both I and II,Jmnr was identified with the classica
current associated with the world history of a relativis
membrane. Presently, as a stepping stone toward a forthc
ing discussion of the quantum chromodynamic case, i
instructive to identifyJmnr with the spin-density current of a
Dirac field. As a matter of fact, as anticipated in the Intr
duction,one of the main purposes of this paper is to det

mine the form of the effective actionG@c̄,c# for a Dirac field
under the influence of the quantum vacuum fluctuations
Amnr .

In the massless case, considered in II, this same objec
was achieved by an explicit calculation of the Wilson fac
defined by

W@J#5 K expS 2
k

3!E d4xAmnrJmnrD L
5

Z@J#

Z@0#

[exp ~2G@J# ! ~48!

where

Jmnr5E
]B

d4)@x2Y#dym`dyn`dyr ~49!

represents the classical current of a relativistic test bub
Presently we wish to undertake the same calculation in
full quantum case in which the current~49! is replaced by the
spin density current of a spinor field in the backgrou
vacuum that we have discussed in the previous section

Jmnr→Smnr[c̄gmgngrc. ~50!

Mathematically, our task is to integrate the partition fun
tional
5-5
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Z@S,V#5E @DF#@DA#d@mA
2]mAmnr2k]mSmnr#

3expS 2E d4xF 1

234!
FrstlFrstl

2
1

4!
Flmnr] [lAmnr]2

mA
2

233!
AmnrAmnr

2
k

3!
SmnrAmnrG D . ~51!

Before proceeding with the calculations, let us introduce
notation

J5m[
1

3!
em

nrtS
mnr, ~52!
10500
e

j nr[]mSmnr5
1

2
emnrt] [mJ5 t],

~53!

J5m[J5m
T1J5m

L , ~54!

J5m
T5S dm

n2]m
1

]2
]nD J5n ~55!

J5m
L5]m

1

]2
]nJ5n. ~56!

Once again, we begin the computation ofZ@S,V# with theA
integration. The constraint~44! is encoded in the functiona
Dirac delta in Eq.~51!, and enables us to replaceA with the
classical solution~45!. Thus we obtain
alism
Z@S,V#5E @DF#@Df#expH 2E d4xF 1

234!
FrstlFrstl1

1

3! S 1

mA
emnrs]sf1

k

mA
2

] [m

1

2]2
j nr] D ]lFlmnr

2
mA

2

233! S 1

mA
emnrs]sf1

k

mA
2

] [m

1

2]2
j nr] D 2

2
k

3!
SmnrS 1

mA
emnrs]sf1

k

mA
2

] [m

1

2]2
j nr] D G J . ~57!

The integration overF proceeds exactly as in the free case. Incidentally, this is one advantage of the first order form
in which F andA are treated as independent variables. Therefore

Z@S,V#5S 2p

mF
4V

D 1/2E @Df#@Dj#expH 2E d4xF1

2
]mj

1

2]2
]mj1

1

3! S 1

mA
emnrs]sf1

k

mA
2

] [m

1

2]2
j nr] D elmnr]lj

2
mA

2

233! S 1

mA
emnrs]sf1

k

mA
2

] [m

1

2]2
j nr] D 2

2
k

3!
SmnrS 1

mA
emnrs]sf1

k

mA
2

] [m

1

2]2
j nr] D G J . ~58!

Next, we proceed with the integration of theh field noting that it is decoupled fromj nr since

E d4xelmnr~]lj!] [m

1

2]2
j nr]52E d4xelmnrj] [l] [m

1

2]2
j nr]] [0. ~59!

Collecting our results so far, we find

Z@S,V#5S 2p

mF
4V

D 1/2E @Df#expH 2E d4xF 1

2mA
2 ~2]2!f~2]2!f2

mA
2

233! S 1

mA
emnrs]sf1

k

mA
2

] [m
1

2]2
j nr] D 2

2
k

3!
SmnrS 1

mA
emnrs]sf1

k

mA
2

] [m

1

2]2
j nr] D G J . ~60!

Before integrating overf, it is convenient to collect all the terms explicitly depending onf and to rewriteZ@S,V# as
follows:

Z@S,V#5S 2p

mF
4V

D 1/2

expS 2
k2

2mA
2E d4x jnr

1

2]2
j nrD E @Df#expS 2E d4xF 1

2mA
2 ~2]2!f~2]2!f1

k

mA
f]mJ5mG D .

~61!

The final integration overf now leads to the following expression:
5-6
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2 E d4xF j nr
1
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j nr2~]mJ5m!

1

~2]2!~2]21mA
2 !

~]nJ5n!G D
5A 2p

mF
4V

@~2]2!~2]21mA
2 !#1/2expS 2

k2

2 E d4xF ] [m j T
5n] 1

2]2
] [m j Tn]

5 2JL
5n

1

~2]2!~2]21mA
2 !

JLn
5 G D .

~62!
efi
y

e

th

in
ed
ns
ng
e
t

m
f t
r
th

u
e

he

th
e

er
ee
-
r
its
ly
ca

s-
uld
tio
e-
ur
re

t
n of
ce
ck-
o
he
of

ism

is
lar-
dy-
-

he
u-
tial
ur-
We
w’’
mo-
the
al
on-

rst,
ure

ion
ll in
t is
n,

ced
s-

wly
fer-
of

ich
r-
q.
n-
From here we extract our final result: according to the d
nition ~48! the dynamics of the fermion field is governed b
the effective action induced by quantum fluctuations of thA
field,

G@c̄,c#5
k2

2 E d4xF ] [m j T
5n] 1

2]2
] [m j Tn]

5

2JL
5n

1

~2]2!~2]21mA
2 !

JLn
5 G . ~63!

A cursory inspection of the above expression indicates
the original interaction of theAmnr field coupled to the spin-
density current corresponds to an effective four-fermion
teraction where two distinct components can be identifi
One is a long-range interaction that involves only the tra
verse part of the axial current, the other is a short-ra
interaction that involves only the longitudinal part of th
axial current. This dynamical splitting seems noteworthy
the extent that the Green function of the longitudinal co
ponent corresponds, once again, to the dipole operator o
scalar field equation~11! derived in the Introduction. To ou
mind, this suggests that the longitudinal component of
axial current behaves as aspin-0 fieldwhich we interpret as
a collective excitation, or bound state, generated by the
derlying dynamics of the spinor field. According to our lin
of reasoning, this effect, which one may calldynamical
bosonization,should be traced back to the properties of t
quantum vacuum created by theAmnr field.

IV. SUMMARY AND OUTLOOK

In this paper we have resumed an in-depth study of
properties of a rank three, antisymmetric tensor gauge fi
Amnr . The classical properties of this field, and its count
part in any number of spacetime dimensions, have b
known for a long time@12#. Unlike its electromagnetic coun
terpart in four dimensions,Amnr does not radiate photons, o
any other type of physical wave. However, very much like
‘‘electromagnetic’’ counterpart in two dimensions, it simp
represents a constant background field. Thus, in the free
and in flat spacetime~of infinite extension! Amnr cannot be
distinguished from the classical ‘‘vacuum.’’ However, di
missing this field as physically irrelevant on this basis wo
be too hasty. Indeed, the form of the gauge transforma
~12! dictates thatAmnr couples to extended objects repr
sented by the world history of relativistic membranes. F
thermore, even in the absence of interaction but in the p
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ence of a mass term,Amnr ‘‘comes alive’’ in the sense that i
represents a spin-0 field that obeys a Proca-type equatio
the kind ~6!, ~7! discussed in the Introduction. The presen
of a gauge invariant mass term was linked in I to the Stue
elberg mechanism forAmnr @13# and shown to be related t
the production of dark energy/matter in the Universe. T
strong formal analogy between this peculiar mechanism
mass generation in four dimensions and a similar mechan
in two dimensions was also emphasized in I.

To our mind, these unique properties of theA field suggest
a rather fitting model, at least qualitatively, of ahadronic bag
in which the role of the phenomenological ‘‘bag constant’’
taken over by the infrared cutoff that is necessary to regu
ize the partition functional that describes the quantum
namics ofAmnr . In support of this interpretation, it was nec
essary to show that there exists aconfining potentialwithin
the bag. As a matter of fact, an explicit calculation of t
Wilson loop associated with a relativistic test bubble sim
lating the surface of the bag shows that the static poten
between any pair of diametrically opposite points on the s
face of the bag is proportional to the enclosed volume.
interpret this result as a natural extension of the ‘‘area la
for confinement that has long been established for chro
dynamic strings. This result, in turn, paves the way to
introduction of fermion fields in the model and gives logic
continuity to the calculations undertaken in this paper c
cerning the quantum properties ofAmnr .

This paper extends our previous results in two ways. Fi
we have calculated the contribution to the Casimir press
due to the zero point oscillations ofAmnr in themassive case.
We find that the critical quantum effect due to the integrat
constant of the homogeneous massless equation is sti
place, leading to the characteristic Casimir pressure tha
inversely proportional to the volume of the bag. In additio
there is now a contribution to the vacuum pressure, Eq.~40!,
that is directly related to the mass of theA field and plays the
same role as the phenomenological bag constant introdu
as an infrared cutoff in the partition functional for the mas
less case.

The second extension concerns the effect of the ne
derived vacuum pressure on the effective dynamics of
mion fields. This amounts, in practice, to a recalculation
the Wilson loop extended to the full quantum case in wh
the classical current~49! is replaced by the spin-density cu
rent ~50! of the fermion field. The result is displayed in E
~63! and is noteworthy for the explicit presence of the qua
tum propagator associated with the field equation~11! dis-
cussed in the Introduction.
5-7
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Just as in the case of the confining static potential ass
ated with a relativistic test bubble, the dipole structure of
quantum propagator in Eq.~63! in the present case is symp
tomatic of the confining and screening properties of theAmnr

field at the quantum level. We have repeatedly emphas
l.
.

,

10500
i-
e

ed

the stringent similarity between these properties of theA
field in four dimensions and those of the ‘‘electromagneti
field in two space-time dimensions. The exact nature of t
analogy and its possible impact on the problem of color c
finement in QCD will be discussed in a future publication
t.
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