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Quantum effects of a massive 3-form coupled to a Dirac field
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The computation of the quantum vacuum pressure must take into account the contribution of zero-point
oscillations of a rank-three gauge fiehd,,,. This result was established in a previous paper where we
calculated both the Casimir pressure within a region of vacuum simulating a hadronic bag and the Wilson
factor for the three-index potential associated with the boundary of the bag. The resulting “volume law”
satisfied by the Wilson loop is consistent with the basic confining requirement that the static interquark
potential increases with the distance between two test charges. As a sequel to that paper, we consider here the
coupling ofA,,,, to the generic current of a matter field, later identified with the spin density current of a Dirac
field. In fact, one of the objectives of this paper is to investigate the impact of the quantum fluctua#opsg of
on the effective dynamics of the spinor field. The consistency of the field equations, even at the classical level,
requires the introduction of a mass term fay,,. In this case, the Casimir vacuum pressure includes a
contribution that is explicitly dependent on the mas#\f,, and leads us to conclude that the mass term plays
the same role as the infrared cutoff needed to regularize the finite volume partition functional previously
calculated in the massless case. Remarkably, even in the presence of a mass jerontains a mixture of
massless and massive spin-0 fields so that the resulting equation is still gauge invariant. This is yet another
peculiar, but physically relevant property &f,,, since it is reflected in the effective dynamics of the spinor
fields and confirms the confining property Af,, already expected from the earlier calculation of the Wilson
loop.
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[. INTRODUCTION essentially a “constant” disguised as a gauge field, a situa-
tion all too familiar from the study of “electrodynamics” in
This is the third in a series of papers devoted to an intwo spacetime dimensiong]. In actual facta study of A,

depth study of the classical and quantum properties of & a study of the quantum vacuuand some caution should
rank-three gauge form,,, in four spacetime dimensions be exercised before dismissing it. Thus, a consistent quantum
[1,2]. In the preceding paper, hereafter referred to d2]JJ  formulation of this constant gauge field requires a modifica-
we calculated the contribution to the vacuum pressure, otion of the “sum over histories approach” in the sense that
Casimir energy density, due to the quantum fluctuations of #he path integral must take into account the whole family of
masslessantisymmetric tensor gauge fiehd,,, with an as-  constant field configurations having support only over a
sociated field strength spacetime region with a finite volumé

F)\,uvp: a[)\AMVp] (1)

1
f [DF]&[&FWP]ex;;( - 2><4|f d4xFWPFWp)
which represents, classically, a honvanishing constant back- IV

ground field. w0 §2
Our motivation for investigating the quantum properties ocf dfexr{ - —V) 2
of the generalized Maxwell fieldl) was discussed in Il. o 2
Here, we simply recall that thie field may be related to two
central issues in modern theoretical physics, nanelghe  wheref is an arbitrary constant labeling each classical solu-
problem of dark matter or energy in the Universe via thetion of the free field equations
cosmological constarjtL,3,4] and (ii) the outstanding prob-
lem of color confinement in QCD via the “bag constant”
[5,6]. Both constants, cosmological and hadronic, can be ef-
fectively described by thé,,, field.
Apart from these physical considerations, thdield is  While the generalized Maxwell field1) propagates no
intriguing because of its deceptive simplicity. Here we havephysical quanta, it gives rise to a static effect, namely, a
Casimir vacuum pressure that is inversely proportional to the
volume of quantizatiorV. This result was confirmed by an
*Electronic address: aaurilia@csupomona.edu explicit calculation of the vacuum expectation value of the
Electronic address: spallucci@trieste.infn.it energy-momentum tensor associated with FEhigeld

HFMP=0, @3
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In the above expressiom, represents a classical contribu-
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S A, g (13)
3! N ’
it follows from Eq. (9) that

(—3?+m3)d,*A*=0 (14)

tion to the vacuum energy and plays the role of an infraredvhich is invariant under the dual gauge transformation
cutoff that is necessary in order to regularize the large vol-

ume behavior of the finite volume partition functi@{V)
that was explicitly derived in II.

With hindsight, we recognize that the role of the infrared

1
5*AM:§E’MVPUI?[V)\’)U] . (15)

cutoff po may be played by a mass term in the Lagrangian The advantage of using the first order formalism in the
for the F field. In the first order formalism this Lagrangian Path integral method as a means of getting around the

reads

Lo=5— - FP"™F

nvp)

1 Nuv
paTN EF H pa[)\A

2X4!

2
M

- 2x3!

AN, (5)

lengthy Fadeev-Popov procedUi@ necessary to eliminate
those spurious degrees of freedom in the massless case was
discussed in Il. We note, incidentally, that the presence of the
extra D’ Alambertian in the massive case may be construed
as further evidence of the confining properties of fg,,
field already expected from the earlier calculation of the Wil-
son loop[2].

A general solution of the field equations, in the first order

In spite of its unusual appearance, the above expression isfarmulation, can be obtained after combining E¢#®. and
Proca-type Lagrangian that describes a massive spin-0 field0 into the single equation

[8], with some qualifications. Indeed, the field equations are

F)\,qu: 0"[>\A,Wp] ) (6)
O\FMTP— A ARTP =, 7

From Eq.(7) follows the constraint equation
HAMT=0 (8

due to the antisymmetry d¥, ,,,,. Substituting Eqs(6) and
(8) into Eq. (7) we arrive at the Klein-Gordon equation

(— P+ m3)AMr=0. 9)

On the other hand, the constraii® implies that

A= g 10
=m0 (10)

so that the scalar fielgb satisfies the equation

(— 82+ mi)(— %) p=0. (12)

\FMIP=m,a el PO d . (16
In Eq. (16) the mass term plays the role of a source term for

the Maxwell field. Accordingly, a formal expression for
F«vv is as follows:

EMvp = Mot — mA(y[h

1
;e (1D

wheref represents an arbitrafgonstank solution of the as-
sociated homogeneous equation. It is precisely this constant
background field that gives rise to the Casimir effect that
we have investigated in Il and summarized at the beginning
of this Introduction.

Against this background, the purpose of this paper is two-
fold. First, we wish to investigate the contribution to the
vacuum pressure due to the quantum fluctuations of the mas-
sive three-index fieldA,,,. Our second objective is to in-
vestigate the effective theory of a spinor field confined to a
volume of quantization under the vacuum pressure generated
by the zero-point oscillations @&, .

As anticipated earlier, we find the same volume depen-

Several observations are in order here. First, it should bgence of the vacuum pressure as in the massless case, plus an
noted that in the massless case the Maxwell field strengtRX{ra contribution that depends explicitly on the mass of
possesses no physical degrees of freedom in view of its iffu»» @nd plays the same role of the phenomenological pa-

variance under the tensor gauge transformation

SA A (12)

pvp= It up] -

In this connection, it is also worth observing that the Procahe gauge invariance of th&
leads to a gauge invariant equation in spiterequires that its classical matter counterpart be given by the

equation forA ,,,,

rameterp, reported in Eq(4). These results are obtained in
Sec. Il

Section Il is devoted to the calculation of the finite vol-
ume effective action of a spinor field. Our motivation is that

.vp field in the massless case

of the presence of a mass term. This is implicit in the form ofthree-dimensional world history of a relativistic membrane.
Eqg. (11) due to the presence of the extra d’Alembertian. Al- At the quantum level this coupling may be naturally realized

ternatively, in terms of the dual field

through the spin-density current of a Dirac field. Our overall
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approach is nonperturbative to the extent that we sum ovdntegration over the remaining histories parametrized by
all possible configurations &&,,,, in order to determine its h**?. The latter integration is restricted to the subspace of
guantum effects on the effective dynamics of the spinor fielddivergence freé configurations by the consistency condition
Section IV concludes the paper with a summary of our re{22)
sults and an outlook of further research into the quantum
properties of theA ,,, field. R R - _
[DF]=[DF]8[ 9, F****][DF][Dh]&[ g\ F**°

II. VACUUM FLUCTUATISINEiDOF THE MASSIVE A, _ huup]é[()“hp,vp]_ (23)

We have seen in the Introduction that there is a disconti- h Eq(21) implies that th ding f
nuity between the massless and massive case in the fiel:aur ermore, q( ) implies at the corresponding func-
lonal measure in Eq23) must involve only constant field

onfigurations, namely, arbitrary constant solutiéred Eq.

1) with dimensionq f]=mas$,

equation forA ,,,,. In the massless case, there are no radia-
tive degrees of freedom and the field strength describes

non-vanishing constant background field within a finite vol-
ume. There are, however, quantum vacuum fluctuations as-
sociated even with a constant gauge field and the correspond-
ing vacuum energy/pressure is explicitly given by E4)

that was derived in Il. In the massive case, on the other hand,

there are physical quanta of spin-0 associated With, . It . . 2 .
L Evp Therefore, integrating ovdf means summing over all con-
seems reasonable, therefore, to expect an additional contri-

bution to the Casimir energy density/pressure related to thgtantF-fieldtﬁongigurgtions thtit s?tiskf]y .thel C%”St;aﬂﬂtl{h!t
mass ofA,,,,,. That this is the case can be seen by calculat®¢€MS Worth 0bserving, on the technical side, that this pro-
ing the finite volume partition functional cedure of integration is identical to that introduced by the

authors in the case of a free point particle in which the inte-

[DF]6[a\F Pl d f[DF]S[Frre—felrre]. (24)

o gration over the momentum trajectories is constrained to sat-
Z(V)=f [DFI[DA]S[9,A*"] isfy the classical equations of moti@f(t) =0 [10]. In both
cases, the functional integration is reduced to an ordinary
Xex;{—J dx 1 EPoTAE integration, namely[Dq]d[q'(t)]—d3q/(27)3. However,
2x4! pom by extracting an ordinary differentialf out of the dimen-
1 m2 sionless functional measufd®F] we have to rescale the
— RMuvpg A A aupvpp ) sum against an arbitrarily fixed standard measufewith
4! (el 2% 3! e ) dimensions of a mass s d
quared.

(18) Taking all of the above into account, the partition func-
tional becomes
Note that the expressiqi8) explicitly takes into account the
constraint equatio8).
Let us start the computation @f(V) from the A integra- 1 (= f2
tion. Taking into account Eq10), which is equivalent to the Z(V)= Ffwdf EXF{ - EV) f [D¢]
constraint(8), we find F

. X[Dh#P]6[ 9, h#*Plexp(—S[h*",¢]) (25)
oTN
oxart Foon

Z(V)zf [DF][D¢]exp(—f d*x

1
1 m; h#ve =f d*x| — h#"?——h
+ a(a)\F)\MVp)e;wpoﬁqu_ 7A¢2 ) (19) S[ v¢] 2% 3l _(92 Mmvp
2
The form of Eq.(19) suggests that it may be convenient to + i(ﬁe)\ GINpavel — %(3@2]- (26)
split the F-field in the sum of two part$*~"? and F*#*» 4! e 2
such that
FAavp — FAuvp 4 FAuvp (20) Sinceh#"? is divergenceless by definition, as seen in Eq.
(22), our next step is to rewrite it as the Hodge dual of a
PR 21) longitudinal four-vector:
O\ F NP £ Q=hrvP, d,h#"P=0. (22 h#'P=eht?P7g . (27

Accordingly, the functional integration ovét is factor-
ized into an integration over divergence free paths times an Then, integrating ovef and ¢ gives
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where we have introduced a mass parametso thatwWis a

Z(\V)= - f [Do][DE] dimensional. By rescaling the proper time= Tmf\, we ob-
Mg tain
n my 2 2 2\ 7€ o
X ex (92‘7 ¢+ 5 (79(9¢) W (V)=—>——Vmy M—Z f dxx 3~ ‘exp(—x)
2 (2m)? ma 0
=y f[Dd’] =—1 oyt 2) rc2-g (32)
Vm,: (277)2 A mi
xex;{—f d*x ¢(—(92+m,2\)(—02)¢D, (28)  where
Note that this round of calculations has led us to a type of IN'—-2-¢=- ﬁl“(lJr €) (33
scalar field equation in the expressi(#8) that is precisely €(1+e)(2te)
of the form given in Eq(11) discussed in the Introduction.
Note, in particular, the characteristic presence of the double ~_ i 1—| y+ § e+ .
d’Alembertian that we have linked to the presence of a gauge 2e 2
invariant mass term. The remaining integration overis (34
Gaussian and leads to the formal result
y=-—I"(0)= Euler constant
(35

1/2
2m
Z(V)E W) exp:—W(V)]

F

1/2
[del — %) (—d?+ma)] Y2

and the expression in E(B4) refers to the limite—0. From

here we isolate the pole singularity from the convergent part

of the integral as follows:

vmg W (V)=W..+Wgeq (36)
(29)
. . 1 1
In order to calculate the above determinant in closed WOOE——ZVm“A (37
form, the usual procedure is to perform the calculation in the 4e (2m)
large volume limit, nameIWm4A> 1. In this limit, the spec-
trum of the operator- 7>+ mj can be treated as a continuum _ n w? 3
so that the sum over the eigenvalues can be approximated by Wreg=— 4 (2 77)2va mz Tyt 210 (38)
the following integral: A
. Then, in the minimal subtraction scheme we obtain
1 k
_ 2 2 2
W(V) ZVJ (277)4[In(k +mj)+Inke] . 1| Vm4A 1 1 | (mi) 3
NZreg=—sh—5——-—-—— n -
€o 2 2w 4 (277) “ 2|
1 d*k dr
=——Vf f—ex — r(k?+m2) (39
With this result in hand we are finally able to calculate the
_ 2
+exp(— 7k} (30 vacuum pressure as follows:
Let us consider first the mass dependent term. We will see 1 1 m2 3
at the end of this calculation that the finite part contributing p=— anRe mA |n<_A) — =
to W(V) is actually proportional tans. Anticipating this PV (21)? w? 2

result we drop altogether the contribution coming fronkin
in the above expression. The express(860) is divergent in

(40)

the limit 7— 0, i.e., in the short-distance regime. Therefore, it
is convenient to use the proper time regularization procedurg
to cast Eq(30) in the following form: u

This result should be compared with Eg) in the Intro-
ction. Equatior(4) represents the outcome of our calcula-
tion in the massless case discussed in Il. The first term in Eq.
(40) represents the Casimir contribution which dominates for
small volumes and agrees with the previous result for the
massless case. The second term represents a new contribu-
tion that dominates in the large volume limit and corresponds

1
WE(V) i

© dr
V=2 exp(— rm3),
2 (277)2 0 T3+e A

31)
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to the termpg that appears in Ed4). This comparison gives Therefore, in analogy to the free field case, EL7), a ge-
an explicit expression fop, in terms of theA,,, massm,  neric solution of Eq(46) can be expressed as follows:
and regulator masg.

IIl. THE INTERACTING CASE FAuvp— 6)\,U,fo+mA(9[)\i2€,u,Vp]T&T¢
d

In the preceding paper, Il, we have calculated the Wilson
loop for the three-index potential associated with a bag with
a boundary represented by the three-dimensional world his- + K(
tory of a closed spherical membrane. From the Wilson loop
we derived the static potential between two opposite points
on the surface of the bag and found it proportional to the

1
Juvp — (;[M_j vp]
(92

volume enclos_ed by the surface. This “V(_)Iume law” seems a = MPF 4 mAa[xiéwp] 9.+ Jrve.
natural extension of the area law found in the more conven- 92
tional case of quantum chromodynamic strings and is consis- 47

tent with the basic underlying idea of confinement that it

requires an infinite amount of energy to separate the tW(?Jp until now, the nature of the three index current in the
pOIIrtlti?s[il]éinst this backaround computation that we wish toabove expressions has not been specified. In our previous
9 9 P papers, both | and IJ*"? was identified with the classical

. . avp .
consider the coupling oh,,,,, to a curreniJ**# that s later current associated with the world history of a relativistic

identified with the spin-density current of a Dirac field. b P | . d a forth

Mathematically, this new situation amounts to taking as gnemorane. resently, as a stepping stone toward a forthcom-

new action ’ Ing discussion of the quantum chromodynamic case, it is
instructive to identifydJ*”? with the spin-density current of a

Dirac field. As a matter of fact, as anticipated in the Intro-

S=f d*x %Al F"‘”"prx— %FW”P&[AAWP] duction,one of the main purposes of this paper is to deter-
mine the form of the effective actidli 4, ] for a Dirac field
ma ) K , under the influence of the quantum vacuum fluctuations of
~ 23 A ™ g A @D A,
In the massless case, considered in 11, this same objective
from which we find the field equations was achieved by an explicit calculation of the Wilson factor
defined by
F)\,uvp: 0-'[)\A/va] ) (42)
v, 2 vp v
OFT = MRAR = kI “3 W[J]=<6Xp( - %J d4xAMVpJ”V”)>
Equation(43) was studied in | where the introduction of a
mass term was required by the consistency of the field equa- _ @
tions. As a matter of fact, without a mass term E4p) is - Z[0]
inconsistent as a consequence of the antisymmetf6f*
unless the current on the right side is divergence free. Thus, =exp(—I'[J]) (48)

couplingA“”? to a spinor field requires, in general, the pres-
ence of a mass term. From E@3) follows the new con- \yhere
straint equation

v_ K vp— K . HYp— Ny — n v p
INAMY = — —5 9, I"P=— FJ p (44) J LBé“ [x=Y]dy*/\dy’\dy (49
A A

where we have define@”” as the divergence od#"*. A

. : : represents the classical current of a relativistic test bubble.
formal solution of the constraint E¢44) is P

Presently we wish to undertake the same calculation in the

1 1 full quantum case in which the curre@9) is replaced by the

ANV =~ Auvpy dfif?“—l"”']- (45) spin density current of a spinor field in the background
Ma T ma 2 vacuum that we have discussed in the previous section

Substituting Eq(45) into Eq.(43), we arrive at the following _

field equation: JHIP S RIP= oyt oyt yP i, (50)

1 . , , o
aAF%MVP_mAG#VPU(gU¢:K( ‘]P«VP_(Q[M?J'VP])_ (46) tl\i/loitglema“ca"y' our task is to integrate the partition func-
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1
Z[E,V]=f [DF][DA]S[Mid,A»"P— kg, SH7P] jVPEaMEWP:EeWWa[MJF’T],
(53
_ 4 poTN
Xex;{ J’ d*x 2% 41 F FpO'T}\ JSMEJSMT-i- JS/LL, (54)
1 2
— MG A — o ARTPA 5 Lo gse
41 INRuvp] ™ 55 3| I = 5"“,,—«9'“?&,, J (55
s urop (51)
_ = , 1
B m Pr=or a3 (56)
Before proceeding with the calculations, let us introduce the
notation Once again, we begin the computationZp®,,V] with the A
integration. The constrain@4) is encoded in the functional
35— ifﬂ S nvp (52) Dirac delta in Eq(51), and enables us to replagewith the
31 e ' classical solutior{45). Thus we obtain
Z[3,V]= | [DF][D — | d* L S T TILIPRL . PRV
[ ’ ]_ [ ][ ¢]eX X M poTA 31 e_/.vao' ¢ m_i [,u__&zjvp] N
mh (1 3% p+ “ ] 1 2 EW" ! "p+ “ d !, (57)
- — €uvpo ) Sy —ar — €uvpo 3 Sy .
2X31| my K mi [#_521 pl 31 my AP mi [M_azJ pl

The integration oveF proceeds exactly as in the free case. Incidentally, this is one advantage of the first order formalism
in which F and A are treated as independent variables. Therefore

112
B 2 4 . 1/ 1 ” K 1 App
Z[3 V]= mTFV [Do][Délexp — | d™%| 5 ,L§ ;e oy m—Apraa b+ m—iﬂ[ﬂ__&zlup] NS
mi (1 K 1\ o« oo K 1
T 2x3l ;wp'f’? ¢+m_i‘9[#__azjwl _ﬁz m_Apra‘? ¢+m_i’9[;t__ﬁ2]w] : (58)

Next, we proceed with the integration of thefield noting that it is decoupled frot” since

4y, Nuv 1 4y, Nuv 1
d*xe' ”(a)\f)&[M 2JVP] d*xe'* pfa[)\a[M 2]Vp] =0. (59)

Collecting our results so far, we find

o 1/2 2 1 2
Y _ 4 2 2y 4 A P - vp]
Z[,V] ,‘iv) f[D¢]eXp‘ fd 2m2( FVP(= )= 53 ,wpg& b+ mAﬁ — 2 )
v 1 . K 1
_52 m_AGMVpO.a ¢+ m_ia['u’__o'szyp] . (60)
Before integrating overp, it is convenient to collect all the terms explicitly depending ¢rand to rewriteZ[,V] as
follows:
2
Z[2V]=| — ) P<——f XJ”"—JVP f[Dsb]eXp(—fd“ —5 (=) p(— &2)¢+—¢8 JS“D
mgV my

(61)

The final integration oveth now leads to the following expression:
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1/2

K2 1
Z[3 V]=| — —3?)(— o>+ ma) 1Y %ex ——J’ d*x| 7P ——j,,— (9,J°") 9,J°"
VI=| ] T W] 5 1 e O T e (97
27 K> 1 1
= —3%)(— ?+m3)]Y%ex ——f d*x| a3 —— 05, ,j2, — 3% AEHER
méV[( ) )] 2 I s ()T 7L (—32)(— 3%+ m2) Lv

(62

From here we extract our final result: according to the defience of a mass term ,,, “comes alive” in the sense that it
nition (48) the dynamics of the fermion field is governed by represents a spin-0 field that obeys a Proca-type equation of
the effective action induced by quantum fluctuations ofAhe the kind (6), (7) discussed in the Introduction. The presence
field, of a gauge invariant mass term was linked in | to the Stueck-
elberg mechanism foh ,, [13] and shown to be related to

F[E, W= K_Zf d*x a[ﬂjiu]_ﬁ[ j?,,] the production of darkﬂ é)nergy/maf[ter in the Universe_. The
2 —g2 strong formal analogy between this peculiar mechanism of
mass generation in four dimensions and a similar mechanism
5 1 55 63 in two dimensions was also emphasized in I.
L (—(72)(—82+mi) Ly To our mind, these unique properties of théeld suggest

a rather fitting model, at least qualitatively, ohadronic bag

A cursory inspection of the above expression indicates thaf which the role of the phenomenological “bag constant” is
the original interaction of thé,,,, field coupled to the spin- taken over by the infrared cutoff that is necessary to regular-
density current corresponds to an effective four-fermion inize the partition functional that describes the quantum dy-
teraction where two distinct components can be identifiednamics ofA ,,,. In support of this interpretation, it was nec-
One is a long-range interaction that involves only the transessary to show that there existe@nfining potentialithin
verse part of the axial current, the other is a short-rangéhe bag. As a matter of fact, an explicit calculation of the
interaction that involves only the longitudinal part of the Wilson loop associated with a relativistic test bubble simu-
axial current. This dynamical splitting seems noteworthy tolating the surface of the bag shows that the static potential
the extent that the Green function of the longitudinal com-between any pair of diametrically opposite points on the sur-
ponent corresponds, once again, to the dipole operator of tface of the bag is proportional to the enclosed volume. We
scalar field equatiofl1) derived in the Introduction. To our interpret this result as a natural extension of the “area law”
mind, this suggests that the longitudinal component of thdor confinement that has long been established for chromo-
axial current behaves asspin-0 fieldwhich we interpret as dynamic strings. This result, in turn, paves the way to the
a collective excitation, or bound state, generated by the unihtroduction of fermion fields in the model and gives logical
derlying dynamics of the spinor field. According to our line continuity to the calculations undertaken in this paper con-
of reasoning, this effect, which one may calynamical cerning the quantum properties Af,,, .

bosonizationshould be traced back to the properties of the ~This paper extends our previous results in two ways. First,

quantum vacuum created by the,,, field. we have calculated the contribution to the Casimir pressure
due to the zero point oscillations &f,,,, in themassive case
IV. SUMMARY AND OUTLOOK We find that the critical quantum effect due to the integration

constant of the homogeneous massless equation is still in

In this paper we have resumed an in-depth study of thelace, leading to the characteristic Casimir pressure that is
properties of a rank three, antisymmetric tensor gauge fielthversely proportional to the volume of the bag. In addition,
A,.,- The classical properties of this field, and its counter-there is now a contribution to the vacuum pressure, (&),
part in any number of spacetime dimensions, have beethat is directly related to the mass of tAdield and plays the
known for a long timg 12]. Unlike its electromagnetic coun- same role as the phenomenological bag constant introduced
terpart in four dimensions),,,,, does not radiate photons, or as an infrared cutoff in the partition functional for the mass-
any other type of physical wave. However, very much like itsless case.
“electromagnetic” counterpart in two dimensions, it simply =~ The second extension concerns the effect of the newly
represents a constant background field. Thus, in the free casglerived vacuum pressure on the effective dynamics of fer-
and in flat spacetiméof infinite extension A,,, cannot be  mion fields. This amounts, in practice, to a recalculation of
distinguished from the classical “vacuum.” However, dis- the Wilson loop extended to the full quantum case in which
missing this field as physically irrelevant on this basis wouldthe classical currer9) is replaced by the spin-density cur-
be too hasty. Indeed, the form of the gauge transformatioment (50) of the fermion field. The result is displayed in Eq.
(12) dictates thatA,,,, couples to extended objects repre- (63) and is noteworthy for the explicit presence of the quan-
sented by the world history of relativistic membranes. Furtum propagator associated with the field equatidh) dis-
thermore, even in the absence of interaction but in the presussed in the Introduction.
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Just as in the case of the confining static potential assocthe stringent similarity between these properties of ge
ated with a relativistic test bubble, the dipole structure of thefield in four dimensions and those of the “electromagnetic”
guantum propagator in Eg63) in the present case is symp- field in two space-time dimensions. The exact nature of this
tomatic of the confining and screening properties ofAl)g,  analogy and its possible impact on the problem of color con-

field at the quantum level. We have repeatedly emphasizefinement in QCD will be discussed in a future publication.
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