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Quantum fluctuations of a ‘‘constant’’ gauge field
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It is argued here that the quantum computation of the vacuum pressure must take into account the contri-
bution of zero-point oscillations of a rank-three gauge field. The fieldAmnr possesses no radiative degrees of
freedom, its sole function being that of polarizing the vacuum through the formation offinite domains char-
acterized by a non-vanishing, constant, but otherwise arbitrary pressure. This extraordinary feature, rather
unique among quantum fields, is exploited to associate theAmnr field with the ‘‘bag constant’’ of the hadronic
vacuum, or with the cosmological term in the cosmic case. We find that the quantum fluctuations ofAmnr are
inversely proportional to the confinement volume and interpret the result as a Casimir effect for the hadronic
vacuum. With these results in hands and by analogy with the electromagnetic and string case, we proceed to
calculate the Wilson loop of the three-index potential coupled to a ‘‘test’’ relativistic bubble. From this calcu-
lation we extract the static potential between two opposite points on the surface of a spherical bag and find it
to be proportional to the enclosed volume.

DOI: 10.1103/PhysRevD.69.105004 PACS number~s!: 11.15.2q, 42.50.Lc
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I. INTRODUCTION

It is well known that the cosmological term introduced
general relativity can be expressed as the vacuum expe
tion value of the energy-momentum tensor, as one m
expect on the basis of relativistic covariance

^Tmn&5
L

8pG
gmn. ~1!

It is less well known that the same cosmological term c
be formulated as the gauge theory of a rank-three antis
metric tensor gauge potentialAmnr @1–4# with an associated
field strength

Fmnrs5¹[mAnrs] ~2!

invariant under the tensor gauge transformation

Amnr→Amnr1¹[mlnr] . ~3!

Indeed, one readily verifies that the classical action

S52
1

16pGE d4xA2gR2
1

234!E d4xA2gFlmnrFlmnr

~4!

leads to the familiar Einstein equations in the presence
cosmological term@4,5#.

Equation~1! suggests that the cosmological term is as
ciated with the zero-point energy of the cosmic vacuu
Then, in view of theequivalencestated above, we are natu
rally led to question the calculability of the zero-point ener
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due to the quantum fluctuations of theAmnr field. As a matter
of fact, we shall argue in the following sections that there
non-trivial volume effects due to the quantum fluctuations
the A field.

Let us switch now from the cosmological case to the h
ronic case and consider the implications of quantum vacu
energy in connection with the outstanding problem of co
confinement in the theory of strong interactions. Somew
surprisingly, perhaps, the formal connection between the
extreme cases, cosmological and hadronic, is provided by
same three-index potentialAmnr introduced earlier.

Quantum chromodynamics is universally accepted as
fundamental gauge theory of quarks and gluons. Equally
cepted, however, is the view that QCD is still poorly unde
stood in the non-perturbative regime where the problem
color confinement sets in. On the other hand, the phen
enon of quark confinement is accounted for, as an input
the phenomenological ‘‘bag models,’’ with or without su
face tension@6#. In some such models it is assumed, f
instance, that the normal vacuum is a color magnetic cond
tor characterized by an infinite value of the color magne
permeability while the interior of the bag, even an emp
one, is characterized by a finite color magnetic permeabi
In the interior of the bag the vacuum energy density acts a
hadronic ‘‘cosmological constant’’ originating from zero
point energy due to quantum fluctuations inside the bag.This
is a type of Casimir effect for the hadronic vacuum. To our
knowledge, in spite of the fairly large amount of literature
the subject@7#, this effect has never been discussed before
terms of theAmnr field. Ultimately, the origin of this effect,
and therefore of the cosmological bag constant, should
traced back to the fundamental dynamics of the Yang-M
field.

Our suggestion, to be discussed in detail in a forthcom
publication, is that the link between theAmnr field and the
©2004 The American Physical Society04-1
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fundamental variables of QCD is given by the ‘‘topologic
density’’ TrFmn* Fmn through the specific identification

Amnr5
1

16p2LQCD
2

Tr~A[m]nAr]1A[mAnAr] !. ~5!

In support of this identification, notice that a Yang-Mil
gauge transformation in Eq.~5! induces anAbelian gauge
transformation of the type~3!

dAmnr5
1

gLQCD
Tr@~D[mL!Fnr] #[

1

g
] [mlnr] ~6!

where LQCD is the energy scale at whichQCD becomes
intrinsically non-perturbative.

Against this background, this paper is the second i
series dealing with the hadronic and cosmological impli
tions of the vacuum quantum energy associated with
three-index potentialAmnr . In view of the chain of argu-
ments offered above, we shall refer to that field as the ‘‘c
mological field’’ or ‘‘topological field,’’ depending on the
specific application under consideration. Some such app
tions in the cosmological case, in particular in connect
with the problem of dark energy and dark matter in the U
verse have been discussed in the first paper of the series@5#.

Rank three gauge potentials also appear in different
tors of high energy theoretical physics, e.g., supergravity@2#,
cosmology@8#, and both gauge theory of gravity@9# and of
extended objects@10#. As argued above, a central role
played by this kind of gauge field in connection with th
problem of confinement@11#.

The present paper focuses on the general properties o
topological field as anAbelian gauge field of higher rankbut
with an eye on the future discussion of the problem of c
finement inQCD. Ultimately, we wish to calculate the Wil
son loop for the three-index potential coupled to the thr
dimensional world history of a spherical bubble.To our
knowledge, this calculation has never been done before
represents the preparatory ground for the inclusion of fer
ons in the model@12#.

Our calculations are performed in the Euclidean regi
and represent a generalization of the more conventional
culations for the Wilson loop in the case of quantum ch
modynamic strings leading to the so called ‘‘area law’’ that
taken as a signature of color confinement@13#. From the
Wilson loop we extract the static potential between two
tipodal points on the surface of the bag and find it to
proportional to the volume enclosed by the surface. Thi
consistent with the basic underlying idea of confinement t
it would require an infinite amount of energy to separate
two points. This calculation is performed in Sec. IV.

As a stepping stone toward that calculation, we inve
gate in Sec. III what amounts to the Casimir effect for t
Amnr field. Section II discusses some of the unique proper
of the Amnr field that are manifest even at the classical le
but are instrumental for our discussion of the effect of qu
tum fluctuations of theA field. Some concluding remarks ar
offered in Sec. V. Finally, Appendix A contains some tech
cal details of the regularization procedure and the coun
10500
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of degrees of freedom of theA field, while Appendix B de-
scribes the mathematical steps involved in the calculation
the Wilson factor and the static potential that follows from

II. CLASSICALLY ‘‘TRIVIAL’’ DYNAMICS VS NON-
TRIVIAL QUANTUM EFFECTS

Rank-three potentialsAmnr(x) were introduced as a gen
eralization of the electromagnetic potential and of the Ka
Ramond potential in string theory@14–16#.

In the free case, unlike the electromagnetic case, the c
sical dynamics described by the Lagrangian density

L0[
1

2•4!
~] [mAnrs] !

2, ~7!

is exactly solvable: the field strengthFmnrs[] [mAnrs] that
solves the generalized Maxwell equations

]mFmnrs50 ~8!

describes a constant background field,Fmnrs5 f emnrs ,
wheref is an arbitrary integration constant.

The physical meaning of the constantf is most simply
understood in terms of two unique properties of the thr
index potential.

~i! The energy momentum tensor derived from Eq.~4! in
the limit of flat spacetime

Tmn[S 2

Ag

dS

dgmnD
g5d

→ 1

3!
FmabgFn

abg2
1

2•4!
dmnFabgdFabgd ~9!

reduces to the following simple form:

Tmn5
f 2

2
dmn . ~10!

At first sight, quantizingA seems to be meaningless b
cause there are no dynamical degrees of freedom carrie
A. However, the similarity between Eqs.~10! and ~1! sug-
gests that, in spite of the ‘‘triviality’’ of the classical field
equation for the three-index potential, the constant of in
gration f may be related, at a quantum-mechanical level,
the vacuum expectation value of the energy momentum
sor arising from the zero-point energy due to the quant
fluctuations of theA field. We shall confirm this expectatio
and calculate the quantum corrections to the ener
momentum tensor in the following section.

~ii ! The gauge transformation property, Eq.~3!, requires
that even in the absence of gravity, theAmnr(x) potential be
coupled to a rank-three current densityJmnr(x) with support
over the spacetime history of a relativistic membrane,
2-brane@8#.

Since the latter property is instrumental for our sub
quent discussion, it may be helpful to elaborate briefly on
For later convenience, in this paper we work with Euclide
4-2
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or Wick rotated, quantities. Then, the Lagrangian density
der consideration is as follows:

L5
1

2•4!
~] [mAnrs] !

22
k

3!
JmnrAmnr

52
1

2•4!
FlmnrFlmnr1

1

4!
Flmnr] [lAmnr]

2
k

3!
JmnrAmnr ~11!

Jmnr~x;Y![E
H

d@x2Y#dYm`dYn`dYr

5E
S
d3sd4)@x2Y#emnr]mYm]nYn] rY

r

~12!

whereH is the target spacetime image of the world-manifo
S through the embeddingY:S→H. It is important to keep
in mind that in thefirst order formulation adopted here
Flmnr andAmnr are treated as independent variables@17#. In
this formulation, theF-field equation is algebraic rather tha
differential, and this provides the link between first and s
ond order formulation:

dL

dFlmnr
50→Flmnr5] [lAmnr] ~13!

dL

dAmnr
50→]lFlmnr5kJmnr~x!. ~14!

The model Lagrangian, Eq. (11), is the basis for classica
and quantum‘‘ membrane dynamics,’’ CMD and QMD, re-
spectively. Provided that the current is divergence-free,
model is invariant under the extended gauge transformat

dAmnr5] [mlnr]↔]mJmnr~x!50. ~15!

The divergence free condition~15! is satisfied wheneve
the membrane history has no boundary, which means e
~a! spatially closed, real membranes, whose world track
infinitely extended along the timelike direction, or~b! spa-
tially closed, virtual branes emerging from the vacuum a
recollapsing into the vacuum after a finite interval of prop
time @18#.

This property is central to our subsequent discussion
Secs. III and IV. Thus, in order to prove that this is the ca
let us compute the divergence of the current:

]mJmnr~x!5E
S
d3sS ]

]xm
d4)@x2Y# D emnr]mYm]nYn] rY

r

5E
S
d3sS ]

]Ym
d4)@x2Y# D emnr]mYm]nYn] rY

r
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5E
S
d3s~]md4)@x2Y# !emnr]nYn] rY

r

5E
S
d3semnr]m~d4)@x2Y#]nYn] rY

r!

5E
H

d~d4)@x2Y#dYn`dYr!

5E
]H5B

d4)@x2y#dyn`dyr50. ~16!

Thus,]mJmnr(x)50↔]H50” .
It seems physically intuitive, at this point, that the pre

ence of a closed membrane separates spacetime into two
tinct regions, namely the interior and exterior regions o
‘‘vacuum bag.’’ The interesting point, however, is that th
two regions are characterized by adifferent value of the
vacuum energy density and pressure on either side of
domain wall@8#.

Mathematically, the argument goes as follows: ifJ, de-
fined as in Eq.~12!, is divergence-free, then it can be writte
as the divergence of a rank four antisymmetricbag current K

Jmnr~x![]lKlmnr ~17!

where

Klmnr~x![E
B
d4)@x2z#dzl`dzm`dzn`dzr ~18!

andH[]B. On the other hand,

dzl`dzm`dzn`dzr5elmnrd4z, ~19!

so that one can writeKlmnr(x) as

Klmnr~x!5elmnrQB~x! ~20!

where

QB~x!5E
B
d4zd4)@x2z# ~21!

is the characteristic functionof the B manifold, i.e., a gen-
eralized unit step function:

QB(PPB)51, QB(P¹B)50.
One can also express the bulk currentK in terms of the

boundary currentJ by inverting Eq.~17!:

]lKlmnr5Jmnr~x!→Klmnr5] [l
1

]2
Jmnr] . ~22!

Now, by solving Maxwell’s field equation~14!, one finds the
following equivalent expressions of theF field:
4-3
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Flmnr5 f elmnr1k] [l
1

]2
Jmnr]

5elmnr@ f 1kQB~x!# ~23!

wheref is, again, the constant solution of the homogene
equation.

The gist of the above calculations is the rather remarka
fact that the dynamics of the model Lagrangian~11! is still
exactly solvable, as it was in the free field case: the effect
the coupling is that theA field produces at most a~constant!
pressure difference between the interior and exterior o
closed 2-brane. This special static effect, namely the e
tence of a vacuum with two distinct phases, makes thA
field a suitable candidate for providing agauge description
of a ‘‘ confined cosmological constant,’’ or vacuum pressure
in a finite region of spacetime, that is the essential ingredien
of all hadronic bag models. This property is the basis for
subsequent interpretation of the interior vacuum energy d
sity as aquantum Casimir energyof a hadronic bag.

It should be clear from the above discussion that the
plicit computation of the Casimir pressure requires the e
tence of a finite volume in which the quantum fluctuations
theA field take place. At the quantum level, one may form
ize this argument as follows.

The meaning of quantization of a ‘‘constant field’’ is pe
haps best understood using the ‘‘sum over histor
approach’’ where one has to sum over all possible confi
rations of the field, constant in our case, and we
each of them with the usual factor, name
exp(2Euclidean action). The Euclidean action is the fo
volume integral of the Lagrangian density evaluated on
given field configuration. In the case of theA field, the La-
grangian density is constant over all possible configuratio
and the Euclidean action is simply:Euclidean action5(four
volume)3 const. Then, in the limitV→` all quantum fluc-
tuations are frozen and the valuef 50 is singled out, as one
might reasonably expect in the classical limit. Indeed, in
absence of both gravity and coupling to a matter field
classical background field constant over the whole space
manifold can be rescaled to zero as it cannot be distinguis
from the ordinary vacuum.

By reversing the argument, at the quantum level theA
field has a physical meaning only if it has a non-vanishi
constant field strengthF within a finite volume space~time!
region, one possibility being the one entertained befo
namely, the interior of a hadronic bag. Another possibil
mentioned earlier, a purely quantum mechanical one, is
formation ofvirtual bubbleswhosehistorieshave no bound-
ary since they arise from the vacuum and recollapse into
vacuum after a finite proper time interval within the co
straint of the uncertainty principle.

Whatever the case may be, the conclusion is the sam
before. Even if non-dynamical in the usual sense,Amnr is
ideally suited to describevacuum domains, or bags, each
domain being characterized by a vacuum energy density
ferent from the energy density of the surrounding vacuum
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III. VACUUM FLUCTUATIONS OF Aµnr AND HADRONIC
CASIMIR PRESSURE

Our immediate objective here is to study the effect
quantum fluctuations of theAmnr field in a finite ~four! vol-
ume along the lines suggested by the arguments of the
ceding section. For the purpose of illustrating the pa
integral method advocated here, the mathematical objec
interest is the ‘‘finite volume’’ partition functional Z(V)

Z~V!5E @dF#@DA#exp@2S0~F,A!# ~24!

S0~F,A!5E
V
d4xF 1

2•4!
Flmnr

2 2
1

4!
Flmnr] [lAmnr] G .

~25!

At this stage,V represents a fiducial volume momentari
introduced by hand, according to the argument of the pre
ous section, in order to give a definite meaning to the co
putation of the quantum vacuum pressure within a cavity
spacetime domain of finite extension. The physical mec
nisms that may give rise to such confined quantum confi
rations have been mentioned before and will be discusse
the following. In the course of this calculation one must d
tinguish between ‘‘volume, or bulk’’ effects from ‘‘surface
or boundary’’ effects. Accordingly, we focus first on the vo
ume contribution to the vacuum pressure. Not surprising
perhaps, it will turn out that the size of the domain is ch
acteristic of the size of the homogeneous fluctuations of
A field. Later, we shall discuss the case, anticipated in
previous section, in which the spacetime region where fl
tuations take place is bounded by a closed membr
coupled toA. Ultimately, we are interested in a bag mod
type of confinement mechanism that can be obtained by c
pling Amnr to a fermionic current density of the type~12!
@12#.

This whole approach amounts to the computation of
Casimir effect for the hadronic vacuum, a case study that
been already widely reported in the literature@7#. The nov-
elty of our approach consists in the use of the three-in
gauge potential, which, to our knowledge, has never b
considered before in connection with the Casimir effect. T
main difference lies in the fact that, since theF field is con-
stant within the region of confinement, it is insensitive to t
shape of the boundary, so that the resulting Casimir ene
density and pressure are also independent of the shape o
boundary and are affected only by the size of the volu
enclosed.

In order to substantiate the above statements, let us
turn to the technical side of our computation. Starting t
calculation ofZ(V) with theA integration, one must keep in
mind that theAmnr integration measure includes gauge fixin
terms and Fadeev-Popov ghosts. Appendix A discusse
full detail the regularization procedure that is required in t
case. There, we show that the calculation ofZ(V) boils down
to computing the path integral over the field strength co
figurations that satisfy the ‘‘constraint’’]lFlmnr50
4-4
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Z~V!5E @dF#J1/2d@]lFlmnr#expF2E
V
d4x

1

2•4!
Flmnr

2 G .
~26!

Since the constraint is nothing but the classical field eq
tion discussed in the previous section, it is easy to implem
it since in four dimensionsFlmnr5F(x)elmnr . Accordingly,
all possible classical solutions are of the formF(x)5const
[ f where f is an arbitrary parameter. The path integral
then evaluated by replacingF with its constant value in the
integrand~absorbing any field independent quantity into
global normalization constant!:

Z~V; f !5expF2
1

2
f 2VG ~27!

which is the standard result available in the literature@3#.
Thus, the resulting partition function is vanishing in the lim
V→` for any valuef Þ0. In other words, the only allowed
value is f 50 giving Z(V→`)5 ‘ ‘1.’’ This is the ‘‘trivial
vacuum’’ corresponding to a vanishing energy dens
pressure. However, when the volume is finite, one must t
into account contributions from the quantum vacuum flu
tuations of theF field coming from all possible, constan
values off. Here is where we depart from the convention
formulation of the sum over histories approach. Sincef is
constant but arbitrary,the sum over histories amounts to i
tegrating over all possible values of f

Z~V!5E
2`

` d f

m0
2E @dF#J1/2@Det~2]2!#21/2

3d@Flmnr2 f elmnr#expF2E
V
d4x

1

2•4!
Flmnr

2 G
5E

2`

` d f

m0
2

expF2
1

2
f 2VG5A 2p

Vm0
4

~28!

wherem0 is a fixed mass scale that is required in order
keep the integration measure dimensionless and all the J
bian factors cancel out. The final result is a fiel
independent, but volume-dependent, constant that is mis
in the standard formulation. Incidentally, the technique o
lined above is the same technique that leads to the co
expression for the particle propagator in ordinary quant
mechanics@19#.

From here we can proceed in two directions. First, we
calculate the size of the quantum fluctuations of thef field;
second, we can derive an expression for the vacuum en
density/pressure in the finite volume in which the quant
fluctuations of thef field are confined. With reference to th
first point, sinceD f is defined as

D f [A^ f 2&2^ f & 2 ~29!

we need to introduce an external sourcej in order to calcu-
late the average values in Eq.~29!. By definition
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Z~ f , j !

]Z~ f , j !

] j D
j 50

~30!

^ f 2&5S 1

Z~ f , j !

]2Z~ f , j !

] j 2 D
j 50

~31!

where we use the expression~28! in the presence of an ex
ternal source

Z~V!→Z~V; j !5E
2`

` d f

m0
2

expF2
1

2
f 2V2 j f G . ~32!

Equations~30! and ~31! lead to the following results:

^ f &50 ~33!

^ f 2&5
1

V
~34!

so that the variance off, Eq. ~29!, is given by

~D f !25^ f 2&5
1

V
. ~35!

The average of theF field turns out to be zero since op
posite values off are weighed equally in the partition func
tion ~28!. However, the final result~35! confirms that the
quantum fluctuations of theF field are confined in a finite
volume such that larger volumes are associated with sma
and smaller fluctuations.

Let us now turn back to the promised expression for
vacuum energy density/pressure. This follows from the us
definition

p[2
]

]V
ln Z~V!. ~36!

Once we compare it with the explicit expression~28!, we
find

p5
1

2V
5

1

2
^ f 2& ~37!

which tells us that the Casimir pressure is generated so
by the quantum fluctuations of theF field and is inversely
proportional to the quantization volumeV.

In closing this section, we wish to study the vacuum e
pectation value of the energy-momentum tensor as a ch
on the calculation discussed above. This study will also se
the purpose of comparing the quantum computation of^Tmn&
with its classical counterpart already discussed in Sec. II

In order to study vacuum expectation values we need
introduce anexternal sourcecoupled to the selected operat
and then compute the corresponding generating functio
The hadronic vacuum pressure and energy density can
extracted from the expectation value of the energy mom
tum tensor operator
4-5
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^Tmn&5 K 1

3!
FmabgFn

abg2
1

2•4!
dmnFabgdFabgdL ,

~38!

Tmn being the ‘‘current’’ canonically conjugated to the metr
tensor. Thus, we switch-on a non-trivial background me
gmn(x)

S0→
1

2•4!EV
d4xAggabgmggnsgrtFamnrFbgst ~39!

where g[detgmn(x). The metricgmn(x) plays the role of
external source forTmn , which means

^Tmn&[S 2

Ag

d

dgmn~x!
ln Z@g;V# D

g5d

. ~40!

Thus, the result is formally the same as in Eq.~28! except for
the presence ofAg in the expression of the volume

Z@g;V#5S 2p

m0
4V@g#

D 1/2

~41!

V@g#5E
V
d4xAg, V@g5d#5V. ~42!

Thus, the expression for the vacuum expectation value
Tmn is equivalent to

^Tmn&[S 2

Ag

1

Z@g;V#

dZ@g;V#

dgmn~x!
D

g5d

. ~43!

Since we have

dZ@g;V#

dgmn~x!
52

1

2m0
2
A 2p

V@g#
AggmnS 1

2V@g# D ~44!

combining Eq.~44! with the definition~43! we finally obtain

^Tmn&ug5d5S 1

2VD dmn . ~45!

This final expression ofTmn confirms the previous calcu
lation of the vacuum pressure as the quantum Casimir p
sure of the hadronic vacuum and concludes our discussio
the classical and quantum effects due to the three-index
tentialAmnr within a finite volume of spacetime. The specifi
coupling to a relativistic test bubble will be the subject of t
next section.

IV. HADRONIC BAGS

In this section we wish to study the behavior of areal test
bubble surrounding a vacuum domain, or bag, character
by the Casimir energy of theAmnr field. Within the test
bubble theF field may attain any value as opposed to t
exterior ~infinite! region where its value is zero.
10500
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Mathematically, this new situation corresponds to taki
as a new action

S0→S01
k

3!E d4xAmnrJmnr ~46!

whereJmnr is given in Eq.~12!. The finite volume partition
function now reads

Z~V;J!5E @dF#@DA#exp@2S~F,A!# ~47!

S~F,A!5E
B
d4xF 1

2•4!
Flmnr

2 2
1

4!
Flmnr] [lAmnr]

2
k

3!
JmnrAmnrG ~48!

V5E
B
d4x. ~49!

Once again, let us start the calculation ofZ(V;J) with the
A integration. The only difference with respect to the pre
ous case is that a bag is endowed with a non-vanish
boundary. In this case, some care must be exercised sinc
actionS0 can also be written in the form

S0~F,A!5E
B
d4xF 1

2•4!
Flmnr

2 1
1

3!
Amnr]lFlmnr

1
1

3!
]l~AmnrFlmnr!G . ~50!

The total divergence in Eq.~50! may induce a surface
term defined over]B. It is customary, in this instance, t
assume as boundary condition thatA is a pure gaugeon ]B

1

3!EB
d4x]l~AmnrFlmnr!5

1

4!E]B
d3s [l]mlnr] F̂

lmnr

[v~F,]B! ~51!

whereF̂ is the field induced on the boundary byF. Proceed-
ing in the manner discussed in the preceding section an
Appendix A, we find

Z~V;J!5E @dF#d@]lFlmnr2kJmnr#

3expF2E
B
d4x

1

2•4!
Flmnr

2 G
3exp@2v~F,]B!#. ~52!

The surface term does not contribute to the calculation
Z(V;J) after integration overF because of Stokes’ theorem
while the effect of the current is to shift the constant bac
ground valuef to f 1k within the membrane. Thus,
4-6
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1

234!EB
d4xFmnrsFmnrs

5
1

234!EB
d4xS emnrs f 2k] [l

1

2]2
Jmnr] D 2

5
1

2EB
d4x f in

2 2
f k

4!
emnrsE d4x] [l

1

2]2
Jmnr]

1
k2

233!EB
d4x] [l

1

2]2
Jmnr]] [l

1

2]2
Jmnr]

5
1

2
V fin@ f in22kQB~x!#

1
k2

233!E d4xJmnr
1

2]2
Jmnr . ~53!

The final result is obtained after integrating outf in :

Z~V;J!5A 2p

m0
4V

expH k2

2
VJ

3expS 2
k2

233!EB
d4xJmnr

1

2]2
JmnrD . ~54!

The above expression represents the basic generating
tional in the presence of a bag with a boundary. It will
used in the next section for the purpose of computing
Wilson loop of theA field.

A. Wilson factor and the static potential

In this section we assume that the hadronic manifoldB
extends indefinitely along the Euclidean time direction a
keeps the coupling term betweenAmnr and the boundary
Our objective is to determine the static potential betwe
pairs of points situated on the boundary of the test bub
that we take to be a spherical two-surface of radiusR.

The evolution of the two-sphere in Euclidean time is re
resented by a hyper-cylinderI 3S(2), whereI is the interval
0<tE<T of Euclidean timetE. On the two-surfaceS(2) let
us ‘‘mark’’ a pair of antipodal points and follow their~Eu-
clidean! time evolution. The two points move along parall
segments of total lengthT.

The standard calculation of the static potential betwe
charges moving along an elongated rectangular loop turn
the case under study, into the calculation of the Wils
‘‘loop’’ along the hyper-cylinderI 3S(2). The rectangular
path is now given by the two segments of lengthT and
diameter 2R of the sphere attE50 and tE5T. The corre-
sponding static potential is given by the following gener
ized Wilson integral:

V~R![2 lim
T→`

1

T
ln W@]B#. ~55!
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The path integral calculation ofW@]B# follows from the
finite volume boundary functional, Eq.~54!. The Wilson fac-
tor is defined as follows:

W@]B#[ K expF2
k

3!E d4xAlmnJlmnG L 5
Z@V ;J#

Z@V ;J50#

~56!

where V,` is understood and the limitV→` ~along the
Euclidean time direction! is performed at the end of the ca
culations.

In order to extract the static potentialV(R), we compute
the double integral in Eq.~54! for the currents associate
with a pair of antipodal pointsP and P̄

E
B
d4xJmnr

1

]2
Jmnr

5E
]B
E

]B
dym`dyn`dyr

1

]2
dym8 `dyn8`dyr8

5
1

4p2E0

T

dtE
T

0

dt8E
S(2)

d2sE
S(2)

d2jymnr~t,s!

3
1

@y~t,s!2y~t8,j!#2
ymnr~t8,j!d2@j2s#

~57!

where (s1,s2) and (j1,j2) are two independent sets o
world coordinates on theS(2) manifold and we have inserte
the explicit form of the scalar Green function.

The explicit details of the computation of the above in
gral can be found in Appendix B. The final result of th
somewhat lengthy procedure is given by the following e
pression:

E
0

T

dtE
0

T

dt8
1

~t2t8!214R2

5
1

RE0

T

dt arctanS t

2RD
5

T

R
arctanS T

2RD12R lnS 11
T2

4R2D ~58!

which, on account of the definition~55!, leads to the final
result

V~R![2 lim
T→`

1

T
ln W@]B#5

pk2

96
R3. ~59!

According to Eq.~59! the antipodal points on the spheric
membrane of radiusR are subject to an attractive potenti
varying with the volume enclosed by the membrane.
4-7
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V. CONCLUSIONS

In this paper we have tried to make a case that the h
ronic vacuum represents an ideal laboratory to test a
approach to the computation of the quantum vacuum p
sure in terms of an antisymmetric, rank-three, tensor ga
field Amnr . A vacuum with two-phases, hadronic and ord
nary, is the key ingredient of all ‘‘bag models’’ of quar
confinement. Presumably, this feature should eventu
manifest itself in the non-perturbative regime of QCD. As w
have argued in the Introduction, it is quite possible that
phenomenon of color confinement in quantum chromo
namics is due to the Abelian part of the Yang-Mills field a
that the long-distance behavior of QCD can be effectiv
described in terms of the rank-three gauge potential~5! as-
sociated with the Yang-Mills topological density@11,20#.

A consistent quantization of the Abelian gauge fieldAmnr

can be formulated in the ‘‘sum over histories approac
While the field strengthF is non-dynamical in the sense th
it propagates no physical quanta, it induces processes inv
ing virtual as well as real closed membranes and gives ris
a Casimir vacuum pressure that is inversely proportiona
the confinement volume. These results have been confir
by an explicit computation of the vacuum expectation va
of the energy-momentum tensor.

With the above results in hand, we have calculated
Wilson loop of the three-index potential coupled to a t
spherical membrane. From the Wilson factor we have t
extracted the static potential, Eq.~59!, between pairs of op-
posite points on the membrane. The ‘‘volume law’’ encod
in Eq. ~59! is a natural generalization of the well know
‘‘area law’’ for the static potential between two test charg
~quarks! bound by a chromodynamic string. As a matter
fact, it may be useful to compare the result of Eq.~59! with
the more familiar result for the Wilson loop of a quar
antiquark pair bounded by a string. In the latter case,
integration path is taken to be a rectangle of spatial sidR
elongated in the Euclidean time direction.

It is generally assumed that confinement is equivalent

W}exp~2sA! ~60!

whereA5TR is the area of the rectangle ands is a constant
with dimensions of (length squared)22. From the definition
~55! one extracts a linear potential between two test qua

V~R!5sR. ~61!

The rising of the potential with the distance betwe
charges corresponds to the fact that an increasing ener
necessary to separate them. In correspondence with Eq.~61!
we found the expression~59! according to which the energ
needed to separate diametrically opposite points on a sp
cal membrane rises asR3.

Note that Eq.~59! and Eq.~61! describe the same kind o
geometric behavior. In both cases the static potential is p
portional to the ‘‘volume’’ of the manifold connecting th
two test charges. In Eq.~61!, R is essentially the ‘‘linear
volume’’ of the string connecting the pair of test charges.
our case,R3 is proportional to the volume of the spheric
10500
d-
w
s-
e

ly

e
-

y

’’

lv-
to
o
ed
e

e
t
n

d

s
f

e

o

s

is

ri-

o-

membrane connecting the two antipodal points. Thus,
conclude that in the bag case, confinement is signaled b
‘‘volume-law’’ extending the string case area law.

It has been noted elsewhere@11# that the properties de
scribed in this paper represent the exact counterpart, in
spacetime dimensions, of the well known properties of
two-dimensional Schwinger model that is widely believed
be the prototype model of quark confinement. The cor
spondence between the dynamics of theAmnr field coupled
to quantum spinor fields and the dynamics of the Schwin
model is further explored in the third paper in this ser
@12#.

APPENDIX A: REGULARIZATION PROCEDURE
AND COUNTING THE NUMBER OF DEGREES

OF FREEDOM OF THE A FIELD

As mentioned in the text in connection with the expre
sion~25!, theAmnr integration measure includes gauge fixin
terms and Fadeev-Popov ghosts whose presence ca
traced back to the fact that the actionS0 is invariant under
the gauge transformation

dlAmnr5] [mlnr] ~A1!

dlFmnrs50 ~A2!

so that the integration measure for theA field must be prop-
erly defined in order to avoid overcounting of physica
equivalent field configurations. In the second order formu
tion, gauge invariance prevents one from inverting the
netic operator and from computing theA-path integral~in
spite of its Gaussian-looking form.!

The usual procedure is to break gauge invariance ‘
hand’’ and compensate for the unphysical degrees of freed
produced by gauge fixing by means of an appropriate se
ghost fields. In the Lorentz gauge one finds

@DA#5@dA#d@]mAmnr#DFP ~A3!

where the Fadeev-Popov determinant is defined through
gauge variation of the gauge fixing function

DFP[detF d

dlmn
]r] [rlst] G

5det@]r] [rds
mdt]

n #, ~A4!

whereDst
mn[]r] [rds

mdt]
n is the covariant D’Alembertian ove

2-forms. This operator introduces a new gauge invaria
that must in turn be broken and compensated until all
unphysical degrees of freedom are removed@21#. This
lengthy procedure is necessary in order to perform pertu
tive calculations and compute Feynman graphs. However
are interested in a non-perturbative evaluation of the p
integral. With this goal in mind, let us remark that in the fir
order formulationAmnr enters linearly into the action rathe
than quadratically. In other words, the non-dynamical nat
of Amnr is made manifest in the first order formulation whe
Amnr plays the role of a Lagrange multiplier enforcing th
4-8
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classical field equation forFlmnr . Thus, instead of going
through all the steps of the Fadeev-Popov procedure,
more expedient to separateAmnr into the sum of a Goldstone
term unr and a gauge inert part~modulo a shift by a con-
stant! emnrs]sf

Amnr[emnrs]sf1] [munr] ~A5!

dlf50, dlunr5lnr . ~A6!

Accordingly, the functional integration measure becom

@dA#5J@df#@du# ~A7!

whereJ is the functional Jacobi determinant induced by t
change of integration variables~A5! ~not to be confused with
the Fadeev-Popov determinant!. Explicitly, J reads as fol-
lows:

J5@Det~2]2!#1/23FDetS 2
1

3!
esabg]gesabr]rD G1/2

5@Det~2]2!# ~A8!

and yields the correct counting of the physical degrees
freedom. As a matter of fact, at first sight it seems that
have introduced two new degrees of freedom:u and f,
while from the classical analysis of the previous section
expectA to describe a constant background field.

Let us show first howu drops out of the path integral. Th
classical action isu independent because of gauge invarian

S0~F,A![S0~F,f! ~A9!

and does not provide the necessary damping of ga
equivalent paths. However, the gauge fixed-compensate
tegration measure reads

@DA#[@df#@du#Jd@]m] [munr] #DFP ~A10!

and we can get rid of the gauge orbit volume. Since

E @du#d@]m] [munr] #DFP51 ~A11!

we obtain a path integral over gauge invariant degrees
freedom only:

Z~V!5E @dF#@df#J exp@2S0~F,f!#

S0~F,f![E
V
d4xF 1

2•4!
Flmnr

2 2
1

3!
]lFlmnremnrs]sfG .

~A12!

At this point we have a choice. Suppose we integrate fi
over F. This is a Gaussian integration and we obtain

Z5E @df#JexpF2E d4x
1

2
f~2]2!~2]2!fG .

~A13!
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Now, integrating over the scalar fieldf one sees that the
contribution of thef-field fluctuations exactly cancel again
the Jacobian because of the presence of ‘‘box squared’
netic term@22#

Z5@Det~2]2!#3@Det~2]2!2#21/251. ~A14!

Thus, no spurious degrees of freedom were introdu
through the ansatz~A5!.

On the other hand, it is interesting to check on the abo
procedure by reversing the order of integration and start w
f instead ofF. In this case it is more convenient to introduc
the new integration variable

Umnr[emnrs]sf ~A15!

and write the integration measure as follows:

@df#5@dU#@Det~2]2!#21/25J21/2@dU#. ~A16!

Hence, we obtain

Z5E @dU#@dF#J1/2expF2E
V
d4xS 2

1

2•4!
Flmnr

2

2
1

3!
]lFlmnrUmnrD G ~A17!

and notice that the path integral is linear in theU variable. In
order to integrate over this variable it is convenient to rota
temporarily, from a Euclidean to a Minkowskian signature
such a way as to reproduce the functional expression of
Dirac delta function

E @dU#expS 2
i

3!EV
d4xUmnr]lFlmnrD 5d@]lFlmnr#.

~A18!

Once we rotate back to the Euclidean signature we are le
the expression~26! quoted in the text of the paper.

APPENDIX B: THE COMPUTATION OF THE WILSON
FACTOR

With reference to Eq.~57! in the text, let us indicate by

ymnr5eabc]aym]ayn]byr ~B1!

the ‘‘tangent elements’’ to the world history of the te
bubble. The membrane world manifold is a hyper-cylind
with the Euclidean metric given by~in polar coordinates!

ds25gab~s!dsadsb5dt21R2~du21sin2udf2!
~B2!

where 0<f<2p, 0<u<p, 0<t<T. The embedding in
target spacetime is obtained through the equations

y15R sinu sinf ~B3!

y25R sinu cosf ~B4!
4-9
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y35R cosu ~B5!

y45t. ~B6!

Then, with the above choice of coordinates, we find

ymnr5] [ ty
m]uyn]f]y

r ~B7!

yi jk[0

y4i j 5] [uyi]f]y
j .

The explicit expression of the tangent elementsyi jk evalu-
ated at the pointP can be written as follows:

y12~u,f![] [uy1]f]y
252R2cosu sinu

y13~u,f![] [uy1]f]y
35R2sin2u cosf

y23~u,f![] [uy2]f]y
352R2sin2u sinf.

Then, for the antipodal pointP̄ the same expressions b
come

y12~p2u,f1p!5R2cosu sinu

y13~p2u,f1p!52R2sin2u cosf

y23~p2u,f1p!5R2sin2u sinf.

From the above expressions, we explicitly calculate

ln W@]B#5
k2

48p2E0

T

dtE
T

0

dt8E
0

p

du

3E
0

2p

dfyi j ~u,f!
1

@y~u,f!2y~p2u,f1p!#2

3yi j ~p2u,f1p! ~B8!

so that
l.
.

s.

,

10500
1

2
yi j ~u,f!yi j ~p2u,f1p!52R4sin2u ~B9!

@y~u,f!2y~p2u,f1p!#25~t2t8!214R2.
~B10!

Therefore the logarithm ofW@]B# is

ln W@]B#52
k2R4

48 E
0

T

dtE
0

T

dt8
1

~t2t8!214R2
.

~B11!

We now proceed to calculate the double integral in E
~B11!:

E
0

T

dtE
0

T

dt8
1

~t2t8!214R2

52E
0

T

dtE
t

t2T

du
1

u214R2
, u[t2t8

52
1

2RE0

T

dtE
t/2R

(t2T)/2R

dy
1

11y2

52
1

2RE0

T

dtFarctanS t2T

2R D2arctanS t

2RD G
~B12!

E
0

T

dt arctanS t2T

2R D
5E

2T

0

dsarctanS s

2RD , t2T[s

52E
0

T

dsarctanS s

2RD , s→2s. ~B13!

Setting together Eqs.~B12! and~B13! we obtain the expres
sion ~58! quoted in the text.
on
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hys.
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