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Quantum fluctuations of a “constant” gauge field

Antonio Aurilia*
Department of Physics, California State Polytechnic Univerdflymona, Pomona, California 91768, USA

Euro Spallucdi
Dipartimento di Fisica Teorica, Universitdi Trieste and INFN, Sezione di Trieste, 1-34014 Trieste, ltaly
(Received 18 July 2003; published 7 May 2004

It is argued here that the quantum computation of the vacuum pressure must take into account the contri-
bution of zero-point oscillations of a rank-three gauge field. The #ej¢l, possesses no radiative degrees of
freedom, its sole function being that of polarizing the vacuum through the formatiéinitefdomains char-
acterized by a non-vanishing, constant, but otherwise arbitrary pressure. This extraordinary feature, rather
unigue among quantum fields, is exploited to associatés field with the “bag constant” of the hadronic
vacuum, or with the cosmological term in the cosmic case. We find that the quantum fluctuatps, afre
inversely proportional to the confinement volume and interpret the result as a Casimir effect for the hadronic
vacuum. With these results in hands and by analogy with the electromagnetic and string case, we proceed to
calculate the Wilson loop of the three-index potential coupled to a “test” relativistic bubble. From this calcu-
lation we extract the static potential between two opposite points on the surface of a spherical bag and find it
to be proportional to the enclosed volume.
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I. INTRODUCTION due to the quantum fluctuations of tAg,, field. As a matter
of fact, we shall argue in the following sections that there are
It is well known that the cosmological term introduced in non-trivial volume effects due to the quantum fluctuations of
general relativity can be expressed as the vacuum expectge A field.

tion value of the energy-momentum tensor, as one might |et us switch now from the cosmological case to the had-

expect on the basis of relativistic covariance ronic case and consider the implications of quantum vacuum
A energy in connection with the outstanding problem of color
(THY)y= e grv. (1)  confinement in the theory of strong interactions. Somewhat

a

surprisingly, perhaps, the formal connection between the two

. : extreme cases, cosmological and hadronic, is provided by the
It is less well known that the same cosmological term Can._ e three-index potential. . introduced earlier
be formulated as the gauge theory of a rank-three antisym- P mrp '

metric tensor gauge potential,, [1—4] with an associated Quantum chromodynamics is universally accepted as the

|
field strength moe fundamental gauge theory of quarks and gluons. Equally ac-
cepted, however, is the view that QCD is still poorly under-
F =V. A 2) stood in the non-perturbative regime where the problem of
uvpo— Y[uMvpol . .
color confinement sets in. On the other hand, the phenom-
invariant under the tensor gauge transformation enon of quark confinement is accounted for, as an input, by

the phenomenological “bag models,” with or without sur-
face tension[6]. In some such models it is assumed, for
instance, that the normal vacuum is a color magnetic conduc-
tor characterized by an infinite value of the color magnetic
1 1 permeability while the interior of the bag, even an empty
- RI d*xy—gR— 2><4!j d4X\/—_gF“”"FWV,, one, is_ chqracterized by a finite color magnetic p(_armeability.
4) In the interior of the bag the vacuum energy density acts as a
hadronic “cosmological constant” originating from zero-
leads to the familiar Einstein equations in the presence of @oint energy due to quantum fluctuations inside the Bags
cosmological ternj4,5]. is a type of Casimir effect for the hadronic vacuuho our
Equation(1) suggests that the cosmological term is assoknowledge, in spite of the fairly large amount of literature on
ciated with the zero-point energy of the cosmic vacuumthe subjecf7], this effect has never been discussed before in
Then, in view of theequivalencestated above, we are natu- terms of theA ,,, field. Ultimately, the origin of this effect,
rally led to question the calculability of the zero-point energyand therefore of the cosmological bag constant, should be
traced back to the fundamental dynamics of the Yang-Mills

Apvp= Aupt Vi vp) - )

Indeed, one readily verifies that the classical action

S:

field.
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fundamental variables of QCD is given by the “topological of degrees of freedom of th& field, while Appendix B de-
density” TrF#"*F ,, through the specific identification scribes the mathematical steps involved in the calculation of
the Wilson factor and the static potential that follows from it.
KV 1 62 A CDTr(A[M‘?VApl TALAA). () IIl. CLASSICALLY “TRIVIAL" DYNAMICS VS NON-
TRIVIAL QUANTUM EFFECTS
In support of this identification, notice that a Yang-Mills
gauge transformation in Ed5) induces anAbelian gauge
transformation of the typé3)

Rank-three potentiald,,, ,(x) were introduced as a gen-
eralization of the electromagnetic potential and of the Kalb-
Ramond potential in string theofyt4—16.

In the free case, unlike the electromagnetic case, the clas-

1 1
5AWP:gA—QCDTr[(D[“A)FVP]]E 6’9“*"”” (6) sical dynamics described by the Lagrangian density
. . 1
where Agcp is the energy scale at whicQCD becomes LOEﬁ(ﬂluAvw])z’ 7

intrinsically non-perturbative.

Against this background, this paper is the second in a . .
series dealing with the hadronic and cosmological implica-IS ?X&CEE/ solvablel_the df"\eﬂld SIr?IngtH:l;PP”: yn
tions of the vacuum quantum energy associated with thg0'Ves the generalized Maxwell equations
three-index potentiah,,,. In view of the chain of argu-

ments offered above, we shall refer to that field as the “cos-

molo.g'ical field"_or “topologica[ fieldz" depending on the yescribes a constant background field,, ,=fe ,
specific application under consideration. Some such applicayheref is an arbitrary integration constant. nrpe

tions in the cosmological case, in particular in connection 1 physical meaning of the constats most simply
with the problem of dark energy and dark matter in the Uni-nqerstood in terms of two unique properties of the three-
verse have been discussed in the first paper of the 4&iies index potential.

Rank three gauge potentials also appear in different sec- (i) The energy momentum tensor derived from E4).in

tors of high energy theoretical physics, e.g., supergrd@ly e limit of flat spacetime
cosmology[8], and both gauge theory of gravif9] and of

extended object$10]. As argued above, a central role is 2 55
MV_( )
g=96

Avp(r] that

3,FH7P7=0 ®)

Jg g+

played by this kind of gauge field in connection with the
problem of confinemenrti1].

The present paper focuses on the general properties of the
topological field as ar\belian gauge field of higher rarthut L TF
with an eye on the future discussion of the problem of con- 31 naby
finement inQCD. Ultimately, we wish to calculate the Wil-
son loop for the three-index potential coupled to the threeteduces to the following simple form:
dimensional world history of a spherical bubbl&o our 5
knowledge, this calculation has never been done before and T :f_
represents the preparatory ground for the inclusion of fermi- mwr 2
ons in the mode[12].

Our calculations are performed in the Euclidean regime At first sight, quantizingA seems to be meaningless be-
and represent a generalization of the more conventional catause there are no dynamical degrees of freedom carried by
culations for the Wilson loop in the case of quantum chro-A. However, the similarity between Eqgl0) and (1) sug-
modynamic strings leading to the so called “area law” that isgests that, in spite of the “triviality” of the classical field
taken as a signature of color confinemé¢h8]. From the equation for the three-index potential, the constant of inte-
Wilson loop we extract the static potential between two an-grationf may be related, at a quantum-mechanical level, to
tipodal points on the surface of the bag and find it to bethe vacuum expectation value of the energy momentum ten-
proportional to the volume enclosed by the surface. This isor arising from the zero-point energy due to the quantum
consistent with the basic underlying idea of confinement thafluctuations of theA field. We shall confirm this expectation
it would require an infinite amount of energy to separate theand calculate the quantum corrections to the energy-
two points. This calculation is performed in Sec. IV. momentum tensor in the following section.

As a stepping stone toward that calculation, we investi- (ii) The gauge transformation property, E8), requires
gate in Sec. lll what amounts to the Casimir effect for thethat even in the absence of gravity, tAg,,(x) potential be
A, field. Section Il discusses some of the unique propertiesoupled to a rank-three current density/”(x) with support
of theA,,, field that are manifest even at the classical levelover the spacetime history of a relativistic membrane, or
but are instrumental for our discussion of the effect of quan2-brane[8].
tum fluctuations of theé\ field. Some concluding remarks are  Since the latter property is instrumental for our subse-
offered in Sec. V. Finally, Appendix A contains some techni-quent discussion, it may be helpful to elaborate briefly on it.
cal details of the regularization procedure and the countingdror later convenience, in this paper we work with Euclidean,

1
a afyd
o= S 0uF P Fagys (9

1)

wv:

(10
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or Wick rotated, quantities. Then, the Lagrangian density un- 5
der consideration is as follows: = sz (I8 [x=Y]) €™, Y5, YP

1 K
L:—((? AV 0')2__\]#VpA v
TR T = J2d3oem“'(9m(54)[x—Y]r?nY”arYP)

1 Auv, 1 Auv,
== 5 P Pt g PP IpA

vp]
m =J d(89[x—Y]dY"AdY?)
p H
— 5 IR, (11)

=J sY[x—yldy"Ady?=0. (16)
M=

J’”P(x;Y)Ef S[X=Y]dY*AAY*/ANDYP
H Thus,d,J*"*(x)=0<dH=0.
It seems physically intuitive, at this point, that the pres-
_ f A3 oV [x—Y]em 9, Y a9, Y"3,Y" ence of a closed membran_e separates spacv_atime into two dis-
s tinct regions, namely the interior and exterior regions of a
(12 “vacuum bag.” The interesting point, however, is that the
two regions are characterized by different value of the
whereH is the target spacetime image of the WOf'd-manifO'dvacuum energy density and pressure on either side of the
>, through the embeddiny:>—H. It is important to keep domain wall[8].
in mind that in thefirst order formulation adopted here, Mathematically, the argument goes as follows3Jjfde-
Fauvp @ndA,,,, are treated as independent varialeg. In - fined as in Eq(12), is divergence-free, then it can be written

this formulation, ther-field equation is algebraic rather than as the divergence of a rank four antisymmelrégy current K
differential, and this provides the link between first and sec-

ond order formulation: JEPP(X) = g, KNP (17)
oL where
5F)\;va:0_)F)‘MVP:ﬁ[>\AMVP] (13)
K P (x) = f sY[x—z]d2N\dz*N\dz"/\dZ (18
B
5Awp=0—>axFW””= KJIHPP(X). (14

andH=B. On the other hand,

The model LagrangiarEq. (11) is the basis for classical \ ) N
and quantunt membrane dynamig’s CMD and QMD re- dZ'/Adz*A\dz'/\d2’= """z, (19
spectively Provided that the current is divergence-free, the s
model is invariant under the extended gauge transformatiorf© that one can writ&*#*?(x) as
A 1y = I u Ny 9,04 7P(X) =0, (15) KMYP(x) = eMrP@ g(X) (20
The divergence free conditiofi5) is satisfied whenever where
the membrane history has no boundary, which means either
(a) spatially closed, real membranes, whose world track is 4, sa)
infinitely extended along the timelike direction, ) spa- Op(X)= de 26Y[x-2] (21)
tially closed, virtual branes emerging from the vacuum and

trienc]:glﬁg]smg into the vacuum after a finite interval of PTOPET the characteristic functiorof the B manifold, i.e., a gen-

This property is central to our subsequent discussion inerallzed unit itep function: _
Os(PeB)=1, Oz(P«B)=0.

Secs. lll and IV. Thus, in order to prove that this is the case, One can also express the bulk currénin terms of the
let us compute the divergence of the current: Pr . )
boundary currend by inverting Eq.(17):

€M Y Y I, YP

J
3, I#P(X =f o — Y [x-Y 1
o ( ) s 0'( Ix- [ ] &AK)\,U,V,J:JMVP(X)_)K)\MV;):(9[)\?J,uvp]_ (22)

UL ZF R RY. Now, by solving Maxwell’s field equatiofil4), one finds the
following equivalent expressions of ttrefield:

=f d%(ié“)[x—v]
s0 | gym
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. VACUUM FLUCTUATIONS OF A,,,

1 AND HADRONIC
R P LR ) CASIMIR PRESSURE
J

Our immediate objective here is to study the effect of
quantum fluctuations of tha,,, field in a finite (four) vol-
=M f+ kOg(X)] (23 ume along the lines suggested by the arguments of the pre-
ceding section. For the purpose of illustrating the path-

) ) i integral method advocated here, the mathematical object of
wheref is, again, the constant solution of the homogeneougnterest is the finite volumé partition functional Z(V)
equation.

The gist of the above calculations is the rather remarkable
fact that the dynamics of the model Lagrangidd) is still Z(V):f [dF][DA]exd — So(F,A)] (24)
exactly solvableas it was in the free field case: the effect of
the coupling is that thé field produces at most @onstank
pressure difference between the interior and exterior of a
closed 2-brane. This special static effect, namely the exis- SO(F,A)=J d*x
tence of a vacuum with two distinct phases, makes Ahe v
field a suitable candidate for providinggauge description (29
of a“ confined cosmological constahtor vacuum pressure
in a finite region of spacetimehat is the essential ingredient At this stage)V represents a fiducial volume momentarily
of all hadronic bag models. This property is the basis for outintroduced by hand, according to the argument of the previ-
subsequent interpretation of the interior vacuum energy dersus section, in order to give a definite meaning to the com-
sity as aquantum Casimir energgf a hadronic bag. putation of the quantum vacuum pressure within a cavity, or
It should be clear from the above discussion that the exspacetime domain of finite extension. The physical mecha-
plicit computation of the Casimir pressure requires the exisnisms that may give rise to such confined quantum configu-
tence of a finite volume in which the quantum fluctuations ofrations have been mentioned before and will be discussed in
the A field take place. At the quantum level, one may formal-the following. In the course of this calculation one must dis-
ize this argument as follows. tinguish between “volume, or bulk” effects from “surface,
The meaning of quantization of a “constant field” is per- or boundary” effects. Accordingly, we focus first on the vol-
haps best understood using the “sum over historiessime contribution to the vacuum pressure. Not surprisingly,
approach” where one has to sum over all possible configuperhaps, it will turn out that the size of the domain is char-
rations of the field, constant in our case, and weighacteristic of the size of the homogeneous fluctuations of the
each of them with the usual factor, namely, A field. Later, we shall discuss the case, anticipated in the
exp(—Euclidean action). The Euclidean action is the fourprevious section, in which the spacetime region where fluc-
volume integral of the Lagrangian density evaluated on theauations take place is bounded by a closed membrane
given field configuration. In the case of tiefield, the La-  coupled toA. Ultimately, we are interested in a bag model
grangian density is constant over all possible configurationgype of confinement mechanism that can be obtained by cou-
and the Euclidean action is simpliuclidean actior=(four  pling A, to a fermionic current density of the typél2)
volume) X const Then, in the limitV—co all quantum fluc-  [12].
tuations are frozen and the valfie 0 is singled out, as one This whole approach amounts to the computation of the
might reasonably expect in the classical limit. Indeed, in theCasimir effect for the hadronic vacuum, a case study that has
absence of both gravity and coupling to a matter field, éeen already widely reported in the literatyi@. The nov-
classical background field constant over the whole spacetimelty of our approach consists in the use of the three-index
manifold can be rescaled to zero as it cannot be distinguisheguge potential, which, to our knowledge, has never been
from the ordinary vacuum. considered before in connection with the Casimir effect. The
By reversing the argument, at the quantum level ghe main difference lies in the fact that, since thdield is con-
field has a physical meaning only if it has a non-vanishingstant within the region of confinement, it is insensitive to the
constant field strengtk within a finite volume spacéme) shape of the boundary, so that the resulting Casimir energy
region, one possibility being the one entertained beforegensity and pressure are also independent of the shape of the
namely, the interior of a hadronic bag. Another possibilityboundary and are affected only by the size of the volume
mentioned earlier, a purely quantum mechanical one, is thenclosed.
formation ofvirtual bubbleswhosehistorieshave no bound- In order to substantiate the above statements, let us now
ary since they arise from the vacuum and recollapse into thturn to the technical side of our computation. Starting the
vacuum after a finite proper time interval within the con- calculation ofZ(V) with the A integration, one must keep in
straint of the uncertainty principle. mind that theA ,,, integration measure includes gauge fixing
Whatever the case may be, the conclusion is the same @&srms and Fadeev-Popov ghosts. Appendix A discusses in
before. Even if non-dynamical in the usual sendg,, is  full detail the regularization procedure that is required in this
ideally suited to describ@acuum domainsor bags each case. There, we show that the calculatioZ ¢¥) boils down
domain being characterized by a vacuum energy density difto computing the path integral over the field strength con-
ferent from the energy density of the surrounding vacuum. figurations that satisfy the “constraint, F**"?=0

1 Ay,
FMP 9, A

2
241 T g1 ol |-
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1 1 9Z(f,j)
— 1/2 Nuvp _ 4 2 [
Z(V) f[dF]J ol o\ F ]ex;{ Jvd x2.4!Fwa . (f) (Z(f,j 7 )j_o (30
26
29 2 _ 1 5%Z2(f,))
Since the constraint is nothing but the classical field equa- (f9= Z(f,j) Jj 2 (31)

tion discussed in the previous section, it is easy to implement j
it since in four dimensionk,,,,,,=F(X) €, .., - Accordingly,  \yhere we use the expressié28) in the presence of an ex-
all possible classical solutions are of the fofix) =const  {ornal source

=f wheref is an arbitrary parameter. The path integral is

then evaluated by replacirfg with its constant value in the = df 1
integrand(absorbing any field independent quantity into a z(v)ﬂz(v;j):f _Zexr{_ Efzv_jf} (32)
global normalization constant —* Mo

@7 Equations(30) and (31) lead to the following results:

1

Z(v;f)=exp[— Ef2v
(f)=0 (33

which is the standard result available in the literat[8¢

Thus, the resulting partition function is vanishing in the limit (£2)= 1 (34)

V—oo for any valuef #0. In other words, the only allowed V

value isf=0 giving Z(V—»)="1." This is the “trivial

vacuum” corresponding to a vanishing energy density/so that the variance df Eq. (29), is given by

pressure. However, when the volume is finite, one must take

into account contributions from the quantum vacuum fluc- (AF)2=(f2)= 1 (35)

tuations of theF field coming from all possible, constant, A

values off. Here is where we depart from the conventional

formulation of the sum over histories approach. Sihde The average of th€ field turns out to be zero since op-
constant but arbitranthe sum over histories amounts to in- posite values of are weighed equally in the partition func-
tegrating over all possible values of f tion (28). However, the final result35) confirms that the

quantum fluctuations of th& field are confined in a finite
» df volume such that larger volumes are associated with smaller
Z(V)=f _Zf [dF]I¥] Det - %] V2 and smaller fluctuations.
T Ho Let us now turn back to the promised expression for the
vacuum energy density/pressure. This follows from the usual

1
X JF*“VP—fe”“”P]ex;{ —f d*x=——F2 definition
v

241 huve
< df 1,
:f —28X _Ef V
—* Mo

J
- =——yInzv). (36)

“\/— (28)
Vg

Once we compare it with the explicit expressi@8), we

where u, is a fixed mass scale that is required in order tofind
keep the integration measure dimensionless and all the Jaco-
bian factors cancel out. The final result is a field- _ i: E<f2> 37)
independent, but volume-dependent, constant that is missing P 2v. 2
in the standard formulation. Incidentally, the technique out-
lined above is the same technique that leads to the correwthich tells us that the Casimir pressure is generated solely
expression for the particle propagator in ordinary quantunby the quantum fluctuations of tHe field and is inversely
mechanicg19]. proportional to the quantization volumé

From here we can proceed in two directions. First, we can In closing this section, we wish to study the vacuum ex-
calculate the size of the quantum fluctuations of ttield; pectation value of the energy-momentum tensor as a check
second, we can derive an expression for the vacuum energn the calculation discussed above. This study will also serve
density/pressure in the finite volume in which the quantunthe purpose of comparing the quantum computatiofirof,)
fluctuations of the field are confined. With reference to the with its classical counterpart already discussed in Sec. Il.

first point, sinceAf is defined as In order to study vacuum expectation values we need to
introduce arexternal source&oupled to the selected operator
Af=\(f2)—(f) ? (29 and then compute the corresponding generating functional.

The hadronic vacuum pressure and energy density can be
we need to introduce an external soujaa order to calcu- extracted from the expectation value of the energy momen-
late the average values in E@9). By definition tum tensor operator

105004-5
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1 5 1 Mathematically, this new situation corresponds to taking
(Tun) =\ 37 F naprFo"" = 577 O FYF 155 ), as a new action

(39)

K
— 4 mwp
T, being the “current” canonically conjugated to the metric So—Sot 3!f A Ay (46)

tensor. Thus, we switch-on a non-trivial background metric
9,u(X) whereJ*#"* is given in Eq.(12). The finite volume partition
function now reads

So— 2. 4|fd4x\/_gaﬁg#79wgpr|:awp,:ﬁym (39
20v9)= [ [aFIDATeqi-SF.A] @7

where g=detg,,,(x). The metricg,,(x) plays the role of

external source foll ,,, which means 4 1 Auvp
S(F,A)= J' d*x > Al vap_EF INA L]
(Tuw) InZ[g;V] (40) p
KY(y v
J— g™ (x) g=s _ a‘]ﬂ AL, (48)
Thus, the result is formally the same as in E2B) except for
the presence of/g in the expression of the volume V:f d*x (49)
2 1/2
Z[g;V]= Vgl (41) Once again, let us start the calculationzgf/;J) with the
0

A integration. The only difference with respect to the previ-

ous case is that a bag is endowed with a non-vanishing

V[g]= J' d4x\/§, V[g=4]=V. (42) boundary. In this case, some care must be exercised since the
v action S, can also be written in the form

Thus, the expression for the vacuum expectation value of

T, is equivalent to So(F,A)= fB —2 21 FRumpt 31 AMVP‘?)\F)\MVP
T ( 2 1 8Z[g;V] . 1 .
W= TE e + = a\ (A, F ey | (50)
Vg ZL9:V] sgr¥(x) s 3! rvp

Since we have The total divergence in Eq50) may induce a surface
term defined ovewB. It is customary, in this instance, to

5Z[g:V] 1 assume as boundary condition tiais a pure gaugeon ¢B

sg(x)  2ud Y VIdl 49

@g,w(

2V[g]

1 ~
= f N W e T f Aoy d N FMP
combining Eq.(44) with the definition(43) we finally obtain *JB 4!

1 =w(F,dB) (51
<Tuv>|g=6:(ﬁ> 5/41/' (45)
whereF is the field induced on the boundary By Proceed-
This final expression of ,, confirms the previous calcu- ing in the manner discussed in the preceding section and in
lation of the vacuum pressure as the quantum Casimir presppendix A, we find
sure of the hadronic vacuum and concludes our discussion of

the classical and quantum effects due to the three-index po- _ Npirp v

tential A ,,,, within a finite volume of spacetime. The specific Z(Vid)= | [dFJSLa\F P = kJ#77]

coupling to a relativistic test bubble will be the subject of the L

next section. 4 2
xexp{—f d XﬁF)\MVP

IV. HADRONIC BAGS
X exy] — w(F,dB)]. (52)

In this section we wish to study the behavior akeal test
bubble surrounding a vacuum domain, or bag, characterized The surface term does not contribute to the calculation of
by the Casimir energy of thé,,,, field. Within the test Z(V;J) after integration oveF because of Stokes’ theorem,
bubble theF field may attain any value as opposed to thewhile the effect of the current is to shift the constant back-
exterior (infinite) region where its value is zero. ground valud to f+ x within the membrane. Thus,

105004-6
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1 . The path integral calculation & 9B] follows from the
2><4lf d*xFPF e finite volume boundary functional, E¢64). The Wilson fac-
B tor is defined as follows:
2
_ 1t J.d4x<e#VmW——Ka“-§£—J#VM> K Z[V ;J]
2X 41 _ 72 = — 4 D72 72 B e
B d W[dB] <exp{ 3!fd XA d > ZIV 9=0]
1 fr 1 (56)
_ 2 v
= Ede“Xfm— ﬂff“’p”f d4X5[}\_—(92\]'U“ Pl
where V<« is understood and the limi¥—« (along the
K2 1 1 Euclidean time directionis performed at the end of the cal-
+ d*xo J#elgy ——J,, culations.
2Xx3! g 2 (N _ g2 nvel :
In order to extract the static potenti(R), we compute
1 the double integral in Eq(54) for the currents associated
= E\/fm[fm_2K@B(X)] with a pair of antipodal point® and P
2 1
« vo_ L J.d4xJMVP——J
+2x3L[d&yL5f§me- (53) B g2
The final result is obtained after integrating dyj: =f dy"/\dy”/\dypédy;/\dy;/\dy;
B J B
2(v:3)= | 2X 4K2v] 1 (T (o
W)=\ ——exp =
! 4 2 —- ’ 2 2 g\ mvp
uoV a2, deT dr 5(2)d o s(z)d EYyHPP(T,0)

K2 4y vuvp 1
X ex _2><3!de xJ _—aZJM, . (B4 %
ly(r,0)=y(7",§)

The above expression represents the basic generating func- (57)
tional in the presence of a bag with a boundary. It will be

used in the next section for the purpose of computing thevhere !,02) and (&%) are two independent sets of

Y788 0]

Wilson loop of theA field. world coordinates on ths manifold and we have inserted
the explicit form of the scalar Green function.
A. Wilson factor and the static potential The explicit details of the computation of the above inte-

In this section we assume that the hadronic manii®ld gral can be found in Appendix B. The final result of that

extends indefinitely along the Euclidean time direction anosomewhat lengthy procedure is given by the following ex-

keeps the coupling term betwed),,, and the boundary. pression.

Our objective is to determine the static potential between

pairs of points situated on the boundary of the test bubble J'Td JTd , 1

that we take to be a spherical two-surface of radtus o Joo" (1—7')*+4R?
The evolution of the two-sphere in Euclidean time is rep-

resented by a hyper-cylindéix S?), wherel is the interval 1T T

0=<tE<T of Euclidean timetf. On the two-surfac&® let - ﬁJO drarctan 5

us “mark” a pair of antipodal points and follow the{iEu-

clidean time evolution. The two points move along parallel T

segments of total length. = ﬁarctaré
The standard calculation of the static potential between

charges moving along an elongated rectangular loop turns, in . i

the case under study, into the calculation of the WilsonVhich, on account of the definitio(65), leads to the final

“loop” along the hyper-cylinderl X S). The rectangular result

path is now given by the two segments of lengthand )

diameter R of the sphere at5=0 andtf=T. The corre- V(R)=— lim EInV\/[&B]= T 3 (59

sponding static potential is given by the following general- T 9%

ized Wilson integral:

2

T
+2RIn| 1+ —
4R?

2R (58)

T—w

According to Eq.(59) the antipodal points on the spherical
V(R)=— lim =InW[JB]. (55) membrane of radiuR are subject to an attractive potential
Tow T varying with the volume enclosed by the membrane.

1
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V. CONCLUSIONS membrane connecting the two antipodal points. Thus, we
. . onclude that in the bag case, confinement is signaled by a
In this paper we have tried to make a case that the ha(f'volume—law" extending the string case area law.

e o"L0r0r 1 5L "4 I ha been noted lsewheftl] it the proprtes ce
bpro pu he q Precribed in this paper represent the exact counterpart, in four
sure in terms of an antisymmetric, rank-three, tensor gaug

. . . . gpacetime dimensions, of the well known properties of the
field AMVI;h Akvacgum \év.'th ttw?—pna}‘sbes, had(;o:ng: afnd ordk|— two-dimensional Schwinger model that is widely believed to
nary, 1S the ey ingredient ol a ag models ot quark . .o prototype model of quark confinement. The corre-
confinement. Presumably, this feature should eventua"%pondence between the dynamics of fg,, field coupled
manifest itself in the non-perturbative regime of QCD. As we, quantum spinor fields and the dynamicg of the Schwinger
have argued in the Introduction, it is quite possible that themodel is further explored in the third paper in this series
phenomenon of color confinement in quantum chromody—[lz]
namics is due to the Abelian part of the Yang-Mills field and '
that the long-distance behavior of QCD can be effectively
described in terms of the rank-three gauge poteitsipbs-
sociated with the Yang-Mills topological density1,20.

A consistent quantization of the Abelian gauge fidlg,,

can be formulated in the “sum over histories approach.” As mentioned in the text in connection with the expres-
While the field strengtli is non-dynamical in the sense that sjon (25), theA,,,, integration measure includes gauge fixing
it propagates no physical quanta, it induces processes involyarms and Fadeev-Popov ghosts whose presence can be

ing virtual as well as real closed membranes and gives rise t@aced back to the fact that the actigg is invariant under
a Casimir vacuum pressure that is inversely proportional tqne gauge transformation

the confinement volume. These results have been confirmed

APPENDIX A: REGULARIZATION PROCEDURE
AND COUNTING THE NUMBER OF DEGREES
OF FREEDOM OF THE A FIELD

by an explicit computation of the vacuum expectation value A L= [N 1) (A1)
of the energy-momentum tensor.
With the above results in hand, we have calculated the W\F 1ipe=0 (A2)

Wilson loop of the three-index potential coupled to a test
spherical membrane. From the Wilson factor we have theso that the integration measure for tAdield must be prop-
extracted the static potential, EG9), between pairs of op- erly defined in order to avoid overcounting of physically
posite points on the membrane. The “volume law” encodedequivalent field configurations. In the second order formula-
in Eqg. (59) is a natural generalization of the well known tion, gauge invariance prevents one from inverting the ki-
“area law” for the static potential between two test chargesnetic operator and from computing thepath integral(in
(quark$ bound by a chromodynamic string. As a matter of spite of its Gaussian-looking forin.
fact, it may be useful to compare the result of E8p) with The usual procedure is to break gauge invariance “by
the more familiar result for the Wilson loop of a quark- hand” and compensate for the unphysical degrees of freedom
antiquark pair bounded by a string. In the latter case, th@roduced by gauge fixing by means of an appropriate set of
integration path is taken to be a rectangle of spatial &de ghost fields. In the Lorentz gauge one finds
elongated in the Euclidean time direction.

It is generally assumed that confinement is equivalent to [DA]=[dA]é[d,A*""]Arp (A3)

Wecexp( — oA) (60)  Where the Fadeev-Popov determinant is defined through the
gauge variation of the gauge fixing function

whereA=TR s the area of the rectangle ands a constant

with dimensions of (length squared). From the definition AFpEde{ P I\ g
(55) one extracts a linear potential between two test quarks ONyy POT
V(R)=0R. (61) = def 79,0454, (A4)

The rising of the potential with the distance betweenwhereAZ'=3"9;,6;;6}; is the covariant D’Alembertian over
charges corresponds to the fact that an increasing energy 2sforms. This operator introduces a new gauge invariance
necessary to separate them. In correspondence witk6Eg. that must in turn be broken and compensated until all the
we found the expressiofb9) according to which the energy unphysical degrees of freedom are removgl]. This
needed to separate diametrically opposite points on a sphetengthy procedure is necessary in order to perform perturba-
cal membrane rises &>, tive calculations and compute Feynman graphs. However, we

Note that Eq(59) and Eq.(61) describe the same kind of are interested in a non-perturbative evaluation of the path
geometric behavior. In both cases the static potential is prantegral. With this goal in mind, let us remark that in the first
portional to the “volume” of the manifold connecting the order formulationA ,,, enters linearly into the action rather
two test charges. In Eq61), R is essentially the “linear than quadratically. In other words, the non-dynamical nature
volume” of the string connecting the pair of test charges. Inof A ,,,, is made manifest in the first order formulation where
our caseR® is proportional to the volume of the spherical A,., plays the role of a Lagrange multiplier enforcing the

105004-8
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classical field equation foF,,,,. Thus, instead of going Now, integrating over the scalar field one sees that the
through all the steps of the Fadeev-Popov procedure, it isontribution of theg-field fluctuations exactly cancel against
more expedient to separatg,,, into the sum of a Goldstone the Jacobian because of the presence of “box squared” ki-
term 6,, and a gauge inert pattnodulo a shift by a con- netic term[22]
stany €,,,,,9” ¢ 5 b2 1
Z=[Det(—9°)] X[ Det( —d°)°] "=1. (A14)
Auvp= €uvpad” b+ 91,0, (AS) . .
Thus, no spurious degrees of freedom were introduced
8¢=0, 6,0,,=\,,. (A6)  through the ansat@A5).
On the other hand, it is interesting to check on the above
Accordingly, the functional integration measure becomesprocedure by reversing the order of integration and start with
¢ instead ofF. In this case it is more convenient to introduce
[dA]=J[d#][dF] (A7) the new integration variable

whereJ is the functional Jacobi determinant induced by the U —e¢ e (AL5)
change of integration variabléa5) (not to be confused with mvp T mpvpo
;che Fadeev-Popov determinanExplicitly, J reads as fol-  and write the integration measure as follows:
OWS:
[d¢]=[dU][Det( %] *=3""qdU]. (A16)

1 1/2
_ / oa
J=[Det(— §%)]¥?x Det( - aem,gy(?’f Bpﬁp” Hence, we obtain
=[Det(— ¢ A8 1
[Det(—d%)] (A8) z=f [dU][dF]Jl’Zex;{—fvd“x(—ﬁFpr

and yields the correct counting of the physical degrees of
freedom. As a matter of fact, at first sight it seems that we 1 Aivp
have introduced two new degrees of freedofhand ¢, _Q‘JAF Uvp (A17)
while from the classical analysis of the previous section we
expectA to describe a constant background field. and notice that the path integral is linear in thevariable. In

Let us show first how drops out of the path integral. The order to integrate over this variable it is convenient to rotate,
classical action i independent because of gauge invarianceemporarily, from a Euclidean to a Minkowskian signature in

_ such a way as to reproduce the functional expression of the
So(F,A)=Sy(F, o) (A9 Dirac delta function

and does not provide the necessary damping of gauge i
equivalent paths. However, the gauge fixed-compensated in- f [d U]ex;{ _ _If d4XU,W,,0xFA“Vp) = 5[ 9, F e,
tegration measure reads 3y

(A18)

DA]=[d¢][d6]I& d,d*6"" A A10
[DAI=1d@]lde1 L2, JAep (A10) Once we rotate back to the Euclidean signature we are led to

and we can get rid of the gauge orbit volume. Since the expressiori26) quoted in the text of the paper.
J' [d6]8[, 06" A pp=1 (A11) APPENDIX B: THE COMPUTATION OF THE WILSON
o FP FACTOR

we obtain a path integral over gauge invariant degrees of With reference to Eq(57) in the text, let us indicate by
freedom only: .
yH"P= €250y * day " dpy” (B1)

Z(V):J [dF][d¢]J exd —So(F,¢)] the “tangent elements” to the world history of the test
bubble. The membrane world manifold is a hyper-cylinder

1 1 with the Euclidean metric given b§in polar coordinatés
F, zf A 57 F o™ a7 P €,0p00” }
SolF. ) v 2.417 hwve 310N wrpo & ds?= yap(0)do?doP=d 2+ R?(d 6+ sirf0d ¢?)
(A12) (B2)
At this point we have a choice. Suppose we integrate firsivhere 0< ¢p<27, 0<f<m, 0<7<T. The embedding in
over F. This is a Gaussian integration and we obtain target spacetime is obtained through the equations
1 1=Rsj '
zzf [d¢]Jex;{—f d4x§¢(—az)(—az)¢} y'=Rsingsing ©3)
(A13) y’=Rsin# cos¢ (B4)

105004-9
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y®=Rcos# (B5)

A=,

y (B6)
Then, with the above choice of coordinates, we find

Y =01,y 00y " 41YP (B7)
yilk=0

4ij _

Yy =1y a4y

The explicit expression of the tangent elemeyit§ evalu-
ated at the poinP can be written as follows:

Y0, ) =3[y d 4y*=—R?cos6 sing
Y16, ¢)=0}4y"d 4y*=Rsir’ 6 cos¢
y2(0,)=04y%d4y°=— R?sirgsin .

Then, for the antipodal poirﬁthe same expressions be-
come

yA(7— 6,¢p+m)=R?cosfsing
y¥(7— 6,4+ m)=—R%sind cos¢
y2(m— 60,¢+ m)=R?sir? 0 sin .

From the above expressions, we explicitly calculate

K2
InW[oB]=
L7B] 4872

.
dr
0

0
dr’
T

X

21
doy'i(e,
P Ey——r
Xyij(m— 0,6+ m) (B8)

so that

PHYSICAL REVIEW D 69, 105004 (2004

1 ij dai
sy (0. ¢)yij(7—0,¢+m)=—R Sirfg (B9)

[y(0,¢)—y(m—0,¢+m)]?= (1= 1)+ 4R%.

(B10)
Therefore the logarithm ofV[ 9B] is

1

2R4
48jd7fd—(q-7-

INW[dB]=— N2 aR?

(B11)
We now proceed to calculate the double integral in Eq.

(B11):
T T 1
f drf d7f ——————
o Jo  (r—7)%+4R?

- Jyur] e
J J(T T)/2R
7I2R

“5R arctafé
JTd ; i
o 7 arctal ﬁ
0
f dsarcta
-7

S
fdsarctarﬁZR) s——s. (B13

!

U=7—r1

u +4R2

1+y

T
R —arcta

1
dT

r
2R

(B12)

S
2R

) T—T=s

Setting together Eq$B12) and (B13) we obtain the expres-
sion (58) quoted in the text.
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