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Gauge theory on a noncommutative supersphere from a supermatrix model
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We construct a supermatrix model that has a classical solution representing the noncomnffutzziye
two-supersphere. Expanding supermatrices around the classical background, we obtain a gauge theory on a
noncommutative superspace on a sphere. This theorp$ad|2) supersymmetry and(2L +1|2L) gauge
symmetry. We also discuss a commutative limit of the model keeping the radius of the supersphere fixed.
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[. INTRODUCTION fields on this space-time. If the classical solutions are non-
commutative, we can obtain noncommutative gauge theories
The deformation of superspace by introducing noncom{42]. In this approach, the constructions of the open Wilson
mutativity has attracted much interest recently. It is sugdines and the background independence of the noncommuta-
gested that nonanticommutativity of fermionic coordinates oftive gauge theories become manifgé2—44. The construc-
superspace appears in superstring theory in the backgrouiti@n of supermatrix models whose classical backgrounds rep-
of the Ramond-Ramon(RR) or graviphoton field strength resent a noncommutative superspace will similarly play an
[1-3)]. This phenomenon is similar to the well-known case ofimportant role in understanding various properties of field
string theory in the Neveu-Schwarz—Neveu-Schwéks-  theories on the noncommutative superspace. In this paper we
NS) two-form B background, where the bosonic space-timeinvestigate in particular a supersymmetric gauge theory on
coordinates become noncommutative5]. The supersym- the fuzzy two-supersphere by using a simple supermatrix
metric gauge theories and Wess-Zumino model on nonconmodel based on thesp(1|2) graded Lie algebra. Noncom-
mutative superspace are under active study, and various agutative superspace coordinates,@,) and gauge super-
pects of those field theories, which include renormalizabilityfields (a;,¢,) on it are combined as single supermatrices
in perturbations, UV-IR mixing, etc., have been discussqu\iwxi4_:,;‘i and ,~ 6, + ¢,. Our formulation of a super-
[6—27]. There are aIS(_) earlier works where noncommutatlvesymmetriC gauge theory on the fuzzy supersphere has some
superspace was studi¢28-32. _ similarities to the covariant superspace approach in ordinary
.There are alsp analyses of noncommutative SUPerspacgnersymmetric gauge theoripts). In this approach, con-
using supermatrice$33-38. Supersymmetric actions for npection superfields on the superspace are introduced and
scalar multiplets on the fuzzy two-supersphere were congonsiraints are imposed on them to eliminate extra degrees of
structed in[33] based on th@sp(1|2) graded Lie algebra. freedom. It turns out that supermatrices in our model corre-
Furthermore, a graded differential calculus on the fuzzy suspong to connection superfields on the noncommutative su-
persphere is discussed [i84]. Supersymmetric gauge theo- persphere.
ries on this_nonco_mmutative superspace were studiéﬂ_ﬁh This paper is organized as follows. In Sec. Il, we first
by using differential forms on it. If36], noncommutative reyiew the construction of the fuzzy two-supersphere based
superspaces and their flat limits were studied by using thg, theosp(1|2) graded Lie algebra. The representations of
graded Lie algebra®sp(1]2), osp(2|2), andpsu(2(2).  osp(1]2) are explained, and fields on the fuzzy space are
Recently, the concept of noncommutative superspace basggtroduced as polynomials of the representation matrices of
on a supermatrix was also introduced in proving thejne gsp1|2) generators. In Sec. Ill, we construct a super-
Dijkgraaf-Vafa conjecture as a larde reduction[39]. The 4ty model which has a classical solution corresponding to
supermatrix model was also studied from the viewpoint Ofyhe 77y two-supersphere. Expanding a supermatrix around
background independent formulations of matrix models g classical background, we obtain a supersymmetric gauge
Whlch are expected to give constructive definitions of St””gtheory on the fuzzy supersphere. The action bag(1|2)
theorle_s[40]. . supersymmetry and(2L + 1|2L) gauge symmetry. Then it
In this paper we construct a supersymmetric gauge theonk shoun that in the commutative limit this model gives the
on_th_e fuzzy two—supers_phere based ona supermatrix TnOdGU(l) gauge theory on a commutative sphere. Conclusions
This is a natural extension of constructing gauge theories 09,4 5 discussion are given in Sec. IV. Brief explanations of

the bosonic noncommutative space in matrix models. In Orge graged Lie algebra and supermatrix are given in the Ap-
dinary matrix models of the Ishibashi-Kawai-Kitazawa- pendix

Tsuchiya(IKKT) type [41], background space-time appears
as a classical background of matricks and their fluctua-

tions around the classical solution are interpreted as gauge Il FUZZY TWO-SUPERSPHERE
In this section we review the construction of supermatrix
*Email address: satoshi.iso@kek.jp models and field theories on the fuzzy two-supersphere
"Email address: umetsu@post.kek.jp based onosp(1]2) algebra. This was first studied [33].
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The notation and definitions used in this paper are given ihsp(1|2) algebra acts omd, by three kinds of action, the

the Appendix.
The graded commutation relations ofp(1|2) algebra
are given by

[Ti -Tj]:ifijkik-

A A 1 -
[Iivva]zi(ai)ﬁavﬁa (21)

A A 1 ,\
{valvﬁ}: E(Cal)aﬁll ’

whereC=io, is a charge conjugation matrix. The even par
of this algebra issu(2), which is generated byi(i
=1,2,3), and the odd generators, («=1,2) aresu(2)
spinors. Irreducible representationsosfp(1|2) algebrd 46]
are characterized by values of the Casimir operef(gr
=1Ti+ Capv 40 s=L(L+3) where the quantum numbkris
called superspin and e 7-.,/2. Each representation consists
of spin L and L—3 representations osu(2), |L,l3),|L
—3,l3) and its dimension idl=(2L+1)+2L=4L+1. The
explicit expressions of the generators are

L
|§)=(

The matrix elements ot .=L;*xilL,, V,=V4, and V_
=V, are given by

L& o

0
(L) _
L-1/2)|» Va =
L ))

L-1/2L
v )

L,L—-1/2
% )

0 0

2.2

(Lla+ 2|LBL, 1) = V(L=Ta)(L+15+1),

(LIs=1LDIL Iy = V(L +T5)(L=15+1),

1 1
(L,I3+1/2|VQ"L_1/2)|L—1/2,I3>=—E L+lg+ 3,
(L,L—1/2) 1 1
(Lilg=12VEE Il 172) ) = = S L=13+ 5,

(2.3
(L—1/2L) 1
(L=21/2) 3+ 12V Y220 15y = — > L—1Ij,
1
(L—1/2) 53— 22 VE"12HL 1) = SVL+s.
These are the superstar representationssq{1|2),
IO =10 0= B, 2.4

See the Appendix for superstar conjugation .

The condition R2=L(L+%) defines a two-dimensional
supersphere. Consider polynomidg!{") v of the rep-
resentation matricef™) andv(") with superspinL. Let us
denote the space spanned Hy(I{"),v{")) as A, . The

left action (-,v%), the right action {?,0%), and the adjoint

action €;=1-—1R,V,=0L-0"),
to=1M0, sto=vPo, (2.5
Ro=dI"), Ro=dp{), (2.6)
Lio=[I" d], Vo=[ ®]. 2.7

The right action satisfies thesp(1|2) algebra with a minus
sign (—17,—v"). The polynomials transform ds L under

ithe left and right actions 0bsp(1|2) and can be decom-

posed into irreducible representations under the adjoint ac-
tion as

1 1
L®L=O€B§®le§~-~®2L—§€aZL.

The dimension of the space spanned by these polynomials is
(4L+1)%2. Among them, we can define supersymmetrized
matrix spherical harmonic¥.,(I~ ,v{")) which are gener-
alization of the ordinary matrix spherical harmonics to the
superspherésee[34] for the details,

o A 1
(LiLi+C gV V) Yir(ID 0 =k| k+ E) Y12 0,
2.8
LY M) =mY5 (10 v ). (2.9

k can take either an integer or a half-integer value. Ahy
XN supermatrix can be expanded in terms of the super-
spherical harmonics as

2L

DM o=

k=01721 PemYiem(117 05, (2.10

where the Grassmann parity of the coefficient, is deter-
mined by the grading of the spherical harmonics. Efat)
spherical harmonics has nonvanishing values only in the di-
agonal(off-diagona) blocks in its matrix form. We can map
the supermatrixp (1) ,u(") to a function on the superspace

(Xi 10a) by
D(1;,04)— P(X; .0a>=§ brm Yim(Xi,0,), (2.11)

Whereyfm(xi ,0,) are ordinary superspherical functions. A
product of supermatrices is mapped to a noncommutative
star product of functions. An explicit form of the star product
is given in[47].

In addition to theosp(1|2) generatorsi(,v,), we can
define additional generators with which they form bigger al-
gebraosp(2|2). These additional generators are

1
CL+1/4

y=

.. 1
caﬁvauﬁ+2L(L+§, (2.12
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8, =75.1= g g7 (@) palial 1100 213 o 33
a Y:Ua 2(L+1/4) a;j Ba UB i IUB . . = 0 —12|_ . ( . )
Commutation relations for the additional generators ardt should be noted tha#; and ¢, are (4.+1)X(4L+1)
given by supermatrices and can also be represented as polynomials of
1Y) andv™ in a similar manner to Eq(2.10. Hence they
[v.0.0=d,, [7d.,]=0., [71]1=0, become superfields on the fuzzy supersphere in the commu-
tative limit.

1 1 Let us consider the following action fovi:
[liida]zi(ai)ﬁad[% {davdﬁ}:_z(cai)aﬁliv 1
S= EStr(3X3’NXN)(M3+)\M2), (3.9

A A 1 R
Jdgt=—=C_z7- .
{va.dg} 4 ~aBY where\ andg are real constants. In terms Af and ¢, it

can be rewritten, by taking traces overX3) matrices, as

The adjoint action of the fermionic generatdh%:adjaa
plays the role of the covariant derivatives on the supersphere.
On the other hand, the adjoint actions of the original fermi-

onic generator® ,= adjz?a are interpreted as supersymmetry 3 \

generators. These additional generators also play an impor- = _ , _h

tant role in constructing kinetic terms for a scalar multiplet 167(T1C)apl A ¥l = 5 Capthatlp | 3.5

on the superspheif&3]. . o ) )
The commutative limit is discussed j83] and the fuzzy This action is invariant under thesp(1|2) transformation

supersphere becomes the ordinary two-dimensional super- SM=ilG.M 36

sphere with two real Grassmannian coordinates. This limit =i[G.M], (36

can be taken by I_<e¢p|ng the radius of the sphere fixed ar\%hereG has the form of

taking the largel limit.

N

> AiA

1 i
S= ESU(NXN) Z 6ijkAiAjAk+

G=ul®ti+e,®2q,, G'=G. (3.7

Ill. GAUGE THEORY ON FUZZY SUPERSPHERE .
u; are Grassmann even numbers andare defined a%,

In this section we construct a supermatrix model which_¢ g \wheree, are Grassmann odd numbers. The param-

has a cllassmal soluthn representing the fu;zy supe.rsphergterS u and, satisfy U)*=u. and (Ea)#zcaﬁzﬁ_ It
Expanding supermatrices around the classical solution, wé .

! . . Should be noted that, (antjcommutes withlodd) even su-
obtain the action with the supersymmetry and gauge symme
try. This is a supermatrix extension of the construction of
gauge theory on a fuzzy sphere from matrix modés).

Let us consider a supermatiit which has the following
form: SA=I[H.A] 80, =i[H.i,], (3.9

yermatrices because of the grading oper&an e,. Fur-
hermore, the action is invariant under the adjoint action of
u(2L+1J2L),

M=A;@ti+C,p,®0p, (3.)  whereH*=H, Heu(2L+1|2L).
The equations of motion are
wheret;(i=1,2,3) andy, («=1,2) are thd.=1/2 represen-

tation matrices of thesp(1|2) algebra, . AN 1
H(1[2) alg |6ijkAjAk+?Ai+Z(Uic)aﬁ{waa‘ﬂﬁ}zov (3.9
0 0 1
1/, 0 10 o o 3
=519 o) %73 ' g(UiC)aﬁ[Ai,l/fﬁ]+7\caﬁ¢,3=0- (3.10
0 1 O
The model has a nontrivial classical solution representing the
. 0 0 O fuzzy two-supersphere,
Gw==| 0 0 1] (3.2 16 16
121 0 0 Af'=(3>\)li‘”, ¢3'=i(gk)d2L)- (3.11)

A; andy, are, respectively, even and otk N supermatri-

ces with N:4¢|—+ 1. We gmpose a reality 'conditioeri There are other classical solutions, e.g., the trivial soluion
=M, that is,Af=A; and ¢, =C 5. We define a grading = y,=0 and the fuzzy sphere solutigy=(4\/3)IV) 4, =0. We
operatorB for NX N supermatrices as concentrate here on the fuzzy supersphere solution.
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We can choose the- sign in the classical solution af,,

without loss of generality because the action is invariant un- 0,= —U(QL) , (3.1
der ,— — . We note that the classical backgroud{’ 1
of ¥, can also be written by~ andv"), Eq. (2.13. Ex- LiL+ >

pandingA; and ¢, around the classical solution,

wherep is a real constant. These coordinates parameterize

Ai:1_6)\(|i(L)+'ai)' %:E)\(dg_u%)’ (3.12 the noncomrr;utative superspherg_ with radips_xix_i
9 9 +Cop0.05=p°. The noncommutativity parameter is given

by Vp/L. In the L—oe limit,? x; and 6, become commuta-
tive coordinates. The supermatri@sand ¢, are mapped to
superfieldsa;(x,6) and ¢,(x,6), respectively, as in Eq.
(2.19). The adjoint actions of th@sp(2|2) generators on
supermatrices become the actions of the following differen-
tial operators on superfield83]:

the action becomes

16\2\3 2
S= 3 ?Str(NxN) §|Eijk

~ ~ 1. -~ -
aillj,ad+ zaila),ad

1.~
+ 53+ (0C) 4

2. 1 -
gai{da Ppt— §<Pa[|i+ai @]

? dj(l;)—K R+10( ) i
a i) —=Ki=Ri+=60,00) 87—,
1 1(162>\3L(L 1) 51 T 27 e g,
= 5Cap0a0p T 5l 5| SLILT 5] -
2 7ePYeThl T 6l 9] g2 2 P

_ 1 1

_ adea)_)KZZEXi(CUi)aBﬁ_Egﬁ(o'i)ﬁaai;
The fluctuationsa; and ¢, are, respectively, even and odd P

NXN supermatrices which can be expanded in terms of

2
polynomials ofl{*) andv (. Therefore they are regarded as  adjd,)—K%=— s 7 Caﬁi
the superfields on the fuzzy supersphere. Although the back- 2 r2 90
grounds ofA; and ¢, violate theosp(1|2) invariance(3.6), 1 1
it can be compensated by appropriaf@L + 1j2L) transfor- + o 05(01) gaRi— > 0%, (3.19
mations. Actually the action is invariant under the following r r

combination ofosp(1|2) andu(2L+1|2L) with H=u;I{*) . ;
—¢,dY [whereu; ande, are introduced in Eq(3.7)]: - _
€ada” [ : € | a3.7] adKV)"Ky_FXi(Ui)aﬁaaﬁ_%.
~ ~ . ~ i
sa=— ejuzay+iug[1{Y ;ag]- 5(01)pacatp where R = —i€;xX;dx. The supertrace can be replaced by
the integral on the supersphere,
—ie[dy) al,
i Str— — %f d3xd?98(x>+ 02— p?). (3.19
83¢0== 5Ui(0) gt iUi[1{7 0]
By using the mapping rule.11),(3.16—(3.19, we obtain
the following action on the noncommutative supersphere:

i .
_E(Cai)aﬁfﬁai_|fﬁ{dg_),(Pa}. (314)
p \[16|°\°
. . = -=—]|= —f d3xd?08(x>+ 62— p?)

These are the supersymmetry transformations of this model. 2w\ 9] g2
There is also the:(2L+1|2L) gauge symmetry,

. -~ o~ 1 . . 1

5ai:i[Hv|i(L)+ai]v X §| €ijk ainak+ gai[aj ,ak] + Eaiai
_ (L) 2. 1 ~
S, =i[H,d,"+¢,]. (3.19 +(01C)ap §aiKg¢,8_§(Pa(Ki‘P,8+[aia‘Pﬂ]))
Therefore the actiori3.13 we obtained describes a super-
symmetric gauge theory on the fuzzy supersphere. 1 c 1/16 2)\3L . 1 32
Let us consider the field theory representation of the su- T o apPa®p + 6\ 9 ? * 2] (320
permatrix model. We introduce coordinates on the super- *
sphere ;i ,6,) as Here the asterisk indicates the star product on the fuzzy su-
perspherg47].
p
X;= 1, (3.16
LlL+= 2We can consider othdr— limits. For instance, a flat noncom-
2 mutative limit with asymmetric scalings fdt, is studied in[36].
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Next we consider the commutative limit of the model. where ¢32=¢ —
This limit is given by theL — o limit, keeping the radius of
the supersphere fixed. The supermatrigeand ¢, become

superfields which can be expanded as follows:

a(x 0)=a;(X)+ & ,(x)0,+

s
b; (x)+ 5 X9 jai(x) |0
(3.21

(Pa(xv 0) = ga(x) + (O-/J,)Bac/.l,(x) 03

1
Xa(X)+ 2 5%i9iLa(X) | 0 (3.22

wherer?=xx;, 6*=C,z0,0,, andu=0,1,2,3.3;,b;, and

c, are bosonic and;,,{,, andy, are fermionic fields on
Theu(2L+1|2L) gauge parameter

the supersphere.
H(I®M vM) becomes a superfieldH=h(x)+h,(x)6,
+f(x) 6% whereh(x),f(x) are bosonic fields ant,(x) are

PHYSICAL REVIEW D 69, 105003 (2004
5(0)apt? and Fj=Ria—Rja;
—i€jkax. This theory is invariant under thg(1) gauge
transformations
da;=R;h(x), 6y,=0, (3.27

where the gauge parametefx) is a remnant of thei(2L
+1|2L) transformation. The supersymmetries, which are
combinations of theosp(1|2) and appropriateu(2L
+1]2L) transformations are not manifest, because we have
fixed the gauge degrees of freedom corresponding(&i
+1]|2L). The dynamical variables of the action are the
gauge fielda;(i=1,2,3) and the fermiorg;, with spin 3
undersu(2). Thenormal component of; becomes a two-
dimensional scalar on the sphere. Although this model has
gauge symmetry and supersymmetry, it is different from the
ordinary supersymmetric gauge theory =2 and its
physical interpretation is not very clear.

Our construction of the supersymmetric gauge theory is
similar to the covariant superspace approach for ordinary su-

fermionic fields. We can fix the gauge degrees of freedonpersymmetric gauge theorig45]. In this approach, connec-

corresponding td,(x) and f(x) by settingC,z0,95=0,
which meangy=¢{,=
in the commutative limit,

16\%\3 i
9 ng dQ| — %EijkaiRjak

[ 2
e,lka Rjcy+ 3P 2b;c;

S:( 27

4.
3 S PEiKkaR; bk

i 1 2
+ §P6ijkCiRjCk_ Eaiai‘f'paibi'i‘ §pCiCi

i .
3E|]kca,8§|aR gkﬂ+ Pfljk(co' )aﬁgjafkﬁ

1
Capliaipt §P2(Ui)a,3§iﬁ)(a : (3.23

Here we have taken thé —c commutative limit and

dropped terms lik¢a; ,a;], . The auxiliary fieldsb; andy,,

can be integrated out. This leads to the following constraints:

3 2i
Ci=—zai—?eiijjak, (324)
E19=(01) apip=0. (3.29

Then the action can be simplified as

16|2\3 2 2i
9 JdQ 3p |JFij+§€ijk(R|F|i)ij

S:( 2’77 g

12p(€|1kaRak ia;ja;) — peljké ( CasRy

_ _(CGJ)aB) gkﬁz)_ EpCaB§(3/2)§(3/2)} (3.26

0. In this gauge, we obtain the action

tions on the superspace which are described by superfields
are introduced. Then the conventional constraints and the
integrability conditions of the covariant derivatives are im-
posed in order to eliminate extra degrees of freedom. The
connections on the superspace correspond to the supermatri-
cesA,; and, in our model. However, there seems to be no
appropriate condition that preserves the(1]2) symmetry,

to eliminate extra fields. Instead of these conditions the equa-
tions of motion of the auxiliary fields partially play a similar
role in our case.

Although we here concentrated on the construction of the
U(1) gauge theory on the fuzzy supersphere, a generaliza-
tion to U(k) gauge theory can easily be realized by the fol-
lowing replacement:

k2 k2
A= AT, g, 2, AT, (3.29
a=1 a=1

whereT3(a=1,2, ... k?) are the generators &f (k).

IV. CONCLUSIONS AND DISCUSSION

In this paper, we constructed a supermatrix model which
has a classical solution representing the fuzzy two-
supersphere. We obtained a supersymmetric gauge theory on
this noncommutative superspace by expanding supermatrices
around this background. In this formulation, the supermatri-
ces which are the fluctuations around the classical back-
ground correspond to the superfields on a fuzzy supersphere.
This model ha®sp(1|2) symmetry, which is the supersym-
metry of the model, andi(2L+1|2L) gauge symmetries.
The classical backgrounds corresponding to the fuzzy two-
supersphere violate tlesp(1|2) symmetry, but the action is
still invariant under theosp(1|2) transformations supple-
mented by an appropriatg 2L +1|2L) transformation com-
pensating the violation. Then we took the commutative limit,
keeping the radius of the supersphere fixed. The supermatri-
ces such as the gauge fields and the gauge parameters be-
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come superfields on a commutative supersphere in this limit. 2. Adjoint and superadjoint for graded Lie algebra
After partially gauge fixing and integrating out some auxil-  Adjoint:
iary fields in the superfields, we obtainedU{1) gauge

theory on the supersphere. In the derived action, the super- (i) XeGi—X'eg fori=0,1
symmetry is not manifest due to our gauge fixing condition. . e
It is easy to generalize our construction ti(k)(k>1) (i) (aX+bY)'=ax'+bY’, (A2)
gauge theory on the fuzzy supersphere. t_ryt oyt
The construction of a gauge theory on the fuzzy super- (i) - XY =[YLXT,
sphere that we considered here has similarities to the cova- (iv) (XHT=x;

riant superspace approach in ordinary supersymmetric gauge o
theories. The supermatricés and ¢, in our model corre- ~Superadjoint

spond to connection superfields on noncommutative super- (i) XeG—X*eG for i=0,1

space. The covariant superspace approach can be applied to ! ' '
supersymmetric gauge theories in higher dimensions, e.g., (i) (ax+ bY)*=ax*+bY?, (A3)
D=4, N=1 super Yang-Mills theoryN=3 super Yang-

Mills theory [1,3] is derived by introducing noncommutativ- (i) [X,Y}F=(—1)degt-dedy+ x

ity only between chiral fermionic coordinates in thé=1 _ - decx

superspace. Although this theory is not written completely by (iv)  (XH)*=(=1)FX,

supermatricgs because_bos_onic and half _fermionic CoordlivhereX,Yeg, abeC.

nates are still commutative, it can be described by an exten-

sion of the covariant superspace approach toAtke: non- 3. Supermatrix

commutative superspace. It is interesting to construct a

supermatrix model whose classical solution is the four-

dimensional noncommutative superspace, and quantum fluc- A B

tuations around it describe the super Yang-Mills theory. M= ( C D
It would be interesting to study the graded unitary group

symmetryU (M|N) possessed by supermatrix models. In thewhere A,B,C, andD are, respectivelyynx m,mxn,nxm,

type 1B matrix model[41], U(N) gauge symmetry can be and nXn matrices. An even supermatrix (d&g=0) has

regarded as a matrix regularization of the area preservingrassmann even componentsAiandD and Grassmann odd

diffeomorphism in the Schild type action of the type IIB components ifB andC. An odd supermatrix (de#l =1) has

Green-Schwarz string. There is the possibility of the gradedsrassmann odd componentsArandD and Grassmann even

unitary symmetry appearing as a matrix regularization of &€omponents irB andC.

world sheet symmetry of covariant formulations of super-

string theories, e.g., superembeddings.

The (m+n) X (m+n) supermatrixM has the form

: (A4)

4, Transpose and supertranspose for supermatrix
Transpose:

ACKNOWLEDGMENTS Mt= ( , (A5)

The work of H.U. is supported in part by JSPS.
where A! denotes the ordinary transpose Af and (MN)!

#N'M*L
APPENDIX: NOTATION AND DEFINITIONS Supertranspose:
In this appendix we briefly explain definitions and nota- st Al (—1)deMct
tion related to the graded Lie algebra and supermatrix. More M™=| _ (—1)devpt D! '
complete explanations can be seen, e.g[4®50. We de-
note the space of Grassmann odd number8,aa graded stist A -B
algebra agj, and its ever(odd) part asG, (Gy). (M= _¢ p/ (AB)

( M N)St: ( _ 1)deg\/|deg\|NstM St.
1. Star and superstar for Grassmann number

_ 5. Adjoint and superadjoint for supermatrix
Star:(cﬁi)* =C¢9i* ) 0;’(* =6, (0| 01)* = GT 0|* )

Adjoint:
— T— ty*
superstac,)*=cof,  6/*=—0,, (6,0)%=6]0"; M'=(M)*,
Al
Ay (MN)T=N'™MT, (A7)
where ¢, e B andc e C. (MHT=M.
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Superadjoint:
M*= (M st)#’

(MN)*=(—1)eMeqNTm?, (A8)
(MH)*=(=1)%Mm.
6. Supertrace
StrM=trA—(—1)%M D,
St(MSY=StrM, (A9)

St(MN) = (—1)9eaM deaNgrN M),

PHYSICAL REVIEW D 69, 105003 (2004

whereM has the form(A4).

7. Scalar multiplication of a supermatrix by a Grassmann

number
bl 0 A B
bM= 0 (—1)%%p1/\Cc D/ (A10)

_(A B)(bl 0 )
Mb= C D/l 0 (—1)%Pp1)’

(A11)

whereb is a Grassmann number amd is a supermatrix
(A4).
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