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Gauge theory on a noncommutative supersphere from a supermatrix model
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We construct a supermatrix model that has a classical solution representing the noncommutative~fuzzy!
two-supersphere. Expanding supermatrices around the classical background, we obtain a gauge theory on a
noncommutative superspace on a sphere. This theory hasosp(1u2) supersymmetry andu(2L11u2L) gauge
symmetry. We also discuss a commutative limit of the model keeping the radius of the supersphere fixed.
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I. INTRODUCTION

The deformation of superspace by introducing nonco
mutativity has attracted much interest recently. It is su
gested that nonanticommutativity of fermionic coordinates
superspace appears in superstring theory in the backgr
of the Ramond-Ramond~RR! or graviphoton field strength
@1–3#. This phenomenon is similar to the well-known case
string theory in the Neveu-Schwarz–Neveu-Schwarz~NS-
NS! two-form B background, where the bosonic space-tim
coordinates become noncommutative@4,5#. The supersym-
metric gauge theories and Wess-Zumino model on nonc
mutative superspace are under active study, and variou
pects of those field theories, which include renormalizabi
in perturbations, UV-IR mixing, etc., have been discuss
@6–27#. There are also earlier works where noncommutat
superspace was studied@28–32#.

There are also analyses of noncommutative supers
using supermatrices@33–38#. Supersymmetric actions fo
scalar multiplets on the fuzzy two-supersphere were c
structed in@33# based on theosp(1u2) graded Lie algebra
Furthermore, a graded differential calculus on the fuzzy
persphere is discussed in@34#. Supersymmetric gauge theo
ries on this noncommutative superspace were studied in@35#
by using differential forms on it. In@36#, noncommutative
superspaces and their flat limits were studied by using
graded Lie algebrasosp(1u2), osp(2u2), and psu(2u2).
Recently, the concept of noncommutative superspace b
on a supermatrix was also introduced in proving t
Dijkgraaf-Vafa conjecture as a largeN reduction@39#. The
supermatrix model was also studied from the viewpoint
background independent formulations of matrix mode
which are expected to give constructive definitions of str
theories@40#.

In this paper we construct a supersymmetric gauge the
on the fuzzy two-supersphere based on a supermatrix mo
This is a natural extension of constructing gauge theories
the bosonic noncommutative space in matrix models. In
dinary matrix models of the Ishibashi-Kawai-Kitazaw
Tsuchiya~IKKT ! type @41#, background space-time appea
as a classical background of matricesAi , and their fluctua-
tions around the classical solution are interpreted as ga
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fields on this space-time. If the classical solutions are n
commutative, we can obtain noncommutative gauge theo
@42#. In this approach, the constructions of the open Wils
lines and the background independence of the noncomm
tive gauge theories become manifest@42–44#. The construc-
tion of supermatrix models whose classical backgrounds
resent a noncommutative superspace will similarly play
important role in understanding various properties of fie
theories on the noncommutative superspace. In this pape
investigate in particular a supersymmetric gauge theory
the fuzzy two-supersphere by using a simple superma
model based on theosp(1u2) graded Lie algebra. Noncom
mutative superspace coordinates (xi ,ua) and gauge super
fields (ãi ,wa) on it are combined as single supermatric
Ai;xi1ãi and ca;ua1wa . Our formulation of a super-
symmetric gauge theory on the fuzzy supersphere has s
similarities to the covariant superspace approach in ordin
supersymmetric gauge theories@45#. In this approach, con-
nection superfields on the superspace are introduced
constraints are imposed on them to eliminate extra degree
freedom. It turns out that supermatrices in our model cor
spond to connection superfields on the noncommutative
persphere.

This paper is organized as follows. In Sec. II, we fir
review the construction of the fuzzy two-supersphere ba
on theosp(1u2) graded Lie algebra. The representations
osp(1u2) are explained, and fields on the fuzzy space
introduced as polynomials of the representation matrices
the osp(1u2) generators. In Sec. III, we construct a sup
matrix model which has a classical solution corresponding
the fuzzy two-supersphere. Expanding a supermatrix aro
this classical background, we obtain a supersymmetric ga
theory on the fuzzy supersphere. The action hasosp(1u2)
supersymmetry andu(2L11u2L) gauge symmetry. Then i
is shown that in the commutative limit this model gives t
U(1) gauge theory on a commutative sphere. Conclusi
and a discussion are given in Sec. IV. Brief explanations
the graded Lie algebra and supermatrix are given in the
pendix.

II. FUZZY TWO-SUPERSPHERE

In this section we review the construction of supermat
models and field theories on the fuzzy two-supersph
based onosp(1u2) algebra. This was first studied in@33#.
©2004 The American Physical Society03-1
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The notation and definitions used in this paper are given
the Appendix.

The graded commutation relations ofosp(1u2) algebra
are given by

@ l̂ i , l̂ j #5 i e i jk l̂ k ,

@ l̂ i ,v̂a#5
1

2
~s i !bav̂b , ~2.1!

$v̂a ,v̂b%5
1

2
~Cs i !ab l̂ i ,

whereC5 is2 is a charge conjugation matrix. The even p
of this algebra is su(2), which is generated byl̂ i( i
51,2,3), and the odd generatorsv̂a (a51,2) are su(2)
spinors. Irreducible representations ofosp(1u2) algebra@46#

are characterized by values of the Casimir operatorK̂2

5 l̂ i l̂ i1Cabv̂av̂b5L(L1 1
2 ) where the quantum numberL is

called superspin andLPZ>0/2. Each representation consis
of spin L and L2 1

2 representations ofsu(2), uL,l 3&,uL
2 1

2 ,l 3& and its dimension isN[(2L11)12L54L11. The
explicit expressions of the generators are

l i
(L)5S Li

(L) 0

0 Li
(L21/2)D , va

(L)5S 0 Va
(L,L21/2)

Va
(L21/2,L) 0

D .

~2.2!

The matrix elements ofL65L16 iL 2 , V15V1, and V2

5V2 are given by

^L,l 311uL1
(L)uL,l 3&5A~L2 l 3!~L1 l 311!,

^L,l 321uL2
(L)uL,l 3&5A~L1 l 3!~L2 l 311!,

^L,l 311/2uV1
(L,L21/2)uL21/2,l 3&52

1

2
AL1 l 31

1

2
,

^L,l 321/2uV2
(L,L21/2)uL21/2,l 3&52

1

2
AL2 l 31

1

2
,

~2.3!

^L21/2,l 311/2uV1
(L21/2,L)uL,l 3&52

1

2
AL2 l 3,

^L21/2,l 321/2uV2
(L21/2,L)uL,l 3&5

1

2
AL1 l 3.

These are the superstar representations ofosp(1u2),

l i
(L)‡5 l i

(L) , va
(L)‡52Cabvb

(L) . ~2.4!

See the Appendix for superstar conjugation ‡.
The conditionK̂25L(L1 1

2 ) defines a two-dimensiona
supersphere. Consider polynomialsF( l i

(L) ,va
(L)) of the rep-

resentation matricesl i
(L) and va

(L) with superspinL. Let us
denote the space spanned byF( l i

(L) ,va
(L)) as AL . The
10500
in

t

osp(1u2) algebra acts onAL by three kinds of action, the

left action (l̂ i
L ,v̂a

L), the right action (l̂ i
R ,v̂a

R), and the adjoint

action (L̂i[ l̂ i
L2 l̂ i

R ,V̂a5 v̂a
L2 v̂a

R),

l̂ i
LF5 l i

(L)F, v̂a
LF5va

(L)F, ~2.5!

l̂ i
RF5F l i

(L) , v̂a
RF5Fva

(L) , ~2.6!

L̂iF5@ l i
(L) ,F#, V̂aF5@va

(L) ,F#. ~2.7!

The right action satisfies theosp(1u2) algebra with a minus
sign (2 l i

R ,2va
R). The polynomials transform asL ^ L under

the left and right actions ofosp(1u2) and can be decom
posed into irreducible representations under the adjoint
tion as

L ^ L50%
1

2
% 1% •••% 2L2

1

2
% 2L.

The dimension of the space spanned by these polynomia
(4L11)2. Among them, we can define supersymmetriz
matrix spherical harmonicsYkm

S ( l i
(L) ,va

(L)) which are gener-
alization of the ordinary matrix spherical harmonics to t
supersphere~see@34# for the details!,

~L̂iL̂i1CabV̂aV̂b!Ykm
S ~ l i

(L) ,va
(L)!5kS k1

1

2DYkm
S ~ l i

(L) ,va
(L)!,

~2.8!

L̂ 3Ykm
S ~ l i

(L) ,va
(L)!5mYkm

S ~ l i
(L) ,va

(L)!. ~2.9!

k can take either an integer or a half-integer value. AnyN
3N supermatrix can be expanded in terms of the sup
spherical harmonics as

F~ l i
(L) ,va

(L)!5 (
k50,1/2,1, . . .

2L

fkmYkm
S ~ l i

(L) ,va
(L)!, ~2.10!

where the Grassmann parity of the coefficientfkm is deter-
mined by the grading of the spherical harmonics. Even~odd!
spherical harmonics has nonvanishing values only in the
agonal~off-diagonal! blocks in its matrix form. We can map
the supermatrixF( l i

(L) ,va
(L)) to a function on the superspac

(xi ,ua) by

F~ l i ,va!→f~xi ,ua!5(
k,m

fkm ykm
S ~xi ,ua!, ~2.11!

where ykm
S (xi ,ua) are ordinary superspherical functions.

product of supermatrices is mapped to a noncommuta
star product of functions. An explicit form of the star produ
is given in @47#.

In addition to theosp(1u2) generators (l̂ i ,v̂a), we can
define additional generators with which they form bigger
gebraosp(2u2). These additional generators are

ĝ52
1

L11/4FCabv̂av̂b12LS L1
1

2D G , ~2.12!
3-2
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d̂a5@ ĝ,v̂a#5
1

2~L11/4!
~s i !ba~ v̂b l̂ i1 l̂ i v̂b!. ~2.13!

Commutation relations for the additional generators
given by

@ ĝ,v̂a#5d̂a , @ ĝ,d̂a#5 v̂a , @ ĝ, l̂ i #50,

@ l̂ i ,d̂a#5
1

2
~s i !bad̂b , $d̂a ,d̂b%52

1

2
~Cs i !ab l̂ i ,

$v̂a ,d̂b%52
1

4
Cabĝ.

The adjoint action of the fermionic generatorsDa5adjd̂a
plays the role of the covariant derivatives on the supersph
On the other hand, the adjoint actions of the original ferm
onic generatorsQa5adjv̂a are interpreted as supersymmet
generators. These additional generators also play an im
tant role in constructing kinetic terms for a scalar multip
on the supersphere@33#.

The commutative limit is discussed in@33# and the fuzzy
supersphere becomes the ordinary two-dimensional su
sphere with two real Grassmannian coordinates. This li
can be taken by keeping the radius of the sphere fixed
taking the largeL limit.

III. GAUGE THEORY ON FUZZY SUPERSPHERE

In this section we construct a supermatrix model wh
has a classical solution representing the fuzzy supersph
Expanding supermatrices around the classical solution,
obtain the action with the supersymmetry and gauge sym
try. This is a supermatrix extension of the construction o
gauge theory on a fuzzy sphere from matrix models@48#.

Let us consider a supermatrixM which has the following
form:

M5Ai ^ t i1Cabca ^ qb , ~3.1!

wheret i( i 51,2,3) andqa (a51,2) are theL51/2 represen-
tation matrices of theosp(1u2) algebra,

t i5
1

2 S s i 0

0 0D , q15
1

2 S 0 0 1

0 0 0

0 1 0
D ,

q25
1

2 S 0 0 0

0 0 1

21 0 0
D . ~3.2!

Ai andca are, respectively, even and oddN3N supermatri-
ces with N54L11. We impose a reality conditionM‡

5M , that is,Ai
‡5Ai andca

‡5Cabcb . We define a grading
operatorB for N3N supermatrices as
10500
e

re.
-

or-
t

er-
it
nd

re.
e

e-
a

B5S 12L11 0

0 212L
D . ~3.3!

It should be noted thatAi and ca are (4L11)3(4L11)
supermatrices and can also be represented as polynomia
l i
(L) and va

(L) in a similar manner to Eq.~2.10!. Hence they
become superfields on the fuzzy supersphere in the com
tative limit.

Let us consider the following action forM:

S5
1

g2
Str(333,N3N)~M31lM2!, ~3.4!

wherel andg are real constants. In terms ofAi andca , it
can be rewritten, by taking traces over (333) matrices, as

S5
1

g2
Str(N3N)S i

4
e i jkAiAjAk1

l

2
AiAi

2
3

16
ca~s iC!ab@Ai ,cb#2

l

2
CabcacbD . ~3.5!

This action is invariant under theosp(1u2) transformation

dM5 i @G,M #, ~3.6!

whereG has the form of

G5ui1^ t i1ea ^ qa , G‡5G. ~3.7!

ui are Grassmann even numbers andea are defined asea

5 ẽaB where ẽa are Grassmann odd numbers. The para
eters ui and ẽa satisfy (ui)

#5ui and (ẽa)#5Cabẽb . It
should be noted thatea ~anti!commutes with~odd! even su-
permatrices because of the grading operatorB in ea . Fur-
thermore, the action is invariant under the adjoint action
u(2L11u2L),

dAi5 i @H,Ai #, dca5 i @H,ca#, ~3.8!

whereH‡5H, HPu(2L11u2L).
The equations of motion are

i e i jkAjAk1
4l

3
Ai1

1

4
~s iC!ab$ca ,cb%50, ~3.9!

3

8
~s iC!ab@Ai ,cb#1lCabcb50. ~3.10!

The model has a nontrivial classical solution representing
fuzzy two-supersphere,1

Ai
cl5S 16

9
l D l i

(L) , ca
cl56S 16

9
l Dda

(L) . ~3.11!

1There are other classical solutions, e.g., the trivial solutionAi

5ca50 and the fuzzy sphere solutionAi5(4l/3)l i
(L) ,ca50. We

concentrate here on the fuzzy supersphere solution.
3-3
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We can choose the1 sign in the classical solution ofca
without loss of generality because the action is invariant
der ca→2ca . We note that the classical backgroundda

(L)

of ca can also be written byl i
(L) and va

(L) , Eq. ~2.13!. Ex-
pandingAi andca around the classical solution,

Ai5
16

9
l~ l i

(L)1ãi !, ca5
16

9
l~da

(L)1wa!, ~3.12!

the action becomes

S5S 16

9 D 2 l3

g2
Str(N3N)H 2

3
i e i jk S ãi@ l j ,ãk#1

1

3
ãi@ ã j ,ãk# D

1
1

2
ãi ãi1~s iC!abS 2

3
ãi$da ,wb%2

1

3
wa@ l i1ãi ,wb# D

2
1

2
CabwawbJ 1

1

6 S 16

9 D 2 l3

g2
LS L1

1

2D . ~3.13!

The fluctuationsãi and wa are, respectively, even and od
N3N supermatrices which can be expanded in terms
polynomials ofl i

(L) andva
(L) . Therefore they are regarded a

the superfields on the fuzzy supersphere. Although the b
grounds ofAi andca violate theosp(1u2) invariance~3.6!,
it can be compensated by appropriateu(2L11u2L) transfor-
mations. Actually the action is invariant under the followin
combination ofosp(1u2) andu(2L11u2L) with H5ui l i

(L)

2eada
(L) @whereui andea are introduced in Eq.~3.7!#:

dãi52e i jkuj ãk1 iu j@ l j
(L) ,ãi #2

i

2
~s i !baeawb

2 i ea@da
(L) ,ãi #,

dwa52
i

2
ui~s i !bawb1 iui@ l i

(L) ,wa#

2
i

2
~Cs i !abebãi2 i eb$db

(L) ,wa%. ~3.14!

These are the supersymmetry transformations of this mo
There is also theu(2L11u2L) gauge symmetry,

dãi5 i @H,l i
(L)1ãi #,

dwa5 i @H,da
(L)1wa#. ~3.15!

Therefore the action~3.13! we obtained describes a supe
symmetric gauge theory on the fuzzy supersphere.

Let us consider the field theory representation of the
permatrix model. We introduce coordinates on the sup
sphere (xi ,ua) as

xi5
r

ALS L1
1

2
D

l i
(L) , ~3.16!
10500
-
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ua5
r

ALS L1
1

2
D

va
(L) , ~3.17!

wherer is a real constant. These coordinates paramete
the noncommutative supersphere with radiusr: xixi
1Cabuaub5r2. The noncommutativity parameter is give
by Ar/L. In the L→` limit,2 xi andua become commuta-
tive coordinates. The supermatricesãi andwa are mapped to
superfieldsãi(x,u) and wa(x,u), respectively, as in Eq
~2.11!. The adjoint actions of theosp(2u2) generators on
supermatrices become the actions of the following differ
tial operators on superfields@33#:

adj~ l i !→Ki5Ri1
1

2
ua~s i !ab

]

]ub
,

adj~va!→Ka
v 5

1

2
xi~Cs i !ab

]

]ub
2

1

2
ub~s i !ba] i ,

adj~da!→Ka
d52

r

2 S 11
u2

r 2 D Cab

]

]ub

1
1

2r
ub~s i !baRi2

1

2r
uaxi] i , ~3.18!

adj~g!→Kg5
1

r
xi~s i !abua

]

]ub
,

where Ri52 i e i jkxj]k . The supertrace can be replaced
the integral on the supersphere,

Str→2
r

2pE d3xd2ud~x21u22r2!. ~3.19!

By using the mapping rules~2.11!,~3.16!–~3.19!, we obtain
the following action on the noncommutative supersphere

S5S 2
r

2p D S 16

9 D 2l3

g2E d3xd2ud~x21u22r2!

3H 2

3
i e i jk S ãiK j ãk1

1

3
ãi@ ã j ,ãk# D1

1

2
ãi ãi

1~s iC!abS 2

3
ãiKa

dwb2
1

3
wa~Kiwb1@ ãi ,wb#! D

2
1

2
CabwawbJ

*
1

1

6 S 16

9 D 2 l3

g2
LS L1

1

2D . ~3.20!

Here the asterisk indicates the star product on the fuzzy
persphere@47#.

2We can consider otherL→` limits. For instance, a flat noncom
mutative limit with asymmetric scalings forua is studied in@36#.
3-4
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Next we consider the commutative limit of the mode
This limit is given by theL→` limit, keeping the radius of
the supersphere fixed. The supermatricesãi andwa become
superfields which can be expanded as follows:

ãi~x,u!5ai~x!1j ia~x!ua1S bi~x!1
1

2r 2
xj] jai~x!D u2,

~3.21!

wa~x,u!5za~x!1~sm!bacm~x!ub

1S xa~x!1
1

2r 2
xj] jza~x!D u2, ~3.22!

wherer 25xixi , u25Cabuaub , andm50,1,2,3.ai ,bi , and
cm are bosonic andj ia ,za , andxa are fermionic fields on
the supersphere. Theu(2L11u2L) gauge paramete
H( l i

(L) ,va
(L)) becomes a superfieldH5h(x)1ha(x)ua

1 f (x)u2 whereh(x), f (x) are bosonic fields andha(x) are
fermionic fields. We can fix the gauge degrees of freed
corresponding toha(x) and f (x) by settingCabuawb50,
which meansc05za50. In this gauge, we obtain the actio
in the commutative limit,

S5S 2
r

2p D S 16

9 D 2l3

g2E dVF2
i

3r
e i jkaiRjak

1
4i

3
re i jkaiRjbk1

i

3
e i jkaiRjck1

2

3
r2bici

1
i

3
re i jkciRjck2

1

4r
aiai1raibi1

2

3
rcici

2
i

3
e i jkCabj iaRjjkb1

i

6
re i jk~Cs i !abj j ajkb

2
1

4
Cabj iaj ib1

1

3
r2~s i !abj ibxaG . ~3.23!

Here we have taken theL→` commutative limit and
dropped terms like@ai ,aj #* . The auxiliary fieldsbi andxa
can be integrated out. This leads to the following constrai

ci52
3

2r
ai2

2i

r
e i jkRjak , ~3.24!

ja
(1/2)[~s i !abj ib50. ~3.25!

Then the action can be simplified as

S5S 2
r

2p D S 16

9 D 2l3

g2E dVF2
2

3r
Fi j Fi j 1

2i

3r
e i jk~RlFli !F jk

2
i

12r
~e i jkaiRjak2 iaiai !2

i

3
re i jkj ia

(3/2)S CabRj

2
1

2
~Cs j !abD jkb

(3/2)2
1

4
rCabj ia

(3/2)j ib
(3/2)G , ~3.26!
10500
s:

where j ia
(3/2)5j ia2 1

3 (s i)abjb
(1/2) and Fi j 5Riaj2Rjai

2 i e i jkak . This theory is invariant under theU(1) gauge
transformations

dai5Rih~x!, dca50, ~3.27!

where the gauge parameterh(x) is a remnant of theu(2L
11u2L) transformation. The supersymmetries, which a
combinations of the osp(1u2) and appropriateu(2L
11u2L) transformations are not manifest, because we h
fixed the gauge degrees of freedom corresponding tou(2L
11u2L). The dynamical variables of the action are t
gauge fieldai( i 51,2,3) and the fermionj ia with spin 3

2

undersu(2). Thenormal component ofai becomes a two-
dimensional scalar on the sphere. Although this model
gauge symmetry and supersymmetry, it is different from
ordinary supersymmetric gauge theory inD52 and its
physical interpretation is not very clear.

Our construction of the supersymmetric gauge theory
similar to the covariant superspace approach for ordinary
persymmetric gauge theories@45#. In this approach, connec
tions on the superspace which are described by superfi
are introduced. Then the conventional constraints and
integrability conditions of the covariant derivatives are im
posed in order to eliminate extra degrees of freedom. T
connections on the superspace correspond to the superm
cesAi andca in our model. However, there seems to be
appropriate condition that preserves theosp(1u2) symmetry,
to eliminate extra fields. Instead of these conditions the eq
tions of motion of the auxiliary fields partially play a simila
role in our case.

Although we here concentrated on the construction of
U(1) gauge theory on the fuzzy supersphere, a genera
tion to U(k) gauge theory can easily be realized by the f
lowing replacement:

Ai→ (
a51

k2

Ai
a

^ Ta, ca→ (
a51

k2

ca
a

^ Ta, ~3.28!

whereTa(a51,2, . . . ,k2) are the generators ofU(k).

IV. CONCLUSIONS AND DISCUSSION

In this paper, we constructed a supermatrix model wh
has a classical solution representing the fuzzy tw
supersphere. We obtained a supersymmetric gauge theo
this noncommutative superspace by expanding supermat
around this background. In this formulation, the superma
ces which are the fluctuations around the classical ba
ground correspond to the superfields on a fuzzy supersph
This model hasosp(1u2) symmetry, which is the supersym
metry of the model, andu(2L11u2L) gauge symmetries
The classical backgrounds corresponding to the fuzzy t
supersphere violate theosp(1u2) symmetry, but the action is
still invariant under theosp(1u2) transformations supple
mented by an appropriateu(2L11u2L) transformation com-
pensating the violation. Then we took the commutative lim
keeping the radius of the supersphere fixed. The superm
ces such as the gauge fields and the gauge parameter
3-5
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come superfields on a commutative supersphere in this li
After partially gauge fixing and integrating out some aux
iary fields in the superfields, we obtained aU(1) gauge
theory on the supersphere. In the derived action, the su
symmetry is not manifest due to our gauge fixing conditio
It is easy to generalize our construction toU(k)(k.1)
gauge theory on the fuzzy supersphere.

The construction of a gauge theory on the fuzzy sup
sphere that we considered here has similarities to the c
riant superspace approach in ordinary supersymmetric ga
theories. The supermatricesAi and ca in our model corre-
spond to connection superfields on noncommutative su
space. The covariant superspace approach can be appli
supersymmetric gauge theories in higher dimensions,
D54, N51 super Yang-Mills theory.N5 1

2 super Yang-
Mills theory @1,3# is derived by introducing noncommutativ
ity only between chiral fermionic coordinates in theN51
superspace. Although this theory is not written completely
supermatrices because bosonic and half fermionic coo
nates are still commutative, it can be described by an ex
sion of the covariant superspace approach to theN5 1

2 non-
commutative superspace. It is interesting to construc
supermatrix model whose classical solution is the fo
dimensional noncommutative superspace, and quantum
tuations around it describe the super Yang-Mills theory.

It would be interesting to study the graded unitary gro
symmetryU(M uN) possessed by supermatrix models. In t
type IIB matrix model@41#, U(N) gauge symmetry can b
regarded as a matrix regularization of the area preser
diffeomorphism in the Schild type action of the type II
Green-Schwarz string. There is the possibility of the grad
unitary symmetry appearing as a matrix regularization o
world sheet symmetry of covariant formulations of sup
string theories, e.g., superembeddings.
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APPENDIX: NOTATION AND DEFINITIONS

In this appendix we briefly explain definitions and not
tion related to the graded Lie algebra and supermatrix. M
complete explanations can be seen, e.g., in@49,50#. We de-
note the space of Grassmann odd numbers asB, a graded
algebra asG, and its even~odd! part asG0 (G1).

1. Star and superstar for Grassmann number

Star:~cu i !* 5 c̄u i* , u i** 5u i , ~u iu j !* 5u j* u i* ,

superstar:~cu i !
#5 c̄u i

# , u i
##52u i , ~u iu j !

#5u i
#u j

# ;
~A1!

whereu iPB andcPC.
10500
it.

er-
.

r-
a-
ge

r-
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y
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n-
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-
c-

e

g

d
a
-

re

2. Adjoint and superadjoint for graded Lie algebra

Adjoint:

~ i! XPG i→X†PGi for i 50,1

~ ii ! ~aX1bY!†5āX†1b̄Y†, ~A2!

~ iii ! @X,Y%†5@Y†,X†%,

~ iv! ~X†!†5X;

superadjoint

~ i! XPG i→X‡PGi for i 50,1

~ ii ! ~aX1bY!‡5āX‡1b̄Y‡, ~A3!

~ iii ! @X,Y%‡5~21!degX•degY@Y‡,X‡%,

~ iv! ~X‡!‡5~21!degXX,

whereX,YPG, a,bPC.

3. Supermatrix

The (m1n)3(m1n) supermatrixM has the form

M5S A B

C DD , ~A4!

whereA,B,C, andD are, respectively,m3m,m3n,n3m,
and n3n matrices. An even supermatrix (degM50) has
Grassmann even components inA andD and Grassmann odd
components inB andC. An odd supermatrix (degM51) has
Grassmann odd components inA andD and Grassmann eve
components inB andC.

4. Transpose and supertranspose for supermatrix

Transpose:

Mt5S At Ct

Bt DtD , ~A5!

where At denotes the ordinary transpose ofA, and (MN) t

ÞNtMt.
Supertranspose:

Mst5S At ~21!degMCt

2~21!degMBt Dt D ,

~Mst!st5S A 2B

2C D D , ~A6!

~MN!st5~21!degMdegNNstMst.

5. Adjoint and superadjoint for supermatrix

Adjoint:

M†5~Mt!* ,

~MN!†5N†M†, ~A7!

~M†!†5M .
3-6
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Superadjoint:

M‡5~Mst!#,

~MN!‡5~21!degMdegNN‡M‡, ~A8!

~M‡!‡5~21!degMM .

6. Supertrace

StrM5tr A2~21!degMtr D,

Str~Mst!5StrM , ~A9!

Str~MN!5~21!degM degNStr~NM!,
e

ys

rg

e

7

nt

10500
whereM has the form~A4!.

7. Scalar multiplication of a supermatrix by a Grassmann
number

bM5S b1 0

0 ~21!degbb1D S A B

C DD , ~A10!

Mb5S A B

C DD S b1 0

0 ~21!degbb1D ,

~A11!

where b is a Grassmann number andM is a supermatrix
~A4!.
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