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In the framework of the 5D low-energy effective field theory of the heterotic string with no vector fields
excited, we combine two nonlinear methods in order to construct a solitonic field configuration. We first apply
the inverse scattering method on a trivial vacuum solution and obtain a stationary axisymmetric two-soliton
configuration consisting of a massless gravitational field coupled to a nontrivial chargeless dilaton and to an
axion field endowed with charge. The implementation of this method was done following a scheme previously
proposed by Yurova. We also show that within this scheme it is not possible to get massive gravitational
solitons at all. We then apply a nonlinear Liedkaind matrix transformation of Ehlers type on this massless
solution and get a massive rotating axisymmetric gravitational soliton coupled to axion and dilaton fields
endowed with charges. We study as well some physical properties of the constructed massless and massive
solitons and discuss the effect of the generalized solution generating technique on the seed solution and its
further generalizations.
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[. INTRODUCTION order to apply the ISM to gravitational models and their
extensions we must consider configurations that depend at
The aim of this paper is to apply two nonlinear methodsmost on two space-time coordinates.

for constructing solitonic solutions in the framework of the  In the same way, in the framework BFdimensional low-
5D truncation of the low-energy effective field theory of the energy effective string theories toroidally reduced down to
heterotic string with no vector fields excited. In a first stagetWo space-time dimensions, i.e., in the presenceDof2
we implement the inverse scattering meth@8M) on a  Killing vectors, we hope to obtain black holer black
trivial (flat space-time seed solution in order to obtain a brang solitonic solutions by applying the ISM. However, in
solitonic solution. At this step we make use of a chiral this realm the problem becomes more complicated due to the

SL(4,R)/SO(4) representation of the stationary axisymmet—'caCt that, in general, the chiral representations Of. the reduced
Ipw-energy effective field theories have dimensions greater

ric.theory aqd construct a rotating massless gravitationathan 2 and must satisfy, indeed, nontrivial group conditions
soliton following the scheme proposed by Yurova 1 for For instance, the chira;l modei which describes the low-

chiral matrices of dimension greater than 2. Afterward Weenergy effective field theory of the heterotic string when re-

endow this object with gravitational mass and dilaton charg%uced to three space-time dimensions possesses @(d
by means of a nonlinear transformation of LieeRmind +1,d+n+1)/[SO(d+1)XSO(d+n+1)] symmetry
type, the so-called normalized Ehlers transformali&T).  44,5[3], whered is the number of compactified dimensions

In the framework of general relativity, Belinski and Za- 54 js the number of Abelian vector fields of the thedry.
kharov[2] demonstrated that the vacuum stationary aX|aIIy-|—hUS, the chiral representation of this theory involves sym-

symmetric gravitational equations written in chiral form may metric matrices of dimension (2-n+2) which must sat-

be integrated with the aid of the ISM. This technique a"OWSisfy Orthogona| group conditions. As a consequence, the
one to obtain theN-soliton configuration starting from flat original scheme described 2] cannot be applied anymore
space-time by making use of a symmetric chiral2 matrix  and must be suitably modified.

which must not satisfy any group condition. It was shown, in  In fact, it is not so easy to overcome this difficulty since
particular, that the Kerr-NUT(Newman-Unti-Tamburino  both the dimensionality of the chiral matrices and their group
metric can be interpreted as a two-soliton solution of 4Dsymmetry condition strongly restrict the solitons we can ob-
Einstein theory in the presence of two commuting Killing tain, leading sometimes to rotating massless gravitational
vectors. As far as we know, the ISM has not been generalizedonfigurations[1] and, even more, to trivial solutionsee

for gravitational systems involving three space-time vari-below). For example, in the framework of the scheme fol-
ables, i.e., with just one Killing vector imposed. Thus, in

Un fact, the further reduction of the theory to two space-time
*Email address: aherrera@auth.gr dimensions by imposing one more Killing vector does not increase
TEmail address: rigel@fismat.umich.mx the dimensionality of the chiral representation.
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lowed in this paper, this problem reduces to the choice oment and generalization of the techniques applied in this
five relationships between eight constant parameters. Howwvork.
ever, not every set of such conditions leads to a soliton con-
figuration depending on three parameters. Moreover, among Il. LOW-ENERGY EFFECTIVE ACTION
them there are conditions that lead to trivial objects, i.e., to
flat space-time solutions. Thus, this work brings some insigh{
into the understanding of obtaining such solitonic objects
always with the hope of clarifying all the conditions under
which we can apply the ISM and construct the general (5) 501~ (5)) L2 (5
N-soliton solution for systems represented by chiral matrices ~ S°'= J' d°x|G™)|*e
of any dimension greater than 2 which, indeed, must satisfy
nontrivial symmetry group conditionsee the related work
[4], where the ISM has been implemented for special sys-
tems in the framework of string thegry

Another interesting issue concerns the physical interprewhere H{\p=duB A+ cyclic permutations oM N, P;
tation of the constructed soliton since it describes a massle$giin is the metricB{z), is the anti-symmetric Kalb-Ramond
gravitational object coupled to nontrivial dilaton and Kalb- field, ¢ is the dilaton, andvi,N,P=1,2, . .. 5.After the
Ramond fields. However, despite the massless character Rluza-Klein compactification of this model off [3], the
the gravitational configuration, it possesses angular momer€sulting stationary theory possesses 8@(3,3)[SO(3)
tum, a strange feature that must be clarified. In this context SQ(3)] symmetry group and describes the three-
it is also interesting to see whether or not it is possible tgdimensional dilaton fields and the scalar 2 matricesG
endow our two-solitonic configuration with gravitational =Gpq andB=By,
mass and dilaton charge since there is no way to get a mas-

We shall study the 5D low-energy effective field theory of
he heterotic string with no vector fields excited. This theory
is described by the following action:

) 1
x| RO+ pQROIM — SHGRHEMNP] (1)

1
sive solution when implementing the ISM on a trivial solu- b= — EIn|detG|, qu=GE)5+)3,q+3,
tion within the scheme proposed by Yurofsee Sec. Il In
order to achieve this goal we apply a solution generating (5)

. . . B,,=B , 2
technique based on the use of a nonlinear transformation of Pa— Tpt3ats3 @

Lie-Backlund type[5], namely, we perform the NEB] on  wherep,q=1,2 label the time and extra coordinates, respec-

our massless two-soliton and get a rotating gravitational convely; the vector fields represented by thex2 matrices
figuration with mass term coupled to dilaton and axion fieIdS(Al)z and (Az)ffzy

endowed with their respective charges.
It is with this motivation that we perform the present in- o_ 1 ) pt2_ 1 (5) q
vestigation. The paper is organized as follows. In Sec. Il we (AI)M_E(G )peCataur (A2)y _EBN&M_ BpoAu
present the 5D low-energy effective action of the theory un- ®)
der consideration as well as the matrix Ernst poteriittP)
formulation of the theory reduced down to three dimensionswhere u,v=1,2,3 are the dynamical coordinates; and the
Then we recall the NET of the stationary theory in the lan-antisymmetric tensor fiel@&,, (which we set to zero from
guage of the MEP and write down an alternativenow on due to its nondynamical properties in three dimen-
SL(4R)/SO(4) representation of the stationary theory. InSions
Sec. lll we describe the ISM and the modifications that one
must perform in order to apply it to our string system. After-
ward we show that, within the scheme proposed by Yurova,
one can construct just massless gravitational solitons ang
present an explicit exact solution. We also analyze som

_p(B)_ _ +2_ +2y.
BMV—BW 4quA2Aﬂ 2(A£A5 A,’fAz ), (4

Il these fields are effectively coupled to three-dimensional
ravity which is described by the metric tensor

physical properties of this two-soliton object. In Sec. IV we —e 29[GO —GO), GO, (G71),.]. (5)
perform a simplified NET on a seed solution which corre- Gur [G1u ™ CprauCaran pal
sponds to the solitonic configuration constructed in Sec. Ill |t turns out that for stationary configurations, the vector

and get a gravitational soliton endowed with a mass term. Wéields can be dualized on shell through the pseudoscalar
study as well some physical properties and limits of the sofields u andv as follows:

lution obtained. Finally, in Sec. V we summarize our results
and discuss on the physical peculiarities of the constructed
solutions and also analyze the technical details of the imple-
mented nonlinear methods that produce them. Here we give
as well some suggestions concerning the further develop-

.1
V><A1=§e2¢G‘1(Vu+BVv),

.1 R
VXA,= Ee2¢GVv—BV><A1, (6)

2An object without mass term in the asymptotical expansion of thewhere all vector and differential operations are performed
g component of the metric tensor. with respect to the metrig,,,, .
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Thus, the effective stationary theory describes gragjty =~ where % =diag(—1,—1;1) andA is an arbitrary antisym-
coupled to the scalariG,B, ¢ and the pseudoscalausy . metric constant X3 matrix parameterA=—A". In the
framework of solution generating techniques, by applying
the NET on a stationary seed solution we obtain a new sta-
tionary solution endowed with three more parameters intro-
All these matter fields can be arranged in the followingduced through the antisymmetric matex We shall apply

A. Matrix Ernst potentials

matrix: this technique in Sec. IV on a solitonic seed solution con-
_ structed by means of the ISM in order to further analyze the
—e 224+ ™Xp v'™X—uT . . .
XY= @ physical effect of the NET and the physical properties of the
Xv+u X ’ generated solution.
whereX=G+ B. This is a 3x 3 matrix which was called the C. SL(4,R)/SO(4) chiral representation of the model

matrix Ernst potential if7] because of the close analogy In [10] it was pointed out that apart from the

existing between the representation of the low-energy effecs 33)1SO(3)XSO(3 .
oy . : . , symmetry group formulation,
tive field theory of the heterotic string and the formulation of thg(stat)if)[naor)(/ s?yste%( u)r}deryconsidﬁra%ion gllows an alterna-

g;emﬁf‘et)'(og?%tarﬁfﬁg;}gfvﬂEC'\g:nthgﬁ;ﬁt'g Li\gstﬁ];t?gl- tive SL(4,R)/SO(4) chiral parametrization. The latter for-
Iowir? h sicall?”neanin 'tﬁe reIevaEt information about themulation Is more convenient since it is parametrized by 4
g pny 9 X 4 matrices instead of 86 matrices, and has to satisfy a

gravitational field is contained in the matrix potentisl - o . .
through the matrixG, whereas its rotational character is en- trivial group condition. Thus, the chiral action reads

coded in the dualized variable; X also parametrizes the 1
antisymmetric Kalb-Ramond tensor figk] whereas its mul- 3S=f d3x|g|¥4 — R+ ZTr(J/‘/)2 , (11)
tidimensional components are dualized throughfinally,
the 3D dilaton is¢. In terms of the MEP the effective sta- | . jv_ VAN L, the symmetric matrixV/is
tionary theory adopts the form
1 ,/\[:(detg)llz( o ) (12)
3s:f d3|g|¥4 —R+Tr Z(VX)gl(VXT)glu, H'G detG+HTGH)’

(8  the 3x1 column™ is determined by the relatiofty e nk
=Bn=B, the matrix potentialg§/ and B are defined in Eq.
where G=3(X+XT) is the symmetric part of the matrix (9), and €., iS the antisymmetric tensor with,s=1 and
potential X, whereas the antisymmetric part reafls (X  m,n,k=1,2,3. The matrix\ is indeed unimodular and be-
—XT). The MEPX can be expressed as the sum of its sym4ongs to theSL(4,R)/SO(4) group.

metric and antisymmetric parts= G+ B, where Let us consider an axially symmetric field configuration.
In this case the spatial metric can be written in the Lewis-
—e24,7Gy TG 0 vTB—uT Papapetrou form
g: 1 =
Gu G Boru B ds3=g,,dxdx’=e2"(dp? +d2) +pPde?,  (13)
the effective action of the system can be expressed as fol-
B. The normalized Ehlers transformation lows:

In the language of the MEP the stationary acti8ppos- 1
sesses a set of symmetries which have been classified ac- 2g=_ J dpdzp Tr(JN)Z, (14)
cording to their charging properties [6]. Among them we 4
find the so-called normalized Ehlers and Harrison transfor- - .
mations, NET and NHT, respectively, which act in a non-and the matrix field equation reads
trivial way on the space-time when solution generating tech-
nigues are applied. For instance, in the framework of general
;glrite“'nllet?/,vmgnlz;pl)giseér?gsgg:rr? gt::?]?/vgrezr;irhailltgsaazeK':Er-rsgli:rhe corresponding.Einstein equations determine the function
tions, whereas the Harrison transformation endows thes& through the relations
metrics with electromagnetic charges. We would like to men-

V(pdMy=0. (15

tion that the NET constitu'tes_ a matrix gengralization of the ,y‘zzg'rr(\]ﬁ/‘]-;\/), V,ngf[(Jﬁ/)z—(sz\/)z], (16)
charging symmetry of Lie-B&lund type introduced by
Ehlers in the framework of general relativit9]. ) )

The matrix NET transformation read] where the operatdv is related to the flat two-metrig,, and

all dynamical variables depend @nandz only. These equa-
X—(1+3A)(1+AA) 1A (1-AZ)+3AS, (100 tions are automatically satisfied once a solution for @@),
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or equivalently Eq(9), is found. In the next section we shall (see[2] for detailg. However, in order to apply the ISM to
construct a solitonic solution to this matrix equation by chiral matrices with dimension greater than 2, the symmetry
means of the ISM. requirement must be imposed after the construction of the
solitonic solution. Thus, after the implementation of the ISM,
IIl. SOLITONS VIA ISM the constructed matri®/ will not be symmetric and we must
impose this condition afterward.

In this section we shall continue to apply the inverse scat- . The sol|tor_1 solutions for the matrix’ correspond to pole
tering technique in order to construct soliton solutions for theliVergences in ﬂl? spectral parameter complex plane for the
5D low-energy effective field theory under consideration.Matricesy andx ~. When the poles are simple, these ma-
However, because of the symmetry condition that the reaifices can be represented as follows:

chiral matrix \Vmust satisfy, the original scheme of Belinski N R N
and Zakharov is not applicable anymore and the implemen- x=1+2, )\_" Cox =Y — (22)
tation of such a powerful method turns out to be not so k=1 Mk k=1 Vg

simple. Another problem is related to the dimension of the . . .

chiral matrix for which solitons are constructed. The pointWhere the pole trajectories for each pélare determined by
here is_ that the matriy\" must possess certai_n asymptotic ,uk(p,Z)=W(M)—Zi[(W(#)—Z)2+p2]1/2, W)= const
properties which correspond to concrete physical values that (23)
the fields must adopt at spatial infinity. Thus, the bigger is

the dimension of the matri®/, the more boundary condi- for uy(p,z) and the same equation fag(p,z) with con-
tions we must impose on it. In this context we shall avoidstantsw,, . Fromxx~ 1=1 in the polesu, andy, it follows
these difficulties following the modification of the ISM pro- that

posed by Yurova. Thus, the integration of the field equations

-1 — —
(15) is associated with the LA pair Rix (1) = Sex (1) =0. (24
N N N N Hence the matrice®, and S, are degenerate and can be
D= pdz; —NJ, v, Dy pd, TAJ; 17 represented as follows:
wW=———> ¢, Dop=—F—-—
)\2+ 2 )\2_’_ 2
P P (R)ap=DEME,  (Sap=pkak. (25
Y ; ; - . .
whereJ"=pJ" and the differential operators are By substituting Eqs(22) and (25) into Eq. (24) we obtain
\? 2\p k . -1 k . -1
D=4, )@sz&h' Do=d,+ NI dh, (18 na=|21 Pal'i™s  Ga= _;1 MLy
\ is a spectral complex parameter, ager s(\,p,z). The  Where
solution of Eq.(15) for the symmetric matrix\ constitutes
the functiony with vanishing value of the spectral param- EC: pEmy
eter, i.e., Ly=——, (26)
M Pk
Mp,2)=¥(0,p,2). (19 « ‘
ma=[ o ~(kk,P,2) JcaMeo »
Thus, for any known solutiow, of the system(17),(18), the q
function ¢ can be obtained in the form an
— 20 ps=[o(vi.p.2)lacPo 27
Yo,
_ where m¥, and pk, are arbitrary constants and,b,c
where the equations foy are =1,2,3,4.
When considering the two-soliton case, [iff] it was
pJy—\J) p(IP)o= NI shown that in order to have a unimodular matfi§ the
Dix= N2t p2 X—X \Ntp? relation
N N N N M2 =V1V2 (28
J +NJ J o+ N(J
Dox= P "2 22 - a ")2 i Z)O, is really important and it constitutes the main difference with
A+p A+p respect to the scheme proposed by Belinski and Zakharov

since it is not compatible with the symmetry requirement
The matrix V' must be real and symmetric; in order to N=x(—=p?N)NoxT(\) of [2]. As a consequence, the re-
ensure its real character, we shall impose the condition  sylting unimodular matrix\” will be nonsymmetric. How-
L ever, the symmetry conditions may be attained by a suitable
x(N)=x(\) (21)  choice of the arbitrary parameters of Eg7).
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Let us apply the modified ISM in order to construct a vanish as well and the constructed solution turns out to be a
stationary axially symmetric two-soliton solution for the 5D trivial one. This fact, in turn, leads to slightly different soli-
string model which is described by the effective acti@d)  tonic solutions from the physical point of vie(@ee below.
when reduced to two dimensions.

In the simplest case, the initial values of the metric and

. . ; A. Massless character of the gravitational soliton
field variables correspond to flat space-time. Thus, the seed

chiral matrix adopts the form Now we shall show that when constructing the two-
soliton solution and imposing the conditid®2) toward the
Ny=diag —1,-1;1,1). (29 symmetrization of the matrix\/, we necessarily obtain a

o _ . massless gravitational field configuration. Thus, after taking
We shall construct the solitonic solution using the set of cointo account the restriction82), we obtain a chiral matrix/

ordinates of Boyer and Lindquist without mass. This is beyyhich has the following block structure and asymptotic be-
cause the resulting two-soliton gravitational solution correayior:
sponds to a massless soufsee below for detaijsThus, we

have =1 nplr N/t Nyl
p=(r>—o?)Y%sing, z—z,=r cosé, (30 _ Ni N _ N/t =1 nalt naglr
& IN; N, Ng/t Ngo/t 1 ngylr
where the new constanthé(w(ﬂ)—w(,,)) and z; e 1
=3(W(,)+W,). Consequently, the pole trajectories read 4l 42 43
i (39
0 0 . . . .
=2 stE(H—o), ,u2=—2co§§(r—cr), whereN; is a 3x3 matrix, N, is a 31 column,N3 is a
1X3 row, andN,=1,
9 8
v =—2 co§§(r+a), vy=2 S|r\2§(r—a), (31 pipZ—plp?
Nyec= ZKUT
r
and obviously satisfy the condition(28). Since AN PaFs
= o Nk, p,2) = ho(vi.p,2), then the vectorpX and m -1, a=1.2,
constitute arbitrary constanfsee Eq(27)]. Thus, by apply- azc, and k= 1. a=34, (35

ing the scheme described above, one can construct the matrix
two-soliton solution\ for Eq. (15) depending on these vec- On the other side, the matrix’is defined througtg and B

e oo o 1 AT o h relaton12. By equating ot represeniatons
9 P y we can, in principle, compute th@onsymmetrianatrix G,

the matrix: =(N4— N3N1’1N2)N1 which asymptotically behaves as fol-
mk=pk, (32) lows:

for all a,k; and =1 nplr ngglr
Gas=| Nar/t =1 nylr |, (36)

P3=P3. P3=(P3)?/P3. Pi=pi=—PiP3/ps,
N3/ Ngolr 1
Pi=(P3/p2)*pi.- (33
and obviously does not possess Coulomb terms in the diag-

Thus, only three constants survive the symmetrization of thenal components. Thus, when looking for constructing a
matrix V. However, we would like to point out that just the massive gravitational solitonic configuration within this con-
condition(32) is not enough to ensure the symmetry characcrete modified version of the ISM, it does not matter what
ter of V; it leaves eight arbitrary constants, but it does notkind of relationships we choose between the remaining eight
lead to a symmetric matri®/. Moreover, we must impose constantspX, since the condition$32) are sufficient to re-
five more restrictions on these eight constants in order t@trict us to obtaining massless solitons.
obtain the desired symmetric matth. The choice of these Thus, by imposing the conditior§82), it is not possible at
restrictions is not unique and the constants are not indeperi| to obtain a massive gravitational two-soliton solution.
dent of each other. Moreover, some choices lead to a triviathis fact also shows how strong, from the physical point of
soliton solution or to a solution that depends on just twoview, are the restrictions we must impose on our makfiin
arbitrary constants instead of three. In this respect, we oborder to make possible the application of the ISM to chiral
serve some differences between our choice of constants amgatrices of dimension greater than 2. It remains an open
the one performed by Yurova. For example, by settingpdur question whether a different scheme of symmetrization of the
to zero we just set to zero one parameter of the solutionmatrix A" can lead to massive gravitational solitons in the
whereas within the choice made(it], the author claims that framework of the model considered. Current research in this
if any of the constants;;)(,‘j1 is set to zero, all other constants direction is being performed by the authors.
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B. Explicit two-soliton solution a(c—b+a COSH)SinZG

Once the matrix\is constructed taking into account the BE)=21bc| coso— 52 (44)
conditions(32) and (33), we can come back to the original
variables of the theory with the aid of Eg&l2), (9), and Finally, the 5D dilaton field reads
(2)—(6). At this stage it is convenient to introduce the follow-
ing notation: 2 242
0" +(b c)2 a 00320. 45
Col(p)?+ (P2 o(p)[(p3)*—(p3)?] &
2p3p3 2p3p3[ (p1)*+ (p3)?] These expressions describe a stationary axially symmetric
massless gravitational field configuration coupled to a non-
opal(p3)2—(p3)?] trivial dilaton field without charge and to an axion field en-
T I, 12 1y27° (37) dowed with charge. A novel feature of this configuration is
2p3[(p1)+(p2)7]

that it possesses angular momentum. By analyzing the as-
which establishes the relation?=a2— (b+c)?; let us de- ymptotical behavior of the functions] we observe tha&)qla
fine as well defines the angular momentum according to the following
relation:
A=r?—o¢?, 6°=r?+c?>—(b—acosh)?. (39

—2a+/bcsirte

Now we shall write down the final expression of the con- wilrﬂw~ ;

structed two-soliton solution by implementation of the ISM.

The 5D line element reads 2

whereasw;, is not an asymptotically flat quantity since at

ds2=Gpg(dxP— wPde) (dXI— wlde) +e2%ds}, (39) spatial infinity it behaves as

, (46)

where the components of the mat@y,, have the form wilr_m~2\/H:COSt9 (47)
r2+b%—(c—acosh)? 2cr and defines a NUT-like parameter. However, it is worth no-
1n="- 52 ; 12=?, ticing that in order to obtain an asymptotically flat field con-
figuration we can set to zero either the parameter c. In
22 ) the first case the remaining configuration constitutes a mass-
_r°+b"—(c+acosd) (40)  less static innomogeneous gravitational field with nontrivial
22 52 ’ components of the matriG,, with no dilaton and Kalb-
Ramond fields excited. In the second case the truncated con-
the metric functionso are figuration is different; it represents a massless static inhomo-
geneous gravitational field with nonzero compone@tg
1~ 2a /bcrsir?e andG,, coupled to a nontrivial massless 5D dilaton field and
We= A +a2sirtg endowed with an axion field which possesses a charge term.

One can see another quite strange property of our soliton: as
soon as we require asymptotic flatness, the solution becomes
, static [see Eqs(46) and (47)]. In this respect, the soliton
A+ a’sirfe constructed i1] has quite different properties since in order
(41)  to get an asymptotically flat field configuration we must set
to zero both parametetsandc, obtaining a trivial solution
in this way. Thus, that solitonic solution does not contain
abe asymptotically flat field configurations.
e2t=1————— (42 In both of the limits consideredo=0 andc=0) we ob-
A+a’sirte tained static inhomogeneous field configurations even when
. o ) the parametea, which usually is responsible for the rotation
and the expression for the spatial line element is the followys the gravitational field, is not vanishing. Thus, our solitonic
Ing. configuration does not contain a spherically symmetric sub-
class of solutiongin accordance with the soliton constructed
+Asintgde?. (43  in [1]). Comparison to other results in the literature shows
[11] that these solutions are not obtained by setting to zero
. . the mass or other parameters. Of course, it is interesting to
The components of the antisymmetric Kalb-Ramond tensogtudy other physical properties of these massless solitonic

field are defined by the relations configurations. At first glance it seems that these solutions

a(b+c—acosé)sintd
w%=2\bc| cosg+ ( )

the three-dimensional dilaton field is

dr?
ds3=(A+aZsirf9) T+o|(92

. correspond to both rotating and static inhomogeneous black
12:2_br’ 325): 2\bcr(2b coso + asir?6) , strings since we have the presence of horizons; however, this
52 ¢ 52 topic deserves further investigation.
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IV. MASSIVE GRAVITATIONAL SOLITONS VIA NET for instance, if the obtained solution corresponds to a known

Since the implemented version of the ISM cannot provide©lass. In this way it is also possible to get new massive
gravitational solitons with a mass term, it is an open questioffolutions. In order to introduce more parameters in the con-
whether nonlinear methods can provide such objects in structed solitonic configuration one can make use of a solu-
low-energy effective string theories. In this section we shalltion generating technique. Thus, we will apply the Lie-
focus on this issue. One way to approach this topic is to loolacklund transformation NET10) on a seed solution which
for a way of endowing the gravitational and dilaton fields corresponds to the massless gravitational soliton constructed
with mass and charge terms, respectively, and then, to sei the previous section.

The corresponding seed MER = Gy+ BB, reads

-5 0 0
X,=62| 4\bc(b+c—acosd) —[r?+b?—(c—acoss)?] 2(b+c)r , (48)
4\bcr 2(c—b)r r2+b%—(c+acosh)?

whereG, and 3, are the matrix potential®) that parametrize the constructed solitonic chiral mati®. Here we shall use
a quite simple antisymmetric matriX, namely, a matrix with just one nontrivial constant parameter

0 0 0
A=|0 0 M|, (49
0O —-M O

Thus, after performing the nonlinear transformati) on X, we obtain a new solution of the theory under consideration. We
shall present the complete solution, omitting all lengthy intermediate calculations. Thus, the components of the transformed
matrix G4 are

(M?=1)[r?2+b?—(c—acosd)?]—4cM(r +Ma cosé)

Gu=-— ,
" (M2—1) 6%+ 4bM(r —Ma cosf)
~ 2c[(M?+1)r+2Macosf] 50
7 (M2-1) 82+ 4bM(r —Macosh)
s :(MZ—1)[r2+b2—(c+acos¢9)2]+4cM(r+Macosa)
2 (M2=1)8%+4bM(r — Ma cos6) '
the transformed metric functionsg are
. —2aybc[(M2=1)r+2M(b+c)]sir?e
We= 2 2 ’
(M2=1)(A+a?sirf0)
a[(M2+1)(b+c)+(M2—1)acosd]sirtd
w?=2\bc| coso— U )(bre)+( _) ] ; (51)
(M?2—1)(A+a®sirf6)
the three-dimensional dilaton field remains the same under the NET, thus
4bc
e2t=1—-— "~ (52)
A+a’sirte

The transformed components of the antisymmetric Kalb-Ramond field are the following:
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_ —2b[(M?+1)r—2Macosd]
(M2—-1)8%+4bM(r —Macos6) '

12

[2(b+c)M—(M?—1)r]asir?e
(M2—1)(A%+a®sirt6)

o) ~2be

2b[(M2+1)r—2Macosf][(M2—1)A—(M?+1)(b+c)asirté]
(M?2=1)(A?+a%sirf0)[ (M2—1) 8+ 4bM(r —Ma cosb)]

[(M2—1)A cosf+(M?+1)(b+c)asirté]
(M2-1)(A?+a®sirt6)

BO)=2\bc

2ab[(M2+1)r—2Macos#][2(b+c)M+(M?—1)r]sir?e 53
(M?=1)(A?+a%sirf0)[ (M2—1) 5>+ 4bM(r —Macosb)]
|
and the 5D dilaton field reads Finally, the asymptotic behavior of tH&{); , components

of the Kalb-Ramond field reads
(M?2=1)[r?+(b—c)?2—a%cos6]

) _
e = .
(M?2—1)8%+4bM(r —Ma cosb)

64 N2\/E[—2b(M2+1)cos¢9+a(M2—1)]sin20

(M?=1)r

It is a straightforward exercise to check that, whdnvan-
ishes, we recover the seed solitonic solution. By studying the
asymptotic behavior of the field configuration we can obtain BS), ...~ 2bccosé. (59
information about the existence of its masses and charges.

Thus, for the component§,, we observe that there exist Thus, we have obtained a stationary axially symmetric mas-

mass terms sive gravitational field configuration coupled to nontrivial
dilaton and axion fields endowed with their corresponding
2myy Mo charges. Again, in order to obtain an asymptotically flat field
Gy oo~ — 1+ ro I T configuration we can set to zero eitHeor c. If ¢ vanishes
we get a static inhomogeneous gravitational field with mas-
2m,, sive component$s;; and G,, coupled to nontrivial Kalb-
Gagli—x~1— PR (55) Ramond and dilaton fields endowed with their corresponding
charges. In the case wheris set to zero, we recover a static
where the masses,,, are defined as follows: inhomogeneous gravitational field with massive components
Gpq and vanishing dilaton and antisymmetric fields.
2(b+c)M 2c(M2+1) 2(b—c)M Once again we observe that, when we impose the
My=————, Mp=——————, Mp=————. asymptotic flatness condition, we automatically get a static
(M°-1) (M*-1) (M°-1) field configuration since by setting to zero the NUT-like pa-

(56) rameter implies the vanishing of the whole metric function
Analogously, we see that the transformed rotation function§51.)' Thus, it our ?0'“0” represents a rotgtmg field conflgu-.
q : ) ; . ration, it necessarily possesses the NUT-like parameter and if
w, and the three-dimensional dilaton maintain the sam

¢ . C : "Sve search for an asymptotically flat solution, it necessarily
asymptotic behavior, i.., they do not change their behav'ofaecomes static. This feature is not shared by rotating con-

at spatial infinity under the NET. The transformed Compo'figurations in general relativity where, for instance, one ob-

nentB,, of the antisymmetric tensor field as well as the 5D1ains the Kerr metric from the Kerr-NUT one when the NUT
dilaton possess Coulomb terms, charge vanishes. This fact is a consequence of the relation-
by, ] D ships that take place between the constanks andc, which

Bidy o~ —, e¢( )|Hm~1+ —, (57) are arbitrary, but not independent of each oflfier instance,
r r from Eq.(37) it can be seen thdi~c]. It seems that this is,
in turn, a consequence of the restricti@@8) and(33) which
we imposed on the constarpn§ in order to get a symmetric
2b(M2+1) 4bM chiral matrixN It is interest.ing to propose another sch'eme
e —— - (59  for symmetrizing the matrix\" which would avoid this
(1-M?) (1-M?) strange physical behavior of the constructed solitonic solu-

where the new charges have been introduced

12—

105002-8



INVERSE SCATTERING METHOD, LIE-BACKLUND . .. PHYSICAL REVIEW D 69, 105002 (2004

tions and could, in principle, provide the presence of masso propose another scheme for symmetrizing the mabfix

and charge terms for the fields of our configuration. which would avoid this strange physical behavior of the con-
structed solitonic solutions. This peculiar physical property
V. CONCLUSIONS AND DISCUSSION of our solutions is quite strange, but on the other side, it is

. quite interesting and deserves more investigation. The com-

In this paper we havga cqmblneq two nor_1I|near m_ethod_s Irbutation of the scalar curvature and other invariants will help
order to construct a solitonic gravitational field conflguratlonin clarifying this point. A current investigation in this direc-
to the 5D low-energy bosonic sector of string theory. By o' 2i1sq'in progres.s

following the modified version of the ISM proposed by “\yihin the framework of the solution generating tech-

Yurova we _clarified _the_ unavo!dable me_lssless character CHique using nonlinear transformations of LieeRaund type,

Fhe grgvnathnal sohtom_q solutions obtained. Therefore, byit is interesting to see whether the use of a full parameterized
'mposing su!table co_ndmons on the constgnts that_p"?‘rankonstant matrixA will affect the asymptotic behavior of the
etrize the chiral matrig/, we construct a soliton consisting transformed solution and provide more independent charges.

of a rotating massless_ gravitational ﬁel.d cpnfigurationln this way we could obtain a massive rotating solitonic ob-
coupled to a chargeless dilaton and to an axion field endoweg_,

th ch Thi lution h imilar but diff hvsi IJ ct endowed with NUT-like charge that remains spinning
with charge. This solution has similar but different physical,ge, 1he vanishing of the NUT parameter. However, this
properties and limits when compared to the solution con

: ) o ) ) transformation involves really lengthy algebraic calculations
structed in1]. Afterward, we provide this field configuration y engihy a|g

hich h i inth f . Anoth f
with mass and charge terms by performing a simplified nonW Ich we hope to perform In the near future. Another way o

: ) . . generalizing the present results is by applying this kind of
linear NET on it. Here we would like to point out that the . jinear | je-Baklund transformation to string systems that
nontrivial physical effect of the NET is quite different in

7 : : . include vector fields. In this context it is the NHT which
general relativity and string theory. It is well known that in must be performed on our massless seed solution. Thus
the framework of general relativity the Ehlers transformation, ithin the low-energy string theory realm, these methods,
provides the predsen?e .Of tghe NUT-like ch_arr]ge vf;/hefn applie ould, in principle, lead to the construction of new charged
on \éacgum. seeh solutiorf E) Howe\;]er, W't.'n }_f_edrame_- black hole (black brang¢ solutions in D>4 dimensions,
WQ:h o tstrlng theory twefct)h.setrve tf at at§|mp| Ie'd Verti'onwhere it is known that such objects do eXi$L]. Moreover,

(with jus one parame pof this trans ormation provides e j; iq interesting to apply the ISM for the whole spectrum of
mass and dilaton charge when applied on a massless se

o . low-energy effective field theory of the heterotic string
gravitational solution and does not affect the NUT parametef, y ,ced to two dimensiorigaking into account the Abelian
at all.

Let us say a few words about the physical properties o ector fields. This could be possible because of the above-

. o ; ! . entioned relationship between this theory and the EM
our mas_sless and massive graw_tatlonal field conf|_gurat|on§heory_ For a review of the ISM applied to the stationary
As mentioned above, when looking toward a rotating bIaCkaxisymmetric EM system, sd@?]
string interpretation of them, we impose the asymptotic flat- ' ’
ness condition and set to zero the NUT parameter. However,
when we drop the NUT-like charge, the remaining configu-
ration becomes static. Thus, from one side, if our solitons are  One of the authoréA.H.A.) is very grateful to the Theo-
restricted to be rotating, they necessarily possess a NUT paetical Physics Department of the Aristotle University of
rameter, and, from the other side, if they are conditioned torhessaloniki and, especially, to Professor J. E. Paschalis for
be asymptotically flat, they are necessarily static. This fact isiseful discussions and for providing a stimulating atmo-
due to the overall constant factgbc of the functionSwg for  sphere while part of this work was being done. He also ac-
both massless and massive solutions. Such functions defikmowledges a grant provided by the Greek Government.
both the angular momentum of the configurations and theiBoth authors thank IMATE-UNAM and CINVESTAV for
NUT-like charges. It seems that this is, in turn, a conseproviding library facilities while part of this investigation
guence of the condition§32) and (33) we have imposed was in progress. This research was supported by grants CIC-
toward the symmetrization of the matri¥. It is of interest UMSNH-4.18 and CONACYT-42064-F.
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