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Inverse scattering method, Lie-Bäcklund transformations, and solitons for low-energy effective
field equations of 5D string theory
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In the framework of the 5D low-energy effective field theory of the heterotic string with no vector fields
excited, we combine two nonlinear methods in order to construct a solitonic field configuration. We first apply
the inverse scattering method on a trivial vacuum solution and obtain a stationary axisymmetric two-soliton
configuration consisting of a massless gravitational field coupled to a nontrivial chargeless dilaton and to an
axion field endowed with charge. The implementation of this method was done following a scheme previously
proposed by Yurova. We also show that within this scheme it is not possible to get massive gravitational
solitons at all. We then apply a nonlinear Lie-Ba¨cklund matrix transformation of Ehlers type on this massless
solution and get a massive rotating axisymmetric gravitational soliton coupled to axion and dilaton fields
endowed with charges. We study as well some physical properties of the constructed massless and massive
solitons and discuss the effect of the generalized solution generating technique on the seed solution and its
further generalizations.
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I. INTRODUCTION

The aim of this paper is to apply two nonlinear metho
for constructing solitonic solutions in the framework of th
5D truncation of the low-energy effective field theory of th
heterotic string with no vector fields excited. In a first sta
we implement the inverse scattering method~ISM! on a
trivial ~flat space-time! seed solution in order to obtain
solitonic solution. At this step we make use of a chi
SL(4,R)/SO(4) representation of the stationary axisymm
ric theory and construct a rotating massless gravitatio
soliton following the scheme proposed by Yurova in@1# for
chiral matrices of dimension greater than 2. Afterward
endow this object with gravitational mass and dilaton cha
by means of a nonlinear transformation of Lie-Ba¨cklund
type, the so-called normalized Ehlers transformation~NET!.

In the framework of general relativity, Belinski and Za
kharov @2# demonstrated that the vacuum stationary axia
symmetric gravitational equations written in chiral form m
be integrated with the aid of the ISM. This technique allo
one to obtain theN-soliton configuration starting from fla
space-time by making use of a symmetric chiral 232 matrix
which must not satisfy any group condition. It was shown,
particular, that the Kerr-NUT~Newman-Unti-Tamburino!
metric can be interpreted as a two-soliton solution of
Einstein theory in the presence of two commuting Killin
vectors. As far as we know, the ISM has not been general
for gravitational systems involving three space-time va
ables, i.e., with just one Killing vector imposed. Thus,
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order to apply the ISM to gravitational models and th
extensions we must consider configurations that depen
most on two space-time coordinates.

In the same way, in the framework ofD-dimensional low-
energy effective string theories toroidally reduced down
two space-time dimensions, i.e., in the presence ofD22
Killing vectors, we hope to obtain black hole~or black
brane! solitonic solutions by applying the ISM. However, i
this realm the problem becomes more complicated due to
fact that, in general, the chiral representations of the redu
low-energy effective field theories have dimensions grea
than 2 and must satisfy, indeed, nontrivial group conditio
For instance, the chiral model which describes the lo
energy effective field theory of the heterotic string when
duced to three space-time dimensions possesses theSO(d
11,d1n11)/@SO(d11)3SO(d1n11)# symmetry
group@3#, whered is the number of compactified dimension
andn is the number of Abelian vector fields of the theory1

Thus, the chiral representation of this theory involves sy
metric matrices of dimension (2d1n12) which must sat-
isfy orthogonal group conditions. As a consequence,
original scheme described in@2# cannot be applied anymor
and must be suitably modified.

In fact, it is not so easy to overcome this difficulty sinc
both the dimensionality of the chiral matrices and their gro
symmetry condition strongly restrict the solitons we can o
tain, leading sometimes to rotating massless gravitatio
configurations@1# and, even more, to trivial solutions~see
below!. For example, in the framework of the scheme fo

1In fact, the further reduction of the theory to two space-tim
dimensions by imposing one more Killing vector does not incre
the dimensionality of the chiral representation.
©2004 The American Physical Society02-1
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lowed in this paper, this problem reduces to the choice
five relationships between eight constant parameters. H
ever, not every set of such conditions leads to a soliton c
figuration depending on three parameters. Moreover, am
them there are conditions that lead to trivial objects, i.e.
flat space-time solutions. Thus, this work brings some ins
into the understanding of obtaining such solitonic objec
always with the hope of clarifying all the conditions und
which we can apply the ISM and construct the gene
N-soliton solution for systems represented by chiral matri
of any dimension greater than 2 which, indeed, must sat
nontrivial symmetry group conditions~see the related work
@4#, where the ISM has been implemented for special s
tems in the framework of string theory!.

Another interesting issue concerns the physical interp
tation of the constructed soliton since it describes a mass
gravitational object2 coupled to nontrivial dilaton and Kalb
Ramond fields. However, despite the massless characte
the gravitational configuration, it possesses angular mom
tum, a strange feature that must be clarified. In this cont
it is also interesting to see whether or not it is possible
endow our two-solitonic configuration with gravitation
mass and dilaton charge since there is no way to get a m
sive solution when implementing the ISM on a trivial sol
tion within the scheme proposed by Yurova~see Sec. III!. In
order to achieve this goal we apply a solution generat
technique based on the use of a nonlinear transformatio
Lie-Bäcklund type@5#, namely, we perform the NET@6# on
our massless two-soliton and get a rotating gravitational c
figuration with mass term coupled to dilaton and axion fie
endowed with their respective charges.

It is with this motivation that we perform the present i
vestigation. The paper is organized as follows. In Sec. II
present the 5D low-energy effective action of the theory
der consideration as well as the matrix Ernst potential~MEP!
formulation of the theory reduced down to three dimensio
Then we recall the NET of the stationary theory in the la
guage of the MEP and write down an alternati
SL(4,R)/SO(4) representation of the stationary theory.
Sec. III we describe the ISM and the modifications that o
must perform in order to apply it to our string system. Afte
ward we show that, within the scheme proposed by Yuro
one can construct just massless gravitational solitons
present an explicit exact solution. We also analyze so
physical properties of this two-soliton object. In Sec. IV w
perform a simplified NET on a seed solution which cor
sponds to the solitonic configuration constructed in Sec.
and get a gravitational soliton endowed with a mass term.
study as well some physical properties and limits of the
lution obtained. Finally, in Sec. V we summarize our resu
and discuss on the physical peculiarities of the construc
solutions and also analyze the technical details of the im
mented nonlinear methods that produce them. Here we
as well some suggestions concerning the further deve

2An object without mass term in the asymptotical expansion of
gtt component of the metric tensor.
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ment and generalization of the techniques applied in
work.

II. LOW-ENERGY EFFECTIVE ACTION

We shall study the 5D low-energy effective field theory
the heterotic string with no vector fields excited. This theo
is described by the following action:

S(5)5E d5xuG(5)u1/2e2f(5)

3S R(5)1f ;M
(5)f (5);M2

1

12
HMNP

(5) H (5)MNPD , ~1!

where HMNP
(5) 5]MBNP

(5)1cyclic permutations ofM ,N,P;
GMN

(5) is the metric,BMN
(5) is the anti-symmetric Kalb-Ramon

field, f (5) is the dilaton, andM ,N,P51,2, . . . ,5.After the
Kaluza-Klein compactification of this model onT2 @3#, the
resulting stationary theory possesses theSO(3,3)/@SO(3)
3SO(3)# symmetry group and describes the thre
dimensional dilaton fieldf and the scalar 232 matricesG
[Gpq andB[Bpq ,

f5f (5)2
1

2
lnudetGu, Gpq5Gp13,q13

(5) ,

Bpq5Bp13,q13
(5) , ~2!

wherep,q51,2 label the time and extra coordinates, resp
tively; the vector fields represented by the 233 matrices
(A1)m

p and (A2)m
p12 ,

~A1!m
p 5

1

2
~G21!pqGq13,m

(5) , ~A2!m
p125

1

2
Bp13,m

(5) 2BpqAm
q ,

~3!

where m,n51,2,3 are the dynamical coordinates; and t
antisymmetric tensor fieldBmn ~which we set to zero from
now on due to its nondynamical properties in three dim
sions!

Bmn5Bmn
(5)24BpqAm

p An
q22~Am

p An
p122An

pAm
p12!; ~4!

all these fields are effectively coupled to three-dimensio
gravity which is described by the metric tensor

gmn5e22f@Gm,n
(5) 2Gp13,m

(5) Gq13,n
(5) ~G21!pq#. ~5!

It turns out that for stationary configurations, the vec
fields can be dualized on shell through the pseudosc
fields u andv as follows:

¹3AW 15
1

2
e2fG21~¹u1B¹v !,

¹3AW 25
1

2
e2fG¹v2B¹3AW 1 , ~6!

where all vector and differential operations are perform
with respect to the metricgmn .

e

2-2
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Thus, the effective stationary theory describes gravitygmn

coupled to the scalarsG,B,f and the pseudoscalarsu,v.

A. Matrix Ernst potentials

All these matter fields can be arranged in the followi
matrix:

X5S 2e22f1vTXv vTX2uT

Xv1u X D , ~7!

whereX5G1B. This is a 333 matrix which was called the
matrix Ernst potential in@7# because of the close analog
existing between the representation of the low-energy ef
tive field theory of the heterotic string and the formulation
the stationary Einstein-Maxwell~EM! theory in terms of the
complex Ernst potentials@8#. Its components have the fo
lowing physical meaning: the relevant information about
gravitational field is contained in the matrix potentialX
through the matrixG, whereas its rotational character is e
coded in the dualized variableu; X also parametrizes th
antisymmetric Kalb-Ramond tensor fieldB, whereas its mul-
tidimensional components are dualized throughv; finally,
the 3D dilaton isf. In terms of the MEP the effective sta
tionary theory adopts the form

3S5E d3xugu1/2H 2R1TrF1

4
~¹X!G 21~¹X T!G 21G J ,

~8!

where G5 1
2 (X1X T) is the symmetric part of the matri

potentialX, whereas the antisymmetric part readsB5 1
2 (X

2X T). The MEPX can be expressed as the sum of its sy
metric and antisymmetric partsX5G1B, where

G5S 2e22f1vTGv vTG

Gv G D , B5S 0 vTB2uT

Bv1u B D .

~9!

B. The normalized Ehlers transformation

In the language of the MEP the stationary action~8! pos-
sesses a set of symmetries which have been classified
cording to their charging properties in@6#. Among them we
find the so-called normalized Ehlers and Harrison trans
mations, NET and NHT, respectively, which act in a no
trivial way on the space-time when solution generating te
niques are applied. For instance, in the framework of gen
relativity, the Ehlers transformation generates the NUT
rameter when applied to both Schwarzschild and Kerr so
tions, whereas the Harrison transformation endows th
metrics with electromagnetic charges. We would like to m
tion that the NET constitutes a matrix generalization of
charging symmetry of Lie-Ba¨cklund type introduced by
Ehlers in the framework of general relativity@9#.

The matrix NET transformation reads@6#

X→~11SL!~11X0L!21X0~12LS!1SLS, ~10!
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where S5diag(21,21;1) andL is an arbitrary antisym-
metric constant 333 matrix parameterL52LT. In the
framework of solution generating techniques, by applyi
the NET on a stationary seed solution we obtain a new
tionary solution endowed with three more parameters in
duced through the antisymmetric matrixL. We shall apply
this technique in Sec. IV on a solitonic seed solution co
structed by means of the ISM in order to further analyze
physical effect of the NET and the physical properties of
generated solution.

C. SL„4,R…ÕSO„4… chiral representation of the model

In @10# it was pointed out that apart from th
SO(3,3)/@SO(3)3SO(3)# symmetry group formulation,
the stationary system under consideration allows an alte
tive SL(4,R)/SO(4) chiral parametrization. The latter for
mulation is more convenient since it is parametrized by
34 matrices instead of 636 matrices, and has to satisfy
trivial group condition. Thus, the chiral action reads

3S5E d3xugu1/2F2R1
1

4
Tr~JN!2G , ~11!

whereJN5¹NN 21, the symmetric matrixN is

N5~detG!21/2S G GH
H TG detG1H TGHD , ~12!

the 331 column H is determined by the relationHkemnk
5Bmn[B, the matrix potentialsG andB are defined in Eq.
~9!, and emnk is the antisymmetric tensor withe12351 and
m,n,k51,2,3. The matrixN is indeed unimodular and be
longs to theSL(4,R)/SO(4) group.

Let us consider an axially symmetric field configuratio
In this case the spatial metric can be written in the Lew
Papapetrou form

ds3
25gmndxmdxn5e2g~dr21dz2!1r2dw2, ~13!

the effective action of the system can be expressed as
lows:

2S5
1

4E drdzr Tr~JN!2, ~14!

and the matrix field equation reads

¹~rJN!50. ~15!

The corresponding Einstein equations determine the func
g through the relations

g ,z5
r

4
Tr~Jr

NJz
N!, g ,r5

r

8
Tr@~Jr

N!22~Jz
N!2#, ~16!

where the operator¹ is related to the flat two-metricdab and
all dynamical variables depend onr andz only. These equa-
tions are automatically satisfied once a solution for Eq.~12!,
2-3
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or equivalently Eq.~9!, is found. In the next section we sha
construct a solitonic solution to this matrix equation
means of the ISM.

III. SOLITONS VIA ISM

In this section we shall continue to apply the inverse sc
tering technique in order to construct soliton solutions for
5D low-energy effective field theory under consideratio
However, because of the symmetry condition that the r
chiral matrixN must satisfy, the original scheme of Belins
and Zakharov is not applicable anymore and the implem
tation of such a powerful method turns out to be not
simple. Another problem is related to the dimension of
chiral matrix for which solitons are constructed. The po
here is that the matrixN must possess certain asympto
properties which correspond to concrete physical values
the fields must adopt at spatial infinity. Thus, the bigger
the dimension of the matrixN, the more boundary condi
tions we must impose on it. In this context we shall avo
these difficulties following the modification of the ISM pro
posed by Yurova. Thus, the integration of the field equati
~15! is associated with the LA pair

D1c5
rJz

N2lJr
N

l21r2
c, D2c5

rJr
N1lJz

N

l21r2
c, ~17!

whereJN5rJN and the differential operators are

D15]z2
2l2

l21r2
]l , D25]r1

2lr

l21r2
]l , ~18!

l is a spectral complex parameter, andc5c(l,r,z). The
solution of Eq.~15! for the symmetric matrixN constitutes
the functionc with vanishing value of the spectral param
eter, i.e.,

N~r,z!5c~0,r,z!. ~19!

Thus, for any known solutionc0 of the system~17!,~18!, the
function c can be obtained in the form

c5xc0 , ~20!

where the equations forx are

D1x5
rJz

N2lJr
N

l21r2
x2x

r~Jz
N!02l~Jr

N!0

l21r2
,

D2x5
rJr

N1lJz
N

l21r2
x2x

r~Jr
N!01l~Jz

N!0

l21r2
.

The matrix N must be real and symmetric; in order
ensure its real character, we shall impose the condition

x~l!5x̄~ l̄ ! ~21!
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~see@2# for details!. However, in order to apply the ISM to
chiral matrices with dimension greater than 2, the symme
requirement must be imposed after the construction of
solitonic solution. Thus, after the implementation of the IS
the constructed matrixN will not be symmetric and we mus
impose this condition afterward.

The soliton solutions for the matrixN correspond to pole
divergences in the spectral parameter complex plane for
matricesx and x21. When the poles are simple, these m
trices can be represented as follows:

x5I 1 (
k51

N
Rk

l2mk
, x215I 1 (

k51

N
Sk

l2nk
, ~22!

where the pole trajectories for each polek are determined by

mk~r,z!5w(m)2z6@~w(m)2z!21r2#1/2, w(m)5const
~23!

for mk(r,z) and the same equation fornk(r,z) with con-
stantsw(n) . Fromxx215I in the polesmk andnk it follows
that

Rkx
21~mk!5Skx~nk!50. ~24!

Hence the matricesRk and Sk are degenerate and can b
represented as follows:

~Rk!ab5na
kmb

k , ~Sk!ab5pa
kqb

k . ~25!

By substituting Eqs.~22! and ~25! into Eq. ~24! we obtain

na
k5(

l 51

N

pa
l Gkl

21 , qa
k52(

l 51

N

ma
l Gkl

21

where

Gkl5

(
c

pc
kmc

l

m l2nk
, ~26!

ma
k5@c0

21~mk ,r,z!#camc0
k ,

and

pa
k5@c0~nk ,r,z!#acpc0

k , ~27!

where mc0
k and pc0

k are arbitrary constants anda,b,c
51,2,3,4.

When considering the two-soliton case, in@1# it was
shown that in order to have a unimodular matrixN, the
relation

m1m25n1n2 ~28!

is really important and it constitutes the main difference w
respect to the scheme proposed by Belinski and Zakha
since it is not compatible with the symmetry requireme
N5x(2r2/l)N 0xT(l) of @2#. As a consequence, the re
sulting unimodular matrixN will be nonsymmetric. How-
ever, the symmetry conditions may be attained by a suita
choice of the arbitrary parameters of Eq.~27!.
2-4
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Let us apply the modified ISM in order to construct
stationary axially symmetric two-soliton solution for the 5
string model which is described by the effective action~14!
when reduced to two dimensions.

In the simplest case, the initial values of the metric a
field variables correspond to flat space-time. Thus, the s
chiral matrix adopts the form

N05diag~21,21;1,1!. ~29!

We shall construct the solitonic solution using the set of
ordinates of Boyer and Lindquist without mass. This is b
cause the resulting two-soliton gravitational solution cor
sponds to a massless source~see below for details!. Thus, we
have

r5~r 22s2!1/2sinu, z2z15r cosu, ~30!

where the new constantss5 1
2 (w(m)2w(n)) and z1

5 1
2 (w(m)1w(n)). Consequently, the pole trajectories read

m152 sin2
u

2
~r 1s!, m2522 cos2

u

2
~r 2s!,

n1522 cos2
u

2
~r 1s!, n252 sin2

u

2
~r 2s!, ~31!

and obviously satisfy the condition~28!. Since N0

5c0
21(mk ,r,z)5c0(nk ,r,z), then the vectorspa

k and ma
k

constitute arbitrary constants@see Eq.~27!#. Thus, by apply-
ing the scheme described above, one can construct the m
two-soliton solutionN for Eq. ~15! depending on these vec
tors. Such a matrix will be unimodular, but not symmetr
The following conditions provide the symmetric character
the matrixN:

ma
k5pa

k , ~32!

for all a,k; and

p3
25p3

1 , p2
25~p3

1!2/p2
1 , p4

25p4
152p1

1p3
1/p2

1 ,

p1
25~p3

1/p2
1!2p1

1 . ~33!

Thus, only three constants survive the symmetrization of
matrix N. However, we would like to point out that just th
condition~32! is not enough to ensure the symmetry char
ter of N; it leaves eight arbitrary constants, but it does n
lead to a symmetric matrixN. Moreover, we must impose
five more restrictions on these eight constants in orde
obtain the desired symmetric matrixN. The choice of these
restrictions is not unique and the constants are not inde
dent of each other. Moreover, some choices lead to a tri
soliton solution or to a solution that depends on just t
arbitrary constants instead of three. In this respect, we
serve some differences between our choice of constants
the one performed by Yurova. For example, by setting ourp1

1

to zero we just set to zero one parameter of the solut
whereas within the choice made in@1#, the author claims tha
if any of the constantspa

k is set to zero, all other constan
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vanish as well and the constructed solution turns out to b
trivial one. This fact, in turn, leads to slightly different sol
tonic solutions from the physical point of view~see below!.

A. Massless character of the gravitational soliton

Now we shall show that when constructing the tw
soliton solution and imposing the condition~32! toward the
symmetrization of the matrixN, we necessarily obtain a
massless gravitational field configuration. Thus, after tak
into account the restrictions~32!, we obtain a chiral matrixN
which has the following block structure and asymptotic b
havior:

Nas[S N1 N2

N3 N4
D 5S 21 n12/r n13/r n14/r

n21/r 21 n23/r n24/r

n31/r n32/r 1 n34/r

n41/r n42/r n43/r 1

D ,

~34!

whereN1 is a 333 matrix, N2 is a 331 column,N3 is a
133 row, andN451,

nac52ks
pa

1pc
22pc

1pa
2

pb
1pb

2r
,

aÞc, and k5H 21, a51,2,

1, a53,4.
~35!

On the other side, the matrixN is defined throughG andB
through the relation~12!. By equating both representation
we can, in principle, compute thenonsymmetricmatrix Gas

5(N42N3N1
21N2)N1 which asymptotically behaves as fo

lows:

Gas5S 21 n12/r n13/r

n21/r 21 n23/r

n31/r n32/r 1
D , ~36!

and obviously does not possess Coulomb terms in the d
onal components. Thus, when looking for constructing
massive gravitational solitonic configuration within this co
crete modified version of the ISM, it does not matter wh
kind of relationships we choose between the remaining e
constantspa

k , since the conditions~32! are sufficient to re-
strict us to obtaining massless solitons.

Thus, by imposing the conditions~32!, it is not possible at
all to obtain a massive gravitational two-soliton solutio
This fact also shows how strong, from the physical point
view, are the restrictions we must impose on our matrixN in
order to make possible the application of the ISM to chi
matrices of dimension greater than 2. It remains an o
question whether a different scheme of symmetrization of
matrix N can lead to massive gravitational solitons in t
framework of the model considered. Current research in
direction is being performed by the authors.
2-5
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B. Explicit two-soliton solution

Once the matrixN is constructed taking into account th
conditions~32! and ~33!, we can come back to the origina
variables of the theory with the aid of Eqs.~12!, ~9!, and
~2!–~6!. At this stage it is convenient to introduce the follow
ing notation:

a5
s@~p3

1!21~p2
1!2#

2p2
1p3

1
, b5

s~p1
1!2@~p3

1!22~p2
1!2#

2p2
1p3

1@~p1
1!21~p2

1!2#
,

c5
sp2

1@~p3
1!22~p2

1!2#

2p3
1@~p1

1!21~p2
1!2#

, ~37!

which establishes the relations25a22(b1c)2; let us de-
fine as well

D5r 22s2, d25r 21c22~b2a cosu!2. ~38!

Now we shall write down the final expression of the co
structed two-soliton solution by implementation of the ISM
The 5D line element reads

ds5
25Gpq~dxp2vw

pdw!~dxq2vw
qdw!1e2fds3

2 , ~39!

where the components of the matrixGpq have the form

G1152
r 21b22~c2a cosu!2

d2
, G125

2cr

d2
,

G225
r 21b22~c1a cosu!2

d2
, ~40!

the metric functionsvw
q are

vw
15

22aAbcr sin2u

D1a2sin2u
,

vw
252AbcFcosu1

a~b1c2a cosu!sin2u

D1a2sin2u
G ,

~41!

the three-dimensional dilaton field is

e2f512
4bc

D1a2sin2u
, ~42!

and the expression for the spatial line element is the follo
ing:

ds3
25~D1a2sin2u!Fdr2

D
1du2G1D sin2udw2. ~43!

The components of the antisymmetric Kalb-Ramond ten
field are defined by the relations

B125
2br

d2
, B4,w

(5)5
2Abcr~2b cosu1a sin2u!

d2
,

10500
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r

B5,w
(5)52AbcFcosu2

a~c2b1a cosu!sin2u

d2 G . ~44!

Finally, the 5D dilaton field reads

ef(5)
5

r 21~b2c!22a2cos2u

d2
. ~45!

These expressions describe a stationary axially symme
massless gravitational field configuration coupled to a n
trivial dilaton field without charge and to an axion field e
dowed with charge. A novel feature of this configuration
that it possesses angular momentum. By analyzing the
ymptotical behavior of the functionsvw

q we observe thatvw
1

defines the angular momentum according to the follow
relation:

vw
1 ur→`;

22aAbc sin2u

r
, ~46!

whereasvw
2 is not an asymptotically flat quantity since

spatial infinity it behaves as

vw
2 ur→`;2Abc cosu ~47!

and defines a NUT-like parameter. However, it is worth n
ticing that in order to obtain an asymptotically flat field co
figuration we can set to zero either the parameterb or c. In
the first case the remaining configuration constitutes a m
less static inhomogeneous gravitational field with nontriv
components of the matrixGpq with no dilaton and Kalb-
Ramond fields excited. In the second case the truncated
figuration is different; it represents a massless static inho
geneous gravitational field with nonzero componentsG11
andG22 coupled to a nontrivial massless 5D dilaton field a
endowed with an axion field which possesses a charge te
One can see another quite strange property of our soliton
soon as we require asymptotic flatness, the solution beco
static @see Eqs.~46! and ~47!#. In this respect, the soliton
constructed in@1# has quite different properties since in ord
to get an asymptotically flat field configuration we must s
to zero both parametersb andc, obtaining a trivial solution
in this way. Thus, that solitonic solution does not conta
asymptotically flat field configurations.

In both of the limits considered (b50 andc50) we ob-
tained static inhomogeneous field configurations even w
the parametera, which usually is responsible for the rotatio
of the gravitational field, is not vanishing. Thus, our soliton
configuration does not contain a spherically symmetric s
class of solutions~in accordance with the soliton constructe
in @1#!. Comparison to other results in the literature sho
@11# that these solutions are not obtained by setting to z
the mass or other parameters. Of course, it is interestin
study other physical properties of these massless solit
configurations. At first glance it seems that these soluti
correspond to both rotating and static inhomogeneous b
strings since we have the presence of horizons; however,
topic deserves further investigation.
2-6
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IV. MASSIVE GRAVITATIONAL SOLITONS VIA NET

Since the implemented version of the ISM cannot prov
gravitational solitons with a mass term, it is an open ques
whether nonlinear methods can provide such objects in
low-energy effective string theories. In this section we sh
focus on this issue. One way to approach this topic is to lo
for a way of endowing the gravitational and dilaton fiel
with mass and charge terms, respectively, and then, to
10500
e
n
D
ll
k

e,

for instance, if the obtained solution corresponds to a kno
class. In this way it is also possible to get new mass
solutions. In order to introduce more parameters in the c
structed solitonic configuration one can make use of a s
tion generating technique. Thus, we will apply the Li
Bäcklund transformation NET~10! on a seed solution which
corresponds to the massless gravitational soliton constru
in the previous section.
We
sformed
The corresponding seed MEPX05G01B0 reads

X05d22S 2d2 0 0

4Abc~b1c2a cosu! 2@r 21b22~c2a cosu!2# 2~b1c!r

4Abcr 2~c2b!r r 21b22~c1a cosu!2
D , ~48!

whereG0 andB0 are the matrix potentials~9! that parametrize the constructed solitonic chiral matrix~12!. Here we shall use
a quite simple antisymmetric matrixL, namely, a matrix with just one nontrivial constant parameter

L5S 0 0 0

0 0 M

0 2M 0
D . ~49!

Thus, after performing the nonlinear transformation~10! onX0 we obtain a new solution of the theory under consideration.
shall present the complete solution, omitting all lengthy intermediate calculations. Thus, the components of the tran
matrix Gpq are

G1152
~M221!@r 21b22~c2a cosu!2#24cM~r 1Ma cosu!

~M221!d214bM~r 2Ma cosu!
,

G125
2c@~M211!r 12Ma cosu#

~M221!d214bM~r 2Ma cosu!
, ~50!

G225
~M221!@r 21b22~c1a cosu!2#14cM~r 1Ma cosu!

~M221!d214bM~r 2Ma cosu!
,

the transformed metric functionsvw
q are

vw
15

22aAbc@~M221!r 12M ~b1c!#sin2u

~M221!~D1a2sin2u!
,

vw
252AbcFcosu2

a@~M211!~b1c!1~M221!a cosu#sin2u

~M221!~D1a2sin2u!
G ; ~51!

the three-dimensional dilaton field remains the same under the NET, thus

e2f512
4bc

D1a2sin2u
. ~52!

The transformed components of the antisymmetric Kalb-Ramond field are the following:
2-7
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B125
22b@~M211!r 22Ma cosu#

~M221!d214bM~r 2Ma cosu!
,

B4,w
(5)522AbcH @2~b1c!M2~M221!r #a sin2u

~M221!~D21a2sin2u!

1
2b@~M211!r 22Ma cosu#@~M221!D2~M211!~b1c!a sin2u#

~M221!~D21a2sin2u!@~M221!d214bM~r 2Ma cosu!#
J ,

B5,w
(5)52AbcH @~M221!D cosu1~M211!~b1c!a sin2u#

~M221!~D21a2sin2u!

1
2ab@~M211!r 22Ma cosu#@2~b1c!M1~M221!r #sin2u

~M221!~D21a2sin2u!@~M221!d214bM~r 2Ma cosu!#
J ~53!
th
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and the 5D dilaton field reads

ef(5)
5

~M221!@r 21~b2c!22a2cos2u#

~M221!d214bM~r 2Ma cosu!
. ~54!

It is a straightforward exercise to check that, whenM van-
ishes, we recover the seed solitonic solution. By studying
asymptotic behavior of the field configuration we can obt
information about the existence of its masses and char
Thus, for the componentsGpq we observe that there exis
mass terms

G11ur→`;211
2m11

r
, G12ur→`;2

m12

r
,

G22ur→`;12
2m22

r
, ~55!

where the massesmpq are defined as follows:

m115
2~b1c!M

~M221!
, m125

2c~M211!

~M221!
, m225

2~b2c!M

~M221!
.

~56!

Analogously, we see that the transformed rotation functi
vw

q and the three-dimensional dilaton maintain the sa
asymptotic behavior, i.e., they do not change their beha
at spatial infinity under the NET. The transformed comp
nentB12 of the antisymmetric tensor field as well as the 5
dilaton possess Coulomb terms,

B12ur→`;
b12

r
, ef(5)

ur→`;11
D

r
, ~57!

where the new charges have been introduced

b125
2b~M211!

~12M2!
, D5

4bM

~12M2!
. ~58!
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Finally, the asymptotic behavior of theBp13,w
(5) components

of the Kalb-Ramond field reads

B4,w
(5)ur→`;

2Abc@22b~M211!cosu1a~M221!#sin2u

~M221!r
,

B5,w
(5)ur→`;2Abc cosu. ~59!

Thus, we have obtained a stationary axially symmetric m
sive gravitational field configuration coupled to nontrivi
dilaton and axion fields endowed with their correspond
charges. Again, in order to obtain an asymptotically flat fie
configuration we can set to zero eitherb or c. If c vanishes
we get a static inhomogeneous gravitational field with m
sive componentsG11 and G22 coupled to nontrivial Kalb-
Ramond and dilaton fields endowed with their correspond
charges. In the case whenb is set to zero, we recover a stat
inhomogeneous gravitational field with massive compone
Gpq and vanishing dilaton and antisymmetric fields.

Once again we observe that, when we impose
asymptotic flatness condition, we automatically get a sta
field configuration since by setting to zero the NUT-like p
rameter implies the vanishing of the whole metric functi
~51!. Thus, if our soliton represents a rotating field config
ration, it necessarily possesses the NUT-like parameter a
we search for an asymptotically flat solution, it necessa
becomes static. This feature is not shared by rotating c
figurations in general relativity where, for instance, one o
tains the Kerr metric from the Kerr-NUT one when the NU
charge vanishes. This fact is a consequence of the rela
ships that take place between the constantsa, b, andc, which
are arbitrary, but not independent of each other@for instance,
from Eq. ~37! it can be seen thatb;c]. It seems that this is,
in turn, a consequence of the restrictions~32! and~33! which
we imposed on the constantspa

k in order to get a symmetric
chiral matrixN. It is interesting to propose another schem
for symmetrizing the matrixN which would avoid this
strange physical behavior of the constructed solitonic so
2-8
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tions and could, in principle, provide the presence of m
and charge terms for the fields of our configuration.

V. CONCLUSIONS AND DISCUSSION

In this paper we have combined two nonlinear method
order to construct a solitonic gravitational field configurati
to the 5D low-energy bosonic sector of string theory.
following the modified version of the ISM proposed b
Yurova we clarified the unavoidable massless characte
the gravitational solitonic solutions obtained. Therefore,
imposing suitable conditions on the constants that par
etrize the chiral matrixN, we construct a soliton consistin
of a rotating massless gravitational field configurati
coupled to a chargeless dilaton and to an axion field endo
with charge. This solution has similar but different physic
properties and limits when compared to the solution c
structed in@1#. Afterward, we provide this field configuratio
with mass and charge terms by performing a simplified n
linear NET on it. Here we would like to point out that th
nontrivial physical effect of the NET is quite different i
general relativity and string theory. It is well known that
the framework of general relativity the Ehlers transformat
provides the presence of the NUT-like charge when app
on vacuum seed solutions@9#. However, within the frame-
work of string theory we observe that a simplified versi
~with just one parameter! of this transformation provides th
mass and dilaton charge when applied on a massless
gravitational solution and does not affect the NUT parame
at all.

Let us say a few words about the physical properties
our massless and massive gravitational field configuratio
As mentioned above, when looking toward a rotating bla
string interpretation of them, we impose the asymptotic fl
ness condition and set to zero the NUT parameter. Howe
when we drop the NUT-like charge, the remaining config
ration becomes static. Thus, from one side, if our solitons
restricted to be rotating, they necessarily possess a NUT
rameter, and, from the other side, if they are conditioned
be asymptotically flat, they are necessarily static. This fac
due to the overall constant factorAbc of the functionsvw

p for
both massless and massive solutions. Such functions d
both the angular momentum of the configurations and th
NUT-like charges. It seems that this is, in turn, a con
quence of the conditions~32! and ~33! we have imposed
toward the symmetrization of the matrixN. It is of interest
h.
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to propose another scheme for symmetrizing the matrixN,
which would avoid this strange physical behavior of the co
structed solitonic solutions. This peculiar physical prope
of our solutions is quite strange, but on the other side, i
quite interesting and deserves more investigation. The c
putation of the scalar curvature and other invariants will h
in clarifying this point. A current investigation in this direc
tion is also in progress.

Within the framework of the solution generating tec
nique using nonlinear transformations of Lie-Ba¨cklund type,
it is interesting to see whether the use of a full parameteri
constant matrixL will affect the asymptotic behavior of the
transformed solution and provide more independent char
In this way we could obtain a massive rotating solitonic o
ject endowed with NUT-like charge that remains spinni
after the vanishing of the NUT parameter. However, t
transformation involves really lengthy algebraic calculatio
which we hope to perform in the near future. Another way
generalizing the present results is by applying this kind
nonlinear Lie-Ba¨cklund transformation to string systems th
include vector fields. In this context it is the NHT whic
must be performed on our massless seed solution. T
within the low-energy string theory realm, these metho
could, in principle, lead to the construction of new charg
black hole ~black brane! solutions in D.4 dimensions,
where it is known that such objects do exist@11#. Moreover,
it is interesting to apply the ISM for the whole spectrum
the low-energy effective field theory of the heterotic stri
reduced to two dimensions~taking into account the Abelian
vector fields!. This could be possible because of the abo
mentioned relationship between this theory and the E
theory. For a review of the ISM applied to the stationa
axisymmetric EM system, see@12#.
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