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Viscosity and magnetic fields drive differentially rotating stars toward uniform rotation, and this process has
important consequences in many astrophysical contexts. For example, merging binary neutron stars can form
a “hypermassive” remnant, i.e., a differentially rotating star with a mass greater than would be possible for a
uniformly rotating star. The removal of the centrifugal support provided by differential rotation can lead to
delayed collapse of the remnant to a black hole, accompanied by a delayed burst of gravitational radiation.
Both magnetic fields and viscosity alter the structure of differentially rotating stars on secular time scales, and
tracking this evolution presents a strenuous challenge to numerical hydrodynamic codes. Here, we present the
first evolutions of rapidly rotating stars with shear viscosity in full general relativity. We self-consistently
include viscosity in our relativistic hydrodynamic code by solving the fully relativistic Navier-Stokes equa-
tions. We perform these calculations both in axisymmetry and in fill 2limensions. In axisymmetry, the
resulting reduction in computational costs allows us to follow secular evolution with high resolution over
dozens of rotation periodshousands oM). We find that viscosity operating in a hypermassive star generi-
cally leads to the formation of a compact, uniformly rotating core surrounded by a low-density disk. These
uniformly rotating cores are often unstable to gravitational collapse. We follow the collapse in such cases and
determine the mass and the spin of the final black hole and ambient disk. However, viscous braking of
differential rotation in hypermassive neutron stars does not always lead to catastrophic collapse, especially
when viscous heating is substantial. The stabilizing influences of viscous heating, which generates enhanced
thermal pressure, and centrifugal support prevent collapse in some cases, at least until the star cools. In all
cases studied, the rest mass of the resulting disk is found to be 10—20 % of the original star, whether surround-
ing a uniformly rotating core or a rotating black hole. This study represents an important step toward under-
standing secular effects in relativistic stars and foreshadows more detailed, future simulations, including those
involving magnetic fields.
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[. INTRODUCTION and/or viscosity7,12]. These processes drive the star to uni-
form rotation, which cannot support the full mass of the hy-
The field of numerical relativity has matured to a stagepermassive remnant. This process can lead to “delayed”
where it is possible to simulate realistic systems of astrocatastrophic collapse to a black hole, possibly accompanied
physical interest. In this paper, we examine the global effectdy some mass loss. Such a delayed collapse might emit a
of viscosity on differentially rotating, relativistic stars. Vis- delayed gravitational wave signal detectable by laser inter-
cosity can have significant effects on the stability of neutrorferometers. Moreover, the collapse, together with any re-
stars. For example, it can drive a secular bar instability insidual gas in an ambient accretion disk, could be the origin
rapidly rotating neutron stars, as shown in Newtonian gravi-of a gamma-ray bur€iGRB).
tation[1,2] and in general relativity3]. Viscosity can sup- Both magnetic fields and viscosity can destroy differential
press ther-modes[4,5] and other gravitational-radiation rotation in a rapidly rotating stgr2—14. Simple estimates
driven instabilities, including the secular bar mo{iék Vis-  show that the magnetic brakinglfven) time scale for a
cosity also destroys differential rotation, and this can causéaminar field is much shorter than the time scale of molecular
significant changes in the structure and evolution of differ-(neutron viscosity in a typical massive neutron star. Hence
entially rotating massive neutron stars. magnetic fields are expected to be the principal mechanism
Differentially rotating neutron stars can support signifi- driving neutron stars toward rigid rotation. Phase mixing
cantly more rest mass than their nonrotating or uniformlyarising from magnetic brakind4,15 or other possible mag-
rotating counterparts, making “hypermassive” neutron starmetohydrodynamic instabilitiegl5,16 might stir up turbu-
possible[7,8]. Such hypermassive neutron stars can formlence. Turbulent shear viscosity could then dominate the sub-
from the coalescence of neutron star binafs11] or from  sequent evolution. In this paper, we are primarily interested
rotating core collapse. The stabilization arising from differ-in identifying the global evolutionary consequences of shear
ential rotation, although expected to last for many dynamicaliscosity in a relativistic star, independent of the detailed
time scales, will ultimately be destroyed by magnetic brakingnature or origin of the viscosity.
To explore the consequences of the loss of differential
rotation in equilibrium stars, we study the secular evolution
*Also at Department of Astronomy & NCSA, University of of differentially rotating relativistic stars in the presence of a
lllinois at Urbana-Champaign, Urbana, IL 61801. shear viscosity. Viscosity and magnetic fields have two
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things in common(1) they both change the angular velocity perform 3D simulations to check for any nonaxisymmetric
profiles of a differentially rotating star, an@) they both act instabilities. We do not find any unstable nonaxisymmetric
on seculartime scales, which can be many rotation periods.modes and the 3D results agree with the axisymmetric re-
The latter inequality poses a severe challenge to numeric&ults.
simulations using a hydrodynamic code. It is too taxing for a Our results suggest that viscous braking of differential
hydrodynamic code using an explicit differencing scheme tdotation in a hypermassive neutron star can, but does not
evolve a star for physically realistic secular time scales. Tgways, lead to catastrophic collapse. When catastrophic col-
solve this problem, we artificially amplify the strength of !apse does occur, the remnant is a black hole surrounded by
viscosity so that the viscous time scale is short enough foft Massive accretion disk. This outcome is very d!ﬁer?nt from
numerical treatment. However, we keep the viscous timéat of the collapse of an unstable, rigidly rotating “supra-
scale substantially longer than the dynamical time scale of1@ssive” neutron star, in which the whole star collapses to a
the stars, so that the evolution of the star remains quasP!2ck hole, leaving only a tiny amount of material to form a
stationary. We then check the validity of our results by re-8iSk[20,21. Many models for GRBs require a massive disk
ducing the viscosity on successive runs and testing that th@ound a rotating black hole to supply energy by neutrino
viscosity-induced physical behavior is unchanged: ratheProcesse$22]. Our results suggest that viscous forces in a
only the time scale changes and does so inversely with th@/permasswe star could lead to the formation of a massive
strength of viscosity. A more detailed discussion of the ex-disk around such a black hole.
pected scaling is presented in Sec. [ E]. The structure qf t_h|s paper is as follows.. In Sec. II,. we
To study viscous evolution, we need to perform |Ongderlve the relativistic Navier-Stokes equations containing

simulations in full general relativity. Typically, we evolve the Sn€ar viscosity in a81 form suitable for numerical integra-
stars in axisymmetry. This allows us to follow the seculartion, @nd describe how we evolve them in both axisymmetry
evolution of the stars with high resolution in a reasonable?"d full 3+1 dimensions. We then describe in Sec. Il sev-
amount of time. Viscosity can, however, drive nonaxisym-eral tests that we perform to check our code. We present the

metric instabilities when a star is rapidly rotating. To test for"€sults of our simulations on five selected stars in Sec. IV.

such instabilities, we also perform lower-resolution, three-Finally, we briefly summarize and discuss our conclusions in
dimensional(3D) simulations on the most rapidly rotating Sec. V.
stars we consider.

For non-hypermassive neutron stars that are slowly and Il FORMALISM AND NUMERICAL METHODS
differentially rotating, we find that viscosity simply drives
the whole star to rigid rotation. If the non-hypermassive neu- ) o )
tron star is rapidly and differentially rotating, however, vis- ~ Throughout this paper, latin indices denote spatial compo-
cosity drives the inner core to rigid rotation and, at the samédents(1-3 and greek indices denote spacetime components
time, expels the material in the outer layers. The final systent0—3. We adopt geometrized units, so that=c=1. We
in this case consists of a rigidly rotating core surrounded byeVvolve the 3-metricy;; and the extrinsic curvatur;; using
a low-density, ambient disk in quasi-stationary equilibrium. the Baumgarte-Shapiro-Shibata-Nakam(B&SN formula-

Our most interesting results concern the fate of hypermadion [23]. The fundamental variables for BSSN evolution are
sive neutron stars. We numerically evolve four models with
different masses and angular momenta. We find that in all = i .

JUEeoES & o ; é In[de(y;j)], 1)
cases, viscosity drives the cores to rigid rotation and trans- 12
ports angular momentum outwards into the envelope. As a

A. Evolution of the gravitational fields

result, the core contracts in a quasi-stationary manner, and }ijze"“”yij , 2
the outer layers expand to form a differentially rotating torus. -
Of the four models we have studied, the star with the highest K=v"Kj, ©)

mass collapses to a black hole, with about 20% of the rest

mass left over to form a massive accretion disk. On the con- % —ag 1

trary, the other three stars do not collapse to black holes, but Aj=e Kij— 37i KT, (4)
form start-disk systems, similar to the final state of the rap-

idly rotating non-hypermassive neutron stars described Ti=—7i i (5)

above. As will be discussed in Sec. Il F, viscosity generates
heat so that the stars do not evolve adiabatically in generaithe evolution and constraint equations for these fields are
The extra thermal pressure due to viscous heating helps ummarized in24] (hereafter paper)l In the presence of

support the stars. We also consider the limit of rapid coolingmatter, these evolution equations contain the following
whereby the heat generated by viscosity is immediately resource terms:

moved from the stars. Of the three stars which do not col-

lapse to black holes in the no-cooling limit, we found that the p= nanBT“'B,

one with the lowest angular momentum undergoes cata-

strophic collapse in the rapid-cooling limit. About 10% of Siz—yianBT“B, (6)
the rest mass is leftover to form an accretion disk in this

case. To test the validity of the axisymmetric results, we szyiamT“ﬂ,
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where T%# is the stress tensor, ang,= (— «,0,0,0) is the
future-directed unit normal to the time slice. One must im-
pose gauge conditions which specify the lapseand the
shift 8'. We use &K-driver lapse and Gamma-driver shift, as
described in paper I. The numerical implementation of the
equations is discussed in paper I, with some improvements to (17)
enhance stability described [ia5]. The latter are particularly wherev'=ui/uC is the 3-velocity. The quantity® is deter-

relevant for ?he post-collapse_v_ersmn of our code that Wehined by the normalization condition”u,=—1, which
implement with black-hole excision. yields

&t§k+ (9i(~Skvi) =— aeG¢P’k+ Z(aewr]a‘k‘)#

1
+ aee¢9aﬁ,k< N0 ap™ zPoh UaU,3>,

Te," -2
1+;)*(we‘*¢//o,,>F—1 19

B. 3+1 relativistic Navier-Stokes equations ~ i~
. . wi=pi+e *ISS
We treat the matter in our neutron stars as an imperfect
fluid with a shear viscosity, but no bulk viscosity and no heat
conduction. The stress tensor for the fluid is wherew=p, au®.
The stress-tensoff#” generates the following source

terms in the field evolution equations:

T,,=(potpoet+P)u,u,+Pg,,—27n0,,. (7)

Here, py, €, P, andu, are the rest-mass density, specific
internal energy, pressure, and fluid four-velocity, respec-
tively. The quantity is the coefficient of viscosity and is

2n ) o
p=hwe ®¢—p— ?(Utt_zgtiﬂl"'oijﬁlﬂj), (19

related to the kinematic viscosity by »=pyv. The shear 64T 27 i
tensoro,, is defined by[26] S=e "S- (oo B), (20)
1 e 5
Ty =U(u) T AUy~ 3U% o(gu T ULU,), (8) Sj= =SS+ Pyij—27n0;; . (21)
iz (m;v) (w¥v) 3 M M wh

where a* is the fluid 4-acceleration. We assumel'daw
equation of state

C. 2+1 relativistic Navier-Stokes equations

Many of the systems we evolve possess and maintain
symmetry about their rotation axis, which we set to bezhe
axis. Then we can eliminate one dimension and simplify the
equations. We utilize axisymmetry and follof27,28 to
evolve the field and hydrodynamic variables on the 0
plane. The data off this plane can be obtained by rotating the
data on this plane. As we explain in Sec. Il G 1, we find it
advantageous when performing-2 simulations to evolve
the hydrodynamic equatiorid5)—(17) in cylindrical coordi-
nates but on a Cartesidnz) grid. On they=0 plane, the
cylindrical coordinatess = \x?+y?, z, and ¢ = arctang/x)
are related to the Cartesian coordinatgg andz as follows:
weX, we—Yy, z—Z. Using these relations, EqaL5)—(17)
whereh=1+ €+ P/p, is the specific enthalpy. The conser- in cylindrical coordinates can be written
vation of stress-energy

P=(I"-1)pge. 9
Our fundamental fluid variables are
p.=poau’e®?, (10

e.=(poe)" au®e®?, (11)

'ékEP*hUki (12)

1
- By_
T# =0 (13 dpst X&B(P*XU )=0, (22

i ~ 1 ~
and the law of baryon number conservation &t(SA—2a66¢n02)+ ;é’B(XSAvB— 2065 po®,)
V.(pou*)=0 (14

= —(’éyvy— 2Xae6¢770¥) Sax— a€%?9,P
give the relativistic continuity, energy, and Navier-Stokes X

equations 1
+aeﬁ¢g“B,A —Epohuauﬁ-l- N0 g (23
dp.+di(pv')=0 (15)
1
S _ = 2& . B_ 6. 2, By_
R (Sy—2aena)) + 5 dg(x*SB—2ae’’ nx?af) =0,
ae.+di(ew') = Fae®n(poe) oo, g (16 X 24
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1 5 2 . LVr field frozen into the matter will be wound up and can destroy
e+ dp(8xv”) = pae *n(poe) Mo, differential rotation in the star on an Alfmetime scale

where the indice# andB run overx andz (cf. Egs.(2.10—- 10 B | /M/R|2 s 31)
(2.13 of [28]). 78 102G 0.2
D. Hierarchy of time scales Viscosity will also redistribute angular momentum on a

There are two dynamical time scales for a rotating starYISCOUS time scaler;. One form of viscosity present in
Gravity provides the free-fall time scale neutron stars is due to the transport of energy and momentum
. -

of neutrons. This viscosity acts on a time sc&&,32
RB 1/2
— 4
TEE™ ( V) -~ 10

where M is the gravitational mass of the stéor merged
binary remnantandR is the radius. If the star is rotating, its
rotation periodP,; provides another important time scale:

M/R —-3/2

0.2

M
2Mo

—23/4
S, (32

M
Tvis— 10° TS( Mg

) s, (26 9’2( M/R

0.2

whereT,=T/10° K, and T is the characteristic temperature.
It is widely believed that, for cold neutron stars
(T=10 K), the neutron fluid in the inner crust condenses
-1 into a superfluid of'S, Cooper pairg33], while in the inte-
( ) (27)  rior, the neutrons could form 3P, superfluid[34] (although
4000 st this is less certain and the protons&, superfluid. In the

o o ) . . case of neutron superfluidity,, ;s will vanish, and the domi-
Dynamical instabilitiese.qg., instability to radial collapse or nant viscosity will be due to electron-electron scattering
to dynamical bar formationwill act on the above time [32,35

2 3
Prot:ﬁ =1.6X10

scales.
The stars we study are dynamically stable initially, so [ M 4/ M/R\ ~°
their structure is altered on secular time scales. Rotating Teis~ 10°Tg oMo |02 S (33

compact stars may be secularly unstable to gravitational-

radiation driven instabilities. The strongest instabilities of glectron and proton fluids are forced to move together in the
this kind are the(nonaxisymmetric r-modes and the bar magnetohydrodynami@VIHD) limit [36]. Differences in ve-
mode. The time scale of the=m=2 r-mode instability is |ocity between the neutron and proton-electron fluids are
given by[4] damped fairly quickly by mutual frictiofi36,37.

s . _ Vis_cosity can be used as a moo_lel for turbulence in certain
ow_ 50( Q ( M/R) situations. Turbulence may occur in young neutron stars as a
r 4000 st 0.2 result of pure hydrodynamic effects or magnetic instabilities
[16]. Turbulence is often modeled by thex“disk” law, in
The gravitational-radiation driven(Dedekind bar-mode Which a shear strest, = —aP is added to the hydrody-
instability occurs if the star is rapidly rotating so that namic equatior(see e.g.[38], Chap. 14. Here« is a non-
T/|W|> B, whereT/|W]| is the ratio of kinetic to gravita- dimensional constargtvhich should not be confused with the
tional potential energy. The threshoRl~0.14 for a New- lapse function with values in the range 0.08da=<1. The
tonian star I/R<1), anddecreasess the compactness of Viscosity in this model roughly corresponds #0- |y wrb
the star(i.e., M/R) increaseg29]. The time scale of this ~aRCs, wherev, is the velocity of turbulent cells relative
instability is estimated to bE30] to the mean fluid motionl,,, is the size of the largest tur-

bulent cell, andcg is the sound speed. The corresponding

-5
s. (28

M
2Mg

T

M/R\ 74 M \[T/|W|—- B\ > time scale is
T§g¢’~o.1( 2| |am | o|1 'BS) s. (29
' © ' wo 1 1074 M/R| ¥ M a4
Viscosity alone can also drive(dacobj bar-mode instability. Tis o TR T4 1702 2Mq s, (349

The threshold is identical for a Newtonian stg8{0.14) o .
but increasesas the compaction increasgd). The relevant which is much shorter than all the other secular time scales.

time scale igsee[1], p. 99 Hence turbulent viscosity, if present, is likely to dominate the
secular evolution of differentially rotating stars.
vis_ R_2 T/\W|—Bs\ 7t 30 Thermal energy is radiated away prlmarll_y by ngutrlnos.
Toar™ 4, 0.1 For hot neutron starsT= 10° K), the cooling is dominated

by the direct URCA process, and the star cools on a time

This is comparable to the viscous time scajg~R?/v dis-  scale 7o~ 10°T,* s (see[39] and [38], Chap. 11. For
cussed below. cooler neutron stars, the cooling is dominated by the modi-
Magnetic fields coupled to the matter will redistribute an-fied URCA process, and the star cools on a time scale
gular momentum. In fact, even an initially small magnetic 7.,,~10'Tg4 ° s[39]. Depending on the temperature and the
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nature of the viscosity, the cooling time scale may be greatesimulations to the appropriate strength of viscosity, provided
than or less than the viscous time scaler}f< 7., then that the physically relevant viscous time scale is much
the heat generated by viscosity will build up inside the starshorter than all the other secular time scalesy., 7oV

r 1
ice. it wi i i it i __GW.
Otherwise, it will be radiated away as quickly as it is gener-7>¥).

ated. We study both limits in this paper. As discussed in the previous subsection, turbulent viscos-
ity is likely to dominate the secular evolution. We adopt the
E. Dynamically modeling secular effects stress tensor as in Ef) and specify the viscosity suitable

Secular effects will in general take many rotation periodsfor modeling turbulence. We consider the turbulent viscosity

to significantly affect the structure or velocity profile of a described irf41]:

differentially rotating star. This poses a challenge to the nu-

merical treatment of these changes. Because of the short

Courant time step required for numerical stability, it would (This viscosity law is also used in some accretion-disk mod-

be computationally prohibitive to evolve a star for such aels[16].) Typically, vy, is proportional to the sound speed

long time using an explicit finite differencing scheme. Thec,. Hence 7~y VP/p~ (luyn/Cs)P. For simplicity, we

use of a fully implicit scheme for the finite differencing can assume thatt,;,/c is constant inside the star. Then we have

allow stable evolutions with largek T. Each time step is,

however, much more computationally expensive as it in- n=vpP, (37

volves matrix inversion. Moreover, no fully implicit routine . i .

for the coupled Einstein field and relativistic hydrodynamicWhere ve is a constant, and is related to the coefficient of

equations exists at present. k!nemapc wscosnyu. by vp=(po/P)v. In our numerical
The secular time scales are so much longer than the dyimulations we specify the value of for each run. .

namical time scales that the star can be thought of as evoly- We model the initial stars as rotating polytropes with

ing quasi-statically. Therefore, it might be possible to treatolytropic indexn=1, so thatP= «p§. It is convenient to

the secular evolution in the quasistatic approximation, as ifiescale all quantities with respect#o Sincex/? has dimen-

typica| stellar evo|uti0r‘(Henyey codes, by constructing a sions of Iength, we can define the following nondimensional

sequence of equilibrium configurations up to the momenvariables[47]:

that stable equilibrium can no longer be sustained. This ap-

77~ Pl b wrb - (36)

proach has been used to study the viscous evolution of dif- xt=k" Ve =k, (38)
ferentially rotating white dwarf§40]. However, building the _ _

required equilibrium models in full general relativity is a M=x"YM, R=« YR, (39
nontrivial task. It would be particularly difficult to identify . o

the meridional currents and core-halo bifurcation that often po=Kpo, vp=k Yup, (40

arise in rapidly rotating configurations. More significantly, it
would not be possible to follow the evolution of the configu- Where the spacetime coordinates are=(t,x,y,z). How-
ration with a quasi-stationary approach if a dynamical instaever, to simplify our notation, we will drop all the overbars.
bility (i.e., collapsgis triggered during the secular evolution. Hereafter, all variables are understood to be &1 units.”
Instead, we use our relativistic hydrodynamic code and Using Eq.(35), we can see that,;s scales withR, p, and
artificially amplify the strength of viscosity so that the vis- vp as
cous time scale is short enough to make numerical treatment

2 2
tractable. However, we keep the viscous time scale suffi- R™ R%

| . . . o s~ — 41
ciently long that the hierarchy of time scales is maintained, Tvis™ 7, vpP (41)
and the secular evolution still proceeds in a quasi-stationary
manner. The behavior of the real system can then be detefthich forn=1 becomes
mined by rescaling the time variable to adjust the viscous R?
time scale to its physical value. The characteristic viscous i~ _ (42)
time scale is pvp

s~ pR¥ (7)1, (35)  For definiteness, we takg;s to be
where( 7) is an averaged value af across the star. Suppose _ Riq
we evolve the same star, once withs=7; and once with Tuis= A Pomadp (43

Tis= To. If both 7 and 7, are large enough so that they do

not compete with the dynamical time scale, but shorter thamhere R is the equatorial radiuspg may is the maximum
any other secular time scalsee, e.g., Sec. Il Dthen the value ofpg in the star, and is a dimensionless constant. We
configuration of the star with viscosity, at timet will be the  use the constarX to approximately match;s to the rate of
same as the configuration of the star with viscosiyat time  decay of differential rotation observed by our simulations.
(72/7)t. By varying 7,;s over a wide range and corroborat- With the appropriater,;s, the value ofo,,o*”, which is
ing this scaling, we are confident that the physical behavioproportional to the rate of energy dissipatisee Eq.(16)],

we observe is real. We can then scale the result of numericé expected to decay like
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00~ (0,,0"") |- gexp — 2t/ 7). (44)  tion of the field equations in these coordinates difficult. In-
stead, we choose to evolve the metric variablgs,(A;; , ¢,
We measurer,is by numerically evolving a given star, and K, T o, andg') in axisymmetry using the Cartoon method
observing the decay with time ofe*’o,,), the average [27]. In this approach, variables are evolved on a Cartesian
value of o*”c,,, throughout the star, weighted by rest den-grid consisting of three planes correspondingyte —AY,
sity. We determine the value of by requiring thatr,s  y=0, andy=AY. Then the middley=0) plane is evolved
roughly corresponds to thefolding time of the decay of ysing the 3D evolution equations in Cartesian coordinates.
V(o*"a,,). Carrying out this measurement on a samplinggach time the middle plane is evolved forward one time step,
of the stars used below, we find that=0.23 in all cases. they=—AY andy=AY planes are updated by applying the
Thus we use\ =0.23 to definer;s in the sections below.  assumption of axisymmetry. Thus, the value of a terisair
We note that the turbulent viscosity adopted above for oufocation (w,z, +¢) on y=*AY is equal tof at (w,z,0)
numerical treatment is roughly equivalent to an™model  rotated by(coordinaté tensor transformation about texis
provided we identifya~ (cs/R) vp~(M/R%) Y215 . Equation by angles+ ¢. Since an arbitrary pointe§,z,0) will gener-

(43) for 7 is then equivalent to Eq34). ally not coincide with any grid point on thg=0 plane,
interpolation inx is necessary to apply this update. We use
F. Radiative cooling third-order polynomial interpolation, so that we do not lose

) i , ) second-order accuracy.

Our stars d_o not evolve isentropically. Viscosity heats the \ith the hydrodynamic evolution equations, we also have
matter on a time scales, as shown by Eq(16). At the  he choice of either evolving in cylindrical coordinates or
same time, neutrino radiation carries away heat, cooling thgys|ving in Cartesian coordinates using the Cartoon prescrip-
star on a time scalecyy. We will carry out simulations o | jke Shibata in his work on axisymmetric star collapse
below in two opposite limits, which we describe in some[2g 43, we choose to evolve the fluid variables in cylindrical
detail in the Appendix. In thao-coolinglimit, 7coop> 7vis» SO coordinates, i.e., we use Eq@2)—(25). This is superior to
we ignore radiative cooling and simply evolve E@$5—  ysing the Cartoon method because E2@) can be finite
(17). In the rapid-cooling limit, 7co<7yis, SO We evolve jfferenced in such a way that the total rest mass will be
Egs. (15—(17) as before, butvithout includingthe viscous  exactly conservedexcept for flow beyond the outer bound-
heating term in the energy equati¢Rq. (16)]. This will  5rieq."In the absence of viscosity, angular momentum also
allow net heating by adiabatic compression but not by Visyecomes a numerically conserved quantity. We have found
cosity. The viscous heat is assumed to(lmstantaneously  that evolving the fluid variables in cylindrical coordinates
lost by radiation in this limit, while viscous braking pro- gives significantly more accurate runs than evolving via Car-
ceeds. The emitted radiation will carry off some momentumyoon hydrodynamics. The drawback of using 2D evolutions
as well as energy, causing a modification of Ef), but this 5 the instability caused by the coordinate singularity on the
will have a much smaller effect provided the luminosity doesy — o axis. (This instability is also present if we use the 3D
not exceed théneutring Eddington luminosity. Baumgarte cartesian Navier-Stokes equations together with the Cartoon
and Shapird42] investigated the loss of angular momentum boundary condition. There are several ways of removing

in binary neutron star merger remnants due to radiation, angjs instability. Shibat428] adds a small artificial shear vis-
they found it to be fairly small. We therefore feel justified in cosity

ignoring radiative corrections to E¢L7).
. . I(Salp) ="+ vap A(Salp.), (45)
G. Numerical implementation

1. 2+1 dimensional code whereA is the flat-space Laplacian, a®i/p, =hu; is the

Our hydrodynamical scheme employs van Leer—type ad|;nomentum variable evolved by the code[@8] (instead of

vection with artificial viscosity to handle shocks. We also useS)- i .

a “no-atmosphere” approach, in which the density at any e have confirmed that adding such a term to &)
point on our grid can fall exactly to zero. Our hydrodynami- €an stabilize our code. Ho_weve_r, since we will be studying
cal algorithms are described in detail in paper I. We havéhe effects of real shear viscosity, we instead choose to re-
evolved the above equations both in two dimensions, assunffove the instability using a higher-order dissipation scheme;
ing axisymmetry, and in three dimensions. Using axisym-"@mely, we add a small Kreiss-Oliger dissipation te#]
metry saves us computational time and allows us to use
higher resolution. However, 3D runs must still be carried out
for rapidly rotating systems in order to check for the occur-
rence of nonaxisymmetric instabilities. There are several
ways to evolve in axisymmetry. One could write the field andWe useC,,=0.2 for all the simulations reported in this pa-
hydrodynamic evolution equations in cylindrical coordinatesper.

(w,z,¢) and evolve in this coordinate system. This has the In both 2D and 3D simulations, we assume that our sys-
advantage that one can explicitly remove the dependence t¢¢m preserves equatorial symmetry across zk& plane,
the variables onp. Unfortunately, there are singularities in and we therefore only evolve tlze>0 portion of the grid. In
the cylindrical coordinate system which can make the evolu3D runs, we make the added assumptionmosymmetry,

(AXAZ)?

at~SA: oo _CKOWA%A' (46)
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which allows us to evolve only half of the remaining grid,  (v) compute2u"*?! from 23"+1

which we choose to be the>0 half. When performing 2D 2+ aR=p 2yn+t1_ yn/AT
runs, we evolve only the regior>0 since the values of 2 nil_ 2 el 2 n+1,2)'
variables in thex<0 region can be deduced from the values or=o (Ut ’

. . 2 n+1/2=[20_n+1_0_n]/A-|—
on thex>0 region from the assumed axisymmetry. o

(vi) 2nd Correct: _
SH=8"+ AT[0.45(c", 0" 1)
. L . +0.6é( 20_n+l,26'rn+1/2)]
We compute all spacial derivatives using standard cen- By differencing the equations in this way, the dominant

tered d.lfferencmg. We integrate forward in time using @nonviscous terms in the evolution equations are accurate to
3-step iterated Crank-Nlch_oIson scheme. So, for exampleSecond ordefexcept for small effects due to the use of the
we evolve the equation,f=f(f) from time stepn at timet  coefficients 0.4 and 0.6 in the corrector stepsut small

to time stepn+1 at timet+ AT by the following algorithm:  viscous terms involving time derivatives are accurate only to

2. Finite differencing

(i) Predict: 1" 1=f"+ ATF(f") first order inAT. Numerical convergence tests show that our

(i) 1st Correct: code is nearly second-order convergent in space and time.
2fnH1=fn4 AT[0.4F(f") +0.6f (1" 1) ] We find this to be sufficient for our purposes. When comput-

(i) 2nd Correct: ing o,,, we first use Eq(8) to get the spatial components
f1H L= £ AT[0.4F(F") +0.6f (2" 1)] agij - The remaining components,,, are then obtained from

the conditionsu“o,,=0.
chosen to improve stability. As in most other Eulerian hydrodynamic codes, high ve-
the time differencing is notlocities can easily develop in the low-density regions near

In the presence of viscosity, ;
entirely straightforward, due to the presence of time derivalll® surfaces of our stars. The method for evolving such re-

; : ; Nt ; ions in the absence of viscosity is described in paper I.
tives ofu, in o,,, and of time derivatives ofr,, in the gin culation of the Shear t ny i eolves takin pdpriv
Navier-Stokes equations. ThusS, (which givesd,u,) is an - -oc cacuiation of Ie shear Tensof involves taxing derva-

. o ) ; > Lk tives of the velocity field, we are unable to calculate it accu-
expression which itself containgu, and d;u,. Since the

; o . ) . rately in the very low-density regions. To ensure stability, we
viscosity is a small perturbing force on the fluid motion, we set7=0 in regions wherg,< 1073,)0 Since these low-
,max-

find that it is sufficient to split off the viscous terms and yensity regions contain an insignificant amount of rest mass,
integrate them separat((a)[y)peratqr splitting In particular,  his prescription should not affect our evolutions. We confirm
we computes,uy andd; oy appearing in the viscous terms in his by varying the cutoff density in several test problems
a non-time centered way. Consider tBevolution equation and checking that the effect is negligible.

for the viscous pieced,S=S(o,0), where we have sup-
pressed all indices. To evolve this equation from time step H. Diagnostics

o time sten +1, we need to know the time derivativestof Our most important diagnostics are the total mass-ener
and o. When performing the predictor step, these time de- P 9 ay

S : : .~ M and angular momentuh These are both defined by sur-
rivatives are approximated by subtracting vglues (_)f the f'eld?ace integrals at infinity45
on the time stem from those on the previous time step,
n—1.
(i) Before predictor step, M= %j VY™ Yon = Yinmd?S, (47)
computeu” Y2=[u"—u""1J/AT, S
o“=a(u”,U“‘1’2),

As discussed in paper I, the coefficients 0.4 and 0.6 wer

1 :
e _ _ k 2
O.n 1/2:[0_n_0_n l]/AT ‘]i_ﬁsij fgﬁXJKTd Sm (48)
Note that these time derivatives are centered-atl/2. We Using Gauss’s law, these surface integrals can be converted
then carry out the predictor step. to volume integrals:
(i) Predict: 'S 1=S"+ AT 0", 0" 1) 1 1 1
From the predicted values ofand o, we construct time M= [ |e®?| p+ —A Al — —K2| — —TIkT .
g : PT 167 10 24 167 ik
derivatives centered at+ 1/2 and use these in the corrector v Z ™
ste[:.)..' 1,n+1 12n+1 1-e’.] 5
(iii) compute*u""+ from -S" + R|d®x, (49
L2 [ 1ynt L /AT 16m
1(?_n+1:O_( lun+11 1Un+l/2), ) 1 ~j j 1 j
1O.n+1/2:[10_n+1_0_n]/AT ‘Ji:gij jv EAK_FX St EX K,k

(iv) 1st Correct: 4
Zan+1_an of N _n—1/
S"I=S"+ AT[0.45(c", 0" 1) 1 - .
+0.6§( Lyt 15n+172)] _EXJYIm,kAm e5%d3x. (50
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In axisymmetry, the angular momentum integral simplifies toFinally, the quantity which is nearly conserved in the rapid-
[46] cooling limit (up to losses due to gravitational radiatios

t dM
3 j XS,0%. (51 M= M+ Mgoong=M — J dr (56)
v o dt’

cooling
Henceforth, we drop the subscriptsince all angular mo-
mentum is in thez direction.

The masav and angular momentuiin our grid should

In both the no-cooling and rapid-cooling runs, we can
divide M into its constituent pieces: the rest méésg, inter-

be strictly conserved only in the absence of radiaigh "2l €nergy massl;, kinetic energyT, and gravitational po-

though gravitational radiation carries no angular momentunfential energwy, defined by{47]

in axisymmetry. Since the energy and angular momentum

emitted in gravitational waves are negligible in our runs, this My= J podV, (57)
means thaM andJ should be conserved in the no-cooling v

limit. They thus serve as useful code checks in this limit. In
the rapid-cooling limit, the mass computed by the volume
integral(49) over the numerical grid will not be conserved—
thermal energy is carried off the grid by thermal radiation.
The expected rate of mass-energy decrease due to thermal 1
energy loss can be computed by differentiating @§) with T= f EQTg(UO)fldV, (59
respect to time. To lowest order, we can ignore the effects of v
the quasi-stationary loss of thermal energy on the spacetime,
and so ignore the time derivatives of field variables. Then
only the first term in Eq(49) will be important.

Mi:f (poe)dV, (58)
\

W:M_MO_Mi_T, (60)

wheredV= au®e®?d3x is the proper 3-volume element. To

dM d study the effects of heating, it is useful to break up the inter-
= = af d3xe>®p+ - - nal energye into its “cold” componentey=py~ Y/(I'—1),
cooling v and its “thermal” componentep..= €— €9. Then we can
) break upM; into cold and hot components
~ f dxes T (52)
v cooling Mic:fv(l)ofo)dva (61)

where¢9p/at|mo”ng is the component of the time derivative of
p caused by loss of internal energy due to cooling. This
quantity may be computed by applying the chain rule to Eq. Min= fV(PofheanV- (62

(19):
[
B \VJ Jde

Changes iru® are ignored because they represent a higher-

order influence ondM/dt. The rate of change ie, due to C(c)= j; hu,\#d¢, (63
cooling is given by the effective balance of heating and cool- ¢

ing that characterizes the rapid-cooling lirtsee the Appen-
dix). Thus,,(9te*|coo”ng is minus the value of,e, due to vis-
cous heating, i.e.,

Note that in the rapid-cooling limit\;,=0.
e>¢d3x. Finally, we also compute the circulation along closed
cooling curves. For a closed curve with tangent vecton*, the
(53 circulation is defined to be

dMm de

po 0 98

e,

cooling po.u°

where { parameterizes points an[i.e., \*=(d/d{)*]. Ac-

cording to the Kelvin-Helmholtz theorem, the circulatién
will be conserved in the absence of viscositg ihoves with
the fluid and if the fluid is barotropiEP=P(pg)]. When

& - _ Eaewn(poe)(kr)ﬁaaﬁ%ﬁ (54) viscosity is present or the equation of state is more general,
It | cooling as in the case of nonisentropic flow, the Navier-Stokes equa-
tions give
[see Eq(16)]. From Eqgs.(53) and(54), it is straightforward
to construct dc P ,
L B e R —
cooling * 7=0, the second term in the integrand vanishes, and if
2 P=P(po), the remaining term is an exact differential. Then
x| Te™ 12¢(&) —T+1l}. (550  dC/drintegrates to zero, in accord with the Kelvin-Helmoltz
Po theorem.
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TABLE I. Initial equilibrium models for code tests.

Star M Mg Req/M Pomad T/W| Qe QL Prot/M© Rpe

A 0.170 0.186 4.10 0.241 0.032 1.0 155 0.88
B 0.171 0.187 3.48 0.363 0.031 1.0 125 0.87
C 0.183 0.200 4.53 0.155 0.095 0.346 60.6 0.73
D 0.241 0.260 5.47 0.061 0.234 0.383 52.4 0.37
E 0.259 0.277 5.92 0.045 0.263 0.381 57.4 0.28

8Maximum rest-mass density. This does not correspond to the center of the star for hypermassive, toroidal
models D and E.

PRatio of () at the equatorial surface 1 at the center.

“Initial central rotation period.

9Ratio of polar to equatorial coordinate radius.

In axisymmetry, we choose to evalud@®n circular rings  curately follow gravitational collapse of rotating stars, and to
on the equatoriat=0 plane, so that=¢. The ringc inter-  accurately evolve binary polytropes in quasi-stationary circu-
sects our 2D grid at a point on theaxis. By our symmetries, lar orbits. When black holes appear on our grid, we can
the curvec will always remain circular and always remain at employ excision to remove the spacetime singularities from
z=0, so the Lagrangian point representingnly moves in  our grid. Tests of our black hole excision algorithm using this
x. Evolution int and in 7 are simply related byd/dr  code were reported i8] for single rotating black holes in
=u®d/dt. Since the system is axisymmetric, the integrandyvacuum spacetimes and [15] for black holes that arise
being a scalar, is constant aloieg so Egs.(63) and (64) during the collapse of hydrodynamic matter. In this section,
simplify to we test the adaptations of this code which force axisymmet-

ric evolution and the modifications which allow a physical

C=2mhu,=2mhxu, (axisym), (65  viscosity. Simulations performed with our axisymmetric
code show that stable and unstable Tolman-Oppenheimer-

dc_1dC_ 4m Volkoff (TOV) stars are correctly distinguished. The code

= —— = — v
dt u%dr pouo(ﬂ% v also achieves approximate second order convergence in the
evolution of linear gravitational waves and TOV stars. Be-
A low, we describe test runs on rotating stars in some detail.

[(x*ae®?7o,°) i+ (x*ae® 1oy ™) Al First, we consider stable and unstable uniformly rotating
(66)  Stars, as well as a stable differentially rotating star, in axi-
symmetry and without viscosity. We then test the sensitivity

Hence the quantit¢,; given by of our code to nonaxisymmetridynamical bar formation.
Finally, we check that physical viscosity is implemented cor-

PX

B t ., dc rectly by considering stable uniformly and differentially ro-
Crot=C+ Ciis=C— Odt E (67) tating models. A summary of the models used for these code
tests is given in Table I. The models are initially=1 equi-
is conserved, even in the presence of viscosity. librium polytropes and are evolved using’daw equation of

Finally, we compute the Hamiltonian and momentum con-State withI'=2 [see Eq.(9)]. Initial data for all of these
straint violationg given by Eqs(16) and(17) of paper . We ~ models are obtained from the relativistic, rotating star equi-
monitor theL 2 norm of the violation of each constraint. We librium code of[47]. Stars A and B were also studied in
compute theL2 norm of a grid functiorg by summing over ~Paper I[49]. For the differentially rotating stars C, D, and E,
every grid pointi: we choose the initial rotation profile

L2(g)= \/2 92 (69) ulu,=REA%(Q.—Q), (69)

The constraint violations are normalized as described in pawhereﬂ is the angular velocity of the qum_Qc IS the_value
of Q) at the center and all along the rotation aXx¥, is the
per I [Egs.(59) and (60)]. . . . q'>
equatorial coordinate radius, and the parametemwhich

measures the degree of differential rotation, is chosen to be
unity. In the Newtonian limit, Eq(69) reduces to the so-

In paper |, we presented our relativistic hydrodynamiccalled “j-constant” law[50]
code. This code evolves the coupled Einstein field relativistic
hydrodynamic system on 3D grids, assuming perfect-fluid QO
hydrodynamics. We demonstrated the ability of our code to = ﬁ
distinguish stable from unstable relativistic polytropes, to ac- 1+ @R A

Ill. CODE TESTS

(70)
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We note that the=1 TOV polytrope of maximum mass has 4
massM =0.164 and compactioR.,/M =3.59 [47]. All of
the axisymmetric tests in this section were performed with a
modest resolution of 6464 and outer boundaries at about &

12M. Passing these tests successfully with modest resolutiol
helps establish the robustness of our code.
A. Tests in axisymmetry 1 WNWJWMM,WW

p./p.(
L L B B

To demonstrate that our “axisymmetrized” code can dis-
tinguish stable and unstable uniformly rotating models, we 0.6 =
consider stars A and B. These stars lie along a sequence ¢
constant angular momentum, uniformly rotating stars. As de-
scribed in paper |, star A lies to the left of the turning point 0.4
on theM-p. equilibrium curve, while star B lies to the right.
Then by the theorem of Friedman, Ipser, and Soffl&], 8
star B is secularly unstable to radial perturbations, while star
A is stable. Since the onset of dynamical radial instability is
very close to the onset of secular instability for such se-
guence$20], we expect that star A will be stable to collapse,
while star B will be dynamically unstable. When evolved in
axisymmetry, star A persists for more thaR,g; without sig- t/P
nificant changes in structure, where the central rotation pe- ro

riod is FIG. 1. Axisymmetric evolution of uniformly rotating stars. Star
5 A (solid lineg is stable, while star Rdotted line$ is unstable to
77 (72) collapse. The upper window shows the central density normalized
Q. (t=0) to its initial value, while the lower gives the central lapse. The solid

L ) . . . dot indicates the first appearance of an apparent horizon during the
The oscillations irp., which correspond to radial pulsations, collapse of star B.

have an amplitude o£7%. For this run, the Hamiltonian
and momentum constraints are satisfied to within 2%, while gecause viscosity tends to smooth irregularities in the ve-

M is conserved to better than 1%. Meanwhile, the unstablgity field, the problems near the axis and the inaccuracy of
uniformly rotating star(star B collapses, with an apparent the azimuthal velocity can be controlled by a small shear
horizon first appearing at time=2P,y, corresponding 10 yjscosity. To test this we evolve star C for60P,q, with a
21.3 light crossing times o_f t_he grid. At t_h|s time, the CON- very small shear viscositisuch thatr,.c=550P,,). Because
straints Oare satisfied to within 6% arMd is conserved to . i so much greater than the length of the simulation, the
within 3%. Thus, stable and unstable uniformly rotating star§mg| viscosity does not significantly alter the structure of the
are clearly distinguished even at this moderate resolutionsis \we find that the behavior 63 improves considerably.
Figure 1 summarizes the results for these two runs. \yhjje the small-scale variations ip, near the axis do not
Next we consider the evolution of a differentially rotating ccyyr, 1n addition, the circulation values for the same three
star using our axisymmetric code. We evolve star C for gy5ints which we studied in the previous case are conserved
tlm_e ;15Prot. Throughout the S|mglat|on, all constraints are 4 \vithin 5% for more than 59,.,. Thus, even a tiny shear
satisfied to better than 4.5%, whil, J, and M, are con- iscosity significantly lengthens the period during which our

served to within 3.5% J and M, decrease due to flow be- 1 ns are accurate. As we will describe below, the presence of
yond the outer boundariesin the absence of a dissipative 5 gmall shear viscosity allows us to evolve axisymmetric
mechanism to brake the differential rotation, the structure of;,yqels accurately for hundreds &, corresponding to

the eq_uilibrium star_ shoul_d_ n_ot change. We find that we cannq,sands of.
numerically hold this equilibrium state for P5,;. Note that
the small amount of Kreiss-Oliger dissipation employed for
numerical stability does not alter the rotation profile of the
star. After this time, inaccuracies at the center, manifested by We now demonstrate that our 3D code is sensitive to the
growth in ) and high-frequency oscillations 5, begin to  nonaxisymmetridynamicalbar-mode instability. This sensi-
grow. We monitor the evolution of the circulation for three tivity is important because the results of axisymmetric runs
different fluid elements chosen at the following initial loca- for a particular case will only be valid physically if it can be
tions in the equatorial plan€a) r =R.4, (b) r=R.42, and  demonstrated that nonaxisymmetric modes do not develop in
(c) r=3Rq{4, whereR, is the initial radius of the star. We the corresponding 3D evolution. We consider two models, D
find that, fort<22.5P,;, the circulation is conserved to bet- and E, which we expect to be dynamically stable and un-
ter than 5% for all three of these points. After this time, thestable to bars, respectively. This expectation is based on ear-
same inaccuracies cause the circulation to deviate from ither 3+1 fully relativistic evolutions of these stars by Shi-
initial value. bata, Baumgarte, and Shapirb2], who studied the

0.2

o=l v b s e b b b

o
[aV}
S
o2}

t

P rotE

B. Tests of dynamical bar mode sensitivity
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formation of bars. Both models are hypermassive, toroidal
configurations with high values of/|W/| (0.230 for D and
0.258 for B. These models are identical to models D1 and

1

PHYSICAL REVIEW D69, 104030 (2004

D2 considered if52]. To test for bars, we add a nonaxisym-
metric density perturbation of the following form to the axi-
symmetric initial data:

X2_y2

p=po| 1+ (72)

€q

where §,, parameterizes the strength of the initial bar defor-

mation. We choosej,=0.1 for both models D and E. We
then re-solve the constraint equations ag58] to ensure

that they are satisfied on the initial time slice. The growth of

a bar is indicated by the quadrupole diagnossiee[54]),
x2—y?)+ 2ixy

im 1 3 (
Q=(&™)n-o=ir- | &b, e 09

We will take |Q|=+yQ*Q as a measure of the magnitude of
the bar deformation.
We evolve star D for a time 88, during whichM and

J were conserved to within 0.7% and all constraints were
For Star E, the run was terminated

satisfied to within 2%.
after 6.3, and M and J were conserved to within 1.0%,
while constraint violations weres5.5%. Both runs were
performed inT symmetry on uniform grids with resolution
128%x 64% 32. The outer boundaries in tixey plane were at
16.6M for star D and 19.81 for star E. The results are
shown in Fig. 2. This test clearly shows the growth of the ba

Ql

10-*

10-3 | 1 1 \ 1 | 1 1 \

FIG. 2. Quadrupole diagnostic for evolutions of rapidly rotating
hypermassive stars. Star D is stable and star E is unstable to dy-
namical bar formation. The initiah=2 perturbation decays for star
D (dotted ling but grows for star Esolid line). Note that, for each
curve, the time axis is normalized B, which differs for the two
stars.

mode for star E, while star D does not form a bar even with
the substantial initial perturbation.

C. Tests with viscosity

As a first test of our shear viscosity implementation, we —
demonstrate that uniformly rotating configurations are unaf-S,
fected by the presence of even a large viscosity. We evolve °
the uniformly rotating, stable star A with,= 0.2 (such that ~
Tyis=0.09P, ) for ~100P,,,~15,50M. The mas is con- Q
served to within 0.1%, andito within 1.5%.(Note that, even
in axisymmetry,J is not identically conserved by our finite
differencing scheme when viscosity is presemll con-
straints are satisfied to better than 1.1% for the duration of
this run. The resulting evolution of the central rest-mass den-
sity and central angular velocity are shown in Fig. 3. Theseo
quantities oscillate on the radial oscillation time scale ™%
(~ 7ep) with amplitudes of several percent, and this run en- &
compassed roughly 120 oscillation periods. Because the os_¢
cillations are radial, they are not appreciably damped by the
shear viscosity. For the entire run, the average valugs, of
and ). drop by about 4.5% and 6.5%, respectively. These
small deviations are due to the accumulated numerical erro
of the finite differencing and are reduced by increasing reso-
lution. Since the star does not change appreciably over many

L

il
1

MR

AR

A

R

(RN o

\
0

20

40 60 80
t/]Prot

100

viscous time scales, our code simulates the correct physical F|G. 3. Evolution of the stable, uniformly rotating star A with

behavior for this case.
We now test the viscous evolution of the differentially
rotating star C. We choose viscosity=0.015, so that Eq.

high viscosity. The central densitghown in the upper window
and central angular velocitylower window oscillate without
changing appreciably for over 100 rotation periods (15\890
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FIG. 4. Angular velocity profiles in the equatorial frame at se-
lected times for star C with,;s~5.5P,,. The presence of viscosity
drives the star to uniform rotation on a viscous time scale.

FIG. 5. Evolution of the circulation for three selected fluid ele-
ments of star C in axisymmetifysing vp=0.015). The dotted line
gives the circulatiorC, the dashed line gives the time integrated
] ) ] contribution due to viscositg,;;, and the solid line gives their sum
(43) gives7,;5~5.5P . In axisymmetry, we ran this case for ¢ which is well-conserveisee Eq(67)]. Each quantity is normal-
84.%P o= 15.47,;5="5 120M, during which timeM andJ are  jzed by the corresponding initial circulation.
conserved to within 0.4% while all of the constraints are
satisfied to better than 1.1%. Figure 4 shows several snap-
shots of the angular velocity profile in the equatorial plane
for the 2D case taken at various times. This clearly shows C
that the presence of viscosity drives the star toward uniform 1 Ly
rotation. As a quantitative test of the action of viscosity, we '
check that the circulation evolves according to E66).
Choosing three fluid elements in the initial configuration, we
track these fluid elements and calculate the circuladidar
each one, as well as the time-integrated contributions froma
viscosityC,;s [see Eq(67)]. The fluid elements are chosen at 3
the same locations as for the inviscid test of star C in Sec.ht> N
Il A. The results are shown in Fig. 5, which gives the cir- S e
culation, the viscous contribution, and their sufy,. For all \%
three caseg, is conserved to better than 2% for the entire
run. Thus, angular momentum is transported correctly for
many tens of rotation periodghousands oM) when a sig-
nificant shear viscosity is present.

We also used this case to test the scaling behavior of ou
solutions withvp . Results are shown in the upper window of
Fig. 6, which gives the evolution ofc*"o,,) for several
values ofvp versus scaled time. We define the energy dissi-
pation rate via shear viscosit* "o ,,), as in Sec. Il Esee
Eq. (16)]. This quantity decays due to the action of viscosity.
The figure_ shows that our s_,olutipns obey the proper scaling g, 6. Energy dissipation ratés’o,,), normalized to its
with vp, i.e., they evolve identically but on a time scale jpjtial value, for several runs with star C. The upper window dem-
inversely proportional to the adopted viscosityp]. Hence  onstrates the proper scaling of our solutions with Note that the
our results can all be scaled to the much smaller viscositiegme axis is scaled according to the appropriate valueof The
likely to be appropriate for physically realistic viscosity in lower window compare¢c**,,) for runs in axisymmetry2D)
stars. We provide further demonstration of scaling in Secand# symmetry(3D), both with vo=0.015= v,. These evolutions
IVB 2 (see Fig. 1R agree fairly well.
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TABLE Il. Initial models.

Case Mg/Moro®  Mo/Mggyd M Reg/M  JIM?  T/W|  Qg/Q;  Pi/M  1p°

| 1.69 1.38 0.279 4.48 1.0 0.249 0.33 38.4 0.2
Il 1.39 1.13 0.228 4.40 0.85 0.188 0.32 41.3 0.07
1 1.39 1.13 0.232 5.54 1.0 0.224 0.37 54.2 0.15
\ 1.39 1.13 0.234 6.27 11 0.244 0.31 63.3 0.2
\% 1.0 0.81 0.168 8.12 1.0 0.181 0.40 103 0.15

4f this ratio is greater than unity, the star's mass exceeds the TOV liminfed polytropes Mooy
=0.180).

Bf this ratio is greater than unity, the star's mass exceeds the uniformly rotstimgamassiveupper limit
(Mg sus=0.221) and is therefore hypermassive.

“The values ofvp are chosen such that the viscous time segles 3P g~ 107¢f.

The results of the axisymmetric run witho= v, agree  Each of them is then evolved with our axisymmetric code in
fairly well with a 3D, 7-symmetric run performed for the both the rapid and no-cooling limits described in Sec. Il F.
same model. This 3D run employed>632x 32 grid zones, The initial data for the five stars are again computed with the
giving only half of the resolution of the axisymmetric run. relativistic equilibrium code of47]. The stars obey am
We terminated the 3D run after 68g;. M is conserved to =1 polytropic equation of stat@=p§. We adopt the rota-
within 0.4%, while the constraint violations are3.6%. Be-  tion law given by Eq(69) with A=1. This rotation law has
cause of the lower r'esolution in this case, 3.2% of the tota},gen found to be a good approximation to the angular veloc-
angular momentum is losas opposed to 0'4?’ for the much v profile of proto-neutron stars formed from core collapse
longer axisymmetric runA comparison O(U#. ) fOr th_e [55]. In the case of a binary neutron star merger, the remnant
2D and 3D cases is plotted in the lower window of Fig. 6'can form a dynamically stable hypermassive neutron star
and shows good agreement. provided the remnant mass does not exceed about 1.7 times
the maximum mass of a nonrotating spherical &). Our
adopted rotation law is also found to be a reasonably good
A. Introduction and discussion of models approximation to the angular velocity profile of these hyper-

. . . massive neutron staf§].
Having shown simulations for several test models, we . . . L
In all of our axisymmetric calculations, we use a grid size

now present the evolution of five differentially rotating, dy- . i
namically stable stellar models in which viscosity change5128>< 128 with an outer boundary at WM for the most mas

the structure of the stars in nontrivial ways. Our models are:r\]/g ?gﬂ ngzgégffotajnbi’ti:nd tzr:? ;OL;TgriIZﬁs; dl}r;%?stlf:/;
summarized in Table Il and Fig. 7. We first perform short, 3D P ' Y q

simulations without viscosity on all the five models to makeStars are only aboRe~5M. _However, viscosity causes the
outer layers to expand and, in some cases, we find that a few

sure that they are all dynamically stable to bar formatlon'percent of rest mass is lost due to material flowing out of the

grid. In each model, we choose the value of the viscosity

coefficientvp such that the viscous time scale defined by Eq.

(43) is 7yig~3P,o~107. With this moderate strength of

viscosity, we need to evolve the stars for (100—2g)in

most cases to follow the complete secular evolution and de-

termine the final fate of the stars. The reason is that in most

1.13f I I vV A cases, viscosity generates a low-density envelope around the

central core. Since our viscosity law has P, the viscosity

in the low-density region is smal(The density throughout

the envelope is greater, however, than the cutoff density be-

low which »=0.) Hence the effective viscous time scale

increases with time and it takes longer for the stars to

0.81F A 1  achieve a final state.

0.85 ) 11 Four of the five stars we consider are hypermassive, and
77 MZ we expect viscosity to change their structure significantly.

Star | is the most hypermassive stad{=1.38Mg g, Where

FIG. 7. Rest mas#, and spin parametei/M? for the five ~ Mosus=0.221 is the mass limit for uniformly rotating= 1

selected models in Table II. The dashed line denotes the mass limolytropes, i.e., for stars at the mass-shedding li#if). We
of uniformly rotating supramassive=1 polytropesMo=M,,.  find that this star eventually collapses to a black hole, but a

All stars above this line are hypermassive and require differentiasubstantial amount of rest mass is leftover to form a massive
rotation to be in hydrostatic equilibrium. accretion disk. We consider three other hypermassive models

IV. DYNAMICAL EVOLUTIONS

1.38

T
]
1

0,sup

M, M
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TABLE lll. Summary of simulations.

Case 2D/3D  Cooling tga/Pwd  Initial T/|W|  Final T/|W|  (P/p")® Fate JnIM2S MogedMo  Jgiskld
I 2D No 28.9 0.25 0.09 3.9 BH-+disk 0.6 0.23 0.65
2D Yes 13.7 0.1% 1.0 BH-+disk 0.8 0.21 0.55
3D Yes 9.3 0.24 1.0 BH-+disk 0.8 0.18 0.47
I 2D No 286 0.19 0.09 2.8 Stardisk - 0.15 0.56
2D Yes 57.7 0.1% 1.0 BH-+disk 0.7 0.10 0.36
I 2D No 105 0.22 0.09 4.3 Stardisk - 0.21 0.68
2D Yes 315 0.12 1.0 Stardisk - 0.15 0.58
v 2D No 99 0.23 0.10 7.3 Stardisk - 0.25 0.76
2D Yes 235 0.13 1.0 Stardisk - 0.17 0.62
3D Yes 11.5 - 1.0 No bar - - —
V 2D No 105 0.18 0.09 3.7 Stardisk - 0.13 0.52
2D Yes 171 0.13 1.0 Stardisk - 0.09 0.38

&The time at which the simulation was terminated.

®This quantity corresponds to an averagePdp’ over the final configuration of the star weighted by rest-mass density at the end of the
simulation. Thermal pressure generated by viscous heating cRlses 1 (recall thatk=1). We find that the viscous heating is much more
significant in the low-density region than in the core.

“These values are obtained by solving Eq#)—(82).

4The quantityT/|W| is undefined when the star undergoes a dynamical collapse. The number given here is an approximate value before the
star becomes dynamically unstable.

(stars Il, 1l and IV) to study whether or not all hypermassive =0, the star has a toroidal density profile, i.e., the maximum
neutron stars will collapse in the presence of viscosity. Stargensity occurs off centdsee the upper left panel of Fig).9
I, 1l and IV have the same rest mas$1=1.13Mg g, As viscosity gradually brakes differential rotation, the star
which is slightly smaller than that of star | but different an- readjusts to a monotonic density profile. Figure 8 shows the
gular momental. We find that stars Ill and IV never col- maximum rest-mass density and the minimum value of the
lapse, but evolve in a quasi-stationary manner to a uniformlyapse as a function of time. Figure 9 shows the meridional
rotating core surrounded by a low-density, disk-like enve-rest-mass density contours at various times. We see that a
lope. Star Il eventually collapses to a black hdH) if we meridional current is built up in the process. However, the
impose rapid cooling. In the no-cooling limit, however, this magnitude of the meridional velocity<(0.01c) is much
model forms a uniformly rotating core surrounded by a subsmaller than the typical rotational velocity-(Q.3c).
stantial disk. Star V is the only non-hypermassive model. As Viscosity destroys differential rotation and transfers angu-
expected, this star does not collapse under the action of vidar momentum to the outer layers. In the early phase of the
cosity. However, viscosity cannot drive the whole star to
rigid rotation, because the angular momentum of the star 20}
exceeds the maximum angular momentum allowable for a
rigidly rotating star having the same rest mass. Instead, vis- 15__
cosity again leads to a uniformly rotating core and a differ- 1()
entially rotating disk-like envelope. The final outcomes of
the five models are summarized in Table Il 5_
We also performed 3D simulations on stars | and IV to =
search for unstable, nonaxisymmetric secular modes. A non().6
axisymmetric bar instability usually develops when a staris [
rotating rapidly, i.e., has a sufficiently large|w|. Of the 0.4}
five models we study, stars | and IV have the highe$wV|.

f

i

U Pra D PO
1
!

We do not find any nonaxisymmetric instabilities in these 0.21
two models, and the 3D results roughly agree with the axi- 0;. N
symmetric results. 0 5 10 15 20 75 30
We discuss the results of our simulations in detail in the t/ P .
TO

following subsections.

FIG. 8. Maximum value of rest-mass densitypper paneland
B. Star | minimum value of lapsdlower panel as a function of time for
star | in the presence of viscosity. The solathshedl curves repre-
sent the case withoutvith) cooling. In both cases, the central core
Star | is the most massive neutron star we study. We firstollapses to a black hole, and leaves behind a massive accretion
perform an axisymmetric calculation with no cooling. At disk.

1. 2D with no cooling
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FIG. 9. Meridional rest-mass
density contours and velocity field
at various times for star I. The
simulation was performed by as-
suming that the system is axisym-
metric and experiences no cool-
ing. The levels of the contours
(from inward to outwaryl are
Polpoma= 1070153106 \where
j=0,1,...,12. In the lower right
panel ¢(=28.8P,), the thick
curve denotes the apparent hori-
zon.
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evolution, the core contracts and the outer layers expand in@f the disk M, 4. We estimate the final values ofl;,,

quasi-stationary manner. As the core becomes more ang, ..., andJgg by fitting these curves to analytic functions
more rigidly rotating, it approaches instability becguse_ theof the form A+ B exp(~Ct) and extrapolating these fitting
star is hypermassive and cannot support a massive rigidiy,nctions tot— oo [56]. We estimate that the mass of the final

rotating core. At timet~27P,,~117,s, the star becomes a0y hole isM,~0.82M. The asymptotic rest mass and
dynamlcal.ly unstable and cpllapses.An apparen'F horlzon alOéngular momentum of the ambient disk are found to be
pears at time~28.8° . Without black hole excision, the M gi=0.23M, and Jyq~0.65). We can infer from the

code crashes about WDafter the horizon appears because of . '

grid stretching. About 30% of rest mass gapmains outside thgonservatmn of angular mom'entum that the final apgular
apparent horizon at this point. We then continue the evolu_mom(zntum of thez black hole i3~0.35). Hence we find
tion using the excision technique described 25]. We are Jh/Mhmo'Sz(‘?/M )~0.52. . o .

able to extend the evolution reliably for anothefb5The The formation of a massive disk is mainly due to the fact
system settles down to a black hole surrounded by a massiyBat viscosity transports angular momentum from the inner
ambient disk. The rest mad8, 4 and angular momentum COre to the outer layers. The material in the outer region is
Jaisk Of the disk can be calculated by integrating the restunable to fall into the black hole because of the centrifugal
mass and angu|ar momentum density over the volume ouparrier. The final mass of the black hole and disk can also be
side the apparent horizdef. Egs.(57) and(51)]. The mass estimated independently from the conservation of specific
of the black hole can be estimated by the proper circumferangular momentum using a method developed by Shapiro
ence of the horizon in the equatorial plané;,=Cy/47 (as- and Shibatd57], which we apply below.

suming that the spacetime can be described by a Kerr met- During the dynamical collapse, the effect of viscosity is
ric). Figure 10 shows the evolution M, and the rest mass negligible. Since the spacetime is axisymmetric, the specific
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1 i | | ] e |
B [ o — =0 1
. t=4.66 P -
L rot
0.8 — —-t=I86P | |
n - t=280P -
| rot
o t=284P
L rot
0.6 — .
0.4 —
n 15
n XIM
0.2 j i FIG. 11. Angular velocity profiles in the equatorial plane at
| | various times during the evolution of star I.
0 i | | | | \ | J' 42 79
Jdisk= Py jd>X. 79
1100 1120 1140 1160 T ) isiisco
t / M We assume that the energy radiated by gravitational waves is

negligible so that the total mass-energy of the system is ap-

FIG. 10. Evolution of the black hole mas&, and the rest mass proximately conserved. Hence we have

of the diskM g5k after the appearance of the apparent horizon at

t=1106V=28.8,,,. Note that time is plotted in units oM M =Mp+ M gisk, (80)
(1P,,v=38.4M). Black hole excision is employed to track this late
evolution. J=J,+ Jgisk- (82)

angular momentum=hu, of a fluid particle is conserved. For 3 hound system, the contribution to the mass-energy of
For a Kerr black hole of mashl, and angular momentum he matter in the diskM e, is smaller than its rest mass

Jn, the specific angular momentum of a particle at the innerMOdisk_ We write

most stable circular orbiiSCO) j,sco IS given by
VMhrms(rﬁqs_zaVMhrms+az)
Fnd T 2= BM T st 283V M r 9 2’

wherea=J,/My,. The ISCO radius is

Jisco= (74

Mms=Mp[3+2Z,—\(3-2Z,)(3+Z,+2Z,)], (75

where
32 1/3 1/3 3 1/3
Z,=1+ 1——2) 1+ 0 41—
h I\/lh I\/lh
(76)
and
2 1/2
Jh )
Z,=|3—+7Z5| . (77
My

The rest mass and angular momentum of the escaping mat

in the envelope with >j,sco is given by

Mo, disk= f o ped, (78)
1= lisco

M gisk= A M gisk- (82

We consider two opposite limits foig: g=1 and q
=M/M,. The valueq~1 is a good approximation in the
weak gravity regime. In the limit wher#,<M, we have

M gisk=M and Mg gig=Mo. Hence in this limit,g~M/M,,
which is 0.92 for star l(see Table ). We expect that the
correctq lies somewhere between these two extremes, which
are not very different. The mass and angular momentum of
the black hole can be estimated by solving the system of
transcendental Eq$74)—(82) at a particular time slice dur-
ing the pre-excision dynamical collapse phase, including the
time slice at the onset of dynamical collap&ehere q is
close to unity. We find that the values o, and J,, are
insensitive tag. They are also insensitive to which time slice
we choose to do the calculation. We fitdl,~0.75M and
Jp=~0.35 (Jh/Mﬁwo.G). The rest mass in the ambient disk
is found to beM g 4ig=0.23M . It should be noted that this
calculation is based on the assumptions that the spacetime
around the disk can be approximated by a Kerr metric, and

®lat the disk is moderately thin and lies in the equatorial

plane of the hole. This approximation is not reliable when
the disk is massiveM 4 =M). In our case, we find this

calculation agrees rather well with the actual asymptotic val-
ues determined by the dynamical simulation with excision.
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rapid cooling.
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Henceforth we will use Eq€74)—(82) to estimateM,,, J;,, 2. 2D with rapid cooling
Mo,disk: andJgisk Whenever an apparent horizon forms. We next perform an axisymmetric simulation of star |

Since viscosity is small in the low-density region, it takeswith rapid cooling. The dashed lines in Fig. 8 show the time
longer to remove the differential rotation in the outer layers.evolution of the maximum rest-mass density and the mini-
Figure 11 shows the angular velocity profiles at variousmum value of the lapse. As in the no-cooling case, the inner
times. We see that by the time the inner core collapses, theore contracts and the outer layers expand in a quasi-
material in the outer layers is still differentially rotating. Af- stationary manner. The core then collapses dynamically to a
ter the dynamical collapse, viscosity will cause some of théblack hole and leaves behind a massive accretion disk. Since
remaining material to slowly accrete onto the black hole. there is no viscous heating, the whole process occurs more

We monitor the conserved quantities and the constraintguickly than in the no-cooling case. The dynamical collapse
during the entire evolution. Since our finite-difference occurs at time~12P,,~5r,;s and the apparent horizon ap-
scheme preserves the rest mass, the variatidpfan only  pears att~13.5P,. Figure 12 shows the meridional rest-
come from material flowing out of the grid. We find tidt, ~ mass density contours at various times. We estimate, by solv-
is conserved to 0.01%, and angular momentum is conservadg Egs.(74)—(82) at t~13.5P,,; with g=1, that the mass
to 0.1%. The Hamiltonian constraint is violated by less thanand angular momentum of the final black hole avk,
0.3% before the dynamical collapse occurs. It increases te-0.75M and J,~0.45) (J,/M?2~0.8). About 20% of rest
3% by the time an apparent horizon appears. The momentumass escapes capture to form an accretion disk.
constraints are violated by less than 1% before the dynamical In Sec. lll C, we demonstrated that when the viscous time
collapse occurs, and increase to 6% by the time an apparestale is significantly longer than the dynamical time scale,
horizon appears. the secular rates of change of all physical quantities scale
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[£- td(vp) ] /prOt 0 ! FIG. 14. The worldlines of Lagrangian fluid elements at the

equator for star I, assuming rapid cooling. The cylindrical coordi-

. . . nate X of the particles at timé=0 is chosen so that the initial
FIG. 13. Evolution of the maximum rest-mass density of star | . S : Lo
fraction of rest massn(X) interior to the cylinder of radiuX is,

for va.rious strengths _of _viscosity, assuming rgpid cooling. Upperfrom left to right, m=0.03, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and
panel: the curves coincide when plotted against the scaled t'm8 9. The cross in the diagram denotes the location of the apparent
prior to dynamical collapse. Lower panel: during dynamical col- h.or.izon at the end of the simulation
lapse, it is possible to shift the time aXgs—t—ty(vp)] so that the ’
curves again coincide, which indicates that viscosity plays an insig-
nificant role during the dynamical collapse phase. We label the particles by the initial fraction of rest mass
interior to the cylinder of radiuX. We see that the particles
inversely with viscosity. The secular evolution of star | with With the initial mass fractiom=m, =0.8 move toward the
rapid cooling is short enough for us to perform another decenter and ultimately move inside the apparent horizon,
tailed scaling test. Figure 13 demonstrates this scaling behawhile those withm=m, move away from the center and
ior by evolving star | with four different strengths of viscos- remain outside the apparent horizon. This agrees with our
ity vp=0.4, 0.2, 0.1, and 0.05(The curves in Fig. 8 estimates of the rest mass of the ambient disk.
correspond tarp=0.2.) We see that the scaling holds untii ~ Since there is rapid cooling, the mass is not conserved
dynamical collapse at time~ty(vp). Whent=t,, the evo- because the th_ermal energy generated by viscous heating is
lution of the system is no longer driven by viscosity. We removed, as discussed in Sec. Il H. However, when we ac-
therefore expect that the collapse is independent of theount for the mass-energy carried away by thermal radiation,
strength of viscosity as long as the viscous time scale i cooling: the total massViiy=M + M ¢q0iing Should be con-
much longer than the dynamical time scale. In the loweserved approximatelysee Eq(56)]. Figure 15 show$/ and
panel of Fig. 13, we demonstrate that it is possible to shift
the time axest(—t—ty) so that the four viscosity runs yield T
the same result when-t4=0, which indicates that viscosity |g=m—===""TTTTTTTTT T Voo
is insignificant during the dynamical collapse. The values of
ty are determined by requiring that the scaling reIationO 99L
tq(vo)/ty(ve)~v,/v, holds, and that the four curves be
aligned when plotted against the shifted timety(vp). We
found thatty(ve)/P,e=6.1, 12.0, 24.08, and 47.75 respec- 0-98
tively for vp=0.4, 0.2, 0.1, and 0.05. The fact that we are — M(t)/ M(0)
able to findty(vp) that satisfies these requirements validates().97 - [M(t) + MCoolin
our physical interpretation of the two phases of evolution. £
To better visualize the effects of viscosity, we follow the 0.96 -
motions of ten selected Lagrangian fluid elements. Figure 14"
shows the worldlines of these particles. We choose the par
ticles to be in the equatorial plane of the star. Equatorial0-950 - é — 1'0 15
symmetry implies that the particles will remain in the equa- t/P
torial plane at all times. The position of a fluid particke rot
satisfies the equations

()] 1 M(0) .

FIG. 15. Evolution of the mashl of star | in the rapid-cooling
limit. The mass is not conserved since the thermal energy generated

d Ut X(1)) by viscous heating is removed. However, the sum of the remaining
= i . (83) mass and the mass carried away by “radiatioN¢,gjing, iS ap-
dt u'(t; X(t)) proximately conserved.
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FIG. 16. Evolution of the central rest-mass density for star Il 3 7
with no cooling(solid line) and with rapid coolingdashed ling N 4 —
M @s a function of time before an apparent horizon ap- 2 B
pears. The total mass is well conserved except near the enc _ ]
) ) ) - !
of the simulation, where the numerical error arising from the 0
grid stretching causes a few percent drop in the mass. 0 = 4 6 8 10

We monitored the violations of the constraints during the Y /M
evolution. The violation of the Hamiltonian constraint is
~0.1% before the dynamical collapse occurs, and goes up to FIG. 17. Meridional rest-mass density contours for star Il with
7% at the time when the apparent horizon appears. The viaio cooling. The upper graph shows the contour$=a® and the
lations of the momentum constraints are als6.1% before lower graph shows the contours at the end of the simulation
the dynamical collapse occurs, and increase to 8% at the timg=286P,,=877,;5). The contours are labeled as in Fig. 9.
when the apparent horizon appears.

tonian and momentum constraints defined by E§9) and
(60) of paper I. We see that the violation of all the constraints
. . o are smaller than 1% during the entire evolution of P86
The evolution of star Il due to viscosity is different from _ 11 goqu.

that of star I. Although it is still hypermassive, the mass of e yalues of the ratio of kinetic to gravitational potential
star Il is smalle_r than that of star I. When evolved in theenergy,T/|W|, for all of the stars we studied decrease with
absence of cooling, the star does not collapse to a black holg o Figure 20 shows the evolution @¥|W| for star I

but forms a rigidly rotating core with a low-density disk-like g\ qyed without cooling. Viscosity transforms part of the ro-
envelope. When evolved in the rapid-cooling limit, hOwWever, aiiona) kinetic energy into heat. It also changes the equilib-

the star collapses to a black hole. Figure 16 shows the evgym configuration of the star significantly, causing a redis-
lution of the central density.

C. Other models

In the no-cooling case, star Il has not collapsed to a black

hole by the end of simulation t€286P,,=877ys o
=1180MM), but is settling to a uniformly rotating core sur- 0.6 — =0 i
rounded by a massive torus. Figure 17 shows the meridiona L e 1=1.0 Prot 1
density contours at the beginning and at the end of the simu (.5} _.1=53P —
lation. Figure 18 shows the angular velocity profiles at vari- - _ ot 1
; . . ; S oot=10.6 P |
ous times. Viscosity drives the star to a quasi-equilibrium, 0.4 rot
rigidly rotating core surrounded by a low-density disk. We € #a882% >a1=286 Pmt

cannot exclude the possibility that some of the outer material
will slowly accrete onto the uniformly rotating inner core,
eventually triggering collapse to a black hole. However the
star acquires enhanced pressure support against collap:
from viscous heatindi.e., P/pg>:<(0) where x(0)=1].
Hence it may no longer be hypermassive with respect to this
new “hot” equation of state, as the simulation suggests. Dur-
ing the entire simulation, the star loses 1.2% of its rest mass

0.2
0.1
0

0

18

and 4.5% of its angular momentum due to material flowing FIG. 18. Angular velocity profiles at various times in the equa-
out of the grid. Figure 19 shows the? norms of the Hamil-  torial plane for star Il evolved with no cooling.
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FIG. 19. L2 norms of the Hamiltonian constraint and momen-  F|G. 21. Evolution of various energies for star Il evolved with
tum constraints for star Il evolved without cooling. no cooling.

tribution of various energies. Figure 21 shows the timethe possibility that they might collapse to black holes when
evolution of various energies defined in E¢S7)—(62). The  enough material accretes onto the inner core.
mass of the system decreases by 1.4% due to a small amountFrom Table 1, we see that at the end of the simulation, a
of mass flowing out of the gri¢hot visible in the graph The  large amount of angular momentum is transported to a mas-
rotational kinetic energyl decreases slightly. The contrac- sive disk. For stars 1l and IV, the rest mass of the core
tion of the core raises the gravitational binding eney, Mo.coreiS smaller than the rest-mass limit of a supramassive
as well as the adiabatic part of the internal eneMy..  starMqg,, For star II,Mg ris slightly smaller thaM g 5,
Viscous heating generates the thermal endwyy, which  in the absence of cooling, but is slightly greater thaps,p
prevents the star from undergoing catastrophic collapse. in the rapid-cooling limit. For star IMg core>Mg sypin both
In the rapid-cooling case, star Il collapses dynamically athe rapid-cooling and no-cooling cases. This suggests that
time t=57P,~17.41s. An apparent horizon appearstat the fate of a hypermassive neutron star depends on whether
=57.7P,o. The mass and angular momentum of the finalviscosity can create a rigidly-rotating core withflg coe
black hole are estimated by solving Eq§4)—(82): M,  >Mg,, in which case it will collapse. Both viscous heating
~0.88M and J,~0.63] (Jh/Mﬁ%0.7). About 10% of the and the star’s initial angular momentum play an important
rest mass is left as an accretion disk. role in the final outcome. A hypermassive neutron star with
The situations for stars Ill and IV are similar. The inner higher mass and lower angular momentum is prone to col-
core contracts in a quasi-stationary manner while the outdapse, whereas viscous heating tends to suppress the col-
layers expand. Each system evolves into a rigidly rotatindapse.
core surrounded by a disk-like envelope. The stars do not Finally, we study the effect of viscosity on star V, which is
collapse to black holes at the end of the simulations whethemnon-hypermassive. As expected, the star does not collapse to
or not rapid cooling is imposed. Again, we do not rule outa black hole, irrespective of cooling. The star eventually
evolves into a rigidly rotating core surrounded by a disk. The
(0.2 et fact that the star does not simply become rigidly rotating
without shedding mass is due to the fact that viscosity con-
servesM andJ. For a givenM  and equation of state, there
is a maximum value of angular momentuly,,(M,) above
which a star can no longer maintain rigid rotation without
shedding mass at the equator. In the case of star V, it is
apparent that)>J,,... Hence viscosity cannot force the
whole star into rigid rotation. Similar results were found in
studies of viscous evolution of differentially rotating white
B dwarfs assuming Newtonian gravitatipf0].

0.18-
0.16_
0.14»
0.12-

0.1 D. 3D tests of bar formation

e The results of the axisymmetric runs described above will
0'080 50 100 150 200 250 300 not be physically relevant if the models are secularly un-
t/Prot stable to bar formation. We evolved stars | and IV in 3D to

check for the formation of bars. These models were chosen

FIG. 20. Evolution ofT/|W| for star Il evolved without cooling. because, of our five models, they have the highest values of
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T/|W|. Viscous heating can lead to expansion and, hence, @mpaction to become dynamically unstable. In both cases,
decrease ifl/|W|. Thus, to further increase the chance ofwe find low-density disks surrounding uniformly rotating
bar formation, we performed these runs in the rapid-coolingores. However, our simulations do not rule out the possibil-
limit. We superimposedn=2 perturbations on the initial ity that slow accretion of the disk material could eventually
data according to Eq72) for both stars with magnitudé,  drive the uniformly rotating cores to collapse. Disk forma-
=0.1, so thatQ|=0.014 initially. Both runs were performed tion also occurs for star V, which is differentially rotating but
in 7~ symmetry with a uniform grid of size 12864x 32 and  hon-hypermassive. Since there exist stable, uniformly rotat-
outer boundaries in th&-y equatorial plane at 14\8 for ing models with the same rest mass, the braking of differen-
star | and 17.M for star IV. To reduce computational costs, tial rotation in this case does not result in collapse. However,
the extent of the grid in thedirection is only half as large as differentially rotating stars can support larg&f|W| than

in the x andy directions. This setup is feasible because theséniformly rotating stars. In the case of star V, there does not
models are initially highly flattened due to rapid rotation andeXist a uniformly rotating star with the sanfleigh) angular
because their evolution results in an expansion which ighomentum and rest mass, so that mass shedding must take
largely horizontal. For star I, we find th&®| decreases in place as viscosity drlvgs_ the star to uniform rotation. In the
magnitude until the code terminates due to the collapsdinal state, we find a rigidly-rotating core surrounded by a
when |Q|=0.0015. Before the collapse, all constraints areloW-density, disk. _ _

satisfied to within 3.5% whileM and J are conserved to ~ Since results obtained from our axisymmetric code are
within 3%. For star IV,|Q| also decreases, reaching 0.0023Physically reliable only for models which are not subject to
after 11.%,,,= 3.37,s, when the simulation is terminated. In Nonaxisymmetric instabilities, we evolved stars I and IV in
this case, the constraints are satisfied to within 6.0% vile 3D to check for such instabilities. Previous studies in New-
andJ are conserved to within 1.4%. We also find that the resfonian gravity have found that the secular, viscosity-driven
density contours remain nearly axisymmetric throughout thé?ar instability in uniformly rotating stars should set in when
evolutions of both stars. These resuits indicate that both stars/|W|=0.14[1,2]. When general relativity is taken into ac-

are stable against secular bar formation on the viscous timgPunt, the threshold value can be somewhat higBErThus,
scale. of all of our models, stars | and IV have the best chances of

developing bars since they have the highE&W|. We in-
V. DISCUSSION AND CONCLUSIONS troducgd an ini_tial ba'r—shgpgd perturbation gnd ran these
cases in the rapid-cooling limit. We found that, in both cases,
We have simulated the evolution of rapidly rotating starsthe small initial perturbation decays and no bar is formed.
in full general relativity including, for the first time, shear This is somewhat surprising sindé|W| is well above 0.14
viscosity. Our findings indicate that the braking of differen-in both of these cases. We plan to address this issue in a
tial rotation in hypermassive stars always leads to significantuture report.
structural changes, and often to delayed gravitational col- For the evolution of each of our five models, we find that
lapse. The rest mass, angular momentum, and thermal energymassive disk or torus forms in the final state. The disk
all play a role in determining the final state. We performedtypically carries~20% of the rest mass of the initial con-
axisymmetric numerical simulations of five models to studyfiguration. Viscosity transports angular momentum from the
the influence of these parameters. In the presence of sheiaterior of the star to the more slowly rotating exterior. The
viscosity, the most hypermassive model which we studiedxterior regions then expand to accommodate the additional
(star I), collapses to a black hole whether we evolve by ig-centrifugal force, forming a low-density disk. The inner core
noring cooling, or by assuming rapid cooling of the thermalbecomes rigidly rotating and, in some cases, undergoes
energy generated by viscosity. However, the viscous tranggravitational collapse. The disk, however, remains differen-
port of angular momentum to the outer layers of the statially rotating since viscosity acts much more slowly in low-
results in mass outflow and the formation of an appreciablelensity regions. For cases in which black holes are formed,
disk. Next, we considered three hypermassive moggts the mass of the disk may be estimated by integrating the
I, Ill, and IV) with the same rest madd,, but different rest-mass density for those fluid elements which have spe-
values of the spin parameteM?. These models have cific angular momenturhgreater than the value at the 1ISCO,
smallerM than star |, and are therefore less prone to col,sco[see Eq(78)]. The estimates obtained in this way agree
lapse. Star Il, which has)/M2=0.85, collapses when reasonably well with the results of our numerical simula-
evolved in the rapid-cooling limit, leaving behind a disk. But tions. Particularly good agreement was found for the case of
without cooling, this model evolves to a stable, uniformly star | with no cooling, for which we were able to extend the
rotating core with a differentially rotating massive disk. The evolution some 581 beyond the first appearance of an ap-
additional thermal pressure support provided by viscougarent horizon. The rest mass and angular momentum of the
heating prevents collapse in this case. disk surrounding the rotating black hole could then be calcu-
In contrast, stars lll and IV, which hawM?=1.0 and lated directly and agreed well with the estimates. We expect
1.1, respectively, do not collapse even in the rapid-coolinghat excision techniques will continue to be crucial in estab-
limit. This is sensible because these models have a smalléishing the final fate of systems involving matter surrounding
rest mass than star |, but larger angular momenta than star black holes.
Though the cores of stars Il and IV contract, they are pre- In a recent paper, Shibafa1] numerically simulated col-
vented by centrifugal support from reaching the necessarlapses of marginally stable, supramassive stars. These supra-
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massive models were constructed using polytropic equationsy accretion onto the central black hole formed through core
of state with 2/3Xn<2 and rotate at the mass-shedding limit collapse in a massive star.

with 0.388<J/M?<0.670. Shibata found that the collapse of ~ Several interesting astrophysical systems undergo secular
these stars results in Kerr black holes and that no more thagvolution in strongly gravitating environments. In this paper,
0.1% of the initial rest mass remains outside of the hole. Thigve have shown that it is possible to study secular effects that
result is quite different from our finding that disks are usuallyoccur over many dynamical time scales using hydrodynamic
present following collapse. However, the initial data for thecomputations in full general relativity. We consider this an
two calculations are quite different, as well as our inclusionMPortant step toward future numerical explorations of secu-
of viscosity. The analysis of21] takes uniformly rotating, ar effects in cher contexts.lln particular, we plan to incor-
unstable configurations as initial data and follows their dy_porate MHD into our evolution code, as magnetic braking

namical evolution. Our calculations begin with differentially probably acts more quickly than viscosity to destroy differ-

rotating, stable configurations and follow both their secularem'al rotation in many systems, like neutron stars or super-

(viscous and dynamical evolution. Viscosity drives our con- massive starf65]. Our results have also raised the following

f i ¢ i tation. We find that e disk interesting question: Under what circumstances are differen-
'gurations to uniform rotation. We find that massive GiSKSyq) rotating, compressible neutron stars with higHw|

usually form as by-products of the formation of uniformly \qiapje to nonaxisymmetric modes? We plan to address this
rotating cores. This is due primarily to the transport of angu+gs e in a future report.

lar momentum from the inner to the outer layers. In addition,

all of our models _have 0.85J/M2<1.1. (Large a_mgular ACKNOWLEDGMENTS

momentum is required to generate a hypermassive neutron

star in equilibrium). Since this range is higher than that con-  The calculations for this paper were performed at the Na-
sidered in[21], our models more naturally produce disks tional Center for Supercomputing Applications at the Univer-
[58]. sity of Illinois at Urbana-Champaigi@UIUC). This paper

All of the phenomena observed in our simulations followWas supported in part by NSF Grants PHY-0090310 and
from the braking of differential rotation in strongly relativis- PHY-0205155 and NASA Grant NAG 5-10781 at UIUC.

tic stars. This may be accomplished by viscosity as shown
here, but magnetic fields are likely to be more important. The =~ APPENDIX: VISCOUS HEATING AND RADIATIVE
fate of the hypermassive remnants of binary neutron star COOLING

mergers may crucially depend on these effects. The 10SS of |, this appendix, we describe the thermal properties of our

differential rotation support in such a remnant may lead tq;qnfigurations. The dissipation of rotational energy by vis-
delayed gravitational collapse. This collapse could in WMcosity heats the stars, but they may be cooled by radiation
lead to a delayed gravitational wave burst following the e g.  neutrino radiation The presence of radiation contrib-

quasi-periodic inspiral and merger sighdl. Our results in- ta< 4 ternR?8 to the stress tensomiy = THY+ REY, with

dicate that if the remnant is not sufficier_1tly hypermassive u» given by Eq.(7). This modifies the equations of motion

collapse may not occur, at least not until the star cools b3(13) to

radiating away its thermal energy. Understanding the evolu-

tion of such merger remnants could aid the interpretation of THY. = —RM'. =GH, (A1)

signals observed by ground based gravitational wave detec- ’ '

tors, such as LIGO, VIRGO, GEO, and TAMA. In addition, whereG* is the 4-force density due to radiati¢see[66]).

short-duration GRBs are thought to result from mergers offhe specific entropyg of a fluid element with temperatu@

binary neutron stars or neutron star—black hole systemand number density=p,/m changes when there is heating

[22,59. In this scenario, the GRB may be powered by accreand cooling according to

tion from a massive torus or disk surrounding a rotating

black hole. We have demonstrated that such disks are easily ds

produced during the evolution of hypermassive neutron stars. ”TE. =hear= A =Tyist 'rag— Avads (A2)
The braking of differential rotation may also be important

in neutron stars formed in core collapse supernovae. Nasceihere 7 is the proper time along the element’s worldline.

neutron stars are probably characterized by significant differHere, we have separated the contributions from viscosity and

ential rotation(see, e.9.[60-63 and references thergin radiation to the heating rate. The quanfity, is the viscous

Conservation of angular momentum during the collapse iseating rate per unit volume, which comes from maaﬁ

expected to result in a large value Bf(W|. However, uni-  term in Eq.(16). In terms of the thermal energy density

form rotation can only support small valuesTofW| without U therm @nd viscous time scalg,s, I'yis is roughly

shedding masg 38|, Chap. 7. Thus, nascent neutron stars

from supernovae probably rotate differentially. If the induced I'vis=Uherm! 7vis - (A3)

differential rotation is strong enough, hypermassive neutron

stars can form. Their subsequent evolution and final fate theln general, a fluid can be heated and cooled by the presence

depends on the presence of viscosity or magnetic fields. Suaif a radiation field. The energy equation becomes

considerations may be important for long-duration GRBs in .

the collapsar modédb4]. In this model, the GRB is powered u, T, =u,G"=— G°, (A4)
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where the last equality arises from evaluatingG* in the Araq= EN[k(S) — kol Teools (A8)

comoving orthonormal frame of the fluid, whera*

=(1,0,0,0). Then where ¢ is a constant and-,, is the radiation time scale.

. Combining Eqs(A2)—(A8), we find
GO:Frad_Arad: f f dvdQ(x,1,—7,), (A5)

where the integral is evaluated in the comoving frame and d_": -1 Utherm_ ¢nLx(s)~ xol
x,, |,, and , are the opacity, intensity, and emissivity at dr  nf Tvis Teool '
frequencyv [66]. For applications of interest here, radiation
mediatesnet cooling of the viscous-heated fluid. Hence, we
can sefl’,,=0 for simplicity.

The first law of thermodynamics

(A9)

In the limit 7., 7yis, radiative cooling is unimportant and
k increases due to viscous heating. We refer to this regime as
the no-coolinglimit. If 7.,,<< 75, then the first term on the
d(e/n)=—Pd(1/n)+Tds, e=po(l+e), (A6) right hand side of EqA9) may be dropped in relation to the
second, giving
and Eq.(9) give

P’ d ET—1) (k—Ko)
nTds= nrd( ) 9 0
r-1 dT(K Ko) nF_l Teool . (AlO)
nF
=——d«x. (A7) i i ; e ra.
r—1 Thus, « is exponentially driven tac,. We refer to this re

gime as theapid-coolinglimit, whereby the thermal energy
Here we define the entropy parameieby P=«n", where, generated by viscosity is radiated immediately and does not
in general,k=«(s). The form of A4 will depend on the heat the gas. In effect\,,4=I'\;s in this limit. In practice we
details of the neutron star’s microphysics, but it must havémplement this limit by omitting thes,,0*” in Eq. (16).
the property that\ .= 0 whenk(s)= o= «(s=0), where  Though we consider only these two limits in our analysis, we
Ko is the value ofk for the unheated fluidi.e., no emission expect that, in reality, heating will dominate in some regimes
from a zero-entropy fluid Accordingly, we replace EqA5) and cooling in others. We treat both limiting cases in our
for A,,q by the following illustrative form: simulations.
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