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Algorithmic construction of static perfect fluid spheres
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Perfect fluid spheres, either Newtonian or relativistic, are the first step in developing realistic stellar models
~or models for fluid planets!. Despite the importance of these models, explicit and fully general solutions of the
perfect fluid constraint in general relativity have only very recently been developed. In this paper we present a
variant of Lake’s algorithm wherein~1! we recast the algorithm in terms of variables with a clear physical
meaning—the average density and the locally measured acceleration due to gravity,~2! we present explicit and
fully general formulas for the mass profile and pressure profile, and~3! we present an explicit closed-form
expression for the central pressure. Furthermore we can then use the formalism to easily understand the pattern
of interrelationships among many of the previously known exact solutions, and generate several new exact
solutions.
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I. INTRODUCTION

Perfect fluid spheres, both Newtonian@1# and relativistic
@2,3#, have attracted and continue to attract considerable
tention as the first step in developing realistic stellar mod
~or models for fluid planets!. Whereas some steps towa
finding all possible solutions to the perfect fluid constraint
the absence of a specific equation of state were present
early work of Wyman and Hojmanet al. @4,5#, explicit and
fully general solutions of the perfect fluid constraint ha
only very recently been developed@6,7#. In this paper we
present a variant of Lake’s algorithm@7# using curvature co-
ordinates.~1! We recast the algorithm in terms of variabl
with a clear physical meaning—the average density and
‘‘gravity profile,’’ a quantity closely related to both the grav
tational redshift and the locally measured acceleration du
gravity. ~2! We minimize the number of differentiations an
integrations by several judicious applications of integrat
by parts.~3! We present explicit, compact, and fully gener
formulas for the mass profile and pressure profile of anar-
bitrary fluid sphere.~4! We present an explicit, compact, an
general formula for the central pressure of anarbitrary fluid
sphere.~5! We compare and contrast the relativistic formu
we obtain with the much simpler Newtonian situation.

We emphasize that one of the virtues of this type of
proach is that one is not fixeda priori in dealing with a
prespecified equation of state@6#—in many interesting physi-
cal situations the equation of state is either uncertain or,
cause the fluid in question might be inhomogeneous, it m
not even make sense to assign a single equation of sta
the entire fluid sphere.

To further illustrate the formalism we show how it may b
used as the basis for a partial classification scheme—the
a free parameter in the algorithm that can take simple s
tions into more complicated ones. Once this is appreciate
becomes easy to see~simply by parameter counting! that
certain simple solutionsmusthave one-parameter generaliz
tions. Conversely, this observation explains why so many
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the earliest discovered exact solutions have one-param
extensions.

II. FRAMEWORK

To set the stage, consider a static spherically symme
geometry. It is a standard result that without loss of gene
ity we can choose coordinates to write the metric in the fo

ds252expF22E
r

`

g~ r̃ !dr̃ Gdt21
dr 2

122m~r !/r

1r 2@du21sin2udf2#. ~1!

Hereg(r ) is the ‘‘gravity profile.’’ It is related to the gravi-
tational redshift by

11z5expF E
r

`

g~ r̃ !dr̃ G , ~2!

and is related to the locally measured acceleration due
gravity by

a5A12
2m~r !

r
g~r !. ~3!

Our convention is thatg(r ) is positive for a downward ac
celeration. The functionm(r ) is the quasilocal mass. In th
vacuum region beyond the surface~if any! of the starlike
object, the Schwarzschild solution yieldsg(r )5(M /r 2)/(1
22M /r ) andm(r )5M . We find it more convenient to write
the metric in the form

ds252expF22E
r

`

g~ r̃ !dr̃ Gdt21
dr2

122m~r !r 2

1r 2@du21sin2udf2#, ~4!

wherem(r )5(4p/3)r̄(r ) is proportional to the average den
sity inside radiusr. In terms of these variables, the Einste
equations are
©2004 The American Physical Society28-1
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8pr5Gt̂ t̂52m8~r !/r 252@rm8~r !13m~r !#, ~5!

8pp5Gr̂ r̂52H g~r !@122m~r !r 2#

r
2m~r !J , ~6!

8pp5Gû û52r @11rg~r !#
dm~r !

dr
22H @11rg~r !#2

1r 2
dg~r !

dr J m~r !1Fdg~r !

dr
1

g~r !

r
1g~r !2G . ~7!

The first of these equations integrates to

m~r !5
1

r 3E
0

r

4pr~ r̃ ! r̃ 2dr̃ , ~8!

which justifies the choice of notationm(r )5m(r )r 3.

III. GENERAL SOLUTION AND GENERATING FUNCTION

By demanding the isotropy conditionGr̂ r̂5Gû û and alge-
braically solving fordg/dr we obtain

dg

dr
52g21

11m8r 3

r ~122mr 2!
g1

rm8

122mr 2
. ~9!

This is a Riccati equation, for which there is no gene
analytic solution. If, on the other hand, we take thissame
equation and rearrange it algebraically to extract dm/dr we
find

dm

dr
52

2r ~g21g8!

11rg
m1

~g/r !81g2/r

11rg
. ~10!

But this is a simple first-order linear ordinary differenti
equation~ODE! and hence explicitly solvable. A symboli
manipulation program such asMAPLE, or a slightly tedious
hand computation, easily yields the general solution

m~r !5expF22E r @g2~r !1g8~r !#

11rg~r !
drG

3H C11E 2g~r !1rg8~r !1rg~r !2

r 2@11rg~r !#

3expF12E r @g2~r !1g8~r !#

11rg~r !
dr G J . ~11!

This statement is equivalent to the algorithm presented
Lake @7#: Given a prescribed gravity profileg(r ) ~the ‘‘gen-
erating function’’! and the knowledge that we are dealin
with a perfect fluid, the mass profilem(r )5m(r )r 3 is de-
duced in closed form. The algorithm~11! is also equivalent
to that presented by Rahman and Visser@6#, after a change of
coordinates~from isotropic to curvature coordinates! and a
change of variables. A particularly nice feature of the pres
version of the algorithm is that the generating functiong(r )
10402
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has a clear physical interpretation in terms of the grav
tional field. Now the above is by no means the most use
form in whichm(r ) can be presented. An integration by pa
permits us to simplify the appearance of the integrating f
tor

expF12E r @g2~r !1g8~r !#

11rg~r !
dr G

5@11rg~r !#2expF22E g~r !
12rg~r !

11rg~r !
dr G . ~12!

It is now extremely useful to introduce the notation

q~r !5E g~r !
12rg~r !

11rg~r !
dr and

q~r 1 ;r 2!5E
r 1

r 2
g~r !

12rg~r !

11rg~r !
dr . ~13!

We warn the reader that we cannot generally assumerg(r )
<1, and consequentlyq may become negative. For in
stance, in the physically reasonable regimem(r )/r .1/3
@that is,m(r )r 2.1/3] andp>0, it can be shown from the
Gr̂ r̂ Einstein equation thatrg(r ).1. All that we can safely
say in general is that as long as local gravity points down
must have

2E g~r !dr ,q,E g~r !dr . ~14!

With this notation

m~r !5
exp@12q~r !#

@11rg~r !#2 H C21E @11rg~r !#

3
@2g~r !1rg8~r !1rg~r !2#

r 2
exp@22q~r !#dr J .

~15!

A second integration by parts now yields

m~r !5
exp@12q~r !#

@11rg~r !#2 H C31
1

2
@11rg~r !#2

exp@22q~r !#

r 2

1E 11rg~r !

r 3 exp@22q~r !#dr J . ~16!

In this version of the result we have eliminated all the d
rivatives of g(r ). A third integration by parts, using 1/r 3

52 1
2 (1/r 2)8, then leads to
8-2
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m~r !5
g~r !

r

@11 1
2 rg~r !#

@11rg~r !#2
1

exp@12q~r !#

@11rg~r !#2

3H C412E g~r !2

r @11rg~r !#
exp@22q~r !#dr J .

~17!

This final version, as we shall soon see, has nice behavio
the origin. Again, we emphasize that this is the explicit, a
most general, solution to the perfect fluid constraint forar-
bitrary generating functiong(r ). All perfect fluid spheres,
no matter how derived, must satisfy this equation.

The pressure can now be determined using theGr̂ r̂ Ein-
stein equation so that

p~r !5
1

8p@11rg~r !#2 F2g~r !222@112rg~r !#

3exp@12q~r !#H C412E g~r !2

r @11rg~r !#

3exp@22q~r !#dr J G . ~18!

This now provides for us the explicit and fully general so
tion to the mass profile and pressure profile, given only
gravity profile and the information that we are dealing with
static spherically symmetric perfect fluid. For a consisten
check, we can compare these formulas to the much sim
result for Newtonian stars:

m~r !5
g~r !

r
, p~r !5

1

8p F2g~r !21C524E g~r !2

r
dr G .

~19!

To complete the analysis we should now impose bound
conditions. There are three natural locations to work w
~1! the center of the fluid body,~2! the surface of the fluid
body @assuming it has a well-defined surface#, and~3! spatial
infinity. Perhaps surprisingly, the simplest results are
tained if we normalize at spatial infinity.

IV. BOUNDARY CONDITIONS AT SPATIAL INFINITY

We will now adopt the very mild condition that the tot
mass of the fluid sphere is finite, so that in particularm(r )
→0 as one approaches spatial infinity. We also assume
r p(r )→0 at spatial infinity. Then~from the Gr̂ r̂ equation!
we deduceg(r )→0 at spatial infinity. Physically this mean
that the present discussion is capable of handling situat
with a tenuous atmosphere extending all the way to infin
and that the special case where the fluid body has a s
surface withp(r>R)50 andm(r>R)5M is automatically
included. Then fixing boundary conditions at spatial infini
the mass profile~17! is given by
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m~r !5
g~r !

r

@11 rg~r !#

@11rg~r !#2
22

exp@22q~r ;`!#

@11rg~r !#2

3E
r

` g~ r̃ !2

r̃ @11 r̃ g~ r̃ !#
exp@12q~ r̃ ;`!#dr̃ . ~20!

We can simplify this slightly to yield

m~r !5
g~r !

r

@11 1
2 rg~r !#

@11rg~r !#2
2

2

@11rg~r !#2

3E
r

` g~ r̃ !2

r̃ @11 r̃ g~ r̃ !#
exp@22q~r ; r̃ !#dr̃ . ~21!

The pressure profile determined from~18! is then

p~r !5
1

8p@11rg~r !#2 F2g~r !214@112rg~r !#

3E
r

` g~ r̃ !2

r̃ @11 r̃ g~ r̃ !#
exp@22q~r ; r̃ !#dr̃ G . ~22!

For the central pressure,pc5p(0), we find

pc5
1

2pE0

` g~r !2

r @11rg~r !#
exp@2q~0;r !#dr . ~23!

Compare with the equivalent statement for a Newtonian fl
body in which the pressure profile is

p~r !5
1

8p F2g~r !214E
r

`g~ r̃ !2

r̃
dr̃ G , ~24!

and the central pressure is

pc5
1

2pE0

`g~r !2

r
dr . ~25!

V. BOUNDARY CONDITIONS AT THE CENTER
OF THE FLUID SPHERE

If we apply boundary conditions at the center of t
sphere then, using

g~r !5
m~r !14pp~r !r 3

r 2@122m~r !/r #
~26!

and the assumed finiteness ofrc andpc , implies

g~r !5
4p

3
~rc13pc!r 1O~r 2!. ~27!

The mass and pressure profiles are given by
8-3
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m~r !5
g~r !

r

@11 1
2 rg~r !#

@11rg~r !#2
1

exp@12q~0;r !#

@11rg~r !#2 H 24ppc

12E
0

r g~ r̃ !2

r̃ @11 r̃ g~ r̃ !#
exp@22q~0;r̃ !#dr̃ J ~28!

and

p~r !5
1

8p@11rg~r !#2 F2g~r !21@112rg~r !#

3exp@12q~0;r ; !#H 8ppc24E
0

r g~ r̃ !2

r̃ @11 r̃ g~ r̃ !#

3exp@22q~0;r̃ !#dr̃ J G , ~29!

compared with the Newtonian result

p~r !5pc2
1

8p Fg~r !214E
0

r g~ r̃ !2

r̃
dr̃ G . ~30!

VI. BOUNDARY CONDITIONS AT THE SURFACE
OF THE FLUID SPHERE

If the fluid sphere has a sharp boundary~say at radiusR,
with the density and pressure identically zero outside
radius!, then it can be useful to normalize at this surface. F
the pressure profile we find@in terms of the ‘‘surface gravity’’
gs5(M /R2)/A122M /R] that

p~r !5
1

8p@11rg~r !#2F2g~r !21@112rg~r !#

3exp@22q~r ;R!#H gs
2

112Rgs
1E

r

R g~ r̃ !2

r̃ @11 r̃ g~ r̃ !#

3exp@12q~ r̃ ;R!#dr̃ J G . ~31!

There is a similar but uninteresting expression form(r ). The
central pressure is now

pc5
1

8p H gs
2exp@22q~0;R!#

112Rgs
14E

0

R g~r !2

r @11rg~r !#

3exp@22q~0;r !#dr J , ~32!

where we have now reduced the range of integration fr
(0,̀ ) to (0,R) at the price of introducing an extra term d
pending explicitly on total mass and radius of the flu
sphere. This can be compared with the equivalent Newton
results
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p~r !5
1

8p Fgs
22g~r !214E

r

Rg~ r̃ !2

r̃
dr̃ G with gs5

M

R2

~33!

and

pc5
1

8p Fgs
214E

0

Rg~r !2

r
dr G . ~34!

VII. SOLUTION GENERALIZATION TECHNIQUE

One nice feature of the present analysis is that it allo
one to turn simple exact solutions into more complica
ones. While the general algorithm presented above alw
provides an exact solution, it may not be an ‘‘elementar
solution in the sense that the integrations might not be doa
in terms of either elementary or special functions. In suc
situation, a simplified algorithm is sometimes useful.

Suppose that one has found, by some unspecified me
a specific exact solution for a perfect fluid sphere. Let t
exact solution be given in terms ofm(r ) @or equivalently
m(r )] and g(r ). Then for any arbitrary constantk,

m~r !→m~r !1k expF22E r @g2~r !1g8~r !#

11rg~r !
dr G ~35!

is also an exact solution for a perfect fluid sphere@with the
same g(r )]. This construction may sometimes ‘‘fail’’ in the
sense that the integral is either too trivial@returning you to
the seed solution you started with# or too complicated to
perform in terms of elementary or special functions. Ho
ever, in very many cases this simple construction is suffici
to understand why certain broad classes of exact solu
exist.

Let us start by rescaling the time variable to remove a
redundancies in the number of free parameters,n, appearing
in gtt . If the number of free parameters appearing ingrr is
not at leastn11, then the seed solution you havemusthave
a generalization. For instance, the Minkowski solution@a
particularly simple fluid sphere with zero pressure and d
sity# has exactly zero parameters appearing in bothgtt and
grr , and so must have a one-parameter generalization. In
case, performing the integration leads to the Einstein st
universe. Similarly, the exterior Schwarzschild solution~an-
other particularly simple fluid sphere with zero pressure a
density! has exactly one free parameter~the mass! appearing
in both gtt andgrr , and so must have a one-parameter g
eralization. In this case, performing the integration leads
what is called the Kuch68 II solution in the Delgaty-Lak
classification@8#. A slightly more complex example, usin
anti–de Sitter space as a seed, leads to the Tolman IV s
tion. A number of additional examples of this phenomena
collected in Table I.

Of course, sometimes explicit exact solutions were fi
discovered in their general form, in which case this alg
rithm provides no extra information.~This comment applies
for instance, to the Wyman IIb geometry.! Conversely, some-
times the integral is too complicated to provide a close
8-4
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form solution—the generalization may be exact but too co
plex to write down explicitly.@The same, for instance, is tru
when you use the Schwarzschild–de Sitter~Kottler! geom-
etry as seed. Similarly, by parameter counting Tolman
and Tolman VIII must have one-parameter extensions, b
seems impossible to write then down in closed form.#

Finally, we point out that there are some cases where
formalism does lead to apparently new solutions.~We again
follow the Delgaty-Lake classification@8#.! For instance, the
Kuch1 Ib solution

ds252~Ar1Br ln r !2dt21
dr 2

2
1r 2dV2 ~36!

generalizes to

ds25~Ar1Br ln r !2dt21
2~2A12B ln~r !1B!

~2A12B ln~r !1B!2kr2dr 2

1r 2dV2 ~37!

which appears to be new. Similarly, the M–W III solutio
which can be cast into the form,

ds252S r 2
r 2

a Ddt21
7dr2

4~12r 2/a2!
1r 2dV2, ~38!

generalizes to

ds25S r 2
r 2

a Ddt21
dr 2

122m~r !/r
1r 2dV2 ~39!

with

m~r !5
4r 213a2

14a2 r 1k
~r 2a!r 10/3

~4r 23a!4/3
~40!

which also appears to be new. Also, the K–O III solution c
be cast into the form

ds252S 11
r 2

a2D 2

dt21dr 21r 2dV2, ~41!

TABLE I. Seed solutions and their generalizations.

Seed Generalization

Minkowski Einstein static
Schwarzschild exterior Kuch68 II
anti–de Sitter Tolman IV
Tolman V Kuch2 I
Tolman VI Wyman IIa
Kuch1 Ib appears new
M–W III appears new
K–O III appears new
10402
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which is spatially flat. It generalizes to

ds252S 11
r 2

a2D 2

dt21
dr 2

12kr2~3r 21a2!22/3
1r 2dV2,

~42!

which is contained within the new class of exact solutio
briefly described by Lake@7#.

VIII. DISCUSSION

As emphasised in the article by Rahman and Visser@6#,
and reiterated by Lake@7#, while this type of algorithm guar-
antees a perfect fluid body it does not necessarily guarant
‘‘physically reasonable’’ perfect fluid body. One physical
reasonable constraint that is easy to enforce in the cur
formulation isg.0; locally measured gravity should alway
attract towards the center of the body. A second physic
reasonable constraint which is automatically satisfied is
the central pressure is positive. It is considerably more d
cult to enforcem(r )>0, r(r )>0, andp(r )>0. Checking
these physically motivated constraints amounts to ma
ematically investigating a set of integral inequalities, a
seems to require a case by case investigation dependin
the assumed gravity profileg(r ). One should not, however
lose track of the significance of what has been accomplish
~1! We have derived the exact and fully general solution
the pressure isotropy condition in terms of variables t
have a direct physical meaning, the gravity profileg(r ) and
mass profilem(r ). ~2! We have also derived an exact an
fully general formula for the pressure profilep(r ) of a per-
fect fluid sphere that depends only on the gravity pro
g(r ). ~3! In particular we have an exact and fully gener
expression for the central pressure of a fluid sphere, ag
determined directly in terms of the gravity profileg(r ). ~4!
The algorithm provides a natural framework for understa
ing the reason for the existence of certain broad classe
exact solution, and in some cases leads to new exact s
tions.

Because this algorithmic approach works directly in ter
of physically meaningful quantities, with a physically mea
ingful ‘‘generating function’’ in the form of the gravity pro-
file g(r ), the interpretation of the results is somewhat clea
than in the algorithms presented in the Rahman and Vis
@6# and Lake@7# articles. We expect that this version of th
algorithm for generating perfect fluid spheres will lead
additional useful ‘‘exact solutions.’’ In particular, the ne
class of exact solutions briefly described in Ref.@7# has a
very natural representation in terms of this algorithm.
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