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Algorithmic construction of static perfect fluid spheres
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Perfect fluid spheres, either Newtonian or relativistic, are the first step in developing realistic stellar models
(or models for fluid planejs Despite the importance of these models, explicit and fully general solutions of the
perfect fluid constraint in general relativity have only very recently been developed. In this paper we present a
variant of Lake’s algorithm whereifil) we recast the algorithm in terms of variables with a clear physical
meaning—the average density and the locally measured acceleration due to (2aweypresent explicit and
fully general formulas for the mass profile and pressure profile,(8nhave present an explicit closed-form
expression for the central pressure. Furthermore we can then use the formalism to easily understand the pattern
of interrelationships among many of the previously known exact solutions, and generate several new exact
solutions.
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[. INTRODUCTION the earliest discovered exact solutions have one-parameter
extensions.
Perfect fluid spheres, both Newtonigh] and relativistic
[2,3], have attracted and continue to attract considerable at- Il. FRAMEWORK
tention as the first step in developing realistic stellar models i i i )
(or models for fluid planejs Whereas some steps toward To set the_ stage, consider a static _sphencally symmetric
finding all possible solutions to the perfect fluid constraint in9€OMewy. It is a standard result that without loss of general-
the absence of a specific equation of state were presented ity we can choose coordinates to write the metric in the form
early work of Wyman and Hojmasgt al. [4,5], explicit and .
fully general solutions of the perfect fluid constraint have dszz—exp{—Zf g(r)dr
only very recently been developg@,7]. In this paper we r
present a variant of Lake’s algorithfid] using curvature co-
ordinates.(1) We recast the algorithm in terms of variables
with a clear physical meaning—the average density and th
“gravity profile,” a quantity closely related to both the gravi-
tational redshift and the locally measured acceleration due t
gravity. (2) We minimize the number of differentiations and o
integrations by several judicious applications of integration 1+z:ex;{f g(?)d?
by parts.(3) We present explicit, compact, and fully general r
formulas for the mass profile and pressure profile ofaan
bitrary fluid sphere(4) We present an explicit, compact, and
general formula for the central pressure ofahitrary fluid
sphere(5) We compare and contrast the relativistic formulas
we obtain with the much simpler Newtonian situation. a=~/1— 2m(r)g(r). 3)
We emphasize that one of the virtues of this type of ap- r
proach is that one is not fixed priori in dealing with a
prespecified equation of stgi@—in many interesting physi- Our convention is thag(r) is positive for a downward ac-
cal situations the equation of state is either uncertain or, beceleration. The functiom(r) is the quasilocal mass. In the
cause the fluid in question might be inhomogeneous, it mayacuum region beyond the surfaté any) of the starlike
not even make sense to assign a single equation of state @pject, the Schwarzschild solution yieldgr) = (M/r?)/(1
the entire fluid sphere. —2M/r) andm(r)=M. We find it more convenient to write
To further illustrate the formalism we show how it may be the metric in the form
used as the basis for a partial classification scheme—there is
a free parameter in the algorithm that can take simple solu- ds2— —ex;{ _ZJ' o)
r

2

e
1-2m(r)/r

+r2[de?+ sirf6d¢?]. 1)

ﬁereg(r) is the “gravity profile.” It is related to the gravi-
Bational redshift by

: 2

and is related to the locally measured acceleration due to
gravity by

2

2
tions into more complicated ones. Once this is appreciated it dr*+ 1—2u(r)r?
becomes easy to sdsimply by parameter countinghat
certain simple solutionsiusthave one-parameter generaliza- +r2[d6*+sirfde?], (4)
tions. Conversely, this observation explains why so many of .
whereu(r)=(4m/3)p(r) is proportional to the average den-
sity inside radiug. In terms of these variables, the Einstein
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8mp=Gy=2m"(r)/r?=2[ru'(r)+3u(r)], (5) has a clear physical interpretation in terms of the gravita-
tional field. Now the above is by no means the most useful
g(N[1—2u(r)r?] form in which u.(r) can be presented. An integration by parts
87TD=GFF=2[ ; - )] (6)  permits us to simplify the appearance of the integrating fac-
tor
B du(r) )
8mp=Gyy=—r[1+rg(r)] —27[1+rg(r)] r[ 2(r)—l— "(r)]
d f g g
exg +2 | ——————dr
do(r) do(r) _g(r) L
2= ]M(r)+ - +g7+g<r)2] U 1190
=[1+rg(r)] Jg( 1+rg 519 dr (12

The first of these equations integrates to

It is now extremely useful to introduce the notation

u(r)=— f A7p(r)radr, (8)
ﬂ(r)—f (r) —rotr ) dr and
which justifies the choice of notatiam(r) = wu(r)r>. 91T rg(r)
I1l. GENERAL SOLUTION AND GENERATING FUNCTION _ rg(r)
By demanding the isotropy conditids;; = Gj; and alge- drairz)= fr g(r )1+rg(r) ' (13

braically solving fordg/dr we obtain

d 13 / We warn the reader that we cannot generally asstme)
g ) I+u'r ruw . .
= _ g2+ S-g+ - 9 =<1, and consequentlyy may become negative. For in-
dr r(1=2pr) ~ 1-2pur stance, in the physically reasonable regimér)/r>1/3

[that is, u(r)r?>1/3] andp=0, it can be shown from the
This is a Riccati equation, for which there is no generalg:- Einstein equation thatg(r)>1. All that we can safely

analytic solution. If, on the other hand, we take th&@me  say in general is that as long as local gravity points down we
equation and rearrange it algebraically to extrgefdi we  must have

find

d 2r(g?+g’ Ir) +g?

du __2r(g°+9 )M+ (9/r)'+g r (10) —f g(r)dr<1‘}<f g(r)dr. (14)
dr 1+rg 1+rg

But this is a simple first-order linear ordinary differential  \wjith this notation
equation(ODE) and hence explicitly solvable. A symbolic

manipulation program such asaPLE, or a slightly tedious

hand computation, easily yields the general solution ()= ‘E[T[:r—;(ﬁr()r]); C2+J [1+rg(r)]
= _ ’ 2
1+rg(r) (Lan+rg ir)“g(r) ]exp[—za(r)]dr}.
—g(r)+rg’(r)+rg(r)? r
X‘Cﬁj r2[1+rg(r)] 9

r 2 N+a’(r . . .
< ex +2f [9°(r)+g'( )]dr 1) A second integration by parts now yields
1+rg(r)
| N _ exl +29(r)]
This statement is equivalent to the algorithm presented by u(r)= mz—
Lake[7]: Given a prescribed gravity profilg(r) (the “gen- 9
erating function’) and the knowledge that we are dealing rg(r)
f exd —29(r) ]dr}

c3+%[1+rg(r)]2—2—exq_r2ﬁ(r)]

with a perfect fluid, the mass profilea(r)=w(r)r® is de- (16)
duced in closed form. The algorithfil) is also equivalent

to that presented by Rahman and Vid€dr after a change of

coordinates(from isotropic to curvature coordinajeand a  In this version of the result we have eliminated all the de-
change of variables. A particularly nice feature of the presentivatives of g(r). A third integration by parts, using rf/

version of the algorithm is that the generating functign) =—1(1/r?)’, then leads to
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g(r) [1+3rg(r)] exd+29(r)] M(r):g(r) [1+ rg(r)]  exg —29(r;=)]
MO g e E " [Lrg(n) T [LFren]
g(r)? © o0 Tooo)]dF

X C4+2f mexp{—&?(r)]dr . Xfr ,r,[l+?g(?)]exp:+21‘}(r, )]dr. (20)

1
@ We can simplify this slightly to yield

This final version, as we shall soon see, has nice behavior at

1
the origin. Again, we emphasize that this is the explicit, and u(r)= g(r) [1+ zrg(r)] _ 2
most general, solution to the perfect fluid constraint dor r [1+rg(r)]? [1+rg(r)]?
bitrary generating functiorg(r). All perfect fluid spheres, _
no matter how derived, must satisfy this equation. = g(r)? ~ =
The pressure can now be determined usingGheEin- jr mexq—%}(r,r)]dr. (21

stein equation so that

The pressure profile determined frddB) is then

1
p(r)= W[—g(r)z—Z[lnLng(r)]

g(r)?
2 iiteg [ o()?

—g(r)?+4[1+2rg(r)]

1
P BT v
Xexd +29(r)]

(18) mexq—%&(r;r)]dr]. (22)

Xexq—Zﬁ(r)]dr]
For the central pressurp.=p(0), we find

This now provides for us the explicit and fully general solu- 1 (= 2

tion to the mass profile and pressure profile, given only the p :_f Lexq_ﬁ(o-r)]dr_ (23
gravity profile and the information that we are dealing with a ¢ 2mJor[1+rg(r)] '

static spherically symmetric perfect fluid. For a consistency

check, we can compare these formulas to the much simple&€ompare with the equivalent statement for a Newtonian fluid

result for Newtonian stars: body in which the pressure profile is
g(r) 1 ) g(r)? _l J"”g(r)2~
,U/(r)—Ty p(r)_ﬁ[_g(r) +C5_4j r dr:| p(r) 8 g(r) +4 ; ~r‘ dr ’ (24)
(19
and the central pressure is
To complete the analysis we should now impose boundary
conditions. There are three natural locations to work with: 1 =g(r)? 25
(1) the center of the fluid body?2) the surface of the fluid p°_277 o I
body[assuming it has a well-defined surfacand(3) spatial
infinity. Perhaps surprisingly, the simplest results are ob-
tained if we normalize at spatial infinity. V. BOUNDARY CONDITIONS AT THE CENTER
OF THE FLUID SPHERE
IV BOUNDARY CONDITIONS AT SPATIAL INEINITY If we apply _boundary conditions at the center of the
sphere then, using
We will now adopt the very mild condition that the total
mass of the fluid sphere is finite, so that in particudr) m(r)+4mp(r)rd
—0 as one approaches spatial infinity. We also assume that g(r)= m (26)

r p(r)—0 at spatial infinity. Ther(from the G;; equation

we deducey(r)—0 at spatial infinity. Physically this means and the assumed finitenessgf and p, , implies
that the present discussion is capable of handling situations e
with a tenuous atmosphere extending all the way to infinity, Ao
and that the special case where the fluid body has a sharp g(r)= —(pe+3pc)r +O(r?). (27)
surface withp(r=R)=0 andm(r=R)=M is automatically 3

included. Then fixing boundary conditions at spatial infinity,

the mass profil€17) is given by The mass and pressure profiles are given by
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90 [1+ 3rg(r)] exd +29(0;r)] .
T E S TG B
rg(n? o

2fo?[1+?g(}.)]exp[ 213‘(0,r)]dr] (28)
and

1
p(r)zwl+—w{—g(f)2+[l+2fg(”]
N o 9(r)?
xexp[+219(0,r,)][87-rpc 4fo~r—[1+79(7)]

Xexq—zﬁ(o;?)]d?] , (29
compared with the Newtonian result
1 rg(r)? -
p()=pe 5| o>+ [ L5F . @0
a 0 r

VI. BOUNDARY CONDITIONS AT THE SURFACE
OF THE FLUID SPHERE

If the fluid sphere has a sharp boundé&sqy at radiusR,
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Rg(r)? M
&dr with 9s= g2

(33

1
P(N=g- @Ji—g<r>2+4fr

and

1 RQ(r)?
pc=%[g§+4fo - dr}. (34)

VII. SOLUTION GENERALIZATION TECHNIQUE

One nice feature of the present analysis is that it allows
one to turn simple exact solutions into more complicated
ones. While the general algorithm presented above always
provides an exact solution, it may not be an “elementary”
solution in the sense that the integrations might not be doable
in terms of either elementary or special functions. In such a
situation, a simplified algorithm is sometimes useful.

Suppose that one has found, by some unspecified means,
a specific exact solution for a perfect fluid sphere. Let that
exact solution be given in terms a@f(r) [or equivalently
m(r)] andg(r). Then for any arbitrary constakt

r[g?(r)+g'(r)]

,u(r)—>,u(r)+kex;{—2f —ar

1+rg(r) (35)

is also an exact solution for a perfect fluid sphprith the
same dr)]. This construction may sometimes “fail” in the

with the density and pressure identically zero outside thisense that the integral is either too triviaéturning you to
radiug, then it can be useful to normalize at this surface. Foithe seed solution you started wjtbr too complicated to

the pressure profile we firjth terms of the “surface gravity”

gs=(M/R?)/\/1-2M/R] that

1
p(r)= 87r[1+—rg(r)]2{ —g(r)?+[1+2rg(r)]

_ 9e (R g(r)?
Xexq_w(r’R)][HZRgs' fr T[1+79(M)]

. (31

><exp:+21‘}(?;R)]d?]

There is a similar but uninteresting expressiongr). The

central pressure is now
4JR g(r)?
o r[1+rg(r)]

1 ggexq—Zﬁ(O;R)]L
Pe=gr 1+ 2Rg,

Xexr[—Zﬁ(O;r)]dr], (32

perform in terms of elementary or special functions. How-
ever, in very many cases this simple construction is sufficient
to understand why certain broad classes of exact solution
exist.

Let us start by rescaling the time variable to remove any
redundancies in the number of free parametergppearing
in gy . If the number of free parameters appearingjp is
not at leash+ 1, then the seed solution you hawveisthave
a generalization. For instance, the Minkowski soluti@en
particularly simple fluid sphere with zero pressure and den-
sity] has exactly zero parameters appearing in lpthand
O, , and so must have a one-parameter generalization. In this
case, performing the integration leads to the Einstein static
universe. Similarly, the exterior Schwarzschild soluti@m-
other particularly simple fluid sphere with zero pressure and
density has exactly one free parametéie massappearing
in both gy; andg,, , and so must have a one-parameter gen-
eralization. In this case, performing the integration leads to
what is called the Kuch68 Il solution in the Delgaty-Lake
classification[8]. A slightly more complex example, using
anti—de Sitter space as a seed, leads to the Tolman IV solu-
tion. A number of additional examples of this phenomena are
collected in Table I.

where we have now reduced the range of integration from Of course, sometimes explicit exact solutions were first
(00) to (OR) at the price of introducing an extra term de- discovered in their general form, in which case this algo-
pending explicitly on total mass and radius of the fluid rithm provides no extra informatiotiThis comment applies,
sphere. This can be compared with the equivalent Newtoniafor instance, to the Wyman Ilb geomejrZonversely, some-

results

times the integral is too complicated to provide a closed-

104028-4



ALGORITHMIC CONSTRUCTION OF STATC . .. PHYSICAL REVIEW D 69, 104028 (2004

TABLE I. Seed solutions and their generalizations. which is spatially flat. It generalizes to
Seed Generalization
Minkowski Einstein static (2|2 42
Schwarzschild exterior Kuch68 Il ds2= — ( 1+ — gt2+ _szQz’
anti—de Sitter Tolman IV a 1—kr?(3r2+a?) 283
Tolman V Kuch2 | (42
Tolman VI Wyman lla
Kuchl Ib appears new
M=W 1l appears new which is contained within the new class of exact solutions
K=0O Il appears new br|eﬂy described by Laké?]
form solution—the generalization may be exact but too com- VIIl. DISCUSSION
plex to write down explicitly[ The same, for instance, is true
when you use the Schwarzschild—de Siitiéottler) geom- As emphasised in the article by Rahman and Vigéér

etry as seed. Similarly, by parameter counting Tolman VIland reiterated by Laker], while this type of algorithm guar-
and Tolman VIII must have one-parameter extensions, but i@ntees a perfect fluid body it does not necessarily guarantee a
seems impossible to write then down in closed fdrm. “physically reasonable” perfect fluid body. One physically
Finally, we point out that there are some cases where thigeasonable constraint that is easy to enforce in the current
formalism does lead to apparently new solutiofWe again ~ formulation isg>0; locally measured gravity should always
follow the Delgaty-Lake classificatiof8].) For instance, the attract towards the center of the body. A second physically
Kuchl Ib solution reasonable constraint which is automatically satisfied is that
the central pressure is positive. It is considerably more diffi-
) cult to enforcem(r)=0, p(r)=0, andp(r)=0. Checking
ds?= — (Ar+Br Inr)2dt2+ dLHngz (36) these physically motivated constraints amounts to math-
ematically investigating a set of integral inequalities, and
) seems to require a case by case investigation depending on
generalizes to the assumed gravity profilg(r). One should not, however,
lose track of the significance of what has been accomplished:
2(2A+2BIn(r)+B) (1) We have d_erived the exact ar}d fully general _solution to
5dr 2 the pressure isotropy condition in terms of variables that
(2A+2BIn(r)+B)—kr have a direct physical meaning, the gravity profjlg) and
+r2d0?2 (377  mass profilem(r). (2) We have also derived an exact and
fully general formula for the pressure profi€r) of a per-
which appears to be new. Similarly, the M—W Il solution, fect fluid sphere that depends only on the gravity profile
which can be cast into the form, g(r). (3) In particular we have an exact and fully general
expression for the central pressure of a fluid sphere, again
determined directly in terms of the gravity profigr). (4)
dt2+ +r2d02 (39) The algorithm provides a natural framework for understand-
4(1-r?/a®) ' ing the reason for the existence of certain broad classes of
exact solution, and in some cases leads to new exact solu-
generalizes to tions.
Because this algorithmic approach works directly in terms
dr2 of physically meaningful quantities, with a physically mean-
dt?+ —— +r2d0? (39 ingful “generating function” in the form of the gravity pro-
1=2m(r)/r file g(r), the interpretation of the results is somewhat clearer
than in the algorithms presented in the Rahman and Visser
[6] and Lake[7] articles. We expect that this version of the
algorithm for generating perfect fluid spheres will lead to
Ar2+ 332 (r—a)rios additional useful “exact solutions.” In particular, the new
(40) class of exact solutions briefly described in Rgf] has a
very natural representation in terms of this algorithm.

ds?=(Ar+BrInr)2dt?+

2

2
ds?=— r—r—
a

2

ds’= (

r——
a

with

m(r)= r+
(=122 (4r—3a)*®

which also appears to be new. Also, the K—O Il solution can

be cast into the form ACKNOWLEDGMENT
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