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Fake supergravity and domain wall stability
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We review the generalized Witten-Nester spinor stability argument for flat domain wall solutions of gravi-
tational theories. Neither the field theory nor the solution need be supersymmetric. Nor is the space-time
dimension restricted. We develop the nontrivial extension required for AdS-sliced domain walls and apply this
to show that the recently proposed “Janus” solution of type-1I1B supergravity is stable nonperturbatively for a
broad class of deformations. Generalizations of this solution to arbitrary dimension and a simple curious linear
dilaton solution of type-lIB supergravity are by-products of this work.
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[. INTRODUCTION supergravity theory, but containing a superpotentiéle)
which is not that of the real theory. Inste®d ¢) must sat-
Many domain wall solutions of supergravity theories haveisfy an equation which relates it to the scalar potentigp),
been studied in the literature in order to explore the AdSand one can formulate certain first order equatidhe fake
conformal field theory(CFT) correspondence, to find a fun- Bogomolryi-Prasad-SommerfieldBPS equation$ whose
damental setting for brane world cosmology, and for othersolutions automatically satisfy the second order Einstein field
reasons. In this paper we will review and extend stabilityequations for domain wall metri¢d.1) and the accompany-
arguments for domain walls based on the elegant spinang scalar field¢(r). If one can find aN(¢) such that the
methods of the Witten positive energy theorem and its gendomain wall solution under test is a solution of the first order
eralizationg 1-6].1 system, then that domain wall is stable, if there are no
Many solutions studied in the past are supersymmetricsingularities’ One curious feature of fake supergravity is that
One would expect these to be stable, and there are knowit can work in any space-time dimensiah whereas real
arguments which use the transformation rules of the supesupergravity is limited tal<11.
gravity theory and the Killing spinors supported by the solu- Domain walls with the isometry group S@&¢ 1,2) of the
tions. Yet these arguments do not apply to the many solutionspace-time Adghave also been studig@—11]. Their met-

with curvature singularities. rics take the form
Nonsupersymmetric solutions are also known and might o
well be important since supersymmetiSUSY) is certainly ds?=e*A"g;; (x)dx'dx! +e2"dr?, (1.2

broken in our universe. Most domain wall solutions, both
SUSY and non-SUSY, are planar; the isometry group of theivhereg;; (x) is a metric on Adg with scaleL4. A domain
metrics wall of this type was recently founfil2] as a solution of
o type-lIB supergravity. The solution contains a flowing dila-
ds?=e?A" gy dx'dx +e?"(dr?, ton ¢(r), but no other-dependent matter fields, and there is
an accompanying roun8s internal space. The solution is
nj=diag —1,1,1,...,2 (1.1 regular if one chooses parameters such that the rate of varia-
tion of the dilaton is sufficiently slow.
is the Poincaregroup ind flat space-time dimensiongThe In this paper we develop stability arguments for nonsin-
choiceh(r) =0 is convenient for many purposes but we keepgular Ad$-sliced domain walls. A nontrivial extension of
h(r) unfixed to facilitate comparison with different radial the fake supergravity approach, related to the work of Ref.
coordinates used in the literatufe. [9] in realD =5 supergravity, is required for this. This argu-
For planar domain walls there is a formal stability argu-ment gives a definition of energy which vanishes for the
ment[5,8] based on what we propose to call “fake super-background solution itself and is positive for fluctuations
gravity.” In fake supergravity one defines a spinor energyabout the background which obey suitable boundary condi-
using fake transformation rules similar to those of a realions.
These arguments imply that the solution of Réf2] en-
joys nonperturbative stability with respect to fluctuations of

*Email address: dzf@math.mit.edu the metric and dilaton while other fields of type-IIB super-
"Email address: nunez@Ins.mit.edu gravity remain fixed at their vacuum values. The formalism
*Email address: schnabl@Ins.mit.edu we develop can accommodate additional fields, but it be-
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1see Ref[7] for a recent paper with similar aims which discusses
the stability ofp-brane spacetimes. 2Further conditions are discussed in Sec. Il
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comes more difficult to establish the required properties ofe will introduce explicit parameterizations of the AdS met-
the superpotential. To remediate this difficulty we work inric g,,, when needed.

the spirit of Ref[4] and derive inequalities which show that

the “Janus” solution12] is also stable within several differ- A. Elat domain walls

ent consistent truncations of type-1I1B supergravity. Some of . . . .
these truncations include negativé fields and potentials _ Ve are more interested in domain wall solutions of Eq.

unbounded below. These indications of global stability make(z'z) with r-dependent sc_alays(r) and metrics of the form
it more compelling to understand the AdS-CFT dual of the(1-D 0r (1.2), and we require that these approach the AdS

solution proposed in Ref12]. We do not discuss this here. 9€0metry at the boundary. With the coordinate chdice)

It is not guaranteed that a given solution of the field equa— 0+ the boundary occurs a@s~ + . Frame and connection

tions can be reproduced in the framework of fake supergray@"€-forms and curvature tensors for our presentation of do-
ity. Indeed there are known solutions which are pure Adgnain walls are given in Appendix A. _
metrics[those withA(r)=r/L in Eq. (1.1) if h(r)=0 and We first consider flat domain walls. When the metric of

with fixed scalarkwhich are unstable because small fluctua-E9- (1.1 and the restrictionp=¢(r) are incorporated, the
tions violate the stability bound of Re21]. In general itis  Einstein and scalar equations of motion of E2.2) reduce
not always possible to satisfy the required conditions on th&® ordinary differential equations in namely,
superpotential. 2

In Sec. Il we discuss the equations of motion satisfied by A"—A'h'=———¢'2
domain walls and present some simple examples of nonsu- d-1
persymmetric domain wall solutions of type-1IB supergrav- )
ity. They involve a single flowing scalar field, the dilaton. A= K E:

These simple dilaton domain walls are the prototype solu- d(d—-1)

tions we study. The fake supergravity stability argument for 2

planar domain wall$1.1) is reviewed in Sec. lll. In Sec. IV _ Lv(qﬁ)eZh
we extend this argument to Ag8omain walls(1.2). Section d(d—1) ’
V is devoted to stability arguments for the solution of Ref.

[12] for nondilatonic fluctuations. In Sec. VI we discuss a . s, OV
very simple and apparently new solution of type-lIB which ¢"+(dA'—h") ¢’ = ﬂe : (2.4
emerged from the techniques of Sec. IV.
It is quite well known[8,13] that any solution of the fol-
II. DOMAIN WALLS: BASICS AND EXAMPLES lowing first order flow equations is also a solution of Eq.
(2.4):
We consider a scalar-gravity action dit+-1 dimensions:
L L A'(r)=2e"W[ ()], (2.9
— | qd+iy.f
S—f dd*ixy—g 2_l<2R_EaM¢aM¢_V(¢) . 2(d—1) .
2.1 $'(1)=——5—e",W[$(1)].
(2.9

Such actions can arise via Kaluza-Klein reduction of a still

higher dimensional theory. Although we include only oneThe superpotentialV(¢) is related to the potential(¢) by?
scalar explicitly, additional scalargvith o-model interac-

tions) and higher rank bosonic fields can be included. The 1 d
equations of motion are k?V(¢p)=2(d—1)*| 5 W'?~ ﬂwz . (27
P _
1 2 . . .
—R,,=,00,¢+ ——0,,V(), Thgse que BPS equations for flat domain walls will be re-
K d-1 derived in the next section.

The simplest example of a domain wall is the following
H¢=aVidg. (2.2 solution of Eq.(2.4) [with h(r)=0] for the theory with con-
stant potentiaV(¢) =V, of Eq. (2.3. The scalar satisfies

We assume that the potentld(¢) has a critical point at 4’ (r)=c exd —dA(r)]. After routine integration, one finds
¢= g, With Vo=V(¢q)<0. Thus one solution of Ed2.2)

is AdS;,; with scaleL. In this case we have d—1 1—e-dr—rn
B(r)= o+ e log

d 14 dr=riL’
R/U/: - F g,uvv
d(d—1) 3The prime inW’' denotes a derivative with respectdpwhereas
Vo= — ——5—. (2.3  the prime attached to the fields, Ah denotes a derivative with
2L%k2 respect to the radial coordinate
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r—r* 1 L When inserted in Eq(2.2) one finds that wall profileA(r)
A(r)=Ag+ ——+ ylog(1—e (r=rt), (2.8 and scala(r) obey the coupled equations which are modi-
fications of Eq.(2.4),

where ¢ is related to the other integration constants dy 2 1
=[\d(d—1)/«L]e%o. This gives an asymptotically AdS A"—A'h'=— ¢'P+ —e AT
geometry with boundary region—-oe, but there is a curva- d-1 Lg
ture singularity ar =r*. ) )

When d=4 this is the dilaton domain wall solution of 2 K b2 2K V(p)e?h
type-11B supergravity which was found and studiddl—1¢ d(d—1) d(d—1)
in the early period of the AdS-CFT correspondence. As a
solution of type-1IB supergravity, it is not supersymmetric. _op+2h
There are no true Killing spinors, since the dilation condition - Fe '
from the type-lIB supergravity transformation rules d

i d)n_’_(dAr h/)¢r N 2h (2 11)
. - =—e"\. .
ox=5 Y9+ ie?d,&)e* )

i A set of first order equations which extend E¢®.5—
— — yHrP(g PI2Y %?”L ied’/zFﬁﬁ))e (2.9 (2.7 to AdS;-sliced walls was presented in RgL3]. These
24 equations are

cannot be satisfied because the axiand three-forms van- A’ (r)=2y(r)e"W[ ¢(r)],
ish. The indicesw, v, p are ten dimensional coordinate indi-
ces. 1 2(d—-1) W

We will now show that there is a superpotentil( ¢) P(r)=——— —e—,
such that Eq(2.9) is also a solution of Eq42.5—(2.7) for v« 4
any dimensiond. We thus achieve fake supersymmetry, as 2(d—1)2 1 d
we will confirm by exhibiting fake Killing spinors in the next V(g)= ( 12 \\2
section. The obvious constaMf=3%L does not work, but K2 K2y(r)? d—1
with the general solution of Eq3.11), namely, (212

which differ from Egs.(2.5—(2.7) by the inclusion of the
W( )= icosr( PR Ay )) (2109  factor
2L d—1 0 '
\/ e~ 2A(N
ilv i ; r= 1-—————. 2.1

one can easily integrate Eq&.5), (2.6) and find that the y(r) ENTGE (2.13

solution agrees with E2.8). The constant* arises as an

integration constant. , , The constant 4 is the AdS scale, and one obtains the pre-
Note that we have chosen the solution of E2}7) which vious EQs.(2.5—(2.7) asL4—. The system(2.12 is well

is positive near the boundary valug~ ¢, and we have ose4[13], but it is rather unworkable. In Sec. IV we will

chosen signs in Eq$2.5), (2.6) so that the boundary of the erive an alternate set of first order equations which involves
geometry appears as- +o=. These conventions are natural 4 s2)-valued superpotentia( ) = W.( ) 7%, where the
for the extension to AdSdomain walls in Sec. IV, but they  ,a 516 the Pauli matrices. The structure of the new equations
differ from some earlier applications. is even simpler than Eqg2.5—(2.7) and they are easily

Let us use the term “adapted superpotential” to denotegqyeq, giverW (¢). However,W(¢) must satisfy a nonlin-
the particulaiW(¢) for which the first order flow equations o5 condition in addition to Eq(2.7). We show that any

produce a given domain wall solution of E@.4). For non- < ution of the new equations also satisfies E412.
constantV(¢), it may not be possible to solve E@.7) and

find the superpotential(¢) explicitly. This may be incon-
venient, but to establish fake supersymmetry we need only
know that the adapted superpotential exist for a given solu- A simple example of an Adgsliced domain wall is the
tion A(r), ¢(r) of Eq. (2.4). If ¢(r) is monotonic, the in- extension tod dimensions of the dilaton domain wall solu-
verse functionr (¢) exists. One may then use E@.5 to  tion of type-1IB supergravity of Refl12]. We take the con-
definethe adapted superpotential. stant potentiaV(¢)=V,, see Eq(2.3), and we proceed as
in Ref.[12], but use the radial coordinatefor which h(r)
=0. We take ¢'=cexd —dA(r)] so the scalar equation

] ) ) ] of Eqg. (2.1)) is satisfied. Any solution of the wall profile
We now discuss the equations of motion for Addiced  equation

domain walls of codimension 1. Frames, connections and
curvatures for the metri¢1.2) are given in Appendix A. A?=(1/L%)[1—e A +be 294, (2.19

C. Janus solutions

B. AdS;-sliced domain walls
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will also satisfy the equation involving” in Eq.(2.11). The radial variableu (corresponding to the cade=A in the
constanb is related tac by b=[ x?/d(d—1)]c?L2. We have notation abovg and we use a standard global metric on the

setLy=L for simplicity. AdS; slices.
Whenb=0, the solution gives pure Ag$; in the form The metric(1.2) then takes the form
ds?=cosK(r/L)g;;(x)dxdx +dr2. (2.15 L2e2AW)
(7L)gii( ds?= — [—dt2+co@ Ndu?+ dA2+siE A dO2 ],

For b#0 we will not be able to solve Eq2.14) exactly (2.20
(unlessd=2), and we need the following argument similar '
to that of Ref[12]. With x=e~?*, we consider the polyno- where the range of the principal coordinate of AdS 0
mial P(x)=bx%—x+ 1. For smallb, there are exactly two <)< /2 for d>2, but —w/2<\<m/2 whend=2, and
real zerogwhich occur forx>1). This continues to be true dQ?2_, is a metric on the unit sphe®,_,. The wall profile

for A(w) is defined implicitly by the integral
1(/d—1\9"1
= A dA
O<b<b°_d( 3 ) (2.16 '“:f _ (2.21
Ag \/eZA_ 1+pe 2(d-1A
At b=b, the zeros coalesce at=(byd) 1) and be- _ _
come complex fob>by,. It can be extended to negatiye as discussed above. The
This behavior is relevant to the physics, as we can sefnge Ofu is —uo<u<uo. The boundary limitu, can, in
from the implicit solution of Eq(2.14), namely, principle, be obtained from the integré2.21), with upper
limit A— +o. For smallb and generatl, one finds the series
JA dA expansion
= . (2.17
A —e 2ALpe 20A 1 1
oVL-e e rla+ r 2d+5) .
The lower limitA, will be specified bglow. Fob>b,, there Mozf 1+ b+ —+0(b% |.
is no natural lower bound on the variatfieand the geometry 1) 2!
would be geodesically incomplete unless extended\to r(d)r 2 r(2d-1r 2
—o where there is a curvature singularity. (2.22

Therefore we restrict to the range<®<bg in which the
minimum value ofA,;, is given byA,n=—In(Xnn)/2, where  For d=2 an exact expression is given in Appendix B. It is
Xmin IS the smallest zero dP(x). The formula(2.17), with  useful to note the near-boundary behavior of the scale factor
Ao=Anin thus defines half the geometry, namely, the regiorobtained in Eq(B12):

O=r<+o, Ap,ir<A(r)<+eo. Thisr>0 region is not geode-
sically complete. But all odd order derivatives Afr) van-
ish atr=0, so thatA(r) can be extended to the regionx»
<r<0 as even functiolA(r)=A(—r) and the continued

1
2A(p) - 140 T w)24n.
€ e Sinz(,bboi,u){ [(MO M) ]}

function isC”. The full geometry is geodesically complete (223
and has two boundary regions, namely; + . Thus the effect of the running dilaton on the wall profile is a
With A(r) defined above, the dilaton is given by b-dependent change in the boundary limi together with

) an order fu=* uo)?9 effect on the near boundary shape.
ry= +CJ e dANgy. 21 In Eq. (2.20), which is the same as EQO) of Ref.[12],
#1)=do 0 218 we have extracted the conformal fac&f\(*)/cog \, so that

_ _ _ o the line element in square brackets can be viewed, at least
It is monotonic, and odd in except for the additive integra- heuristically, as a conformal compactification. As discussed

tion constantg,. In the boundary regions— *, it ap-  in Ref.[12] this conformal metric is similar to the Einstein
proaches the limits static universe, and would agree with the well known con-
formal compactification of Ad$. ;, in the limitb—0 when
r L =dntc| e dANgr. 219 A(,u).a'—ln(c.os,u) a_nd ,u,0~>7?'/2. In this limit, the spatial
P(1) = ¢==do fo 219 metric (i.e., fixedt) is a hemisphere 08;. For b>0 and

Mo> /2, we also have a half sphere but with angular excess

Our choice of radial coordinate]with h(r)=0] was mo-  as depicted in Fig.(&). The boundary of the conformal met-
tivated by the fact that Eq2.17) can be integrated in terms ric then has two parts, hemispheres f | at u==* ug
of elementary functions wheth= 2. This leads to the explicit which are joined at the padlg) where cos.=0.
presentation of thel=2 solution discussed in Appendix B. The angular coordinateg, \ are singular at the poles.
However, the space-time geometry is most easily visualizetHowever, one may choose regular coordinates there by em-
using a radial coordinate of finite range. Therefore, in the resbeddingS; in R4, 1 with cartesian coordinates. For simplic-
of this section we switch to the notation of R¢12], with ity, we discuss the casgé=2 in which we take coordinates
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nate system appears laborious and seems to lead to singular
g(ayij - Since we will not address the AdS-CFT duality for
this solution, we will not present these results here and con-
tinue in the rest of the paper with the coordinate system in
Eq. (2.20.

Domain walls with AdS slicing can also be presented us-
ing a Poincarepatch metric for the Adgslices[12]. The
scale factorA(x) and local aspects of the discussion above
are not changed, but the global structure is affected. In par-
ticular the metric is geodesically incomplete, and one needs
(b) its global extension. For this reason we formulate our stabil-

ity study using the global version. The patch version may

FIG. 1. (@ Conformal picture of a constant time slice of the well be appropriate for the AdS-CFT dual.
Janusian geometry. The boundary is indicated by the bold dcs.

—Ho Ho

Top view of the same picture. The coordinateanges from O at the IIl. STABILITY OF ELAT DOMAIN WALLS
equator torr/2 at the north pole. The dashed line indicates the “con- '
tour” used to evaluatd&,yy in Sec. IV. We review in this section the stability argumést8] for

asymptotically ADSAAdS) flat domain walls with metric in
Z=SIiN\, X=COSA COSu, Y= CosA sinu. The induced metric the form(1.1) and accompanying scal@r(r). The purpose
on S,, namely, dS?=dx?+dy?+dzZ>=d\?+cog\du?, is  of the argument is to show that the energy of deformed so-
then regular at the pole at=y=0. Consider next the con- lutions of the equations of motion which approach the do-
formal factor Q=e A cos\. It follows from Eq. (2.23 main wall at large distance is higher than the energy of the
that its near boundary behavior is wall itself. We use the following notation for the background
fields and deviations:
Q~sin( g+ w)CoSh (2.249
ds?= [0, N, ldx*dx”, (3.1
~XSiNue+Yy COSug. (2.25

: : o p=¢+eo. (3.2
ThusV(}, evaluated in the regular coordinatesyis discon-
tinuous as one continues from the boundary regioriThe fluctuationdh,,, ¢ are treated in full nonlinear fashion
m=+ug, Where y/x=+tan(ug), to the portion where in the interior of the spacetime, but they vanish on the
n=— g and wherey/x= —tanug. This means that the fac- boundary. We will not state definite conditions on the bound-
torization in Eq.(2.20 does not satisfy the strict definition of ary asymptotics in this section, but we will be quite specific
conformal compactificatioil7]. In practice, it means that when we discuss the extension to AgsSiced domain walls
the conformal boundary has corners at the (@)@ geomet- in Sec. IV.
ric feature deduced by means of the regular Cartesian The spinor formalism of Witten and Nester provides a
coordinate$. We will treat the corner in the boundary inte- generalized “energy’E,yy with the following properties.
gral that occurs in the Witten-Nester stability analysis by

deforming the contour around the corner as indicated in Fig. h £ the | f the back d i
1(b) and taking the limit to the corner after the integration is charges of the isometry group of the background, specifi-

performed. cally the subalgebra contained in the SUSY anticommuta-

An alternative approach is to work with the Fefferman- tor{Q,Q}. Thus we expect to find spatial translationsdin
Graham coordinates, i.e., to look for a coordinate system dimensions for flat walls and the charges of the algebra
where the metric near the boundary takes the form SOd—1,2) for the Adg-sliced walls we treat in Sec. IV.

* The charges vanish for the background solution under
study, i.e., wherh,, and ¢ vanish.

« The energy, defined with respect to the Killing vecibst

o of the background, is positive for all fluctuations which are

+- - Jdx'dx'}. (2.26 suitably damped on the boundary.

* |t computes a linear combination of the conserved Killing

1
dSZ:?{d22+[9(0)ij +2°9 )i+ + 240y 109 Zhg)i))

Such coordinate system can always be readi&f In this

expansiory o, is the boundary metric. All coefficients in Eq. _ _ _ _ _

(2.26) but gq) are locally related t@g. gq carries infor- To defineEyy, we consider ad-dimensional spacelike

mation about the vacuum and correlation functions of thesurfaceX, which can be thought of as the initial value sur-

dual QFT, so this coordinate system is well suited for hologface for the Cauchy problem of the deformed domain wall

raphy [19]. Transforming the Janus solution to this coordi- spacetime. Denote its boundary &Y. ThenEyy is defined
by the boundary integral

A. The Witten-Nester energy and positivity

“We are very grateful to Gary Gibbons for patient and useful EWN:f *E (3.3
discussions of the geometry and its conformal compactification. %
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of the Hodge dual of the Nester two-formE oy, =V,e, (3.9
=3E,,dx*dx’, defined by
2(d—1)
R o . — ox=|T*V,¢— — W' |e. (3.10
E/'LV:81F’LLVPVP82_VP82I"U'VP81. (34) K

The condition thaE,yy vanish in the undeformed back-
ground is satisfied if we impose the following conditions.
The last term in Eq(3.8) is cancelled, both with and

The covariant derivative is

V,=V,+W($)T,, (3.5  without fluctuations, if we require that
. . . - 2(d-1)?( 1 , 4
whereW(¢) is any function of¢ which satisfies V()= —a ?W’ — ﬁW i (3.11)
= 2 We further require thatwith no fluctuation$
vv(¢>>¢ o +0(¢?). (3.6 e
[V,+T ,W(¢)]e=0, (3.12
The value of the integral ovei%, depends only on the be- 2(d—1
ha}vior of spinors:;;(x), &,(X) near t.he bo_undary.' Thgs, at FILVME_ - Wf(g))szol (3.13
this stage, the spinors can be arbitrary in the interior, but K

must approach a background Killing spinor on the boundary. ) o .
In general one must take independent spingi), £4(X) An o_verbar on any quantity indicates that it is to be evalu-
in order thatE,,y contain the full set of background charges. &€d in the background geometry.

As in other treatments of gravitational energy, the surface 1N€ integrability conditions of the equatior8.129, ex-
integral form ofEyyy is linear in the fluctuations,,,, ¢ and pressed in the coordinates of E(.1), give the first order

thus not manifestly positive. To establish positivity we will floW equations(2.5), (2.6) [8]. The spinor solutions of Eq.
use Stokes’ theorem to rewrite EG.3) as an integral ove¥, ~ (3-12 are the background Killing spinors
and then impose more specific conditions W ¢) and o= A2,
gi(x). Stokes’ theorem gives 0
FFSOZSO, (314)
= =

Ewn JEdE/*VVE ' @7 wheregg is a constant spinor which is chiral with respect to

the radial component df@.

. . The superpotentialV(¢) must satisfy Eq(3.11) and the
;\Iote that th.|s step requires that the background and de‘Boundary conditior§3.6). This guarantees that the scalar pro-
ormed solutions are nonsingular. There would otherwise be =~ — )
an additional surface contribution from the singularity or thefile_#(r) and scale factoA(r) obtained from Eqs(2.6),
horizon which shields it. There are known meth¢as] to 2.5 are also solutions of the field equat|qiﬂs4). '
extend the treatment to include horizons, but naked singulari- Positivity with fluctuations is now a relatively simple mat-

ties present substantial new problems which are beyond tH&": Since there are only two terms left in H§.8) and the
scope of the present work. One should note also that th&econd one is manifestly positive. We still have the freedom

effective currenti*=V,E* is identically conserved, Sy to m_odify the defi_nition of the _spinos(x)_f_or deformed
defines a conserved quantity provided that boundary asymgelutions, and we impose the Witten condition
totics of the integrand is suitably restricted. K B

We now takes;=¢, in Eq. (3.4) because we are inter- Ve () =0, (3.19
ested in demonstrating positivity. The integrand of E217)
may now be manipulated as in R€&] using the equations
of motion (2.2) and regrouping of terms to obtain

where the time coordinate is omitted in the sum oke®ne
must choose a solution which approaches an arbitrary back-
ground Killing spinor on the boundary. We do not discuss the

existence of Witten spinors here. In a frame whé&f'eis

2
~ K— orthogonal to the surfacd reduces to the positive
= mvp I iz WN
Ewn LdE”[Z&b,,F oYy 2 oxI*ox semidefinite form
1 d d-1 kte L
+elte| —k?V(p)+2(d—1)2 —z,w'2—ﬂ , Ewn= Eol xe 2(V¥e) Ve + = ox"ox|. (3.16
P _
(3.8)  This energy functional vanishes if and only if
whereW’ = 3,W and we havelefined Ve=0, &8y=0. (3.17)
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The set of solutions to these equations is given by the space 1 .
of solutions of the first order equatiorig.5), (2.6). If we Ewn=— gLE{SJMSZ[VPth—Vp(g’”hpg)]
impose that the solution should satisfy the boundary condi-

tion set by the undeformed solution, thEg,y vanishes only —&el,e,[V?Ph,,—V,(9°7h,,)]

for the undeformed background. The existence of other so-

lution that have zero energy but different boundary condi- —1p wv 1 — L woT P
: _ it difter _ _ + 81l (V= V) }dS s+ 2 | [ea(ghT
tions may be considered as an indication of marginal stabil- s

ity, but it is unclear whether we should allow such

configurations. We leave this issue open. +9" TP+ grT ) h ,W($)es]d% ,,
We can now state a sufficient condition for the stability of d—1 o
a domain wall of the form(1.1) which is an asymptotically + 5 2s_ll“*“’W’(<;$)szgod2M,,+ H.c. (3.19
dJ

AdS solution of Eq.(2.4) and involves a scalar whose mass

P R 2 : ; N .
satisfiesmg=—d*/4<m"<0. The scalar profile then satis- A|| quantities in this equation, except,, and ¢ refer to the

fies ¢'=0 on the boundary. If there is a superpotentialbackground. Our computation used only the general
W(¢), satisfying Eq.(3.11), such that the domain wall is a background-fluctuation split in E§3.1). It is thus valid both
solution of Eqs(2.6), (2.5), then it is stable. It then follows for flat domain walls and for other situations in which the
from Eg. (2.6) that W’ vanishes on the boundary. For ana- Witten-Nester approach to stability has been applied. For ex-
lytic W(¢) this is equivalent to E¢3.6). It is not guaranteed ample, it is applicable to asymptotically flat metrics in which
that the required adapted superpotential exist. As discussed&t(¢) andW’(¢) vanish. In this case it is quite straightfor-

the end of Sec. Il A, if¢(r) is monotonic, thenV(¢) is ward to show that Ec(.3.19) yieIds the same expressions for
defined implicitly. If it does not exist, then one may suspectenergy and momentum given in Eq0) of Ref. [1].

instability, but instability does not follow from this frame- L€t US discuss the formule8.19 in more detail for flat
work. domain walls. First we find from Eq3.14) that the bilinears
The roots of the argument above lie in supergravity, as thé1l “2,do span the expected set of t@nsla:ﬂon Killing

matrix structure of the Nester two-for(8.3) and the form of vectors. Howev_er, the role of tensqr _b|||n¢as§1“ €2 IS far

Egs. (3.9, (3.10 clearly show. But the argument can be from clear. To discuss them, we distinguish between compo-

. (3.9, 3. : o . o

applied to any model of gravity and scalar fields, in anyQ_eP}jsssbvﬂthséom'ti?] dic;:r(];s ;%?]'SI tr:gddeg(r,na?r?(\j/vaﬁlomrﬁgr;gtr;s
_ . . . . . _1 2 .
spacettm:_e ldlme?smn, provided that the required adapted SYanish due to the chirality properties of the Killing spinors
perpotential exists. (3.14), while the former are proportional to translation Kill-
ing vectors. Thugk,yy indeed produces a combination of the

translation Killing charges of the deformed domain wall. We
note further thaWW’(¢) vanishes, so that the last term in Eq.

Our next goal is to obtain a concrete formula for the (319 is absent for flat domain walls.
boundary integral form oEyy and to show that it indeed  AS @ final check let us note that the boundary volume
gives a combination of the translation Killing charges of ﬂatelement has componerd., Whgret IS thg time coordlnate
domain walls. Because we work at the boundary, linearize f Eq. (;'l)' We now use radial coordinate for which
expressions for the connection and frames of the deforme (r)=0 in Eq. (1.1). In that caseA(r)~r/L at the bound-

. . . SR . ary. It is also known that normalizable metric fluctuations
metric are appropriate. Linearization in the scalar fluctuation

. ) . .vanish at the raté ,,~exp(—dr/L). Putting things together

is valid for single-scalar models where the scalar mass satigs . coe that the terﬂms in the first three lines of @19 are

1 2 2 2 :

fiesm“>mg.. However, terms of ordep“ can contribute to generically finite on the boundary.

Ewn When the scalar mass saturates the BF bd@idland = \ye conclude this section with an illustration of one of the
in other situations. An example was recently discussed igyptieties of the argument, namely, that the existence of an

B. Eywyn and conserved charges

Ref.[22]. adapted superpotential satisfying Eg.11) is not sufficient
Let EZ denote a vielbein of the background metric in Eg.to guarantee stability. In addition one needs E36) which
(3.1). The linearized spin connection is then given by implies that the AdS critical point of the potentMlis also a

critical point of W. To illustrate this issue we consider the
following superpotential:
1

5wﬂab=§

v v d
[Eavbhltv Ebvah,uv]a (318) z(d_l) K2W0¢2+W3¢)3. (320)

where V is a background covariant derivative. It is most 5The casal=2 is exceptional. Due to chirality, the Killing spinors

convenient to use background Killing spinors to computey . e effectively only one component, 3aT'*s, has vanishing

Ewn. We insert Eq.(3.18 in Eq. (3.3 and obtain, using Eq. gpatial component and gives only the time translation or energy
(3.12 and some Dirac algebra, Killing vector.
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The corresponding potential from E@.11) is siond+ 1. The matrixW(¢) acts on the index, but we can
5 usually suppress it in explicit formulas. Many previous for-
KV($)=2(d—1)2 Wi d W2 mulas remain valid when understood as extensions to the
k2 (d—1) 0 doubled spin space, with the replacem#¥ifp) —W ().

Note that quadratic quantities such\a& and{W,W'} are
) 3 proportional to the unit matrix. When they appear in our
"+ 0(¢”). equations below they should be interpreted as scalar valued.
The energy of any perturbation of an AdSliced wall is
(3.2)  contained in the Nester two-forii3.4) with an sy2) exten-
) ) » ] o sion of the covariant derivativéd.5). All formal manipula-
This potential has a critical point a=0 which is AdS  ions which lead to the volume forii.8) of the energy also

6
—2(d— 1)( dwi— — w;wz(d—1)
K

provided have obvious d2) extensions. With an $B)-extended Wit-
ten spinor (3.15, the energy becomes manifestly non-
wW2< d W2 (3.22 negative. The nontrivial task now is to establish the consis-
17 d-1) 0 tency of the formalism by showing that there are fake Killing

spinors so that the energy vanishes for domain wall back-
This critical point however is not a critical point 9¥. If the  grounds of the forn{1.2). We use the frames and spin con-
productw1w3 is sufficiently large, the mass of the scalar lies nections given in Appendix A.

below mBF and the perturbative argumei1] for instability
applies. We may apply the Witten-Nester argument to inves-
tigate stability of the AdS solution of the theo(®.1) with
potential above. The argument does not apply if one uses the
covariant derivativeé3.5) with W above because AdS space-  The su2) extension of the argument of Sec. Ill requires
time is not a solutiohof the flow equation$2.6), (2.5). Nor ~ that the fake Killing spinors satisfy the following
can there be any other superpotential, satisfying both quondmons
(3.11) and(3.6) because it is knowfb] that this implies that

A. Killing spinor consistency conditions
and the new flow equations

m?=m3e. Thus the perturbative and nonperturbative analy- VAde+F A e‘hFr+W) =0, (4.1)
sis are compatible. This example illustrates the importance of
the condition(3.6) for stability.
[d,+T e"W]e=0, (4.2)
IV. STABILITY OF AdS 4 DOMAIN WALLS
In thi_s section we extend the argument of Sec. Il to cover Ffe—h¢/ _ 2(d-1) W' =o. 4.3
AdSy-sliced domain walls. The springboard for our approach K2

was the study of Adgsliced walls in genuind® =5, N=2

supergravity in Refl9]. The natural spinors in this theory are | additionW(¢) must be related to the potenti( ¢) by
a symplectic-Majorana doublet, and the superpotential ap-

pears as the $B)-valued matrixW(¢)=W,(4) 7, where 1

the 7@ are the three Pauli matrices. In genuide=5, N=2 K2V(¢)=2(d—1)2(—2W’2—
supergravity, the matrix superpotential is determined by the K
gaugings of R symmetry and isometries of the internal ge-

ometry[23—25. The internal space is the product of a very In Eq. (4.1), the covariant derivative contains the connection
special manifoldfor scalars in vector and tensor multiplets of an AdS; metric with scalel 4.

and a quaternionic manifoldor scalars in hypermultiplets We now extract the integrability/consistency conditions
The superpotential is given by the product of the embeddindor Egs.(4.1)—(4.3) and show that they imply that the back-
coordinatesh' of the very special manifold and a triplet of ground metric and scalar satisfy the original Euler-Lagrange
Killing prepotentialsP;; depending on the scalars of the equationg2.11). We also obtain a constraint o ().
hypermultiplets. In the absence of hypermultiplets, a matrix Consider first the fake dilatino conditiq@.3) which can
superpotential is still possibi@nd it is determined in terms be rewritten as the chirality condition

of Fayet-lliopoulos constants and thé

d 2)
TV (49

None of this technical detail need concern us in fake su- _2(d—1)
pergravity, which works in any dimension and with any num- INe= 5 el —e 4.5
ber of real scalars. We simply double the spinors used in Sec. K

[ll, taking €%, =1, 2 as a pair of Dirac spinors in dimen-
on fake Killing spinors. The square of this gives the scalar
condition
8A preliminary study indicates that the flow equations can be in-
tegrated, but give a pathological geometry.
"We thank Antoine Van Proeyen for correspondence on this issue.®As in Sec. Ill,W’ andW” denote derivatives with respect #

104027-8



FAKE SUPERGRAVITY AND DOMAIN WALL STABILITY

2
e2h\W'2=0,

, (Z(d—l)
¢'= (4.6)

K

which shows that the matrix on the right side of E4,5) has
eigenvaluest1, as required for the consistency of E4.5).
The integrability condition for Eq(4.1) is

iz +A!2e2A*2h_4e2Aw2:O7
d

(4.7

while the compatibility of Eqs(4.1) and(4.3) required after
use of Eq.(4.5]

2(d—1)

A'g'+
¢ 2

e"{W,W’"}=0. (4.9

The mutual integrability condition for Eq$4.1), (4.2) di-
rectly gives theA”—A'h’ field equation of Eq(2.11) after

Egs. (4.6) and (4.8) are used. The remaining compatibility

condition between Eq$4.2), (4.3) will be discussed below.
It is an important constraint oW (¢).

We can now easily recover the other equations of motion

in Eq. (2.11). First we combine Eqg94.6) and(4.7) and use
Eq. (4.4) to obtain theA’? equation from Eq(2.11). Next we
take ther derivative of Eq.(4.6) and find

2(d—1)?

d)”_h’(f),:—AGZh{W,,W”}. (49)
K

The sum of this plugd times Eq.(4.8) yields exactly the

scalar equation in Eq2.11). Our formalism is thus consis-

tent with the field equations of A¢Ssliced domain walls.

PHYSICAL REVIEW D 69, 104027 (2004

L wwy?

v AW (4.12
The algebraic equatioft.11) then implies Eq(2.13.° This
also shows that Eq4.10 is equivalent to theb’ equation in
Eq. (2.12.

It is also easy to obtain thA’ equation in Eq.(2.12.
Substitute Eq(4.10 into Eq. (4.8) which gives

{W,W'}
__— —ah
\/W ¢

We then use Eq(4.12 to recover the form in Eq(2.12.
However, there is a subtlety here. Namely, Ef13 is com-
patible with the expression fok’ obtained from the loga-
rithmic derivative of Eq.(4.11) combined with Eq.(4.10
only if W(¢) satisfies the constraint

A= (4.13

TW- W/ TrW' - W” = TrW/2Trw - W k2

TrW2TrW' 2— (Trw - W')2 Cd-1
(4.14

The compatibility condition between Eqgl.2) and (4.3
provides a simple direct constraint on the superpotential
W (¢) which supersedes E@4.14). After use of Eqs(4.9

and (4.5), we find thatW must obey the following consis-
tency condition:

=0.

{ d-1
(4.15

W/,—ZW”'FW
K

This condition, which must hold for any potential, is a nec-
essary condition for the existence of fake Killing spinors and

The next step is to extract from the information above awill be important in their construction below.

small set of equations which determigér), A(r). The first
equation is just the square root of E@.6) with the sign
chosen to makeb(r) monotonically increasing:
2(d—1)
¢/(r): 5 eh lwl2.
K

(4.10

The second equation is a purely algebraic equatiof{o),
obtained by equating the expressions AGF obtained from
Eqg. (4.7) and from Eqs(4.8), (4.10:

—2A 4W2W,2_{W,W,}2

= . 4.1
L w2 (.10

e

The right side is non-negative by the Schwarz inequality.
We now show that Eq$4.10), (4.11) are equivalent to the
first order set2.12 provided thatW satisfies Eq(4.4) and a

Since the Cartan subalgebra of3uis one dimensional,
K2

d-1

W= a(d)W' — W, (4.16

wherea() is a real function of the scalar field. One can see
that Eq.(4.149) is trivially satisfied if Eq.(4.16) is inserted.
By taking the anticommutator of both sides of Ed.16
with W', one finds that

K2 ) K2 AY
a(d)= —2(d—1)W’2 (d+1){W,W'}+ 2(d-1) @ .
(4.17

Equation (4.16 implies that the matrid" lies in the
vector space spanned by matriésandW'. Taking further
derivatives one can see that actually all derivatives lie in the
same two-dimensional vector space. Thus, assuming analyt-

further condition given below. This then guarantees that the
new system gives a solution of the original field equations————

(2.13). In making the comparison with Eq2.12), we inter-
pret W=\W? and W’ =(d/d¢)W. First we must require

that the relations betwea and the potential/(¢) in Egs.
(2.11) and(4.4) are equivalent. Thus we identify

9For the Janus solution discussed further in Sec. IV C the fagtor
appearing in Eq(2.13 vanishes at =0 and has to be therefore
extended as an odd function to negativd'his amounts to setting

y=—{W,W"}/2yW2W'2,
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icity, the superpotentidlV(¢) remains in a fixed subspace for

all values of¢. This allows us to make the convenient gauge

choice

0

w

;). (4.18

In this gauge the consistency conditiGh15 reduces to

o

o K?

d—1-

o o' —o

(4.19

wo' —oo’

It is quite remarkable that we have replaced the system

(2.12 by the simpler set4.10, (4.11) in which only one
integration is required given the superpotenté(¢). How-
ever, the conditiong4.4), (4.16), (4.17 which determine

PHYSICAL REVIEW D 69, 104027 (2004

(4.249

which follow easily from Eqs(4.6)—(4.8) and (4.19. Note
that the prime onw andw means a derivative with respect to
¢, whereas the prime oA or ¢ means a derivative with
respect tor. The fake Killing spinor bilineargy's, (with
£17 €,) span the set of Killing vectors of the Ad&ometry
group SO@—1,2), as they should.

C. W(¢) for the Janus solution

In this subsection we analyze the conditions which deter-
mine W(¢) in more detail and show that there is a solution
which generates the solution of REf2] and thus establishes

W(¢) from V(¢) are not necessarily easy to solve, as weits stability. Inserting the ansatz

discuss below. It appears possible to shift the strategy as
follows. First obtain a superpotential which satisfies EQq.

(4.16 and use EQ.(4.17 to define a potential. The
AdSy-sliced domain wall then obtained from Eqggt.10,
(4.12) will be stable.

We may summarize the results above as follows. If the

matrix superpotentialV(¢) satisfies Eqs(4.15 and (4.4),
then any solution of Egs(4.10, (4.11) satisfies the field
equations(2.11) for AdSy-sliced domain walls. The Killing
spinor equation$4.1)—(4.3) are then mutually consistent and
we should be able to find the Killing spinors.

B. Explicit Killing spinors

Let ex denote a conventional Killing spinor of AdS
which satisfie¥’

(4.20

Ford=4 there are eight independent. For each indepen-
dentey, there is an s@) fake Killing spinor of the form
5!

!

1/4
(i+T ey

— a(1/12A N
€ —(1+iTT)ey

). (4.20)

One can check directly that the defining conditiqAsl)—

(4.3 are satisfied. For this purpose one needs the followin

formulas:
2A’_ Ko o 42
o a1l T N
| o = i 4.2

191 this equationl’; =€, is an AdS gamma matrix.

o(p)=w(gp)e'"? (4.29
into Egs.(4.19 and(4.4) one finds
2.0 2p12 drc® 2 «
W' c+weg’'“— W= V(o),
d-1 2(d—1)? (9)
2W/2 0// W, W” K2
s+ ————+0'?=—— or §'=0.
w 0w w -
(4.26
Eliminating 6 from the system of equations we find
Xxl/ d+1 12 d+2 2vrxr 2 VH 2K2 V X
" 2d oq KV A TRV
K4
_ 2y2__ _~ \/12
2k°X 2dV , (4.27)
where we have introduced
X(¢)=2d(d—1)W?+ «2V. (4.28

For aconstantpotential V=V, this is an autonomous differ-
ential equation which can be solved by standard metfibds.
One takes as a new independent variablend new depen-
dent variableu=X". Then usingd/d¢=u(d/dX) we find a
éirst order linear ordinary differential equati¢®DE) for u?,

2k
hl 2_ 9, 2v2_
u d—1VOX 2k“X“=0.
(4.29

Solving this equation and passing back to the original vari-
ables we findX(¢) defined implicitly by

ror an exponential potential, we can wri¥e=VY and again
obtain an autonomous equation fér
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w 0

¢

0.5 1 1.5
FIG. 3. Plot of the phasé(¢) for d=4 andb=0.1.
FIG. 2. Plot of the magnitudev(¢) for d=4, L=1, and

b=0.1. , 1 1
W= ——— X+ —, 4.3
[4=1 rx dx 2d(d—1)" 4L2 (433
4dk? J'o X2 — 12V gx— Bx(d+rd =9 ¢, , 2
W'e= ——X, 4.3
(4.30 2(d=1)? (4.39
where ¢., is the boundary value of the field at +«. We ,
have fixed the shift invariance of Egt.29 by requiring that (W, W)= (4.35
X(é=0)=Xnin, Wherexy, is the smallest positive root of ' 2d(d—-1)" '

the denominator in Eq4.30. Equation(4.30 thus defines
X(¢) for $=0 only. It can be continued, however, as anThe scale factor can then be calculated from E4s1) and

evenC” function to negativep. (4.30:
As we shall show below the integration constghis re-
lated to the parametdr of the Janus solution by E@4.40. 28
Once we have obtained the magnitudlewe can find the e A= Lgmxl’d. (4.3

phased simply by an integration

\/— -+ 1y/2d To facilitate the comparison let us choose a coordinate in
0. — = _'8 X dx which the dilaton is linear in the coordinate In particular
” 2 Jo (x— k) \/XZ—KZVOX—,BX((Hl)Id. we take ¢(r)=r/kL. Clearly this can be achieved for the

Janus solution since the dilaton is a monotonic function of
the radial variable. Usingp’'=1/kL we find using Egs.
(4.10 and (4.39

(4.3)

From Eqgs.(4.28), (4.30, (4.31) one can find the behavior of
the superpotential a$— ¢.,, namely,

(4.37)

(4.38

e 2N=2L2X.
«?d?
x:_2(¢_¢m)2, From Eqgs.(4.36 and (4.37) we see thathy=h—dA is a
2L constant and is given by
1« 1 [ 2pLF \“
W=t ————(p— $.)?, 2ho— | —
oLt ara-n) (¢ ) ’ 2L2(d(d_l)) :

Jad

0=0,—
2d+1

|¢_ ¢w|2+1/d_
(4.32

2L2 3/2 K2d2 1+1/2d
d(d—l)) (ZLZ)

Plots of the magnitude and the phase of the superpotential
are shown in Figs. 2 and 3.

Let us now demonstrate that the above fake superpotential
does indeed generate the Janus solution. From the definition
(4.28 and the relatior{4.4) we find easily

104027-11
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Comparing this first order ODE with the equation obeyed by The treatment of Sec. Il applies with few changes to

the Janus solution following from Ed2.11) in the same

AdSy-sliced domain walls. We consider perturbed solutions

linear dilaton coordinates, we see that they are indeed thef the form(3.1) with background metri¢2.20 and accom-

same provided we identify

d(d-1)/ 2L2 )Ud
= . 4.4
2L3 \bd(d-1) .
Note that the coordinate independent definitiorba$
kL2
_ 12,2dA-2h
b d(d—1)¢ e , (4.41

which is indeed a space-time constant as follows from the

equation of motion in Eq(2.117).

Finally let us mention, that in addition to the Janus solu-

tion, there are other simpler solutions to the equatidn2).

In particular there are two solutions with constant magnitud

2= 6( ) =const,

(4.42

The first solution is just the standard AdS space, whereas

the second solution leads to an interesting linear dilaton

background discussed further in Sec. VI. Equatid27)
also admits a cosh-type solution

d(d—1) 'h?( [ d )
X—TSIH K d_—1(¢—¢o) ,

gz s\ 000
W—Pcos K E((b—qﬁo) ,

However, Egs(4.10 and (4.13 then generate the singular

profiles found for flat dilaton walls in Sec. Il A. This case

panying dilaton. The background frame forms are

Ef=LeAWdp, (4.44)
. LeAw
M= soa N (4.45
- Lefw)
=gt (4.46
i LeA®™ sin y (447

COSA

wheree? is a frame onS;_,, a=1,..d—2.
€ The boundary consists of the three components shown in
Fig. 1(b).

(1) The portion atu= — py with 0<\<=/2— § and vol-
ume form

d3tr=1 2 2AM) coe\EMIELD)--OET"2,  (4.49

where § is a small positive number.
(2) The keyhole surrounding the corner on whiah
=7/2— 6 and — uo<u<<uo With volume form

dS ™= — [ 267 2A) co@ \ELOELD - OET 2. (4.49

(3) The portionu= ug with 0<\<a/2— § and volume
form (4.48).

An important change is that the Killing spinors to be used
in Eqg. (3.19 are those given in E¢4.21) in which we now
replacel"—T'* and definegt=(w'/w’)**. Now letI" denote
any matrix of the DiracClifford) algebra ind dimensions. It
is easy to compute the Killing spinor bilinears

el e,=2e¢e (T —THTTH) ey, (4.50
1l We,=2e"e,, {Re( £20)[ T4,T']
—IM(&0)(T+TATTH)}ey,. (4.5

appears to be a degenerate limit of our equations, since the

right-hand side of Eq(4.11) vanishes, implying that 4

— 00,

D. E for deformations of the Janus solution

We have demonstrated above the existence of &) su
superpotentiaW (¢) for which Egs.(4.10), (4.11) generate
the AdS-sliced domains wall of Ref.[12] and its

d-dimensional generalizations. This means that these sol
tions enjoy non-perturbative gravitational stability with re- — o,
spect to fluctuations of the metric and dilaton. To completeSides. The product®e’=

the discussion we now show that the surface inte(@al9

form of E,y is well defined on the boundary of the coordi-

nate chart2.20 in Sec. Il. We specify the behavior of metric
and dilaton perturbations, such thaj, computes a finite
linear combination of charges of the Ag&ometry group.

The first equation tells us thatI'’s, is a Killing vector of
the (d+1)-dimensional space-time with vanishing radial
component p—u). Transverse components p-i,
i=0,..d—1) are proportional t@“zx,I"'sx,, which is an
AdS; Killing vector, and the full set of these is spanned as
we varyegi, €ko-

Let us look first at the last term of Ed3.19, which
involves the tensor bilineag,I""*W'e,. The second equa-
Yion in Eq. (4.50 applies if we changdV—W' on both
Vo'’ is real, so only the com-
mutator term in Eq(4.50 contributes. On the keyhole part
of the boundary, we findI'*,I'**] which vanishes. On the
boundary components ag=*pu,, we find [T#T"%]
—2E##T!, The tensor bilinear thus reduces to a multiple
of the energy Killing vector. Thus the last term of £§.19

104027-12
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certainly vanishes on the keyhole, and we now show that ipinors behave asK~(cos)\)1’2, and that the volume ele-
vanishes on the other two boundary components by examirment behaves &, ~ (cos\) . It is convenient to work in

ing the behavior of the integrand as— = uqy. We note the
behavior YW’'2~ ¢'~e 9A®) which follows from Eq.
(4.10 and the property of dilaton in the solution of REf2]
noted above our Eq2.16. Using Egs.(4.44), (4.50, we
find that the factor?ll“mW’sszW is constant on the

the axial gauge. Detailed inspection of the various tensor
components in Eq3.19 shows that they vanish at least as
fast as (coa)®. The analysis so far is valid for A¢S;.
However, the domain wall space-time shares the isometry
SOd—1,2) and may be viewed as a small distortion of

boundary. However, the normalizable dilaton fluctuationAdSy.; when the parametdr of Eq. (2.14) is small. There-

vanishes on the boundary at the rate~(u= ug)?
~e ?AM) Thus the last term of Eq3.19 vanishes for our
dilaton domain walls.

Let us look next at the terms of E¢3.19 involving

e, I'P"We,dX . with various index assignments. On the

boundary componentg= + u,, the product?w is real, as
follows from Eq.(4.24) or (4.32. Thus only the commutator
term contributes in Eq4.50 and it is honvanishing for in-
dex combinationg™*' only. It then follows from Eqs(4.44),
(4.50 that z;I'*'We, vanishes a®e A and is propor-
tional to an Adg Killing vector. Clearly,g?’~e A", The
volume element behaves @, ~e(®" YA, while normaliz-
able metric fluctuations vanish at the ratg,~e(@ AW,

fore we expect at most a small modification of the exponent
in the behaviok;; ~ (cosh\)? we assumed. Thus we reach the
conclusion that the contribution of tensor terms on the key-
hole part of the boundary vanishes &s:0.

It is now straightforward to analyze the boundary behav-
ior of the terms in Eq(3.19 involving the Killing vector
bilinears. Using the asymptotics of the metric fluctuatibps
discussed above, we find a vanishing contribution from the
keyhole at the rate (co9® as—0 and a finite contribution
from the boundary components at= + u,.

In summary, we have shown thgty, computes a linear
combination of the Adgcharges for any deformation of the
dilaton domain wall metric solution which satisfies the

Putting these factors together, we see that the terms und@pymptotic conditions stated above. The energy of such a
consideration give a finite contribution to the energy of adeformation is positive. The keyhole part of the boundary

deformed domain wall.

does not contribute.

To analyze the behavior of the tensor bilinear terms on

keyhole, we must take the limé— 0, which is the boundary
limit cos(\)—0 on the Adg slices. We discuss this limit first
for the bulk space-time AdS; with AdS; slicing and then
adapt the argument to the dilaton domain wall geometry.

In Sec. Il of Ref.[12], global metrics for Ad$,; with
both standard and AdSslicing are both derived from the
embedded hyperboloid descriptiodg+ X3, ;—X2—+--X3
=L2. The two metrics are

L2
cog @
L2
~ cod ucod \
+siP AdQZ_,).

ds’=

(—dt?+de?+si? 0dQ3_))

(—dt?+cog Adu?+d\?

(4.52

V. STABILITY WITH ADDITIONAL SCALAR FIELDS

The stability argument developed in Sec. IV strictly ap-
plies to models with actior{2.1) containing only a single
scalar field. At the formal level it is straightforward to add
additional scalars, but the equatiof$.4), (4.16), (4.17
which determine the superpotenti& become partial differ-
ential equations in field space, and it is more difficult to
show thatW exists. However, it is important to extend our
results for the stability of the Janus solution of type-IIB su-
pergravity to include the additional fields which appear in
compactifications to five dimensions. In this section we de-
velop a reasonably general stability criterion, related to the
approach of Ref[4]. We then test this criterion in several
known consistent truncations of type-IIB supergravity which
involve the negativem? scalars with potentials unbounded
below. These fields are certainly the main threat to stability,
and it is gratifying that the test is satisfied in all cases exam-

Comparison of the conformal factors yields one relation bejneq.

tween the two sets of coordinates, namely,

&os

The new criterion applies to dilaton domain walls in theo-

=cosu cosh. A normalizable mode of a scalar field rans- rjes containing the dilatog plus additional scalarg® with

forming in a representation of the isometry group 8QJ
with lowest weightA of the SG2) generator(the energy
vanishes at the rate (cé¥* on the AdS. ; boundary. When
expressed in terms of the coordinates for Addicing it
therefore vanishes at the rate ()8 as \— m/2. For the

massless dilatod =d. We need the corresponding result for

metric fluctuationdh,, . In the “axial gauge™,,=h
h;j is related byh;;=e**h;; to the fieldh;

wi=0

ij j» whose wave

action

1 1
S:fdd+1 V=g —R——49,dd*
g 2k? 2 n$9

1

- Ef?#llfaﬁ“llfa—V(tl/a) : (5.1)

equation is the same as that of a massless scalar. Thus NQ{z assume that the potenti(?) does not depend on the

malizable modes ofi;; ~ (cos\)“.

dilaton, and that there is a scalar superpotefutigl®) which

We use this rate to obtain the behavior of the tensor termg related toV by (with U ,=dU/d4?)

of Eqg. (3.19 as the keyhole boundary contribution shrinks

toward the corner. We need the fact that the Addling

V=pU U ,—qU2% (5.2
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Furthermore, sinceéV(¢,0)=W(¢), the energy of the dila-
ton domain wall background, evaluated usikagy with the

In our conventions, the constants are given by

_ 2(d-1) newV operator, vanishes, and this background has the same
P= P 5.3 AdS; Killing spinors found in Sec. IV.
As we will see below, the inequalit{.10 is not a gen-
2d(d—1) eral property of superpotentials in supergravity. However, it
q=——7— (5.4 is quite simple to check that it is valid in several known

K consistent truncations of type-IIB supergravity which involve
scalars of negativen? and potentials unbounded below.

as in Eq(3l]), but we a”OW diﬁerent Values to facilitate The Simp|est model contains a Sing'e scalar whose mass,
comparison with models in the literature which use diﬁerentname|y,m2= — 4, saturates the BF bound. It is a special case
conventions, butp,q>0 always. In the models we study [22] of more general modelg26] considered in the frame-
below U(#®) is a true supergravity superpotential generatedyork of gauged\'=8 supergravity27,2§. With x?L2=1,
in the truncation from 10 to 5 dimensions, but it could alsothe potential is
be a fake supergravity superpotential obtained as a solution
to Eq. (5.2 viewed as a partial differential equation for

V()= —2e2¥V3—4e=¥"3, (5.12)

U(4%). We also assume that

Ul yo—0=0, (5.5

d(d—1)

VoEVO=" e

(5.9

and one easily finds the superpotentiaging Eq.(5.3)]

(5.12

1 1
U(y)= 581///‘[3'1' ge‘z‘“‘@.

so that the equations of motion of the enlarged system have

the same Adgsliced dilaton domain wall solution discussed

in Sec. Il with all 4*=0. We letW(¢) denote the superpo-

tential obtained in Sec. IV for the dilaton domain wall.
Our strategyf4] is to find a new superpotentizl( ¢, 4/2)

to be inserted in the covariant derivati{&5) of the Witten-

Nester integral. The new form should have the property th

the last term in Eq(3.8) is replaced by

POV )%+ pW W ,— W2 =V(y*)<0. (5.7

The last term of Eq(3.8) will not vanish in general as it does
for a true adapted superpotential, but it is nhon-negative. A
the critical point2=0 it will vanish, thus guaranteeing sta-

bility.

It is quite straightforward to show that the empirically

inspired fornt?

V
Wb, )= \/vv<¢>2+uwa>2+ S 63

satisfies

p[(W,¢)2+ W,aw,a] - qWZ_V( lﬂa)
pw'?

=—W(pU’aU,a+qU2+Vo). (5.9
Thus nonperturbative stability will hold if
pU U ,+qU%+V,=0. (5.10
20 take the explicit matrix square root asW
=WV1+ 1MW U (4%)2+V,/q].

One can check directly that E(.10 is satisfied.

The general model of this ty@6] involves five indepen-
dent scalars wittm?®= — 4. The potentials is a sum of expo-
nentials of linear combinations of these fields. A special case
involving two nonvanishing scalars was also derived from

e viewpoint of consistent truncations of the type-1IB theory
in Ref.[29]. The analysis of these models is somewhat more
involved, but one can also show that E§.10 is satisfied.
Since the left-hand side of E¢p.10 is bounded, it is enough
to check the inequality for the local minima and at infinity.
{Biven the explicit form of the superpotentidione can eas-
ily show that the matrixpU ,,+ qd,,U is strictly positive
definite and hence all the minima are zeroslbf, which
greatly simplifies the analysis.

A different subtheory of gauged/'=8 supergravity with
potential unbounded below contaif80] scalars with masses
m?=—4 andm?=—3. The simplest version contains two
fields, calledy,, 5 and the superpotential

1

U~ 4—p2[005f(2¢/1)(p6— 2)-3p°-2] (513

andp= exp(wg,/\/g). Using the conventions of R€f30], one
also finds that Eq(5.10 holds. A more general version with
three negativen? scalars was studied numerically. Again Eq.
(5.10 is valid.

There do not appear to be any consistent truncations of
type-IIB supergravity which involve both positive and nega-
tive m? scalars, but several involve only positine fields.

The simplest of thesg31] contains the dilatonp and the
breathing modeys with msz 32. The potential, which is
bounded below, and superpotential are

104027-14
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x?d
_ 8a 6al 12_
V( lﬂ)— K2L2 [46 v— l%(l 5)¢:| W'e= m (64)
1 5 are correctly related to the potential by Eg.4).
_ a al
U =31 etel— 53(8 5)¢} The flow equatior(4.10 gives the solution
- \f -t 65
——1\/- ry=——(r-rg). .
a > 5 K. (5.19 ¢ L 0

It is easy to see that in this case the inequaliyl0 is = The compatibility conditior{4.8) implies thatA’ =0, and Eq.
violated for large negatives. However, the superpotential (4.11) then gives(for Ly=L)
WI(¢,¢y) which provided the appropriate bound for trunca-
tions with negativem? need not work universally. For the o, d—1
breathing mode model, we can simply take the matrix super- e ~74d (6.6
potential W(¢) of Sec. IV. The quantity
The linear scalar obviously satisfies the scalar equation of
Eqg.(2.11), and it is easy to check that the second equation in
Eq. (2.1)) is also satisfied.

The line element1.2) of this solution is

PW'2—qW?2— V() (5.15

which appears in Eq(3.8) is negative for all nonzeray,
which is sufficient to establish stability.

It is curious to note that another simple candidate super- d—1
potential, namely the produdt/=W(4)U(4*)/U(0), pro- dszz—gj(x)dx‘dxwdrz, (6.7)
duces the inequality d

POV )2+ pW W ,— W=V (4 =pW'?U?=0 whereg;;(x) is an Ad$ metric. Thus we find the nonsingu-
(5.16 lar geometry Adg® R with accompanying linear scalar. One
can verify directly that Eq(2.2) is satisfied:® It would be
of the wrong sense for stability in all the models above. interesting to study the stability of this solution whose
Further improvements of the arguments above may welpoundary structure differs from that considered in previous
be possible. However, we shall be content for the presendections.
with the nonperturbative stability arguments presented for Egqrd=4 this solution can be lifted to type 11B by adjoin-
the Janus solution which involve fluctuations of the metric,ing anS; and self-dual five-form. The full system is
the dilaton, and several examples of negativescalars.

3 o
SZ — 2
VI. A CURIOUS LINEAR DILATON SOLUTION dsjo= 7 g (x)dxdx +dr2+12dQg, (6.8

In Eq. (4.42 of Sec. IV, it was noted that for constant

otentialV(¢) =V, of Eq. (2.3, there is a simple $A) su- 2

gerpotentiélqs) 0o P P(r)=— -7 (r=ro), 6.9
W(¢)= i \ ,i( 0 g( ¢)> , (61) Faﬂyﬁezsogaﬁ'yﬁea (61@

2L Yd-1\¢(¢p) O 5. . g
whered(}3 is the metric on the unit five-sphere, ang@yde

are five-sphere coordinates. We require that this satisfy the
§(¢)Eex;( i ¢ ) (6.2) ten-dimensional equations of motion
vd—1

which appears among more complicated implicit solutions. FRMNzaM dind+ 9_6FMPQRSFEQR81 (6.1
As a simple consistency check of our formalism we now find
the solution¢(r), A(r) of the first order flow equations
(4.10, (4.11) for this W(¢) and show that it is a solution of
the second order equations of moti@11) or, equivalently,
Eqg. (2.2.

First we computéN’(¢), note thatfW(¢),W'(¢)}=0,
and that the invariants

which quickly gives the scalels=L and s,=4L% k. Until
stability is established, it is premature to speculate about a
possible physical application of this simple nonsingular so-
lution of type-1IB supergravity.

d 13This solution was found previously in R¢B2] where linearized
2— (6.3 stability analysis was performed. The solution was also found in
4L%(d—1) Ref.[33]. We thank Alexandros Kehagias for pointing this out to us.
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NWO. The metric for Ad$ sliced domain walls in Ad$in ther

coordinate takes the form
APPENDIX A: CONNECTION ONE-FORMS oA ,
AND CURVATURE TENSOR FOR DOMAIN WALLS ds’=e*Nds3ys, +dr?. (B1)

Let us start with flat domain walls id+1 dimensions The explicit solution of the equations of motion is
with the metric ansatz

ds?=e?A" gy, dx'dx +e?"dr?. (A1) A(r)=;log ;(1+ V1-4bcosh2)
We introduce the vielbeins
. . R v2 (1—+1—4b)tanhr
E'=efdx, E'=e"dr. (A2) &(r)= o+ —arctanh .
K 2b

The hat over an index indicates that it is a frame index. The (B2)

range of indices andj will be always taken 0,d—1. The o ,

spin connection one forms are given by This is the solut|_on foL=L4=1. To restore dept_—zndence on
the scalel, one just replaces by r/L. The relation of the

wiF=A’e*hE?, wl=0. (A3) constant to ¢ defined by¢’=ce 9 is
Nonzero components of the Ricci tengor curved indices b= c?k’L? (B3)
are then d(d—1)°
Rij=—7;(dA2+A"=A'h")e?A 2", Two coordinate independent features are evident. First the
critical value ofb beyond which the geometry contains a
R,,=—d(A"+A’2—A’h"). (A4) naked singularity i&= . Second the asymptotic values®f
on the two components of the boundary are
Now, let us consider Adgsliced domain walls with the
metric arctanhZ/B B4
= [ —
ds?=e?Ag; dx dxI +e?"("dr2, (A5) P V2k (B4

wheregj; is a metric on the Adgslices. In this case our

choice of vielbeins is 2. Radial coordinate p

After change of variable, the integréd.21) which defines

EizeAETf, EF:ehdr, (AB) the wall profile can be written as
where we have denoted il the vielbein for Adg. The B Xmindx 1 (B5)
spin connection is now K= \/m’
’.‘A_ , —h < ??_ A
o''=A'eE', o'l=0o", (A7) whereX, is the smallest positive root of the polynomial in
o the denominator. The maximum value g@fis
wherew'! is the spin connection on the AgSlices, whose
explicit form is not needed. Nonzero components of the X 1
Ricci tensor are given by Ho= dX —. (B6)
N 0 V1—x2+bx?d
Rij:Rij_Ej(dArz‘i‘A”_A’h,)eZAizh, . . . )
Series expansion in the paramelegives
— _ "y 12_ATR!
Ry=—d(A"+A’2—A’h’), (A8) ) 1b 4d_1b2 . -
where Xmin=1+ > + 8 +0(b?). (B7)
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Calculating the expansion @i, to orderb? and arbitraryd it
is easy to guess the form of the expansion to all ordets in

1
nd+ =

w r >

bn
2 o

n=0

T B8
MO_E (B8)

F[n(d—1)+1]l“(§)

We have verified this formula to all orders manalytically
for d=1,2 and numerically fod=4. The convenient form

Mo~ M= X— (B9)
1—x2+bx?d

yields the series expansion pfin terms ofx=e™*

X2d+l

2(2d+1) 2F1

+0(b?x4H ),

3
— X2

Mo— m=arcsinx—b 5

dr s34
+§,§, +
(B10)

Inverting the series we find

b
“A(M) =y — aj _ T Qjpd+1 _
e X=sin(ug M)+2(2d+1)smz (po—m)

13 3
X €O po— ) oF4| d+ §,§,d+ §,SIF1Z(M0_M)

+0O[b?sin* ™ 2(po—w)]. (B11)

Near the boundary.~ uq the form of the scale factor is

e AW~ [1+0(u—uo)*].  (B12

SINP( i — o)

PHYSICAL REVIEW D 69, 104027 (2004

The equations above defin®(u) in the region G=u
<ugq. However, as discussed in Sec. Il, it can be extended as
an evenC” function to the full range- uo<u<pug.

In the special casd=2 we can integrate EqB9) and
invert to obtain the explicit solution

1
eAm)Ex:ysr(—(Mo—M),\/Eyz), (B13)
4

where

V2

" V1++V1-4b

is the smallest positive root of the equatior £>+bx*=0
and sn(,k) is the standard Jacobi elliptic function. Note that
the metric is doubly periodfé in the coordinates. The real
period is

(B14)

4yK(\by2). (B15)

One may easily check using the definition of the complete
elliptic integral that this is the same asug. The period
clearly blows up as approaches its critical valug which
corresponds toy=v2.

MReal periodicity inu can be proved to exist for all dimensions.
The second complex period is special de=2 and it would be
interesting to see if it has a deeper meaning.
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