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Fake supergravity and domain wall stability
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We review the generalized Witten-Nester spinor stability argument for flat domain wall solutions of gravi-
tational theories. Neither the field theory nor the solution need be supersymmetric. Nor is the space-time
dimension restricted. We develop the nontrivial extension required for AdS-sliced domain walls and apply this
to show that the recently proposed ‘‘Janus’’ solution of type-IIB supergravity is stable nonperturbatively for a
broad class of deformations. Generalizations of this solution to arbitrary dimension and a simple curious linear
dilaton solution of type-IIB supergravity are by-products of this work.
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I. INTRODUCTION

Many domain wall solutions of supergravity theories ha
been studied in the literature in order to explore the A
conformal field theory~CFT! correspondence, to find a fun
damental setting for brane world cosmology, and for ot
reasons. In this paper we will review and extend stabi
arguments for domain walls based on the elegant sp
methods of the Witten positive energy theorem and its g
eralizations@1–6#.1

Many solutions studied in the past are supersymme
One would expect these to be stable, and there are kn
arguments which use the transformation rules of the su
gravity theory and the Killing spinors supported by the so
tions. Yet these arguments do not apply to the many solut
with curvature singularities.

Nonsupersymmetric solutions are also known and mi
well be important since supersymmetry~SUSY! is certainly
broken in our universe. Most domain wall solutions, bo
SUSY and non-SUSY, are planar; the isometry group of th
metrics

ds25e2A~r !h i j dxidxj1e2h~r !dr2,

h i j 5diag~21,1,1,...,1! ~1.1!

is the Poincare´ group in d flat space-time dimensions.@The
choiceh(r )50 is convenient for many purposes but we ke
h(r ) unfixed to facilitate comparison with different radi
coordinates used in the literature.#

For planar domain walls there is a formal stability arg
ment @5,8# based on what we propose to call ‘‘fake supe
gravity.’’ In fake supergravity one defines a spinor ener
using fake transformation rules similar to those of a r

*Email address: dzf@math.mit.edu
†Email address: nunez@lns.mit.edu
‡Email address: schnabl@lns.mit.edu
§Email address: skenderi@science.uva.nl
1See Ref.@7# for a recent paper with similar aims which discuss

the stability ofp-brane spacetimes.
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supergravity theory, but containing a superpotentialW(f)
which is not that of the real theory. InsteadW(f) must sat-
isfy an equation which relates it to the scalar potentialV(f),
and one can formulate certain first order equations@the fake
Bogomolńyi-Prasad-Sommerfield~BPS! equations# whose
solutions automatically satisfy the second order Einstein fi
equations for domain wall metrics~1.1! and the accompany
ing scalar fieldf(r ). If one can find aW(f) such that the
domain wall solution under test is a solution of the first ord
system, then that domain wall is stable, if there are
singularities.2 One curious feature of fake supergravity is th
it can work in any space-time dimensiond, whereas real
supergravity is limited tod<11.

Domain walls with the isometry group SO(d21,2) of the
space-time AdSd have also been studied@9–11#. Their met-
rics take the form

ds25e2A~r !gi j ~x!dxidxj1e2h~r !dr2, ~1.2!

wheregi j (x) is a metric on AdSd with scaleLd . A domain
wall of this type was recently found@12# as a solution of
type-IIB supergravity. The solution contains a flowing dil
ton f(r ), but no otherr-dependent matter fields, and there
an accompanying roundS5 internal space. The solution i
regular if one chooses parameters such that the rate of v
tion of the dilaton is sufficiently slow.

In this paper we develop stability arguments for nons
gular AdSd-sliced domain walls. A nontrivial extension o
the fake supergravity approach, related to the work of R
@9# in realD55 supergravity, is required for this. This argu
ment gives a definition of energy which vanishes for t
background solution itself and is positive for fluctuatio
about the background which obey suitable boundary con
tions.

These arguments imply that the solution of Ref.@12# en-
joys nonperturbative stability with respect to fluctuations
the metric and dilaton while other fields of type-IIB supe
gravity remain fixed at their vacuum values. The formalis
we develop can accommodate additional fields, but it

2Further conditions are discussed in Sec. III.
©2004 The American Physical Society27-1
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comes more difficult to establish the required properties
the superpotential. To remediate this difficulty we work
the spirit of Ref.@4# and derive inequalities which show th
the ‘‘Janus’’ solution@12# is also stable within several differ
ent consistent truncations of type-IIB supergravity. Some
these truncations include negativem2 fields and potentials
unbounded below. These indications of global stability ma
it more compelling to understand the AdS-CFT dual of t
solution proposed in Ref.@12#. We do not discuss this here

It is not guaranteed that a given solution of the field eq
tions can be reproduced in the framework of fake superg
ity. Indeed there are known solutions which are pure A
metrics @those withA(r )[r /L in Eq. ~1.1! if h(r )50 and
with fixed scalars# which are unstable because small fluctu
tions violate the stability bound of Ref.@21#. In general it is
not always possible to satisfy the required conditions on
superpotential.

In Sec. II we discuss the equations of motion satisfied
domain walls and present some simple examples of no
persymmetric domain wall solutions of type-IIB supergra
ity. They involve a single flowing scalar field, the dilato
These simple dilaton domain walls are the prototype so
tions we study. The fake supergravity stability argument
planar domain walls~1.1! is reviewed in Sec. III. In Sec. IV
we extend this argument to AdSd domain walls~1.2!. Section
V is devoted to stability arguments for the solution of R
@12# for nondilatonic fluctuations. In Sec. VI we discuss
very simple and apparently new solution of type-IIB whi
emerged from the techniques of Sec. IV.

II. DOMAIN WALLS: BASICS AND EXAMPLES

We consider a scalar-gravity action ind11 dimensions:

S5E dd11xA2gF 1

2k2 R2
1

2
]mf]mf2V~f!G .

~2.1!

Such actions can arise via Kaluza-Klein reduction of a s
higher dimensional theory. Although we include only o
scalar explicitly, additional scalars~with s-model interac-
tions! and higher rank bosonic fields can be included. T
equations of motion are

1

k2 Rmn5]mf]nf1
2

d21
gmnV~f!,

hf5]V/]f. ~2.2!

We assume that the potentialV(f) has a critical point at
f5f0 , with V0[V(f0),0. Thus one solution of Eq.~2.2!
is AdSd11 with scaleL. In this case we have

Rmn52
d

L2 gmn ,

V052
d~d21!

2L2k2 . ~2.3!
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We will introduce explicit parameterizations of the AdS me
ric gmn when needed.

A. Flat domain walls

We are more interested in domain wall solutions of E
~2.2! with r-dependent scalarf(r ) and metrics of the form
~1.1! or ~1.2!, and we require that these approach the AdSd11
geometry at the boundary. With the coordinate choiceh(r )
50, the boundary occurs asr→1`. Frame and connection
one-forms and curvature tensors for our presentation of
main walls are given in Appendix A.

We first consider flat domain walls. When the metric
Eq. ~1.1! and the restrictionf5f(r ) are incorporated, the
Einstein and scalar equations of motion of Eq.~2.2! reduce
to ordinary differential equations inr, namely,

A92A8h852
k2

d21
f82,

A825
k2

d~d21!
f82

2
2k2

d~d21!
V~f!e2h,

f91~dA82h8!f85
]V

]f
e2h. ~2.4!

It is quite well known@8,13# that any solution of the fol-
lowing first order flow equations is also a solution of E
~2.4!:

A8~r !52ehW@f~r !#, ~2.5!

f8~r !52
2~d21!

k2 eh]fW@f~r !#.

~2.6!

The superpotentialW(f) is related to the potentialV(f) by3

k2V~f!52~d21!2S 1

k2 W822
d

d21
W2D . ~2.7!

These fake BPS equations for flat domain walls will be
derived in the next section.

The simplest example of a domain wall is the followin
solution of Eq.~2.4! @with h(r )50] for the theory with con-
stant potentialV(f)5V0 of Eq. ~2.3!. The scalar satisfies
f8(r )5c exp@2dA(r)#. After routine integration, one finds

f~r !5f01Ad21

dk2 log
12e2d~r 2r* !/L

11e2d~r 2r* !/L
,

3The prime inW8 denotes a derivative with respect tof, whereas
the prime attached to the fieldsf, A,h denotes a derivative with
respect to the radial coordinater.
7-2
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A~r !5A01
r 2r *

L
1

1

d
log~12e22d~r 2r* !/L!, ~2.8!

where c is related to the other integration constants byc

5@Ad(d21)/kL#edA0. This gives an asymptotically AdS
geometry with boundary regionr→`, but there is a curva-
ture singularity atr 5r * .

When d54 this is the dilaton domain wall solution o
type-IIB supergravity which was found and studied@14–16#
in the early period of the AdS-CFT correspondence. A
solution of type-IIB supergravity, it is not supersymmetr
There are no true Killing spinors, since the dilation conditi
from the type-IIB supergravity transformation rules

dx5
i

2
gm~]mf1 ief]mj!e*

2
i

24
gmnr~e2f/2Hmnr

~NS!1 ief/2Fmnr
~RR!!e ~2.9!

cannot be satisfied because the axionj and three-forms van
ish. The indicesm, n, r are ten dimensional coordinate ind
ces.

We will now show that there is a superpotentialW(f)
such that Eq.~2.8! is also a solution of Eqs.~2.5!–~2.7! for
any dimensiond. We thus achieve fake supersymmetry,
we will confirm by exhibiting fake Killing spinors in the nex
section. The obvious constantW5 1

2 L does not work, but
with the general solution of Eq.~3.11!, namely,

W~f!5
1

2L
coshS kA d

d21
~f2f0!D ~2.10!

one can easily integrate Eqs.~2.5!, ~2.6! and find that the
solution agrees with Eq.~2.8!. The constantr * arises as an
integration constant.

Note that we have chosen the solution of Eq.~2.7! which
is positive near the boundary valuef;f0 , and we have
chosen signs in Eqs.~2.5!, ~2.6! so that the boundary of th
geometry appears asr→1`. These conventions are natur
for the extension to AdSd domain walls in Sec. IV, but they
differ from some earlier applications.

Let us use the term ‘‘adapted superpotential’’ to den
the particularW(f) for which the first order flow equation
produce a given domain wall solution of Eq.~2.4!. For non-
constantV(f), it may not be possible to solve Eq.~2.7! and
find the superpotentialW(f) explicitly. This may be incon-
venient, but to establish fake supersymmetry we need o
know that the adapted superpotential exist for a given s
tion A(r ), f(r ) of Eq. ~2.4!. If f(r ) is monotonic, the in-
verse functionr (f) exists. One may then use Eq.~2.5! to
definethe adapted superpotential.

B. AdSd-sliced domain walls

We now discuss the equations of motion for AdSd-sliced
domain walls of codimension 1. Frames, connections
curvatures for the metric~1.2! are given in Appendix A.
10402
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When inserted in Eq.~2.2! one finds that wall profileA(r )
and scalarf(r ) obey the coupled equations which are mo
fications of Eq.~2.4!,

A92A8h852
k2

d21
f821

1

Ld
2 e22A12h,

A825
k2

d~d21!
f822

2k2

d~d21!
V~f!e2h

2
1

Ld
2 e22A12h,

f91~dA82h8!f85
]V

]f
e2h. ~2.11!

A set of first order equations which extend Eqs.~2.5!–
~2.7! to AdSd-sliced walls was presented in Ref.@13#. These
equations are

A8~r !52g~r !ehW@f~r !#,

f8~r !52
1

g~r !

2~d21!

k2 eh
]W

]f
,

V~f!5
2~d21!2

k2 S 1

k2g~r !2 W822
d

d21
W2D

~2.12!

which differ from Eqs.~2.5!–~2.7! by the inclusion of the
factor

g~r ![A12
e22A~r !

4Ld
2W@f~r !#2

. ~2.13!

The constantLd is the AdSd scale, and one obtains the pr
vious Eqs.~2.5!–~2.7! asLd→`. The system~2.12! is well
posed@13#, but it is rather unworkable. In Sec. IV we wil
derive an alternate set of first order equations which invol
an su~2!-valued superpotentialW(f)5Wa(f)ta, where the
ta are the Pauli matrices. The structure of the new equati
is even simpler than Eqs.~2.5!–~2.7! and they are easily
solved, givenW~f!. However,W~f! must satisfy a nonlin-
ear condition in addition to Eq.~2.7!. We show that any
solution of the new equations also satisfies Eq.~2.12!.

C. Janus solutions

A simple example of an AdSd-sliced domain wall is the
extension tod dimensions of the dilaton domain wall solu
tion of type-IIB supergravity of Ref.@12#. We take the con-
stant potentialV(f)5V0 , see Eq.~2.3!, and we proceed as
in Ref. @12#, but use the radial coordinater for which h(r )
50. We take f85c exp@2dA(r)# so the scalar equation
of Eq. ~2.11! is satisfied. Any solution of the wall profile
equation

A825~1/L2!@12e22A1be22dA#, ~2.14!
7-3
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will also satisfy the equation involvingA9 in Eq. ~2.11!. The
constantb is related toc by b5@k2/d(d21)#c2L2. We have
setLd5L for simplicity.

Whenb50, the solution gives pure AdSd11 in the form

ds25cosh2~r /L !gi j ~x!dxidxj1dr2. ~2.15!

For bÞ0 we will not be able to solve Eq.~2.14! exactly
~unlessd52), and we need the following argument simil
to that of Ref.@12#. With x[e22A, we consider the polyno
mial P(x)[bxd2x11. For smallb, there are exactly two
real zeros~which occur forx.1). This continues to be true
for

0,b,b0[
1

d S d21

d D d21

. ~2.16!

At b5b0 the zeros coalesce atx05(b0d)21/(d21) and be-
come complex forb.b0 .

This behavior is relevant to the physics, as we can
from the implicit solution of Eq.~2.14!, namely,

r 5E
A0

A dA

A12e22A1be22dA
. ~2.17!

The lower limitA0 will be specified below. Forb.b0 , there
is no natural lower bound on the variableA and the geometry
would be geodesically incomplete unless extended toA→
2` where there is a curvature singularity.

Therefore we restrict to the range 0,b,b0 in which the
minimum value ofAmin is given byAmin52ln(xmin)/2, where
xmin is the smallest zero ofP(x). The formula~2.17!, with
A05Amin thus defines half the geometry, namely, the reg
0<r ,1`, Amin,A(r),1`. This r .0 region is not geode
sically complete. But all odd order derivatives ofA(r ) van-
ish at r 50, so thatA(r ) can be extended to the region2`
,r ,0 as even functionA(r )5A(2r ) and the continued
function is C`. The full geometry is geodesically comple
and has two boundary regions, namely,r→6`.

With A(r ) defined above, the dilaton is given by

f~r !5f01cE
0

r

e2dA~r !dr. ~2.18!

It is monotonic, and odd inr except for the additive integra
tion constantf0 . In the boundary regionsr→6`, it ap-
proaches the limits

f~r !→f6[f06cE
0

`

e2dA~r !dr. ~2.19!

Our choice of radial coordinater @with h(r )50] was mo-
tivated by the fact that Eq.~2.17! can be integrated in term
of elementary functions whend52. This leads to the explici
presentation of thed52 solution discussed in Appendix B
However, the space-time geometry is most easily visuali
using a radial coordinate of finite range. Therefore, in the
of this section we switch to the notation of Ref.@12#, with
10402
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radial variablem ~corresponding to the caseh5A in the
notation above!, and we use a standard global metric on t
AdSd slices.

The metric~1.2! then takes the form

ds25
L2e2A~m!

cos2 l
@2dt21cos2 ldm21dl21sin2 ldVd22

2 #,

~2.20!

where the range of the principal coordinate of AdSd is 0
<l,p/2 for d.2, but 2p/2,l,p/2 when d52, and
dVd22

2 is a metric on the unit sphereSd22 . The wall profile
A(m) is defined implicitly by the integral

m5E
A0

A dA

Ae2A211be22~d21!A
. ~2.21!

It can be extended to negativem as discussed above. Th
range ofm is 2m0,m,m0 . The boundary limitm0 can, in
principle, be obtained from the integral~2.21!, with upper
limit A→1`. For smallb and generald, one finds the series
expansion

m05
p

2 S 11

GS d1
1

2
D

G~d!GS 1

2
D b1

GS 2d1
1

2
D

G~2d21!GS 1

2
D

b2

2!
1O~b3!D.

~2.22!

For d52 an exact expression is given in Appendix B. It
useful to note the near-boundary behavior of the scale fa
obtained in Eq.~B12!:

e2A~m! ;
m→6m0

1

sin2~m07m!
$11O@~m07m!2d#%.

~2.23!

Thus the effect of the running dilaton on the wall profile is
b-dependent change in the boundary limitm0 together with
an order (m6m0)2d effect on the near boundary shape.

In Eq. ~2.20!, which is the same as Eq.~20! of Ref. @12#,
we have extracted the conformal factore2A(m)/cos2 l, so that
the line element in square brackets can be viewed, at l
heuristically, as a conformal compactification. As discuss
in Ref. @12# this conformal metric is similar to the Einstei
static universe, and would agree with the well known co
formal compactification of AdSd11 , in the limit b→0 when
A(m)→2 ln(cosm) and m0→p/2. In this limit, the spatial
metric ~i.e., fixed t! is a hemisphere ofSd . For b.0 and
m0.p/2, we also have a half sphere but with angular exc
as depicted in Fig. 1~a!. The boundary of the conformal me
ric then has two parts, hemispheres ofSd21 at m56m0
which are joined at the pole~s! where cosl50.

The angular coordinatesm, l are singular at the poles
However, one may choose regular coordinates there by
beddingSd in Rd11 with cartesian coordinates. For simplic
ity, we discuss the cased52 in which we take coordinate
7-4
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z5sinl, x5cosl cosm, y5cosl sinm. The induced metric
on S2 , namely, ds̄25dx21dy21dz25dl21cos2 ldm2, is
then regular at the pole atx5y50. Consider next the con
formal factor V5e2A(m) cosl. It follows from Eq. ~2.23!
that its near boundary behavior is

V;sin~m07m!cosl ~2.24!

;x sinm07y cosm0 . ~2.25!

Thus¹V, evaluated in the regular coordinatesx, y is discon-
tinuous as one continues from the boundary reg
m51m0 , where y/x51tan(m0), to the portion where
m52m0 and wherey/x52tanm0. This means that the fac
torization in Eq.~2.20! does not satisfy the strict definition o
conformal compactification@17#. In practice, it means tha
the conformal boundary has corners at the pole~s!, a geomet-
ric feature deduced by means of the regular Cartes
coordinates.4 We will treat the corner in the boundary inte
gral that occurs in the Witten-Nester stability analysis
deforming the contour around the corner as indicated in F
1~b! and taking the limit to the corner after the integration
performed.

An alternative approach is to work with the Fefferma
Graham coordinates, i.e., to look for a coordinate sys
where the metric near the boundary takes the form

ds25
1

z2 $dz21@g~0!i j 1z2g~2!i j 1¯1zd~g~d!i j 1 logzh~d!i j !

1¯#dxidxj%. ~2.26!

Such coordinate system can always be reached@18#. In this
expansiong(0) is the boundary metric. All coefficients in Eq
~2.26! but g(d) are locally related tog(0) . g(d) carries infor-
mation about the vacuum and correlation functions of
dual QFT, so this coordinate system is well suited for holo
raphy @19#. Transforming the Janus solution to this coord

4We are very grateful to Gary Gibbons for patient and use
discussions of the geometry and its conformal compactification

FIG. 1. ~a! Conformal picture of a constant time slice of th
Janusian geometry. The boundary is indicated by the bold arcs~b!
Top view of the same picture. The coordinatel ranges from 0 at the
equator top/2 at the north pole. The dashed line indicates the ‘‘co
tour’’ used to evaluateEWN in Sec. IV.
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nate system appears laborious and seems to lead to sin
g(d) i j . Since we will not address the AdS-CFT duality fo
this solution, we will not present these results here and c
tinue in the rest of the paper with the coordinate system
Eq. ~2.20!.

Domain walls with AdS slicing can also be presented
ing a Poincare´ patch metric for the AdSd slices @12#. The
scale factorA(m) and local aspects of the discussion abo
are not changed, but the global structure is affected. In p
ticular the metric is geodesically incomplete, and one ne
its global extension. For this reason we formulate our sta
ity study using the global version. The patch version m
well be appropriate for the AdS-CFT dual.

III. STABILITY OF FLAT DOMAIN WALLS

We review in this section the stability argument@5,8# for
asymptotically AdS~AAdS! flat domain walls with metric in
the form ~1.1! and accompanying scalarf(r ). The purpose
of the argument is to show that the energy of deformed
lutions of the equations of motion which approach the d
main wall at large distance is higher than the energy of
wall itself. We use the following notation for the backgroun
fields and deviations:

ds25@ ḡmn1hmn#dxmdxn, ~3.1!

f5f̄1w. ~3.2!

The fluctuationshmn , w are treated in full nonlinear fashio
in the interior of the spacetime, but they vanish on t
boundary. We will not state definite conditions on the boun
ary asymptotics in this section, but we will be quite speci
when we discuss the extension to AdSd-sliced domain walls
in Sec. IV.

The spinor formalism of Witten and Nester provides
generalized ‘‘energy’’EWN with the following properties.

• It computes a linear combination of the conserved Killi
charges of the isometry group of the background, spec
cally the subalgebra contained in the SUSY anticommu
tor $Q,Q̄%. Thus we expect to find spatial translations ind
dimensions for flat walls and the charges of the alge
SO(d21,2) for the AdSd-sliced walls we treat in Sec. IV

• The charges vanish for the background solution un
study, i.e., whenhmn andw vanish.

• The energy, defined with respect to the Killing vector]/]t
of the background, is positive for all fluctuations which a
suitably damped on the boundary.

A. The Witten-Nester energy and positivity

To defineEWN , we consider ad-dimensional spacelike
surfaceS, which can be thought of as the initial value su
face for the Cauchy problem of the deformed domain w
spacetime. Denote its boundary by]S. ThenEWN is defined
by the boundary integral

EWN5E
]S

* Ê ~3.3!l

-

7-5
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of the Hodge dual of the Nester two-formÊ

5 1
2 Êmndxmdxn, defined by

Êmn5 «̄1Gmnr¹̂r«22¹̂r«2Gmnr«1 . ~3.4!

The covariant derivative is

¹̂m5¹m1W~f!Gm , ~3.5!

whereW(f) is any function off which satisfies

W~f! ;
f→f̄

1

2L
1O~w2!. ~3.6!

The value of the integral over]S depends only on the be
havior of spinors«1(x), «2(x) near the boundary. Thus, a
this stage, the spinors can be arbitrary in the interior,
must approach a background Killing spinor on the bound
In general one must take independent spinors«1(x), «2(x)
in order thatEWN contain the full set of background charge

As in other treatments of gravitational energy, the surfa
integral form ofEWN is linear in the fluctuationshmn , w and
thus not manifestly positive. To establish positivity we w
use Stokes’ theorem to rewrite Eq.~3.3! as an integral overS
and then impose more specific conditions onW(f) and
« i(x). Stokes’ theorem gives

EWN5E
S
dSm¹nÊmn. ~3.7!

Note that this step requires that the background and
formed solutions are nonsingular. There would otherwise
an additional surface contribution from the singularity or t
horizon which shields it. There are known methods@20# to
extend the treatment to include horizons, but naked singu
ties present substantial new problems which are beyond
scope of the present work. One should note also that
effective currentJm5¹nEmn is identically conserved, soEWN
defines a conserved quantity provided that boundary asy
totics of the integrand is suitably restricted.

We now take«15«2 in Eq. ~3.4! because we are inter
ested in demonstrating positivity. The integrand of Eq.~3.7!
may now be manipulated as in Ref.@5# using the equations
of motion ~2.2! and regrouping of terms to obtain

EWN5E
S
dSmH 2dcnGmnrdcr2

k2

2
dxGmdx

1 «̄Gm«F2k2V~f!12~d21!2S 1

k2 W822
d

d21
D G J ,

~3.8!

whereW85]fW and we havedefined
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dcm5¹̂m«, ~3.9!

dx5S Gm¹mf2
2~d21!

k2 W8D «. ~3.10!

The condition thatEWN vanish in the undeformed back
ground is satisfied if we impose the following conditions.

The last term in Eq.~3.8! is cancelled, both with and
without fluctuations, if we require that

V~f!5
2~d21!2

k2 S 1

k2 W822
d

d21
W2D . ~3.11!

We further require that~with no fluctuations!

@¹̄m1ḠmW~f!#«50, ~3.12!

S Ḡm¹̄mf̄2
2~d21!

k2 W8~f̄ !D «50. ~3.13!

An ‘‘overbar’’ on any quantity indicates that it is to be evalu
ated in the background geometry.

The integrability conditions of the equations~3.12!, ex-
pressed in the coordinates of Eq.~1.1!, give the first order
flow equations~2.5!, ~2.6! @8#. The spinor solutions of Eq
~3.12! are the background Killing spinors

«5eA~r !/2«0 ,

G r̂«05«0 , ~3.14!

where«0 is a constant spinor which is chiral with respect
the radial component ofGa.

The superpotentialW(f) must satisfy Eq.~3.11! and the
boundary condition~3.6!. This guarantees that the scalar pr
file f̄(r ) and scale factorA(r ) obtained from Eqs.~2.6!,
~2.5! are also solutions of the field equations~2.4!.

Positivity with fluctuations is now a relatively simple ma
ter, since there are only two terms left in Eq.~3.8! and the
second one is manifestly positive. We still have the freed
to modify the definition of the spinor«(x) for deformed
solutions, and we impose the Witten condition

Gk¹k«~x!50, ~3.15!

where the time coordinate is omitted in the sum overk. One
must choose a solution which approaches an arbitrary b
ground Killing spinor on the boundary. We do not discuss

existence of Witten spinors here. In a frame whereEt̂ is
orthogonal to the surfaceEWN reduces to the positive
semidefinite form

EWN5E
S
dd21xeF2~¹̂k«!†¹̂k«1

k2

2
dx†dxG . ~3.16!

This energy functional vanishes if and only if

¹̂k«50, dx50. ~3.17!
7-6
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The set of solutions to these equations is given by the sp
of solutions of the first order equations~2.5!, ~2.6!. If we
impose that the solution should satisfy the boundary con
tion set by the undeformed solution, thenEWN vanishes only
for the undeformed background. The existence of other
lution that have zero energy but different boundary con
tions may be considered as an indication of marginal sta
ity, but it is unclear whether we should allow suc
configurations. We leave this issue open.

We can now state a sufficient condition for the stability
a domain wall of the form~1.1! which is an asymptotically
AdS solution of Eq.~2.4! and involves a scalar whose ma
satisfiesmBF

2 [2d2/4<m2<0. The scalar profile then satis

fies f̄850 on the boundary. If there is a superpotent
W(f), satisfying Eq.~3.11!, such that the domain wall is
solution of Eqs.~2.6!, ~2.5!, then it is stable. It then follows
from Eq. ~2.6! that W8 vanishes on the boundary. For an
lytic W(f) this is equivalent to Eq.~3.6!. It is not guaranteed
that the required adapted superpotential exist. As discuss

the end of Sec. II A, iff̄(r ) is monotonic, thenW(f) is
defined implicitly. If it does not exist, then one may susp
instability, but instability does not follow from this frame
work.

The roots of the argument above lie in supergravity, as
matrix structure of the Nester two-form~3.3! and the form of
Eqs. ~3.9!, ~3.10! clearly show. But the argument can b
applied to any model of gravity and scalar fields, in a
space-time dimension, provided that the required adapted
perpotential exists.

B. EWN and conserved charges

Our next goal is to obtain a concrete formula for t
boundary integral form ofEWN and to show that it indeed
gives a combination of the translation Killing charges of fl
domain walls. Because we work at the boundary, lineari
expressions for the connection and frames of the deform
metric are appropriate. Linearization in the scalar fluctuat
is valid for single-scalar models where the scalar mass s
fiesm2.mBF

2 . However, terms of orderw2 can contribute to
EWN when the scalar mass saturates the BF bound@21# and
in other situations. An example was recently discussed
Ref. @22#.

Let Ēm
a denote a vielbein of the background metric in E

~3.1!. The linearized spin connection is then given by

dvmab5
1

2
@Ēa

n¹bhmn2Ēb
n¹ahmn#, ~3.18!

where ¹ is a background covariant derivative. It is mo
convenient to use background Killing spinors to comp
EWN . We insert Eq.~3.18! in Eq. ~3.3! and obtain, using Eq
~3.12! and some Dirac algebra,
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EWN52
1

8 E]S
$«̄1Gm«2@¹rhrn2¹n~grshrs!#

2 «̄1Gn«2@¹rhrm2¹m~grshrs!#

1 «̄1Gr~¹nhrm2¹mhrn!%dSmn1
1

4 E]S
@ «̄1~gmsGnr

1gnsGrm1grsGmn!hrsW~f̄ !«2#dSmn

1
d21

2 E
]S

«̄1GmnW8~f̄ !«2wdSmn1H.c. ~3.19!

All quantities in this equation, excepthmn andw refer to the
background. Our computation used only the gene
background-fluctuation split in Eq.~3.1!. It is thus valid both
for flat domain walls and for other situations in which th
Witten-Nester approach to stability has been applied. For
ample, it is applicable to asymptotically flat metrics in whic
W(f̄) andW8(f̄) vanish. In this case it is quite straightfo
ward to show that Eq.~3.19! yields the same expressions fo
energy and momentum given in Eq.~70! of Ref. @1#.

Let us discuss the formula~3.19! in more detail for flat
domain walls. First we find from Eq.~3.14! that the bilinears
«̄1Gm«2 do span the expected set of translation Killin
vectors.5 However, the role of tensor bilinears«̄1Gmn«2 is far
from clear. To discuss them, we distinguish between com
nents «̄1G ri «2 with one radial index, and componen
«̄1G i j «2 with both indices along the domain wall. The latt
vanish due to the chirality properties of the Killing spino
~3.14!, while the former are proportional to translation Kil
ing vectors. ThusEWN indeed produces a combination of th
translation Killing charges of the deformed domain wall. W
note further thatW8(f̄) vanishes, so that the last term in E
~3.19! is absent for flat domain walls.

As a final check let us note that the boundary volum
element has componentsdS tr wheret is the time coordinate
of Eq. ~1.1!. We now use radial coordinater for which
h(r )50 in Eq. ~1.1!. In that case,A(r );r /L at the bound-
ary. It is also known that normalizable metric fluctuatio
vanish at the ratehmn;exp(2dr/L). Putting things together
we see that the terms in the first three lines of Eq.~3.19! are
generically finite on the boundary.

We conclude this section with an illustration of one of t
subtleties of the argument, namely, that the existence o
adapted superpotential satisfying Eq.~3.11! is not sufficient
to guarantee stability. In addition one needs Eq.~3.6! which
implies that the AdS critical point of the potentialV is also a
critical point of W. To illustrate this issue we consider th
following superpotential:

W5w01w1f1
d

2~d21!
k2w0f21w3f3. ~3.20!

5The cased52 is exceptional. Due to chirality, the Killing spinor
have effectively only one component, so«̄1Gm«2 has vanishing
spatial component and gives only the time translation or ene
Killing vector.
7-7
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FREEDMAN et al. PHYSICAL REVIEW D 69, 104027 ~2004!
The corresponding potential from Eq.~3.11! is

k2V~f!52~d21!2S w1
2

k22
d

~d21!
w0

2D
22~d21!S dw1

22
6

k2 w1w3~d21!Df21O~f3!.

~3.21!

This potential has a critical point atf50 which is AdS
provided

w1
2,

d

~d21!
k2w0

2. ~3.22!

This critical point however is not a critical point ofW. If the
productw1w3 is sufficiently large, the mass of the scalar li
belowmBF

2 and the perturbative argument@21# for instability
applies. We may apply the Witten-Nester argument to inv
tigate stability of the AdS solution of the theory~2.1! with
potential above. The argument does not apply if one uses
covariant derivative~3.5! with W above because AdS spac
time is not a solution6 of the flow equations~2.6!, ~2.5!. Nor
can there be any other superpotential, satisfying both E
~3.11! and~3.6! because it is known@5# that this implies that
m2>mBF

2 . Thus the perturbative and nonperturbative ana
sis are compatible. This example illustrates the importanc
the condition~3.6! for stability.

IV. STABILITY OF AdS d DOMAIN WALLS

In this section we extend the argument of Sec. III to co
AdSd-sliced domain walls. The springboard for our approa
was the study of AdS4-sliced walls in genuineD55, N52
supergravity in Ref.@9#. The natural spinors in this theory ar
a symplectic-Majorana doublet, and the superpotential
pears as the su~2!-valued matrixW(f)5Wa(f)ta, where
the ta are the three Pauli matrices. In genuineD55, N52
supergravity, the matrix superpotential is determined by
gaugings of R symmetry and isometries of the internal
ometry @23–25#. The internal space is the product of a ve
special manifold~for scalars in vector and tensor multiplet!
and a quaternionic manifold~for scalars in hypermultiplets!.
The superpotential is given by the product of the embedd
coordinateshI of the very special manifold and a triplet o
Killing prepotentialsPIi j depending on the scalars of th
hypermultiplets. In the absence of hypermultiplets, a ma
superpotential is still possible7 and it is determined in term
of Fayet-Iliopoulos constants and thehI .

None of this technical detail need concern us in fake
pergravity, which works in any dimension and with any nu
ber of real scalars. We simply double the spinors used in S
III, taking ea, a51, 2 as a pair of Dirac spinors in dimen

6A preliminary study indicates that the flow equations can be
tegrated, but give a pathological geometry.

7We thank Antoine Van Proeyen for correspondence on this is
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siond11. The matrixW~f! acts on the indexa, but we can
usually suppress it in explicit formulas. Many previous fo
mulas remain valid when understood as extensions to
doubled spin space, with the replacementW(f)→W(f).
Note that quadratic quantities such asW2 and $W,W8% are
proportional to the unit matrix. When they appear in o
equations below they should be interpreted as scalar val

The energy of any perturbation of an AdSd-sliced wall is
contained in the Nester two-form~3.4! with an su~2! exten-
sion of the covariant derivative~3.5!. All formal manipula-
tions which lead to the volume form~3.8! of the energy also
have obvious su~2! extensions. With an su~2!-extended Wit-
ten spinor ~3.15!, the energy becomes manifestly no
negative. The nontrivial task now is to establish the cons
tency of the formalism by showing that there are fake Killin
spinors so that the energy vanishes for domain wall ba
grounds of the form~1.2!. We use the frames and spin co
nections given in Appendix A.

A. Killing spinor consistency conditions
and the new flow equations

The su~2! extension of the argument of Sec. III require
that the fake Killing spinors satisfy the following
conditions:8

F¹ i
AdSd1G i S 1

2
A8e2hG r̂1WD G«50, ~4.1!

@] r1G r̂ehW#«50, ~4.2!

FG r̂e2hf82
2~d21!

k2 W8G50. ~4.3!

In additionW~f! must be related to the potentialV(f) by

k2V~f!52~d21!2S 1

k2 W822
d

d21
W2D . ~4.4!

In Eq. ~4.1!, the covariant derivative contains the connecti
of an AdSd metric with scaleLd .

We now extract the integrability/consistency conditio
for Eqs.~4.1!–~4.3! and show that they imply that the back
ground metric and scalar satisfy the original Euler-Lagran
equations~2.11!. We also obtain a constraint onW~f!.

Consider first the fake dilatino condition~4.3! which can
be rewritten as the chirality condition

G r̂«5
2~d21!

k2 eh
W8

f8
« ~4.5!

on fake Killing spinors. The square of this gives the sca
condition

-

e.8As in Sec. III,W8 andW9 denote derivatives with respect tof.
7-8
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f822S 2~d21!

k2 D 2

e2hW8250, ~4.6!

which shows that the matrix on the right side of Eq.~4.5! has
eigenvalues61, as required for the consistency of Eq.~4.5!.

The integrability condition for Eq.~4.1! is

1

Ld
2 1A82e2A22h24e2AW250, ~4.7!

while the compatibility of Eqs.~4.1! and~4.3! requires@after
use of Eq.~4.5!#

A8f81
2~d21!

k2 e2h$W,W8%50. ~4.8!

The mutual integrability condition for Eqs.~4.1!, ~4.2! di-
rectly gives theA92A8h8 field equation of Eq.~2.11! after
Eqs. ~4.6! and ~4.8! are used. The remaining compatibilit
condition between Eqs.~4.2!, ~4.3! will be discussed below
It is an important constraint onW~f!.

We can now easily recover the other equations of mot
in Eq. ~2.11!. First we combine Eqs.~4.6! and ~4.7! and use
Eq. ~4.4! to obtain theA82 equation from Eq.~2.11!. Next we
take ther derivative of Eq.~4.6! and find

f92h8f85
2~d21!2

k4 e2h$W8,W9%. ~4.9!

The sum of this plusd times Eq.~4.8! yields exactly the
scalar equation in Eq.~2.11!. Our formalism is thus consis
tent with the field equations of AdSd-sliced domain walls.

The next step is to extract from the information above
small set of equations which determinef(r ), A(r ). The first
equation is just the square root of Eq.~4.6! with the sign
chosen to makef(r ) monotonically increasing:

f8~r !5
2~d21!

k2 ehAW82. ~4.10!

The second equation is a purely algebraic equation forA(r ),
obtained by equating the expressions forA82 obtained from
Eq. ~4.7! and from Eqs.~4.8!, ~4.10!:

e22A

Ld
2 5

4W2W822$W,W8%2

W82 . ~4.11!

The right side is non-negative by the Schwarz inequality
We now show that Eqs.~4.10!, ~4.11! are equivalent to the

first order set~2.12! provided thatW satisfies Eq.~4.4! and a
further condition given below. This then guarantees that
new system gives a solution of the original field equatio
~2.11!. In making the comparison with Eq.~2.12!, we inter-

pret W5AW2 and W85(d/df)W. First we must require
that the relations betweenW and the potentialV(f) in Eqs.
~2.11! and ~4.4! are equivalent. Thus we identify
10402
n

a

e
s

g25
$W,W8%2

4W2W82 . ~4.12!

The algebraic equation~4.11! then implies Eq.~2.13!.9 This
also shows that Eq.~4.10! is equivalent to thef8 equation in
Eq. ~2.12!.

It is also easy to obtain theA8 equation in Eq.~2.12!.
Substitute Eq.~4.10! into Eq. ~4.8! which gives

A852
$W,W8%

AW82
eh. ~4.13!

We then use Eq.~4.12! to recover the form in Eq.~2.12!.
However, there is a subtlety here. Namely, Eq.~4.13! is com-
patible with the expression forA8 obtained from the loga-
rithmic derivative of Eq.~4.11! combined with Eq.~4.10!
only if W~f! satisfies the constraint

TrW•W8TrW8•W92TrW82TrW•W9

TrW2TrW822~TrW•W8!2 5
k2

d21
.

~4.14!

The compatibility condition between Eqs.~4.2! and ~4.3!
provides a simple direct constraint on the superpoten
W~f! which supersedes Eq.~4.14!. After use of Eqs.~4.9!
and ~4.5!, we find thatW must obey the following consis
tency condition:

FW8,
d21

k2 W91WG50. ~4.15!

This condition, which must hold for any potential, is a ne
essary condition for the existence of fake Killing spinors a
will be important in their construction below.

Since the Cartan subalgebra of su~2! is one dimensional,

W95a~f!W82
k2

d21
W, ~4.16!

wherea~f! is a real function of the scalar field. One can s
that Eq.~4.14! is trivially satisfied if Eq.~4.16! is inserted.
By taking the anticommutator of both sides of Eq.~4.16!
with W8, one finds that

a~f!5
k2

2~d21!W82 F ~d11!$W,W8%1
k2

2~d21!

]V

]f
G .

~4.17!

Equation ~4.16! implies that the matrixW9 lies in the
vector space spanned by matricesW andW8. Taking further
derivatives one can see that actually all derivatives lie in
same two-dimensional vector space. Thus, assuming an

9For the Janus solution discussed further in Sec. IV C the factog
appearing in Eq.~2.13! vanishes atr 50 and has to be therefor
extended as an odd function to negativer. This amounts to setting

g52$W,W8%/2AW2W82.
7-9
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icity, the superpotentialW~f! remains in a fixed subspace fo
all values off. This allows us to make the convenient gau
choice

W5S 0 v̄

v 0 D . ~4.18!

In this gauge the consistency condition~4.15! reduces to

v̄8v92v8v̄9

v̄v82vv̄8
5

k2

d21
. ~4.19!

It is quite remarkable that we have replaced the sys
~2.12! by the simpler set~4.10!, ~4.11! in which only one
integration is required given the superpotentialW~f!. How-
ever, the conditions~4.4!, ~4.16!, ~4.17! which determine
W~f! from V(f) are not necessarily easy to solve, as
discuss below. It appears possible to shift the strategy
follows. First obtain a superpotential which satisfies E
~4.16! and use Eq.~4.17! to define a potential. The
AdSd-sliced domain wall then obtained from Eqs.~4.10!,
~4.11! will be stable.

We may summarize the results above as follows. If
matrix superpotentialW~f! satisfies Eqs.~4.15! and ~4.4!,
then any solution of Eqs.~4.10!, ~4.11! satisfies the field
equations~2.11! for AdSd-sliced domain walls. The Killing
spinor equations~4.1!–~4.3! are then mutually consistent an
we should be able to find the Killing spinors.

B. Explicit Killing spinors

Let «K denote a conventional Killing spinor of AdSd
which satisfies10

F¹ i
AdSd1

1

2Ld
G i G«K50. ~4.20!

For d54 there are eight independent«K . For each indepen
dent«K , there is an su~2! fake Killing spinor of the form

«5e~1/2!AS v̄8

v8
0

0
v8

v̄8

D 1/4

S ~ i 1G r̂ !«K

2~11 iG r̂ !«K
D . ~4.21!

One can check directly that the defining conditions~4.1!–
~4.3! are satisfied. For this purpose one needs the follow
formulas:

2A8

f8
52

k2

d21 S v

v8
1

v̄

v̄8D , ~4.22!

]fS log
v8

v̄8D52
k2

d21 S v

v8
2

v̄

v̄8D , ~4.23!

10In this equationG i5ēiâG â is an AdSd gamma matrix.
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e2A

Ld

1A8e2h22v̄Av8

v̄8
~4.24!

which follow easily from Eqs.~4.6!–~4.8! and ~4.19!. Note
that the prime onv andv̄ means a derivative with respect t
f, whereas the prime onA or f means a derivative with
respect tor. The fake Killing spinor bilinears«̄1g i«2 ~with
«1Þ«2) span the set of Killing vectors of the AdSd isometry
group SO(d21,2), as they should.

C. W„f… for the Janus solution

In this subsection we analyze the conditions which de
mine W~f! in more detail and show that there is a soluti
which generates the solution of Ref.@12# and thus establishe
its stability. Inserting the ansatz

v~f!5w~f!eiu~f! ~4.25!

into Eqs.~4.19! and ~4.4! one finds

w821w2u822
dk2

d21
w25

k4

2~d21!2 V~f!,

2w82

w2 1
u9

u8

w8

w
2

w9

w
1u825

k2

d21
or u850.

~4.26!

Eliminating u from the system of equations we find

XX92
d11

2d
X821

d12

2d
k2V8X82k2S V91

2k2

d21
VDX

22k2X25
k4

2d
V82, ~4.27!

where we have introduced

X~f!52d~d21!w21k2V. ~4.28!

For aconstantpotentialV5V0 this is an autonomous differ
ential equation which can be solved by standard method11

One takes as a new independent variableX and new depen-
dent variableu5X8. Then usingd/df5u(d/dX) we find a
first order linear ordinary differential equation~ODE! for u2,

X

2

d

dX
~u2!2

d11

2d
u22

2k4

d21
V0X22k2X250.

~4.29!

Solving this equation and passing back to the original va
ables we findX(f) defined implicitly by

11For an exponential potential, we can writeX5VY and again
obtain an autonomous equation forY.
7-10
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Ad21

4dk2 E
0

X dx

Ax22k2V0x2bx~d11!/d
5f`2f,

~4.30!

wheref` is the boundary value of the field atr 51`. We
have fixed the shift invariance of Eq.~4.29! by requiring that
X(f50)5xmin , wherexmin is the smallest positive root o
the denominator in Eq.~4.30!. Equation~4.30! thus defines
X(f) for f>0 only. It can be continued, however, as
evenC` function to negativef.

As we shall show below the integration constantb is re-
lated to the parameterb of the Janus solution by Eq.~4.40!.
Once we have obtained the magnitudew we can find the
phaseu simply by an integration

u`2u5
Ab

2
E

0

X dxx~d11!/2d

~x2k2V0!Ax22k2V0x2bx~d11!/d
.

~4.31!

From Eqs.~4.28!, ~4.30!, ~4.31! one can find the behavior o
the superpotential asf→f` , namely,

X.
k2d2

2L2 ~f2f`!2,

w.
1

2L
1

k2d

4L~d21!
~f2f`!2,

u.u`2
Abd

2d11
S 2L2

d~d21!
D 3/2S k2d2

2L2 D 111/2d

uf2f`u211/d.

~4.32!

Plots of the magnitude and the phase of the superpote
are shown in Figs. 2 and 3.

Let us now demonstrate that the above fake superpote
does indeed generate the Janus solution. From the defin
~4.28! and the relation~4.4! we find easily

FIG. 2. Plot of the magnitudew(f) for d54, L51, and
b50.1.
10402
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W25
1

2d~d21!
X1

1

4L2 , ~4.33!

W825
k2

2~d21!2 X, ~4.34!

$W,W8%5
X8

2d~d21!
. ~4.35!

The scale factor can then be calculated from Eqs.~4.11! and
~4.30!:

e22A5Ld
2 2b

d~d21!
X1/d. ~4.36!

To facilitate the comparison let us choose a coordinate
which the dilaton is linear in the coordinater. In particular
we takef(r )5r /kL. Clearly this can be achieved for th
Janus solution since the dilaton is a monotonic function
the radial variable. Usingf851/kL we find using Eqs.
~4.10! and ~4.34!

e22h52L2X. ~4.37!

From Eqs.~4.36! and ~4.37! we see thath0[h2dA is a
constant and is given by

e2h05
1

2L2 S 2bLd
2

d~d21!
D d

. ~4.38!

Taking a logarithmic derivative of Eq.~4.36! we find

A852
1

2d

X8

X
f8

5
1

L
A 1

d~d21!
1e2dA12h02S L

Ld
D 2

e2~d21!A12h0.

~4.39!

FIG. 3. Plot of the phaseu~f! for d54 andb50.1.
7-11
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Comparing this first order ODE with the equation obeyed
the Janus solution following from Eq.~2.11! in the same
linear dilaton coordinates, we see that they are indeed
same provided we identify

b5
d~d21!

2Ld
2 S 2L2

bd~d21!
D 1/d

. ~4.40!

Note that the coordinate independent definition ofb is

b5
k2L2

d~d21!
f82e2dA22h, ~4.41!

which is indeed a space-time constant as follows from
equation of motion in Eq.~2.11!.

Finally let us mention, that in addition to the Janus so
tion, there are other simpler solutions to the equations~4.26!.
In particular there are two solutions with constant magnitu

X50, w25
1

4L2 , u~f!5const,

X5
d

2L2 , w25
1

4L2

d

d21
, u~f!56

k

Ad21
f.

~4.42!

The first solution is just the standard AdSd11 space, whereas
the second solution leads to an interesting linear dila
background discussed further in Sec. VI. Equation~4.27!
also admits a cosh-type solution

X5
d~d21!

2L2 sinh2S kA d

d21
~f2f0!D ,

w25
1

4L2 cosh2S kA d

d21
~f2f0!D ,

u5u0 . ~4.43!

However, Eqs.~4.10! and ~4.13! then generate the singula
profiles found for flat dilaton walls in Sec. II A. This cas
appears to be a degenerate limit of our equations, since
right-hand side of Eq.~4.11! vanishes, implying thatLd
→`.

D. EWN for deformations of the Janus solution

We have demonstrated above the existence of an s~2!
superpotentialW~f! for which Eqs.~4.10!, ~4.11! generate
the AdS4-sliced domains wall of Ref.@12# and its
d-dimensional generalizations. This means that these s
tions enjoy non-perturbative gravitational stability with r
spect to fluctuations of the metric and dilaton. To compl
the discussion we now show that the surface integral~3.19!
form of EWN is well defined on the boundary of the coord
nate chart~2.20! in Sec. II. We specify the behavior of metr
and dilaton perturbations, such thatEWN computes a finite
linear combination of charges of the AdSd isometry group.
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The treatment of Sec. III applies with few changes
AdSd-sliced domain walls. We consider perturbed solutio
of the form~3.1! with background metric~2.20! and accom-
panying dilaton. The background frame forms are

Em̂5LeA~m!dm, ~4.44!

El̂5
LeA~m!

cosl
dl, ~4.45!

Et̂5
LeA~m!

cosl
dt, ~4.46!

Eâ5
LeA~m! sinl

cosl
eâ, ~4.47!

whereeâ is a frame onSd22 , a51,...,d22.
The boundary consists of the three components show

Fig. 1~b!.
~1! The portion atm52m0 with 0,l,p/22d and vol-

ume form

dS tm5L2e22A~m! coslEl̂∧E1̂∧¯∧Ed22̂, ~4.48!

whered is a small positive number.
~2! The keyhole surrounding the corner on whichl

5p/22d and2m0,m,m0 with volume form

dS tl52L2e22A~m! cos2 lEm̂∧E1̂∧¯∧Ed22̂. ~4.49!

~3! The portionm5m0 with 0,l,p/22d and volume
form ~4.48!.

An important change is that the Killing spinors to be us
in Eq. ~3.19! are those given in Eq.~4.21! in which we now
replaceG r̂→Gm̂ and definej5(v8/v̄8)1/4. Now letG denote
any matrix of the Dirac~Clifford! algebra ind dimensions. It
is easy to compute the Killing spinor bilinears

«̄1G«252eAj̄j«̄K1~G2Gm̂GGm̂!«K2 , ~4.50!

«̄1GW«252eA«̄K1$Re~j2v̄ !@Gm̂,G#

2Im~j2v̄ !~G1Gm̂GGm̂!%«K2 . ~4.51!

The first equation tells us that«̄1Gr«2 is a Killing vector of
the (d11)-dimensional space-time with vanishing rad
component (r→m). Transverse components (r→ i ,
i 50,...,d21) are proportional toeA«̄K1G i«K2 , which is an
AdSd Killing vector, and the full set of these is spanned
we vary«K1 , «K2 .

Let us look first at the last term of Eq.~3.19!, which
involves the tensor bilinear«̄1GnrW8«2 . The second equa
tion in Eq. ~4.50! applies if we changeW→W8 on both

sides. The productj2v̄85Av̄8v8 is real, so only the com-
mutator term in Eq.~4.50! contributes. On the keyhole pa
of the boundary, we find@Gm̂,G tl# which vanishes. On the
boundary components atm56m0 , we find @Gm̂,G tm#
522Em̂mG t. The tensor bilinear thus reduces to a multip
of the energy Killing vector. Thus the last term of Eq.~3.19!
7-12
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certainly vanishes on the keyhole, and we now show tha
vanishes on the other two boundary components by exam
ing the behavior of the integrand asm→6m0 . We note the

behavior AW82;f̄8;e2dA(m), which follows from Eq.
~4.10! and the property of dilaton in the solution of Ref.@12#
noted above our Eq.~2.16!. Using Eqs.~4.44!, ~4.50!, we
find that the factor«̄1G tmW8«2dS tm is constant on the
boundary. However, the normalizable dilaton fluctuati
vanishes on the boundary at the ratew;(m7m0)d

;e22A(m). Thus the last term of Eq.~3.19! vanishes for our
dilaton domain walls.

Let us look next at the terms of Eq.~3.19! involving
«̄1GrsW«2dSnt with various index assignments. On th
boundary componentsm56m0 , the productj2v̄ is real, as
follows from Eq.~4.24! or ~4.32!. Thus only the commutato
term contributes in Eq.~4.50! and it is nonvanishing for in-
dex combinationsGm i only. It then follows from Eqs.~4.44!,
~4.50! that «̄1Gm iW«2 vanishes ase2A(m), and is propor-
tional to an AdSd Killing vector. Clearly,grs;e22A(m). The
volume element behaves asdS tm;e(d11)A, while normaliz-
able metric fluctuations vanish at the ratehrs;e(22d)A(m).
Putting these factors together, we see that the terms u
consideration give a finite contribution to the energy o
deformed domain wall.

To analyze the behavior of the tensor bilinear terms
keyhole, we must take the limitd→0, which is the boundary
limit cos(l)→0 on the AdSd slices. We discuss this limit firs
for the bulk space-time AdSd11 with AdSd slicing and then
adapt the argument to the dilaton domain wall geometry.

In Sec. II of Ref.@12#, global metrics for AdSd11 with
both standard and AdSd slicing are both derived from the
embedded hyperboloid descriptionX0

21Xd11
2 2X1

22¯Xd
2

5L2. The two metrics are

ds25
L2

cos2 u
~2dt21du21sin2 udVd21

2 !

5
L2

cos2 m cos2 l
~2dt21cos2 ldm21dl2

1sin2 ldVd22
2 !. ~4.52!

Comparison of the conformal factors yields one relation
tween the two sets of coordinates, namely, cou
5cosm cosl. A normalizable mode of a scalar field tran
forming in a representation of the isometry group SO(d,2)
with lowest weightD of the SO~2! generator~the energy!
vanishes at the rate (cosu)D on the AdSd11 boundary. When
expressed in terms of the coordinates for AdSd slicing it
therefore vanishes at the rate (cosl)D as l→p/2. For the
massless dilatonD5d. We need the corresponding result f
metric fluctuationshmn . In the ‘‘axial gauge’’hmm5hm i50,
hi j is related byhi j 5e2Ah̃i j to the field h̃i j , whose wave
equation is the same as that of a massless scalar. Thus
malizable modes ofh̃i j ;(cosl)d.

We use this rate to obtain the behavior of the tensor te
of Eq. ~3.19! as the keyhole boundary contribution shrin
toward the corner. We need the fact that the AdSd Killing
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spinors behave as«K;(cosl)1/2, and that the volume ele
ment behaves asdS tl;(cosl)2d. It is convenient to work in
the axial gauge. Detailed inspection of the various ten
components in Eq.~3.19! shows that they vanish at least a
fast as (cosl)3. The analysis so far is valid for AdSd11 .
However, the domain wall space-time shares the isom
SO(d21,2) and may be viewed as a small distortion
AdSd11 when the parameterb of Eq. ~2.14! is small. There-
fore we expect at most a small modification of the expon
in the behaviorhi j ;(cosl)d we assumed. Thus we reach th
conclusion that the contribution of tensor terms on the k
hole part of the boundary vanishes asd→0.

It is now straightforward to analyze the boundary beha
ior of the terms in Eq.~3.19! involving the Killing vector
bilinears. Using the asymptotics of the metric fluctuationshi j
discussed above, we find a vanishing contribution from
keyhole at the rate (cosl)3 asd→0 and a finite contribution
from the boundary components atm56m0 .

In summary, we have shown thatEWN computes a linear
combination of the AdSd charges for any deformation of th
dilaton domain wall metric solution which satisfies th
asymptotic conditions stated above. The energy of suc
deformation is positive. The keyhole part of the bounda
does not contribute.

V. STABILITY WITH ADDITIONAL SCALAR FIELDS

The stability argument developed in Sec. IV strictly a
plies to models with action~2.1! containing only a single
scalar field. At the formal level it is straightforward to ad
additional scalars, but the equations~4.4!, ~4.16!, ~4.17!
which determine the superpotentialW become partial differ-
ential equations in field space, and it is more difficult
show thatW exists. However, it is important to extend ou
results for the stability of the Janus solution of type-IIB s
pergravity to include the additional fields which appear
compactifications to five dimensions. In this section we d
velop a reasonably general stability criterion, related to
approach of Ref.@4#. We then test this criterion in severa
known consistent truncations of type-IIB supergravity whi
involve the negativem2 scalars with potentials unbounde
below. These fields are certainly the main threat to stabi
and it is gratifying that the test is satisfied in all cases exa
ined.

The new criterion applies to dilaton domain walls in the
ries containing the dilatonf plus additional scalarsca with
action

S5E dd11xA2gF 1

2k2 R2
1

2
]mf]mf

2
1

2
]mca]mca2V~ca!G . ~5.1!

We assume that the potentialV(ca) does not depend on th
dilaton, and that there is a scalar superpotentialU(ca) which
is related toV by ~with U ,a[]U/]ca)

V5pU,aU ,a2qU2. ~5.2!
7-13
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In our conventions, the constants are given by

p5
2~d21!2

k4 , ~5.3!

q5
2d~d21!

k2 ~5.4!

as in Eq.~3.11!, but we allow different values to facilitate
comparison with models in the literature which use differe
conventions, butp,q.0 always. In the models we stud
below U(ca) is a true supergravity superpotential genera
in the truncation from 10 to 5 dimensions, but it could al
be a fake supergravity superpotential obtained as a solu
to Eq. ~5.2! viewed as a partial differential equation fo
U(ca). We also assume that

U ,aucb5050, ~5.5!

V0[V~0!52
d~d21!

2L2k2 ~5.6!

so that the equations of motion of the enlarged system h
the same AdSd-sliced dilaton domain wall solution discusse
in Sec. II with all ca50. We letW~f! denote the superpo
tential obtained in Sec. IV for the dilaton domain wall.

Our strategy@4# is to find a new superpotentialW(f,ca)
to be inserted in the covariant derivative~3.5! of the Witten-
Nester integral. The new form should have the property t
the last term in Eq.~3.8! is replaced by

p~W,f!21pW,aW,a2qW22V~ca!<0. ~5.7!

The last term of Eq.~3.8! will not vanish in general as it doe
for a true adapted superpotential, but it is non-negative
the critical pointca50 it will vanish, thus guaranteeing sta
bility.

It is quite straightforward to show that the empirical
inspired form12

W~f,ca![AW~f!21U~ca!21
V0

q
~5.8!

satisfies

p@~W,f!21W,aW,a#2qW22V~ca!

52
pW82

qW2 ~pU,aU ,a1qU21V0!. ~5.9!

Thus nonperturbative stability will hold if

pU,aU ,a1qU21V0>0. ~5.10!

12We take the explicit matrix square root asW
[WA111/W2@U(ca)21V0 /q#.
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Furthermore, sinceW(f,0)[W(f), the energy of the dila-
ton domain wall background, evaluated usingEWN with the
new ¹̂ operator, vanishes, and this background has the s
AdSd Killing spinors found in Sec. IV.

As we will see below, the inequality~5.10! is not a gen-
eral property of superpotentials in supergravity. However
is quite simple to check that it is valid in several know
consistent truncations of type-IIB supergravity which invol
scalars of negativem2 and potentials unbounded below.

The simplest model contains a single scalar whose m
namely,m2524, saturates the BF bound. It is a special ca
@22# of more general models@26# considered in the frame
work of gaugedN58 supergravity@27,28#. With k2L251,
the potential is

V~c!522e2c/)24e2c/), ~5.11!

and one easily finds the superpotential@using Eq.~5.3!#

U~c!5
1

3
ec/)1

1

6
e22c/). ~5.12!

One can check directly that Eq.~5.10! is satisfied.
The general model of this type@26# involves five indepen-

dent scalars withm2524. The potentials is a sum of expo
nentials of linear combinations of these fields. A special c
involving two nonvanishing scalars was also derived fro
the viewpoint of consistent truncations of the type-IIB theo
in Ref. @29#. The analysis of these models is somewhat m
involved, but one can also show that Eq.~5.10! is satisfied.
Since the left-hand side of Eq.~5.10! is bounded, it is enough
to check the inequality for the local minima and at infinit
Given the explicit form of the superpotentialU one can eas-
ily show that the matrixpU,ab1qdabU is strictly positive
definite and hence all the minima are zeros ofU ,a which
greatly simplifies the analysis.

A different subtheory of gaugedN58 supergravity with
potential unbounded below contains@30# scalars with masse
m2524 and m2523. The simplest version contains tw
fields, calledc1 , c3 and the superpotential

U;
1

4r2 @cosh~2c1!~r622!23r622# ~5.13!

andr5exp(c3 /A6). Using the conventions of Ref.@30#, one
also finds that Eq.~5.10! holds. A more general version with
three negativem2 scalars was studied numerically. Again E
~5.10! is valid.

There do not appear to be any consistent truncations
type-IIB supergravity which involve both positive and neg
tive m2 scalars, but several involve only positivem2 fields.
The simplest of these@31# contains the dilatonf and the
breathing modec with mc

2532. The potential, which is
bounded below, and superpotential are
7-14
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V~c!5
1

k2L2 @4e8ac210e~16a/5!c#

U~c!5
1

3L Fe4ac2
5

2
e~8a/5!cG

a5
1

2
A5

6
k. ~5.14!

It is easy to see that in this case the inequality~5.10! is
violated for large negativec. However, the superpotentia
W~f,c! which provided the appropriate bound for trunc
tions with negativem2 need not work universally. For th
breathing mode model, we can simply take the matrix sup
potentialW~f! of Sec. IV. The quantity

pW822qW22V~c! ~5.15!

which appears in Eq.~3.8! is negative for all nonzeroc,
which is sufficient to establish stability.

It is curious to note that another simple candidate sup
potential, namely the productW[W(f)U(ca)/U(0), pro-
duces the inequality

p~W,f!21pW,aW,a2qW22V~ca!5pW82U2>0
~5.16!

of the wrong sense for stability in all the models above.
Further improvements of the arguments above may w

be possible. However, we shall be content for the pres
with the nonperturbative stability arguments presented
the Janus solution which involve fluctuations of the metr
the dilaton, and several examples of negativem2 scalars.

VI. A CURIOUS LINEAR DILATON SOLUTION

In Eq. ~4.42! of Sec. IV, it was noted that for constan
potentialV(f)5V0 of Eq. ~2.3!, there is a simple su~2! su-
perpotential

W~f!5
1

2L
A d

d21
S 0 z̄~f!

z~f! 0
D , ~6.1!

z~f![expS ik
f

Ad21
D ~6.2!

which appears among more complicated implicit solutio
As a simple consistency check of our formalism we now fi
the solutionf(r ), A(r ) of the first order flow equations
~4.10!, ~4.11! for this W~f! and show that it is a solution o
the second order equations of motion~2.11! or, equivalently,
Eq. ~2.2!.

First we computeW8(f), note that$W(f),W8(f)%50,
and that the invariants

W25
d

4L2~d21!
, ~6.3!
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W825
k2d

4L2~d21!2 ~6.4!

are correctly related to the potential by Eq.~4.4!.
The flow equation~4.10! gives the solution

f~r !52
Ad

kL
~r 2r 0!. ~6.5!

The compatibility condition~4.8! implies thatA850, and Eq.
~4.11! then gives~for Ld5L)

e2A5
d21

d
. ~6.6!

The linear scalar obviously satisfies the scalar equation
Eq. ~2.11!, and it is easy to check that the second equation
Eq. ~2.11! is also satisfied.

The line element~1.2! of this solution is

ds25
d21

d
ḡi j ~x!dxidxj1dr2, ~6.7!

whereḡi j (x) is an AdSd metric. Thus we find the nonsingu
lar geometry AdSd^ R with accompanying linear scalar. On
can verify directly that Eq.~2.2! is satisfied.13 It would be
interesting to study the stability of this solution who
boundary structure differs from that considered in previo
sections.

For d54 this solution can be lifted to type IIB by adjoin
ing anS5 and self-dual five-form. The full system is

ds10
2 5

3

4
ḡi j ~x!dxidxj1dr21 l 2dV5

2, ~6.8!

f~r !52
2

kL
~r 2r 0!, ~6.9!

Fabgde5s0«abgde , ~6.10!

wheredV5
2 is the metric on the unit five-sphere, andabgde

are five-sphere coordinates. We require that this satisfy
ten-dimensional equations of motion

1

k2 RMN5]Mf]Nf1
1

96
FM PQRSFN

PQRS, ~6.11!

which quickly gives the scalesl 5L and s054L4/k. Until
stability is established, it is premature to speculate abou
possible physical application of this simple nonsingular
lution of type-IIB supergravity.

13This solution was found previously in Ref.@32# where linearized
stability analysis was performed. The solution was also found
Ref. @33#. We thank Alexandros Kehagias for pointing this out to u
7-15
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APPENDIX A: CONNECTION ONE-FORMS
AND CURVATURE TENSOR FOR DOMAIN WALLS

Let us start with flat domain walls ind11 dimensions
with the metric ansatz

ds25e2A~r !h i j dxidxj1e2h~r !dr2. ~A1!

We introduce the vielbeins

Eî 5eAdxi , Er̂5ehdr. ~A2!

The hat over an index indicates that it is a frame index. T
range of indicesi and j will be always taken 0,...d21. The
spin connection one forms are given by

v î r̂5A8e2hEî , v î ĵ50. ~A3!

Nonzero components of the Ricci tensor~in curved indices!
are then

Ri j 52h i j ~dA821A92A8h8!e2A22h,

Rrr 52d~A91A822A8h8!. ~A4!

Now, let us consider AdSd-sliced domain walls with the
metric

ds25e2A~r !ḡi j dxidxj1e2h~r !dr2, ~A5!

where ḡi j is a metric on the AdSd slices. In this case ou
choice of vielbeins is

Eî 5eAēî , Er̂5ehdr, ~A6!

where we have denoted withēî the vielbein for AdSd . The
spin connection is now

v î r̂5A8e2hEî , v î ĵ5v̄ î ĵ , ~A7!

wherev̄ î ĵ is the spin connection on the AdSd slices, whose
explicit form is not needed. Nonzero components of
Ricci tensor are given by

Ri j 5R̄i j 2ḡi j ~dA821A92A8h8!e2A22h,

Rrr 52d~A91A822A8h8!, ~A8!

where
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R̄i j 52
d21

Ld
2 gi j ~A9!

is the Ricci tensor of AdSd space of scaleLd .

APPENDIX B: FURTHER INFORMATION
ON JANUS DOMAIN WALLS

1. Explicit form of solution for dÄ2

The metric for AdS2 sliced domain walls in AdS3 in the r
coordinate takes the form

ds25e2A~r !dsAdS2

2 1dr2. ~B1!

The explicit solution of the equations of motion is

A~r !5
1

2
logS 1

2
~11A124b cosh 2r !D

f~r !5f01
&

k
arctanh

~12A124b!tanhr

2Ab
.

~B2!

This is the solution forL5Ld51. To restore dependence o
the scaleL, one just replacesr by r /L. The relation of the
constantb to c defined byf85ce2dA is

b5
c2k2L2

d~d21!
. ~B3!

Two coordinate independent features are evident. First
critical value of b beyond which the geometry contains
naked singularity isb5 1

4 . Second the asymptotic values off
on the two components of the boundary are

f6`5f06
arctanh2Ab

&k
. ~B4!

2. Radial coordinate m

After change of variable, the integral~2.21! which defines
the wall profile can be written as

m5E
x

xmin
dx

1

A12x21bx2d
, ~B5!

wherexmin is the smallest positive root of the polynomial
the denominator. The maximum value ofm is

m05E
0

xmin
dx

1

A12x21bx2d
. ~B6!

Series expansion in the parameterb gives

xmin511
1

2
b1

4d21

8
b21O~b3!. ~B7!
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Calculating the expansion ofm0 to orderb2 and arbitraryd it
is easy to guess the form of the expansion to all ordersb

m05
p

2 (
n50

`
bn

n!

GS nd1
1

2D
G@n~d21!11#GS 1

2D . ~B8!

We have verified this formula to all orders inb analytically
for d51,2 and numerically ford54. The convenient form

m02m5E
0

x

dx
1

A12x21bx2d
~B9!

yields the series expansion ofm in terms ofx5e2A

m02m5arcsinx2b
x2d11

2~2d11! 2F1S d1
1

2
,
3

2
,d1

3

2
,x2D

1O~b2x4d11!. ~B10!

Inverting the series we find

e2A~m![x5sin~m02m!1
b

2~2d11!
sin2d11~m02m!

3cos~m02m! 2F1S d1
1

2
,
3

2
,d1

3

2
,sin2~m02m! D

1O@b2 sin4d12~m02m!#. ~B11!

Near the boundarym'm0 the form of the scale factor is

e2A~m!'
1

sin2~m2m0!
@11O~m2m0!2d#. ~B12!
s.

gy
d

.

10402
The equations above defineA(m) in the region 0<m
,m0 . However, as discussed in Sec. II, it can be extende
an evenC` function to the full range2m0,m,m0 .

In the special cased52 we can integrate Eq.~B9! and
invert to obtain the explicit solution

e2A~m![x5gsnS 1

g
~m02m!,Abg2D , ~B13!

where

g5xmin5
&

A11A124b
~B14!

is the smallest positive root of the equation 12x21bx450
and sn(u,k) is the standard Jacobi elliptic function. Note th
the metric is doubly periodic14 in the coordinatem. The real
period is

4gK~Abg2!. ~B15!

One may easily check using the definition of the compl
elliptic integral that this is the same as 4m0 . The period
clearly blows up asb approaches its critical value14 which
corresponds tog5&.

14Real periodicity inm can be proved to exist for all dimension
The second complex period is special tod52 and it would be
interesting to see if it has a deeper meaning.
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