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A Hamiltonian treatment of the gravitational collapse of thin shells is presented. The direct integration of the
canonical constraints reproduces the standard shell dynamics for a number of known cases. The formalism is
applied in detail to three-dimensional spacetime and the properties of thé)@imensional charged black
hole collapse are further elucidated. The procedure is also extended to deal with rotating solutions in three
dimensions. The general form of the equations providing the shell dynamics implies the stability of black
holes, as they cannot be converted into naked singularities by any shell collapse process.
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[. INTRODUCTION spacetimes. Finally, Sec. VIl is devoted to brief concluding
remarks.

The gravitational collapse of thin shells was beautifully
discussed in the classic paper of |SFE1='J|. The gveneraliza- II. THIN SHELL FORMALISM RECONSIDERED
tion to include electric charge was given by Kuch2}, and _ ) ) )
an interesting further development and applications were The standard treatment for dealing with thin shells in gen-
given by Ipser and Sikivid3]. In all these treatments the €ral relativity, arising from the seminal work of Isral],
analysis is based on the discontinuities in the intrinsic and'@s provided a useful tool to tackle a large variety of cases,
extrinsic curvatures of the world tube of the collapsing mat-"anging from lower dimensional static black hole formation
ter as it is regarded as embedded in either its exterior or itto] t0 interesting recent applications in the analysis of the
interior. junction conditions for extended objects in Gauss-Bonnet ex-

In this paper we introduce, in addition to the intrinsic andteénded gravitysee, e.g.[6]). o
extrinsic geometry of the world tube, another structure, The standard procedure conS|_dersat|meI|ke hypersurface
namely, a foliation of spacetime by constant time surfaces ¢, generated by the time evolution of the shell. This hyper-
which intersect the tube. The reason for doing this is that théurface divides the spacetime into two regions, namely,
charges of the black hole which results from the collapse ofnd V_. Let & be the outer pointing unit normal to the
the shell are conserved quantities given by surface integra®orld tube which is spacelike, antl,y, the induced metric
at spacelike infinity, which are naturally treated in terms ofon the tube. Here, the indicesb=1, ...,(d—1) label the
the Hamiltonian formalisni4]. Furthermore, the local prop- tangent directions along the hypersurface. The coordinate set
erties of the horizon, such as its area, are also economicallyx”} describes the spacetime with a megig,, and another
treated in Hamiltonian terms. The formalism which emergesset{a®} represents the intrinsic coordinates of the induced
from combining the Israel treatment with the Hamiltonian geometry, related to each other by a transformation matrix
formalism is quite compact and permits one to economicallyes = dx*/da®. Any point on the spacetime shell trajectory
analyze a number of situations of interest. can be endowed with a local bagi&*,e4}. In this way, the

The plan of the paper is as follows. Sections Il and Il standard definition of intrinsic metric over the hypersurface
briefly review the Israel method for thin shell collapse andh,,=ejepg,, is recovered in terms of the spacetime metric.
the Hamiltonian formalism, respectively. Section IV applies The surface stress tens8y,, can be obtained from the
the canonical formalism to the gravitational collapse of avolume tensofT ,, as the limit process in the shell thickness,
spherically symmetric shell in a spacetime of arbitrary di-
mension and recovers and further clarifies results previously _ +
found in the literature. Section V studies the radial gravita- S= “mf
tional collapse in three dimensional spacetimes, including e=0
the electrically charged case. Section VI extends the treat-

ment to deal with angular momentum in three-dimensional 1he Projections of Einstein tens@,, along the normal
coordinate¢ and the remaining directions over the hypersur-

face, ¢ lead to a set of relations

T,,d¢. )

—&
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ZG§§=(d‘1)R(h)—(K2—KabKab), ©) here is equally valid for any value of the constant For
later purposesA is chosen as\=—(d—1)(d—2)/21? in
Gap="""YG,,+ (K ap—NapK) terms of the AdS radiuk

Taking a timelike Arnowitt-Deser-MisnefADM) folia-
1 . . ; ;
CKK Ehab(Kz_" KK, @ tion for the spacetimgl3], we write the line element as
ds?=— (N*)2dt?+g;; (N'dt+dx)(Nldt+dx)),  (9)
Here, (“"YR(h) stands for the Ricci scalar of,, andK ,, is
the extrinsic curvature ot ;.
Integrating Eq.(4) across the shell, the Lanczos equation

whereg; is the spatial metric and the functiohs and N’
represent the time lapse and the spatial shift, respectively.
The quantitieN* andN' play the role of Lagrange multipli-

is obtained, . !
ers of the constraints{, ~0 andH;~0, so that the gravita-
= tional action can be cast in Hamiltonian form
Yab— Napy=87G Sy, ©)
relating the discontinuity of the extrinsic curvatung,, |=J dtd® *x(7'g; —N*H, —N'H)), (10
=[Kap]=Ka,—K,, and its tracey, with the projected sur-
face stress tens@,, where’H, and?; are given by the formulas

From Eq.(2) we see that the jump across the shell leads to

the continuity equation fo8,, 1 ) 1 _
'HL=——(7T”7T”— — (77:)2
o=~ [T, 84" 1= —[Tagl. (6) kg (d-2)
(d-1) _
For many cases of physical interest, we consider a perfect + K\/a( R(g)—2A)+ @m ; (12)
fluid with a bulk stress tensor J.

T,,= —7(h,,+ o(X), 7 . .
pr= Loty 7, +U,U,) JOX) @ in the presence of matter fields. Hef& VR(g) stands for

. . . . icci i o ij
whereu® is the shelld-dimensional velocity, and- and -  the Ricci scalar of the spatial metrg; and 7" are the
onjugate momenta.

stand for the surface energy density and tension, respectivel?.
The delta function represents a matter distribution localized
at the boundary oﬁg_ IV. NONROTATING CASE

Even though the Israel treatment for thin shells has pro-
ceeded along a line of increasing success on the understan(qi
ing of gravitational collapse, the complexity brought about,du
for instance, by adding angular momentum can make this
method hard to use in practice.

On the other hand, some authors have proposed altern
tive approaches, based on the canonical formalism, to re
erive the thin shell dynamics obtained by the Israel metho tandard formalism. It will be shown that this treatment also

in-a number of case¥-12. Following th'.s line, we present implies the stability of the event horizon in a generic case.
a simple method to reproduce the equations of motion for the A spherically symmetric collapsing shell has static inte-

radial cpllapse_ of thin s_heIIs., but that can al_so be extended for and exterior geometries described by Schwarzschild-like
deal with rotating solutions in three-dimensional spacetimes

. ) : . oordinates
In the next section, we show that the direct integration ofC
Hamiltonian constraints provides a complete set of equations ds® = — N2 (r)f2 (r)dt2 +f;2(r)dr?+ rdeS_z

By radial collapse, it is possible to add mass and electric
arge to an already existirign)charged black hole, or pro-

ce the black hole itself over a vacuum state.

In a similar procedure to the ones developed in Refs.
9,11] for massive shells, here we show that the integration
f the Hamiltonian constraints along an infinitesimal radial
istance on a constant-time slice reproduce the results of the

equivalent to the ones obtained from the standard thin shell (13
method.
where the matching condition for the time is given by the
. HAMILTONIAN TREATMENT OF THIN choiceN. =1. The radial coordinate is continuous across
SHELL COLLAPSE the shell, because it measures timrinsic) area of the shell,

) o . ) ) ~ which is the same as looked at from the inside and the out-
The Einstein-Hilbert action with cosmological constant in gjge.

d dimensions is written as The induced metric of the world tube is simply the one of
a (d—2)-sphere,
_ dy [ _
= "f xy=Te(R=2A), ® d$?=— dr2+ R¥(1)d03_,. (14

with the constant in front of the gravitational action given as  For spherical symmetry, the Hamiltonian generdktor
k=1/2(d—2)Q4_,G [14]. The general approach presentedbecomeg15]
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Vg o [(d-3) (2" (d—1)
M=T30, .6, 2 TR
+gT, ) . (15)

We are going to integrate out the constrait=0 across
a radial infinitesimal length centered at the shell position
=R(7) at a constant time, to express the discontinuities in
this component of the Hamiltonian in terms of | . It is
straightforward to prove that all the terms—but the radial
derivative—contribute with a finite value jump proportional  FIG. 1. The hypersurfaces; andX ; are defined by the normal
to &, and they can indeed be ruled out in the limit-0. vectorsn* and ¢*. The intersection betwee¥y and3; is the shell
Thus, the only nonvanishing contribution comes from theitself at the timet.
second term

and the delta function transforms in such a way that it gets an

+e(2)’ A(f?) +e additional “relativistic” factor 8(X)=(f?/a)8(r—R) and
N dr=——p—=204-56 ., T dr. the final form for the stress tens¢8) is
(16 T, =aod(r—R). (22)

In the right-hand sidéRHS) of the above equatior; | . ,
is given by T, , =T#n,n,, the contraction with the time- Integrating the above relation, the RHS represents the

J7ARS Al . .
like normal vector in the ADM foliatiomn ,=(—N*,0,0), mean value of the functiom as seen embedded in both
“ inside and outside spacetimes

that generates the sequence of constant-time surlaces
On the other hand, adapting another frame to the hyper-

surfaceX ;, we have a set of coordinat¢¥, X}. The tangen- ZQdszf

tial axis T that runs along the velocity* and the directiorX

goes along the spacelike norng#l, at whose origin the delta

+e
T,,dr=Q4 s0(a,+a_)G. (23

—&

function is located. In this way, Notice that the tension value does not appear on the
right hand side of Eq(23).
T, =T*n,n,={ou,u, —(h,, +u, u,)}5X). With these simple arguments, this method recovers and

(17) extends the dynamics for radial collapse computed using the
thin shell formalism[1-3]
Without loss of generality, we take a Schwarzchild-like

coordinate se*={t,r,¢'} for the outer descri_ption of a —AfZ(R):(Qd_ZRO-)(\/fi+R2+ \/f2_+R2)G_ (24)
shell collapse. Then we can computé={f ~2a,R,0} and
gM:{f—ZR,a'(j}' where the functiona is given by a For three spacetime dimensions, the same formula has
= JfZ+R2. Thus, we obtain an expression for H47) as been obtained by Steif and Pelgg] for the gravitational
seen from thd T,X} frame collapse of a dust thin shell.
Note, as is well known, that in order to regard E24) as
o? a first integral of the equation of motion f&(7), one needs
Tu=0f—2 8(X). (18)  to specify the density as a function of the tension. Re-

placing in the continuity equatiof6) the expression foB,},

. ) and taking the parallel components to the veloaify we
However, to carry out the integration overwe need to  payve

rewrite the delta function in the spacetime coordinate system

{tr. . . . . (ou®)jp— 7UR=0, (25
From the Fig. 1, any point on the shell is described by
both coordinate systems as which is the relation that provides the conserved quantities in
dt=u'd » the system. For example, for coherent dust one has that
t=udT+gdX, (19) RY~24 is a constant, whereas for a domain walls a con-

. ] stant. In the first case, the interpretation of E24) is quite
dr=u'dT+&'dX. (20) intuitive. For Schwarzschild-AdS black holes, the function in
the metric readsf?=1—(2GM/r% %) +(r?/1?), and the
termm=Q4_,R% ?¢ is the rest-frame mass, as seen by an
intrinsic observer. Hence, Eq4) reduces to

Integrating alongdr, on a time-constant ADM slic&,; (dt
=0), we get

dr  f? 1
ax ¢ —35——, (21 AM=>(a,+a_)m, (26)

a
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which relates the inertial mass to the semisum of the graviresulting in the equation
tational mass at each side of the shell. For Minkowskian
spacetime, the factar becomes the special relativity fac-

tor, thanks to the useful identity?=1+ (dR/d7)%=[1
—(dR/dt)?] L.

To Comp|ete the present picture of radial Co||apse' it isThe integration of this relation gives the diSCOﬂtinUiW in the
necessary to analyze the consistency of the remaining noifiunction « across the shell
vanishing components of the Hamiltonian.

The angular components of the constrdit?) are identi- a;—a-=—Q4,RoG. (33
cally zero. In common cases, the condition of spherical sym-
metry is sufficient to ensure that the radial constr&if{f)
vanishes. However, here it is different from zero because
is proportional to the radial velocity. One can expagtto be

d . )
a(ar)=—ﬂd,2rrcr§(r—R)G. (32

In the context of standard thin shell formalism, this equa-
tion comes from the discontinuity in the normal acceleration
across the hypersurfags. . However, this does not stand for

an independent relation from the energy conservation law

proportional to7¢, , since Eq.(11) already provides the (54 gjnce it can also be recovered by multiplying that equa-
equation of motion foR(). Itis interesting to see explicitly 4 by (@, —a_).

thqt _this ingleed_ occurs. The proof alsq illustrates again how Equation(24) clearly has a limited range of validity in the
efficiently in this approach one obtains a feature a"ead%chwarzschild-like radial coordinaf® since — (Af2) must

known in the Israel m‘?“‘?’d- s be strictly positive. For instance, for radial collapse of a mas-
Computing the extrinsic curvature by definition in terms gjye thin"shell, the LHS of this relation is just the difference
of the Lie derivative, we get of the outer solution mass with respect to AdS spacetime,
1 1 which is positive for all the solgtions of phy;ical in.tgrest. In
Kij=— E,/;ngij == 50,0 27 a more general case, there might be a radial position where
Af“ vanishes. However, the same formula, written in the
Here 9, =n*3,, defines the derivative along the ADM time- form of Eq. (33), tells us that the shell must bounce back

like normaln®. This requires the projection of the vectot  before this happens, because R0
on the shell frame, which is decomposed on the basis _
{u#, &*} asn*=au*+bé&*, on the intersection between the fr=1-==042RoG. (34

shell hypersurface, and the constant-time slicg;. Pro-  aq js well known, the analysis of the shell motion can be
jecting between the. frames, we obtain the coefficiemts carried out until the point wheré? =0. The change in the
=f *a andb=—f"'r, which allows us to express the nor- signature of the metric on the outer side leads to an incon-
mal derivative as sistency in the matching conditions on the shell.
: Whereas the previous discussion in general imposes a
a i_[ J 28) lower bound forR, the positive definiteness of the functions
a. makes the analysis break down beyond a critical radius,

for instance, in the black hole formation from a domain wall
Here, we have used the definition$d,=d/dr and §“d,  collapse, discussed below.

=dldX.
The metricg;; has no dependence of) because the co- V. RADIAL COLLAPSE IN THREE
ordinate X can always be set to zero ovar;. Then the DIMENSIONAL SPACETIME
explicit form for the extrinsic curvaturki;; as a proper time
derivative ofg;; is For simplicity, we will focus on the problem of black hole

creation in 2+1 dimensions, setting the inner solution as

_a d9j AdS spacetimeNI =—1).

Kij= 2f a7’ 29

. . ) A. Coherent dust shell collapse
Imposing the constraint over the radial component of Eq.

(12) leads to For pressureless dush=27Ro is a constant of motion.
In this case, already studied in RE3)], we have that Eq24)
—2ml+ Jg9T,,=0, (30) takes the form
where 7'l are optained by means Qf the above formula for M+ 1= E(a++a,)m, (35)
Kj; calculated with the spatial metrg;; of ADM foliation. 2

Computing the stress tensor in terms of velocity and in- _
trinsic metric, and using the Jacobian of the basis changdVith M+1=0. For a given value ofn, the collapse comes

produces from the radial speed expression
f2 r B2 a? ) Re a6
Ti= S 8(r—R)=—70dr-R), (31 ~| Tom2 ; (36)

104023-4



HAMILTONIAN TREATMENT OF THE GRAVITATIONAL . .. PHYSICAL REVIEW D 69, 104023 (2004

with a=m?+4(M +1), gravity constanG=3% and AdS ra- C. General case

diusl=1. The existence of the equation of state determines the na-

Its analysis Iead_s, to a confined motion for the dust ri”gture of the collapsing matter, ranging from coherent dust (
because the dust ring cannot be located beyond the turning 0) to a domain wall ¢=¢). Interpolating between these
point Rj=(a?—16m?)/16m?. This distance turns out to be ases we can set a parametesuch thatr= a o

greater than the black hole horizon for any outer solution  chgosing the commoving frame in E@5) and introduc-

with M>0-_ o _ N ) ing the value of the tension, we can see that the density at
Depending on initial velocity and position, either a nakedany time satisfies the relation

singularity (—1<M<0) or a black hole I1>0) can be

formed from this radial gravitational collapse process, as o=CyR* 1, (39
stated by Peleg and Steif. For negative mass solutions, there

exists a critical shell massi=2[M[+1 below which the whereC, is a constant throughout the motion.

motion is impossible in the whole space. Apart from this For an even more general dependence of the tensiame
condition, the analysis of the effective potential does nofcan always write the equation of motion as

constitute a physical impediment to prevent the creation of a

naked singularity in the black hole mass gap1(0). How- . a,a_ T

ever, as we shall see in Sec. VI, the introduction of an R=-R-7—F0—. (40
amount of rotation, however small, gets rid of the naked

singularities.

Providedr=0, Eq.(40) tells us thaR is always negative.
As a consequence, the shell accelerates inward and it will
B. Closed fundamental string collapse always collapse to either a black hole or a naked singularity,

The radial collapse of a fundamental string can also gendéPending on the initial conditions.
erate a black holéor naked singularityas the external con-
figuration starting up from AdS spacetime as the interior so- D. Electrically charged solutions
lution, for certain initial conditions.

In this case, it is more useful to analyze the equation otm
the radial acceleration, rather than its first intedgal). One

Electrically charged solutions are obtained by supple-
enting the Einstein-Hilbert actiof8) with the Maxwell

obtains, by differentiation of Eq(24) term
1
- - - - dy [— v
RZ—R—wa+Ra , (37) I Maxwell 4€Qd—2f dx/ (a5gFMF , (41)

in an arbitrary dimensiod. The constang can be written in
which implies thatR<0 and therefore there is no bounce, terms of the vacuum permeability as-€;/Q4_ 5.

because the functions. are always positive. Hence, gravi-  For an static, spherically symmetric ansatz, the Reissner-
tational collapse is unavoidable for any shell densitand ~ Nordstran (RN)-AdS black hole metric appropriately de-
black hole mas$/. scribes the geometry of both inner and outer regions of

Another interesting feature is that, just as it happens irspacetime,
3+ 1 dimensions as pointed out 8], due to the particular
form of the functionsf2 present in the metric, the constraint 5 r2 [2GM. G Q2
(33) is violated if R>Rya=(20%—1) "2 with R, as the fi=1+ 7\ s d=3 s (42)
maximum value oR (the value for whichR=0). The exis-

tence of this bound for the radial coordinate makes it IMPOSy, here the shell carries an electric chamgeQ. —Q_ .

sible to treat by dynamical analysis the cases where this criti- The general form of Eq24) that governs the radial col-
cal radius is located within the event horizan. and, |nqe in any dimension remains the same in this case because
therefore, the system is already collapsed. the electromagnetic stress tensor does not contribute to the

From this consideration, it follows that there exists only Hamiltonian componert, . Therefore, the equation of mo-
an allowed interval in the mass spectrum for the exteriortion becomes L '

solution with a given density of

e AQ? .
M =270 R a1+ Rom— (70) 2R~ 1. (39) AM_MFZE(Q“R(’ 20) (o +a),

max
(43
In the same way as in the {31)-dimensional counterpart,
this process cannot create black hole solutions beyond thathich recovers the thin shell dynamics studied 172] for
mass range, where the too large spherical walls are alreadiie 4-dimensional case.
collapsed inside their corresponding Schwarzschild radius In 2+ 1 dimensions, the solution corresponding to an
[3]. electrically charged static black hole was first presented in
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[17] as the three-dimensional counterpart of the RN blackesponding radial velocity at that point is always purely
hole. The metric contains a logarithmic dependence on thanaginary. This relation represents a critical value dcand

radial coordinate, b, which permits the existence of local extremal points in the
curve fora over that value. For values @f below the one

2= r2_ M — EQZ Inr2 (44) giygn by the equality, _there is neit_her a local ma_ximum nor a

4 ' minimum, the curve is monotonically decreasing, and the

only turning point is immersed in the zone where the equa-
with the constant and the cosmological lengtrset equal to  tion of motion is no longer valid.

unity. ' . . N Another critical situation is represented by a static thin
From the analysis of this function, the condition for the shell, where the dust ring has been put in a fixed radial po-
existence of extremal black holes is sition
Q? Q?
M=—|1-In—|, 45 b
4 4 49 Rizp[b+\/16m2+ b?], (49
m

which is the curve that separates black hole configurations

from naked singularities in the plan#(Q). If the electric and it is not able to collapse or expand. For this particular
charge is large enough, there exist black hole solutions fogase, the solution parameters satisfy the relation
arbitrarily negative values for the mass.

In order to study the creation of charged black holes over b
a vacuum state, we set the inner solution as AdS spacetime, a=b[ 1—In(—[b+ JiemZ+ bz])} +/16m?+ b2,
with 2 =(1+r?). With a dust shell carrying a total mass 8m?

m=2mRo, Eq.(24) becomes (50)
2 m Note that if we take the total mass of the shellra$=b
= InR2=—
M1+ 4 InR 2 (ar+a-), (46) +4, the process creates an extremal black hole with a ring

standing still at the event horizdR?> = b/4.

and the exterior mass and charge Bte=M andQ. =Q, However, it is important to stress that this situation repre-

respectively. The LHS of the above expression must be poskents just a critical case in the extremal black hole formation,

tive in order to ensure the validity of the treatment in thisas there are many different sets of initial conditions that also
coordinate set, and therefore it imposes a lower bound for thgenerate them. From this perspective, extremal black holes
radial coordinatd®=>e *M+1/Q° |t can be proved that this cannot be regarded as “fundamental” objects, because Eq.
quantity is larger than the inner horizen for any charged (47) allows their creation from the dynamic process depicted

black hole and its existence is relevant only in the context ofn this section.

creation of naked singularities, discussed below. Finally, from the analysis of thg effective potgnt(dl?)
The radial velocity for this case is obtained by quadratureve conclude that a charged spherically symmetric shell can-
and takes the form not collapse to form a naked singularity in three dimensions.

It is worthwhile to stress that, in spite of the different form of
the charged black hole metric and the extremality condition

(a+bInR??, (47)  derived from it, this property is also found in the four-
dimensional casgl6].

R?=—(R?+1)+

16m?

with the constanta andb defined in terms of the parameters

of the solution asa=m?+4(M+1) andb=Q? A quick VI. ROTATING BLACK HOLE SOLUTIONS IN

analysis of the function shows that there must necessarily be THREE DIMENSIONS

a turning point as we move toward infinityn the most gen- ) . :

eral case there could even be two mofeo find the local A different case is represented by the rotating black hole

in a (2+1)-dimensional spacetime. This time, the line ele-
ment possesses a shift along the angular direction, respon-
sible for the existence of two horizons and an ergosphere

maximal and minimal point§for the effective potential one
solves the trascendental equation

m2_ - [17,18, in an analogous way to the Kerr metric i+
TR2= a+bInR?. (48  dimensions,

. . . o N2F2012 -2 2 2 N 2
Keepinga andmto a fixed value, the limit ob— 0 produces ds’=—N?f2dt*+f~2dr?+r¥(N?dt+d¢)?,  (51)
the result that both intersection points moveRp,—0. On
the contrary, if the limit in the parametbr— is taken, the ~WNere
extremal points are shifted ®—1 andR3— . .

An inflection point exists at the positioR*=b?/8m? f2:_M+r__|__, (52)
when the parameters satisy= b[ 1—In(b%8m?)]. The cor- 12 4r2
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J 1
N?=— — + N%(0), 53 S——— (63
o2 () (53 [y
N=N(o). (54 Once more, the equationT,,=[cu,u,—7(h,,

) o ) ) ) +u,u,)]8(X) provides the shell stress tensor, with a delta
The residual arbitrariness constitutes the choic®att in-  gjstripution located at the origin of thé axis, along thet*

finity, which is usually set abl(c) =1, and the angular shift gjrection. Computing the relevant components and express-
resents a null angular velocity on the shell at every time, and
simply corresponds to a reparametrization in the angular

2
variable. In this form it is possible to attain suitable matching T, :a_{y2(,_ (y*—1)}8(X), (64)
conditions on the shell, for instance, for a static internal so- f2
lution.
The rotating solution possesses the same isometries as the o
static one, the Killing vectors, andd,,. This makes sensible Tio=—7 Yr2Q(o—1)8(X). (65
the vector basis choice for both outside and inside spaces in
a similar way as in the previous case. Therefore, the projec- , . . .
tion of the 3-velocity along the bas{®,d/dr,d/d¢} can be ‘in this case, the functior has been defined as
cast in the form 5
2=f24 ﬂ (66)
AL AL o “« dn/ -
u —?n r 07_I’ u % , ( )

Performing the required change of variable to integrate

and the normal vectaf* in terms of the same orthogonal set out in the radial coordinate, the Jacobiardr/dX=f?/a

v M
g#:Ln#+ E(i) (56)
fy y\or) "’

with the angular velocity defined ag®=d¢/dr.
The functionsa and y have the explicit expressions

a?=f2+r2+12r2(u%)? (57)
and
y?=1+r3u’)> (58)
It is useful to define a new time coordinate
dh=\/1+r2 d—¢)zd7, (59
dr

remains unchanged with the new time definition. It is clear
that the whole procedure matches the radial collapse case
whenQ=0.

Again, the discontinuity irH{, is caused by only one term
in ®R, because all other terms represent finite jumps in a
null-measure interval. Thus, Eq24) undergoes a change,
due to the different form of |, , and becomes

—A(f)=mR(a;+a_}{Yo—r(y*~1}. (67
The fact thaty has the same value at each side of the shell is
a direct consequence of the junction conditions imposed on
the shell positiormr =R(7).

Direct integration of the angular component of Hamil-
tonian H,, is possible considering the only nonvanishing
component of the gravitational momentunﬁ¢= p(r)/2m.
This contributes a difference in the angular momenthd)
coming from Eq.(65), given by

which corresponds to the proper time measured by an ob-

server in radial collapse. In this way, the angular velocity can

be expressed as

_d6_ ¢
da ,/1+r2¢2'

Q (60)

which, in turn, permits us to write down the time variable

and the angular velocity as

d\=yd7, (61)

»=7Q,

in an analogous way to special relativity, using tdaation)
relativistic factor

(62

—2Ap=AJ=27y’R3Q(o— 7). (69)
The equivalent of Eq(33) can be obtained from E¢67)
by repeating the same analysis depicted in Sec. IV,
a,—a_=—mRa{y?c—1(y*—1)}. (69
This is a useful version of the equation of motion for the
study of the dynamical interval in the radial coordinate.
These equations provide the starting point for the analysis
of the collapse of a rotating shell. In the cases shown below,
the extremal values for shell energy density and tension are
explicitly developed. We will focus on the process of black
hole formation on a “vacuum” inner solutiofAdS space-
time).
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A. Domain wall (o=171) 2p2

o a‘R
A rotating shell with a tension equal to the mass density RZ:m—(RZJF 1), (79

represents a singular case of the equations of motion govern-

ing the collapse dynamics. From E(8) we see that the ith the constant again defined aa=m?+4(M+1).

contribution to the angular momentum is vanishing for @ The maximum value of the above function is found to be

collapsing domain wall. This was geometrically expectedRﬁan:J(a_M)Mmz_ A quick analysis of the effective poten-

due to the fact that foer= 7 this object can be obtained from 51 shows that the shell cannot reach the origir0, nor

the Nambu-Goto action for a fundamental string. The Poinyxfinity confining the motion between two turning points. In

caresymmetry defines an angular momentum tensor that i§ qer to ensure that these turning points do not coalesce—

identically vanishing for a perfectly circular rotating string. . . ) o
This result states the impossibility of generating rotatingWhen they indeed exist—the maximum value ks

solutions with this “fundamental object.” Furthermore, the i (a—4J)2
condition imposed on E(67) reproduces the same expres- rznax=—2—1, (76)
sion (24) as for nonrotating domain wall collapse, for an 16m

observer falling radially with the shell must be greater than zero. Therefore, for the motion to exist

at all, the parameters must satisfy the condition2
>{J-M+1 or 0<m/2<./J—M—1 for the possible cre-

The collapse of a pressureless shell represents a systemaifon of a naked singularityJ&>M). However, as the shell
particles traveling inward with no mutual interaction. Thus, does not disappear beyond an event horizon, necessarily the
the path of every infinitesimal piece of matter is given by thebounce is produced for any value of the initial conditions.
geodesics in an external gravitational field, spinning around'hus, the dust ring cannot generate the naked singularity at
the radial potential because of the initial angular velocity. the origin. The presence of angular momentum provides a

For this case, Eq$67) and(68), which set the change in “centrifugal barrier” that is not infinite as in the Keplerian
the parameters between AdS and the outer spacetime, takese, and whose effect is clear when we put(Z6) into the

B. Dust shell

the form form
J? . a2J2
M+1- —=moR(a;+a_)y? (70 R2=V «(J=0)— , 7
4R? ’ Y on(1=0) 16m%(m2R2+ J2) 70
for the energy conservation, and whereVq4(J=0) corresponds to the RHS of E®6).
In view of the above result, we can reinterpret the only
J=27vy’R30() (71 case in three dimensions where it was possible to form naked

singularities: the radial collapse of a massive shell onto AdS
for the angular momentum. The description here is from thezacuum. Because of the existence of a mass gap between
frame of an observer falling radially with the shélonro-  AdS and theM =0 black hole, the outer solution can have a
tating), which measures a time. Eq. (25) gives the conser- negative mass even for a shell with>0. However, this
vation of the total mass, enlarged inydactor with respectto case is somehow ill defined because the particles would need

the commovingres) frame to free fall with infinite precision along the radial direction.
Any angular perturbation in the initial condition would pre-
2myRo=m. (72)  vent the shell to reach the origin.

_ o In turn, outer black hole solutiong& M) are created for
Replacing the latter expression in E@.1) allows us to  any value of the shell mass, since the smallest turning

obtain the angular velocity point is always inside the horizan, . The time evolution is
completely determined once the initial conditions are set. In
+J particular, for a collapsing shell starting from zero radial ve-
Q= RJI2+ m’R2’ (73 locity at a distancd&R=R,, we obtain the expression for the
mass of the external solution
where the plus(minug sign stands for the shell rotating > =
(countejclockwise; and the explicit form for the relativistic M = 2‘/( Ro+1)(M°Ro+J%) _ (m_2+ 1) (78)
y factor Ro 4 '
1 For extremal black holes, there is no restriction on the
e (74)  total mass of the collapsing ring, either. The limit case is
V1+(32/m?R?) represented by the situation where both turning points coa-

lesce. Because the shell mass mustnive 2, the ring is
Finally, inserting all these results in E(Z0), the radial ve-  orbiting steadily at a fixed radiug?=J/2, the radius corre-
locity R=dR/d\ as a function of the solution parameters sponding to an extremal black hole horizon. As a conse-
and the radial coordinate is guence, the shell dynamics sees no objection to the forma-
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tion of extremal black holes from a collapse process with ardust shell carrying more charggthan the proper mass.
appropriate set of initial conditions, in a similar way as in For this system, we have an inner event horiRSﬁ), such

charged black hole creation. that 2 (R(")=0, whereas the exterior functioff (R) is
positive throughout the space. Roughly speaking, if the shell
VIl. CONCLUSIONS does not gather enough speed during the collapse, it will not

Apart f th lati ith which this alt i become massive enough to prevent the formation of a naked
part from the relative ease with whic IS alternative singularity. Furthermore, from the shell dynamics we know

treatment reproduces and extends the dynamics for CO"apﬁiat a matter sphere released with certain speed is equivalent

ing thin shells obtained by the Israel method, this formalismto one dropped from rest at another distance. Then, in prin-

presents a few additional interesting features, especially befﬁple, it might always be possible to find a set of initial

cause of the general statements that can be derived from iEonditions to destroy the black hole configuration

The geometrical scheme appligd in th? dgrivation of'the However, Eq(24) expresses that by the time the shell has
formula (24)—and the corresponding version in the rotating ... o the plack hole horiza¥{!™ the conservation of en-
case—permits us to write them generically in terms of the

change in the geometry through the sheff and not explic- ergy has already been V|olated: In addition, the shell must
ity in terms of any particular solution parameters have bounced before, because for0 at the horizon

(M,J,Q,A, etc). Even more subtle, it is precisely this dif-
ference that generalizes the method, opening the possibility
of dealing with a number of interesting cases: from black

hole creation—as presented in this article—to thin shell colin OPen contradiction with the fact we have an external na-

> " o ed singularity. A similar argument can be developed for the
lapse over an existing black hole, and also the possibility o . . : . . : -
X . - ) . rotating case in three dimensions, stating the impossibility of
extension to higher dimensional spacetimes.

In 2+1 dimensions, a direct consequence of E@s) turning black holes into naked singularities by throwing thin

and(67) is the well-known thermodynamical law stating that sh(_arllhseo;rpef\l/)i/glljcsalr;naastct;rinogv ecratr?rs c?: 'b e repeatetbatim in
Lhneeronig?lsaére\?a?ma{aswgrfg\;vzo-m'sngﬁpotb;igergﬁg ];:)Otgqti:]h‘ﬁwe case of naked singularity formation over an empty space.

gy ting . Nevertheless, as we discussed in the corresponding sections,
cases as f°!'°W_S- Let us assume that a thin shell of physic e absence of a horizon and the explicit form of the metric
mgtter—sat|sfy|ngr> 7.'>0_.'S dropped over an alreaply €X" for the cases with angular momentum and electric charge,
isting black hole configuration. Therefore, the LHS in Eqgs.

. . " . prevents the shell from reaching the origin.
%%4)Randf(267|)?|s IS:mCth/ positive fglr aEyhv?IuehoR, thqt 1S, Finally, the Hamiltonian formalism for the collapse of thin
+(R)<f=(R). For the interior black hole, there exists an g a5 geveloped in this paper can be applied to create mag-

even horizorR{" such thatf? (R!"”)=0, and the function petic black holes in three spacetime dimensif2@. It can

f2 must be negative for the same position. Hence, this lasiiso be extended to deal with the problem of gravitational

function should vanish at a larger distance than the innegollapse in gravity theories with higher powers in the curva-

horizon Rﬂ”). The conditions imposed mean that any me-ture[21].

chanical perturbation would not move faster than the speed
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