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Hamiltonian treatment of the gravitational collapse of thin shells
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A Hamiltonian treatment of the gravitational collapse of thin shells is presented. The direct integration of the
canonical constraints reproduces the standard shell dynamics for a number of known cases. The formalism is
applied in detail to three-dimensional spacetime and the properties of the (211)-dimensional charged black
hole collapse are further elucidated. The procedure is also extended to deal with rotating solutions in three
dimensions. The general form of the equations providing the shell dynamics implies the stability of black
holes, as they cannot be converted into naked singularities by any shell collapse process.
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I. INTRODUCTION

The gravitational collapse of thin shells was beautifu
discussed in the classic paper of Israel@1#. The generaliza-
tion to include electric charge was given by Kucharˇ @2#, and
an interesting further development and applications w
given by Ipser and Sikivie@3#. In all these treatments th
analysis is based on the discontinuities in the intrinsic a
extrinsic curvatures of the world tube of the collapsing m
ter as it is regarded as embedded in either its exterior o
interior.

In this paper we introduce, in addition to the intrinsic a
extrinsic geometry of the world tube, another structu
namely, a foliation of spacetime by constant time surfa
which intersect the tube. The reason for doing this is that
charges of the black hole which results from the collapse
the shell are conserved quantities given by surface integ
at spacelike infinity, which are naturally treated in terms
the Hamiltonian formalism@4#. Furthermore, the local prop
erties of the horizon, such as its area, are also economic
treated in Hamiltonian terms. The formalism which emerg
from combining the Israel treatment with the Hamiltoni
formalism is quite compact and permits one to economic
analyze a number of situations of interest.

The plan of the paper is as follows. Sections II and
briefly review the Israel method for thin shell collapse a
the Hamiltonian formalism, respectively. Section IV appli
the canonical formalism to the gravitational collapse o
spherically symmetric shell in a spacetime of arbitrary
mension and recovers and further clarifies results previo
found in the literature. Section V studies the radial gravi
tional collapse in three dimensional spacetimes, includ
the electrically charged case. Section VI extends the tr
ment to deal with angular momentum in three-dimensio
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spacetimes. Finally, Sec. VII is devoted to brief concludi
remarks.

II. THIN SHELL FORMALISM RECONSIDERED

The standard treatment for dealing with thin shells in ge
eral relativity, arising from the seminal work of Israel@1#,
has provided a useful tool to tackle a large variety of cas
ranging from lower dimensional static black hole formati
@5# to interesting recent applications in the analysis of
junction conditions for extended objects in Gauss-Bonnet
tended gravity~see, e.g.,@6#!.

The standard procedure considers a timelike hypersur
Sj , generated by the time evolution of the shell. This hyp
surface divides the spacetime into two regions, namely,V1

and V2 . Let jm be the outer pointing unit normal to th
world tube, which is spacelike, andhab the induced metric
on the tube. Here, the indicesa,b51, . . . ,(d21) label the
tangent directions along the hypersurface. The coordinate
$xm% describes the spacetime with a metricgmn , and another
set $sa% represents the intrinsic coordinates of the induc
geometry, related to each other by a transformation ma
ea

m5]xm/]sa. Any point on the spacetime shell trajecto
can be endowed with a local basis$jm,ea

m%. In this way, the
standard definition of intrinsic metric over the hypersurfa
hab5ea

meb
ygmy is recovered in terms of the spacetime metr

The surface stress tensorSmn can be obtained from the
volume tensorTmn as the limit process in the shell thicknes

Smn5 lim
«→0

E
2«

1«

Tmndj. ~1!

The projections of Einstein tensorGmn along the normal
coordinatej and the remaining directions over the hypers
faceSj lead to a set of relations

Gja5K ua2Kaub
b , ~2!
©2004 The American Physical Society23-1
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2Gjj5 (d21)R~h!2~K22KabK
ab!, ~3!

Gab5 (d21)Gab1]j~Kab2habK !

2KKab1
1

2
hab~K21KcdK

cd!. ~4!

Here, (d21)R(h) stands for the Ricci scalar ofhab andKab is
the extrinsic curvature ofSj .

Integrating Eq.~4! across the shell, the Lanczos equati
is obtained,

gab2habg58pG̃Sab , ~5!

relating the discontinuity of the extrinsic curvaturegab

5@Kab#5Kab
1 2Kab

2 and its traceg, with the projected sur-
face stress tensorSab .

From Eq.~2! we see that the jump across the shell leads
the continuity equation forSab

Saub
b 52@Tmnea

mjn#52@Taj#. ~6!

For many cases of physical interest, we consider a per
fluid with a bulk stress tensor

Tmn5@sumun2t~hmn1umun!#d~X!, ~7!

whereum is the shelld-dimensional velocity, ands and t
stand for the surface energy density and tension, respecti
The delta function represents a matter distribution locali
at the boundary ofSj .

Even though the Israel treatment for thin shells has p
ceeded along a line of increasing success on the unders
ing of gravitational collapse, the complexity brought abo
for instance, by adding angular momentum can make
method hard to use in practice.

On the other hand, some authors have proposed alte
tive approaches, based on the canonical formalism, to
erive the thin shell dynamics obtained by the Israel meth
in a number of cases@7–12#. Following this line, we presen
a simple method to reproduce the equations of motion for
radial collapse of thin shells, but that can also be extende
deal with rotating solutions in three-dimensional spacetim

In the next section, we show that the direct integration
Hamiltonian constraints provides a complete set of equat
equivalent to the ones obtained from the standard thin s
method.

III. HAMILTONIAN TREATMENT OF THIN
SHELL COLLAPSE

The Einstein-Hilbert action with cosmological constant
d dimensions is written as

I 52kE ddxA2 (d)g~R22L!, ~8!

with the constant in front of the gravitational action given
k51/2(d22)Vd22G @14#. The general approach present
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here is equally valid for any value of the constantL. For
later purposes,L is chosen asL52(d21)(d22)/2l 2 in
terms of the AdS radiusl.

Taking a timelike Arnowitt-Deser-Misner~ADM ! folia-
tion for the spacetime@13#, we write the line element as

ds252~N'!2dt21gi j ~Nidt1dxi !~Njdt1dxj !, ~9!

wheregi j is the spatial metric and the functionsN' andNi

represent the time lapse and the spatial shift, respectiv
The quantitiesN' andNi play the role of Lagrange multipli-
ers of the constraintsH''0 andHi'0, so that the gravita-
tional action can be cast in Hamiltonian form

I 5E dtdd21x~p i j ġi j 2N'H'2NiHi !, ~10!

whereH' andHi are given by the formulas

H'52
1

kAg
S p i j p

i j 2
1

~d22!
~p i

i !2D
1kAg~ (d21)R~g!22L!1AgT'' , ~11!

Hi522p i u j
j 1AgT' i ~12!

in the presence of matter fields. Here(d21)R(g) stands for
the Ricci scalar of the spatial metricgi j and p i j are the
conjugate momenta.

IV. NONROTATING CASE

By radial collapse, it is possible to add mass and elec
charge to an already existing~un!charged black hole, or pro
duce the black hole itself over a vacuum state.

In a similar procedure to the ones developed in Re
@9,11# for massive shells, here we show that the integrat
of the Hamiltonian constraints along an infinitesimal rad
distance on a constant-time slice reproduce the results o
standard formalism. It will be shown that this treatment a
implies the stability of the event horizon in a generic cas

A spherically symmetric collapsing shell has static in
rior and exterior geometries described by Schwarzschild-
coordinates

ds6
2 52N6

2 ~r ! f 6
2 ~r !dt6

2 1 f 6
22~r !dr21r 2dVd22

2 ,
~13!

where the matching condition for the time is given by t
choiceN651. The radial coordinater is continuous across
the shell, because it measures the~intrinsic! area of the shell,
which is the same as looked at from the inside and the o
side.

The induced metric of the world tube is simply the one
a (d22)-sphere,

ds252dt21R2~t!dVd22
2 . ~14!

For spherical symmetry, the Hamiltonian generatorH'

becomes@15#
3-2
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H'52
Ag

2Vd22G F ~d23!

r 2
~12 f 2!2

~ f 2!8

r
1

~d21!

l 2 G
1AgT'' . ~15!

We are going to integrate out the constraintH'50 across
a radial infinitesimal length centered at the shell positionr
5R(t) at a constant time, to express the discontinuities
this component of the Hamiltonian in terms ofT'' . It is
straightforward to prove that all the terms—but the rad
derivative—contribute with a finite value jump proportion
to «, and they can indeed be ruled out in the limit«→0.
Thus, the only nonvanishing contribution comes from t
second term

2E
2«

1«~ f 2!8

r
dr52

D~ f 2!

R
52Vd22GE

2«

1«

T''dr.

~16!

In the right-hand side~RHS! of the above equation,T''

is given byT''5Tmnnmnn , the contraction with the time
like normal vector in the ADM foliationnm5(2N',0,0W ),
that generates the sequence of constant-time surfacesS t .

On the other hand, adapting another frame to the hy
surfaceSj , we have a set of coordinates$T,X%. The tangen-
tial axisT that runs along the velocityum and the directionX
goes along the spacelike normaljm, at whose origin the delta
function is located. In this way,

T''5Tmnnmnn5$su'u'2t~h''1u'u'!%d~X!.
~17!

Without loss of generality, we take a Schwarzchild-li
coordinate setxm5$t,r ,f i% for the outer description of a
shell collapse. Then we can computeum5$ f 22a,Ṙ,0W % and
jm5$ f 22Ṙ,a,0W %, where the functiona is given by a
5Af 21R.

2. Thus, we obtain an expression for Eq.~17! as
seen from the$T,X% frame

T''5s
a2

f 2
d~X!. ~18!

However, to carry out the integration overr, we need to
rewrite the delta function in the spacetime coordinate sys
$t,r %.

From the Fig. 1, any point on the shell is described
both coordinate systems as

dt5utdT1j tdX, ~19!

dr5urdT1j rdX. ~20!

Integrating alongdr, on a time-constant ADM sliceS t (dt
50), we get

dr

dX
5j r2

ur

ut
j t5

f 2

a
, ~21!
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and the delta function transforms in such a way that it gets
additional ‘‘relativistic’’ factor d(X)5( f 2/a)d(r 2R) and
the final form for the stress tensor~18! is

T''5asd~r 2R!. ~22!

Integrating the above relation, the RHS represents
mean value of the functiona as seen embedded in bo
inside and outside spacetimes

2Vd22GE
2«

1«

T''dr5Vd22s~a11a2!G. ~23!

Notice that the tension valuet does not appear on th
right hand side of Eq.~23!.

With these simple arguments, this method recovers
extends the dynamics for radial collapse computed using
thin shell formalism@1–3#

2D f 2~R!5~Vd22Rs!~Af 1
2 1Ṙ21Af 2

2 1Ṙ2!G. ~24!

For three spacetime dimensions, the same formula
been obtained by Steif and Peleg@5# for the gravitational
collapse of a dust thin shell.

Note, as is well known, that in order to regard Eq.~24! as
a first integral of the equation of motion forR(t), one needs
to specify the densitys as a function of the tensiont. Re-
placing in the continuity equation~6! the expression forSab
and taking the parallel components to the velocityua we
have

~sub! ub2tuub
b 50, ~25!

which is the relation that provides the conserved quantitie
the system. For example, for coherent dust one has
Rd22s is a constant, whereas for a domain walls is a con-
stant. In the first case, the interpretation of Eq.~24! is quite
intuitive. For Schwarzschild-AdS black holes, the function
the metric readsf 2512(2GM/r d23)1(r 2/ l 2), and the
term m5Vd22Rd22s is the rest-frame mass, as seen by
intrinsic observer. Hence, Eq.~24! reduces to

DM5
1

2
~a11a2!m, ~26!

FIG. 1. The hypersurfacesS t andSj are defined by the norma
vectorsnm andjm. The intersection betweenS t andSj is the shell
itself at the timet.
3-3
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which relates the inertial mass to the semisum of the gr
tational mass at each side of the shell. For Minkowsk
spacetime, the factora becomes the special relativityg fac-
tor, thanks to the useful identityg2511(dR/dt)25@1
2(dR/dt)2#21.

To complete the present picture of radial collapse, it
necessary to analyze the consistency of the remaining
vanishing components of the Hamiltonian.

The angular components of the constraint~12! are identi-
cally zero. In common cases, the condition of spherical sy
metry is sufficient to ensure that the radial constraintH r

(g)

vanishes. However, here it is different from zero becauseT' i
is proportional to the radial velocity. One can expectHr to be
proportional toH' , since Eq.~11! already provides the
equation of motion forR(t). It is interesting to see explicitly
that this indeed occurs. The proof also illustrates again h
efficiently in this approach one obtains a feature alrea
known in the Israel method.

Computing the extrinsic curvature by definition in term
of the Lie derivative, we get

Ki j 52
1

2
Lngi j 52

1

2
]'gi j . ~27!

Here]'5nm]m defines the derivative along the ADM time
like normalnm. This requires the projection of the vectornm

on the shell frame, which is decomposed on the ba
$um,jm% asnm5aum1bjm, on the intersection between th
shell hypersurfaceSj and the constant-time sliceS t . Pro-
jecting between the frames, we obtain the coefficientsa

5 f 21a andb52 f 21ṙ , which allows us to express the no
mal derivative as

]'5
a

f

]

]t
2

ṙ

f

]

]X
. ~28!

Here, we have used the definitionsum]m5]/]t and jm]m
5]/]X.

The metricgi j has no dependence onX, because the co
ordinate X can always be set to zero overSj . Then the
explicit form for the extrinsic curvatureKi j as a proper time
derivative ofgi j is

Ki j 52
a

2 f

]gi j

]t
. ~29!

Imposing the constraint over the radial component of E
~12! leads to

22p r u j
j 1AgT'r50, ~30!

wherep i j are obtained by means of the above formula
Ki j calculated with the spatial metricgi j of ADM foliation.

Computing the stress tensor in terms of velocity and
trinsic metric, and using the Jacobian of the basis chan
produces

T'r5
f 2

a
S'rd~r 2R!52

ṙ

f
sd~r 2R!, ~31!
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resulting in the equation

d

dr
~a ṙ !52Vd22r ṙ sd~r 2R!G. ~32!

The integration of this relation gives the discontinuity in t
function a across the shell

a12a252Vd22RsG. ~33!

In the context of standard thin shell formalism, this equ
tion comes from the discontinuity in the normal accelerat
across the hypersurfaceSj . However, this does not stand fo
an independent relation from the energy conservation
~24!, since it can also be recovered by multiplying that equ
tion by (a12a2).

Equation~24! clearly has a limited range of validity in th
Schwarzschild-like radial coordinateR, since2(D f 2) must
be strictly positive. For instance, for radial collapse of a m
sive thin shell, the LHS of this relation is just the differen
of the outer solution mass with respect to AdS spacetim
which is positive for all the solutions of physical interest.
a more general case, there might be a radial position wh
D f 2 vanishes. However, the same formula, written in t
form of Eq. ~33!, tells us that the shell must bounce ba
before this happens, because forṘ50

f 12 f 252Vd22RsG. ~34!

As is well known, the analysis of the shell motion can
carried out until the point wheref 1

2 50. The change in the
signature of the metric on the outer side leads to an inc
sistency in the matching conditions on the shell.

Whereas the previous discussion in general impose
lower bound forR, the positive definiteness of the function
a6 makes the analysis break down beyond a critical rad
for instance, in the black hole formation from a domain w
collapse, discussed below.

V. RADIAL COLLAPSE IN THREE
DIMENSIONAL SPACETIME

For simplicity, we will focus on the problem of black hol
creation in 211 dimensions, setting the inner solution
AdS spacetime (M521).

A. Coherent dust shell collapse

For pressureless dust,m52pRs is a constant of motion.
In this case, already studied in Ref.@5#, we have that Eq.~24!
takes the form

M115
1

2
~a11a2!m, ~35!

with M11>0. For a given value ofm, the collapse comes
from the radial speed expression

Ṙ25S a2

16m2
21D 2R2, ~36!
3-4
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with a5m214(M11), gravity constantG5 1
2 and AdS ra-

dius l 51.
Its analysis leads to a confined motion for the dust ri

because the dust ring cannot be located beyond the tur
point R0

25(a2216m2)/16m2. This distance turns out to b
greater than the black hole horizon for any outer solut
with M.0.

Depending on initial velocity and position, either a nak
singularity (21,M,0) or a black hole (M.0) can be
formed from this radial gravitational collapse process,
stated by Peleg and Steif. For negative mass solutions, t
exists a critical shell massm52AuM u11 below which the
motion is impossible in the whole space. Apart from th
condition, the analysis of the effective potential does
constitute a physical impediment to prevent the creation
naked singularity in the black hole mass gap (21,0). How-
ever, as we shall see in Sec. VI, the introduction of
amount of rotation, however small, gets rid of the nak
singularities.

B. Closed fundamental string collapse

The radial collapse of a fundamental string can also g
erate a black hole~or naked singularity! as the external con
figuration starting up from AdS spacetime as the interior
lution, for certain initial conditions.

In this case, it is more useful to analyze the equation
the radial acceleration, rather than its first integral~24!. One
obtains, by differentiation of Eq.~24!

R̈52R2p
a1a2

R
, ~37!

which implies thatR̈,0 and therefore there is no bounc
because the functionsa6 are always positive. Hence, grav
tational collapse is unavoidable for any shell densitys and
black hole massM.

Another interesting feature is that, just as it happens
311 dimensions as pointed out in@3#, due to the particular
form of the functionsf 6

2 present in the metric, the constrai
~33! is violated if R.Rmax5(p2s221)21/2, with Rmax as the
maximum value ofR ~the value for whichṘ50). The exis-
tence of this bound for the radial coordinate makes it imp
sible to treat by dynamical analysis the cases where this c
cal radius is located within the event horizonr 1 and,
therefore, the system is already collapsed.

From this consideration, it follows that there exists on
an allowed interval in the mass spectrum for the exte
solution with a given densitys of

M52psRmaxA11Rmax
2 2~ps!2Rmax

2 21. ~38!

In the same way as in the (311)-dimensional counterpart
this process cannot create black hole solutions beyond
mass range, where the too large spherical walls are alre
collapsed inside their corresponding Schwarzschild rad
@3#.
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C. General case

The existence of the equation of state determines the
ture of the collapsing matter, ranging from coherent dustt
50) to a domain wall (t5s). Interpolating between thes
cases, we can set a parametera such thatt5as.

Choosing the commoving frame in Eq.~25! and introduc-
ing the value of the tension, we can see that the densit
any time satisfies the relation

s5C0Ra21, ~39!

whereC0 is a constant throughout the motion.
For an even more general dependence of the tensiont, we

can always write the equation of motion as

R̈52R2p
a1a2

R

t

s
. ~40!

Providedt>0, Eq.~40! tells us thatR̈ is always negative.
As a consequence, the shell accelerates inward and it
always collapse to either a black hole or a naked singula
depending on the initial conditions.

D. Electrically charged solutions

Electrically charged solutions are obtained by supp
menting the Einstein-Hilbert action~8! with the Maxwell
term

I Maxwell5
1

4eVd22
E ddxA2 (d)gFmnFmn, ~41!

in an arbitrary dimensiond. The constante can be written in
terms of the vacuum permeability ase5e0 /Vd22.

For an static, spherically symmetric ansatz, the Reiss
Nordström ~RN!–AdS black hole metric appropriately de
scribes the geometry of both inner and outer regions
spacetime,

f 6
2 511

r 2

l 2
2S 2GM6

r d23
2

eG

d23

Q6
2

r 2(d23)D , ~42!

where the shell carries an electric chargeq5Q12Q2 .
The general form of Eq.~24! that governs the radial col

lapse in any dimension remains the same in this case bec
the electromagnetic stress tensor does not contribute to
Hamiltonian componentH' . Therefore, the equation of mo
tion becomes

DM2
e

2~d23!

DQ2

Rd23
5

1

2
~Vd22Rd22s!~a11a2!,

~43!

which recovers the thin shell dynamics studied in@1,2# for
the 4-dimensional case.

In 211 dimensions, the solution corresponding to
electrically charged static black hole was first presented
3-5
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@17# as the three-dimensional counterpart of the RN bla
hole. The metric contains a logarithmic dependence on
radial coordinate,

f 25r 22M2
1

4
Q2 ln r 2, ~44!

with the constante and the cosmological lengthl set equal to
unity.

From the analysis of this function, the condition for th
existence of extremal black holes is

M5
Q2

4 F12 ln
Q2

4 G , ~45!

which is the curve that separates black hole configurati
from naked singularities in the plane (M ,Q). If the electric
charge is large enough, there exist black hole solutions
arbitrarily negative values for the mass.

In order to study the creation of charged black holes o
a vacuum state, we set the inner solution as AdS spacet
with f 2

2 5(11r 2). With a dust shell carrying a total mas
m52pRs, Eq. ~24! becomes

M111
Q2

4
ln R25

m

2
~a11a2!, ~46!

and the exterior mass and charge areM 15M andQ15Q,
respectively. The LHS of the above expression must be p
tive in order to ensure the validity of the treatment in th
coordinate set, and therefore it imposes a lower bound for
radial coordinateR2.e24(M11)/Q2

. It can be proved that this
quantity is larger than the inner horizonr 2 for any charged
black hole and its existence is relevant only in the contex
creation of naked singularities, discussed below.

The radial velocity for this case is obtained by quadrat
and takes the form

Ṙ252~R211!1
1

16m2
~a1b ln R2!2, ~47!

with the constantsa andb defined in terms of the paramete
of the solution asa5m214(M11) and b5Q2. A quick
analysis of the function shows that there must necessaril
a turning point as we move toward infinity~in the most gen-
eral case there could even be two more!. To find the local
maximal and minimal pointsR̄ for the effective potential one
solves the trascendental equation

8m2

b
R̄25a1b ln R̄2. ~48!

Keepinga andm to a fixed value, the limit ofb→0 produces
the result that both intersection points move toR̄1,2

2 →0. On
the contrary, if the limit in the parameterb→` is taken, the
extremal points are shifted toR̄1

2→1 andR̄2
2→`.

An inflection point exists at the positionR̄25b2/8m2

when the parameters satisfya5b@12 ln(b2/8m2)#. The cor-
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responding radial velocity at that point is always pure
imaginary. This relation represents a critical value fora and
b, which permits the existence of local extremal points in t
curve for a over that value. For values ofa below the one
given by the equality, there is neither a local maximum no
minimum, the curve is monotonically decreasing, and
only turning point is immersed in the zone where the eq
tion of motion is no longer valid.

Another critical situation is represented by a static th
shell, where the dust ring has been put in a fixed radial
sition

R
*
2 5

b

8m2
@b1A16m21b2#, ~49!

and it is not able to collapse or expand. For this particu
case, the solution parameters satisfy the relation

a5bH 12 lnS b

8m2
@b1A16m21b2# D J 1A16m21b2.

~50!

Note that if we take the total mass of the shell asm25b
14, the process creates an extremal black hole with a
standing still at the event horizonR1

2 5b/4.
However, it is important to stress that this situation rep

sents just a critical case in the extremal black hole formati
as there are many different sets of initial conditions that a
generate them. From this perspective, extremal black h
cannot be regarded as ‘‘fundamental’’ objects, because
~47! allows their creation from the dynamic process depic
in this section.

Finally, from the analysis of the effective potential~47!
we conclude that a charged spherically symmetric shell c
not collapse to form a naked singularity in three dimensio
It is worthwhile to stress that, in spite of the different form
the charged black hole metric and the extremality condit
derived from it, this property is also found in the fou
dimensional case@16#.

VI. ROTATING BLACK HOLE SOLUTIONS IN
THREE DIMENSIONS

A different case is represented by the rotating black h
in a (211)-dimensional spacetime. This time, the line e
ment possesses a shift along the angular direction, res
sible for the existence of two horizons and an ergosph
@17,18#, in an analogous way to the Kerr metric in 311
dimensions,

ds252N2f 2dt21 f 22dr21r 2~Nfdt1df!2, ~51!

where

f 252M1
r 2

l 2
1

J2

4r 2
, ~52!
3-6
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Nf52
J

2r 2
1Nf~`!, ~53!

N5N~`!. ~54!

The residual arbitrariness constitutes the choice ofN at in-
finity, which is usually set asN(`)51, and the angular shif
Nf. For this case, we will chooseNf

„R(t)…50, which rep-
resents a null angular velocity on the shell at every time,
simply corresponds to a reparametrization in the ang
variable. In this form it is possible to attain suitable matchi
conditions on the shell, for instance, for a static internal
lution.

The rotating solution possesses the same isometries a
static one, the Killing vectors] t and]f . This makes sensible
the vector basis choice for both outside and inside space
a similar way as in the previous case. Therefore, the pro
tion of the 3-velocity along the basis$n,]/]r ,]/]f% can be
cast in the form

um5
a

f
nm1 ṙ S ]

]r D
m

1ufS ]

]f D m

, ~55!

and the normal vectorjm in terms of the same orthogonal s

jm5
ṙ

f g
nm1

a

g S ]

]r D
m

, ~56!

with the angular velocity defined asuf5df/dt.
The functionsa andg have the explicit expressions

a25 f 21 ṙ 21 f 2r 2~uf!2 ~57!

and

g2511r 2~uf!2. ~58!

It is useful to define a new time coordinate

dl5A11r 2S df

dt D 2

dt, ~59!

which corresponds to the proper time measured by an
server in radial collapse. In this way, the angular velocity c
be expressed as

V5
df

dl
5

ḟ

A11r 2ḟ2
, ~60!

which, in turn, permits us to write down the time variab
and the angular velocity as

dl5gdt, ~61!

ḟ5gV, ~62!

in an analogous way to special relativity, using the~dilation!
relativistic factor
10402
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g5
1

A12r 2V2
. ~63!

Once more, the equation Tmn5@sumun2t(hmn

1umun)#d(X) provides the shell stress tensor, with a de
distribution located at the origin of theX axis, along thejm

direction. Computing the relevant components and expre
ing them in terms of the normal timel,

T''5
a2

f 2
$g2s2t~g221!%d~X!, ~64!

T'f52
a

f
g2r 2V~s2t!d~X!. ~65!

In this case, the functiona has been defined as

a25 f 21S dr

dl D 2

. ~66!

Performing the required change of variable to integr
out in the radial coordinater, the Jacobiandr/dX5 f 2/a
remains unchanged with the new time definition. It is cle
that the whole procedure matches the radial collapse c
whenV50.

Again, the discontinuity inH' is caused by only one term
in (2)R, because all other terms represent finite jumps i
null-measure interval. Thus, Eq.~24! undergoes a change
due to the different form ofT'' , and becomes

2D~ f 2!5pR~a11a2!$g2s2t~g221!%. ~67!

The fact thatg has the same value at each side of the she
a direct consequence of the junction conditions imposed
the shell positionr 5R(t).

Direct integration of the angular component of Ham
tonian Hf is possible considering the only nonvanishin
component of the gravitational momentumpf

r 5p(r )/2p.
This contributes a difference in the angular momentumDJ,
coming from Eq.~65!, given by

22Dp5DJ52pg2R3V~s2t!. ~68!

The equivalent of Eq.~33! can be obtained from Eq.~67!
by repeating the same analysis depicted in Sec. IV,

a12a252pRs$g2s2t~g221!%. ~69!

This is a useful version of the equation of motion for t
study of the dynamical interval in the radial coordinate.

These equations provide the starting point for the analy
of the collapse of a rotating shell. In the cases shown bel
the extremal values for shell energy density and tension
explicitly developed. We will focus on the process of bla
hole formation on a ‘‘vacuum’’ inner solution~AdS space-
time!.
3-7
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A. Domain wall „sÄt…

A rotating shell with a tension equal to the mass dens
represents a singular case of the equations of motion gov
ing the collapse dynamics. From Eq.~68! we see that the
contribution to the angular momentum is vanishing for
collapsing domain wall. This was geometrically expect
due to the fact that fors5t this object can be obtained from
the Nambu-Goto action for a fundamental string. The Po
carésymmetry defines an angular momentum tensor tha
identically vanishing for a perfectly circular rotating string

This result states the impossibility of generating rotat
solutions with this ‘‘fundamental object.’’ Furthermore, th
condition imposed on Eq.~67! reproduces the same expre
sion ~24! as for nonrotating domain wall collapse, for a
observer falling radially with the shell.

B. Dust shell

The collapse of a pressureless shell represents a syste
particles traveling inward with no mutual interaction. Thu
the path of every infinitesimal piece of matter is given by t
geodesics in an external gravitational field, spinning arou
the radial potential because of the initial angular velocity

For this case, Eqs.~67! and~68!, which set the change in
the parameters between AdS and the outer spacetime,
the form

M112
J2

4R2
5psR~a11a2!g2 ~70!

for the energy conservation, and

J52pg2R3sV ~71!

for the angular momentum. The description here is from
frame of an observer falling radially with the shell~nonro-
tating!, which measures a timel. Eq. ~25! gives the conser-
vation of the total mass, enlarged in ag factor with respect to
the commoving~rest! frame

2pgRs5m. ~72!

Replacing the latter expression in Eq.~71! allows us to
obtain the angular velocity

V5
6J

RAJ21m2R2
, ~73!

where the plus~minus! sign stands for the shell rotatin
~counter!clockwise; and the explicit form for the relativisti
g factor

g5
1

A11~J2/m2R2!
. ~74!

Finally, inserting all these results in Eq.~70!, the radial ve-
locity R̊5dR/dl as a function of the solution paramete
and the radial coordinate is
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R̊25
a2R2

16~m2R21J2!
2~R211!, ~75!

with the constanta again defined asa5m214(M11).
The maximum value of the above function is found to

Rmax
2 5J(a24J)/4m2. A quick analysis of the effective poten

tial shows that the shell cannot reach the originR50, nor
infinity, confining the motion between two turning points.
order to ensure that these turning points do not coalesc
when they indeed exist—the maximum value forR̊ is

R̊max
2 5

~a24J!2

16m2
21, ~76!

must be greater than zero. Therefore, for the motion to e
at all, the parameters must satisfy the conditionm/2
.AJ2M11 or 0,m/2,AJ2M21 for the possible cre-
ation of a naked singularity (J.M ). However, as the shel
does not disappear beyond an event horizon, necessarily
bounce is produced for any value of the initial condition
Thus, the dust ring cannot generate the naked singularit
the origin. The presence of angular momentum provide
‘‘centrifugal barrier’’ that is not infinite as in the Kepleria
case, and whose effect is clear when we put Eq.~75! into the
form

R̊25Veff~J50!2
a2J2

16m2~m2R21J2!
, ~77!

whereVeff(J50) corresponds to the RHS of Eq.~36!.
In view of the above result, we can reinterpret the on

case in three dimensions where it was possible to form na
singularities: the radial collapse of a massive shell onto A
vacuum. Because of the existence of a mass gap betw
AdS and theM50 black hole, the outer solution can have
negative mass even for a shell withs.0. However, this
case is somehow ill defined because the particles would n
to free fall with infinite precision along the radial direction
Any angular perturbation in the initial condition would pre
vent the shell to reach the origin.

In turn, outer black hole solutions (J,M ) are created for
any value of the shell massm, since the smallest turning
point is always inside the horizonr 1 . The time evolution is
completely determined once the initial conditions are set
particular, for a collapsing shell starting from zero radial v
locity at a distanceR5R0, we obtain the expression for th
mass of the external solution

M5
2A~R0

211!~m2R0
21J2!

R0
2S m2

4
11D . ~78!

For extremal black holes, there is no restriction on t
total mass of the collapsing ring, either. The limit case
represented by the situation where both turning points c
lesce. Because the shell mass must bem52, the ring is
orbiting steadily at a fixed radiusR25J/2, the radius corre-
sponding to an extremal black hole horizon. As a con
quence, the shell dynamics sees no objection to the for
3-8
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tion of extremal black holes from a collapse process with
appropriate set of initial conditions, in a similar way as
charged black hole creation.

VII. CONCLUSIONS

Apart from the relative ease with which this alternati
treatment reproduces and extends the dynamics for coll
ing thin shells obtained by the Israel method, this formali
presents a few additional interesting features, especially
cause of the general statements that can be derived from

The geometrical scheme applied in the derivation of
formula ~24!—and the corresponding version in the rotati
case—permits us to write them generically in terms of
change in the geometry through the shellD f 2 and not explic-
itly in terms of any particular solution paramete
(M ,J,Q,L, etc.!. Even more subtle, it is precisely this di
ference that generalizes the method, opening the possib
of dealing with a number of interesting cases: from bla
hole creation—as presented in this article—to thin shell c
lapse over an existing black hole, and also the possibility
extension to higher dimensional spacetimes.

In 211 dimensions, a direct consequence of Eqs.~24!
and~67! is the well-known thermodynamical law stating th
the horizon area always grows. This can be derived from
energy conservation law for both nonrotating and rotat
cases as follows. Let us assume that a thin shell of phys
matter—satisfyings.t.0—is dropped over an already ex
isting black hole configuration. Therefore, the LHS in Eq
~24! and ~67! is strictly positive for any value ofR, that is,
f 1

2 (R), f 2
2 (R). For the interior black hole, there exists a

even horizonR1
(in) such thatf 2

2 (R1
(in))50, and the function

f 1
2 must be negative for the same position. Hence, this

function should vanish at a larger distance than the in
horizon R1

(in) . The conditions imposed mean that any m
chanical perturbation would not move faster than the sp
of light around the shell and it is equivalent to the usu
dominant energy condition in cosmology~see, e.g., Ref.
@19#!. The former argument is also valid for radial collapse
higher dimensions.

Another general consequence, regarding naked singul
formation from the collapse of a thin shell over a black ho
interior solution, can be made from the analysis of Eq.~24!.

Let the set of parameters be such that the collapse
turn the inner black hole solution into a naked singularity,
seen by a distant external observer. For example, we
imagine a near-extremal electrically charged black hole an
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dust shell carrying more chargeq than the proper massm.
For this system, we have an inner event horizonR1

(in) , such
that f 2

2 (R1
(in))50, whereas the exterior functionf 1

2 (R) is
positive throughout the space. Roughly speaking, if the s
does not gather enough speed during the collapse, it will
become massive enough to prevent the formation of a na
singularity. Furthermore, from the shell dynamics we kno
that a matter sphere released with certain speed is equiv
to one dropped from rest at another distance. Then, in p
ciple, it might always be possible to find a set of initi
conditions to destroy the black hole configuration.

However, Eq.~24! expresses that by the time the shell h
reached the black hole horizonR1

(in) the conservation of en
ergy has already been violated. In addition, the shell m
have bounced before, because forṘ50 at the horizon

f 1~R1
( in)!52Vd22RsG, ~79!

in open contradiction with the fact we have an external
ked singularity. A similar argument can be developed for
rotating case in three dimensions, stating the impossibility
turning black holes into naked singularities by throwing th
shells of physical matter over them.

The previous reasoning cannot be repeatedverbatim in
the case of naked singularity formation over an empty spa
Nevertheless, as we discussed in the corresponding sect
the absence of a horizon and the explicit form of the me
for the cases with angular momentum and electric cha
prevents the shell from reaching the origin.

Finally, the Hamiltonian formalism for the collapse of th
shells developed in this paper can be applied to create m
netic black holes in three spacetime dimensions@20#. It can
also be extended to deal with the problem of gravitatio
collapse in gravity theories with higher powers in the curv
ture @21#.
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