PHYSICAL REVIEW D 69, 104018 (2004

Microcanonical entropy of a black hole
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It has been suggested recently that the microcanonical entropy of a system may be accurately reproduced by
including a logarithmic correction to the canonical entropy. In this paper we test this claim both analytically
and numerically by considering three simple thermodynamic models whose energy spectrum may be defined in
terms of one quantum number only, as in a non-rotating black hole. The first two pertain to collections of
noninteracting bosons, with logarithmic and power-law spectra. The last is an area ensemble for a black hole
with equi-spaced area spectrum. In this case, the many-body degeneracy factor can be obtained analytically in
a closed form. We also show that in this model, the leading term in the entropy is proportional to the horizon
areaA, and the next term is |IA with a negative coefficient.
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[. INTRODUCTION exact microcanonical entropy for this spectrum in a closed
form, and obtain the area law for the entropy. We also show
The entropy of a macroscopic black hole is known to bethat the next term in the entropy is proportional tAAlwith
proportional to the area of its horizdi], in units of the a negative coefficient. This is also verified using the canoni-
Planck length Squared_ It has also been shown by severgpl ensemble when the area fluctuation is subtracted out.
authors using a variety of approaches that the leading order The origin of the black hole entropy, in theories of quan-
correction to this is proportional to the logarithm of the areatum gravity, is believed to arise from the microstates that are
[2] (also see the references[BY). Recently, a universal form generated by a quantum mechanical operator such as area. In
for the (negative coefficient of this logarithmic term has Standard statistical mechanics, when many particles in the
been obtained in Ref4] by assuming a power-law depen- mean-_fleld model are trapped in a potential well, th_e micro-
dence of the area on the mass of {men-rotating black ~ canonical entropy of the many-body system atjaantized
hole. For an isolated black hole, it is of course appropriate t¢NergyE, is obtained by taking the logarithm of the number
consider the microcanonical entropy. For a quantum systen®f distinct microstates that all give the same enefgy To
the microcanonical entropy may be defined uniquely in term&€ more explicitE, =Xy, N;€;, whereN; is the number of
of the degeneracy of the state at a given energy, and it has rparticles with single-particle energst. The set{N;}, de-
fluctuation in energy. The many-body degeneracy factor, fonotes a given occupancy configuration of single-particle lev-
any nontrivial system, however, is exceedingly difficult to els that make up a microstate with total enefgy. There
calculate. For this reason, it is desirable to approximate thenay beQ(E,) such distinct microstates for an energy,
microcanonical entropy by the canonical entrgfhe leading  each denoted by a s@N;}, and the microcanonical entropy
term), minus a logarithmic term due to fluctuations in theis then uniquely defined as
canonical ensemble-averaged energy from the equilibrium
value. The main objective of this paper is to test this formula S(E,)=kg IN[Q(E )], (8]
guantitatively in three solvable models, where the microca-
nonical entropy can also be calculated exactly. The first twgvhere the Boltzmann constakg will henceforth be set to
of these are systems of noninteracting bosons, rostcre-  unity. Similarly, in models of quantum gravity, tHenacro-
lated to black holes. These many-body systems, howevescopig area eigenvalué, is taken to be coming from the
have eigenenergies that depend on a single quantum numbetementary componenés, such that\,=X, N;a;, where
similar to a non-rotating quantum black hole. When the loga-\; is the number of elementary components with ag].
rithmic correction to the canonical entropy are included inEach microstate is specified by a distinct §6f}, and there
the canonical expression, its agreement with the microcamay be()(A) such microstates for a given ar@aThe mi-
nonical entropy improves markedly. Next, we consider a cacrocanonical entropy is thef(A,,) = InN[Q(A,)].
nonical area ensemble with equi-spaced spectrum and distin-
guishable area components as a model for a non-rotating
black hole. The area of the surface of the event horizon plays
a role analogous to the enerd§]. This equi-spaced spec- Consider a many-body quantum system with eigenener-
trum was first proposed in the early seventies and later corgies E,, that are completely specified by a single quantum
firmed by several authors using different technigi@8sThe  numbern,
model has been studied earlier by Aleksex\al. [7] using
the grand canonical ensemble. In this paper, we calculate the E,=f(n), n=0,123..., 2

Il. CORRECTION TO THE CANONICAL ENTROPY
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where we assumi(n) to be an arbitrary monotonic function gration along the imaginary axis. The saddle-point approxi-
with a differentiable inversef ~*(x)=F(x), such thatn  mation simply gives the smooth par(E). The well-known
=F(E,). The degeneracy of the states at enefgys given  result[9] is

by Q(E,), a function characterizing the quantum spectrum.

At this point, we need not assume that this many-body sys- 5 exd Se(Bo)]
tem is described in the mean-field picture. The quantum den- p(E)= ——, 9)
sity of the system is defined as V27 Sc(Bo)
where
P(B)=2 O(E,)S(E-Ep). 3)

Sc(Bo) = BoE+INZ(Bo)

Using general properties of the delta function, we write is the canonical entropy evaluated at the stationary pg@ynt
= _ S / and the prime denotes differentiation with respecBtorhe
S(E=En)=6E-f()=s-FENF'(E)], 4 energyE is related to the saddle poi, via the condition

where the prime denotes differentiation with respect to thdhatSc(Bo)=0. Using Eqs(7) and(9), we obtain

continuous variablés. Using the Poisson sum formula, we

i 1
thus obtair(a] S(E)=Sc(Bo)~ 5 N[27S(Bo) ]~ In(|F' (E)]). (20

p(E)=Q(E)|[F"(E)|| 1+2> COS{ZWKF(E)])- (5  The formula that was originally suggested[Bl missed the
k=1 last term on the RHS. This was also pointed out earlier in

Ref. [4]. It turns out that for two of the models that we

consider in this papefr'(E)=1, and the last term in Eq.

S . (10) does not contribute. On the other hand, in the model
':jhe a.bOV? relation E_lthehn the SmeOthly varying pfar;t] of th_ ith a logarithmic energy spectrum, this term plays a crucial
le.nS|ty of states, while the second part consists of the oscii, o ~Note that within the canonical formalisn8.(Bo)
ating components coming from the discreteness of the en-:(<E2>_<E>2) is the fluctuation squared of the enei@)
ergy levels. For a macroscopic system with laEyehe os- d )

cillating part may be neglected. We then obtain the importan}/\/he."n this energy fI_uctuat|on IS subtr_acted out from the ca-
relation nonical entropy, as in Eq10), we obtain an estimate for the

microcanonical entropyfor quantum gravitational fluctua-
~ , tions, see e.d.10]).
p(E)=Q(E)[F'(E)], (6) The approximation(10) for the microcanonical entropy
~ S(E) is very useful, since it is prohibitively difficult to cal-
where p(E) denotes the averaged smooth density of statesulate it directly from Eq.(1). Generally, in a mean-field
Now we specialize to a system bf noninteracting particles model, one is given the single-particle quantum spectrum.
(or in a mean fielglconstituting the many-body system. Then The direct computation of the many-body degeneracy factor
the degeneracy)(E,) is just the number of distinct mi- ((E) from this starting point is very time consuming. In-
crostates that all have the same eneKyy, as described stead, it is much simpler to obtain the canonisabody par-
earlier. The microcanonical entropy is given by HA), tition function by well-known recursion relatioridepending

We assume the functiof) (E) of the continuous variablg&
to be smooth. The first term on the right-hand SiB&lS) of

which, using Eq(6), may now be expressed as on quantum statisti¢g§11], and then compute the canonical
entropy S.(8o). Going one step further, one may calculate

S(E)=In[p(E)|F'(E)| 1], (7)  the canonical energy fluctuation, and use Ed) to obtain
S. By following this canonical route, no computation of

where the oscillating part has been dropped. Q(E) is necessary. The approximate formyl®), relevant

Our next task is to calculafg(E) for a many-body sys- to black _hol_e physic_s, has not been yet _epricitIy tested. The
tem. This may be obtained by considering the canonical paf'@in objective of this paper is to test this formula quantita-
tition function of theN-particle system, and taking its inverse tVely in some model systems where the microcanonical en-
Laplace transform using the saddle-point methali The  troPY S(E) can be calculated exactly.
canonicalN-patrticle partition function is given by

A. The logarithmic energy spectrum

o)

Z(B)=2, Q(E,exp —BE,)= f p(E)exp( — BE)dE, In the first idealized example, we consideémnoninteract-
n 0 ing bosons N— ) occupying a set of single-particle energy
(8)  levels (and also the ground state, which is at zero energy
_ . _ €,=Inp, where p runs over all the prime numbers
wherep(E) was defined earlier. Note that we are using the2 35 .. .. Asrecently pointed out in Ref12], the many-
canonical ensemble only as a tool to obfa(iE) by Laplace  body microcanonical entrop§ of this system ixactlyzero.
inversion with respect t@, which is just a variable of inte- This follows from the fundamental theorem of arithmetic,
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known from the time of Euclid. It states that every positive 60 -
integern can be expressed in only one way as a product of e
the prime number powers: -

n=pps2...p", 20_7,

0 % 1 1 1

where thep,’s are distinct primes, and,’s are positive in- 20k
tegers, including zero, and need not be distinct. It immedi-
ately follows that the eigenenergies of the many-body system 1ok

are given byE,=Inn=2, nInp,, and that each eigenstate is
non-degeneraterhis means that for every macro-state of the L
many-body system, there is exactly one microstate, and 0 100 200 300 400 500
Q(E,)=1. This implies, by Eq(1), that the microcanonical E

entropy S(E,) =0. We would now like to check if this can
be verified from Eq.(10). For the above In many-body
spectrum, note that the inverse functiBgE) =exp(E), and
we immediately obtain the density of states using (9.

FIG. 1. (a) Comparison of the exact microcanonical entropy
S(E) (solid line) and the canonical entro8:(E) (dashed lingfor
the e=m?® spectrum, whers=1. The patrticles are taken to ibé
non-interacting bosons, wheihe— . The dot-dashed curve, given
by Eq. (10), overlaps with the exact solid curvéh) Same aga),
excepts=2.

p(E)=ef| 1+2>, cog2mkeF)]|. (12)
K= _ . . .
' This expression is well known in number theory. It is the
The second term on the RHS is the intrinsic quantum fluc9enerating function fof)(E), which pertains to the number

tuation, due tcE,’s taking only discrete values. The smooth ©f Ways that an integeE can be partitioned into a sum of
part of the density of states Es(E)=eE To obtain the ca- powers. This is illustrated in the Appendix by taking a qua-

. ~__ dratic single-particle spectruns€2), and showing that the
nonl_c_al entrop_ySC(ﬂo), we need to calculate the <_:ano_n|cal exact combinatorial result faf(E) of the many-body sys-
pa”'“?” funct!onZ(ﬂ). The exa9tz(3) fo; N_:OO n t,h's tem can be reproduced by expanding the canonical partition
case is the Riemann zeta functigB)==,_,n"#, which

) ) , function above. It is important to note that even though the
includes the quantum fluctuations. We pick up the Smoc’t@ingle-particle energies may not be equi-spatfed s>1),

part of Z(B) by evaluating it using Eq(8) with p(E)=€%,  the many-bodyE,=1,2,3 . .. is.This has the consequence
obtaining Z(8)=(B—1) ~, for p>1. From this, we get hatF/(E)=1, andQ(E)=p(E) when the quantum oscilla-
Se(B) = ~In(B—1)+BE, so the saddle point is given i, tions are dropped. The numerical calculations for a large
=(1/E+1). Thus the equilibrium canonical entropy is nymper of particles, using different power-law single-particle
Sc(Bo)=E+InE+1, that contains both a linear and a loga- gpectira, were done in a different context in Ré#], where
rithmic term. Evaluation of the fluctuation term is elemen-nea getails may be found. We test the accuracy of(E). by

tary, and the microcanonical entropy using EX0) is comparing it with the exacS(E) from Eq. (1) for s=1,2.
1 1 The quantum oscillations have been included in the exact
S(E)=E+INE+1—=In(27E2)—E=1— ~In(2%). mmrocanomcal calculations, but are difficult to see in this
(E) (2mE") 2 (2m) scale. In Figs. @@ and Xb), the dashed curve denotes the

(12 canonical entropypc(E) without the correction, and the con-
tinuous curve the exact microcanonical entrdff¥e) for the
We see that th&-dependent terms in the canonical entropytwo power laws. We see from these curves that the two differ
are entirely canceled by the fluctuation term; the small resypstantially as a function of the excitation enegyspe-
sidual constant is due to the use of the saddle-point methogja|ly for s=2. Inclusion of the logarithmic correction to the
This example is atypical, because the canonical term Coreanonical entropy using EGL0) results, however, in almost

(10) yields (almos} the correct microcanonical estimate.  these figures.

B. The power-law single-particle spectrum IIl. MODEL FOR AN AREA ENSEMBLE

For our second example, we considérnoninteracting OF ABLACK HOLE

bosons confined in a mean field with a single particle spec- The above bosonic model with the power law spectrum

trum given byen,=m®, where the integem=0, ands>0. ¢ —ns is not directly applicable to the black hole problem
The energy is measured in dimensionless units. This model i§ince the leading term in the entropy varies B¥(*S)

considered here because the canonical partition funétn 113 14. Following [7], we consider insteadistinguishable

N—c°) is exactly known[13]; elementary components, and consider the situation where the
® elementary area components are equi-spaagd, with j
Z(8)= H [1—exp —Bm®)] L. (13) taking valueg 0,1,2 .., etc., with a degeneracy a(j) .
m=1 =(j+1). This model has been considered by the authors in

104018-3



BHADURI, TRAN, AND DAS

PHYSICAL REVIEW D 69, 104018 (2004

Ref. [7], but the results were derived in the grand-canonicahbility property of the system it is given by an explicit for-
ensemble. For a macroscopic black hole with a horizon aremula. Thus an analytical expression for the microcanonical

A, we assume that the number of independent components &A) may be found directly from Eq.(17):

A

N=17-, (14
IP

where 7 is a positive constant, ant, the Planck length,
which is set to unity. BottN andA are fixed quantities in the

microcanonical picture. As will be shown shortly, the advan-
tage of this model is that the expression for the multiplicity
Q(A,N) may be explicitly found, and therefore the exact

S(A)
=In Q(AN). Using Stirling’s series and the Euler-Maclaurin
summation formula, we get

SA)=AIN 1+ 2N s onin( 14 2
(A)=Aln| 1+ 2 N 72N
L2 A+—A2 18
—En w N | ( )

microcanonical entropy may be calculated directly. By ex-We now calculate the canonical entropy and show that inclu-

panding the microcanonical entropy for larg§ewe find that
the leading term is proportional to the ar&af the horizon,
and the next term varies asAn This expression is exactly

sion of the logarithmic correction terffEq. (10)] gives a
formula that agrees with E@18) for the microcanonical en-
tropy. The canonical calculations are performed for a fixed

reproduced in the canonical ensemble calculation, when thd, and the ensemble averaged area is given (By

ensemble averaged\) is identified withA, and the fluctua-
tion in (A) is subtracted out.
The one-body partition function is

Z,=2, (j+hexp—aj)=(1-e %) ?=(1-x) %
i=0
(15)
where « is a variable canonical to the area, areexp

(—a). The canonicaN-particle partition function for distin-
guishable elementary components is

Zy=(Z)N=(1-x) 2",

2N(2N+1)
—X

=1+ +
1+2Nx 5

2N(2N+1)(2N+2)
+ 3 x3+

A-1
[T an+i)

1=0 A
Al

A=1

=; Q(A,N)e A, (16)

which is analogous to Eq8). The multiplicity of states of
area is therefore

A-1

IT en+i)

QAN)= — 17)

Al

This is the microcanonical partition function. It is not diffi-
cult to check by combinatorics th& (A,N) for a givenA
andN is indeed given by Eq17). Note that unlike the case
of bose statistics where the multiplicit2(E) was found
only by expanding the partition functidrior example, see

=—dInZy/da at the equilibriumag. For largeA, we iden-
tify (A)=A and later correct for the fluctuation. The canoni-
cal entropy isS¢(a)=aA+InZy=aA—-2NIn(1—e “). The
saddle point is obtained from the condition th&g(ao)
=0, and givesay=In(2N/A+1). For thisag, Sc(@g) and
St(a@g) can easily be evaluated. Inserting these into (EQ)
immediately yields Eq(18), which was obtained from the
asymptotic expansion of the microcanonical entropy. Finally,
we use the relatioiil4) to eliminateN from the above equa-
tion. We obtain

S(A)=¢A— %In A— %In[ZTr(le 1291, (19

where £=In[(1+27)(1+1/25)?7]. Note that the leading
term, proportional toA, comes from the canonical entropy
S¢, and the correction |A arises from the fluctuation ifA).
If we had included the zero-point energy in thgspectrum
by takinga;=(j+1), as in[7], we again obtain the same
form of Eq. (19), but the expression fog, as well as the
coefficient of InA are different(the latter is still negative

We have shown that for a class of statistical mechanical
systems, the log-corrected entropy formul®) accurately
reproduces the microcanonical entropy of these systems. Our
results are applicable to a large class of black holes, with
uniformly spaced area spectrJi@]. Although the area spec-
trum in loop quantum gravity is not strictly uniforfd5], it
is effectively equi-spaced for large areas. Moreover, as
shown in[7] and[16], an exact equi-spaced spectrum may
emerge in loop gravity as well. It would be interesting to
extend our analysis to charged and rotating black holes, de-
scribed by more than one quantum number.
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APPENDIX

We give an example of the calculation of the exact en-,

tropy for a system oN non-interacting bosons with a single-
particle spectrum given by,=m?, m=0,1,2 . ... Initially,

at T=0 (or E=0), the particles all reside in the ground
state, wheren=0. Denote byN., the number of particles in
the excited states. An excitation enelgymay be shared by
Ney Out of N particles such thaE=Z=; Nje;, Ngy,=2i N;.
The multiplicity Q(E,N) is the number of ways of doing
this. For example, take=8 andN=8; then there are three
distinct configurations. First\.,=2 particles can be excited
in which case each take$24 quanta and goes to the sec-
ond level above the ground state. In this cade=2 and
N;=0, i#2. SecondNg,=5 particles can be excited, four
of which each takes one quantum to the first lewé| €4)
above the ground state and the other takés £ quanta to
the second levelN,=1). Finally, all 8 particles can be ex-

. . . ) 12 2
cited; each takes one excitation quantum to the first leveP=1"+2

(N.=8, andN;=0, i#1). The energy in all three cases is
the same:

E=8=Nje;+Nye,+ ...=0+2X2%+ ... +0,
or =4x1%+1x2%+ ...+0,
or =8x1%+ ...+0.

Hence,()(8,8)=3. We see that this problem is identical to
counting the number of ways that an integecan be parti-
tioned into a sum of squares. Note that had we takerN5

PHYSICAL REVIEW D69, 104018 (2004

TABLE |. Calculation of the multiplicityQ) (E,N) for N bosons
at an excitation energf. The single-particle energy spectrum is
given bye,,=0,1,4,9 ... ,m?. For a given integeE, the partitions
of E are tabulated in column 1, and the corresponding nuriier
in column 2. The microstate(E,N.,,N), enumerated in column 3,
is defined as the number of ways of excitiegactly N, particles.
The last column gives the multiplicity Q(E,N)
=EHex:lw(E,Nex,N). It is to be noted that for a large excitation
energyE (not considered in the tablew(E,Nqy,N) may take on
values larger than unity.

E Nex  ®(E,Ngy,N) Q(E,N)
1=12 1 1 1
2=12+12 2 1 1
3=12+12+12 3 1 1
4=2? 1 1
=12+12+1%2+12 4 1 2
2 1
=12+1%2+1%2+1%2+12 5 1 2
6=12+1%+22 3 1
=12+ ...+12 6 1 2
7=12+12+22 3 1
=12+ ...+12 7 1 2
8=22+22 2 1
=12+12+12+1%2+22 5 1
=12+ ...+12 8 1 3

fact general for any power-law single-particle spectrum and

<8 in this example, then there would be only 2 configura-non-interacting particles. Note that the multiplicy(E,N)

tions instead of 3, since the last case in which each particlgnumerated in the table is the same as the expansion coeffi-

takes one quantum is eliminated. In number theory this i§ient of the partition function, i.e.
known as restricted partitioning as opposed to the unre-

stricted case considered above. Clearly, as longag, the

number of accessible microstates may be enumerated as if

N=o. In Table | we enumerate the multiplicity for several
values ofE, assuming unrestricted partitioning.

A few remarks are in order. First, as mentioned before, as

long as E<N, the enumeration of the multiplicity is
N-independent. Second, as illustrated abdvés given by a
set of consecutive integerk,,=n, even though the single-

0

B 1

Z(X)= 1L [—1_ sz]

=14 x+x2+x342x*+2x°

+2x8+2x7+3x8+4x%+ . . ., (A1)

particle energy spectrum is not equi-spaced. Each manywherex=e#, and the power ok corresponds to the many-

body energy levek, has a degenerady(E,,N). This is in

body energyE,, .
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