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Spatial infinity in higher dimensional spacetimes
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Motivated by recent studies on the uniqueness or nonuniqueness of higher dimensional black hole space-
time, we investigate the asymptotic structure of spatial infinity inn-dimensional spacetimes (n>4). It turns
out that the geometry of spatial infinity does not have maximal symmetry due to the nontrivial Weyl tensor
(n21)Cabcd in general. We also address static spacetime and its multipole momentsPa1a2•••as

. Contrasting with
four dimensions, we stress that the local structure of spacetimes cannot be unique under fixed multipole
moments in static vacuum spacetimes. For example, we consider the generalized Schwarzschild spacetimes
which are deformed black hole spacetimes with the same multipole moments as spherical Schwarzschild black
holes. To specify the local structure of the static vacuum solution we need some additional information, at least
the Weyl tensor(n22)Cabcd at spatial infinity.
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I. INTRODUCTION

The fundamental study of higher dimensional black ho
is gaining importance due to TeV gravity@1,2# and super-
string theory. In four dimensions, the no-hair theorem@3# and
uniqueness theorems@4# are the main results obtained durin
the golden age of study of black hole physics. Here we h
a question about black holes in higher dimensions. W
about the uniqueness theorem? Recently a static black
has been proven to be unique in higher dimensional
asymptotically flat spacetimes@5–7#. However, we canno
show the uniqueness of stationary black holes. This is
cause there is a counterexample, that is, there are hi
dimensional Kerr solutions@8# and black ring solutions@9#
which have the same mass and angular momentum pa
eters. See also Ref.@10# for a related issue of supersymmetr
black holes. Even if we concentrate on static spacetimes
asymptotic boundary conditions are not unique@5#. Indeed,
we could have a generalized Schwarzschild solution whic
not asymptotically flat. There are also important issues ab
the final fate of the unstable black string or stable confi
ration of Kaluza-Klein black holes@11#. They are still under
investigation.

In this paper, we focus on the fundamental issue of
asymptotic structure of spatial infinity, which is closely r
lated to the asymptotic boundary condition in the uniquen
theorem and numerical study. See Ref.@12# for null infinity
in higher dimensions, but with a different motivation. Fir
we investigate the geometrical structure of spatial infinity
higher dimensions. Spatial infinity is essentially
(n21)-dimensional manifold in generaln-dimensional
spacetimes. In four dimensions, it should be restricted
being a three-dimensional unit timelike hyperboloid w
maximal symmetry@13#. In higher dimensions, as show
later, there are many varieties due to the nontriv
(n21)-dimensional Weyl tensor. Next, we discuss the hig
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multipole moments in static spacetimes. For fou
dimensional spacetimes, the local structure of static
vacuum spacetime is uniquely determined by specifying
the multipole moments@14#. On the other hand, as we se
later, higher dimensional static spacetimes cannot be fixe
multipole moments alone. We need some additional inform
tion to fix the spacetimes. One of them is th
(n22)-dimensional Weyl tensor on the surface normal to
radial direction.

The rest of this paper is organized as follows. In Sec.
we define the spatial infinity following Ashtekar an
Romano@13# and then discuss the leading structure of spa
infinity. In Sec. III, we concentrate on static spacetimes a
again define spatial infinity on spacelike hypersurfaces. T
we define and discuss the multipole moments followi
Geroch@15#. Finally, we give a discussion and summary
Sec. IV.

II. STRUCTURE OF SPATIAL INFINITY

A. Definition

We begin with the definition of spatial infinity by
Ashtekar and Romano@13#. If one is interested only in spa
tial infinity, their definition is useful.

Definition. Physical spacetime (M̂ ,ĝab) has a spatial in-
finity i 0 if there is a smooth functionV satisfying the fol-
lowing features~i! and~ii ! and the energy-momentum tens
satisfies the fall off condition~iii !.

~i! V5̂0 anddVuÞ̂0.
~ii ! The following quantities have smooth limits oni 0:

qab5V2~ ĝab2V24F21¹̂aV¹̂bV!5V2q̂ab , ~1!

na
ªV24ĝab¹̂bV, ~2!

where
©2004 The American Physical Society12-1
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F5V24ĝab¹̂aV¹̂bV5£nV, ~3!

and 5̂ denotes evaluation oni 0 . qab has the signature (2,
1,1,•••,1).

~iii ! T̂mnªT̂abem
a en

b5O(V21m) near i 0, where

$êm
a %m50,1,2,•••,n21 is a quasiorthogonal basis of the metr

ĝab andm.0. The definition is exactly the same as that
four dimensions.

We write the physical metric in terms of the quasiorthog
nal basis

ĝab5n̂an̂b1êI
aêbI, ~4!

where

n̂a52
na

Ag~n,n!
52V2F21/2na ~5!

and

êI
a5eI

aV. ~6!

eI
a represents the parts of the quasiorthogonal basis ofq̂ab .

B. Leading order structure

From the above the asymptotic behavior neari 0 is deter-
mined by the regular quantitiesqab andna. For example, the

extrinsic curvatureK̂ab of V5const surfaces is written as

K̂ab5
1

2
£n̂q̂ab5V21F1/2qab2

1

2
F21/2£nqab . ~7!

Since it is not regular atV50, we defined the regular tenso
Kab as

Kab5:VK̂ab5F1/2qab2
1

2
VF21/2£nqab . ~8!

Then we see that

Kab5̂F1/2qab . ~9!

In the physical spacetime, the Codacci equation is

êI
an̂bT̂ab5@D̂bK̂a

b2D̂aK̂#êI
a . ~10!

It is also expressed as

V22êI
an̂bT̂ab5DbKa

b2DaK ~11!

in terms of (qab ,na). At i 0 it becomes

05̂DbKa
b2DaK. ~12!

Substituting Eq.~9! into Eq. ~12!, we see that

DaF5̂0 ~13!
10401
-

and then

F5̂const. ~14!

Since we can setF5̂1 without loss of generality,

Kab5̂qab . ~15!

Here, we used the gauge freedom of the conformal fac
V→vV, that is, since under this transformationF trans-
forms as

F→F85̂v22F, ~16!

we may choosev to satisfyv5F1/2. From the Gauss equa
tion

V22êI
aêJ

b (n)Rab5@ (n21)Rab2KKab2F1/2Kab12KacKb
c

2F1/2DaDbF21/21VF21/2£nKab#eI
aeJ

b ,

~17!

we have

(n21)Rab5̂~n22!qab ~18!

and then

(n21)Rabcd5̂
(n21)Cabcd12qa[cqd]b . ~19!

This is simple but the main consequence in our paper. In f
dimensions, due to the absence of the three-dimensi
Weyl tensor(3)Cabcd50,

(3)Rabcd5̂2qa[cqd]b . ~20!

This implies thati 0 is a three-dimensional unit hyperboloid
In the case ofn>5, the situation is drastically change
because(n21)CabcdÞ0 in general. Indeed, we have a
n-dimensional solution with nonzero Weyl tensor as sho
in the next section. Such spacetimes are not included in
category of asymptotically flat spacetimes.

III. STATIC SPACETIMES

In this section, we focus on static spacetimes in hig
dimensions. To investigate the asymptotic structure, it is b
ter to adopt a definition separately.

In the static spacetime, the metric can be written as

ds252V2dt21qi j dxidxj ~21!

wherei , j 51,2,...,n21. The Einstein equation becomes

(n)R̂0̂0̂5
1

V
D2V5T̂0̂0̂1

1

n22
T̂ ~22!

and

(n)R̂i j 5
(n21)Ri j 2

1

V
D̂iD̂ jV5T̂i j 2

1

n22
gi j T̂. ~23!
2-2
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A. Structure of spatial infinity in static slices

Definition. A physical static slice (Ŝ,q̂ab) has a spatial
infinity ĩ 0 if there is a smooth functionV satisfying the
following features~i!,~ii ! and an appropriate falloff condition
for the energy-momentum tensor.

~i! V5̂0 anddVuÞ̂0.
~ii ! The following quantities have smooth limits onĩ 0:

hab5V2~ q̂ab2V24F21¹̂aV¹̂bV!5V2ĥab , ~24!

na
ªV24ĝab¹̂bV, ~25!

where

F5V24ĝab¹̂aV¹̂bV5£nV. ~26!

hab has the signature (1,1,•••,1).
The extrinsic curvature defined by

k̂ab5
1

2
£n̂ĥab ~27!

is singular atV50. In the same way as in the previou
section, we definekab5V k̂ab and then we see thatkab

5̂hab from the Codacci equation. From the Gauss equat
(n22)Rab5̂(n23)hab . Thus

(n22)Rabcd5̂
(n22)Cabcd12ha[chd]b . ~28!

In five- or four-dimensional spacetimes,

(3,2)Rabcd5̂2ha[chd]b . ~29!

It represents a three- or two-sphere.

B. Multipole moments

In this subsection we define the multipole moments in
covariant way. To do so it is better to change the formali
and use the conformal completion defined by Geroch@15#.

Definition. A physical static slice (Ŝ,q̂ab) has a spatial
infinity ĩ 0 if there is a smooth functionV such that

V5̂0, ¹̃aV5̂0, ¹̃a¹̃bVÞ̂0 ~30!

and

q̃ab5V2q̂ab ~31!

has a smooth limit onĩ 0.
As an example, consider Euclid space. The metric is

d,25dr21r 2dVn22 . ~32!

V is taken to beV5r 22. Then

V2d,25r 24dr21r 22dVn225dR21R2dVn22 , ~33!
10401
n,

a

whereR5r 21. Then ĩ 0 is just the center in an unphysica

slice. Moreover,¹̃aV52R¹̃aR5̂0 and ¹̃a¹̃bV5̂2¹̃aR¹̃bR

Þ̂0.
Following Geroch’s argument, we might be able to ide

tify the values of the following tensor at spatial infinity a
multipole moments:

P5
1

2
~12V!V2(n23)/2

Pa1a2•••as11
5OF ¹̃a1

Pa2a3•••as11
2

s~2s1n25!

2~n23!
(n21)R̃a1a2

3Pa3a4•••as11G , ~34!

whereO@Ta1a2•••ar
# denotes the totally symmetric, trace-fre

parts of Ta1a2•••ar
. This is recursive and a coordinate-fre

definition. The definition relies on the argument of the co
formal rescaling (V85Vv) @15,16#. ~The multipole mo-
ments in a Newtonian system depend on the choice of
origin of the coordinates. This behavior of the multipole m
ments is reflected by the transformation of the multipole m
ments under a change of the conformal factor. The sec
term in the above definition reflects this in curved spa
times.! Since the rescaling corresponds to a translatio
transformation, we wish the following transformation fo
Pa1a2•••as11

:

Pa1a2•••as11
8 5Pa1a2•••as11

2
~2s1n23!~s11!

2

3O@Pa1•••as
¹̃as11

v#. ~35!

We can check that it indeed holds for the definition of E
~34!. Note that the definition does not contain the We

tensor (n21)C̃abcd.
In four-dimensional asymptotically flat spacetimes, w

can show that they become identical with the coordinate
pendent multipole moments defined by Thorne@17,18#. The
most important feature is that stationary and vacuum spa
times having the same multipole moments are isometric w
each other in four dimensions. That is, the local structure
the stationary and vacuum spacetimes is completely de
mined by the multipole moments@14#. In Newtonian gravity,
this fact is trivial. However, in general relativity, it is not so
As demonstrated by an example below, the situation will
drastically changed in higher dimensions.

There are generalized Schwarzschild spacetimes and
metric is1

ds252 f ~r !2dt21h~r !4/(n23)@dr21r 2sABdxAdxB#,
~36!

1The form is similar to that in the isotropic coordinates of t
Schwarzschild solution. If we use the coordinater5rh(r )2/(n23),
the metric becomes the familiar form:ds252F(r)dt2

1F(r)21dr21r2sABdxAdxB, whereF(r)5124(m/r)n23.
2-3
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whereA,B52,3,...,n21. f (r ) andh(r ) are given by

f ~r !5
12~m/r !n23

11~m/r !n23
~37!

and

h~r !511S m

r D n23

. ~38!

sAB is the metric of the Einstein space, that is, it obeys

(n22)RAB~s!5~n23!sAB , ~39!

where (n22)RAB(s) is the Ricci tensor ofsAB . The metric
sAB found by Bohm is given by@19#

sABdxAdxB5du21a2~u!dVp1b2~u!dVn232p , ~40!

where 5<n23<9 with p>2 and qªn232p>2. See
Refs.@20,21# for the stability of such spacetimes.

Taking V5@(12V)/2#2/(n23), the unphysical metricq̃
becomes

q̃5V2q̂5S m

r D 4

@dr21r 2sABdxAdxB#. ~41!

Defining

Rªm2r 21, ~42!

then

q̃5dR21R2sABdxAdxB. ~43!

For this metric, the Ricci tensor becomes

(n21)R̃i j 50. ~44!

Finally, we can see at spatial infinity

P5
1

2
~12V!V2(n23)/251,

Pa1a2•••as
50 for s>1. ~45!

Thus this spacetime has the same multipole moments
spherical Schwarzschild spacetimes. We cannot disting
them from one another using only multipole moments. T
problem comes from the absence of the Weyl tensor in
definition Eq.~34!. Because of the total antisymmetricity o
the Weyl tensor, there is no room for the Weyl tensor in
definition. We need the information related to the Weyl te
sor independently. Hence, we might be able to expect tha
can uniquely specify higher dimensional spacetimes by
multipole moments and Weyl tensor. The Bohm metric h
the following nontrivial Weyl tensor(n22)Cabcd @20#:

(n22)CûÂ1ûÂ2
5c1~u!d Â1Â2

,

(n22)CûB̂1ûB̂2
5c2~u!d B̂1B̂2

,

10401
as
sh
s
e

e
-
e
e
s

(n22)CÂ1B̂1Â1B̂2
5c3~u!d Â1Â2

d B̂1B̂2
, ~46!

(n22)CÂ1Â2Â3Â4
52c4~u!d Â1[ Â3

d Â4] Â2
,

(n22)CB̂1B̂2B̂3B̂4
52c5~u!d B̂1[ B̂3

d B̂4] B̂2
,

where

c1~u!5212
a9

a
, c2~u!5212

b9

b
,

c3~u!5212
a8

a

b8

b
, ~47!

c4~u!5
12a822a2

a2
, c5~u!5

12b822b2

b2
.

In the above we used the orthogonal basis$êA1,êA2,...,
êAp% and$êB1,êB2,...,êBn232p%, that is,

a2~u!dVp5dA1A2
êA1^ êA2,

b2~u!dVn232p5dB1B2
êB1^ êB2,

where A1 ,A2 ,...53,4,...,p12 and B1 ,B2 ,...5p13,p
14,...,n21.

IV. SUMMARY AND DISCUSSION

In this paper, we investigated the asymptotic structure
spatial infinity in higher dimensional spacetimes. One w
realize that this is quite important when one tries to perfo
numerical computations or prove the uniqueness theor
This is because one must impose asymptotic boundary
ditions on them. In higher dimensions, it turned out that th
are many varieties. That is, it is unlikely that the asympto
symmetry is raised automatically due to the nontrivial We
tensor@see Eqs.~19! and~28!# at spatial infinity. If and only
if we set the Weyl tensor to zero, the asymptotic flatne
seems to be guaranteed. Since the definition of the multip
moments cannot include the Weyl tensor part, the static
lutions are degenerate in terms of multipole moments.
must at least use the Weyl tensor if one wants to split th
solutions. This is contrasted with the four-dimensional spa
times where the local structure of static and vacuum so
tions can be uniquely figured out from the higher momen
The point is just the dimension. From our study we mu
specify the multipole momentsPa1a2•••ar

and Weyl tensor
(n22)Cabcd for each individual solution. This is a lesson fo
the boundary condition in a numerical study and gives us
insight into the argument of the uniqueness theorem. The
we should carefully think of the Weyl tensor or somethi
similar.

Now, we might be able to have the following conjectur
If the two static vacuum spacetimes defined here have
same multipoles and Weyl tensor(n22)Cabcd at spatial infin-
ity, they are isometric in a local sense.
2-4
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There are many remaining issues; first of all, the details
the structure of spatial infinity. It is unlikely that there
asymptotic symmetry because of the lack of maximal sy
metry. Even if this is so, it is important to ask wh
asymptotic symmetry cannot exist. The next issue is
proof of the statement that the static spacetimes can
uniquely specified by higher multipole moments and
Weyl tensor. We can also extend our argument on st
spacetimes to stationary cases. Since the Weyl tensor ap
in our conjecture, the relation with the peeling theorem
sociated with null infinity is also interesting~see Ref.@22#
for the peeling theorem in four dimensions!. Finally, in four
dimensions, since the Weyl curvature on the static slices v
ishes, it, of course, never contributes to the multipole m
ments. However, in more than four dimensions, the W
curvature on spacelike hypersurfaces in general does
vanish. Since the multipole moments imply deviation fro
tt
v.

et
-

-
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i-

10401
f

-

e
be
e
ic
ars
-

n-
-
l
ot

spherical symmetry, they seem to contain the Weyl ten
We may be able to extend Geroch’s definition of multipo
moments~34! to a refined form to contain the Weyl curvatu
in higher dimensional spacetime.
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