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Spatial infinity in higher dimensional spacetimes
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Motivated by recent studies on the uniqueness or nonuniqueness of higher dimensional black hole space-
time, we investigate the asymptotic structure of spatial infinity-gimensional spacetimes£4). It turns
out that the geometry of spatial infinity does not have maximal symmetry due to the nontrivial Weyl tensor
(=1, peqin general. We also address static spacetime and its multipole moRepts ., . Contrasting with
four dimensions, we stress that the local structure of spacetimes cannot be unique under fixed multipole
moments in static vacuum spacetimes. For example, we consider the generalized Schwarzschild spacetimes
which are deformed black hole spacetimes with the same multipole moments as spherical Schwarzschild black
holes. To specify the local structure of the static vacuum solution we need some additional information, at least
the Weyl tensor("2)C,, .4 at spatial infinity.
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I. INTRODUCTION multipole moments in static spacetimes. For four-
dimensional spacetimes, the local structure of static and
The fundamental study of higher dimensional black holesvacuum spacetime is uniquely determined by specifying all
is gaining importance due to TeV gravift,2] and super- the multipole moment$14]. On the other hand, as we see
string theory. In four dimensions, the no-hair theof@hand  later, higher dimensional static spacetimes cannot be fixed by
uniqueness theoreni4] are the main results obtained during Multipole moments alone. We need some additional informa-
the golden age of study of black hole physics. Here we havéion to fix the spacetimes. One of them is the
a question about black holes in higher dimensions. Whatn—2)-dimensional Weyl tensor on the surface normal to the
about the uniqueness theorem? Recently a static black hof@dial direction.
has been proven to be unique in higher dimensional and The rest of this paper is organized as follows. In Sec. I,
asymptotically flat spacetimd$—7]. However, we cannot We define the spatial infinity following Ashtekar and
show the uniqueness of stationary black holes. This is beRomand13] and then discuss the leading structure of spatial
cause there is a counterexample, that is, there are high#ffinity. In Sec. lll, we concentrate on static spacetimes and
dimensional Kerr solution§8] and black ring solution§9]  again define spatial infinity on spacelike hypersurfaces. Then
which have the same mass and angular momentum paratwe define and discuss the multipole moments following
eters. See also RdfL0] for a related issue of supersymmetric Geroch[15]. Finally, we give a discussion and summary in
black holes. Even if we concentrate on static spacetimes, theec. IV.
asymptotic boundary conditions are not unidéé¢ Indeed,
we could have a generalized Schwarzschild solution which is Il. STRUCTURE OF SPATIAL INFINITY
not asymptotically flat. There are also important issues about A. Definition
the final fate of the unstable black string or stable configu- '
ration of Kaluza-Klein black holeEL1]. They are still under We begin with the definition of spatial infinity by
investigation. Ashtekar and Romand 3]. If one is interested only in spa-
In this paper, we focus on the fundamental issue of thdial infinity, their definition is useful.
asymptotic structure of spatial infinity, which is closely re-  Definition Physical spacetimeM,f;ab) has a spatial in-
lated to the asymptotic boundary condition in the uniquenesfinity i, if there is a smooth functiof) satisfying the fol-
theorem and numerical study. See Ré®] for null infinity  lowing featureq(i) and(ii) and the energy-momentum tensor
in higher dimensions, but with a different motivation. First satisfies the fall off conditioiii ).
we investigate the geometrical structure of spatial infinity in - () 0 20 andd|#0.

higher dimensions. Spatial infinity is essentially an (i) The following quantities have smooth limits gt
(n—1)-dimensional manifold in generah-dimensional

spacetimes. In four dimensions, it should be restricted to qabzgz(éab_Q%pl@ﬁg@bﬂ)zgzaab, (1)
being a three-dimensional unit timelike hyperboloid with
maximal symmetry[13]. In higher dimensions, as shown na:=974éab@b9 )

later, there are many varieties due to the nontrivial
(n—1)-dimensional Weyl tensor. Next, we discuss the highewhere
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F=0492V,QV,Q=£,0Q, 3)

and = denotes evaluation oiy. g, has the signature,
+,+,---,+).
(i) T,=Tapelel=0(Q%"m

near i, where

{éz},u=0,l,2,--~,nfl is a quasiorthogonal basis of the metric
Jab @andm>0. The definition is exactly the same as that in

four dimensions.

We write the physical metric in terms of the quasiorthogo-

nal basis
g?°=n?n"+efe’, 4
where
. n?
né=— W — _QZF—1/2na (5)
and
ed=e(. (6)

e represents the parts of the quasiorthogonal basts,of

B. Leading order structure

From the above the asymptotic behavior neais deter-
mined by the regular quantitieg,, andn?. For example, the

extrinsic curvature ,, of () =const surfaces is written as

~ 1 . 3 1
KabZEEﬁqab:Q 1Fl/2qab_§|: l/2£nqab- (7)

Since it is not regular & =0, we defined the regular tensor

Kap @s
Kap=:QKap=F "= %QF*’%nqab. ®
Then we see that
Kab=F "0z 9

In the physical spacetime, the Codacci equation is

enPT,,=[D,KE— D K]ef. (10)
It is also expressed as
0~ 2ePnPT,,=D,K2—D,K (12)
in terms of @a,,n%). At iy it becomes
0=D,K2—D,K. (12
Substituting Eq(9) into Eq. (12), we see that
D,F=0 (13
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and then

F=const. (14)
Since we can st =1 without loss of generality,

Kab; Gab - (15

Here, we used the gauge freedom of the conformal factor
O—w ), that is, since under this transformatiéntrans-
forms as

F-F' =0 °F, (16)

we may choose to satisfyw=F2 From the Gauss equa-
tion

Q2675 MRy =[ " PRy~ KKap— F Y%K g+ 2KacK§

—FY2D DyF Y2+ QF Y% K€€l

(17

we have
(n—l)Rab;(n—Z)qab (18

and then
(nil)Rabcd; (nil)cabcd_’_ 20acYdyb - (19

This is simple but the main consequence in our paper. In four
dimensions, due to the absence of the three-dimensional
Weyl tensor®)C,p,.4=0,

CIR,ped= 20arcld)p - (20)
This implies that ; is a three-dimensional unit hyperboloid.
In the case ofn=5, the situation is drastically changed
because(" YC,,.4#0 in general. Indeed, we have an
n-dimensional solution with nonzero Weyl tensor as shown
in the next section. Such spacetimes are not included in the
category of asymptotically flat spacetimes.

lll. STATIC SPACETIMES

In this section, we focus on static spacetimes in higher
dimensions. To investigate the asymptotic structure, it is bet-
ter to adopt a definition separately.

In the static spacetime, the metric can be written as

ds?=—V2dt?+ q;;dx dx! (21)

wherei,j=1,2,..,n—1. The Einstein equation becomes

.1 - 1.
MRyg =y D?V=Too+ ——5T

n—2 (22)

and
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A. Structure of spatial infinity in static slices whereR=r"1. ThenTo is just the center in an unphysical
Definition A physical static slice ¥,0,,) has a spatial ~slice. Moreover,V,Q=2RV,R=0 and V,V,Q2=2V,RV,R

infinity T, if there is a smooth function) satisfying the ~#0. _ . _
following features(i), (i) and an appropriate falloff condition ~ Following Geroch’s argument, we might be able to iden-

for the energy-momentum tensor. tify the values of the following tensor at spatial infinity as
i) Q20 anddQ|%0. multipole moments:
(i) The following quantities have smooth limits @p: 1
P= 5(1—V)Q—<“—3>/2
hap=0%(Gap— QF V0% =0hsp,  (29)
o = s(25+n—5)(n_1)~
n?:=0"4g2°V,Q, (25 Palaz' “8gpy o Valpazas' agip W Ralaz
where
o XPaay a.,| (34)
F=Q"49%V,QV,Q=£,0. (26) _
whereO[Talaz. . .ar] denotes the totally symmetric, trace-free
h,, has the signaturet(,+,---,+). parts of T, 5.4 . This is recursive and a coordinate-free
The extrinsic curvature defined by definition. The definition relies on the argument of the con-
1 formal rescaling ' =Q) [15,16. (The multipole mo-
Rab:_gﬁﬁab (27) mgr_\ts in a Nevvto_nian systt_em depe.nd on the chqice of the
2 origin of the coordinates. This behavior of the multipole mo-

o ) _ ments is reflected by the transformation of the multipole mo-
is singular at)=0. In the same way as in the previous ments under a change of the conformal factor. The second
section, we definek,,=Qk,, and then we see thdt,, term in the above definition reflects this in curved space-

= h,, from the Codacci equation. From the Gauss equationimes) Since the rescaling corresponds to a translational

(n_z)Rab;(n_?’)hab- Thus 'gansformat.mn, we wish the following transformation for
183 "8gyq”
" 2Ryped= P Capeat 2Nagchqpp - (28) (2s+n—3)(s+1)
; ; ; ; Pé‘laz"‘a+1:Palaz“‘as+1_ 2
In five- or four-dimensional spacetimes, s
~ XO[Py ..oV, . 35
®2Rapca=2hachqpp - (29) [Pa;aVa,., ] 39

We can check that it indeed holds for the definition of Eq.
(34). Note that the definition does not contain the Weyl
tensor " DC 4.

In four-dimensional asymptotically flat spacetimes, we

In this subsection we define the multipole moments in acan show that they become identical with the coordinate de-
covariant way. To do so it is better to change the formalismpendent multipole moments defined by Thofd&,18. The
and use the conformal completion defined by Gerdd]. most important feature is that stationary and vacuum space-

Definition A physical static slice X,q,,) has a spatial times having the same multipole moments are isometric with
each other in four dimensions. That is, the local structure of
the stationary and vacuum spacetimes is completely deter-

020, V,020, V,%,0%0 (30) mined by the multipole momen{sm]. In Newtonian gravity,
this fact is trivial. However, in general relativity, it is not so.

and As demonstrated by an example below, the situation will be
drastically changed in higher dimensions.

It represents a three- or two-sphere.

B. Multipole moments

infinity 7, if there is a smooth functiof) such that

~ o~ There are generalized Schwarzschild spacetimes and the
Gab="Clap BY  etric ig
has a smooth limit on,,. ds?=—f(r)2dt®+h(r)¥" =3[ dr?+r2e,gd X dx®],
As an example, consider Euclid space. The metric is (36
de?=dr?+r2dQ,_,. (32

The form is similar to that in the isotropic coordinates of the
Q is taken to bey=r 2. Then Schwarzschild solution. If we use the coordinaterh(r)?"=3),
the metric becomes the familiar form:ds’=—F(p)dt?
Q2de?=r"4dr?+r 2dQ,_,=dR?+R2dQ,_,, (33  +F(p) ldp2+ p20apdxdxB, whereF(p)=1—4(ulp)" 2.
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whereA,B=2,3,..,n—1. f(r) andh(r) are given by

1 ()"
fn= 1+ (ulr)n3 37
and
m n—-3
h(ry=1+ T (38)

oapg IS the metric of the Einstein space, that is, it obeys

(M=2RAg(0)=(N—3)0pR, (39

where (""2)R,(0) is the Ricci tensor ofrag. The metric
o g found by Bohm is given by19]

oapdx*dxB=d@%+a?(0)dQ,+b?(6)dQ,_3_,, (40)

where 5=n—3<9 with p=2 and q:=n—3—p=2. See
Refs.[20,2]] for the stability of such spacetimes.

Taking Q=[(1—-V)/2]%~3), the unphysical metriq
becomes

4
a=92a=($) [dr2+ 120 pd X dxB]. (41)
Defining
R::Mzr_l, (42)
then
q=dR?+ R%gppdx dxB. (43
For this metric, the Ricci tensor becomes
(n_l)ﬁij =0. (44)
Finally, we can see at spatial infinity
1
pP= E(l_V)Q—(n—S)/ZZ 1,
Palazv a= 0 for s=1. (45)
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(""2Ch 8,A,8,=C3(0) 5a4,08,8, (46)

(""DC; 4 ah, = 2Ca(0) O3 14,0 14,
""C3,8,8,8,= 2Cs(6) 93,(8,%8 15,

where

14 n

01(0):_1_§, 02(0):_1_3,

! !

C3(0):_1_§F’ (47)

_ /2_a2

l_er_bZ

Cy(0)= o?

az ’ CS( 0) =

In the above we used the orthogonal bagst,e, ...,
e’} and{eP1,eB2, ... eBn-3-p}, that is,

a2( H)de: 5A1A2éAl® éAZ,
b?(0)dQ_5_p= g 5,710 e,

where A;,A;,...=3/4,..
+4,...n—1.

p+2 and By,B,,...=p+3p

IV. SUMMARY AND DISCUSSION

In this paper, we investigated the asymptotic structure at
spatial infinity in higher dimensional spacetimes. One will
realize that this is quite important when one tries to perform
numerical computations or prove the unigueness theorem.
This is because one must impose asymptotic boundary con-
ditions on them. In higher dimensions, it turned out that there
are many varieties. That is, it is unlikely that the asymptotic
symmetry is raised automatically due to the nontrivial Weyl
tensor{see Egs(19) and(28)] at spatial infinity. If and only
if we set the Weyl tensor to zero, the asymptotic flatness
seems to be guaranteed. Since the definition of the multipole
moments cannot include the Weyl tensor part, the static so-
lutions are degenerate in terms of multipole moments. We

Thus this spacetime has the same multipole moments aaust at least use the Weyl tensor if one wants to split these
spherical Schwarzschild spacetimes. We cannot distinguiséolutions. This is contrasted with the four-dimensional space-
them from one another using only multipole moments. Thistimes where the local structure of static and vacuum solu-
problem comes from the absence of the Weyl tensor in théions can be uniquely figured out from the higher moments.
definition Eq.(34). Because of the total antisymmetricity of The point is just the dimension. From our study we must
the Weyl tensor, there is no room for the Weyl tensor in thespecify the multipole momentB, ,,...o and Weyl tensor
definition. We need the information related to the Weyl ten-(n-2)c_,  for each individual solution. This is a lesson for
sor independently. Hence, we might be able to expect that Wgye houndary condition in a numerical study and gives us an

can uniquely specify higher dimensional spacetimes by thgsight into the argument of the uniqueness theorem. Therein
multipole moments and Wey! tensor. The Bohm metric hasye should carefully think of the Weyl tensor or something
the following nontrivial Weyl tensof" 2)C .4 [20]: similar.

Now, we might be able to have the following conjecture:
If the two static vacuum spacetimes defined here have the
same multipoles and Weyl tens8F 2)C,,.4 at spatial infin-
ity, they are isometric in a local sense.

(""2C3a,9h,=C1(0) Bh A,
""2)Cj, 98, C2(0) 53,3,
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There are many remaining issues; first of all, the details oEpherical symmetry, they seem to contain the Weyl tensor.
the structure of spatial infinity. It is unlikely that there is We may be able to extend Geroch’s definition of multipole
asymptotic symmetry because of the lack of maximal symmoments34) to a refined form to contain the Weyl curvature
metry. Even if this is so, it is important to ask why in higher dimensional spacetime.
asymptotic symmetry cannot exist. The next issue is the
proof of the statement that the static spacetimes can be
uniquely specified by higher multipole moments and the
Weyl tensor. We can also extend our argument on static
spacetimes to stationary cases. Since the Weyl tensor appearsWe would like to thank D. Ida, A. Ishibashi, K. Nakao, M.
in our conjecture, the relation with the peeling theorem asSasaki, and M. Siino for useful discussion and comments.
sociated with null infinity is also interestin@gee Ref[22]  The work of T.S. was supported by Grants-in-Aid for Scien-
for the peeling theorem in four dimensigng&inally, in four  tific Research from the Ministry of Education, Science,
dimensions, since the Weyl curvature on the static slices varSports and Culture of JapdNo. 13135208, No. 14740155,
ishes, it, of course, never contributes to the multipole mo-and No. 14102004 The work of S.T. was supported by the
ments. However, in more than four dimensions, the WeyPR1st Century COE Program at TokyoTech “Nanometer-Scale
curvature on spacelike hypersurfaces in general does n@Quantum Physics” supported by the Ministry of Education,
vanish. Since the multipole moments imply deviation fromCulture, Sports, Science and Technology.
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