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Second-order perturbations of the Friedmann world model
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We consider the instability of the Friedmann world model to second order in perturbations. We present the
perturbed set of equations up to second order in the Friedmann background world model with a general spatial
curvature and cosmological constant. We consider systems with completely general imperfect fluids, minimally
coupled scalar fields, an electromagnetic field, and generalized gravity theories. We also present the case of
null geodesic equations, and one based on the relativistic Boltzmann equation. In due time, a decomposition is
made for scalar-, vector-, and tensor-type perturbations which couple with each other to second order. A gauge
issue is resolved to each order. The basic equations are presented without imposing any gauge condition, and
thus in a gauge-ready form so that we can take full advantage of having gauge freedom in analyzing the
problems. As an application we show that to second order in perturbation the relativistic pressureless ideal fluid
of the scalar type reproduces exactly the known Newtonian result. As another application we rederive the
large-scale conserved quantities~of the pure scalar and tensor perturbations! to second order, first shown by
Salopek and Bond, now from the exact equations. Several other applications are shown as well.
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I. INTRODUCTION

We consider instabilities of the spatially homogeneo
and isotropic cosmological spacetime to second order in
turbations. The relativistic cosmological perturbation play
fundamental role in the modern theory of large-scale cos
structure formation. The original analysis of linear perturb
tions based on Einstein gravity with a hydrodynamic flu
was made by Lifshitz in 1946@1# in an almost complete
form. Because of the extremely low level anisotropies of
cosmic microwave background~CMB! radiation, the cosmo-
logical dynamics of the structures on the large scale an
the early Universe are generally believed to be small de
tions from the homogeneous and isotropic background Fr
mann world model@2#. The conventional relativistic cosmo
logical perturbation analysis considers such deviations sm
enough so that one can treat them aslinear. The linear per-
turbation theory works as the basic framework in handl
the cosmological structure formation processes. Recent
servations of the CMB anisotropies in the full sky by t
Wilkinson Microwave Anisotropy Probe~WMAP! satellite
and others@3#, for example, assure the validity of the bas
assumptions used in cosmological perturbation theory,
the linearity of the relevant cosmic structures@4#.

Still, as the observed relatively small-scale structures
apparently nonlinear, the gravitational instability based
the pure linear theory is not enough for a complete picture
is agreed that such small-scale nonlinear structures coul
handled by Newtonian gravity often based on numeri
simulations. The current paradigm of large-scale struct
generation and evolution processes is based on an under
assumptionthat linear processes dominate until nonline
processes take over on subhorizon scales in the Newto
regime. Thus, it seems this paradigm of our understandin
the origin and evolution of the large-scale structure is rat
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satisfactory within linear theory concerning the regim
where relativistic gravity theory is needed. It is well know
that in linear theory there can be no structure formation.
fact, this ‘‘no structure formation’’ in the scenario is precise
why we were successful in describing the structure gen
tion and evolution processes in a simple manner as we
scribe below. In the standard scenario, the initial conditio
~seed fluctuations! generated from quantum fluctuations a
imprinted into ripples in the spacetime, and its spatial str
tures are preserved as the raw large-scale structures~i.e., are
as yet unaffected by nonlinear processes!. This is a trait
which can be traced to the linearity assumption we adop
gives a simple but fictitious system. We could, perhaps, fa
describe the current situation as that the linear paradigm
not inconsistentwith observations, especially with the low
level of observed anisotropy in the CMB@3#. However, we
should remember that the actual equations we are dea
with, in both gravity and the quantum regime, are high
nonlinear. It forms an intrinsically complex system.

We can decompose the perturbations into three differ
types: the scalar-type~associated with density condensation!,
the vector-type~rotation!, and the tensor-type~gravitational
wave! perturbations. To linear-order perturbation, due to
high symmetry of the background space, these three type
perturbation decouple from each other and evolve indep
dently. Both ~the linearity and the homogeneous-isotrop
background! conditions are necessary to have natural
scriptions of the three types of perturbations independen
We will see how couplings occur to the second-order per
bations; for the couplings in the simplest spatially homog
neous but anisotropic spacetime, see@5#.

Another aspect of the simple nature of the linear p
cesses in relativistic gravity theories is characterized by c
servations~in expanding phase! of certain amplitudes on the
superhorizon scale where we naively anticipate the indep
©2004 The American Physical Society11-1
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dent evolution of causally disconnected regions. On supe
rizon scales this conserved character is presented by an e
tion of the form

F~x,t !5C~x!, ~1!

which applies for both the scalar- and tensor-type pertur
tions; for the vector-type perturbation the angular moment
is conserved on all scales.C(x) is an integration constant o
the integral form general solutions available in the larg
scale limit; see Eqs.~311!,~332!,~333!. The coefficientC(x)
contains information about the spatial structure which w
eventually grow into the large-scale structure and the gr
tational wave background. It can be considered as an in
condition for each perturbation variable which is preserv
during the linear evolution. Whether a similar conserv
variable can exist even in a nonlinear analysis is appare
an interesting question: for the presence of such variable
second order in perturbation see Secs. VII D–VII F. In ana
ses of the large-scale structures in the linear stage, the si
behavior of the conserved variables is practically importa
In fact, if we knowC, the behavior of all the other variable
can be determined through linear algebra. Using the c
served quantity one can trivially relate the currently obse
able~or deducible! linear structure directly to the initial stat
of the structure in the early universe; probably just after
scale effectively becomes the large scale during the hy
thetical early acceleration~inflation! stage. Of course, the
underlying assumption for all of these results is the appli
bility of a linear analysis. As long as this assumption is va
the initial condition is imprinted onto the large-scale stru
ture and is preserved until the nonlinear effects become
portant. Although this is a big advantage, in a sense thi
very consistent with the fact that no structure formation
curs in the linearized system.

The linear perturbation theory is currently well deve
oped; see@6–11#. Although the observations do not partic
larly demand going beyond the linear theory, second-or
perturbation theory is a natural next step in the theoret
investigations. The second-order perturbation theory, if w
developed, will have important implications for our unde
standing of the large-scale structure formation processes.
only are the structures we discover nonlinear, according
the gravitational instability there should occur~perhaps
smooth! transitions from the linear to the nonlinear one
Even from the theoretical point of view, in order to know th
limit of linear perturbation theory we need the behavior
perturbations beyond the linear theory. It is not possible
know the limit of linear theory within the context of linea
theory. It is yet unclear whether the second-order ‘‘pertur
tion theory’’ will provide an answer to such a question, b
we expect it could provide a better perspective on the pr
lem than simple linear theory. There will be more practic
applications as well, like investigating the non-Gaussian s
nature in the inflation generated seed fluctuations wh
could have left a detectable signature in the CMB aniso
pies and the large-scale structures. Other possible situa
where translinear analyses might be useful are summar
in Sec. VIII.
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Now we briefly discuss the gauge issue present in rela
istic perturbation theory. Since the unperturbed backgro
spacetime is spatially homogeneous and isotropic, to lin
order the ambiguity caused by the spatial gauge~coordinate
transformation! freedom does not play a role@7#. Thus, to
linear order it is appropriate to write the perturbed set
equations in terms of natural combinations of variab
which are invariant under spatial gauge transformatio
However, the temporal gauge freedom can be convenie
used in analyzing various aspects of the perturbation pr
lem in the Friedmann background. There are infinitely ma
different ways of taking the temporal gauge~choosing the
spatial hypersurface! conditions, and we can identify sever
fundamental gauge choices@7,12#. Except for a widely used
temporal synchronous gauge fixing condition (dg00[0),
each of the other gauge conditions completely fixes the t
poral gauge freedom, thus each having its own correspo
ing gauge-invariant formulation. In our study of the line
theory we found that some particular gauge-invariant va
ables show the correct Newtonian behaviors. A perturb
density variable in the comoving gauge and a perturbed
tential variable and a perturbed velocity variable in the ze
shear gauge most closely resemble the behaviors of the
responding Newtonian variables@13#. Also, the scalar field
perturbation in the uniform-curvature gauge most closely
sembles the scalar field equation in the quantum field
curved space@14,15#. Since the gauge conditions mentione
allow no room for a remaining gauge mode, the variable i
given such gauge has a unique corresponding gau
invariant combination of variables. Thus, the variable in su
a gauge is equivalent to the corresponding gauge-invar
combination.

In the gauge theory it is well known that proper choice
the gauge condition is often necessary for proper handlin
the problem. Either by fixing certain gauge conditions or
choosing certain gauge-invariant combinations in the ea
calculation stage, we are likely to lose possible advanta
available in the other gauge conditions. In order to use
various gauge conditions as an advantage in handling cos
logical perturbations, we have proposed agauge-ready
method which allows the flexible use of the various fund
mental gauge conditions. The strategy is that, in order to
the various available temporal gauge conditions as an ad
tage, we had better present the basic equations with
choosing any temporal gauge condition, and arrange
equations so that we could choose the fundamental ga
conditions conveniently. In this work we will further elabo
rate the gauge-ready approach to the second-order pertu
tions. Our gauge-ready strategy, together with our nota
for indicating the gauge-invariant combinations, allows us
use the gauge freedom as an advantage in analyzing va
given problems. We follow the wisdom suggested
Bardeen in 1988 ‘‘the moral is that one should work in t
gauge that is mathematically most convenient for the pr
lem at hand’’@7#.

As long as we are taking a perturbative approach
gauge issue in higher orders can be resolved similarly a
the linear theory. To second order we will identify two var
ables which can be used to fix the spatial gauge freed
1-2
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SECOND-ORDER PERTURBATIONS OF THE FRIEDMANN . . . PHYSICAL REVIEW D69, 104011 ~2004!
One gauge condition completely removes the spatial ga
mode, whereas the other condition does not; i.e., in the la
case even after imposing the gauge condition there still
mains a degree of freedom which is a gauge mode~a coor-
dinate artifact!. We call this incomplete gauge condition th

B gauge (g̃0a[0 wherea is a spatial index! whereas the
other complete condition is called theC gauge. To second
order we can identify the same several temporal gauge-fix
conditions. Again, except for the synchronous gauge eac
the other gauge conditions completely removes the temp
gauge modes.

It is amusing to note that the classic study by Lifshitz@1#
adopted the synchronous gauge condition, which is a com
nation of the temporal synchronous gauge condition and
spatialB gauge condition, thus failing to fix both the temp
ral and spatial gauge modes completely. This has cau
some prevalent errors in the literature based on the sync
nous gauge: see the Appendix of@13#. However, we note tha
these errors are simple algebraic ones probably cause
slightly more complicated algebra due to the presence of
gauge mode after the synchronous gauge fixing. We wo
like to emphasize that the gauge condition should be ap
priately used according to the character of each problem
hand. We have this freedom because Einstein’s gra
theory might be regarded as a gauge theory@16#. In this
sense, although the temporal synchronous and the spatB
gauge conditions do not remove the gauge modes c
pletely, often even these conditions could possibly turn ou
be convenient in certain problems. Since physically mea
able quantities should be gauge invariant we propose to
the gauge conditions in this pragmatic sense.

In a classic study of CMB anisotropy in 1967 Sachs a
Wolfe mentioned that ‘‘the linear perturbations are so s
prisingly simple that a perturbation analysis accurate to s
ond order may be feasible’’@17#. In this work, we will
present the basic formulation of the second-order pertu
tion of the Friedmann world model in detail. We will prese
the basic equations needed to investigate the second-o
perturbation in a rather general context. We will consider
most general Friedmann background withK andL. We will
consider the most general imperfect fluid situation. This
cludes multiple imperfect fluids with general interactio
among them. We will also include minimally coupled sca
fields, a class of generalized gravity theories, the electrom
netic fields, the null geodesic, and the relativistic Boltzma
equation. In order to use the gauge-fixing conditions o
mally we will present the complete sets of perturbed eq
tions in the gauge-ready form. In this manner, as in the lin
theory, we can easily apply the equations to any gauge c
ditions which make the mathematical analyses of given pr
lems simplest. Our formulation will be suitable to hand
nonlinear evolutions in the perturbative manner. Ours will
a useful complement to the other methods suggested in
literature to investigate the translinear regimes. In the D
cussion we summarize the related studies, the different m
ods we could employ for further applications, and the c
mological situations where our formulation could be appl
10401
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fruitfully. Although we will present some trivial application
in the later part, the main applications are left for futu
studies.

In Sec. II we summarize the basic equations of Einste
gravity expressed in the Arnowitt-Deser-Misner~ADM ! (3
11) formulation and in the covariant (113) formulation. In
Sec. III we introduce our definition of the metric and th
energy-momentum tensor to second order in the perturba
and present some useful quantities appearing in the A
and the covariant formulations. In Sec. IV we present
complete sets of perturbed equations up to second orde
the Friedmann world model. We consider the general spa
curvature and the cosmological constant in the backgrou
We consider systems with completely general imperfect
ids. Such a general formulation can be reinterpreted to
clude the cases of minimally coupled scalar fields, the e
tromagnetic field, and even generalized gravity theories.
present the complete sets of equations for these system
well. We also present the case of null geodesic equatio
and the one based on the relativistic Boltzmann equation
Sec. V we introduce decomposition of the perturbations
three different types and show how these couple to e
other to second order. All equations up to this point are p
sented without introducing any gauge condition. Thus,
equations are presented in the most general forms, and
suitable gauge conditions can easily be deployed in th
equations. In this sense, our set of equations is in a ga
ready form. In Sec. VI we address the gauge issue, and s
that the gauge issue can be resolved to each perturba
order, just as in the case of linear perturbation. We imp
ment our gauge-ready strategy to second order in pertu
tions. In Sec. VII we make several applications. In Sec. V
we summarize the main results and outline future appli
tions of our work.

As a unit we setc[1.

II. BASIC EQUATIONS

A. ADM „3¿1… equations

The ADM ~Arnowitt-Deser-Misner! equations@18# are
based on splitting the spacetime into spatial and the temp
parts using a normal vector fieldña . The metric is written as
~we put a tilde on the covariant variables!

g̃00[2N21NaNa , g̃0a[Na , g̃ab[hab ,

g̃0052N22, g̃0a5N22Na,

g̃ab5hab2N22NaNb, ~2!

whereNa is based onhab as the metric andhab is an inverse
metric ofhab . Indicesa,b, . . . indicate the spacetime ind
ces, anda,b, . . . indicate the spatial ones. The normal ve
tor ña is introduced as

ñ0[2N, ña[0, ñ05N21, ña52N21Na. ~3!

The fluid quantities are defined as
1-3
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E[ñañbT̃ab, Ja[2ñbT̃a
b , Sab[T̃ab ,

S[habSab , S̄ab[Sab2
1

3
habS, ~4!

whereJa andSab are based onhab . The extrinsic curvature
is introduced as

Kab[
1

2N
~Na:b1Nb:a2hab,0!, K[habKab ,

K̄ab[Kab2
1

3
habK, ~5!

where Kab is based onhab . A colon denotes a covarian
derivative based onhab . The connections become

G̃00
0 5

1

N
~N,01N,aNa2KabNaNb!,

G̃0a
0 5

1

N
~N,a2KabNb!, G̃ab

0 52
1

N
Kab ,

G̃00
a 5

1

N
Na~2N,02N,bNb1KbgNbNg!1NN,a

1N ,0
a 22NKabNb1Na:bNb ,

G̃0b
a 52

1

N
N,bNa2NKb

a1N :b
a 1

1

N
NaNgKbg ,

G̃bg
a 5G bg

(h)a 1
1

N
NaKbg , ~6!

whereG bg
(h)a is the connection based onhab as the metric,

G bg
(h)a [ 1

2 had(hbd,g1hdg,b2hbg,d). The intrinsic curvatures
are based onhab as the metric:

R bgd
(h)a [G bd,g

(h)a 2G bg,d
(h)a 1G bd

(h)e G ge
(h)a

2G bg
(h)e G de

(h)a ,

Rab
(h)[R agb

(h)g , R(h)[habRab
(h) ,

R̄ab
(h)[Rab

(h)2
1

3
habR(h). ~7!

A complete set of ADM equations is the following@6#.
Energy constraint equation

R(h)5K̄abK̄ab2
2

3
K2116pGE12L, ~8!

whereL is the cosmological constant.
Momentum constraint equation

K̄a:b
b 2

2

3
K ,a58pGJa . ~9!
10401
Trace of ADM propagation equation

K ,0N
212K ,aNaN211N a

:a N212K̄abK̄ab

2
1

3
K224pG~E1S!1L50. ~10!

Trace-free ADM propagation equation

K̄b,0
a N212K̄b:g

a NgN211K̄bgNa:gN212K̄g
aN :b

g N21

5KK̄b
a2S N b

:a 2
1

3
db

aN g
:g DN211R̄ b

(h)a 28pGS̄b
a .

~11!

Energy conservation equation

E,0N
212E,aNaN212KS E1

1

3
SD2S̄abK̄ab

1N22~N2Ja! :a50. ~12!

Momentum conservation equation

Ja,0N
212Ja:bNbN212JbN :a

b N212KJa1EN,aN21

1Sa:b
b 1Sa

bN,bN2150. ~13!

B. Covariant „1¿3… equations

The covariant formulation of Einstein gravity was inve
tigated in @19,20#. The (113) covariant decomposition is
based on the timelike normalized (ũaũa[21) four-vector
field ũa introduced at all spacetime points. The expans
~ũ!, the acceleration (ãa), the rotation (ṽab), and the shear
(s̃ab) are kinematic quantities of the projected covariant d
rivative of the flow vectorũa introduced as

h̃a
ch̃b

dũc;d5h̃[a
c h̃b]

d ũc;d1h̃(a
c h̃b)

d ũc;d[ṽab1 ũab5ũa;b1ãaũb ,

s̃ab[ũab2
1

3
ũh̃ab , ũ[ũ ;a

a , ãa[ ũ̇̃a[ũa;bũb,

~14!

where h̃ab[g̃ab1ũaũb is the projection tensor withh̃abũ
b

50 and h̃a
a53. An overdot with tilde indicates a covarian

derivative alongũa. We have

ũa;b5ṽab1s̃ab1
1

3
ũh̃ab2ãaũb . ~15!

We introduce

ṽa[
1

2
h̃abcdũbṽcd , ṽab5h̃abcdṽ

cũd,

ṽ2[
1

2
ṽabṽab5ṽaṽa , s̃2[

1

2
s̃abs̃ab , ~16!
1-4
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SECOND-ORDER PERTURBATIONS OF THE FRIEDMANN . . . PHYSICAL REVIEW D69, 104011 ~2004!
whereṽa is a vorticity vectorwhich has the same informa
tion as the vorticity tensorṽab . We haveh̃abcd5h̃ [abcd]

with h̃123451/A2g̃; indices surrounded by () and@ # are the
symmetrization and antisymmetrization symbols, resp
tively.

Our conventions of the Riemann curvature and Einste
equation are

ũa;bc2ũa;cb5ũdR̃ abc
d , ~17!

R̃ab2
1

2
R̃g̃ab58pGT̃ab2Lg̃ab . ~18!

The Weyl ~conformal! curvature is introduced as

C̃abcd[R̃abcd2
1

2
~ g̃acR̃bd1g̃bdR̃ac2g̃bcR̃ad2g̃adR̃bc!

1
R̃

6
~ g̃acg̃bd2g̃adg̃bc!. ~19!

The electric and magnetic parts of the Weyl curvature
introduced as

Ẽab[C̃acbdũ
cũd, H̃ab[

1

2
h̃ac

e fC̃e f bdũ
cũd. ~20!

The energy-momentum tensor is decomposed into fl
quantities based on the four-vector fieldũa as

T̃ab[m̃ũaũb1 p̃~ g̃ab1ũaũb!1q̃aũb1q̃bũa1p̃ab ,
~21!

where

ũaq̃a505ũap̃ab , p̃ab5p̃ba , p̃a
a50. ~22!

The variablesm̃, p̃, q̃a , andp̃ab are the energy density, th
isotropic pressure~including the entropic one!, the energy
flux, and the anisotropic pressure based on theũa frame,
respectively. We have

m̃[T̃abũ
aũb, p̃[

1

3
T̃abh̃

ab,

q̃a[2T̃cdũ
ch̃a

d , p̃ab[T̃cdh̃a
ch̃b

d2 p̃h̃ab . ~23!

The specific entropyS̃ can be introduced byT̃dS̃5d«̃

1 p̃Tdṽ where«̃ is the specific internal energy density wi
m̃5%̃(11 «̃), p̃T the thermodynamic pressure,ṽ[1/%̃ the
specific volume, andT̃ the temperature. We have the isotr
pic pressurep̃5 p̃T1p̃ where p̃ is the entropic pressure
Using Eq.~26! below we can show that

%̃T̃Ṡ̃
˜

52~p̃ũ1p̃abs̃ab1q̃ ;a
a 1q̃aãa!. ~24!
10401
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Thus, we notice thatp̃, p̃ab, and q̃a generate the entropy
Using the four-vectorS̃a[%̃ũaS̃1(1/T̃)q̃a, which is termed
the entropy flow density@19#, we can derive

S̃ ;a
a 52

1

T̃2
~ T̃,a1T̃ãa!q̃a2

1

T̃
~p̃ũ1p̃abs̃ab). ~25!

The covariant formulation provides a useful compleme
to the ADM formulation. We summarize the covariant (
13) set of equations in the following. For details, s
@19,20# and the Appendix in@21#.

The energy and momentum conservation equations

m̃̇̃1~m̃1 p̃!ũ1p̃abs̃ab1q̃ ;a
a 1q̃aãa50, ~26!

~m̃1 p̃!ãa1h̃a
b~ p̃,b1p̃b;c

c 1 q̃̇̃b!

1S ṽab1s̃ab1
4

3
ũh̃abD q̃b50. ~27!

The Raychaudhuri equation

ũ̇̃1
1

3
ũ22ã ;a

a 12~ s̃22ṽ2!14pG~m̃13p̃!2L50.

~28!

Vorticity propagation

h̃b
aṽ̇̃ b1

2

3
ũṽa5s̃b

aṽb1
1

2
h̃abcdũbãc;d . ~29!

Shear propagation

h̃a
ch̃b

d~ s̃̇̃cd2ã(c;d)!2ãaãb1ṽaṽb1s̃acs̃b
c1

2

3
ũs̃ab

2
1

3
h̃ab~ṽ212s̃22ã ;c

c !1Ẽab24pGp̃ab50.

~30!

Three constraint equations

h̃abS ṽ ;c
bc 2s̃ ;c

bc 1
2

3
ũ ;bD1~ṽab1s̃ab!ã

b58pGq̃a ,

~31!

ṽ ;a
a 52ṽbãb , ~32!

H̃ab52ã(aṽb)2h̃a
ch̃b

d~ṽ (c
e; f1s̃ (c

e; f !h̃d)ge fũ
g. ~33!

Four quasi-Maxwellian equations

h̃b
ah̃d

cẼ ;c
bd 2h̃abcdũbs̃c

eH̃de13H̃b
aṽb

54pGS 2

3
h̃abm̃ ,b2h̃b

ap̃ ;c
bc 23ṽ b

a q̃b

1s̃b
aq̃b1p̃b

aãb2
2

3
ũq̃aD , ~34!
1-5
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h̃b
ah̃d

cH̃ ;c
bd 1h̃abcdũbs̃c

eẼde23Ẽb
aṽb

54pG$2~m̃1 p̃!ṽa1h̃abcdũb

3@ q̃c;d1p̃ce~ṽ d
e 1s̃ d

e !#%, ~35!

h̃c
ah̃d

bẼ̇̃cd1~H̃d;e
f h̃f

(a22ãdH̃e
(a!h̃b)cdeũc

1h̃abs̃cdẼcd1 ũẼab2Ẽc
(a(3s̃b)c1ṽb)c)

54pGF2~m̃1 p̃!s̃ab22ã(aq̃b)2h̃c
(ah̃d

b)~ q̃c;d1 p̃̇̃cd!

2~ṽc
(a1s̃c

(a!p̃b)c2
1

3
ũp̃ab

1
1

3
~ q̃ ;c

c 1ãcq̃
c1p̃cds̃cd!h̃

abG , ~36!

h̃c
ah̃d

bḢ̃
˜ cd2~Ẽd;e

f h̃f
(a22ãdẼe

(a!h̃b)cdeũc1h̃abs̃cdH̃cd1 ũH̃ab

2H̃c
(a~3s̃b)c1ṽb)c!

54pG@~ q̃es̃d
(a2p̃d;e

f h̃f
(a!h̃b)cdeũc1h̃abṽcq̃

c

23ṽ (aq̃b)#. ~37!

Evaluated in the normal-frame Eqs.~26!,~27!,~28!,~30!,~31!
reproduce Eqs.~12!,~13!,~10!,~11!,~9! in the ADM formula-
tion.

Now, we take the normal-frame vector; thusũa5ña with
ña[0 and thusṽab50. The trace and trace-free parts of t
Gauss equation give@21#

R̃(3)52S 2
1

3
ũ21s̃218pGm̃1L D , ~38!

R̃ab
(3)2

1

3
R̃(3)h̃ab5h̃a

ch̃b
d~2 s̃̇̃cd2 ũs̃cd1ã(c;d)!1ãaãb

2
1

3
h̃abã ;c

c 18pGp̃ab , ~39!

whereR̃ab
(3) andR̃(3) are the Ricci and scalar curvatures of t

hypersurface normal toña ; for an arbitrary vectorṼa we
have

R̃abcd
(3) Ṽb[2¹̃ [c

(3)¹̃d]
(3)Ṽa[2h̃c

eh̃d
f h̃a

g¹̃[e~ h̃f ]
h h̃g

i ¹̃hṼi !,

R̃ab
(3)[h̃cdR̃cadb

(3) , R̃(3)[h̃abR̃ab
(3) . ~40!

From this we have

R̃abcd
(3) 5h̃a

eh̃b
f h̃c

gh̃d
hR̃e f gh2 ũcaũdb1 ũbcũad , ~41!

which is the Gauss equation. We can show thatR̃abgd
(3)

5Rabgd
(h) . Equation~39! follows from Eq. ~30! evaluated in

the normal frame. Using Eqs.~19!,~20! we can show that Eq
10401
~39! reproduces Eq.~11! in the ADM formulation. Equation
~38! gives Eq.~8! in the ADM formulation.

Compared with the ADM equations in~8!–~13! some of
the covariant equations in~29!,~32!,~33!,~34!–~37! look new.
In the normal frame Eqs.~29!,~32! are identically satisfied;
using Eqs.~14!,~6!,~3! we can show that

ãa5~ ln N! ,a , ~42!

thus ã[b;g]50. Still, Eqs. ~8!–~13! provide a complete set
These additional equations in the covariant form should
regarded as complementary equations which could poss
show certain aspects of the system better. In our perturba
analyses we will use parts of these equations as complem
tary ones. Although the covariant set of equations is base
the general frame vector, this does not add any new phy
which is not covered by the normal-frame taken in the AD
formulation; see Sec. III E.

The covariant equations for the scalar fields, generali
gravity, electromagnetic field, null geodesic, and Boltzma
equation will be introduced individually in the correspondin
sections later.

C. Multicomponent situation

In the multicomponent situation we have

T̃ab5(
l

T̃( l )ab , T̃( i )a;b
b [ Ĩ ( i )a , (

l
Ĩ ( l )a50. ~43!

Based on the normal-frame vector, we have

m̃5(
l

m̃ ( l ) , p̃5(
l

p̃( l ) ,

q̃a5(
l

q̃( l )a , p̃ab5(
l

p̃ ( l )ab . ~44!

The ADM formulation is based on the normal-frame ve
tor ũa5ña . The ADM fluid quantities in Eq.~4! correspond
to the fluid quantities based on the normal-frame vector

E5m̃, S53p̃, Ja5q̃a , S̄ab5p̃ab . ~45!

From Eq.~4! or Eq. ~45! we have

E5(
l

E( l ) , S5(
l

S( l ) ,

Ja5(
l

J( l )a , Sab5(
l

S( l )ab . ~46!

Equation~43! gives

E( i ),0N
212E( i ),aNaN212KS E( i )1

1

3
S( i )D2S̄( i )

abK̄ab

1N22~N2J( i )
a ! :a52

1

N
~ Ĩ ( i )02 Ĩ ( i )aNa!, ~47!
1-6
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J( i )a,0N
212J( i )a:bNbN212J( i )bN :a

b N212KJ( i )a

1E( i )N,aN211S( i )a:b
b 1S( i )a

bN,bN215 Ĩ ( i )a .

~48!

The ADM equations in Eqs.~8!–~13! remain valid, with the
above additional equations of motion for the individual co
ponent. Thus, in the multicomponent situation Eqs.~8!–~13!,
~46!–~48! provide a complete set.

III. PERTURBED QUANTITIES

A. Metric and connections

We use the following convention for the metric variable

g̃00[2a2~112A!, g̃0a[2a2Ba ,

g̃ab[a2~gab
(3)12Cab!, ~49!

whereA, Ba , andCab are perturbed order variables and a
assumedto be based ongab

(3) as the metric. To second orde
we can write the perturbation variables explicitly as

A[A(1)1A(2), Ba[Ba
(1)1Ba

(2) , Cab[Cab
(1)1Cab

(2) .

~50!

As we are interested in the perturbation to second orde
our ansatz, we include up to second-order~quadratic! terms
in the deviation from the Friedmann background. This can
extended to any higher-order perturbation as long as we
the perturbative approach where the lower-order soluti
drive ~work as sources for! the next higher-order variables
Thus, in this work we ignore the terms that are higher th
quadratic~second-order! combinations of the perturbed me
ric (A, Ba , Cab), the perturbed fluid quantitie
(dm, dp, Qa , Pab) to be introduced in Eq.~72!, the per-
turbed field (df) to be introduced in Eq.~111!, etc.

The inverse metric expanded to second order in pertu
tion variables is

g̃005
1

a2 ~2112A24A21BaBa!,

g̃0a5
1

a2 ~2Ba12ABa12BbCab!,

g̃ab5
1

a2 ~g(3)ab22Cab2BaBb14Cg
aCbg!.

~51!

The connections are

G̃00
0 5

a8

a
1A822AA82A,aBa1BaS Ba81

a8

a
BaD ,
10401
-

:

as

e
ke
s

n

a-

G̃0a
0 5A,a2

a8

a
Ba22AA,a12

a8

a
ABa2BbCa

b8

1BbB[bua] ,

G̃00
a 5Aua2Ba82

a8

a
Ba1A8Ba22A,bCab

12Cb
aS Bb81

a8

a
BbD ,

G̃ab
0 5

a8

a
gab

(3)22
a8

a
gab

(3)A1B(aub)1Cab8 12
a8

a
Cab

1
a8

a
gab

(3)~4A22BgBg!

22AS B(aub)1Cab8 12
a8

a
CabD

2Bg~2C(aub)
g 2Cab

ug!,

G̃0b
a 5

a8

a
db

a1
1

2
~Bb

ua2B ub
a !1Cb

a8

1BaS A,b2
a8

a
BbD12Cag~B[gub]2Cgb8 !,

G̃bg
a 5G bg

(3)a 1
a8

a
gbg

(3)Ba12C(bug)
a 2Cbg

ua

22Cd
a~2C(bug)

d 2Cbg
ud!22

a8

a
ggb

(3)~ABa1BdCd
a!

1BaS B(bug)1Cbg8 12
a8

a
CbgD , ~52!

where a vertical bar indicates a covariant derivative based
gab

(3) . An index 0 indicates the conformal timeh, and a prime
indicates a time derivative with respect toh. The compo-
nents of the frame four-vectorũa are introduced as

ũ0[
1

a S 12A1
3

2
A21

1

2
VaVa2VaBaD , ũa[

1

a
Va,

ũ052aS 11A2
1

2
A21

1

2
VaVaD ,

ũa5a~Va2Ba1ABa12VbCab!, ~53!

whereVa is based ongab
(3) .

B. Normal-frame quantities

The normal-frame vectorña has the propertyña[0. Thus
we have

ñ0[
1

a S 12A1
3

2
A22

1

2
BaBaD ,
1-7
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ña[
1

a
~Ba2ABa22BbCb

a!,

ñ052aS 11A2
1

2
A21

1

2
BaBaD , ña50.

~54!

Using Eqs.~2!,~3! the ADM metric variables become

N5aS 11A2
1

2
A21

1

2
BaBaD ,

Na52a2Ba , Na52Ba12BbCb
a ,

hab5a2~gab
(3)12Cab!,

hab5
1

a2 ~g(3)ab22Cab14Cg
aCbg!. ~55!

The connection becomes

G ab
(h)g 5G ab

(3)g 1~g(3)gd22Cgd!~Cdaub1Cdbua2Cabud!.

~56!

The extrinsic curvature in Eq.~5! gives

Kab52aF S a8

a
gab

(3)1B(aub)1Cab8 12
a8

a
CabD ~12A!

1
1

2

a8

a
gab

(3)~3A22BgBg!2Bg~2C(aub)
g 2Cab

ug!G ,
K52

1

a F S 3
a8

a
1B ua

a 1Ca
a8D ~12A!1

3

2

a8

a

3~3A22BaBa!2Bb~2Cbua
a 2Caub

a !

22Cab~Cab8 1Baub!G ,
10401
K̄ab52aH ~B(aub)1Cab8 !~12A!2Bg~2C(aub)
g 2Cab

ug!

2
2

3
Cab~B ug

g 1Cg
g8!2

1

3
gab

(3)@~B ug
g 1Cg

g8!~12A!

2Bg~2Cgud
d 2Cdug

d !22Cgd~Cgd8 1Bgud!#J . ~57!

The intrinsic curvature in Eq.~7! becomes

Rab
(h)5Rab

(3)1~g(3)gd22Cgd!~Cdaubg1Cdbuag

2Cabudg2Cdguab!12C ub
gd Cgdua

2~2Cdug
g 2Cgud

g !~Caub
d 1Cbua

d 2Cab
ud!

2~Caug
d 1Cgua

d 2Cag
ud!~Cbud

g 1Cdub
g 2Cbd

ug!,

R(h)5
1

a2 @R(3)22CabRab
(3)12Ca b

bua 22Ca b
aub

14Cg
aCbgRab

(3)14Cab~2Caubg
g 2Caugb

g 1Cab
ug

g

1Cguab
g !2~2Cbug

g 2Cgub
g !~2C ua

ab 2Ca
aub!

1Cabug~3Cabug22Cagub!#, ~58!

where

R bgd
(3)a 5

1

6
R(3)~dg

agbd
(3)2dd

agbg
(3)!,

Rab
(3)5

1

3
R(3)gab

(3) , R(3)56K, ~59!

with a normalizedK(50,61), the sign of the background
three-space curvature. Thus,
R̄ b
(h)a5

1

a2 H C ubg
ag 1Cb g

gua 2Cb g
aug 2Cg b

gua 2
2

3
R(3)Cb

a22Cgd~Cdubg
a 1Cdb g

ua 2Cbudg
a 2Cdg b

ua !

22Cag~Cgubd
d 1Cbugd

d 2Cbg d
ud 2Cdugb

d !1
4

3
R(3)Cg

aCb
g2~2Cdug

g 2Cgud
g !~C ub

ad 1Cb
dua2Cb

aud!1CgdubCgdua

12Cagud~Cbgud2Cbdug!2
1

3
db

aF2
2

3
R(3)Cg

g12Cg d
dug 22Cg d

gud 14Cgd~2Cgude
e 2Cgued

e 1Cgd e
ue 1Ceugd

e !

1
4

3
R(3)Cg

dCd
g2~2Cdue

e 2Ceud
e !~2C ug

gd 2Cg
gud!1Cgdue~3Cgdue22Cgeud!G J . ~60!
1-8
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It is convenient to have

B ubg
a 5B ugb

a 2R dbg
(3)a Bd, Baubg5Baugb1R abg

(3)d Bd .
~61!

C. General „ũa…-frame quantities

To second-order perturbation, using Eqs.~49!,~51!,~53!,
the kinematic quantities in Eq.~14! become

h̃ab5a2@gab
(3)12Cab1~Va2Ba!~Vb2Bb!#,

h̃0a52a2~Va1AVa12CabVb!, h̃005a2VaVa ,
~62!

ũ5a21F3
a8

a
~12A!1Va

ua1Ca
a81

9

2

a8

a
A21BaBa8

22CabCab8 2ACa
a82Va8Ba1VaS Va81

3

2

a8

a
Va

2Ba823
a8

a
Ba1A,a1Cbua

b D G , ~63!

ãa5A,a1Va82Ba81
a8

a
~Va2Ba!1A8Ba

1AS 22A,a12Ba812
a8

a
Ba2Va82

a8

a
VaD

1Vb~Vaub1Bbua2Baub!12CabS Vb81
a8

a
VbD

12Cab8 Vb, ã052Vaãa , ~64!

ṽab5a~V[aub]2B[aub]1AB[aub]2V[aA,b]12B[aA,b]

2B[aBb]8 2V[aVb]8 1B[aVb]8 1V[aBb]8

12VgC[aub]
g 12Cg[aVg

ub] !, ṽ0a

5Vbṽab , ṽ0050, ~65!

s̃ab5aFV(aub)1Cab8 2
1

3
gab

(3)~Vg
ug1Cg

g8!1V(aVb)8

2V(aBb)8 2V(a8 Bb)1B(aBb)8 1V(aA,b)1VgCab
ug

2ACab8 12Cd(aVd
ub)2

2

3
Cab~Vg

ug1Cg
g8!

2
1

3
gab

(3)~VgVg82VgBg82Vg8Bg1BgBg81VgA,g

1VdCg
gud2ACg

g822CdgCdg8 !G ,
s̃0a52Vbs̃ab , s̃0050. ~66!
10401
In the normal frame we haveũa[0; thus Va5Ba2ABa
22BbCab . In this frame we have

h̃ab5a2~gab
(3)12Cab!, h̃0a52a2Ba , h̃005a2BaBa ,

~67!

ũ52K, ~68!

ãa5~ ln N! ,a5S A2A21
1

2
BbBbD

,a

, ã052BaA,a ,

~69!

s̃ab52K̄ab , s̃0a5BbK̄ab , s̃0050, ~70!

ṽab50. ~71!

In this frame we haveũ52K and s̃ab52K̄ab . These are
natural becauseK and K̄ab are the same as negatives of t
expansion scalar and the shear, respectively, of the nor
frame vector field.

D. Fluid quantities

To the perturbed order we decompose the fluid quanti
as

m̃[m1dm, p̃[p1dp, q̃a[aQa , p̃ab[a2Pab ,

~72!

where Qa and Pab are based ongab
(3) . In the Friedmann

world model we havem̃5m andp̃5p and zeros for the othe
fluid quantities. We have

Pa
a22CabPab50, ~73!

which follows from p̃a
a50 or S̄a

a50. The perturbed orde
fluid quantitiesdm, dp, Qa , and Pab in Eq. ~72! can be
expanded similarly as in Eq.~50!:

dm5dm (1)1dm (2), dp5dp(1)1dp(2),

Qa5Qa
(1)1Qa

(2) , Pab5Pab
(1)1Pab

(2) . ~74!

In the multicomponent situation, from Eqs.~44!,~72! we set
1-9
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m5(
l

m ( l ) , p5(
l

p( l ) ,

dm5(
l

dm ( l ) , dp5(
l

dp( l ) ,

Qa5(
l

Q( l )a , Pab5(
l

P ( l )ab . ~75!

Thus, from Eq.~45! the ADM fluid variables become

E[m1dm,

S[3~p1dp!,

Ja[aQa , Ja5
1

a
~Qa22CabQb!,

S̄ab[a2Pab , S̄b
a5Pb

a22CagPbg ,

S̄ab5
1

a2 ~Pab24Cg(aPg
b)!. ~76!

From Eqs.~22!,~72! we have

q̃a[aQa , q̃052aQaBa,

p̃ab[a2Pab , p̃0a52a2PabBb, p̃0050. ~77!

From Eqs.~21!,~72!,~54! we have

T̃005a2@m1dm12mA12dmA1~m1p!BaBa12QaBa#,

T̃0a52a2~Qa1pBa1dpBa1AQa1PabBb!,

T̃ab5a2~pgab
(3)1dpgab

(3)1Pab12pCab12dpCab!. ~78!

From Eqs.~4!, ~76! we have

m1dm5T̃abñ
añb, p1dp5

1

3
habT̃ab ,

Qa52
1

a
T̃abñb, Pab5

1

a2 ~ T̃ab2habp̃!.

~79!

Equation~24! gives
10401
%̃T̃S̃̇̃5p̃K1
1

a2 PabK̄ab22
1

a
QaA,a2

1

a
Q ua

a

12
1

a
~CabQb! ua2

1

a
Caub

a Qb. ~80!

For the interaction terms in Eq.~43! we set

Ĩ ( i )0[I ( i )01dI ( i )0 , Ĩ ( i )a[dI ( i )a , ~81!

wheredI ( i )a is based ingab
(3) .

E. Frame choice

The energy-momentum tensor in the general (ũa) frame
follows from Eqs.~21!,~72!,~53!:

T̃0
052m2dm2~m1p!Va~Va2Ba!2Qa~2Va2Ba!,

T̃a
05~12A!@Qa1~m1p!~Va2Ba!#

1~m1p!~ABa12VbCab!

1~dm1dp!~Va2Ba!1~Vb2Bb!Pab ,

T̃b
a5~p1dp!db

a1Pb
a1Va@Qb1~m1p!~Vb2Bb!#

1Qa~Vb2Bb!22CagPbg . ~82!

In the energy frame we setQa[0; thusq̃a50. In the normal
frame we haveũa[0; thus from Eq.~53! we have

energy frame: Qa[0,

Normal frame: Va2Ba1ABa12BbCab[0. ~83!

Although we can take infinitely many different combinatio
of the two frames, the energy and the normal frames are
ones often used in the literature@22#. By choosing a frame
~which is a decision aboutQa andVa) we lose no generality.
This is because we have ten independent pieces of infor
tion in T̃ab , which can be allocated to the energy densitym̃

~one!, the pressurep̃ ~one!, the anisotropic stressPab ~five,
because it is trace-free!. The remaining~three! pieces of in-
formation can be assigned to either the velocityVa ~three! or
the fluxQa ~three!; or some combinations ofVa andQa with
a total of three pieces of information.

Thus, in the normal frame~indicated by a superscriptN)
we have
1-10
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T̃0
052m2dmN2QNaBa ,

T̃a
05~12A!Qa

N ,

T̃b
a5~p1dpN!db

a1P b
Na 1BaQb

N22CagPbg
N ,

~84!

which is consistent with Eq.~78!. To linear order we notice
that dm, dp, Pab are independent of the frame choice, a
Qa1(m1p)(Va2Ba) is a frame-invariant combination
@21#. However, to second order we no longer have suc
luxury. As the fluid quantities are defined based on the fra
vector as in Eq.~23! the values ofdm, dp, and Pab are
dependent on the frame.

By comparing the energy-momentum tensor in the norm
frame in Eq.~84! with the one in the general frame in Eq
~82!, we find that by replacing the normal-frame fluid qua
tities with

dmN[dm1~Va2Ba!@~m1p!~Va2Ba!12Qa#,

dpN[dp1
1

3
~Va2Ba!@~m1p!~Va2Ba!12Qa#,

Qa
N[Qa1~m1p!~Va2Ba!

1~m1p!~ABa12VbCab!

1~dm1dp!~Va2Ba!1~Vb2Bb!Pab ,

Pab
N [Pab1~m1p!~Va2Ba!~Vb2Bb!

12Q(a~Vb)2Bb)!2
1

3
gab

(3)~Vg2Bg!

3@~m1p!~Vg2Bg!12Qg#, ~85!

we recover the general frame energy-momentum ten
Thus, by imposing the energy-frame condition (Qa50) we
recover the fluid quantities in the energy frame.

Now, similarly, by comparing Eq.~82! with the same one
evaluated in the energy frame, we find that by replacing
energy-frame fluid quantities~indicated by a superscriptE)
with

dmE[dm2
1

m1p
QaQa ,

dpE[dp2
1

3

1

m1p
QaQa ,

~m1p!~Va
E2Ba![~m1p!~Va2Ba!1Qa22QbCab

2
dm1dp

m1p
Qa2Qb

Pab

m1p
,

Pab
E [Pab2

1

m1p S QaQb2
1

3
gab

(3)QgQgD ,

~86!
10401
a
e

l

-

r.

e

we recover the general frame energy-momentum tensor
imposing the normal-frame condition in Eq.~83! we recover
the fluid quantities in the normal frame. Thus, using E
~85!,~86! we can transform the fluid quantities in one fram
to the other:

dmN5dmE1~m1p!~VEa2Ba!~Va
E2Ba!,

dpN5dpE1
1

3
~m1p!~VEa2Ba!~Va

E2Ba!,

Qa
N5~m1p!~Va

E2Ba!1~m1p!

3~ABa12VEbCab!1~dmE1dpE!

3~Va
E2Ba!1~VEb2Bb!Pab

E ,

Pab
N 5Pab

E 1~m1p!~Va
E2Ba!~Vb

E2Bb!

2
1

3
gab

(3)~m1p!~VEg2Bg!~Vg
E2Bg!;

~87!

dmE5dmN2
1

m1p
QNaQa

N ,

dpE5dpN2
1

3

1

m1p
QNaQa

N ,

~m1p!~Va
E2Ba!5Qa

N22QNbCab2
dmN1dpN

m1p
Qa

N

2QNb
Pab

N

m1p
2~m1p!~ABa12BbCab!,

Pab
E 5Pab

N 2
1

m1p S Qa
NQb

N2
1

3
gab

(3)QNgQg
ND .

~88!

F. Spacetime curvature to linear order

Although straightforward, it is not an easy task to deri
the spacetime curvature to second order. For our purp
fortunately, it is not necessary to have the forms. Still, it
convenient to have the curvature to linear order and
present them in the following. These follow from Eqs.~49!,
~51!,~52!.

The curvature tensors are

R̃ b00
a 50, R̃ 00a

0 52S a8

a D 8
Ba , R̃ 0ab

0 50,

R̃ a0b
0 5S a8

a D 8
gab

(3)2Fa8

a
A812S a8

a D 8
AGgab

(3)2A,aub

1B(aub)8 1
a8

a
B(aub)1Cab9 1

a8

a
Cab8 12S a8

a D 8
Cab ,
1-11
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R̃ abg
0 52

a8

a
ga[b

(3) A,g]2Bau[bg]1
1

2
~Bguab2Bbuag!

22Ca[bug]8 ,

R̃ 00b
a 5S a8

a D 8
db

a2
a8

a
A8db

a2A b
ua 1

1

2
~Bb

ua1B ub
a !8

1
1

2

a8

a
~Bb

ua1B ub
a !1Cb

a91
a8

a
Cb

a8 ,

R̃ 0bg
a 52

a8

a
d [b

a A,g]2B[b g]
ua 1B u[bg]

a 22S a8

a D 2

d [b
a Bg]

22C[bug]
a8 ,

R̃ b0g
a 5

a8

a
~gbg

(3)A,a2dg
aA,b!1S a8

a D 8
gbg

(3)Ba

2S a8

a D 2

~gbg
(3)Ba2dg

aBb!

2
1

2
~Bb

ua2B ub
a ! ug1Cgub

a8 2Cbg8 ua ,

R̃ bgd
a 5R bgd

(3)a 1S a8

a
D 2

~dg
agbd

(3)2dd
agbg

(3)!~122A!

1
1

2

a8

a
@gbd

(3)~Bg
ua1B ug

a !2gbg
(3)~Bd

ua1B ud
a !

12dg
aB(bud)22dd

aB(bug)#1
a8

a
Fgbd

(3)Cg
a82gbg

(3)Cd
a8

1dg
aCbd8 2dd

aCbg8 12
a8

a
~dg

aCbd2dd
aCbg!G

12C(bud)g
a 22C(bug)d

a 1Cbg
ua

d2Cbd
ua

g , ~89!

R̃00523S a8

a D 8
13

a8

a
A81DA2B ua

a8 2
a8

a
B ua

a

2Ca
a92

a8

a
Ca

a8 ,

R̃0a52
a8

a
A,a2S a8

a D 8
Ba22S a8

a D 2

Ba1
1

2
DBa2

1

2
B uab

b

2Cbua
b8 1Cab8 ub ,
10401
R̃ab52Kgab
(3)1F S a8

a
D 8

12S a8

a
D 2Ggab

(3)~122A!

2
a8

a
A8gab

(3)2A,aub1B(aub)8 12
a8

a
B(aub)

1
a8

a
gab

(3)B ug
g 1Cab9 12

a8

a
Cab8

12F S a8

a
D 8

12S a8

a
D 2GCab1

a8

a
gab

(3)Cg
g8

12C(aub)g
g 2Cguab

g 2DCab , ~90!

R̃5
1

a2 H 6F S a8

a
D 8

1S a8

a
D 2

1KG26
a8

a
A8212F S a8

a
D 8

1S a8

a
D 2GA22DA12B ua

a8 16
a8

a
B ua

a 12Ca
a9

16
a8

a
Ca

a824KCa
a22DCa

a12C uab
ab J . ~91!

The nonvanishing components of the electric and magn
parts of the Weyl curvature in Eq.~20! are

Ẽab52C̃ a0b
0

5
1

2
A,aub2

1

2
B(aub)8 2

1

2
Cab9 2

1

2
DCab22KCab

1C(aub)g
g 2

1

2
Cguab

g 2
1

3
gab

(3)S 1

2
DA2

1

2
B ug

g8 2
1

2
Cg

g9

2DCg
g22KCg

g1C ugd
gd D

5
1

2
S ¹a¹b2

1

3
gab

(3)D D S a2w2
1

a
x81

a8

a2 x D
2

1

2
C (aub)

(v)8 2
1

2
@Cab

(t)91~D22K !Cab
(t) #, ~92!

H̃ab52
1

2
h̃0(a

gdC̃ b)gd
0

52h (a
gdS 1

2
Bgub)d1Cb)gud8 D

52h (a
gdS 1

2
Cgub)d

(v) 1Cb)gud
(t)8 D , ~93!

where the symmetrization is only overa andb indices. The
last steps are evaluated in decomposed forms which wil
1-12



n

alar
M

ec.

SECOND-ORDER PERTURBATIONS OF THE FRIEDMANN . . . PHYSICAL REVIEW D69, 104011 ~2004!
introduced in Sec. V. We introducedhabg which is based on

gab
(3) with habg[h [abg] andh123[1/Ag(3). We have

h̃0abg5
1

a4A11D
habg,

g̃52a8~11D !g(3),

D[2A12Ca
a14ACa

a1BaBa

12Ca
aCb

b22Cb
aCa

b , ~94!

which is valid to second order in the perturbation.
Deriving the electric and magnetic parts of the Weyl te

sor to second order using Eqs.~19!, ~20! requires quite
lengthy algebra. Instead, using Eqs.~30!, ~33! we can derive
them easily. Evaluated in the normal frame we have

Ẽab5
1

a
~12A!S K̄ab8 22

a8

a
K̄abD

2
1

a
~B(a

ug2B u(a
g 12C(a

g8!K̄b)g1
1

a
K̄abugBg

2
1

a2 g(3)gdK̄agK̄bd2
2

3
KK̄ab

1S A2A21
1

2
BgBgD

,aub

2~2C(aub)
g 2Cab

ug!A,g
10401
-

1A,aA,b2
2

3
CabDA14pGa2Pab2

1

3
gab

(3)

3F2
1

a2 g(3)agg(3)bdK̄abK̄gd1A,g~A,g22C ud
gd

1Cd
dug!1DS A2A21

1

2
BgBgD 22CgdA,gudG ,

~95!

H̃ab5$@gd(b
(3) ~12Cn

n!12Cd(b#K̄a)gum

2~C(aum
n 1Cmu(a

n 2Cm(a
un!gb)d

(3) K̄gn%
1

a
hdgm, ~96!

whereK and K̄ab are given in Eq.~57!; the symmetrization
is over onlya and b indices. We haveẼabũ

b505H̃abũ
b,

and thusẼa052ẼabBb, Ẽ0050, and similarly forH̃ab .
For later use, it is convenient to have the spacetime sc

curvature expanded to second order. In terms of the AD
notation, using Eq.~6!, we have

R̃5R(h)1KabKab1K21
2

N
~2K ,01K ,aNa2N a

:a !.

~97!

To second order in the perturbation, using quantities in S
III B we have
R̃[R1dR56S K

a2 1Ḣ12H2D 26HȦ212~Ḣ12H2!A22
D

a2 A12S 1

a
B ua

a 1Ċa
aD •

18HS 1

a
B ua

a 1Ċa
aD

12
1

a2 @Ca b
bua 2~D12K !Ca

a#124HAȦ24AS 1

a
B ua

a 1Ċa
aD •

22~Ȧ18HA!S 1

a
B ua

a 1Ċa
aD

124~Ḣ12H2!A214A
D

a2 A12
1

a2 A,aA,a26H
1

a
A,aBa14

1

a2 A,aubCab12
1

a2 A,b~2C ua
ab 2Ca

aub!

1
1

a2 @B(aub)B
aub1B ua

a B ub
b 22~BaBaub! ub#26HBaḂa26~Ḣ12H2!BaBa22

1

a
Ba~2Caub

b 2Cbua
b !•

12
1

a
B ua

a Ċb
b22

1

a
~2Caub

b 2Cbua
b !~Ḃa13HBa!24

1

a
CabḂaub22

1

a
~Ċab16HCab!Baub12

1

a
BaS 1

a
B ub

b 1Ċb
bD

ua

1Ċa
aĊb

b23ĊabĊab24CabS C̈ab14HĊab22
K

a2 CabD 14
1

a2 Cab~2Caubg
g 2Caugb

g 1DCab1Cguab
g !

2
1

a2 ~2Cbug
g 2Cgub

g !~2C ua
ab 2Ca

aub!1
1

a2 Cabug~3Cabug22Cagub!. ~98!

An overdot indicates a time derivative with respect tot, with dt5adh.
1-13
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IV. PERTURBED EQUATIONS

A. Basic equations with general fluids

In the following we present complete sets of equations valid up to second order in the perturbation without fixing the
conditions. As the basic set we consider Eqs.~5!,~8!–~13!,~47!,~48! in the ADM formulation.

The definition ofdK is

K̄13H1dK23HA1Ċa
a1

1

a
B ua

a

52AS 9

2
HA2Ċa

a2
1

a
B ua

a D1
3

2
HBaBa

1
1

a
Ba~2Caub

b 2Cbua
b !12CabS Ċab1

1

a
BaubD

[N0 , ~99!

whereK[K̄1dK andK is read from Eq.~57!.
The energy constraint equation is

16pGm12L26H22
1

a2 R(3)116pGdm14HdK2
1

a2 S 2Ca b
bua 22Ca b

aub 2
2

3
R(3)Ca

aD
5

2

3
dK22S Ċab1

1

a
B(aub)D S Ċab1

1

a
BaubD 1

1

3
S Ċa

a1
1

a
B ua

a D 2

1
1

a2 F4Cab~2Caubg
g 2Caugb

g 1Cab g
ug 1Cguab

g !1
4

3
R(3)Cg

aCa
g

2~2Cbug
g 2Cgub

g !~2C ua
ab 2Ca

aub! 1Cabug~3Cabug22Cagub!G
[N1 . ~100!

The momentum constraint equation is

F Ċa
b1

1

2a
~B ua

b 1Ba
ub!G

ub
2

1

3 S Ċg
g1

1

a
B ug

g D
,a

1
2

3
dK ,a18pGaQa

5AS 2
2

3
dK ,a28pGaQaD1A,bF Ċa

b1
1

2a
~B ua

b 1Ba
ub!G1~2Cgub

b 2Cbug
b !F Ċa

g1
1

2a
~Ba

ug1B ua
g !G

12CbgS Ċag1
1

a
B(aug)D

ub
1

1

a
@Bg~C ua

bg 1Ca
gub2Ca

bug!# ub1
1

3
Cbua

g S Ċg
b1

1

a
B ug

b D
2

1

3 H A,aS Ċg
g1

1

a
B ug

g D12CgdS Ċgd1
1

a
BgudD

ua
1

1

a
@Bd~2Cdug

g 2Cgud
g !# uaJ

[N2a . ~101!

The trace of the ADM propagation equation is

2@3Ḣ13H214pG~m13p!2L#1dK̇12HdK24pG~dm13dp!1
1

a2 A a
ua 13ḢA

5AdK̇2
1

a
dK ,aBa1

1

3
dK21

3

2
Ḣ~3A22BaBa!1

1

a2 @2AA a
ua 1A,aA,a2BbBb a

ua 2BbuaBbua1A,a~2Caub
b 2Cbua

b !

12CabA,aub#1S Ċab1
1

a
B(aub)D S Ċab1

1

a
BaubD 2

1

3
S Ċa

a1
1

a
B ua

a D 2

[N3 . ~102!
104011-14
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The trace-free ADM propagation equation is

F Ċb
a1

1

2a
~B ub

a 1Bb
ua!G •13HF Ċb

a1
1

2a
~B ub

a 1Bb
ua!G2

1

a2 A b
ua 2

1

3
db

aF S Ċg
g1

1

a
B ug

g D •

13HS Ċg
g1

1

a
B ug

g D 2
1

a2 A g
ug G

1
1

a2 FC ubg
ag 1Cb g

g ua 2Cb g
aug 2Cg b

gua 2
2

3
R(3)Cb

a2
1

3
db

aS 2Cg d
dug 22Cg d

gud 2
2

3
R(3)Cg

gD G28pGPb
a

5H F Ċb
a1

1

2a
~B ub

a 1Bb
ua!GA12CagS Ċbg1

1

a
B(bug)D 1

1

a
Bg~C ub

ag 1Cb
gua2Cb

aug!J •

13HH F Ċb
a1

1

2a
~B ub

a 1Bb
ua!GA12CagS Ċbg1

1

a
B(bug)D 1

1

a
Bg~C ub

ag 1Cb
gua2Cb

aug!J
1F Ċb

a1
1

2a
~B ub

a 1Bb
ua!G •A2

1

a
F Ċb

a1
1

2a
~B ub

a 1Bb
ua!G

ug

Bg1dKF Ċb
a1

1

2a
~B ub

a 1Bb
ua!G

1
1

a2 F2AA b
ua 1

1

2
~2A21BgBg! b

ua 22CagA,bug2~C ub
ag 1Cb

gua2Cb
aug!A,gG

2
1

3
db

aH F S Ċg
g1

1

a
B ug

g DA12CgdS Ċgd1
1

a
BgudD 1

1

a
Bd~2Cdug

g 2Cgud
g !G •

13HF S Ċg
g1

1

a
B ug

g DA12CgdS Ċgd1
1

a
BgudD 1

1

a
Bd~2Cdug

g 2Cgud
g !G1S Ċg

g1
1

a
B ug

g D •

A2
1

a
S Ċg

g1
1

a
B ug

g D
ud

Bd

1dKS Ċg
g1

1

a
B ug

g D 1
1

a2 F2AA g
ug 1

1

2
~2A21BdBd! g

ug 22CgdA,gud2~2C ug
gd 2Cg

gud!A,dG J
1

1

a
B ug

a F Ċb
g1

1

2a
~B ub

g 1Bb
ug!G2

1

a
B ub

g F Ċg
a1

1

2a
~B ug

a 1Bg
ua!G

1
1

a2 H 2Cgd~Cdubg
a 1Cdb g

ua 2Cbudg
a 2Cdg b

ua !12Cag~Cgubd
d 1Cbugd

d 2Cbg d
ud 2Cdugb

d !

2
4

3
R(3)Cg

aCb
g1~2Cdug

g 2Cgud
g !~C ub

ad 1Cb
dua2Cb

aud!2CgdubCgdua12Cagud~Cbdug2Cbgud!2
1

3
db

aF4Cgd~Cgude
e 1Cgued

e

2Cgd e
ue 2Ceugd

e !2
4

3
R(3)Cg

dCd
g1~2Cdue

e 2Ceud
e !~2C ug

gd 2Cg
gud!1Cgdue~2Cgeud23Cgdue!G J 216pGCagPbg

[N4b
a . ~103!

The energy conservation equation is

ṁ13H~m1p!1dṁ13H~dm1dp!2~m1p!~dK23HA!1
1

a
Q ua

a

52
1

a
dm ,aBa1~dm1dp!~dK23HA!1~m1p!FAdK1

3

2
H~A22BaBa!G

2
1

a
@AQ ua

a 1Qa~2A,a1Cbua
b 22Caub

b !22CabQaub#2PabS Ċab1
1

a
BaubD

[N5 . ~104!
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The momentum conservation equation is

Q̇a14HQa1
1

a
@~m1p!A,a1dp,a1Paub

b #

5Qa~dK23HA!1
1

a
$2QaubBb2QbB ua

b 2~dm1dp!A,a1A@~m1p!A,a2dp,a2Paub
b #

2~m1p!BbBbua12~CgbPag! ub2Pa
gCbug

b 1Pg
bCbua

g 2A,bPa
b%

[N6a . ~105!

In the multicomponent situation we additionally have the energy and momentum conservation of individual compon
Eqs.~47!,~48!.

The energy conservation equation for thei th component is

ṁ ( i )13H~m ( i )1p( i )!1
1

a
I ( i )01dṁ ( i )13H~dm ( i )1dp( i )!2~m ( i )1p( i )!~dK23HA!1

1

a
Q( i )ua

a 1
1

a
dI ( i )0

52
1

a
dm ( i ),aBa1~dm ( i )1dp( i )!~dK23HA!1~m ( i )1p( i )!AdK1

3

2
H~m ( i )1p( i )!~A22BaBa!

1
1

a
@2Q( i )ua

a A12~CabQ( i )b! ua2Ca
aubQ( i )b22A,aQ( i )

a #2P ( i )
abS 1

a
Baub1ĊabD2

1

a
dI ( i )aBa

[N( i )5 . ~106!

The momentum conservation equation for thei th component is

Q̇( i )a14HQ( i )a1
1

a
~m ( i )1p( i )!A,a1

1

a
~dp( i ),a1P ( i )aub

b 2dI ( i )a!

5
1

a
$2~dp( i ),a1P ( i )aub

b 2dI ( i )a!A2~dm ( i )1dp( i )!A,a1~m ( i )1p( i )!~AA,a2BbBbua!

2Q( i )aubBb2Q( i )bB ua
b 1a~dK23HA!Q( i )a12~CbgP ( i )ag! ub2Cbug

b P ( i )a
g1Cbua

g P ( i )g
b2A,bP ( i )a

b%

[N( i )6a . ~107!
til
wi

e
st
im
ng
le
s
e

on
rb
e

y

The collective fluid quantities are given in Eq.~75!. The
equations are presented with the quadratic combination
the linear order terms located on the right-hand side. S
notice that the equations are presented to second order
out separating the background order part.

Equations~99!–~107! provide a complete set valid for th
Einstein gravity with an imperfect fluid; thus the mo
general form of energy-momentum tensor. We have not
posed any condition like a gauge condition. In the followi
subsections we will consider the cases of minimally coup
scalar fields, an electromagnetic field, and a broad clas
generalized gravity theories. We emphasize that even in th
additional fields or generalized gravity the above equati
remain valid, with the fluid quantities reinterpreted to abso
the contributions from the fields and the generaliz
10401
of
l,
th-

-

d
of
se
s

d

gravity.

B. Scalar field

1. Covariant equations

The action for a minimally coupled scalar field is given b

S5E A2g̃F 1

16pG
R̃2

1

2
f̃ ,cf̃ ,c2Ṽ~f̃ !Gd4x. ~108!

The equation of motion follows from the variation inf̃:

f̃ c
;c 2Ṽ,f̃50, ~109!
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where Ṽ,f̃[]Ṽ/]f̃. From d g̃ab
LM[ 1

2
A2g̃T̃abdg̃ab we

have the energy-momentum tensor

T̃ab
(f)5f̃ ,af̃ ,b2

1

2
g̃abf̃

,cf̃ ,c2g̃abṼ~f̃ !. ~110!
10401
2. Perturbations

We decompose

f̃[f1df. ~111!

The equation of motion becomes
f̈13Hḟ1V,f1df̈13Hdḟ2
D

a2 df1V,ffdf22Af̈2ḟS Ȧ16HA2
1

a
B ua

a 2Ċa
aD

52AFdf̈13Hdḟ22Af̈2ḟS 2Ȧ16HA2
1

a
B ua

a 2Ċa
aD G1dḟS Ȧ2

1

a
B ua

a 2Ċa
aD

22
1

a
Badḟ ,a1

1

a
df ,aS 1

a
A,a2Ḃa22HBa22

1

a
C ub

ab 1
1

a
Cb

buaD 22
1

a2 df ,aubCab2
1

2
V,fffdf21f̈BaBa

1ḟF1

a
A,aBa1BaḂa13HBaBa1

1

a
Bb~2C ua

ab 2Ca
aub!12CabS 1

a
Baub1ĊabD G

[Nf . ~112!

The energy-momentum tensor gives

T̃00
(f)5

1

2
f821a2V1f8df81a2~V,fdf12VA!1

1

2
df821

1

2
df ,adf ,a

1
1

2
a2V,ffdf212a2V,fdfA2f8df ,aBa1

1

2
f82BaBa,

T̃0a
(f)5f8df ,a2S 1

2
f822a2VDBa1df8df ,a1~2f8df81a2V,fdf1f82A!Ba ,

T̃ab
(f)5gab

(3)S 1

2
f822a2VD1gab

(3)~f8df82a2V,fdf2f82A!1~f8222a2V!Cab1df ,adf ,b

12@f8df82a2V,fdf2f82A#Cab2
1

2
gab

(3)@2df821df ,gdf ,g1a2V,ffdf214f8df8A

22f8df ,gBg1f82~24A21BgBg!#. ~113!
Fluid quantities can be read from Eq.~79! as

m (f)1dm (f)5
1

2
ḟ21V1ḟdḟ2ḟ2A1V,fdf1

1

2
dḟ2

1
1

2a2 df ,adf ,a1
1

2
V,ffdf222ḟdḟA

1
1

a
ḟdf ,aBa12ḟ2A22

1

2
ḟ2BaBa ,
p(f)1dp(f)5
1

2
ḟ22V1ḟdḟ2ḟ2A2V,fdf1

1

2
dḟ2

2
1

6a2 df ,adf ,a2
1

2
V,ffdf222ḟdḟA

1
1

a
ḟdf ,aBa12ḟ2A22

1

2
ḟ2BaBa ,

Qa
(f)52

1

a
@ḟdf ,a1df ,a~dḟ2ḟA!#,
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Pab
(f)5

1

a2 S df ,adf ,b2
1

3
gab

(3)df ,gdf ,gD .

~114!

We indicate the quadratic parts~the quadratic combination
of two linear-order terms! asdm (q), dp(q), Qa

(q) , andPab
(q) .

C. Scalar fields

1. Covariant equations

The action for multiple components of minimally couple
scalar fields is

S5E A2g̃F 1

16pG
R̃2

1

2
(

k
f̃ (k)

,cf̃ (k),c2Ṽ~f̃ ( l )!Gd4x,

~115!
10401
where i , j , . . . 51,2, . . . ,n indicate then scalar fields. The
equation of motion for thei th component is

f̃ ( i ) c
;c 2Ṽ,f̃( i )

50. ~116!

The energy-momentum tensor is

T̃ab
(f)5(

k
S f̃ (k),af̃ (k),b2

1

2
g̃abf̃ (k)

,cf̃ (k),cD2g̃abṼ~f̃ ( l )!.

~117!

2. Perturbations

We introduce

f̃ ( i )[f ( i )1df ( i ) . ~118!

The equation of motion for thei th component becomes
f̈ ( i )13Hḟ ( i )1V,f( i )
1df̈ ( i )13Hdḟ ( i )2

D

a2 df ( i )1(
k

V,f( i )f(k)
df (k)22Af̈ ( i )2ḟ ( i )S Ȧ16HA2

1

a
B ua

a 2Ċa
aD

52AFdf̈ ( i )13Hdḟ ( i )22Af̈ ( i )2ḟ ( i )S 2Ȧ16HA2
1

a
B ua

a 2Ċa
aD G1dḟ ( i )S Ȧ2

1

a
B ua

a 2Ċa
aD 22

1

a
Badḟ ( i ),a

1
1

a
df ( i ),aS 1

a
A,a2Ḃa22HBa22

1

a
C ub

ab 1
1

a
Cb

buaD 22
1

a2 df ( i ),aubCab2
1

2
(
k,l

V,f( i )f(k)f( l )
df (k)df ( l )1f̈ ( i )BaBa

1ḟ ( i )F1

a
A,aBa1BaḂa13HBaBa1

1

a
Bb~2C ua

ab 2Ca
aub!12CabS 1

a
Baub1ĊabD G[Nf( i )

. ~119!

The energy-momentum tensor gives

T̃00
(f)5

1

2 (
k

f (k)82 1a2V1(
k

~f (k)8 df (k)8 1a2V,f(k)
df (k)!12a2VA1(

k
S 1

2
df (k)82 1

1

2
df (k),adf (k)

,a

1
1

2
a2(

l
V,f(k)f( l )

df (k)df ( l )12a2V,f(k)
df (k)A2f (k)8 df (k),aBa1

1

2
f (k)82 BaBaD ,

T̃0a
(f)5(

k
f (k)8 df (k),a2S 1

2 (
k

f (k)82 2a2VDBa1(
k

@df (k)8 df (k),a1~2f (k)8 df (k)8 1a2V,f(k)
df (k)1f (k)82 A!Ba#,

T̃ab
(f)5gab

(3)S 1

2 (
k

f (k)82 2a2VD 1gab
(3)(

k
~f (k)8 df (k)8 2a2V,f(k)

df (k)2f (k)82 A!1S (
k

f (k)82 22a2VDCab

1(
k

H df (k),adf (k),b12@f (k)8 df (k)8 2a2V,f(k)
df (k)2f (k)82 A#Cab2

1

2
gab

(3)F2df (k)82 1df (k),gdf (k)
,g

1a2(
l

V,f(k)f( l )
df (k)df ( l )14f (k)8 df (k)8 A22f (k)8 df (k),gBg1f (k)82 ~24A21BgBg!G J . ~120!

Fluid quantities can be read from Eq.~79! as
1-18
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m (f)1dm (f)5
1

2
(

k
ḟ (k)

2 1V1(
k

~ḟ (k)dḟ (k)2ḟ (k)
2 A1V,f(k)

df (k)!1(
k

F1

2
dḟ (k)

2 1
1

2a2 df (k),adf (k)
,a

1
1

2
(

l
V,f(k)f( l )

df (k)df ( l )22ḟ (k)dḟ (k)A1
1

a
ḟ (k)df (k),aBa1S 2A22

1

2
BaBaD ḟ (k)

2 G ,

p(f)1dp(f)5(
k

1

2
ḟ (k)

2 2V1(
k

~ḟ (k)dḟ (k)2ḟ (k)
2 A2V,f(k)

df (k)!1(
k

F1

2
dḟ (k)

2 2
1

6a2 df (k),adf (k)
,a

2
1

2
(

l
V,f(k)f( l )

df (k)df ( l )22ḟ (k)dḟ (k)A1
1

a
ḟ (k)df (k),aBa1S 2A22

1

2
BaBaD ḟ (k)

2 G ,

Qa
(f)52

1

a (
k

@ḟ (k)df (k),a1~dḟ (k)2ḟ (k)A!df (k),a#,

Pab
(f)5

1

a2 (
k

S df (k),adf~k!,b2
1

3
gab

(3)df (k),gdf (k)
,gD . ~121!
ie

s
e

f
t

-

W

r-

y,
in
w-
u

ul-

er-

o-

of
in
re-

of
we
ing
ar

e
ar-
We indicate the quadratic parts asdm (q), dp(q), Qa
(q) , and

Pab
(q) .

D. Generalized gravity theories

1. Covariant equations

As the action for a class of generalized gravity theor
we consider

S5E A2g̃F1

2
f̃ ~f̃K,R̃!2

1

2
g̃IJ~f̃K!f̃ I ,cf̃ ,c

J

2Ṽ~f̃K!1L̃mGd4x. ~122!

f̃ I is theI th component ofN scalar fields. The capital indice
I ,J,K, . . . 51,2,3, . . . ,N indicate the scalar fields, and th
summation convention is used for repeated indices.f̃ (f̃K,R̃)
is a general algebraic function ofR̃ and the scalar fieldsf̃ I ,
and g̃IJ(f̃K) and Ṽ(f̃K) are general algebraic functions o
the scalar fields. We include a nonlinear sigma-type kine
term where the kinetic matrixg̃IJ is considered as a Rie
mannian metric on the manifold with the coordinatesf̃ I . The
matter part LagrangianL̃m includes the fluids, the kinetic
components, and the interaction with the fields, as well.
introduced the general action in Eq.~122! in @23,12# as a toy
model which allows quite general handling of various diffe
ent generalized gravity theories in a unified manner~see
@24#!. Our generalized gravity includes as a subsetf (R)
gravity, which includesR2 gravity, the scalar-tensor theor
which includes the Jordan-Brans-Dicke theory, the nonm
mally coupled scalar field, the induced gravity, the lo
energy effective action of string theory, etc., and vario
combinations of such gravity theories with additional m
10401
s

ic

e

i-

s

tiple fields and fluids. It does not, however, include high
derivative theories with terms likeRabRab ; see@25# for its
role.

The gravitational field equation and the equation of m
tion become

G̃ab5
1

F̃
F T̃ab1g̃IJS f̃ ,a

I f̃ ,b
J 2

1

2
g̃abf̃

I ,cf̃ ,c
J D

1
1

2
~ f̃ 2R̃F̃22Ṽ!g̃ab1F̃ ,a;b2g̃abF̃ c

;c G
[8pGT̃ab

(eff) , ~123!

f̃ c
I ;c 1

1

2
~ f̃ 22Ṽ! ,I1G̃JK

I f̃J,cf̃ ,c
K 52L̃m

,I[G̃ I ,

~124!

T̃a;b
b 5L̃m,Jf̃ ,a

J , ~125!

where F̃[] f̃ /]R̃; g̃IJ is the inverse metric ofg̃IJ , G̃JK
I

[ 1
2 g̃IL(g̃LJ,K1g̃LK,J2g̃JK,L), andṼ, Ĩ[]Ṽ/(]f̃ I). Introduc-

tion of the effective energy-momentum tensorT̃ab
(eff) provides

a useful trick for deriving and handling the perturbed set
equations@23#. It allows the equations derived in Einste
gravity to remain valid with the energy-momentum parts
placed by the effective ones.

We note that the gravity theory in Eq.~122! can be trans-
formed to Einstein’s gravity through a conformal rescaling
the metric and rescaling of one of the fields. As the result
have Einstein’s gravity sector with complications appear
only in the modified form of the field potential; the nonline
sigma-type couplings in the kinetic part also remain. W
studied the conformal transformation properties to line
1-19
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order perturbation in@23,26#, and in the most general form i
Appendix A of @29#. Extention to second-order perturbatio
is trivial.

2. Perturbed equations

The perturbed set of equations can be derived similarly
in the previous sections on the scalar fields. We set

F̃[F1dF, G̃ I[G I1dG I . ~126!
10401
s

Thus,

dF5F ,Idf I1F ,RdR1
1

2
F ,IJdf IdfJ1F ,IRdf IdR

1
1

2
F ,RRdR2. ~127!

The equation of motion in Eq.~124! gives
f̈ I13Hḟ I2
1

2
gIJ~ f ,J22V,J!1GJK

I ḟJḟK1G I1df̈ I13Hdḟ I2
D

a2 df I22Af̈ I1ḟ IS 2Ȧ26HA1
1

a
B ua

a 1Ċa
aD

2
1

2
gIJ@F ,JdR1~ f ,LJ22V,LJ!dfL#2

1

2
g ,L

IJ dfL~ f ,J22V,J!12GJK
I ~ḟJdḟK2AḟJḟK!1GJK,L

I dfLḟJḟK1dG I

52AFdf̈ I13Hdḟ I22Af̈ I2ḟ IS 2Ȧ16HA2
1

a
B ua

a 2Ċa
aD 12GJK

I ~ḟJdḟK2AḟJḟK!1GJK,L
I dfLḟJḟKG

1BaBa~f̈ I13Hḟ I1GJK
I ḟJḟK!1S Ȧ2

1

a
B ua

a 2Ċa
aD dḟ I22

1

a
Badḟ ,a

I 22
1

a2 Cabdf ,aub
I

1
1

a
df ,a

I S 1

a
A,a2Ḃa22HBa22

1

a
C ub

ab 1
1

a
Cb

buaD 1ḟ IF1

a
A,aBa1BaḂa1

1

a
Ba~2C ub

ab 2Cb
bua!

12CabS 1

a
Baub1ĊabD G1

1

4
gIJ@F ,RJdR212F ,LJdRdfL1~ f ,LMJ22V,LMJ!dfLdfM#

1
1

2
g ,L

IJ dfL@F ,JdR1~ f ,LJ22V,LJ!dfL#1
1

4
g ,LM

IJ dfLdfM~ f ,J22V,J!

1GJK
I S 2dḟJdḟK22

1

a
ḟJdf ,a

K Ba1
1

a2 dfJuadf ,a
K D 22GJK,L

I dfLḟJdḟK2
1

2
GJK,LM

I dfLdfMḟJḟK[Ng .

~128!

dR can be read from Eq.~98!. From Eq.~123! the effective energy-momentum tensor gives

T̃00
(eff)5

1

8pGF̃
H T̃001

1

2
gIJf I 8fJ82

1

2
a2~ f 2RF22V!23

a8

a
F81gIJf I 8dfJ81

1

2
gIJ,LdfLf I 8fJ8

2
1

2
a2@~ f ,L22V,L!dfL2RdF#2a2A~ f 2RF22V!23

a8

a
dF81DdF2~B ua

a 1Ca
a8!F8

1gIJS 1

2
df I 8dfJ81

1

2
df I ,adf ,a

J 1
1

2
BaBaf I 8fJ82Baf I 8df ,a

J D1gIJ,LdfLf I 8dfJ8

1
1

4
gIJ,LMdfLdfMf I 8fJ81

1

4
a2@F ,RdR22~ f ,LM22V,LM !dfLdfM#2a2A@~ f ,L22V,L!dfL2RdF#

2~B ua
a 1Ca

a8!dF822BadF ,a8 2S a8

a
Ba12C ub

ab 2Cb
buaD dF ,a12ADdF22CabdF ,aub1BaBaS F91

a8

a
F8D

1@2A,aBa1Ba~2C ub
ab 2Cb

bua!12Cab~Baub1Cab8 !#F8J ,
1-20
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T̃0a
(eff)5

1

8pGF̃
H T̃0a1gIJf I 8df ,a

J 2
1

2
Ba@gIJf I 8fJ81a2~ f 2RF22V!#1dF ,a8 2

a8

a
dF ,a2BaF9

2S A,a1
a8

a
BaDF81gIJ@df I 8df ,a

J 1Ba~2f I 8dfJ81Af I 8fJ8!#1gIJ,LdfLS f I 8df ,a
J 2

1

2
Baf I 8fJ8D

2
1

2
a2Ba@~ f ,L22V,L!dfL2RdF#2BadF92S A,a1

a8

a
BaD dF82S 1

2
Ba

ub2
1

2
B ua

b 1Ca
b8D dF ,b1BaDdF

12ABaF91F2AA,a12
a8

a
ABa1BbCa

b82BbB[bua]1Ba~A82B ub
b 2Cb

b8!GF8J ,

T̃ab
(eff)5

1

8pGF̃
H T̃ab1

1

2
gab

(3)FgIJf I 8fJ81a2~ f 2RF22V!12F912
a8

a
F8G1CabFgIJf I 8fJ81a2~ f 2RF22V!

12F912
a8

a
F8G1dF ,aub2~B(aub)1Cab8 !F81gab

(3)FgIJ~f I 8dfJ82Af I 8fJ8!1
1

2
gIJ,LdfLf I 8fJ8

1
1

2
a2@~ f ,L22V,L!dfL2RdF#1dF91

a8

a
dF82DdF22AF92S A812

a8

a
A2B ug

g 2Cg
g8DF8G

1gIJdf ,a
I df ,b

J 1CabF2gIJ~f I 8dfJ82Af I 8fJ8!1gIJ,LdfLf I 8fJ81a2@~ f ,L22V,L!dfL2RdF#

12FdF91
a8

a
dF82DdF22AF92S A812

a8

a
A2B ug

g 2Cg
g8DF8G G2~B(aub)1Cab8 !~dF822AF8!

2~2C(aub)
g 2Cab

ug!~dF ,g2BgF8!1gab
(3)F1

2
gIJ@df I 8dfJ824Af I 8dfJ81~4A22BgBg!f I 8fJ812Bgf I 8df ,g

J

2df I ,gdf ,g
J #1gIJ,LdfL~f I 8dfJ82Af I 8fJ8!1

1

4
gIJ,LMdfLdfMf I 8fJ81

1

4
a2@2F ,RdR21~ f ,LM

22V,LM !dfLdfM#22AdF92S A812
a8

a
A2B ug

g 2Cg
g8D dF812BgdF ,g8 1S 2A,g1Bg81

a8

a
Bg

12C ud
gd 2Cd

dugD dF ,g12CgddF ,gud1~4A22BgBg!S F91
a8

a
F8D1@4AA82A,gBg2BgBg822A~B ug

g 1Cg
g8!

2Bg~2C ud
gd 2Cd

dug!22Cgd~Bgud1Cgd8 !#F8G J . ~129!

The fluid quantities follow from Eq.~79!:

m (eff)1dm (eff)5
1

8pGF̃
H m1

1

2
gIJḟ IḟJ2

1

2
~ f 2RF22V!23HḞ1dm1gIJ~ḟ IdḟJ2Aḟ IḟJ!1

1

2
gIJ,LdfLḟ IḟJ

2
1

2
~ f ,L22V,L!dfL23HdḞ1S 1

2
R1

D

a2D dF2S 26HA1
1

a
B ua

a 1Ċa
aD Ḟ1

1

2
gIJFdḟ IdḟJ1

1

a2 df I ,a

3df ,a
J 24Aḟ IdḟJ12

1

a
Baḟ Idf ,a

J 1~4A22BaBa!ḟ IḟJG1gIJ,LdfL~ḟ IdḟJ2Aḟ IḟJ!1
1

4
gIJ,LMdfL

3dfMḟ IḟJ1
1

4
@F ,RdR22~ f ,LM22V,LM !dfLdfM#2S 26HA1

1

a
B ua

a 1Ċa
aD ~dḞ22AḞ!

2F3HBa1
1

a
~2C ub

ab 2Cb
bua!G S 1

a
dF ,a2BaḞ D 22

1

a2 CabdF ,aub12ḞCabS 1

a
Baub1ĊabD J ,
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p(eff)1dp(eff)5
1

8pGF̃
H p1

1

2
gIJḟ IḟJ1

1

2
~ f 2RF22V!1F̈12HḞ1dp1gIJ~ḟ IdḟJ2Aḟ IḟJ!1

1

2
gIJ,LdfLḟ IḟJ

1
1

2
~ f ,L22V,L!dfL1dF̈12HdḞ2S 1

2
R1

2

3

D

a2D dF22AF̈2F Ȧ14HA2
2

3
S 1

a
B ua

a 1Ċa
aD G Ḟ

1gIJF1

2
df IdḟJ22Aḟ IdḟJ1

1

2
~4A22BaBa!ḟ IḟJ1

1

a
Baḟ Idf ,a

J 2
1

6a2 df I ,adf ,a
J G

1gIJ,LdfL~ḟ IdḟJ2Aḟ IḟJ!1
1

4
gIJ,LMdfLdfMḟ IḟJ2

1

4
@F ,RdR22~ f ,LM22V,LM !dfLdfM#

22AdF̈2F Ȧ14HA2
2

3
S 1

a
B ua

a 1Ċa
aD G ~dḞ22AḞ!12

1

a
BadḞ ,a

1F2
1

a
A,a1Ḃa1HBa1

2

3a
~2C ub

ab 2Cb
bua!G S 1

a
dF ,a2BaḞ D 1

4

3a2 CabdF ,aub1~4A22BaBa!F̈

1F2AȦ2
2

a
A,aBa2HBaBa2

4

3
CabS 1

a
Baub1ĊabD G ḞJ ,

Qa
(eff)5

1

8pGF̃
H Qa2

1

a
gIJḟ Idf ,a

J 1
1

a
~2dḞ ,a1HdF ,a!1

1

a
A,aḞ2

1

a
gIJ~dḟ I2Aḟ I !df ,a

J

2
1

a
gIJ,LdfLḟ Idf ,a

J 1AF23
1

a
ḞA,a1

1

a
~dḞ ,a2HdF ,a!G

1
1

a
A,adḞ1

1

a
F 1

2a
~Ba

ub2B ua
b !1Ċa

bGdF ,b2
1

a2 BbdF ,aub1
1

a
BbBaubḞJ ,

Pab
(eff)5

1

8pGF̃
H Pab1

1

a2 dF ,aub2S 1

a
B(aub)1ĊabD Ḟ2

1

3
gab

(3)F D

a2 dF2S 1

a
B ug

g 1Ċg
gD ḞG1

1

a2 gIJdf ,a
I df ,b

J

2
2

3
CabF D

a2 dF2S 1

a
B ug

g 1Ċg
gD ḞG2S 1

a
B(aub)1ĊabD ~dḞ22AḞ!2

1

a
~2C(aub)

g 2Cab
ug!S 1

a
dF ,g2BgḞ D

2
1

3
gab

(3)F 1

a2 gIJdf I ,gdf ,g
J 12CgdS 1

a
Bgud1ĊgdD Ḟ2

2

a2 CgddF ,gud

2S 1

a
B ug

g 1Ċg
gD ~dḞ22AḞ!2

1

a
~2C ud

gd 2Cd
dug!S 1

a
dF ,g2BgḞ D G J . ~130!
e

ity

s

e-
We have used Eq.~78! for the energy-momentum tensor. W
indicate the quadratic parts asdm (eff,q), dp(eff,q), Qa

(eff,q) ,
and Pab

(eff,q) . We note again that in this generalized grav
the basic equations in Sec. IV Aremain validwith the fluid
quantities replaced by the effective ones.

E. Electromagnetic field

1. Covariant equations

The Lagrangian of the electromagnetic field is given a
10401
Le.m.52
1

4
A2g̃F̃abF̃ab , ~131!

where F̃ab[Ãa,b2Ãb,a . The energy-momentum tensor b
comes

T̃ab
(e.m.)5F̃acF̃b

c2
1

4
g̃abF̃cdF̃

cd. ~132!

We introduce@20#
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F̃ab5ũaẼb2ũbẼa2h̃abcdũ
cH̃d,

Ẽa[F̃abũ
b, H̃a[

1

2
h̃abcdũ

bF̃cd,

Ẽ2[ẼaẼa , H̃2[H̃aH̃a ,

q̃[2 j̃ aũa , J̃a[h̃b
a j̃ b. ~133!

Then we have

T̃ab
(e.m.)5

1

2
ũaũb~Ẽ21H̃2!12ũ(ah̃b)cgdũ

cẼgH̃d2ẼaẼb

2H̃aH̃b1
1

2
h̃ab~Ẽ21H̃2!,

m̃ (e.m.)5
1

2
~Ẽ21H̃2!,

p̃(e.m.)5
1

6
~Ẽ21H̃2!,

q̃a
(e.m.)5h̃acgdũ

cẼgH̃d,

p̃ab
(e.m.)52ẼaẼb2H̃aH̃b1

1

3
h̃ab~Ẽ21H̃2!. ~134!

From the Maxwell equations and the conservation equat

F̃ ;b
ab 5 j̃ a, F̃ [ab;c]50, j̃ ;a

a 50, ~135!

we can derive the covariant forms of the relativistic Maxw
equations@20#:

Ẽ ;b
a h̃a

b12H̃aṽa5q̃, ~136!

H̃ ;b
a h̃a

b22Ẽaṽa50, ~137!

h̃b
aẼ ;c

b ũc5ẼbS ṽ b
a 1s̃ b

a 2
2

3
ũh̃b

aD
1h̃abcdub~ ãcH̃d2H̃c;d!2 J̃a, ~138!

h̃b
aH̃ ;c

b ũc5H̃bS ṽ b
a 1s̃ b

a 2
2

3
ũh̃b

aD
1h̃abcdũb~ ãcẼd2Ẽc;d!2 J̃a, ~139!

q̃,aũa1 ũq̃1h̃b
aJ̃ ;a

b 1 J̃aãa50. ~140!

2. Perturbations

We take the normal frame; thusũa5ña and thusṽab
50. Due to the high symmetry the Friedmann backgrou
does not support an electric or magnetic field. Thus,Ẽa and
H̃a are already at perturbed order. We set
10401
s

l

d

Ẽa[Ea , H̃a[Ha , ~141!

where Ea and Ha are based ongab
(3) . Thus, Ẽ052EaBa

~which follows fromẼaña50), etc. Forhabcd see Eq.~94!.
Equations~136!–~140! become

E ua
a 2a2dq52~CabEb! ua2Caub

a Eb, ~142!

H ua
a 52~CabHb! ua2Caub

a Hb,
~143!

Ėa1HEa1
1

a
habgHbug1Ja

5A~Ėa1HEa!2
1

a
E ub

a Bb

1EbS 1

a
B ub

a 12Ċb
aD2EaS 1

a
B ub

b 1Ċb
bD1

1

a
habg

3~HgA,b2HbugCd
d! 2

2

a
hbgdCb

aHgud , ~144!

~Ha⇔Ea!, ~145!

dq̇13Hdq523HAdq2
1

a
dq,aBa1dKdq

2
1

a2 @~Ja22CabJb! ua1Ja~Cbua
b 1A,a!#,

~146!where we set

q̃[q1dq, J̃a[Ja , ~147!

with Ja based ongab
(3) ; Ja in this subsection differs from the

flux term in ADM notation used in the other sections. W
haveq50.

The energy-momentum tensor becomes

T̃00
(e.m.)5

1

2
~EaEa1HaHa!,

T̃0a
(e.m.)52habgEbHg,

T̃ab
(e.m.)52EaEb2HaHb1

1

2
gab

(3)~EgEg1HgHg!.

~148!

The fluid quantities can be read from Eq.~79! as

dm (e.m.)53dp(e.m.)5
1

2a2 ~EaEa1HaHa!,

Qa
(e.m.)5

1

a2 habgEbHg,

Pab
(e.m.)52

1

a2 FEaEb1HaHb

2
1

3
gab

(3)~EgEg1HgHg!G . ~149!

We havem (e.m.)505p(e.m.).
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F. Null geodesic and temperature anisotropy

We introduce the photon four-velocity as

k̃0[
1

a
~n1dn!, k̃a[2

n

a
~ea1dea!,

k̃052anS 11
dn

n
12A2Baea12A

dn

n
2BadeaD ,

k̃a52anS ea1dea1Ba12Cabeb1Ba

dn

n
12CabdebD ,

~150!

where ea and dea are based ongab
(3) , and n and ea are

assumed to be the background order. We have

d

dl
5

]xa

]l

]

]xa 5 k̃a]a5
n

a
S ]02ea]a1

dn

n
]02dea]aD .

~151!
10401
Thus,

d

dy
[]02ea]a ~152!

can be considered as a derivative along the background
ton four-velocity. The null equationk̃ak̃a50 gives

k̃ak̃a5n2Feaea2112S eadea2
dn

n
2A1Baea

1CabeaebD 1deadea2
dn2

n2 22
dn

n
~2A2Baea!

12~Ba12Cabeb!deaG50. ~153!

The geodesic equationk̃ ;b
a k̃b50, using Eq.~52!, gives
k̃ ;b
0 k̃b5

n2

a2 H ~an!8

an
1S dn

n
D 8

12
n8

n

dn

n
2

dn ,a

n
ea12

a8

a
eadea1A822

a8

a
A1S Baub1Cab8 12

a8

a
CabD eaeb

22S A,a2
a8

a
BaD ea1

dn

n

dn8

n
2

dn ,a

n
dea12

dn

n
A822

dn

n
S A,a2

a8

a
BaD ea1

a8

a
deadea22deaS A,a2

a8

a
BaD

24
a8

a
eadeaA12eadebS Cab8 12

a8

a
Cab1B(aub)D 2FAS 2Baub12Cab8 14

a8

a
CabD 1Bg~2Caub

g 2Cab
ug!Geaeb

1
a8

a
~4A22BaBa!12S 2AA,a22

a8

a
ABa1BbCa

b81BbB[aub] D ea22AA82A,aBa1BaS Ba81
a8

a
BaD J 50,

~154!

k̃ ;b
a k̃b5

n2

a2 H 2ea81ebe ub
a 2dea82

dn

n
ea81de ub

a eb1debe ub
a 1~2Cbug

a 2Cbg
ua!ebeg2~Bb

ua2B ub
a 12Cb

a8!eb

1A,a2Ba82
dn

n
dea812

dn

n
~A,a2Ba8!2S deb1

dn

n
ebD ~Bb

ua2B ub
a 12Cb

a8!

1debde ub
a 12ebdeg~2Cbug

a 2Cbg
ua!1A8Ba22A,bCab12Cb

aBb822BaA,beb

14Cag~B[bug]1Cbg8 !eb22Cd
a~2Cbug

d 2Cbg
ud!ebeg1Ba~Bbug1Cbg8 !ebegJ 50, ~155!

where we used the null equation in Eq.~153!. To the background order Eqs.~153!–~155! give

eaea51, n}a21, ea85ebe ub
a . ~156!

Using Eqs.~152!,~153!, Eq. ~154! becomes
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d

dy
S dn

n
1AD 2A,aea1~Baub1Cab8 !eaeb

52
dn

n

dn8

n
2

a8

a

dn2

n2 22
dn

n
S A812

a8

a
AD 1

dn ,a

n
dea12

dn

n
A,aea12deaA,a14

a8

a
eadeaA22eadeb~B(aub)1Cab8 !

1F2AS Baub1Cab8 12
a8

a
CabD 1Bg~2Caub

g 2Cab
ug!Geaeb2

a8

a
~4A22BaBa!22S 2AA,a22

a8

a
ABa1BbCa

b8

1BbB[aub] D ea12AA81A,aBa2BaS Ba81
a8

a
BaD[Nn . ~157!
om
la
.

va

s
b

e
u

e

Thus, we have

S dn

n
1AD U

E

O

5E
E

O

@A,aea2~Baub1Cab8 !eaeb1Nn#dy,

~158!

where the integral is along the ray’s null-geodesic path fr
E, the emitted event at the intersection of the ray and the
scattering surface, toO, the observed event here and now

The temperatures of the CMB at two different points (O
andE) along a single null-geodesic ray in a given obser
tional direction are@27,17#

T̃O

T̃E

[
1

11 z̃
[

~ k̃aũa!O

~ k̃bũb!E

, ~159!

where ũa at O and E are the local four-velocities of the
observer and the emitter, respectively. Thus,ũa should be
considered as the one based on the energy frame which
q̃a[0; or equivalently in a general frame vector which a
sorbs the flux term to the frame vector to second order.

Using Eqs.~53!,~150! we have

k̃aũa52nF11
dn

n
1A1~Va

E2Ba!ea1
dn

n
A

1dea~Va
E2Ba!1~ABa12CabVEb!ea

1
1

2
VEaVa

E2
1

2
A2G . ~160!

We have denoted the energy-frame nature by replacingVa

with Va
E ; if we consider Eq.~86!, Eq. ~160! in this form is

valid in the general frame. Since the calculations in the r
of this paper are based on the normal-frame vector we
Eq. ~88! to derive the result in the normal frame. We hav
10401
st

-

ets
-

st
se

k̃aũa52nF11
dn

n
1A1

1

m1p
Qaea

2
~dm1dp!Qa1PabQb

~m1p!2
ea1

dn

n
A1dea

Qa

m1p

1
1

2
S Ba1

Qa

m1p
D S Ba1

Qa

m1p
D 2

1

2
A2G . ~161!

Using Eq.~159! we have

S 12
TE

TO

nO

nE
D S 11

dTE

TE
D 1

dT

T
U

E

O

5
TE

TO

nO

nE
F dn

n
1A1

1

m1p
Qaea

2
~dm1dp!Qa1PabQb

~m1p!2
ea1

dn

n
A1dea

Qa

m1p

1
1

2
S Ba1

Qa

m1p
D S Ba1

Qa

m1p
D 2

1

2
A2GU

E

O

3F12S dn

n
1A1

1

m1p
QgegD 1

dT

T
GU

E

[
TE

TO

nO

nE
S dn

n
1A1

1

m1p
QaeaD U

E

O

1NT , ~162!

where (dT/T)uE
O[(dT/T)uO2(dT/T)uE and (dT/T)uE

[dT/T at E. Thus, if we takeTO /TE5nO /nE , Eqs.~162!,
~158! give
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dT

T U
O

5
dT

T U
E

1
1

m1p
QaeaU

E

O

1E
E

O

@A,aea2~Baub1Cab8 !eaeb1Nn#dy1NT .

~163!

On the large angular scale we are considering~larger than the
horizon size at the last scattering era!, the detailed dynamics
at last scattering is not important. The physical processe
last scattering are important at the small angular scale w
we need to solve the Boltzmann equation for the pho
distribution function~see Sec. IV G!.

G. Boltzmann equation

1. Covariant equations

The relativistic Boltzmann equation is@28#

d

dl
f̃ 5

dxa

dl

] f̃

]xa 1
dp̃a

dl

] f̃

] p̃a
5 p̃a

] f̃

]xa 2G̃bc
a p̃bp̃c

] f̃

] p̃a
5C̃@ f̃ #,

~164!

where f̃ (xa,p̃b) is a distribution function with the phas
space variablesxa and p̃a[dxa/dl, and C̃@ f̃ # is the colli-
sion term. The energy-momentum tensor of the collisionl
~or collisional! component is
10401
of
re
n

s

T̃ab
(c)5E 2u~ p̃0!d~ p̃cp̃c1m2! p̃ap̃b f̃

d4p̃0123

A2g̃

5E 2u~ p̃0!d~ p̃cp̃c1m2! p̃ap̃b f̃A2g̃d4p̃0123, ~165!

where

d~ p̃cp̃c1m2!5d~ g̃00p̃
0p̃012g̃0ap̃0p̃a1g̃abp̃ap̃b1m2!

5
d~mass shell!

u2g̃00p̃
012g̃0ap̃au

5
d~mass shell!

2u p̃0u
.

~166!

Thus, after integrating overp̃0, we have

T̃ab
(c)5E A2gd3p̃123

u p̃0u
p̃ap̃b f̃ , ~167!

with the mass-shell conditionp̃ap̃a1m250.

2. Perturbed equations

Under our metric, usingp̃a as the phase space variabl
we have
p̃0 f̃ 81 p̃a f̃ ,a2H a8

a
~ p̃0p̃01gab

(3)p̃ap̃b!1A8p̃0p̃012S A,a2
a8

a
BaD p̃0p̃a1S 22

a8

a
gab

(3)A1Baub1Cab8 12
a8

a
CabD p̃ap̃b

1S 22AA82A,aBa1BaBa81
a8

a
BaBaD p̃0p̃012S 22AA,a12

a8

a
ABa2BbCa

b81BbB[bua] D p̃0p̃a

1Fa8

a
gab

(3)~4A22BgBg!22AS Baub1Cab8 12
a8

a
CabD 2Bg~2Caub

g 2Cab
ug!G p̃ap̃bJ ] f̃

] p̃0

2F S 2
a8

a
p̃0p̃a1G bg

(3)a p̃bp̃gD 1S A,a2Ba82
a8

a
BaD p̃0p̃01~Bb

ua2B ub
a 12Cb

a8! p̃0p̃b

1S a8

a
gbg

(3)Ba12Cbug
a 2Cbg

uaD p̃bp̃gG ] f̃

] p̃a
5C̃@ f̃ #. ~168!

As the phase space variable it is convenient to use (q, ga) introduced as

q[aAa2~ p̃0!22m2F11
a2~ p̃0!2

a2~ p̃0!22m2
S A1

1

2
BaBaD 2

1

2

a4~ p̃0!4

@a2~ p̃0!22m2#2
A2G ,
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ga[
a

Aa2~ p̃0!22m2
F p̃a2

a2~ p̃0!2

a2~ p̃0!22m2
Ap̃a2Bap̃01Cb

ap̃b1
3

2

a4~ p̃0!4

@a2~ p̃0!22m2#2
A2p̃a

1
a2~ p̃0!2

a2~ p̃0!22m2
S ABap̃02ACb

ap̃b2
1

2
BbBbp̃aD 1Cb

aBbp̃02
1

2
Cb

gCg
ap̃bG ,

p̃05
1

a2
Aq21m2a2S 12A1

3

2
A22

1

2
BaBaD ,

p̃a5
1

a2 Fqga1Aq21m2a2Ba2qCb
agb2Aq21m2a2~ABa12Cb

aBb!1
3

2
qCb

gCg
agbG , ~169!

wherega is based ongab
(3) . The mass-shell condition gives

~ p̃0!22gab
(3)p̃ap̃b2m2/a212A~ p̃0!212Bap̃ap̃022Cabp̃ap̃b50, ~170!

and we can showgaga51. The Boltzmann equation becomes

f̃ 81
q

Aq21m2a2
S gad f ,a2G bg

(3)a gbgg
]d f

]gaD 2FAq21m2a2

q
gaA,a1~Baub1Cab8 !gagbGq

] f̃

]q

52
1

Aq21m2a2
~qAga1Aq21m2a2Ba2qCb

agb!d f ,a2HAq21m2a2

q
@A,a~Aga1Cb

agb!2BbBbuaga#

12Cg
b~Cab8 1B(aub)!g

agg1Bg~2Caub
g 2Cab

ug!gagbJ q
] f

]q
1FG bg

(3)a S q

Aq21m2a2
Agbgg1Bbgg

2
q

Aq21m2a2
Cd

ggbgdD 1
Aq21m2a2

q
~Aua2A,bgbga!1~Bb

ua1Cb
a8!gb2~Bbug1Cbg8 !gbggga

1
q

Aq21m2a2
~Cbug

a 2Cbg
ua!gbggG ]d f

]ga
1

a2

Aq21m2a2
S 11A2

1

2
A21

1

2
BaBaD C̃@ f̃ #[Nc . ~171!
For convenience we located the collision term inNc . The
energy-momentum tensor becomes

T̃ab
(c)5

1

a2E p̃ap̃b f̃
q2dqdVq

Aq21m2a2
. ~172!

Thus, using*gagbdVq5 1
3 gab

(3) , we have

T̃00
(c)5

1

a2E Aq21m2a2q2dqdVqF f ~112A!1d f ~112A!

1S 11
1

3

q2

q21m2a2DBaBa f 1
2q

Aq21m2a2
Bagad f G ,
10401
T̃a0
(c)52

1

a2E q4dqdVq

Aq21m2a2
H 1

3
Ba f 1FAq21m2a2

q

3~ga1Aga1Cabgb!1BbgbgaGd f J ,

T̃ab
(c)5

1

a2E q4dqdVq

Aq21m2a2
S 1

3
gab

(3)f 1d f gagb1
2

3
f Cab

12d f g (aCb)gggD . ~173!

From Eq.~79! the fluid quantities become

m (c)1dm (c)5
1

a4E Aq21m2a2q2dqdVq~ f 1d f !,
1-27



ol
al
l
s

yp

s

are
sis
-

ro-
s
be
-
nd-
rtur-
tic
ay
Eq.

H. NOH AND J.-C. HWANG PHYSICAL REVIEW D69, 104011 ~2004!
p(c)1dp(c)5
1

3a4E q4dqdVq

Aq21m2a2
~ f 1d f !,

Qa
(c)5

1

a4E q3dqdVq~ga1Cabgb!d f ,

Pab
(c)5

1

a4E q4dqdVq

Aq21m2a2
S gagb2

1

3
gab

(3)

12g (aCb)ggg2
2

3
CabD d f . ~174!

If we have multiple components each described by the B
zmann equation, all equations in this subsection remain v
for any component withf̃ replaced byf̃ ( i ) , etc., and the tota
~collective! fluid quantities as the sum of the individual one

V. DECOMPOSITION

A. Three perturbation types

We decompose the perturbation variables as follows:

A[a,

Ba[b ,a1Ba
(v) ,

Cab[wgab
(3)1g ,aub1C(aub)

(v) 1Cab
(t) ,

Qa[Q,a1Qa
(v)[~m1p!~2v ,a1va

(v)!,

Pab[
1

a2 S P ,aub2
1

3
gab

(3)DP D 1
1

a
P (aub)

(v) 1Pab
(t) ,

~175!

with the properties

B ua
(v)a [0, C ua

(v)a [0, v ua
(v)a [0, P ua

(v)a [0,

C a
(t)a [0, P a

(t)a [0, C aub
(t)b [0, P aub

(t)b [0.

~176!

m1p appearing in the decomposition ofQa is assumed to be
the background order quantity. The vector- and tensor-t
perturbations are denoted by superscripts (v) and (t), re-
spectively. We assume all these variables are based ongab

(3) .
The decomposed variables can also be expressed in term
the original variables. For example, we haveb5D21¹aBa

and Ba
(v)5Ba2¹aD21¹bBb , etc., where¹a means¹a

(3) .
For the fluid quantities we have

Q5D21¹aQa ,

Qa
(v)5Qa2¹aD21¹bQb ,

P5
3

2
a2S D1

1

2
R(3)D 21

D21¹a¹bPab ,
10401
t-
id

.

e

of

Pa
(v)52aS D1

1

3
R(3)D 21

~¹bPab

2¹aD21¹b¹gPbg!,

Pab
(t) 5Pab2

3

2 S ¹a¹b2
1

3
gab

(3)D D S D1
1

2
R(3)D 21

3D21¹g¹dPgd22¹(aS D1
1

3
R(3)D 21

3~¹gPb)g2¹b)D
21¹g¹dPgd!. ~177!

We introduce

x[a~b1aġ !, Ca
(v)[Ba

(v)1aĊa
(v) , ~178!

and let

k[dK. ~179!

In the multicomponent situation we have Eq.~75!. For the
individual components we have

Q( i )a[~m ( i )1p( i )!~2v ( i ),a1v ( i )a
(v) !,

P ( i )ab[
1

a2 S P ( i ),aub2
1

3
gab

(3)DP ( i )D 1
1

a
P ( i )(aub)

(v) 1P ( i )ab
(t) ,

~180!

with

v ( i ) ua
(v)a [0, P ( i ) ua

(v)a [0, P ( i )a
(t)a[0, P ( i )aub

(t)b [0,
~181!

and

dI ( i )a[dI ( i ),a1dI ( i )a
(v) , dI ( i ) ua

(v)a [0. ~182!

The definitions for the scalar-type perturbation variables
introduced to match our notation used in the linear analy
@7,12,29#; compared with our previous definitions in the lin
ear theory ourv andv ( i ) correspond tov/k andv ( i ) /k in @29#
wherek is the wave number. These are the notations int
duced by Bardeen in 1988@7#. A complete set of equation
written separately for the three perturbation types will
presented in Eqs.~195!–~210!, where the quadratic combina
tions of the linear-order variables contribute to the seco
order perturbations. Thus, to second order the three pe
bation types couple with each other through quadra
combinations of the linear-order terms. If needed we m
decompose the perturbed order quantities explicitly as in
~50!:

a[a (1)1a (2), w[w (1)1w (2), ~183!

etc.
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B. Background equations

To background order, Eqs.~100!,~102!,~104!,~112! give

H25
8pG

3
m2

K

a2 1
L

3
, ~184!

ä

a
52

4pG

3
~m13p!1

L

3
, ~185!

ṁ13H~m1p!50, ~186!

f̈13Hḟ1V,f50. ~187!

In the multicomponent situations from Eqs.~106!,~119! we
have

ṁ ( i )13H~m ( i )1p( i )!52
1

a
I ( i )0 , ~188!

f̈ ( i )13Hḟ ( i )1V,f( i )
50, ~189!

with

m (f)5
1

2 (
k

ḟ (k)
2 1V, p(f)5

1

2 (
k

ḟ (k)
2 2V, ~190!

which follow from Eq.~121!.
In the generalized gravity considered in Sec. IV D, E

~184!,~185! remain valid by replacing the fluid quantities
the effective one in Eq.~130!:

m (eff)5
1

8pGF Fm1
1

2
gIJḟ IḟJ2

1

2
~ f 2RF22V!23HḞG ,

p(eff)5
1

8pGF Fp1
1

2
gIJḟ IḟJ1

1

2
~ f 2RF22V!

1F̈12HḞG . ~191!

For the equation of motion, Eq.~128! gives

f̈ I13Hḟ I2
1

2
gIJ~ f ,J22V,J!1GJK

I ḟJḟK1G I50.

~192!

The null-geodesic equations are presented in Eq.~156!.
The Boltzmann equation in Eq.~171! gives

f 85
a2

Aq21m2a2
C@ f #, ~193!

and from Eq.~174! we have

m (c)5
1

a4E Aq21m2a2q2dqdVqf ,
10401
.

p(c)5
1

3a4E q4dqdVq

Aq21m2a2
f . ~194!

C. Decomposed equations

We summarize a complete set of equations necessar
analyze each perturbation type. We decompose the pertu
tion variables according to Eq.~175!. Algebraic manipula-
tions are made which can be recognized by examining
right-hand sides of the following equations.

For the scalar-type perturbation,

k23Ha13ẇ1
D

a2 x5N0 , ~195!

4pGdm1Hk1
D13K

a2 w5
1

4
N1 , ~196!

k1
D13K

a2 x212pG~m1p!av5
3

2
D21¹aN2a[N2

(s),

~197!

k̇12Hk24pG~dm13dp!1S 3Ḣ1
D

a2Da5N3 ,

~198!

ẋ1Hx2w2a28pGP5
3

2
a2~D13K !21D21¹a¹bN4a

b

[N4
(s) , ~199!

dṁ13H~dm1dp!2~m1p!S k23Ha1
1

a
Dv D5N5 ,

~200!

@a4~m1p!v#•

a4~m1p!
2

1

a
a2

1

a~m1p!
S dp1

2

3

D13K

a2 P D
52

1

m1p
D21¹aN6a[N6

(s), ~201!

dṁ ( i )13H~dm ( i )1dp( i )!2~m ( i )1p( i )!

3S k23Ha1
1

a
Dv ( i )D1

1

a
dI ( i )05N5(i ) , ~202!

@a4~m ( i )1p( i )!v ( i )#
•

a4~m ( i )1p( i )!
2

1

a
a2

1

a~m ( i )1p( i )!

3S dp( i )1
2

3

D13K

a2 P ( i )2dI ( i )D
52

1

m ( i )1p( i )

D21¹aN6(i )a[N6(i )
(s) , ~203!
1-29
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df̈13Hdḟ2
D

a2 df1V,ffdf2ḟ~k1ȧ !2~2f̈13Hḟ !a

5Nf2ḟN0 , ~204!

df̈ ( i )13Hdḟ ( i )2
D

a2 df ( i )1(
k

V,f( i )f(k)
df (k)

2ḟ ( i )~k1ȧ !2~2f̈ ( i )13Hḟ ( i )!a

5Nf( i )
2ḟ ( i )N0 . ~205!

For the vector-type perturbation,

D12K

2a2 Ca
(v)18pG~m1p!va

(v)5
1

a
~N2a2¹aD21¹bN2b!

[N2a
(v) , ~206!

Ċa
(v)12HCa

(v)28pGPa
(v)

52a~D12K !21~¹bN4a
b2¹aD21¹g¹bN4g

b![N4a
(v) ,

~207!

@a4~m1p!va
(v)#•

a4~m1p!
1

D12K

2a2

Pa
(v)

m1p

5
1

m1p
~N6a2¹aD21¹bN6b![N6a

(v) , ~208!

@a4~m ( i )1p( i )!v ( i )a
(v) #•

a4~m ( i )1p( i )!
1

D12K

2a2

P ( i )a
(v)

m ( i )1p( i )

2
1

a

dI ( i )a
(v)

m ( i )1p( i )

5
1

m ( i )1p( i )
~N6(i )a2¹aD21¹bN6(i )b![N6(i )a

(v) .

~209!

For the tensor-type perturbation,

C̈ab
(t) 13HĊab

(t) 2
D22K

a2 Cab
(t) 28pGPab

(t)

5N4ab2
3

2
S ¹a¹b2

1

3
gab

(3)D D ~D13K !21D21¹g

3¹dN4g
d22¹(a~D12K !21

3~¹gN4b)g2¹b)D
21¹g¹dN4g

d ![N4ab
(t) . ~210!

In order to derive Eqs.~199!,~207!,~210! it is convenient to
show that
10401
1

a2 S ¹a¹b2
1

3
gab

(3)D D ~ ẋ1Hx2w2a28pGP!

1
1

a3 ~a2C (aub)
(v) !•28pG

1

a
P (aub)

(v) 1C̈ab
(t) 13HĊab

(t)

2
D22K

a2 Cab
(t) 28pGPab

(t) 5N4ab , ~211!

which follows from Eq.~103!. In our perturbative approach
the second-order perturbations are sourced by the quad
combinations of all three types of linear-order terms.

For the scalar field, from Eq.~121!, we have

dm (f)5(
k

~ḟ (k)dḟ (k)2ḟ (k)
2 a1V,f(k)

df (k)!1dm (q),

dp(f)5(
k

~ḟ (k)dḟ (k)2ḟ (k)
2 a2V,f(k)

df (k)!1dp(q),

Q(f)52~m (f)1p(f)!v (f)52
1

a (
k

ḟ (k)df (k)

1D21¹aQa
(q) ,

Qa
(f,v)5~m (f)1p(f)!va

(f,v)5Qa
(q)2¹aD21¹bQb

(q) .
~212!

The anisotropic pressure follows from Eqs.~121!,~177!.
In the generalized gravity theory in Sec. IV D, Eq.~128!

gives

df̈ I13Hdḟ I2
D

a2 df I22af̈ I1ḟ IS 3ẇ2ȧ26Ha1
D

a2 x D
2

1

2
gIJ@F ,JdR1~ f ,LJ22V,LJ!dfL#

2
1

2
g ,L

IJ dfL~ f ,J22V,J!12GJK
I ~ḟJdḟK2AḟJḟK!

1GJK,L
I dfLḟJḟK1dG I5Ng . ~213!

Equations~195!–~201!,~206!–~208!,~210! remain valid even
in generalized gravity by replacing the fluid quantities w
the effective ones. The decomposed effective fluid quanti
follow from Eqs.~130!,~177! as
1-30
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dm (eff)5
1

8pGF
Fdm1gIJ~ḟ IdḟJ2aḟ IḟJ!

1
1

2
gIJ,LdfLḟ IḟJ2

1

2
~ f ,L22V,L!dfL23HdḞ

1S 1

2
R1

D

a2D dF1S 6Ha2
D

a2 x23ẇ D Ḟ

28pGm (eff)dFG1dm (eff,q),

dp(eff)5
1

8pGF
Fdp1gIJ~ḟ IdḟJ2aḟ IḟJ!

1
1

2
gIJ,LdfLḟ IḟJ1

1

2
~ f ,L22V,L!dfL1dF̈

12HdḞ2S 1

2
R1

2

3

D

a2D dF22aF̈

2S ȧ14Ha2
2

3

D

a2 x22ẇ D Ḟ28pGp(eff)dFG
1dp(eff,q),

Q(eff)5
1

8pGF FQ2
1

a
gIJḟ IdfJ

1
1

a
~2dḞ1HdF !1

1

a
AḞG1Q(eff,q),

Qa
(eff,v)5

1

8pGF
Qa

(v)1Qa
(eff,v,q) ,

P (eff)5
1

8pGF
~P1dF2xḞ !1P (eff,q),

Pa
(eff,v)5

1

8pGF
~Pa

(v)2Ca
(v)Ḟ !1Pa

(eff,v,q) ,

Pab
(eff,t)5

1

8pGF
~Pab

(t) 2Ċab
(t) Ḟ !1Pab

(eff,t,q) , ~214!

where the quadratic parts follow from Eq.~177!. As an ex-
ample, from Eqs.~210!,~214!, the gravitational wave equa
tion in generalized gravity becomes
10401
C̈ab
(t) 1S 3H1

Ḟ

F
D Ċab

(t) 2
D22K

a2 Cab
(t)

5
1

F
Pab

(t) 18pGPab
(eff,t,q)1N4ab

(t) . ~215!

For the electromagnetic field we can decompose

Ea[E,a
(e.m.)1Ea

(v) , Ha[H ,a
(e.m.)1Ha

(v) ,

Ea
(v)ua[0[Ha

(v)ua . ~216!

The decomposed forms of fluid quantities can be read fr
Eqs. ~149!,~177!. Similarly, for the null-geodesic equation
we decompose

dea[de,a1dea
(v) , dea

(v)ua[0. ~217!

For the temperature anisotropy, Eq.~163! gives

dT

T U
O

5
dT

T U
E

2v ,aeaU
E

O

1E
E

OS 2w81a ,aea

2
1

a
x ,aubeaebDdy1va

(v)eaU
E

O

2E
E

O

Caub
(v) eaebdy

2E
E

O

Cab
(t)8eaebdy1E

E

O

Nndy1NT . ~218!

To linear order this result was first presented by Sachs
Wolfe @17#; for further analyses using our notation, see@30#.

For the Boltzmann equation, Eq.~171! becomes

f̃ 81
q

Aq21m2a2
S gad f ,a2G bg

(3)a gbgg
]d f

]gaD
2Fw81

Aq21m2a2

q
gaa ,a

1S 1

a
x ,aub1Caub

(v) 1Cab
(t)8D gagbGq

] f̃

]q
5Nc . ~219!

The fluid quantities can be read from Eqs.~174!,~177!.
We emphasize that all the equations up to this point

presented without fixing the gauge conditions. In order
solve the equations in a given situation, we can chooseany
allowed gauge conditions suitable for the situation. In t
sense, the equations are presented in agauge-readyform.

VI. GAUGE ISSUE

A. Gauge transformation

We consider the following transformation between tw
coordinatesxa and x̂a:
1-31
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x̂a[xa1 j̃a~xe![xa1 z̃a1
1

2
z̃ ,b

a z̃b. ~220!

The variablesj̃a and z̃a are perturbed order quantities. T
second order we may have

j̃a[j̃ (1)a1 j̃ (2)a, ~221!

and similarly for z̃a. For any tensor quantity we use th
tensor transformation property betweenxa and x̂a space-
times:

f̃~xe!5 f̂̃~ x̂e!, ṽa~xe!5
] x̂b

]xav̂̃b~ x̂e!,

t̃ ab~xe!5
] x̂c

]xa

] x̂d

]xbt̂̃ cd~ x̂e!. ~222!

Comparing the tensor quantities at the same spacetime p
xa, we can derive the gauge transformation property of
tensor quantity. We can show that a tensor quantityt trans-
forms as@31#

t̂~xc!5t~xc!2£z̃t1
1

2
£z̃

2t, ~223!

where £z̃ is a Lie derivative alongz̃a. We have

f̂̃~xe!5f̃~xe!2f̃ ,cj̃
c1f̃ ,bj̃ ,c

b j̃c1
1

2
f̃ ,bcj̃

bj̃c, ~224!

v̂̃a~xe!5 ṽa~xe!2 ṽa,bj̃b2 ṽbj̃ ,a
b 1

1

2
ṽa,bcj̃

bj̃c

1 ṽa,bj̃ ,c
b j̃c1 ṽb,cj̃ ,a

b j̃c1 ṽbj̃ ,ac
b j̃c

1 ṽcj̃ ,b
c j̃ ,a

b , ~225!

t̂̃ ab~xe!5 t̃ ab~xe!22 t̃ c(aj̃ ,b)
c 2 t̃ ab,cj̃

c12 t̃ c(aj̃ ,b)
d j̃ ,d

c

1 t̃ cdj̃ ,a
c j̃ ,b

d 1 j̃dS 2j̃ ,(b
c t̃ a)c,d12 t̃ c(aj̃ ,b)d

c

1
1

2
t̃ ab,cdj̃

c1 t̃ ab,cj̃ ,d
c D . ~226!

We define

j̃0[j0, j̃a[ja, ~227!

whereja is based ongab
(3) . In terms ofz̃a we setz̃0[z0 and

z̃a[za whereza is based ongab
(3) . Thus, we have
10401
int
e

j05z01
1

2
z08z01

1

2
z ,a

0 za, ja5za1
1

2
za8z01

1

2
z ,b

a zb.

~228!

From the gauge transformation property ofg̃ab and the defi-
nitions of our perturbation variables we can derive

Â5A2S j081
a8

a
j0D 2A8j022AS j081

a8

a
j0D 2A,aja

2Baja81
3

2
j08j081j ,a

0 ja81jaS j ,a
08 1

a8

a
j ,a

0 D
1j0F j0913

a8

a
j081

1

2 S a9

a
1

a82

a2 D j0G2
1

2
ja8ja8 ,

~229!

B̂a5Ba2j ,a
0 1ja822Aj ,a

0 2S Ba812
a8

a
BaD j02Baj08

2Ba,bjb2Bbj ,a
b 12Cabjb82ja8j0812j08j ,a

0

1j ,b
0 j ,a

b 1jgj ,ag
0 2j0S ja912

a8

a
ja82j ,a

08

22
a8

a
j ,a

0 D2j ,a
b jb82gab

(3)j ,g
b jg82jg~gab,g

(3) jb8

1gab
(3)j ,g

b8 !, ~230!

Ĉab5Cab2
a8

a
j0gab

(3)2
1

2
gab,g

(3) jg2gg(a
(3) j ,b)

g 1B(aj ,b)
0

2S Cab8 12
a8

a
CabD j02Cab,gjg22Cg(aj ,b)

g

1j (a8 j ,b)
0 2

1

2
j ,a

0 j ,b
0 1

a8

a
gab

(3)jgj ,g
0

1j0Fa8

a
gab

(3)j081
1

2 S a9

a
1

a82

a2 D gab
(3)j0

1S 1

2
jg81

a8

a
jgD gab,g

(3) 12
a8

a
gg(a

(3) j ,b)
g 1gg(a

(3) j ,b)
g8 G

1j ,(b
d ga)g

(3) j ,d
g 1

1

2
ggd

(3)j ,a
g j ,b

d 1jdS 1

2
gab,g

(3) j ,d
g

1j ,(b
g ga)g,d

(3) 1
1

4
gab,gd

(3) jg1gg(a
(3) j ,b)d

g D . ~231!

From the gauge transformation property ofT̃ab and using the
1-32
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definitions of our perturbed fluid variables in the norm
frame we can derive

dm̂5dm2~m81dm8!j02dm ,aja1m8~j0j081j ,a
0 ja!

1
1

2
m9j0j01@2Qa1~m1p!j0,a#j ,a

0 , ~232!

d p̂5dp2~p81dp8!j02dp,aja1p8~j0j081j ,a
0 ja!

1
1

2
p9j0j01

1

3
@2Qa1~m1p!j0,a#j ,a

0 , ~233!

Q̂a5Qa1~m1p!j ,a
0 2Qbj ,a

b 2Qa,bjb

2S Qa81
a8

a
QaD j01~m1p!Aj ,a

0

1@dm1dp2~m81p8!j0#j ,a
0 1Pa

bj ,b
0 2~m1p!

3F j ,a
0 j081j ,a

b j ,b
0 1j0S j ,a

08 1
a8

a
j ,a

0 D
1jbj ,ab

0 G , ~234!

P̂ab5Pab22Pg(aj ,b)
g 2S Pab8 12

a8

a
PabD j02Pab,gjg

1@2Q(a1~m1p!j ,(a
0 #j ,b)

0

2
1

3
gab

(3)@2Qg1~m1p!j0,g#j ,g
0 . ~235!

Under the gauge transformation the individual fluid quan
ties dm ( i ) , dp( i ) , Q( i )a , P ( i )ab , and df ( i ) transform just
like the corresponding collective fluid quantities in Eq
~232!–~239! with all the fluid quantities changed into thos
for the individual one. Using the vector nature ofĨ ( i )a we
have

d Î ( i )05dI ( i )02~ I ( i )0j0!82~dI ( i )0j0!82dI ( i )0,aja

1dI ( i )aja81I ( i )08 j08j01@ I ( i )0~j08j01j ,a
0 ja!#8,

~236!

d Î ( i )a5dI ( i )a2I ( i )0j ,a
0 2dI ( i )0j ,a

0 2dI ( i )a8 j02dI ( i )a,bjb

2dI ( i )bj ,a
b 1I ( i )08 j ,a

0 j01I ( i )0

3@~j ,a
0 j0!81~j ,b

0 jb! ,a#. ~237!

The fluid quantities we use in this work are based on
normal-frame four-vector whereña50 @see Eq.~83!#. It is
10401
l

-

.

e

convenient to have the gauge-transformation properties
the fluid quantities in the energy frame where we setQa
50. These can be derived either by applying the fram
transformation rule presented in Eqs.~87!,~88! or directly
from the gauge transformation property of the energ
momentum tensor in Eq.~82! with Qa50 in the energy
frame. We have

dm̂E5dmE2~m81dmE8!j02dm ,a
E ja1

1

2
m9j0j0

1m8~j0j081jaj ,a
0 !,

d p̂E5dpE2~p81dpE8!j02dp ,a
E ja1

1

2
p9j0j0

1p8~j0j081jaj ,a
0 !,

V̂a
E2B̂a5Va

E2Ba1j ,a
0 2~Va

E2Ba!8j01
a8

a
~Va

E2Ba!j0

2~Vb
E2Bb!j ,a

b 2~Va
E2Ba! ,bjb1~VEb1jb8!

3~gab,g
(3) jg12gg(a

(3) j ,b)
g !1S A2j082

a8

a
j0D

3~2j ,a
0 2ja8 !1BaS j0813

a8

a
j0D 22Cabjb8

2j ,a
b j ,b

0 2j0j ,a
08 2jbj ,ab

0 12
a8

a
j0ja8 ,

P̂ab
E 5Pab

E 2S Pab
E8 12

a8

a
Pab

E D j02Pab,g
E jg

22Pg(a
E j ,b)

g . ~238!

From the gauge transformation off̃ we have

df̂5df2~f81df8!j02df ,aja1f8~j08j01j ,a
0 ja!

1
1

2
f9j0j0. ~239!

Using the gauge-transformation property of the vector qu
tity k̃a similar to Eqs.~222!,~225!, and using the definition of
k̃a in Eq. ~150!, we can derive
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dn̂

n
5

dn

n
1j0812

a8

a
j02j ,a

0 ea2
dn8

n
j01

dn

n
S j081

a8

a
j0D 2

dn ,a

n
ja2j ,a

0 dea1j0F2j092S a9

a
23

a82

a2 D j01j ,a
08 ea

1j ,a
0 S ea822

a8

a
eaD G1jaS 2j ,a

08 22
a8

a
j ,a

0 1j ,ab
0 eb1j ,b

0 e ,a
b D , ~240!

dêa5dea2j0S ea822
a8

a
eaD 2ja81j ,b

a eb2e ,b
a jb2j0S dea822

a8

a
deaD 2ja8

dn

n
1j ,b

a deb2de ,b
a jb

1j0H j08S ea822
a8

a
eaD 1j0F1

2
ea922

a8

a
ea82S a9

a
23

a82

a2 D eaG1ja922
a8

a
ja82j ,b

a8 eb1e ,b
a jb8

1jbS e ,b
a8 22

a8

a
e ,b

a D 2j ,b
a S eb822

a8

a
ebD J 1jbF1

2
e ,bg

a jg2j ,g
a e ,b

g 1e ,g
a j ,b

g

1j ,b
a8 2j ,bg

a eg1j ,b
0 S ea822

a8

a
eaD G . ~241!
to

t

e

ms
a-

ave
Using the scalar nature of the temperatureT̃ and Eq.~224!
we can show that

dT̂~xe!5dT~xe!2~T81dT8!j02dT,aja

1T8~j08j01j ,a
0 ja!1

1

2
T9j0j0. ~242!

Using the vector nature of the electric and magnetic vec
and Eq.~225! we can show that

Êa~xe!5Ea~xe!2Ea8j02Ea,bjb2Ebj ,a
b , ~243!

and similarly forHa . Thus,Ea andHa are gauge invarian
to linear order.

Since p̃a[dxa/dl, under the gauge transformation w

have p̂̃a5 p̃a1 j̃ ,b
a p̃b. Using the definitions ofq and ga in

Eq. ~169! we can derive

q̂5qH 11
a8

a
j01

Aq21m2a2

q
j ,a

0 ga1
Aq21m2a2

q

3j ,a
0 FgaS A2j081

a8

a
j0D 2Cb

agbG1
q21m2a2

q2

3F2A8j02A,aja1
1

2
j ,a

0 j0ua1jaS j ,a
08 1

a8

a
j ,a

0 D
1j0j091

a8

a
j0j081S 1

2

a9

a

3q212m2a2

q21m2a2 2
a82

a2 D j0j0G

10401
rs

2
1

2

m2a2

q2 j ,a
0 j ,b

0 gagbJ , ~244!

ĝa5ga1
Aq21m2a2

q
~j0,a2j ,b

0 gbga!

1S j ,b
a 2

1

2
j ub

a 2
1

2
jb

uaD gb. ~245!

As ĝa always appears together with perturbed order ter
multiplied, it is evaluated only to linear order. From the sc
lar nature off̃ we have

f̃ ~xe,q,ge!5 f̂̃ ~ x̂e,q̂,ĝe!5 f̂̃ ~xe1 j̃e,q1dq,ge1dge!.

~246!

At the same momentum space and spacetime point, we h

d f̂ 5d f 2 f̃ 8j02 f̃ ,qdq1 f 8j0j081
1

2
f 9j0j012 f ,q8 j0dq

1 f ,qdq,qdq1
1

2
f ,qqdq22d f ,aja2d f ,gadga. ~247!

Using Eqs.~244!,~245!,~229! we have
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d f̂ 5d f 2 f̃ 8j02q f̃ ,qS a8

a
j01

Aq21m2a2

q
j ,a

0 gaD 2q f ,qH Aq21m2a2

q
j ,a

0 @ga~A2j08!2Cb
agb#

1
q21m2a2

q2 F2A8j02A,aja1jaS j ,a
08 1

a8

a
j ,a

0 D 1j0j091
1

2

a9

a

3q212m2a2

q21m2a2 j0j01
a8

a
j0j081

1

2
j ,a

0 j0,aG
2

1

2

2q21m2a2

q2 j ,a
0 j ,b

0 gagb2
2q21m2a2

q2

a82

a2
j0j02

q

Aq21m2a2

a8

a
j0j ,a

0 gaJ 1
1

2
q2f ,qq

3S a82

a2
j0j012

Aq21m2a2

q

a8

a
j0j ,a

0 ga1
q21m2a2

q2 j ,a
0 j ,b

0 gagbD 12q f ,q8 j0S a8

a
j01

Aq21m2a2

q
j ,a

0 gaD
1 f 8j0j081

1

2
f 9j0j02d f ,aja2d f ,gaFAq21m2a2

q
~j0,a2j ,b

0 gbga!1S j ,b
a 2

1

2
j ub

a 2
1

2
jb

uaD gbG . ~248!
E
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Notice that with our phase space variables introduced in
~169! the distribution functionf is spatially gauge invarian
to linear order. We can check that the gauge transforma
property of d f in Eq. ~248! is consistent with the gaug
transformation properties of the fluid quantities identified
Eq. ~174!.

We further decomposeja ~and similarly forza) into the
scalar and vector types as

ja[
1

a
j ,a1ja

(v) , ~249!

with j ua
(v)a [0. In order to fix the gauge we can impos

three conditions on three variables such that these condit
can fixj0, j, andja

(v) . We call these conditions fixingj0, j,
and ja

(v) the temporal, spatial, and rotational gauge-fixi
conditions, respectively.

The decomposed variables in Eq.~175! and others trans
form as

â5a2
1

a
~aj0!81Aj ,

b̂5b2j01S 1

a
j D 8

1D21¹aBja ,

B̂a
(v)5Ba

(v)1ja
(v)81Bja2¹aD21¹bBjb ,

ĝ5g2
1

a
j1

1

2 S D1
1

2
R(3)D 21

~3D21¹a¹b

3Cjab2Cja
a!,

ŵ5w2
a8

a
j01

1

3
Cja

a2
1

6
DS D1

1

2
R(3)D 21

3~3D21¹a¹bCjab2Cja
a!,
10401
q.

n

ns

Ĉa
(v)5Ca

(v)2ja
(v)12S D1

1

3
R(3)D 21

3~¹bCjab2¹aD21¹g¹bCjgb!,

Ĉab
(t) 5Cab

(t) 2Cjab2
1

3
Cjg

ggab
(3)2

1

2 S ¹a¹b2
1

3
gab

(3)D D
3S D1

1

2
R(3)D 21

~3D21¹g¹dCjgd2Cjg
g!

2¹(aS D1
1

3
R(3)D 21

~¹gCjb)g2¹b)

3D21¹g¹dCjgd!,

dm̂5dm2m8j01dmj ,

d p̂5dp2p8j01dpj ,

v̂5v2j02
1

m1p
D21¹aQja ,

v̂a
(v)5va

(v)1
1

m1p
~Qja2¹aD21¹bQjb!,

P̂5P1
3

2
a2S D1

1

2
R(3)D 21

D21¹a¹bPjab ,

P̂a
(v)5Pa

(v)12aS D1
1

3
R(3)D 21

~¹bPjab

2¹aD21¹b¹gPjbg!,
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P̂ab
(t) 5Pab

(t) 2Pjab2
3

2 S ¹a¹b2
1

3
gab

(3)D D
3S D1

1

2
R(3)D 21

D21¹g¹dPjgd

2¹(aS D1
1

3
R(3)D 21

~¹gPjb)g2¹b)

3D21¹g¹dPjgd!,

df̂5df2f8j01dfj ,

dn̂

n
5

dn

n
1j0812

a8

a
j02j ,a

0 ea1
dnj

n
,

dê5de2
1

a
j81

a8

a2 j2D21¹aF j0S ea822
a8

a
eaD G

1D21F1

a
D~j ,a!ea12Kja

(v)ea2e uba
a

3S 1

a
j ,b1j (v)bD 1¹adej

aG ,

dêa
(v)5dea2de,a ,

dT̂5dT2T8j01dTj ,

Ê~e.m.!5E~e.m.!1D21¹aEaj ,

Êa
(v)5Ea

(v)1Eaj2¹aD21¹bEbj ,

d f̃ 5d f 2q
] f

]q
S a8

a
j01

Aq21m2a2

q
j ,a

0 gaD 1d f j ,

~250!

whereAj indicates the quadratic parts of Eq.~229!, and simi-
larly for other variables. Ford f we usedf 850 which fol-
lows from Eq.~171! for C@ f #50 to background order.

Using t instead ofh ~indicated as 0! as the time variable
from the definitiondt[adh we can show that

j05
1

a
j tS 12

1

2
Hj tD . ~251!

B. Linear order

From Eq.~250! we find that the decomposed metric a
matter variables transform to linear order as

â5a2 j̇ t, b̂5b2
1

a
j t1aS j

aD •, ĝ5g2
1

a
j,

ŵ5w2Hj t, x̂5x2j t, k̂5k1S 3Ḣ1
D

a2D j t,
10401
dm̂5dm2ṁj t, d p̂5dp2 ṗj t, v̂5v2
1

a
j t,

P̂5P, df̂5df2ḟj t,

B̂a
(v)5Ba

(v)1aj̇a
(v) , Ĉa

(v)5Ca
(v)2ja

(v) ,

Ĉa
(v)5Ca

(v) , v̂a
(v)5va

(v) , P̂a
(v)5Pa

(v) ,

Ĉab
(t) 5Cab

(t) , P̂ab
(t) 5Pab

(t) . ~252!

1. Temporal gauge conditions

The temporal gauge-fixing condition, fixingj t, applies
only to a scalar-type perturbation. To linear order, we c
impose any one of the following temporal gauge conditio
to be valid at any spacetime point:

synchronous gauge:a[0 → j t~x!,

comoving gauge: v[0 → j t50,

zero-shear gauge: x[0 → j t50,

uniform-expansion gauge: k[0 → j t50,

uniform-curvature gauge: w[0 → j t50,

uniform-density gauge: dm[0 → j t50,

uniform-pressure gauge: dp[0 → j t50,

uniform-field gauge: df[0 → j t50.
~253!

Except for the synchronous gauge condition, each of
other temporal gauge-fixing conditions completely remov
the temporal gauge mode. In the multicomponent situati
in addition we can choose one of the following conditions
the proper temporal gauge condition, which also removes
temporal gauge mode completely:

dm ( i )[0, dp( i )[0, v ( i )[0, df ( i )[0. ~254!

All these variables which can be used to fix the tempo
gauge freedom in fact do not depend on the spatial ga
transformationj and thus are naturally spatially gauge i
variant.

The following are some examples of combinations
variables that are temporally gauge invariant:

dmv[dm2ṁav, wx[w2Hx, vx[v2
1

a
x,

wv[w2aHv, wdf[w2
H

ḟ
df[2

H

ḟ
dfw . ~255!

These are completely~i.e., both spatially and temporally!
gauge invariant to linear order. Any variable under any gau
1-36
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condition in Eqs.~253!,~254! ~except for the synchronou
gauge! has a unique equivalent gauge-invariant combinati
For example, we have

wx5wux[0 . ~256!

Thus, wx is the sameas thew variable in the zero-shea
gauge where we setx[0.

All the equations in Secs. IV and V are presented with
imposing any gauge conditions. The equations are arran
using the above variables in Eqs.~253!, ~254! which can be
used in fixing the temporal gauge condition. This allows
to use the various temporal gauge conditions optimally
pending on the situation; thus the equations are presente
a sort ofgauge-readymanner. Usually we do not know th
most suitable gauge conditiona priori. In order to take ad-
vantage of the gauge choice in the most optimal way i
desirable to use the gauge-ready form equations present
this paper. Our set of equations is arranged so that we
easily impose various fundamental gauge conditions in E
~253!, ~254!, and their suitable combinations as well. As w
have so many different ways of fixing the temporal gau
conditions it is convenient to denote the gauge condition
equivalently, the gauge-invariant combination, we are us
Our notation for gauge-invariant combinations proposed
Eq. ~255! is convenient for this purpose in the spirit of o
gauge strategy@12,29#. The notation is also practically con
venient for connecting solutions in different gauge con
tions as well as tracing the associated gauge conditions
ily. Compared with the notations for gauge-invaria
variables which were introduced by Bardeen@6,7#, we have

em5dv[dmv /m, CH5wx , vs
(0)5kvx ,

ppL
(0)5dp, ppT

(0)52
D

a2 P, z[wd , ~257!

etc.; we ignored the harmonic functions used in@6#. The
perturbed curvature variable in the comoving gaugeR often
used in the literature is the same as ourwv , which is the
same aswdf in the scalar field.

2. Spatial gauge conditions

The spatial gauge transformationsj and ja
(v) affect the

scalar- and vector-type perturbations, respectively. Due
spatial homogeneity of the background we have natural s
tial gauge-fixing conditions to choose@7#. We have two natu-
ral spatial gauge-fixing conditions. From Eq.~252! we can
see that

B gauge:b[0, Ba
(v)[0 → j~x,t !}a, ja

(v)~x!,

~258!

C gauge:g[0, Ca
(v)[0 → j50, ja

(v)50.

~259!

For b we have considered a situation where the tempo
gauge condition has already completely removedj t. We call
the spatial gauge-fixing conditions in Eqs.~258!,~259! the B
10401
.

t
ed

s
-
in

s
in

an
s.

e
r

g.
n

-
as-
t

to
a-

al

gauge and theC gauge, respectively@5#. These gauge condi
tions are imposed so that we have

B gauge: Ba[0,

C gauge: Cab[wgab
(3)1Cab

(t) . ~260!

Apparently, theB gauge conditions fail to fix the spatial an
rotational gauge modes completely; thus, even after imp
ing the gauge conditions we still have remaining gau
modes. In contrast, theC-gauge conditions successfully re
move the gauge modes. To linear order, the variablesx and
Ca

(v) introduced in Eq.~178! are natural and unique spatiall
gauge-invariant combinations. Notice that in theC gaugex
is the same asab, andC (v) is the same asBa

(v) . Thus, theb
andBa

(v) variables in theC gauge conditions are equivalen
to the corresponding~spatially and rotationally! gauge-
invariant combinationsx/a andCa

(v) , respectively.

C. Second order

1. Gauge conditions

If we use any one of the gauge conditions which co
pletely fixes both the temporal and spatial gauge mode
linear order, the gauge transformation properties of
second-order variables, sayw (2) in Eq. ~183!, follow exactly
the same formsas their linear counterparts. Using the tran
formation ofdf in Eq. ~239! as an example, to linear orde
we have

df̂ (1)5df (1)2f8j0(1). ~261!

If we take gauge conditions which remove~fix! j0 and ja

completely to linear order we havej0(1)505ja(1). Thus,
from Eq. ~239! we have

df̂ (2)5df (2)2f8j0(2), ~262!

which shows exactly the same form as in Eq.~261!. Thus,
the gauge conditions in Eqs.~252!,~254! apply to second-
order perturbation variables as well, and we can impose s
lar gauge conditions even to second order. For example
the zero-shear gauge we imposex50 as the gauge condition
to second order and thusx (1)505x (2); unless otherwise
mentioned, we always take theC gauge for the spatial and
rotational ones. In this gauge condition the gauge trans
mation properties are completely fixed, and the gauge mo
do not appear. Thus, we anticipate that each variable in
gauge condition has a unique corresponding gauge-inva
combination of variables. Thus, usingw, we have that
wux50,C gauge is free of gauge modes. We denote the cor
sponding gauge-invariant combination as

wx ~263!

with the C gauge condition assumed always. To linear ord
we havewx[w2Hx, but to second order we need corre
tion terms to makewx gauge invariant. Construction of suc
a gauge-invariant combination will be shown below.
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From Eqs.~57!,~58!, assuming the pure scalar mode in t
C gauge we can show that

K̄ab52~12a!x ,aub12x ,(aw ,b)

2
1

3
gab

(3)@2~12a!Dx12x ,gw ,g#, ~264!

R(h)5
1

a2 FR(3)24S D1
1

2
R(3)Dw

116wS D1
1

4
R(3)Dw16w ,aw ,aG . ~265!

Thus, the gauge conditionx[0 implies K̄ab50, justifying
its name as the zero-shear gauge to second order. Simi
the gauge conditionw[0 impliesR(h)5(1/a2)R(3) ~we also
have Rab

(h)5 1
3 R(3)gab

(3)), justifying its name as the uniform
curvature gauge to second order. We can show that the na
of gauge conditions in Eq.~253! remain valid to second or
der.

In the perturbative approach, apparently, this method
be similarly applied to any higher-order perturbations.
long as we work in any of these gauge conditions, the ga
modes are completely removed and the behavior of all
variables is equivalently gauge invariant. As the variables
free of gauge modes, these can be considered as phys
important ones in the particular gauge conditions we choo
We can also choose different gauge conditions in sec
order compared with the ones imposed to linear order.
amples will be shown below.

2. Constructing gauge-invariant combinations

Let us explain a method to derive the gauge-invari
combinations using an example. Since the gauge transfo
tion properties ofdm and df are available in convenien
forms in Eqs.~232!,~239! we consider the gauge-invarian
combinations involving these two variables to second ord
Thus, we consider the case with a scalar field. To linear o
we can construct various gauge-invariant combinations
volving dm, and as examples we consider two cases

dmdf[dm2
m8

f8
df, dmw[dm2f8

a

a8
w. ~266!

Clearly, the combinations in Eqs.~266! are not gauge invari-
ant to second order. In order to construct the gauge-invar
combination in the gauge withdf (2)50, we constructdm̂

2(m8/f8)df̂ using Eqs.~232!,~239!. Then, on the right-
hand side~RHS! we have a quadratic combination of linea
order terms involvingj0 andja. As the spatial and rotationa
gauge we consider theC gauge conditions, which remove th
corresponding gauge modes completely. This can
achieved by taking

ja52~ ĝ ,a1Ĉ(v)a!1g ,a1C(v)a, ~267!
10401
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which follows from Eqs.~252!,~249!, and moving terms with
carets to the LHS. Now, coming to the temporal gauge fr
dom, if we want to consider the uniform-field gauge we ta

j052
1

f8
~df̂2df!, ~268!

which follows from Eq.~252!, and move terms with carets t
the LHS. Then we have the gauge-invariant combination

dmdf[dm2
m8

f8
df2S dm2

m8

f8
df D

,a

~g ,a1C(v)a!

2
1

f8
S dm2

m8

f8
df D 8

df2
1

2
S m8

f8
D 8 1

f8
df2

2
1

a2 df ,adf ,a

[dm2
m8

f8
df1dmdf

(q) . ~269!

We havedmdf5dmudf(1)505df(2),C gauge; thus dmdf is the
same asdm under the gauge conditionsdf (1)505df (2)

and theC gauges. If we want to take the uniform-curvatu
gauge to linear order we take

j052
a

a8
~ ŵ2w!, ~270!

which follows from Eq.~252!, and move terms with carets t
the LHS. Then we can identify the gauge-invariant combin
tion

dm2
m8

f8
df2S dm2

m8

f8
df D

,a

~g ,a1C(v)a!

2
a

a8
S dm2

m8

f8
df D 8

w

2S m8

f8
D 8 a

a8
S df2

1

2
f8

a

a8
w Dw

22
1

a2 f8
a

a8
S df2

1

2
f8

a

a8
w D ,a

w ,a . ~271!

This combination is equivalent todm in the following gauge
conditions:df50 in the linear and pure second-order pa
@i.e., dm (2)2(m8/f8)df (2)], and w50 in the quadratic
parts, and theC gauges. By replacing the linear-order part
Eq. ~271! with dm (1)2f8(a/a8)w (1) we can make anothe
gauge-invariant combination:
1-38
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dmw(1),df(2)[dm (1)2f8
a

a8
w (1)1dm (2)2

m8

f8
df (2)

2S dm2
m8

f8
df D

,a

~g ,a1C(v)a!

2
a

a8
S dm2

m8

f8
df D 8

w

2S m8

f8
D 8 a

a8
S df2

1

2
f8

a

a8
w Dw

22
1

a2 f8
a

a8
S df2

1

2
f8

a

a8
w D ,a

w ,a ,

~272!

which is the same asdmuw(1)505df(2),C gauge. The calculation
becomes simpler if we take theC gauge condition: this set
g[0[Ca

(v) , thus we can simply setja[0 (j[0[ja
(v)).

Similarly, we can construct diverse combinations of t
gauge-invariant variables: several useful gauge-invar
combinations will be presented in the next subsection.

In the following, as in Eq.~269!, a gauge-invariant nota
tion, say,wv , indicates a combination that is equivalent tow
in the comoving gauge (v50) to all orders~thus, v (1)50
5v (2)) and in the C gauge. In order to denote gaug
invariant combinations valid to second order, we introdu
the following notation:

wv[w2aHv1wv
(q) , wx[w2Hx1wx

(q) ,

dmv[dm2ṁav1dmv
(q) , vx[v2

1

a
x1vx

(q) ,

~273!

etc., where the upper~q! index indicates the quadratic com
binations of linear-order terms. In the following we alwa
take the spatialC gauge. We note thatdmv

(q) is the quadratic
correction term to makedmv a gauge-invariant combinatio
to second order; thus it differs from, say,dm (q)2ṁav (q). As
wv is the same asw in the v50 gauge, we have thatwv

(q)

vanishes under thev50 gauge, i.e.,

wv
(q)uv5wv

(q)uv5050. ~274!

Using the definition of our gauge-invariant combinations
can show, for example, that

wv5w2aHv1wv
(q)5wx2aHvx1wv

(q)ux , ~275!

where in the second step we have evaluated the first ste
the zero-shear gauge. Thus

wv
(q)ux5wv2~wx2aHvx!5wv

(q)2~wx
(q)2aHvx

(q)!,

~276!

and similarly for other correction terms.
10401
nt

e

in

3. Gauge-invariant variables

Now we present several useful gauge-invariant combi
tions explicitly. We assumeR(3)50 and pure scalar-type per
turbations. We take the spatialC gauge,g[0. As long as we
take the temporal gauge which fixesj0 completely, we can
setja[0. The metric becomes

A5a, Ba5
1

a
x ,a , Cab5wgab

(3) . ~277!

From Eqs.~229!–~235!,~239! we have

â5a2
1

a
~aj0!82a8j022aS j081

a8

a
j0D 1

3

2
j08j08

1j0F j0913
a8

a
j081

1

2 S a9

a
1

a82

a2 D j0G ,

ŵ5w2
a8

a
j01j0F2w822

a8

a
w1

a8

a
j08

1
1

2 S a9

a
1

a82

a2 D j0G1
1

2
S 1

a
x ,aj ,a

0 2
1

2
j0,aj ,a

0 D
2

1

2
D21¹a¹bS 1

a
x ,aj ,b

0 2
1

2
j ,a

0 j ,b
0 D ,

x̂5x2aj01aj0S j081
a8

a
j0D1aD21¹a

3F22aj ,a
0 2

1

a S x81
a8

a
x D

,a

j02
1

a
x ,aj08

1j08j ,a
0 G2

a

2
D21F1

a
x ,aj ,a

0 2
1

2
j0,aj ,a

0

23D21¹a¹bS 1

a
x ,aj ,b

0 2
1

2
j ,a

0 j ,b
0 D G8,

k̂5k1S 3
a9

a2
26

a82

a3
1

D

a D j01quadratic terms,

dm̂5dm2m8j02dm8j01m8j08j0

1
1

2
m9j0j01~m1p!~22v1j0! ,aj ,a

0 ,

v̂5v2j01j0j081
1

2
S a8

a
1

m81p8

m1p
D j0j0

2Fv81S 4
a8

a
1

m81p8

m1p
D vGj02D21¹aF23

a8

a
v ,aj0

1
dm

m1p
j ,a

0 1
1

a2

1

m1p
~P a

,b 2da
bDP!j ,b

0 G ,
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df̂5df2f8j02df8j01f8j08j01
1

2
f9j0j0. ~278!

In the transformation ofv we have used Eq.~201!. We have
ignored the quadratic terms in the transformation ofk; this
can be read from the definition ofk:

k[2
1

a
F3w823

a8

a
a1

Dx

a
2~a12w!S 3w81

Dx

a
D

1
3a8

2a
S 3a22

1

a2 x ,ax ,aD 2
1

a
x ,aw ,aG , ~279!

which follows from Eqs.~179!,~57!.
Following the prescription in the previous subsectio

from Eq. ~278! we can construct the following gauge
invariant combinations:

wx[w2Hx2~ ẇx12Hwx!x2
1

2
~Ḣ1H2!x2

1
1

4a2 @x ,ax ,a2D21¹a¹b~x ,ax ,b!#

1HD21¹a@2axx ,a1~ ẋ2Hx!x ,a#

1
1

4
a2HD21F 1

a2 x ,ax ,a23
1

a2 D21¹a¹b~x ,ax ,b!G •,
~280!

wv[w2aHv2~ ẇv12Hwv!av

2
1

2
S Ḣ12H22H

ṁ1 ṗ

m1p
D a2v21

1

4a
~2x2av ! ,av ,a

2
1

4a
D21¹a¹b@~2x2av ! ,av ,b#

1aHD21¹aF dmv

m1p
v ,a

1
1

a2

1

m1p
~P a

,b 2da
bDP!v ,bG , ~281!

dv[d2
ṁ

m
av2

dṁv

m
av2

1

2

ṁ

m

Ḣ

H
a2v2

2
m1p

m
v ,av ,a1

ṁ

m
aD21¹aF dmv

m1p
v ,a

1
1

a2

1

m1p
~P a

,b 2da
bDP!v ,bG , ~282!
10401
,

vx[v2
1

a
x2F v̇x1S H1

ṁ1 ṗ

m1p
D vxGx1

1

2a
S H2

ṁ1 ṗ

m1p
D

3x21
1

a
D21¹aF2axx ,a1x ,a~ ẋ2Hx!2

dmv

m1p
x ,a

2
1

a2

1

m1p
~P a

,b 2da
bDP!x ,bG

1
a

4
D21F 1

a2 x ,ax ,a2
3

a2 D21¹a¹b~x ,ax ,b!G •, ~283!

xv[x2av2
1

2
a2S H2

ṁ1 ṗ

m1p
D v2

1aD21¹aF22avv ,a2~ ẋv1Hxv! ,av2x ,av̇

1
dmv

m1p
v ,a1

1

a2

1

m1p
~P a

,b 2da
bDP!v ,bG

1
1

2
a2D21F2S 1

a
x ,av ,a2

1

2
v ,av ,aD

13D21¹a¹bS 1

a
x ,av ,b2

1

2
v ,av ,bD G •. ~284!

To linear order,dv ~equivalently,d in the comoving gauge!
behaves like a Newtonian density perturbation, andvx and
2wx ~equivalently,v and 2w in the zero-shear gauge! be-
have like the Newtonian velocity and the gravitational pote
tial. Also to linear orderwv is known to be the best con
served quantity on the super-sound-horizon scale.
extensions of these results to second order, see Secs. V
and VII D, respectively.

In the case of a scalar field we have

wdf[w2
H

ḟ
df2

1

a2 ~a2wdf!•
df

ḟ
2

1

2a2 S a2H

ḟ
D • df2

ḟ

1
1

2a2ḟ
Fx ,adf ,a2

1

2ḟ
df ,adf ,a

2D21¹a¹bS x ,adf ,b2
1

2ḟ
df ,adf ,bD G , ~285!

dfw[df2
ḟ

H
w2

1

H
dḟww1

ḟ2

2a2H3 S a2H

ḟ
D •

w2

2
ḟ

2a2H2 Fx ,aw ,a2
1

2H
w ,aw ,a

2D21¹a¹bS x ,aw ,b2
1

2H
w ,aw ,bD G . ~286!
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Thus, to second order we havewdfÞ2(H/ḟ)dfw . By
evaluating the RHSs of Eqs.~285!,~286! in the w50 gauge
anddf50 gauge, respectively, we have the following re
tions between the two gauge-invariant variables:

wdf52
H

ḟ
dfw1

H

ḟ2
dfwdḟw1

1

2a2ḟ
S a2H

ḟ
D •

dfw
2

1
1

2a2ḟ
Fxw

,adfw,a2
1

2ḟ
dfw

,adfw,a

2D21¹a¹bS xw,adfw,b2
1

2ḟ
dfw,adfw,bD G ,

~287!

dfw52
ḟ

H
wdf1

ḟ

H2 wdfẇdf1
1

2a2H
S a2ḟ

H
D •

wdf
2

2
ḟ

2a2H2 Fxdf
,awdf,a2

1

2H
wdf

,awdf,a

2D21¹a¹bS xdf,awdf,b2
1

2H
wdf,awdf,bD G .

~288!

To linear order dfw ~equivalently, df in the uniform-
curvature gauge! most closely resembles the scalar-fie
equation in the fixed cosmological background metric@14#.
Since df[0 implies Qa

(f)50 ~thus v (f)50), we have
wdf5wv ; from Eq. ~114! we see that this is valid to secon
order.

4. Spatial gradient variable

The covariant density gradient variable

D̃a[
1

m̃
h̃a

bm̃ ,b ~289!

is gauge invariant to linear order@32#. In @32# the energy
frame is taken. Using theũa frame in Eq.~53! we have

Da5
1

11d H d ,a
E 1

m8

m
~Va

E2Ba1ABa12VEbCab!

1Fd81
m8

m
~d2A!G~Va

E2Ba!J , ~290!

where we setD̃a[Da with Da based ongab
(3) ; from ũaD̃a

50 we haveD̃052VaDa . From Eqs.~85!,~86! we see that
d is frame invariant to linear order, and we ignore the sup
script E in such cases. Using the prescription in Eq.~88! we
can expressDa in the normal frame as
10401
-

r-

Da5
1

11d
H d ,a

N 1
m8

m

Qa
N

m1p
1Fd81

m8

m
~d2A!G Qa

N

m1p

2
~QNbQb

N! ,a

m~m1p!
2

m8

m

1

~m1p!2 @~dm1dp!Qa
N

1PabQNb#J . ~291!

Thus, under the conditionQa50, we haveDa5d ,a /(1
1d); Qa50 can be achieved by the comoving gauge co
dition (Q[0) and the irrotational condition (Qa

(v)[0); see
@33# and the note added in proof of@21#. Under the gauge
transformation, either using Eqs.~232!–~235! for Eq. ~291!
or using Eq.~238! for Eq. ~290!, we can show that

D̂a5Da2Da8j02~Dbjb! ,a22D [a,b]j
b. ~292!

Thus, Da is not gauge invariant to second order. To line
order, the scalar-type part becomesDa5dv,a where the
gauge-invariant combinationdv is the same asd in the co-
moving gauge.

VII. APPLICATIONS

A. Closed form equations

From Eqs. ~196!,~197!, Eqs. ~197!,~200!,~201!, Eqs.
~199!, Eqs. ~199!,~201!, and Eqs.~195!,~197!,~199! we can
derive, respectively,

D13K

a2 wx14pGdmv

5
D13K

a2 wx
(q)14pGdmv

(q)1
1

4
N12HN2

(s) ,

~293!

dṁv13Hdmv2
D13K

a2 @a~m1p!vx12HP#

5dṁv
(q)13Hdmv

(q)2
D13K

a2 a~m1p!vx
(q)1N5

1~m1p!~N2
(s)13aHN6

(s)!, ~294!

wx1ax18pGP5wx
(q)1ax

(q)2N4
(s)

or

wx1ax18pGPx52N4x
(s) , ~295!
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v̇x1Hvx2
1

a
S ax1

dpv

m1p
1

2

3

D13K

a2

P

m1p
D

5 v̇x
(q)1Hvx

(q)2
1

a
S ax

(q)1
dpv

(q)

m1p
D 1N6

(s) ,

~296!

ẇx1Hwx14pG~m1p!avx18pGHP

5ẇx
(q)1Hwx

(q)14pG~m1p!avx
(q)

1
1

3
~N02N2

(s)!2HN4
(s) . ~297!

These equations are presented using mixed gauge-inva
variables. We note that to linear orderdmv , 2wx , and
kvx (;¹vx) closely resemble the Newtonian density pert
bation, the perturbed gravitational potential, and the p
turbed velocity perturbation, respectively@34,35,13#. To lin-
ear order these equations were presented by Bardeen in
@6#; see Eqs.~4.3!,~4.8!,~4.4!,~4.5!,~4.7! in @6# and compare
with our notation; see Eq.~257!. Using Eq.~297! and Eqs.
~293!,~296!,~297! we can show that

F[wv2
K/a2

4pG~m1p!
wx

5
H2

4pG~m1p!a F a

H
~wx2wx

(q)!G •12H2
P

m1p
1F (q)

1NF , ~298!

Ḟ5
Hcs

2D

4pG~m1p!a2 ~wx2wx
(q)!2

H

m1p
S e1

2

3

D

a2 P D
1Ḟ (q)1NḞ , ~299!

where

F (q)[wv
(q)2

K/a2

4pG~m1p!
wx

(q) ,

NF[
H2

4pG~m1p! FN4
(s)1

1

3H
~N2

(s)2N0!G ,
NḞ[

1

3 S 12
K/a2

4pG~m1p! D ~N02N2
(s)!

2
Hcs

2

4pG~m1p! S 1

4
N12HN2

(s)D
1

K/a2

4pG~m1p!
HN4

(s)2aHN6
(s) . ~300!

We have introduced an entropic perturbatione by

dp[cs
2dm1e, cs

2[
ṗ

ṁ
. ~301!
10401
ant

-
r-

80

Defined in this way,e is not necessarily gauge invariant
second order. To linear order we havee5p̃ introduced
above Eq.~24!. Combining Eqs.~298!,~299!, we can derive

H2cs
2

~m1p!a3 F ~m1p!a3

H2cs
2 ḞG •2cs

2
D

a2 F

5
Hcs

a3Am1p
Fv92S z9

z
1cs

2D D vG
5

H2cs
2

~m1p!a3 H ~m1p!a3

H2cs
2 F2

H

m1p
S e1

2

3

D

a2 P D
1Ḟ (q)1NḞG J •

2cs
2

D

a2 S 2H2
P

m1p
1F (q)1NFD ,

~302!

m1p

H
F H2

~m1p!a
S a

H
wxD •G •2cs

2
D

a2 wx

5
Am1p

a2 Fu92S ~1/z̄!9

1/z̄
1cs

2D D uG
5

4pG~m1p!

H
F2

H

m1p
S e1

2

3

D

a2 P D 22S H2
P

m1p
D •

1NḞ2ṄFG1
m1p

H
F H2

~m1p!a
S a

H
wx

(q)D •G •
2cs

2
D

a2 wx
(q) , ~303!

where we used

v[zF, u[
1

z̄

a

H
wx , csz[

aAm1p

H
[ z̄. ~304!

@v in Eqs. ~302!–~304! differs from the perturbed velocity
related variable used in the rest of this paper.# The equation
using v in the linear theory was first derived by Field an
Shepley in 1968@36#; see also@37,21#. Using Eq.~293!, Eq.
~303! gives an equation fordv . Using Eqs.~293!–~296! we
can derive an equation fordv in anotherform:

m1p

a2mH
F H2

~m1p!a
S a3m

H
dvD •G •2cs

2
D

a2 dv

5
D13K

a2 F e

m
1

2

3

D

a2

P

m
12

m1p

mH
S H2

m1p
P D •G

1
m1p

a2mH
F H2

~m1p!a
S a3m

H
dv

(q)D •G •2cs
2

D

a2 dv
(q)
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1
m1p

m
H 2

1

4
N11HN2

(s)1
D13K

a2 ~aN6
(s)2N4

(s)!

1
1

a2 Fa2S N2
(s)1

N5

m1p
13aHN6

(s)D G •J . ~305!

The above set of equations is valid for a general imper
fluid. A minimally coupled scalar field can be regarded as
imperfect fluid with special fluid quantities. We additional
have an equation of motion of the field which is actua
included in the energy and momentum conservation eq
tions. In fact, the above set of equations is valid even
multicomponent fluids and fields. In such cases, the fl
quantities become collective fluid quantities and we additi
ally need the energy and momentum conservation equat
for the individual fluids and the equations of motion for t
individual fields.

In the single scalar field case, from Eqs.~212!,~190!,
~293!,~301! we have

e52
12cs

2

4pG

D13K

a2 ~wx2wx
(q)!1Ne ,

Ne[
12cs

2

4pG S 1

4
N12HN2

(s)D1dp(q)2dm (q)

13H~12cs
2!aD21¹aQa

(q) . ~306!

Equation~298! remains valid, and Eq.~299! becomes

Ḟ5
HcA

2D

4pG~m1p!a2 ~wx2wx
(q)!2

H

m1p
S Ne1

2

3

D

a2 P D
1Ḟ (q)1NḞ , ~307!

where

cA
2D[D13~12cs

2!K. ~308!

Therefore, Eqs.~302!,~303!,~304! remain valid withcs ande
replaced bycA andNe ; in Eq. ~302! one can show that we
can ignore the operator nature ofD21 in cA

2 .
The rotational perturbation and the gravitational wave

described by Eqs.~208!,~210!, respectively:

@a4~m1p!va
(v)#•

a4~m1p!
52

D12K

2a2

Pa
(v)

m1p
1N6a

(v) , ~309!

C̈ab
(t) 13HĊab

(t) 2
D22K

a2 Cab
(t)

5
1

a3 Fvab
(t)92S a9

a
1D22K D vab

(t) G
58pGPab

(t) 1N4ab
(t) , ~310!

where vab
(t) [aCab

(t) . We note that all the equations in th
section are valid forgeneral K.
10401
ct
n

a-
r
d
-
ns

e

B. Solutions to linear order

1. Scalar type

We consider a single component ideal fluid. Seve
known solutions in the literature are the following.

~i! In the large-scale limit~the super-sound-horizon scale!,
i.e., ignoring thecs

2D term compared with thez9/z and

(1/z̄)9/(1/z̄) terms in Eqs.~302!,~303!, we have the genera
solutions1

F~k,t !5C~k!2d~k!
k2

4pGE t cs
2H2

a3~m1p!
dt, ~311!

wx~k,t !54pGC~k!
H

a
E ta~m1p!

H2 dt1d~k!
H

a
.

~312!

C(k) and d(k) are the coefficients of the growing and d
caying solutions~in an expanding medium!, respectively. To
second order in the large-scale expansion we have

F5CH 11k2F Eh
z̄2S Ehdh

z2 D dh2Eh
z̄2dhEhdh

z2 G J
2d

k2

4pG
Ehdh

z2 , ~313!

wx54pGC
H

a
Eh

z̄2dh1d
H

a

3H 11k2F Eh 1

z2 S Eh
z̄2dh Ddh2Eh

z̄2dhEhdh

z2 G J .

~314!

We emphasize that these solutions are valid forgeneral K
andL, and a time-varying equation of state.

~ii ! In the small-scale limits@cs
2k2@z9/z, (1/z̄)9/(1/z̄)#, if

we further assume thatcs is constant in time, Eqs.~302!,
~303! give the general solutions

v5zF}e6 icskh, u5
1

Am1p
wx}e6 icskh. ~315!

~iii ! For K505L andw[p/m5const we have exact so
lutions @6,38#. For the background, from Eqs.~184!,~186!,
we have

1k is the wave vector withk[uku. With the wave numberk ap-
pearing in the equation the variables can be regarded as the Fo
transformed ones. Tolinear order each Fourier mode decouple
from the other modes and evolves independently. The same e
tions in configuration space remain valid in Fourier space as w
Thus, we ignore specific symbols distinguishing the variables in
two spaces. Only in this subsection concerning the linear theory
we use the Fourier transformation.
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a}t2/3(11w)}h2/(113w), aHh5
2

113w
. ~316!

Equation~304! givesz} z̄}a; thus

z9

z
5

2~123w!

~113w!2

1

h2 ,
~1/z̄!9

~1/z̄!
5

6~11w!

~113w!2

1

h2 . ~317!

In this case, Eqs.~302!,~303! become Bessel’s equations wi
solutions:

v5zF}Ah„Jn~x!,Yn~x!…, x[cskuhu, n[
3~12w!

2~113w!
,

~318!

u5
1

Am1p
wx}Ah„Jn̄~x!,Yn̄~x!…, n̄[

513w

2~113w!
.

~319!

We haven̄5n11. Using Eqs.~298!,~299! we can normalize
the solutions as

F[c1~k!
Jn~x!

xn
1c2~k!

Yn~x!

xn
, ~320!

wx5
3~11w!

113w S c1~k!
Jn̄~x!

xn̄
1c2~k!

Yn̄~x!

xn̄ D .

~321!
Equation~293! gives

dv5
~113w!2

6w
x2wx . ~322!

In the large-scale limit (x!1) we have

F5
c1

2nG~n11!
22n

G~n!

p
x22nc2 , ~323!

where forn50 we have an additional 2 lnx factor in thec2
mode. By matching the general large-scale solution in
~311! we can identify

c152nG~n11!C, c252
1

3~11w!

p

2nG~ n̄ !

x2n̄

a2h
d.

~324!

In the large-scale limit (x!1) we have

F}C, da23(12w)/2, ~325!

wx}C, da2(513w)/2, ~326!

dv}Ca113w, da23(12w)/2

}Ct2(113w)/3(11w), dt2(12w)/(11w)

}Ch2, dh23(12w)/(113w). ~327!
10401
.

Equation ~327! follows from Eq. ~293! which gives dv
}a113wwx}h2wx in general. Equation~327! includes the
well known solutions in the matter- (w50) and radiation-
(w5 1

3 ) dominated eras MDE and RDE@1#:

MDE: dv}Ca, da23/2}Ct2/3, dt21}Ch2, dh23,

RDE: dv}Ca2, da21}Ct, dt21/2}Ch2, dh21.

~328!
If we consider only theC mode, which is the relatively
growing mode in an expanding phase, we have

F~x,t !5C~x!, ~329!

wx~x,t !5
313w

513w
C~x!. ~330!

The nontransient mode ofF remains constant on the supe
sound-horizon scale, whereas that ofwx jumps as the back-
ground equation of state changes. Still, it is2wx , not
2wv , which closely resembles the perturbed Newton
gravitational potential@13#.

The asymptotic solutions~i! and ~ii ! remain valid for the
scalar field withK50; in this case we havecs

2 replaced by 1.
The background solutions for thew5const. case considere
in ~iii !, Eq. ~316!, are valid for a scalar field with an expo
nential potential of the following form@39#:

V5
12w

12pG~11w!2 e2A24pG(11w)f,

f5A 1

6pG~11w!
ln t. ~331!

For the perturbation, from Eq.~308! and the prescription
below it, the same equations of the fluid remain valid w
the coefficient of Laplacian term replaced by 1~for the field!
instead ofcs

2 ~for the fluid! @14#. Thus, the perturbation so
lutions in the fluid remain valid for such a scalar field wi
x5kuhu, instead ofx5cskuhu for the fluid case.

We emphasize that, if a solution is known in a give
gauge condition the rest of the variables in all gauge con
tions can be derived through simple algebra; such soluti
are presented in tabular forms for an ideal fluid and a sc
field in @38,40,15#. Solutions in the situations of generalize
gravity theories considered in Sec. IV D can be found
@24#. The cases with multiple components of the fluids a
fields were analyzed in@41,42#.

2. Vector type

The rotational perturbation is described by Eq.~309!. If
we assumePa

(v)50, we have the general solution

a•a3~m1p!•va
(v)~x,t !5La

(v)~x!. ~332!

Thus, to linear order the rotational perturbation is describ
by the conservation of angular momentum and is transien
expanding media. We note that Eq.~309! follows from
1-44
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Ta;b
b 50 and is thusindependentof the gravitational field

equation. Thus the presence of scalar fields or the gen
ized gravity theories considered in Sec. IV D do not affe
the vector-type perturbation of the fluids@23#.

3. Tensor type

Now, we consider the gravitational wave withK50 and
Pab

(t) 50. The basic equation is presented in Eq.~310!.
~i! The general large-scale (k2!a9/a) solution is

Cab
(t) ~k,t !5cab

(t) ~k!1dab
(t) ~k!E tdt

a3 . ~333!

Thus, ignoring the transient mode (dab) in an expanding
phase the tensor-type perturbation is characterized by its
served amplitudecab

(t) (k).
~ii ! In the small-scale limit (k2@a9/a) we have the gen-

eral solution

Cab
(t) ~k,t !}

1

a
e6 ikh. ~334!

Thus the gravitational wave redshifts away.
~iii ! For K505L andw5const, we have the exact solu

tion

vab
(t) 5aCab

(t) }Ah„Jn~x!,Yn~x!…, n[
3~12w!

2~113w!
, x[kuhu.

~335!

Thus, we set

Cab
(t) 5c1ab

(t)
Jn~x!

xn
1c2ab

(t)
Yn~x!

xn
. ~336!

In the large-scale limit (x!1) we have

Cab
(t) 5

1

2nG~n11!
c1ab

(t) 22n
G~n!

p
x22nc2ab

(t) , ~337!

where for n50 we have an additional 2 lnx factor in the
c2ab

(t) mode. By matching with the general large-scale so
tion in Eq. ~333! we can identify

c1ab
(t) 52nG~n11!cab

(t) , c2ab
(t) 5

p

2n11G~n11!

hx2n

a2
dab

(t) .

~338!

Thus,

Cab
(t) }cab

(t) ,dab
(t) a23(12w)/2

}cab
(t) ,dab

(t) t2(12w)/(11w)

}cab
(t) ,dab

(t) h23(12w)/(113w). ~339!
10401
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C. Pressureless irrotational fluid

The equation ofdv was derived in Eq.~305! or can be
derived from Eqs.~303!,~296!. In the pressureless case,
simpler route is to use the basic equations in Eqs.~195!–
~201!.

We considera pressureless fluid, thusdp505Pab , and
ignore the vector-type perturbation. For the spatial gauge
takeg[0 and thusb5x/a. If we take the temporal comov
ing gauge (v[0) we haveQa50. Equation~201! givesav
52aN6v

(s)52 1
2 bv,abv

,a and thusa vanishes to linear order
in the pressureless medium, to linear order, the comov
particle follows a geodesic and thusv50 implies a50.
From Eqs.~200!, ~198!, first evaluating these in the comov
ing gauge, we can derive

ḋv5kv1
1

a
“•~dv“vx!, ~340!

k̇v12Hkv24pGmdv

5
1

a2 @~“vx!•~“vx! ,a# ua1Ċab
(t) S Ċ(t)ab1

2

a2 xv
,aubD ,

~341!

where we have usedxv52avx following from Eq. ~255!,
and kv5(1/a)Dvx following from Eq. ~197! with K50,
both to linear order.

In order to compare with a Newtonian analysis we intr
duce u52“vx to linear order. By combining Eqs.~340!,
~341! we have

d̈v12H ḋv24pGm̄dv52
1

a2 @a“•~dvu!#•1
1

a2“•~u•“u!

1Ċab
(t) S 2

a
¹aub1Ċ(t)abD . ~342!

We note that, to linear order, the growing solution of t
gravitational wave remains constant in time on the super
rizon scale, whereas it redshifts away (Cab

(t) }a21) on the
subhorizon scale; see Sec. VII B 3. Ignoring the gravitatio
wave we reproduce correctly the corresponding Newton
equation

d̈12H ḋ24pG%̄d52
1

a2 @a“•~du!#•1
1

a2“•~u•¹u!.

~343!

We note that our Eq.~342! is valid on the super-sound
horizon~Jeans! scale, which is negligible in the pressurele
medium, and thus is valid even on the super-~visual!-horizon
scale. In the Newtonian context Eq.~343! is valid to all
orders in perturbation, and follows from the mass conserv
tion, the momentum conservation, and the Poisson equa
given by @10#

ḋ1
1

a
“•u52

1

a
“•~du!, ~344!
1-45
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u̇1Hu1
1

a
“dF52

1

a
u•“u, ~345!

1

a2 ¹2dF54pG%̄d. ~346!

To linear order these equations can be compared with
relativistic version in Eqs.~294!,~296!,~293! with Eq. ~295!.
To second order, however, although the final result in
~342! coincides with the Newtonian one in Eq.~343!, we
notice some difference between Eqs.~340!,~341!,~294!–
~296! from Eq.~295! and Eqs.~344!–~346!. From Eq.~197!,
to second order, we have

kv2
D

a
vx5N2v

(s)2
D

a2 ~xv
(q)1avx

(q)!. ~347!

Since the RHSs of this equation and of Eq.~293! do not
vanish we cannot directly relate2wx and 2“vx ~or
aD21

“kv) to the Newtonian counterpartsdF and u, re-
spectively. Still, we emphasize that the final equation ide
fied in Eq.~342! coincides exactly with the Newtonian one
Eq. ~343!. For a similar conclusion in the relativistic situa
tion, see@43#. For analyses of Eq.~343! in the Newtonian
context, see@44#.

Usingb50 as the spatial gauge condition Kasai@45# has
derived a different equation compared with ours in Eq.~342!.
Kasai@45# took both the comoving gaugev[0 and the origi-
nal synchronous gauge, which takesa505b. As we
showed above Eq.~340! in a pressureless medium, the c
moving gaugev50 implies a52 1

2 b ,ab ,a and thus van-
ishes if we takeb50 as the spatial gauge condition. How
ever, in that gauge condition~the spatialB gauge! the spatial
gauge mode is incompletely fixed. Thus, comparison w
the Newtonian analyses is not tranparent in that gauge
dition.

1. Nonlinear equation based on (3¿1) formulation

The general equation of the pressureless and irrotati
ideal fluid can be derived from Eqs.~10!,~12!,~13!. The pres-
sureless ideal fluid impliesSab50. We take the tempora
comoving gauge conditionv50. Together with the irrota-
tional condition we haveQa50 and thusJa50. Equation
~13! givesN,a50; if we use the normalization in Eq.~55!,
we haveN5a. Equations~10!,~12! give

K5
Ė

E
2

1

N

E,a

E
Na, ~348!

K̇2
1

N
K ,bNb2

1

3
K254pGE2L1K̄abK̄ab .

~349!

Apparently, the spatialB gauge conditionBa[0 leads to
Na50, thus simplifying the equations. However, such
gauge condition leaves the spatial gauge mode removed
completely. We prefer to take the spatialC gauge condition,
which fixes the spatial gauge modes completely; in this w
10401
e

.

i-

h
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the analyses can be equivalently considered as spat
gauge-invariant ones. From Eqs.~348!,~349! we can derive
Eq. ~342! to second order. We notice that, in contrast with t
Newtonian case, in general we anticipate having infinite p
turbation series expansion, and Eq.~342! looks valid only to
second order. If we have the higher-order terms nonvan
ing, these can be regarded as purely relativistic effects.

2. Nonlinear equation based on (1¿3) formulation

Assuming the pressureless condition, Eqs.~26!,~27!,~28!

in the energy frame (q̃a50) become

m̃̇̃1 ũm̃50, ~350!

ãa50, ~351!

ũ̇̃1
1

3
ũ214pGm̃2L12~ s̃22ṽ2!50. ~352!

In the energy frame the frame vector follows the possi
energy flux; thus, the energy flux termq̃a vanishes. Equa-
tions ~350! and ~352! can be combined to give

S m̃̇̃

m̃
D •̃

2
1

3
S m̃̇̃

m̃
D 2

24pGm̃1L22~ s̃22ṽ2!50.

~353!

If we set m̃[m(11d), wherem is the background energ
density, Eq.~353! becomes

d̃̈2
2

3

m̃̇

m
d̃̇24pGm~11d!d2

4

3

d̃̇2

11d
22~ s̃22ṽ2!~11d!

1~11d!F S m̃̇

m
D •

2
1

3
S m̃̇

m
D 2

24pGm1LG50. ~354!

This is a completely nonlinear equation.
Now, weassumean irrotational fluid. In the energy frame

the comoving gauge condition leads toũa[0; this is equiva-
lent to taking the normal frame with vanishing energy flu
The momentum conservation equation in Eq.~351! implies
that our frame vector follows a geodesic path. In the com
ing gauge Eqs.~351!,~69! lead to A52 1

2 BaBa to second
order. Thus, to linear order we haveA50 which coincides
with taking the synchronous gauge. We have

m̃̇̃5m̃ ,aũa5] tm̃1
1

a
m̃ ,aBa, m̃̇5] tm, d̃̇5] td1

1

a
d ,aBa.

~355!

Only in the comoving gauge condition does the covari
derivative alongũa simplify to second order as in Eq.~355!.
In this derivation the pressureless condition is used es
tially. Thus, in this comoving gauge Eq.~354! becomes
1-46
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d̈12H ḋ24pGmd5
1

a2 ~a2dḋ!•1
1

3
ḋ22

1

a2 ~ad ,aBa!•

2
1

a
ḋ ,aBa12s̃2, ~356!

to second order. From this we can derive Eq.~342! wheres̃2

follows from Eqs.~16!,~57!,~71!.

3. Gravitational wave as a source

From Eq.~342! considering the pure gravitational wave
the source for density perturbation we have

d̈v12H ḋv24pGmdv5Ċab
(t) Ċ(t)ab[S. ~357!

In the matter dominated era an exact solution is given in
~336! with n5 3

2 ; in the large-scale limit, considering th
relatively growing mode,S vanishes, whereas, in the sma
scale limit it decays proportional to 1/(at)2}a25 @see Eq.
~334!#. If dg and dd denote two linear-order solutions, th
general solution can be written as

dv~x,t !5dg~x,t !1dd~x,t !1E t

S~x,t8!

3
dg~x,t8!dd~x,t !2dd~x,t8!dg~x,t !

dg~x,t8!ḋd~x,t8!2dd~x,t8!ḋg~x,t8!
dt8.

~358!

The particular solution is proportional toa25t2}a22 and
decays more rapidly even compared with the decaying m
in the linear theory which behaves ast21.

D. Pure scalar-type perturbation

Equation~302! can be written as

H2cs
2

~m1p!a3 H ~m1p!a3

H2cs
2 F Ḟ2Ḟ (q)

2NḞ1
H

m1p
S e1

2

3

D

a2 P D G J •

5cs
2

D

a2 S F2F (q)22H2
P

m1p
2NFD . ~359!

In the large-scale limit, if we ignore the second-order spa
derivative terms, we have

Ḟ2Ḟ (q)2NḞ1
H

m1p
e}

H2cs
2

~m1p!a3 . ~360!

Now, we considerK50 and ideal fluids; thuse50. From
Eq. ~298! we haveF5wv . Ignoring the second-order spati
derivatives, from Eqs.~300!,~195!–~201!,~99!–~105! we can
show that NḞ5(wv

2)•. In the comoving gauge we hav
F (q)uv5wv

(q)uv50; see Eq.~274!. Thus, we have
10401
q.

e

l

wv2wv
25C~x!1d~x!E t H2cs

2

~m1p!a3 dt. ~361!

Therefore, ignoring the transient mode in the expand
phase, we have

wv2wv
25C~x!, ~362!

which remains constant even to second order in perturbat
@46,47#. Thus,wv is conserved to second order in the larg
scale~super-sound-horizon! limit.

Equation ~359! is valid for pÞ0. For p50 we have a
simpler form in Eq.~299!, which gives

Ḟ2Ḟ (q)2NḞ1
H

m
S e1

2

3

D

a2 P D 50. ~363!

Equation ~360! includes this as a case in the large-sc
~super-sound-horizon! limit. Thus, the above results in Eqs
~360!–~362! remain valid for generalp.

From Eq. ~114! we notice that for a minimally coupled
scalar fielddf50 impliesv50 to second order; thus

wv5wdf , ~364!

and the uniform-field gauge coincides with the comovi
gauge. Thus, the above analyses are valid even for a m
mally coupled scalar field.

E. Pure rotation

In the case of pure rotation Eqs.~208!,~105! provide a
complete set for a single component fluid; for the multico
ponent case see Eqs.~209!,~107!. Assuming Pa

(v)50 we
have

@a4~m1p!va
(v)#•

a4~m1p!
5N6a

(v) ,

N6a
(v)52

1

a
@vaub

(v) B(v)b1vb
(v)B ua

(v)b

2¹aD21¹b~vbug
(v) B(v)g1vg

(v)B ub
(v)g !#.

~365!

As a simple exercise, using Eq.~250!, one can check the
gauge transformation properties of both sides. In theC gauge
condition (Ca

(v)[0) we haveBa
(v)5Ca

(v) which is gauge in-
variant. From Eqs.~332!,~206!, to linear order we have
Ca

(v)}a2(m1p)va
(v)}a22; thus from Eq.~365! we have

@a4~m1p!va
(v)#•5a23@a3

•a4~m1p!N6a
(v)#}a23.

~366!

Thus, the additional second-order perturbation sourced
the RHS of Eq.~365! behaves as
1-47
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a4~m1p!va
(v)5La

(v)~x!1@a3
•a4~m1p!N6a

(v)#E tdt

a3 .

~367!

The time-dependent nonlinear solution is proportional
* tdt/a3; for w5const it is proportional toa23(12w)/2; thus it
always decays~in expanding phase! for w,1. The lower
bound of integration which could give a temporally consta
nonlinear solution can be absorbed toLa

(v) .
As we explained in Sec. VI B 2, to linear order, theC

gauge condition removes the rotational gauge mode c
pletely, whereas theB gauge condition fails to fix it com-
pletely. That is, even after imposing the gauge condition
have some modes which are coordinate effects; under thB
gauge, from Eq.~252! we haveja

(v)5ja
(v)(x). Then, in Eq.

~365! we notice an ironic situation where theB gauge con-
dition gives vanishing quadratic terms, whereas these te
do not vanish in theC gauge condition. That is, although w
anticipate that the nonlinear solution in theC gauge in Eq.
~367! is physical, in theB gauge condition the RHS of Eq
~366! vanishes, and we do not have the nonlinear solution
Eq. ~367!. We can check this situation by using the gau
transformation property of theva

(v) variable in the two gauge
conditions.

Considering pure vector-type perturbations, from E
~175!,~177!,~234!,~249! we have

v̂a
(v)5va

(v)2vb
(v)j ,a

(v)b 2va,b
(v) j (v)b1¹aD21¹b~vg

(v)j ,b
(v)g

1vb,g
(v) j (v)g!. ~368!

Now, let the variables with and without carets correspond
the ones in theB and C gauge conditions, respectively. A
the ja

(v)s appear in quadratic combination, we need th

only to linear order. From Eq.~252!, we haveB̂a
(v)5Ba

(v)

1aj̇a
(v) . Since the caret indicates theB gauge, we have

aj̇a
(v)52Ba

(v) ; thus ja
(v)52* t(Ba

(v)/a)dt. Thus, Eq.~368!
gives

a4~m1p!v̂a
(v)uB gauge

5H a4~m1p!va
(v)2@a3

•a4~m1p!N6a
(v)#E tdt

a3J U
C gauge

.

~369!

Therefore, in theB gauge the nonlinear solution in theC
gauge in Eq.~367! disappears exactly. We note, howev
that the solution in Eq.~367! is the physical ~gauge-
invariant! one in theC gauge.

F. Pure gravitational wave

In the case of pure gravitational wave Eqs.~210!,~103!
provide a complete set. In the large-scale limit, thus ignor
10401
o

t
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e
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g

second-order spatial derivative terms, and assumingK50
andPab

(t) 50, we have

C̈ b
(t)a13HĊ b

(t)a5N 4 b
(t) a ,

N4 b
(t)a5N4b

a2D21~¹a¹gN4b
g1¹b¹gN4g

a!

1
1

2
~D21¹a¹b1db

a!D21¹g¹dN4g
d ,

N4b
a52S Ċ(t)agĊbg

(t) 2
1

3
db

aĊ(t)gdĊgd
(t) D . ~370!

Notice that in this large-scale limit we haveCab
(t) 5const as

the relatively growing solution~in the expanding phase! even
to second-order perturbation. In this sense, ignoring the t
sient mode in the expanding phase, the amplitude ofCab

(t)

remains constant even to second order in perturbat
@46,47#.

G. Action formulation

We consider the action expanded to second order in
turbations which will give the equations of motion to line
order in the perturbation@48,37,9#. We consider the action
for a scalar field in Eq.~108!. The perturbed action can b
derived by using Eqs.~94!, ~98! and the ADM quantities
presented in Sec. III. To background order, ignoring the s
face terms, we have

SBG5
1

16pG
E Ag(3)a3F26S ȧ

a
D 2

1
6K

a2

116pGS 1

2
ḟ22VD Gdtd3x. ~371!

To the second-order perturbation, ignoring the surface ter
the pure gravitational wave part becomes

SGW5
1

16pG
E Ag(3)a3S Ċ(t)abĊab

(t) 2
1

a2 C(t)abugCabug
(t)

2
2K

a2 C(t)abCab
(t) D dtd3x. ~372!

This action is valid for an arbitrary number of scalar fiel
and fluids with vanishing tensor-type anisotropic stress. N
we consider the pure scalar-type perturbation. We ass
K50. To the second-order perturbation, ignoring the surf
terms, we have
1-48
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Sscalar5
1

2
E a3H dḟw

22
1

a2 dfw
,adfw,a

1
H

a3ḟ
Fa3S ḟ

H
D •G •dfw

2J dtd3x

5
1

2
E a3

ḟ2

H2 S ẇdf
2 2

1

a2 wdf
,awdf,aD dtd3x.

~373!

In this case we used the linear-order equations of motio
thus it is an on-shell action. In the second step we used
~255!.

Maldacena has considered the perturbed action to t
order in perturbations, which is needed to have equation
motion valid to the second order@47#. For the temporal
gauge he used two gauge conditions, the uniform-field ga
(df[0) and the uniform-curvature gauge (w[0), and the
C gauge for the spatial and rotational ones. Compared w
our notation we have

zMaldacena5wdf2wdf
2 , wMaldacena5dfw . ~374!

Thus,zMaldacenais conserved in the large-scale limit; see Eq
~362!,~364!. To linear order, from Eq.~255! we have
wdf52(H/ḟ)dfw ; thuszMaldacena52(H/ḟ)wMaldacena.

VIII. DISCUSSION

We have presented the basic equations to investigate
second-order perturbation of the Friedmann world model
order to serve as a convenient reference for future stu
and applications we have presented some useful relat
and quantities needed for the second-order perturbations.
present study is, clearly, not entirely new in this rich field
cosmology and large-scale structure formation. In the
1960s Tomita presented a series of work on the subject in
context of a fluid@49#. Studies in the context of the idea
fluid or the minimally coupled field can be found i
@31,50,47#. In the case of a pressureless irrotational fluid,
@45,43#. The case with the null-geodesic equations was st
ied in @51#, and the case with the Boltzmann equation w
considered in@52#.

Compared with the previous work, perhaps we could e
phasize the following as the new points in our work.

~i! We present the complete sets of perturbed equation
a gauge-ready form, so that we can easily apply the eq
tions to any gauge conditions, which make the mathemat
analyses of given problems as simple as possible.

~ii ! We consider the most general Friedmann backgro
with K and L. Previous studies considered the flat Frie
mann background only.

~iii ! We consider the most general imperfect fluid situat
which includes multiple imperfect fluids with general inte
actions among them. In addition, we also include minima
coupled scalar fields, a class of generalized gravity theo
10401
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the electromagnetic fields, the null geodesic, and the rela
istic Boltzmann equation.

~iv! In Sec. VII A we present closed form equation
which are simlar to the ones known in linear theory.

~v! In Sec. VII C we show that up to second order
perturbations the relativistic pressureless fluid coincides
actly with the Newtonian one. We note that suitable choic
and combinations of different gauges~thus gauge-invarian
combinations! are important to show the equivalence.

~vi! In Sec. VII D we have derived the large-scale~super-
sound-horizon! conserved quantity to second order,wv , di-
rectly from the differential equation governing its evolutio
This conserved variable was first studied by Salopek
Bond.

Our equations are suitable for handling nonlinear evo
tion in the perturbative manner. If we have the solutions
linear order~see Sec. VII B for some examples!, the evolu-
tion of second-order perturbations can be derived using
quadratic combination of the linear variables as sources;
basic sets of equations in Sec. V C and some closed form
Sec. VII A are presented with this purpose. As long as
take such a perturbative approach, our formulation in t
work can be trivially extended to any higher-order perturb
tion; except for the fact that, of course, the needed alge
would be quite demanding. We have also shown in Sec.
that the gauge issue can be similarly handled even in su
higher-order perturbation.

Our formulation can be applied using several differe
methods as follows.

~i! Quasilinear analyses using Fourier analyses as o
used in the Newtonian case@44#. In this approach the qua
dratic combination of the linear-order terms will lead
mode-mode coupling among different scales, as well
among different types of perturbations.

~ii ! Nonlinear back reaction. In our approach we ha
assumed the presence of a ‘‘fictitious’’ background met
which is spatially homogeneous and isotropic. As the ba
equations of Einstein gravity are nonlinear, the nonline
fluctuations in the metric and the matter can affect the ba
ground world model. One anticipates recovering the ba
ground Friedmann world model through averaging the m
realistic lumpy world model and finding the best fit to th
idealized world model@53#.

~iii ! Fitting and averaging. Our basic equations in Sec.
are presented without separating the background order q
tities from the perturbed order ones. Thus, the equations
suitable for the operation of averaging. Using our formu
tion we could apply and check the various different aver
ing prescriptions suggested in the literature@53,54,45#.

Our perturbative formulation would be a useful comp
ment to the following formulations aiming to investigate th
nonlinear evolution of cosmological structures.

~i! The large-scale~long wavelength! approximation or
the spatial gradient expansion studied by Salopek, Tom
Deruelle and others in@46,55#.

~ii ! The cosmological post-Newtonian formulation studi
by Futamase, Tomita, and others in@56#.
1-49
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~iii ! The relativistic Zel’dovich approximation studied i
@45,43,57#.

~iv! General ~spatially inhomogeneous and anisotrop!
solutions near singularity where the large-scale conditi
are well met; in such a situation it was shown that the s
tially different points decouple and evolve separately. Th
were studied by Belinsky, Lifshitz, Khalatnikov, and othe
in @58#.

Our general formulation can be used to study the follo
ing situations anticipated during the evolution of our u
verse.

~i! We can check the limit of linear theory. Current co
mological observations can be successfully explained wi
the current standard theoretical paradigm. In that parad
linear perturbation theory plays a significant role in expla
ing the quantum generation stage in the early universe an
the classical evolution processes on the large scale and i
early era. The linear theory provides a self-consistent ex
nation of some important aspects of the origin and evolut
of large-scale structures. However, the limit of the line
theorycannotbe estimated within the linear theory. We e
pect that the second-order perturbation theory could prov
a meaningful ways to investigate such limits.

~ii ! We can investigate the quasilinear process in the r
tivistic context. In the literature it is commonly assumed th
the relativistic linear perturbation theory is sufficient
handle the large-scale structure, and the nonlinear proce
occur only in the Newtonian context which are often hand
by the numerical simulations. The quasilinear evoluti
would be useful to investigate the transition regions betw
linear and nonlinear evolutions. Our perturbative appro
may have its own limit, because if we find the importan
of second-order contributions it may naturally follow th
higher-order contributions would immediately becom
important as well. Thus, we anticipate, if successful, t
relativistic quasilinear analyses can be developed similarl
the Newtonian cosmological quasilinear analyses stud
in @44#.

~iii ! We can examine the fate of fluctuations in the c
lapsing phase, and possibly through a bounce. The fluc
tions of a single component medium and the gravitatio
wave are described by second-order differential equation
the linear stage and in the large-scale limit, we have gen
solutions in Eqs.~311!,~312!,~333!. In an expanding phase
theC mode is growing relatively and thed mode is decaying
and thus transient. If the initial conditions~say, generated
from the quantum fluctuations! are imposed in the early ex
panding phase, thed mode parts disappear in a fewe-folding
times of the scale factor increase and are thus uninteres
The relatively growing modes for both the scalar- and tens
type perturbations are characterized by a conserved am
tude of certain gauge-invariant variables,wv ~and the curva-
ture variables in other gauges! and Cab

(t) , in the large-scale
limit. In the collapsing phase, however, the roles of growi
and decaying modes are switched. In the collapsing ph
thed mode, and the vector mode as well, grows quite rapi
@see Eqs.~325!,~339!,~332!#; our solutions in Sec. VII B also
cover the collapsing phase by consideringt→utu with t ap-
proaching 0~see@59#!. Thus, the linear perturbations gro
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rapidly and inevitably reach the nonlinear stage@6,60#. Such
growth would cause the transition of our simple~spatially
homogeneous and isotropic! background world model to the
anisotropic and inhomogeneous ones studied in@58#. Al-
though we anticipate that the perturbations would beco
quite nonlinear, we hope we can investigate the transit
region based on our second-order perturbation formulat
One simplifying fact is that in the collapsing phase the lo
range covered by the dynamical time scale;H21 shrinks
relative to the comoving scale, and thus effectively the sca
we are interested in satisfy the conditions of the large-sc
limit.2 Such large-scale conditions are well met for a giv
comoving scale during the early evolution stage~near singu-
larity! and as the background model approaches the singu
ity in the collapsing phase. Investigation of situations in t
collapsing and subsequent bouncing background is left
future study; for evolution under the linear assumption, s
@59#. For the general cosmological investigation near sin
larity, see@58#.

~iv! It is well known that the nonlinear effect~either in
quantum generation or in classical evolution process!
could lead to non-Gaussian effects in the observed quant
of CMB anisotropies and large-scale galaxy distribution a
motion. Maldacena has recently investigated such an ef
on the CMB based on second-order perturbation theory~see
@47#!. The first year WMAP data show no positive detecti
of non-Gaussian nature of the CMB sky maps under a cou
of non-Gaussianity tests@61#.

~v! We can check evolution on the superhorizon sc
where the scale is larger than the causal domain during
dynamic time scale. See Secs. VII D and VII F for the co
served quantities to second order which were found by
lopek and Bond in@46#.

~vi! In Sec. VII C we showed that to second order a pr
sureless fluid with a pure scalar-type perturbation reprodu
the Newtonian result. It is likely that the relativistic effe
appears in higher-order perturbations; this is left for futu
investigation.
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2James Bardeen and Ewan Stewart have suggested that the
scale~long wavelength! expansion or the spatial gradient expansi
technique@46,55# would be useful to investigate such situations.
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