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We consider the instability of the Friedmann world model to second order in perturbations. We present the
perturbed set of equations up to second order in the Friedmann background world model with a general spatial
curvature and cosmological constant. We consider systems with completely general imperfect fluids, minimally
coupled scalar fields, an electromagnetic field, and generalized gravity theories. We also present the case of
null geodesic equations, and one based on the relativistic Boltzmann equation. In due time, a decomposition is
made for scalar-, vector-, and tensor-type perturbations which couple with each other to second order. A gauge
issue is resolved to each order. The basic equations are presented without imposing any gauge condition, and
thus in a gauge-ready form so that we can take full advantage of having gauge freedom in analyzing the
problems. As an application we show that to second order in perturbation the relativistic pressureless ideal fluid
of the scalar type reproduces exactly the known Newtonian result. As another application we rederive the
large-scale conserved quantitiesd the pure scalar and tensor perturbatjoltssecond order, first shown by
Salopek and Bond, now from the exact equations. Several other applications are shown as well.
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[. INTRODUCTION satisfactory within linear theory concerning the regimes
where relativistic gravity theory is needed. It is well known
We consider instabilities of the spatially homogeneoughat in linear theory there can be no structure formation. In
and isotropic cosmological spacetime to second order in pefact, this “no structure formation” in the scenario is precisely
turbations. The relativistic cosmological perturbation plays avhy we were successful in describing the structure genera-
fundamental role in the modern theory of large-scale cosmition and evolution processes in a simple manner as we de-
structure formation. The original analysis of linear perturba-scribe below. In the standard scenario, the initial conditions
tions based on Einstein gravity with a hydrodynamic fluid (seed fluctuationsgenerated from quantum fluctuations are
was made by Lifshitz in 19461] in an almost complete imprinted into ripples in the spacetime, and its spatial struc-
form. Because of the extremely low level anisotropies of thetures are preserved as the raw large-scale structileesare
cosmic microwave backgroui€MB) radiation, the cosmo- as yet unaffected by nonlinear procegsekhis is a ftrait
logical dynamics of the structures on the large scale and imvhich can be traced to the linearity assumption we adopt. It
the early Universe are generally believed to be small deviagives a simple but fictitious system. We could, perhaps, fairly
tions from the homogeneous and isotropic background Frieddescribe the current situation as that the linear paradigm is
mann world mode]2]. The conventional relativistic cosmo- not inconsistentith observations, especially with the low
logical perturbation analysis considers such deviations smalevel of observed anisotropy in the CMB]. However, we
enough so that one can treat themliasar. The linear per- should remember that the actual equations we are dealing
turbation theory works as the basic framework in handlingwith, in both gravity and the quantum regime, are highly
the cosmological structure formation processes. Recent olmonlinear. It forms an intrinsically complex system.
servations of the CMB anisotropies in the full sky by the We can decompose the perturbations into three different
Wilkinson Microwave Anisotropy Prob€ WMAP) satellite  types: the scalar-typ@ssociated with density condensajion
and otherd 3], for example, assure the validity of the basic the vector-typgrotation), and the tensor-typégravitational
assumptions used in cosmological perturbation theory, i.ewave perturbations. To linear-order perturbation, due to the
the linearity of the relevant cosmic structufes. high symmetry of the background space, these three types of
Still, as the observed relatively small-scale structures ar@erturbation decouple from each other and evolve indepen-
apparently nonlinear, the gravitational instability based ordently. Both (the linearity and the homogeneous-isotropic
the pure linear theory is not enough for a complete picture. Ibackground conditions are necessary to have natural de-
is agreed that such small-scale nonlinear structures could Iseriptions of the three types of perturbations independently.
handled by Newtonian gravity often based on numericaMe will see how couplings occur to the second-order pertur-
simulations. The current paradigm of large-scale structurdations; for the couplings in the simplest spatially homoge-
generation and evolution processes is based on an underlyimgous but anisotropic spacetime, $6&
assumptionthat linear processes dominate until nonlinear Another aspect of the simple nature of the linear pro-
processes take over on subhorizon scales in the Newtoniatesses in relativistic gravity theories is characterized by con-
regime. Thus, it seems this paradigm of our understanding afervationgin expanding phasgeof certain amplitudes on the
the origin and evolution of the large-scale structure is rathesuperhorizon scale where we naively anticipate the indepen-
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dent evolution of causally disconnected regions. On superho- Now we briefly discuss the gauge issue present in relativ-
rizon scales this conserved character is presented by an equstic perturbation theory. Since the unperturbed background
tion of the form spacetime is spatially homogeneous and isotropic, to linear
order the ambiguity caused by the spatial ga(mmordinate
d(x,t)=C(x), (1)  transformatioi freedom does not play a rol&]. Thus, to
linear order it is appropriate to write the perturbed set of
which applies for both the scalar- and tensor-type perturbaequations in terms of natural combinations of variables
tions; for the vector-type perturbation the angular momentunwhich are invariant under spatial gauge transformations.
is conserved on all scale€(x) is an integration constant of However, the temporal gauge freedom can be conveniently
the integral form general solutions available in the large-used in analyzing various aspects of the perturbation prob-
scale limit; see Eq9:311),(332),(333). The coefficientC(x) lem in the Friedmann background. There are infinitely many
contains information about the spatial structure which willdifferent ways of taking the temporal gaugehoosing the
eventually grow into the large-scale structure and the gravispatial hypersurfageconditions, and we can identify several
tational wave background. It can be considered as an initifundamental gauge choic€8,12]. Except for a widely used
condition for each perturbation variable which is preservedemporal synchronous gauge fixing conditiodgg,=0),
during the linear evolution. Whether a similar conservedeach of the other gauge conditions completely fixes the tem-
variable can exist even in a nonlinear analysis is apparentlporal gauge freedom, thus each having its own correspond-
an interesting question: for the presence of such variables tog gauge-invariant formulation. In our study of the linear
second order in perturbation see Secs. VII D-VII F. In analytheory we found that some particular gauge-invariant vari-
ses of the large-scale structures in the linear stage, the simpddbles show the correct Newtonian behaviors. A perturbed
behavior of the conserved variables is practically importantdensity variable in the comoving gauge and a perturbed po-
In fact, if we knowC, the behavior of all the other variables tential variable and a perturbed velocity variable in the zero-
can be determined through linear algebra. Using the conshear gauge most closely resemble the behaviors of the cor-
served quantity one can trivially relate the currently observiesponding Newtonian variabl¢43]. Also, the scalar field
able (or deducible linear structure directly to the initial state perturbation in the uniform-curvature gauge most closely re-
of the structure in the early universe; probably just after thesembles the scalar field equation in the quantum field in
scale effectively becomes the large scale during the hypcsurved spac¢l4,15. Since the gauge conditions mentioned
thetical early acceleratiofinflation) stage. Of course, the allow no room for a remaining gauge mode, the variable in a
underlying assumption for all of these results is the applicagiven such gauge has a unique corresponding gauge-
bility of a linear analysis. As long as this assumption is valid,invariant combination of variables. Thus, the variable in such
the initial condition is imprinted onto the large-scale struc-a gauge is equivalent to the corresponding gauge-invariant
ture and is preserved until the nonlinear effects become imeombination.
portant. Although this is a big advantage, in a sense this is In the gauge theory it is well known that proper choice of
very consistent with the fact that no structure formation oc-the gauge condition is often necessary for proper handling of
curs in the linearized system. the problem. Either by fixing certain gauge conditions or by
The linear perturbation theory is currently well devel- choosing certain gauge-invariant combinations in the early
oped; seg¢6-11]. Although the observations do not particu- calculation stage, we are likely to lose possible advantages
larly demand going beyond the linear theory, second-ordeavailable in the other gauge conditions. In order to use the
perturbation theory is a natural next step in the theoreticaVarious gauge conditions as an advantage in handling cosmo-
investigations. The second-order perturbation theory, if wellogical perturbations, we have proposed gauge-ready
developed, will have important implications for our under- method which allows the flexible use of the various funda-
standing of the large-scale structure formation processes. Natental gauge conditions. The strategy is that, in order to use
only are the structures we discover nonlinear, according tthe various available temporal gauge conditions as an advan-
the gravitational instability there should occuperhaps tage, we had better present the basic equations without
smooth transitions from the linear to the nonlinear ones.choosing any temporal gauge condition, and arrange the
Even from the theoretical point of view, in order to know the equations so that we could choose the fundamental gauge
limit of linear perturbation theory we need the behavior ofconditions conveniently. In this work we will further elabo-
perturbations beyond the linear theory. It is not possible taate the gauge-ready approach to the second-order perturba-
know the limit of linear theory within the context of linear tions. Our gauge-ready strategy, together with our notation
theory. It is yet unclear whether the second-order “perturbafor indicating the gauge-invariant combinations, allows us to
tion theory” will provide an answer to such a question, butuse the gauge freedom as an advantage in analyzing various
we expect it could provide a better perspective on the probgiven problems. We follow the wisdom suggested by
lem than simple linear theory. There will be more practicalBardeen in 1988 “the moral is that one should work in the
applications as well, like investigating the non-Gaussian siggauge that is mathematically most convenient for the prob-
nature in the inflation generated seed fluctuations whictlem at hand”[7].
could have left a detectable signature in the CMB anisotro- As long as we are taking a perturbative approach the
pies and the large-scale structures. Other possible situatiogguge issue in higher orders can be resolved similarly as in
where translinear analyses might be useful are summarizetie linear theory. To second order we will identify two vari-
in Sec. VIII. ables which can be used to fix the spatial gauge freedom.
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One gauge condition completely removes the spatial gaugkuitfully. Although we will present some trivial applications
mode, whereas the other condition does not; i.e., in the lattén the later part, the main applications are left for future
case even after imposing the gauge condition there still restudies.

mains a degree of freedom which is a gauge m@deoor- In Sec. Il we summarize the basic equations of Einstein’s
dinate artifact We call this incomplete gauge condition the gravity expressed in the Arnowitt-Deser-Misn@xDM) (3

B gauge §o,=0 wherea is a spatial indexwhereas the +1) formulapon and in the covariant (3) formulatlon. In
other complete condition is called t@ gauge. To second Sec. lll we introduce our definition of the metric and the

order we can identify the same several temporal gauge_ﬁxinenergy-momentum tensor to second order in the perturbation

conditions. Again, except for the synchronous gauge each o%nd present some useful quantities appearing in the ADM
- Again, P Y gaug nd the covariant formulations. In Sec. IV we present the

the other gauge conditions completely removes the tempor%omplete sets of perturbed equations up to second order in
gauge modes.

. . , - the Friedmann world model. We consider the general spatial
Itis amusing to note that the classic study by Lifstitz  cryature and the cosmological constant in the background.

adopted the synchronous gauge condition, which is a combiye consider systems with completely general imperfect flu-
nation of the temporal synchronous gauge condition and thgys syuch a general formulation can be reinterpreted to in-
spatialB gauge condition, thus failing to fix both the tempo- cjude the cases of minimally coupled scalar fields, the elec-
ral and spatial gauge modes completely. This has causagbmagnetic field, and even generalized gravity theories. We
some prevalent errors in the literature based on the synchr@resent the complete sets of equations for these systems as
nous gauge: see the Appendix[@8]. However, we note that well. We also present the case of null geodesic equations,
these errors are simple algebraic ones probably caused layd the one based on the relativistic Boltzmann equation. In
slightly more complicated algebra due to the presence of th8ec. V we introduce decomposition of the perturbations to
gauge mode after the synchronous gauge fixing. We woulthree different types and show how these couple to each
like to emphasize that the gauge condition should be apprasther to second order. All equations up to this point are pre-
priately used according to the character of each problem a&ented without introducing any gauge condition. Thus, the
hand. We have this freedom because Einstein’s gravitgguations are presented in the most general forms, and any
theory might be regarded as a gauge thefd§]. In this suitab_le gauge .conditions can easily be .deplqy(_ed in these
sense, although the temporal synchronous and the sjatial€duations. In this sense, our set of equations is in a gauge-
gauge conditions do not remove the gauge modes conféady form. In Sec. Vlwe address the gauge issue, and shpw
pletely, often even these conditions could possibly turn out td"@t the gauge issue can be resolved to each perturbation

be convenient in certain problems. Since physically measuprdetr' just as in thedcas;a ?f Ilmiar pertuabat:;)n. _We m:plg—
able quantities should be gauge invariant we propose to u ent our gauge-ready strategy 1o second order in perturba-

In a classic study of CMB anisotropy in 1967 Sachs an PP

. . ; ions of our work.
Wolfe mentioned that “the linear perturbations are so sur- - _
- . . . As a unit we set=1.
prisingly simple that a perturbation analysis accurate to sec-
ond order may be feasible[17]. In this work, we will
present the basic formulation of the second-order perturba- Il. BASIC EQUATIONS
tion of the Friedmann world model in detail. We will present A. ADM (3+1) equations

the basic equations needed to investigate the second-order . A\ (Arowitt-Deser-Misner equations[18] are

pertl:rbanon ;nFq rgther ginersl contgﬁﬁvtze (‘j’vjﬂl cv?lns@ﬁr thE’oased on splitting the spacetime into spatial and the temporal
most general Friedmann background werandA. e Wit - parts using a normal vector fiefd, . The metric is written as
consider the most general imperfect fluid situation. This |n-(We put a tilde on the covariant variabjes

cludes multiple imperfect fluids with general interactions
among them. We will also include minimally coupled scalar

900=—N?+N°N,, 00.=N,, Gus=huzs,
fields, a class of generalized gravity theories, the electromag- Goo 9o Gasp k

netic fields, the null geodesic, and the relativistic Boltzmann ~00 o ~Ou N—2Nia
. . o . g-=—N"7% g “=N"“N%
equation. In order to use the gauge-fixing conditions opti-
mally we will present the complete sets of perturbed equa- = B B N 2N B
tions in the gauge-ready form. In this manner, as in the linear g7=h*"—N""N“N”, )

theory, we can easily apply the equations to any gauge con- . . . .
dition); which make t%e ﬁwpai/hematicl;al analyses 0¥ ggiveg prob\-"’her_eNa IS based_ Oty as the_me_trlc anti*” is an inverse
lems simplest. Our formulation will be suitable to handle MeUC 0fhqp. Indicesa,b, ... indicate the spacetime indi-
nonlinear evolutions in the perturbative manner. Ours will beS€S; andx, 3, . ... indicate the spatial ones. The normal vec-
a useful complement to the other methods suggested in tHer n, is introduced as

literature to investigate the translinear regimes. In the Dis-

cussion we summarize the related studies, the different meth- ny,=-N, n,=0, n°=N"! nh*=-N"IN* (3)
ods we could employ for further applications, and the cos-

mological situations where our formulation could be appliedThe fluid quantities are defined as
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E=nan,12°,  J,=—1pTo, S.p=Tas,

B 1
Saﬁ=s haﬁsi

S=h"’S,g, w8 3

4
whereJ,, andS, 4 are based oh, ;. The extrinsic curvature
is introduced as

1
Kaﬁzm(Na:B+ N,B:a_haB,O)! KEha'BKaB!

1
Kap=Kap™ 3hapk, ®

whereK,; is based orh,z. A colon denotes a covariant
derivative based oh,;. The connections become

o 1
o= 15 (N.ot NN =K gNNF),

~ 1 ~ 1
Fga:N(N,a_Ka,BN'B)v F?YB:_NKCYEY

-1
o= gN“(—No~ N gNA+K 5, NENY) +NN“

+N = 2NK*N 5+ N*AN 5,

1 1
Tp=— gNaN“=NKg+ N g+ TNNK g,

Ta —p®ao 4 Lyag (6)
By~ By N By»

whereT' ("¢ is the connection based dn,; as the metric,

(e =3h*%(hg,,+ hsy,6~Ngy,5)- The intrinsic curvatures

are based o,z as the metric:

R()(I _|~()a Y_|‘()01 '+|‘()5 |()a
_|‘( )e |‘( ) ,

MM =RM (N =hHeBRN
Reg=R yayﬁ’ RYW=h""R,z,

R=R{)- %haﬁR“‘). (7)

af
A complete set of ADM equations is the following].
Energy constraint equation

2
RMW=K*K 5~ gK*+167GE+2A, (®)

whereA is the cosmological constant.
Momentum constraint equation

_. 2
K2 K ,=87GJ,. (9)

a:B_§
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Trace of ADM propagation equation
K oN"1=K ,NON"2+N* NTI= KK, 5

1
-~ =K?-47G(E+S)+A=0.

3 (10

Trace-free ADM propagation equation

wa Nl o -1, ayn-—l_wa -1
K3 N~ 1=K & NN K NE PN KON, N

=Kig—<N:“ﬁ— %5gN:77) N~+RM* —87GS;.
11
Energy conservation equation
1 -
EN'—E N*N"'-K|E+ §S) —S*K g
+N"2(N2J%).,=0. (12

Momentum conservation equation
Ja N =0, sNANTI=J NP N71=KJ,+EN N1

+S6 5+ SEN pN~1=0. (13

B. Covariant (1+3) equations

The covariant formulation of Einstein gravity was inves-
tigated in[19,20. The (1+3) covariant decomposition is
based on the timelike normalizedi®{i,=—1) four-vector
field U, introduced at all spacetime points. The expansion
(6), the accelerationd), the rotation ,y), and the shear
(o.,) are kinematic quantities of the projected covariant de-
rivative of the flow vectomu, introduced as

=~ cevd~ -~ ~ ~ -~
[ahb]uc;d+ h‘(:ahb)uc;d:wab_" Oap=Ug;pT @3Up,

(14)

wherehp=0.,+ U,sU}, is the projection tensor witfh,,u®
=0 andh?=3. An overdot with tilde indicates a covariant
derivative alongu?. We have

~ ~ ~ 1""‘“ i
ua;b: wab+ O'ab+ §0hab_ aaub . (15)
We introduce
~a 1"’abcda ~ ~ _ ~cd
w =§77 b®cd:  @ab™ Vabcd® U,
-~ 1o -~ - o 1.
2= Ewabwab= wlw,, o= EUabUab: (16)
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wherew? is avorticity vectorwhich has the same informa-
tion as the vorticity tensom,,. We have7?2°¢d=plabcd

with 7'%3*=1/\/ —g; indices surrounded by () arid are the

symmetrization and antisymmetrization symbols, respec-

tively.

Our conventions of the Riemann curvature and Einstein’s

equation are
17

i I _T Bd
Ua;bc™ Ua;ch™ udR abc:

1.~ ~ ~
Rap— ERgabZSWGTab_Agab- (18

The Weyl (conforma) curvature is introduced as

Cabch Rabcd_

1. - -~ ~ ~ o~ ~ o~
E(gacRbd"'gbdRac_gbcRad_gadec)

(19

+ (aacébd_aadabc)-

o]

The electric and magnetic parts of the Weyl curvature are

introduced as

EabE ’éacbc;[IC d, HabE %acef’éefb;‘c’ad- (20)

N|

The energy-momentum tensor is decomposed into fluid

quantities based on the four-vector fieidl as

Tabzﬁaaab"'ﬁ(aab"_aaab) +aa‘ab+abaa+’%ab ' (21)

where

U8Q,=0=0Ty,, Tap=mpa, mo=0. (22
The variables, p, q., and,, are the energy density, the

isotropic pressurdincluding the entropic one the energy

flux, and the anisotropic pressure based on uheframe,
respectively. We have

~ ~ - ~ 1.
/“LETabuaubi p= §Tabhabv
aaE _Trcd~ Cﬁg ) %abz?cdﬁgﬁg_ﬁﬁab- (23)

The specific entropys can be introduced by dS=de
+prdv wherez is the specific internal energy density with
n=p(1+%), pr the thermodynamic pressure=1/p the
specific volume, and the temperature. We have the isotro-

pic pressurep=p;+ Where 7 is the entropic pressure.
Using Eq.(26) below we can show that

0TS= — (70+ 70 0o+ GF o+ G70). (24)

PHYSICAL REVIEW &9, 104011 (2004

Thus, we notice thatr, 72, andgq® generate the entropy.

Using the four-vecto&?=pu?S+ (1/T)q?, which is termed
the entropy flow density19], we can derive

1

T2

1 - - -
s, (Taﬁaa)aa—%(%w 70,0, (25
The covariant formulation provides a useful complement
to the ADM formulation. We summarize the covariant (1
+3) set of equations in the following. For details, see
[19,2Q and the Appendix ih21].
The energy and momentum conservation equations

ot (D) 0+ 7%+ G2 4+ 972, =0, (26)
(+P)ag+h2(p o+ 7+ )
~ ~ 4 ~
+| waptT oapt §0hab q°=0. (27)
The Raychaudhuri equation
z 1. - ~ o~ - o~
0+ §0Z—aa;a+2(02—w2)+47TG(,u+3p)—A=O.
(28)
Vorticity propagation
- 2« o~ o~ 1. ~
) by §0wa= O'gwb-f- Eﬂadeabac;d- (29
Shear propagation
hERE(Tea—a(ca) — Balp+ Wawp+ Tach+ §0}ab
1 ~2 ~2_.cC = -
- §hab(w +20°—a" )+t Eap—47Gmy,=0.
(30)
Three constraint equations
N ~ bc ~bc 2~'b - -~ b P
Nap| @ "c—0 ot 50’ +(wapt ogp)a’=87G0q,,
(31
0% ,=20"%y, (32)
i:'ab:Za(az’b)_Egﬁg(:"(ce;f+5—(ce;f)~7‘7d)gefﬁg- (33
Four quasi-Maxwellian equations
RERSED! , — 7200052 g+ BFIEWP
2.~ o~ ~ o~
:4WG(§habM,b—hgwbc;c—awabqb
~ et ey 2
+ o0+ mha’~ §0qa). (34
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GG Hbd;c+;’7abcdab'5.g'éde_ 3EeP (39 rgproduces Eq(.ll) in the ADM formulation. Equation
(38) gives EQq.(8) in the ADM formulation.
=47G{2(n+p)wi+ 720, Compared with the ADM equations i{8)—(13) some of
the covariant equations i{29),(32),(33),(34)—(37) look new.
X[Qe.q+ meel @84+ %91}, (35)  In the normal frame Eqg29),(32) are identically satisfied;

using Eqgs(14),(6),(3) we can show that
T "’ ecd a =~ (a7 b)cdée
heRGEC+ (R (e 2a,H @) ZPedq, 2.~ (nN) . 42
Tab™ cdf JEab_ F(asqTb)c Tb)c
TP Eeqt 6E B30+ ™) thusa[ﬁ;ﬂzo. Still, Eqgs.(8)—(13) provide a complete set.
. These additional equations in the covariant form should be
=47G| — (u+p)oP—2a%?) —hEhY (g% + 79 regarded as complementary equations which could possibly
show certain aspects of the system better. In our perturbation
_ o 1. analyses we will use parts of these equations as complemen-
- (wc(a+ oé"")wb’°— §0Wab tary ones. Although the covariant set of equations is based on
the general frame vector, this does not add any new physics
which is not covered by the normal-frame taken in the ADM
+ 2 (9% + 2+ 7% g 2P, (36)  formulation; see Sec. IIl E.
The covariant equations for the scalar fields, generalized
~ gravity, electromagnetic field, null geodesic, and Boltzmann
hahgHed— (Ef.hi*— 2a,ER) P44, + haboodH 4+ oHP equation will be introduced individually in the corresponding
sections later.

(.AJIH

—H@(30°+w"°)

-~ ~ ~f (g~ ~ o~~~ C. Multicomponent situation
=47TG[(qe0'ga— Wd;eh$a) nb)Cdeuc-i- habwcqC _ _ _
In the multicomponent situation we have

—3w@]. (37
Evaluated in the normal-frame Eq&6),(27),(28),(30),(31) TabZZI Tayab: Tiyan=mas El l()a=0. (43
reproduce Eqs(12),(13),(10),(11),(9) in the ADM formula-
tion. Based on the normal-frame vector, we have
Now, we take the normal-frame vector; thug="n, with
n,=0 and thusw,,=0. The trace and trace-free parts of the ZLZEI Ty 5:2 Py

Gauss equation givil]
~ 5 1, -, ~ ~ ~ ~ ~
R®=2| - 20*+ 0+ 8mGu+A |, (39) qazz dya wab=§|) T(yab- (44)

~R(3) 1R(3)h _F F = o 4 N The ADM formulation is based on the normal-frame vec-
3 8~ Tca= 00cat i) T 2y tor u,=n,. The ADM fluid quantities in Eq(4) correspond

L to the fluid quantities based on the normal-frame vector as

— —hapat.  + 87Gmyy, (39 ~ ~ - = .
3 a © a E:,LL, S:3p, ‘]a:qai SaB:’ﬂ'aB. (45)

whereR(}) andR® are the Ricci and scalar curvatures of the From Eq.(4) or Eq. (45) we have

hypersurface normal ta,; for an arbitrary vectoV, we

have E=E| Ew» S=E| Sty »
RE), VP=2V IV PV, =2heh RV (R R,V V)),
RO=ReRE, =~ RO=RPRE. (40) JaZZ Jhas Saﬁ:Z Sthyap - (46)
From this we have Equation(43) gives

R.a=hshihdhiR efgh_pcapdb+bbcpadr (41

Eq N 1—En NN"1—K|E +1S —S¥K
()0 (i),a (i) § (i) (i) N ap

which is the Gauss equation. We can show t%}},w
=R ;. Equation(39) follows from Eq.(30) evaluated in S T

the noyrmal frame. Using Eq&L9),(20) we can show that Eq. FNTENTIG):a= N (o= ()N, (47
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_1_ _1_ B —1_ ! !
TN I sNNTE I NN =K 9 =A,— 2B,—2AA,+2—AB,—B,CF
a , a a , a a o

-1 B B -1_7
TEGHN N+ Sy 5T SiyaN sN "= (i)a-

(48) + BBB[B\Q] ’
~ , a’
The ADM equations in Eq98)—(13) remain valid, with the o= Ale—pga’— —B“+A’B“—2A,BC’J‘B
above additional equations of motion for the individual com- a
ponent. Thus, in the multicomponent situation E§$—(13), . a’
(46)—(48) provide a complete set. +2Cy B + EB'E ,
IIl. PERTURBED QUANTITIES a’ a’ a’

T = —g8—-2—g¥A+B,5+CLs+2—C
B) B
A. Metric and connections @ a el e “ op a ¢

!

We use the following convention for the metric variables: a' 3y a2
+ ;gaﬁ(4A -B,B”)

§OOE_a2(1+2A)1 BOQE_aZBai

a/
- _ZA( B(alﬁﬁcéﬁz_caﬁ)
9up=a%(g)+2C,p), (49) a
. ~B,(2C415~ Cug”).
whereA, B, , andC,; are perturbed order variables and are

assumedo be based og'®) as the metric. To second order, ~ a 1 )
- ik - i &= — 8%+ =(By*—B®,)+C4%
we can write the perturbation variables explicitly as 08~ g “BT 2\°B 1B B

!

— A4 AR g4 @ —cWyc®
A=AD+A@ B, =B+BY, C,,=Ccll+Cl. LB
(50)

Ap~ 5 Bp| T2C(Brys—Clp),

As we are interested in the perturbation to second order, as o _r@a 4 a_,g(3)Ba+2ca —c, la

our ansatz, we include up to second-or¢guadrati¢ terms By By a JBY Bl ~By

in the deviation from the Friedmann background. This can be ,

extended to any higher-order perturbation as long as We_take _ ZCD;(ZC& —c ‘5)—2a—g(3)(AB“+ B‘ch)
the perturbative approach where the lower-order solutions SEZ B =By a7k

drive (work as sources forthe next higher-order variables.

Thus, in this work we ignore the terms that are higher than +B*
guadratic(second-ordgrcombinations of the perturbed met-

?EM (;F; %"’ %‘*5))’ totgg im?g(rjtllj égzdin él(l;(lgz) ?# : r;tglres where a vertical bar indicates a covariant derivative based on
) 1] ' af3 3 -

turbed field §¢) to be introduced in Eq111), etc. gfg An inde?< 0 indigateg the gonformal timg and a prime
The inverse metric expanded to second order in perturbdndicates a time derivative with respect ip The compo-

a’
B(B\7)+CM+ ZECBV)' (52

tion variables is nents of the frame four-vectar, are introduced as
~o 1 3., 1 ~ 1
~o0 L 5 W= 1-A+ A%+ -VeV,— VB, |, u*=-Ve,
g%= —(—1+2A—4A%+B,BY), a 2 2 a
a
~ 1 1
1 Up=—a 1+A— §A2+ Evava ,
goo= (7B 2AB“+2B,C), 3
u,=a(V,—B,+AB,+2VAC,p), (53

- 1 whereV* is based org®®).
g*f=—(gd*F—2C*F—BBF+4CCH). s
a

(51 B. Normal-frame quantities

The normal-frame vectar, has the property,=0. Thus

The connections are we have

!

~ a
To=—+A'—2AA'—A ,B*+B,

, a ~0 1 3 ) 1
=— B + —B|, n°==|1-A+-A?- -B“B,|,
a a a

2 2
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~a_1 a a Bra
n*=_(B*~AB"-2B"Cj),
No= 1+A 1A2+1B“B n,=0
MNo=—4a 2 2° Bafr Na=0

(54
Using Egs.(2),(3) the ADM metric variables become

N 2 2

1 1
=a|1+A— A%+ -B*B, |,

N,=-a’B,, N*=-B*+2BFCj,

a

hap=2a%(g3+2C,p),

1
hef=— (g®*F—2C*F+4CICH). (55)
a
The connection becomes

"7 =T®7 4+ (g®7°—2CY)(C 45+ Cipla— Cupls)-

(56)
The extrinsic curvature in Ed5) gives

a/ (3) , a/
Kop=— §9a5+3(a|3)+caﬁ+2gcaﬁ (1-A)
la' (s)anz_ ly
+——g (3A B,B”")—B (ZC(a‘ﬁ) @B )
1 a’ , 3a’
K=—— 3—+B“‘a+cg (1-A)+ - —
a a 2 a

X (3A%-B“B,)—B#(2C},—Cy p)

—2CF(Clp+ Baw)},
1
RMa——
B a

4
_ ay 5 _ [6 _ 6 _pB)era _
2C™(Cyyp5t Chlya~ Cpy s Chiyp) + gRUCICE—(2C],—C

1 2
ay|d @ 3 S
+2c! (Corla=Cpa) = 5% —§R( )Cy+2C07 -2

4
+ gR<3>C‘jcg— (2C§,

PHYSICAL REVIEW D69, 104011 (2004

Kap=—2a} (B(ap+Clip)(1=A)=B,(2C, 5~ Cog”)

2 1 ,
5 Cas(B7), +C)— —g(s)[(By‘er CI)(1-A)
—BY(2CJ 5~ C3,)—2C(Cs+B,»]f. (57
The intrinsic curvature in Eq.7) becomes

RU)=R+(g®7°=2C")(Cyupy+ Coplay
Ceploy~Coylap) +2C716C 10
—(2C},~C})(Co+ Cha—Cug’)
= (Cl5+ Clla—Cay N(Cis+ Clis—Cpi ),

1
(= Z RO 2C*FRE)4 2cAle _pcalh
R~ —[RO—2C R+ 20" ;—2C(P

+4C2CARY+4C*A(~CY 5, ~Cl, 5+ Cop

CJjp)(2CF|,—Calf)
+CBIY(3C g1, = 2C oy5)], (58)

+ Cvlaﬁ) (ZCBW

where

R@s, :ER(z)( 5793 559,

RO=ZROGY, RO=6K, (59

with a normalizedK(=0,%£1), the sign of the background
three-space curvature. Thus,

2
1e% \a _ a\ _ \a o 3 a__ ) a |a _ 4% _ |a
{C 718yt CEY,—CR7,—CIY 3R( JC5—2C7(CG5,+Csp™ ;= Cj5y~Ciy“ p)

1) (CH 4+ Co—Cal%) +C, 5 5C7 e

2CY° ;+4CY2 (= C%j5,— C55+C,d° +C )

¥l o€

Cgs)(2C7 — c;"s) +CY¢(3C 41— 2cy5|5)“ . (60)
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It is convenient to have

B,.

o _pa _pB®)a S5 _
B3, =B, R 56,B%  Bap,=B
(61D

(3)o
alys PR g,

C. General (u,)-frame quantities

To second-order perturbation, using E§49),(51),(53),
the kinematic quantities in Eq14) become
has=a%g53+2C s+ (V=B (Vs—Bp)],

EOOZ aZVO‘Va y
(62)

hooe=—a%(V,+AV,+2C,zVP),

’ !

~ 4.2 co9al ,
=a *|3—(1-A)+V*,+C; +5 -A°+B°B
a @ 2 a @

!

3
Vi+5—=V,

_ e’ a' _yja’ @
2C Caﬁ AC, -V*B,+V > a

(63

a’
—B,—3—B,+A + C§a> :
a ,

!

~ a
8, =A +V, =B+ —(V,~B,)+A'B,

a’ a’
—2A ,+2B!+2—B,~V/— —va)
' a a

+VA(V  ;+ By —B 1,)+2C vﬁ/+a,vﬂ)

(ValgtBgla=Bajp) +2Cap a
+2C. VP, ag=-Va,, (64)

®op=a(Va|g ~ Blajg T ABlajg — VA g1 T 2B[oA g

- B[aB,z;] _V[QVB] + B[aV'B] +V[“B:3]
+ 2V7C[7a|ﬁ] + 2Cy[avy|ﬁ])l Z)Oa

:V‘BZ)a'B y 2)00: O, (65)

-~ _ r_ (3) ! ’
~V(Bl = V(B t BBy TV(eA g +V,Copl?

2
—ACi5+2C 5V 5~ 3Cap(V?),+C])
3 ’ ’ ! ’
gA(VIV V"B V"' B, +BB/+ VA,
+V,CIP—ACY —2C%C} ) |,

Tou=—VFPo,5, 00=0. (66)

PHYSICAL REVIEW &9, 104011 (2004

In the normal frame we hava,=0; thusV,=B,—AB,
—2B*C,4. In this frame we have

h.p=a%(g}+2C,p), ho,=-a’B,, hy=a’B°B,,
(67)
9=—K, (68)

~ 1 -
=(In N)'a=(A—A2+ EBBBB) , a,=—B"A,,

,a

(69
;'aﬁz o Kxﬁ v 00a™ B’Bia/; , Tfoo: 0, (70)
Z)ab: 0 (71)

In this frame we havé)= —K and?raﬁ; —KXB. These are

natural becausk and Eaﬁ are the same as negatives of the
expansion scalar and the shear, respectively, of the normal-
frame vector field.

D. Fluid quantities

To the perturbed order we decompose the fluid quantities
as

ILEM+5/L! 5Ep+5p’ aaEaQai ;TaBEaZHaB!

(72

where Q, andTI,; are based omg%). In the Friedmann

world model we have.= . andp=p and zeros for the other
fluid quantities. We have

1%~ 2C*AT1 =0, (73)

which follows from 72=0 or §g=o. The perturbed order
fluid quantitieséu, 6p, Q,, andllz in Eqg. (72) can be
expanded similarly as in Eq450):

opu=08uM+6u?,  sp=ocp™M+5p?,
Q.=QP+Q?, M,=1+18). (74)

In the multicomponent situation, from Eq&4),(72) we set

104011-9
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_—— 1 _ 1 1
p=2 nay, P=2 Py, OTS=7K+ 51K 5-2-Q"A,~ —Q"
! cas . 5
+2—-(C“ ——Cg Q"
op=2 dpqy,  OP=2 o), 2 (C™Qp)1a~ - CapsQ (80)

For the interaction terms in Eg43) we set

Qa:2| Qyas Ha,B:El 1y ap- (75

. . T =], + . , T . = . ,
Thus, from Eq.(45) the ADM fluid variables become 'o=lmot dlior Tma=olwa (8Y)
E=u+du, where sl ), is based ing'3).
S=3(p+dp),

E. Frame choice

1 The energy-momentum tensor in the generg)) (frame
J,=aQ,, J*==(Q*—2C*FQ,), follows from Egs.(21),(72),(53):
«=8aQq a B

To=—p—du—(u+pVi(V,~B,)—Q%2V,~B,),
S,p=a’ll,;, Sz=T15—2C*,,,
L To=(1-A)[Q,+(u+p)(V,~B,)]
saﬂzg(naﬁ—mﬂanﬁ;)). (76) +(u+Pp)(AB,+2VEC, )
+ (St 8p) (Vo= B,) +(VE=BAIL,,,
From Egs.(22),(72) we have
T4=(p+0p) S5+ 15+ V[Qp+(u+p)(Vg—Bp)]
+Q%(Vg—Bg)—2C* "I, . (82

aaEaQai aOZ_aQaBal

%aﬁzaznaﬁ, 7701,,:—6121_[&58/3, To0=0. (77)

In the energy frame we s€,=0; thusaa=0. In the normal

From Eqs.(21),(72),(54) we have frame we havé]azo; thus from Eq.(53) we have
Too=aq u+ S+ 2uA+28uA+ (u+p)B*B,+20Q,B%],
energy frame: Q,=0,

Tou=—2%(Q,+PB,+ 3pB,+AQ,+11,4B7),
Normal frame: V,—B,+AB,+2B*C,;=0. (83
Top=a%(pgih+ opgi+11,5+2pCop+20pC,p).  (79)

Although we can take infinitely many different combinations
of the two frames, the energy and the normal frames are the
ones often used in the literatuf22]. By choosing a frame
(which is a decision abo®, andV,) we lose no generality.
This is because we have ten independent pieces of informa-

tion in T,,, which can be allocated to the energy dengity

(one, the pressur@ (one), the anisotropic stredd 4 (five,
1 1 because it is trace-freeThe remainingthree pieces of in-
Q,=——T,pn% Haﬂ:_z(?raﬂ_ haﬁB)' formation can be assigned to either the velotity(three or
a a the fluxQ,, (threg; or some combinations &f, andQ,, with
(79 atotal of three pieces of information.
Thus, in the normal framéndicated by a superscrif)
Equation(24) gives we have

From Egs.(4), (76) we have

~ o~ 1
wt Su=Tgn%nP, p+5p=§ha/ﬁ'aﬁ,

104011-10
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To=—u—ouN-Q"B,,
=(1-A)QY,

Fa__ Ny sa Na a\N a N
TB—(p+5p )5ﬁ+l_[ B+B QB 2C 71_[[,7,

PHYSICAL REVIEW &9, 104011 (2004

we recover the general frame energy-momentum tensor. By
imposing the normal-frame condition in E®3) we recover

the fluid quantities in the normal frame. Thus, using Egs.
(85),(86) we can transform the fluid quantities in one frame
to the other:

(84

which is consistent with Eq(78). To linear order we notice
that du, op, 11,4 are independent of the frame choice, and
Q.+ (u+p)(V,—B,) is a frame-invariant combination
[21]. However, to second order we no longer have such a
luxury. As the fluid quantities are defined based on the frame
vector as in Eq(23) the values oféu, dp, andlIl,; are
dependent on the frame.

By comparing the energy-momentum tensor in the normal
frame in Eq.(84) with the one in the general frame in Eq.
(82), we find that by replacing the normal-frame fluid quan-

opuN= 8uE+ (u+p)(VET—BY)(VE-B,),
1
5pN=0pF+ 5 (u+p)(VE BT (VE-B,),

Q= (u+p)(VE=B,)+(u+p)
X (AB,+2VEAC ,5) + (SuF+ 8pF)

X(Ve—B,) +(VEE-BAIIE,

tities with

SpuN=op+(VE=BY)[(k+p) (V=B +2Q,],

1
p"=6p+ 3 (VI =BI)[(1+p)(Va=Ba) +2Q,],

QN=Q,+(u+p)(V,—B,)
+(u+p)(AB,+2VAC, )
+(8ut p) (Vo= B,)+ (VA=BA)II 4,

Hﬂﬁzﬂaﬁﬂwp)(va—saxvﬁ— Bp)

+2Q(a(Vg—Bg) — <3>(v7 BY)

X[(utp)(V,—B,)+2Q,], (89)

I),=T15 5+ (n+p)(Ve—B,)(V—Bp)

3gfgw+ P)(VE"=B)(V5-B,);
(87)

1
S E:5 N__ QNaQN,
K K nt+p @

1
_ N_ T Na
opF= 3_u+pQ QY
SuN+ spN
+p)(VE-B,) =QN-2QNfC, j— ————
(1 +P)(VemBa)=Qu=2QCap~ — 77— Qu

N

_QNﬁ n
m+

f)—w+p><ABa+ZBﬁcaﬁ>,

we recover the general frame energy-momentum tensor.

Thus, by imposing the energy-frame conditia@ (=0) we
recover the fluid quantities in the energy frame.

Now, similarly, by comparing Eq.82) with the same one

15 =11}, Q NQB— 39‘3’QN7Q

(89)

evaluated in the energy frame, we find that by replacing the

energy-frame fluid quantitie§ndicated by a superscrifif)
with

OuE=u- ——QQ
M =0ou M+p a

E 1 1 @
op E5P—§mQ Q..

(Iu‘+ p)(VE_ Ba)E(/“L_F p)(va_ Ba)+Qa_2Q'BCaﬁ
ptp T T utp’

HE

ap=11 8 L ip QaQp— (3)Q7Q7).

(86)

F. Spacetime curvature to linear order

Although straightforward, it is not an easy task to derive
the spacetime curvature to second order. For our purpose,
fortunately, it is not necessary to have the forms. Still, it is
convenient to have the curvature to linear order and we
present them in the following. These follow from E¢49),
(51),(52.

The curvature tensors are

! !

R%00=0, R00,=— (E B, R%,s=0,
a’ ! a’ a'\’
~0 . , ,
R «0B= g( ) [ A +2 = }g( A A uip
, a’ . a’ ) a'\’
+Blaig)t 5 Blapt Capt 5 Capt2| 5| Cap:
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/

1 I\ a/ 2
= _ 3
R%, 2—92[)3 717 Balp+ 5 (Bylap™ Bplay) Rup=2Kg3+| | —| +2 ;) g{H(1-2A)
—2Cop1y» e / &
aA 9ap™ Al Blaip 2 Bralp)
- a/ !

! !

R“00ﬁ=

(03 a’ ! o [e3 1 o a ’ a'
Sg= A 05Nyt 5 (BB ) +— 087, +Clp+2—Cly

a’ 2
a)

+2C 18y~ Cllap—ACus, (90

a
’

+1a—’(B B )+ C+ g
a B B B a B

!

+2

!

Capt —05C]

a/

2 +2

’ 1\ 2

a a
Da _ @ _ |a @ _ a
R%gy =27 9671~ Big 5+ B sy 2(_a) SsBy

! !

2

1 a’ a a’ a'\’
' R=—{6/|—]| +|— —-6—A'-12 | —
—2Cg)y - a2 a a a a
r\ 2 ’
"o +| —| |A-2AA+2B" |, +6—B",+2CY
a a__ Q& (3 a
(g(3)A A+ —| o5iB
a’
a +6—C% —4KC*—2AC%+2C% .+ . (91
B)pa_ sa @ @ @ lapB
(g B~ 85Bp) a
/ The nonvanishing components of the electric and magnetic
- E(BB|“—B“|B)|7+ Cg‘ﬁ—c;jy lo parts of the Weyl curvature in E§20) are
= __®0
Eaﬂ—_c aoﬁ
r\ 2 1 1

(82957 — 0395 (1-2A) Am TBL - sCh TAC.-2KC
s alBT 5Pp T 5 apT 5 ap ap
2 2 2
+Ea_’[ G ley By )— (3)(B lep g ) +cy 1 (3) 1AA_1BV’ _1C7”
2 a 9p5(By ly |6 (alB)y™ ylaB 39 E ly 5 Y

al
+265Bg16) = 205B (g1 + =19 —gflcy —ACJ—2KCI+ C“/‘SW)
et ar! a’ @ a 1 1 (3) 1 a’
+03Cp5™ 05C 5y 12— (8,Cp5— 05Cy) = 5| VeV g9l || ame— X'+ 5x
+2C0 5. —2C% )+ Cul%5—Chyl® (89) 1 1
(Blo)y (Bly)s' =By o “Bs v , "
— W) _ _rc® _ (t)
- a! ! a/ , a!
Roo=—3<—) +3-A"+AA-B* |,— B, 1
a a a HQB:__';?O( y(s'éoﬁ) s
270 Y
" a, ’
eyl 1
— S ’
= <§Bylﬂ)5+ CB)M)
= _2a’A a’ ,B ) a’ ZB . 1AB 1BB == ( ‘I’(ﬁ)(s’LCﬁ)ﬂa) (93
Oa— E a ; a E a E a_z |aB
e . 18 where the symmetrization is only overand 3 indices. The
—ChatCup ™, last steps are evaluated in decomposed forms which will be
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introduced in Sec. V. We introducegi*?” which is based on 2 1 ,
g% with 5*#7=pl*F" and 5***=1/\g®. We have TAA g §Ca,BAA+ 4mGa’ll 5~ gg(ag
1 L Gerg@sic © Y_o0¥d
0BV paby. x| = 59 IgEK K+ A (AT=2C7
a*\1+D
1
- +CI7)+A| A-A%+ -B"B, | —2C"°A }
g=-2a%1+D)g?, ° 2 7 e
(95

D=2A+2C%+4AC%+ B, B*
a a H — 3 —CV K
+2CuCh-2C4Ck, (94) Hap={[955(1—C)+2C 551K oy

which is valid to second order in the perturbation. v v )T L s
Deriving the electric and magnetic parts of the Weyl ten- _(C(“|M+C“‘(“_C#(“l )g(ﬁ))aKW}Eﬂ )
sor to second order using Eq6l9), (20) requires quite
lengthy algebra. Instead, using E¢30), (33) we can derive — ) ) o
them easily. Evaluated in the normal frame we have whereK andK, are given in Eq(57); the symmetrization
is over onlya and B indices. We havé ,,u®=0=H_,u®,
and thusE ,o=—E,zB?, Egu=0, and similarly forH .
For later use, it is convenient to have the spacetime scalar
curvature expanded to second order. In terms of the ADM

1 ;o 1_ notation, using Eq(6), we have
-~ g(B(QW— B0+ 200K gyt —Kog,B7

1

- a’
E,z=—(1-A
B a( )

K!,—2—K,
afB a B

~ 2
1 - 2 —pM) af 2, Z a__ N\i@
T g®"K Kam SKK R=R™W+K*K,z+K +N( Kot K JN*=N*“)).
29 ayps ap
a 3 (97)
1
+| A—A%+ —-B’B, —(ZC(VC(‘,B)—CC,E")A,y To second order in the perturbation, using quantities in Sec.
2 alp Il B we have
~ K . . . A 1 o\ 1 .
R=R+6R=6| — +H+2H?| ~6HA—12(H+2H*A-2—A+2| -B%,+C;| +8H| -B%,+C;
a a a a
1 ) 1 e . 1 .
+2—2[C§|“ﬂ—(A+2K)C§]+24HAA—4A —B%,+Cy| —2(A+8HA)| -B“,+Cq
a a a

, A1 1 1 1
+24(H + 2HY) A%+ AA— A+ 2— A“A ,—BH —A B +4—A ,,C*P+ 2 A 4(2C°F  —C2lP)
a a a a a

1 1
a a a af ) 2\pa a .
+ [BlinB 6+ B ,B” ,—2(B,B#) 5] - 6HB“B,—6(H+2H?)B B,~2_8B (2Cf,~Ch.)

1 1 1 1 1

. . . . 1
+2-B% CB—2—(2C# ,—Ch )(B*+3HB®) —4—C*B, ;—2—(C**+6HC*)B, ;+2—B*
a- la=Bmc (“halp™ Vla a 8745 Bt

_BB +CB
a |8 B

|a

L . . . K 1
+C4ChH—3CAC, z—4CP Capt4HCop=25C,p +4;caﬁ(—cgmy—cglyﬁ+Acaﬁ+c;‘aﬂ)

1 1
— 552}, (2C™),~ Ci¥¥)+ —CPI(3C, 5, 2C 1) 99

An overdot indicates a time derivative with respect,twith dt=adz».
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IV. PERTURBED EQUATIONS

A. Basic equations with general fluids

In the following we present complete sets of equations valid up to second order in the perturbation without fixing the gauge
conditions. As the basic set we consider E§s,(8)—(13),(47),(48) in the ADM formulation.
The definition ofdK is

_ 1
K+3H+6K—3HA+Ci+ B,

+ 2HBeB
E a

9 . 1
=—-A|lsHA-C,— -B"
2 a

|a

+ Lge(ack —ch Y4208 E, 0t 1B
a ( alB ,B\a) ap a alp
=No, (99)

whereK=K + 6K andK is read from Eq(57).
The energy constraint equation is

1 1 2
_ 2_ __R@G — Bla _ alf _ _npB)ce
167G u+2A —6H a2R< )+ 167G éu+4H 5K az(zca s—2C3F 3R( >ca)

) 1

1 2
C.st —Bi(a C%+-B“,
B a (alB) a )

.1
CoP+ —Balb
a

2
=—5K?— + =
3 3

4
| _pB)pra
57 Cap'” T Clap)+ 3R( csey

4C°F(~C,~Cl

J’__
a2 [

—(2C}),~CYp)(2C*,~C¥)  +C™I(3C g~ anw)}
=N,. (100

The momentum constraint equation is
1
3

1
By — (RB |8
Cht 52 (B, +B,9)

.1 2
. (c;+5877) + 30K . +87GaQ,

B _ B
+(2C5 5= Cygy,)

2
~ 25K ,~87GaQ, 4

. 1
= Yo [y, Ry
A 3 +Ag Cr+ 2a(B“ +B a)}

1
By _— (RB 1B
Cht 54 (B, +B,)

1
By _RpB
Ch+-B y)

. 1 1 1
+2CP ¢, + “Blan| * g[By(cﬁv‘ajL CYB—ChN ] p+ 3CHe
1B

~y 1 Y
C“/+EB ly

+2CY| C, 5+ g +1[|35(2c7 —-C%]
yoT g Ple a sly ™ =8 e

LA
51 A |
=N,,. (101

The trace of the ADM propagation equation is

. . 1 }
—[3H+3H2+47G(u+3p)— Al+ 8K + 2H 6K — 47G( S+ 38p) + §A|“a+ 3HA

1 1 3. 1
=A6K——6K ,B*+ — K%+ —H(3A?’—B“B,) + —2[2AA|“Q+A JAC— Bﬁsﬁlaa— BB‘“BB|H+A'“(2C§|B— Chia)
a '’ 3 2 a '

.1 2
+2C*PA 5]+ Cg+—B"|a)
a

. 1 1
CeP4 —_galB| — —
a 3

) 1
C.zt —B(a
P75 (alp)

=Nj. (102
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The trace-free ADM propagation equation is

1

| . o .
Ce+ —(BY,+B,%| +3H C’+-B” | +3H
st 55 (Bt BgY) vt 2By

2

~y ! ¥ ! [y
Cy+gB ly —FA y

. 1 | 1 | 1
Ci+t — (B 3+B,%) | — A%~ =655
st o (BYt B | = AT 20

1

+— —8mGII%
a2 B

2 1 2
o o a a 3 a a ) ) 3
C™g,+C} 1", = C5l”,—CJ ﬁ_gR( )Cﬁ_§5ﬁ( 2C7;-2C]] 5_§R( )Ci)

. 1
Cpyt ;B(ﬁly)

1

A+2C +aBy(C‘”ﬁ+C;§|“—C§|7)J

.1
Ce+ —(BY ,+B,l*
B 2a( F:] B)

A+2C*”

1 1
Cpyt -Beln | + 7BHCp+CY _Cﬂy)]

. 1
Co+ —(BY,+B,"
5T g (BlsTBg")

+3H[

1

. 1 '
+| Co+ —(BY,+B,%) | A-—
8T 5g (BB | A

1 1
Co+ —(BY,+B4%) | B7+68K|Ca+ — (B ,+B*
8T 5g (BllsT B )} 8 5g (BlIsT By )}

ly

1
—AA+ S (A% B7B,)*—2C*7A 4, —(C*Y 4+ cg“—ch)A,y}

1 1 1 1 ’
@ - S| ¢ S
—55[3‘{ Cz‘f' gBy‘y A+2CY Cy,s‘f‘ ;Bﬂ& +;B (2C,¥y—035)}
=Y ! Y 3 ! ! 3oCY, Y ~Y ! Y | ! Y ! Y s
+3H Cy"rgB ly A+2CY Cy5+;By|5 +£B (ZCM—CV‘&) + Cy+;B ly A—— C + - B ly B
B
~Y ! Y ! ly ! 2 RoR |7 ) ¥é 76
K| Ct —B), |+ | —AAT o (- A%HBB,)7,~2C7A )= (2C7,~CI7)A,;
! ! b7 ly ! Y ! |
+ B, CB+—(B 4B |~ B ce 5 55 (BB,
1 S ra |a |6
+ 512C7%(C5p,+Cag” = sy~ Cs) p) + 2C7(CJ st Ciys= Cy” 5 Ciip)
4 3)a ad Sle_ a|(9 Bl |6 8 ce
—ER ClCi+(2C},—CJ ) (C* s+ Cp )= C5pCY7+2CM(Cpoy—Cpys) — —53 AC7(CS 5+ Clles
le 4 3)~4 B |6 5
—C,5. W)——R< JCIC+(2C5 .~ C,»)(2C7°,—C)%)+C7 €(2C 5~ 3C,50) | { —16mGC* 4,
EN4g_ (103)
The energy conservation equation is
. . 1
p+ 3H(pu+p)+ du+3H(Sp+ 8p) — (u+P)(SK—3HA) + —Q,
1 3
2—55M,a8“+(5,u+ 8p)(8K—3HA)+ (u+p)| AsK + EH(AZ—B“BQ)
1 B ap aB| ¢ 1
- [AQ",+Q%(2A, +Cf,—2Ch 5) —2CFQ, 5]~ 11 Capt 5 Balp
=Ns. (104)
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The momentum conservation equation is

. 1
Qut4HQu+ _[(u+P)A o+ 8p o+ 115

1
=Qu(OK—3HA)+ —{~QqsB ~ QgB”|,— (o + Op)A o+ AL 1+ P)A o= 8P o~ 11 ]
_(#+p)BﬁBﬂ| +2(C73Hay)\,8 Hycmy HﬁC ‘ _A,,Bng}

= N6a . (105)

In the multicomponent situation we additionally have the energy and momentum conservation of individual components in
Eqgs.(47),(48).
The energy conservation equation for ftle component is

: 1 . 1 1
wiy T 3H (kg + Py + S Hayot Smqiy +3H(Smay + 0Pa)) = (wqiy + Py (OK = 3HA) + —QGiyat 7 Sl iyo

1 3
== 3 OK(),aB + (i) + 0Py ) (8K = 3HA) + (miy + Piiy) ASK + S H (i) + Py (A?=B“B,)

1 1 . 1
+ 2 [ Qi At+2(C” PQiyp)1a—C lBQ(.)ﬁ 2A Qi]- H(|) aﬁ+Caﬁ>_55|(i)aBa

a

EN(i)s_ (106)

The momentum conservation equation for tkle component is

. 1 1
QiyaT4HQ(i)a+ a(ﬂ(i)+ P A T 5(5p(i),a+n(i)5\ﬁ_ Ol (iya)

1
= a{_(5p(i),a+n(i)g|5_5|(i)a)A—(5,u(i)+ PGP A o+ (gyt Py (AA ,—BPBg )
— Qi)algB”— Qi) sB” o+ (5K = 3HA) Qi) o+ 2(CP ML (1) ay) 5=~ CF M 1ya” + Chall iy,  — A plT 1y

=N(i)6q - (107

The collective fluid quantities are given in E(/5). The  gravity.
equations are presented with the quadratic combination of

the linear order terms located on the right-hand side. Still, B. Scalar field
notice that the equations are presented to second order with- _ _
out separating the background order part. 1. Covariant equations

~Equationg(99)—(107) provide a complete set valid for the  The action for a minimally coupled scalar field is given by
Einstein gravity with an imperfect fluid; thus the most

general form of energy-momentum tensor. We have not im-

posed any condition like a gauge condition. In the following f \/_{—R— —3h ~V(P)|d*x. (108
subsections we will consider the cases of minimally coupled 16wG

scalar fields, an electromagnetic field, and a broad class of

generalized gravity theories. We emphasize that even in thesg, o equation of motion follows from the variation
additional fields or generalized gravity the above equations

remain valid with the fluid quantities reinterpreted to absorb ~

the contributions from the fields and the generalized ¢~V 3=0, (109
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where V3=0V/d$. From & Ly=3\-09T%6g,, we
have the energy-momentum tensor

~ ~ ~ . - -~ - - -
T =828b= 502086~ GaV($). (110

¢+3H ¢+V 4+ 0¢p+3Hop— §5¢+V’¢¢5¢—2A¢— ¢

1
=2A

S5¢p+3HSPp—2AP— ¢

1 ) 1
—2-B%8¢ ,+ =0 ,
a a

1

1
té

=Ny.

The energy-momentum tensor gives

2

~ 1
Té‘z’=¢’6¢,a—(5¢'2—azv

~ 1
T&%’=g§g(§¢'2—azv

2A+6HA— —B“
a

. 1 1 :
—A B +B,B +3HB"B,+ —B(2C* ,—C2lF)+ 2caﬁ< —BpTCap
a ’ a a

PHYSICAL REVIEW &9, 104011 (2004

2. Perturbations

We decompose
b=+ 5. (111)

The equation of motion becomes

. 1 .
A+6HA——B“|a—C§)
a
. Y .
—C2| |+ 64| A——B*,—Cs
a

1

1 1 1
—A“—BY—2HBY—2—C ,+ —CE*| =2— 5¢ ,1,CP~ =V ,,,04*+ $B,B*
a 2C st Gk 22 0%.als > V.s6000°+

|

(112

F(o) 1 12 2 ' ’ 2 1 12 1 a

Too :Ed) +aV+¢'dgp'+a (V'¢5¢+2VA)+ 55(;5 +§5¢'a5¢)’

1 2 S 2 2 2 S ) @ 1 12 a
Ba+5¢,5¢,a+(_¢,5¢,+a2\/,¢5¢+¢,2A)Ba1
+gSN(@ 5¢' —aV 46¢— ¢'°A)+(¢'?~2a%V)C pt 8¢ .
’ ’ 2 12 1 (3) 12 y 2 2 ’ ’
+2[¢p'6¢'—aV 66— ¢d'“AlC, 5~ Egaﬁ[—&ﬁ +0h 07 +acV 44,060 +4d 6d'A

(113

—2¢'8¢ B+ ¢'?(—4A%+B.B?)].
Fluid quantities can be read from E9) as

1. S 1 .
M<¢>+5ﬂ<¢>=§¢2+v+¢5¢—¢2A+v,¢5¢+55¢2

1 1 o
+——=8¢ 0+ =V 446> —2PSPA
ol .00 5 Voo P —2¢6¢

1. ) 1.
+—pSp B+ 2¢*A%— E(sz“Ba,
a

1. S 1.
p(¥)+ 5p(¥)= Eqbz—v+ $Sp— P*A=V 460+ §5¢>2

1 1

"o 8 O~ EVM&;&Z— 2pSPA

1, , 1.
+ —pSp B+ 2p*A%— EquB“Ba,
a

1. .
Q== 2[4 ..+ 60 (56— GA)],
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1 wherei,j, ...=1,2,...n indicate then scalar fields. The
HE;%)— 8¢ o5 5— —g(3)5¢ L0 equation of motion for théth component is
(114 by o=V 3,=0. (116

We indicate the quadratic partthe quadratic combinations The enerav-momentum tensor is
of two linear-order termsas ou(@, sp(@, Q¥ andI1{¥. 9y
~ ~ ~ . -~ - ~ o~ o~
C. Scalar fields T = Ek D(),aP),b— Egabfﬁ(k)'cqs(k),c —JanV(dq))-
(117

1. Covariant equations

The action for multiple components of minimally coupled 2. Perturbations
scalar fields is

s-[ V-3

We introduce

[ 1 -~ 7 37/ "1 ~
167 GR_ 24 2 ‘j’(k)'cqf’(k)'c_v(gf’('))}d4x' b =)+ b (118
(115  The equation of motion for theh component becomes

. 1 .
A+BHA— —B”‘|a—cg)
a

byt 3HEo) TV g+ 0bi T 3HIba = —3 0ba+ Ek V 60y 0P~ 2ADG) ~ by

11
B~ C|~2-B"5d).,

=2A 5¢(|)+3H 5¢(|)_2A¢(|)_¢(|) 2A+6HA_—BQ‘ -Cc¢ +5¢)(|) A—
a o o
1 1 , (S T 1 )
+55¢(i),a EA’ —B*“—2HB _ch |/3+ acﬁ —Zgé(ﬁ(i)'a‘ﬁc —E % V'¢(i)¢(k)¢(l)6¢(k)5¢(|)+ ¢(i)BaB

1

1 1
+¢(,)[ A ,B*+B,B*+3HB"B,+ — B s(2C*, —calﬁ)+2caﬁ( Bast Cap (119

EN%).

The energy-momentum tensor gives

|
TH=52 ¢(’k2)+a2v+; (¢>(k)5¢(’k)+a2V'¢(k)5¢(k))+2a2VA+;

1
12 ,a
2 < 5 9b(9T 5 9%«

1
2 2 / a a
+ =a §|: V~¢(k)‘/’(l)5¢(k) 5¢(|)+23. Vy¢(k)5¢(k)A_ ¢(k) 5¢(k),aB + Ed)(k)B B )

N -

B +2 [86(0bky.at (— by db(o+a%V, ¢(k)5¢(k)+¢(k) )B.],

- 1
T(()?:; ¢(k)5¢(k),a_(§; ¢(k2) a?Vv

2
2 b(5—2a*V|C,p

+ga)2 (D190 (19 =8V 4, 6biiy— B0A) +

~ 1
T&dfg) = 9&3)( 2 4 > ¢>(k)

5+ by, 0 "

+ 4 3b 09,000,872l Dk SP (k) — aV¢(k)5¢(k) ¢(k)A]Caﬁ 29(3)

—_——

2 ' ’ ’ 12 2
8720V g0 P10 OBy T A(1g OB(gA— 2619 9 (9., BT+ (15— 4A +By'37)”- (120

Fluid quantities can be read from EF9) as
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1 1
= 0G0+ = 0b(y.a 0Dy
5 9% T 522 9%09.09¢ )

1 . ) . )
w4 5= 5 Ek Phy+V+ Zk (bay by — BloA+ V 008 00) + EK

1 ) _ 1.
3 Z Vi) P00 00) = 2809 0P 1At b bng.oB H

1
2 a 2
2~ 8 Ba)qs(k)},

1 1
2 ,a
> 0y~ 6a2 0 (k),a 0P 1)

1. ) . .
pl?+ 5p(¢)=§ §¢(2k)_V+Ek (¢(k)5¢(k)_¢(2k)A_V’¢(k)5¢(k))+2k

1 . . 1.
T3 E| Vo0 000 0P0) = 2809 0P AT — b9 9¢09,..BF

1 .
2A%— EBQBQ) ¢(2k)}’
1 . . .
ng’): — Ek: [¢(k)5¢(k),a+ (6¢(k)_ ¢(k)A) 5¢(k),a]r

a

1 1
i) = 2 % 0D (),a0P 10,5~ 595135)5¢>(k),y5¢(k)’7) : (121)

We indicate the quadratic parts ag(®, sp@, Q@ and tiple fields and fluids. It does not, however, include higher-

ma . derivative theories with terms likB2°R,,; see[25] for its
e le
role.
D. Generalized gravity theories The gravitational field equation and the equation of mo-

tion become
1. Covariant equations

As the action for a class of generalized gravity theories =~ Lo~~~y L
we consider Gab_E TapT 93| & 20" p zgab¢ b ¢
o I KU 1. o s S
s= f \/—Q{Ef(qﬁK,R) = 59u(@98 P + 5 (F-RF—2V)gapt F,a;b—gabF%}
I =87GTEM (123
V() +L,,|d*x. (122

=

@' is thelth component oN scalar fields. The capital indices ¢ et E(f_zv)'l + "% =L, '=T",

1,J,K,...=1,2,3... N indicate the scalar fields, and the (124
summation convention is used for repeated indit€#",R)
is a general algebraic function & and the scalar fields',

andg,;(¢%) andV(¢X) are general algebraic functions of
the scalar fields. We include a nonlinear sigma-type kinetiGyhere F=4f/JR; g" is the inverse metric of,;, T“'JK

term where the kinetic matrixy,; is considered as a Rie- =20 (9Lk+ 9k 0~ 9ok ,L), andV 7=aV/(34'). Introduc-

mannian metric on the Lnanifold with the coordina#€s The  tion of the effective energy-momentum tenddf™ provides
matter part Lagrangiath,, includes the fluids, the kinetic a useful trick for deriving and handling the perturbed set of
components, and the interaction with the fields, as well. Weequations[23]. It allows the equations derived in Einstein
introduced the general action in E§22) in [23,12 as atoy gravity to remain valid with the energy-momentum parts re-
model which allows quite general handling of various differ- placed by the effective ones.

ent generalized gravity theories in a unified maniege We note that the gravity theory in E¢L22) can be trans-
[24]). Our generalized gravity includes as a sub&gR) formed to Einstein’s gravity through a conformal rescaling of
gravity, which includesR? gravity, the scalar-tensor theory, the metric and rescaling of one of the fields. As the result we
which includes the Jordan-Brans-Dicke theory, the nonmini-have Einstein’s gravity sector with complications appearing
mally coupled scalar field, the induced gravity, the low-only in the modified form of the field potential; the nonlinear
energy effective action of string theory, etc., and varioussigma-type couplings in the kinetic part also remain. We
combinations of such gravity theories with additional mul- studied the conformal transformation properties to linear-

Tg;b:Em,J(i’J,a’ (125)
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order perturbation ifi23,26], and in the most general formin Thus,
Appendix A of [29]. Extention to second-order perturbation 1
is trivial.

SF=F 6¢'+F r0R+ 5|=,,J5¢>' 8¢’ +F ré¢' SR
2. Perturbed equations

The perturbed set of equations can be derived similarly as " E F SR (127)
in the previous sections on the scalar fields. We set o RRTT-
E=F+o6F, T'=I'+6I". (126  The equation of motion in Eq124) gives

. o1 L . .. A o : 1 .
@ +3He¢ - Eg'J(f,J—zv,J)+F'JK¢>J¢>'<+1“'+ 5p'+3H8¢' — — 5¢'—2AB + ¢'| —A—6HA+—B? ,+C*
a a

|a

1 1 L. L. .
—Eg'J[F,J5R+<f,u—2V,u)6¢L]—Eg”,LaqsL(f,J—vaH2F5K<¢>J5¢K—A¢J¢K>+F5K,L5¢L¢J¢K+6F'

: 1 .
2A+6HA—-B%,—C,
a

|a

= ZA[ 8¢'+3H5p' —2A' — ¢!

+zrsK<¢Ja¢K—A¢J¢K>+r5K,La¢L¢J¢K}

+BB,(¢' +3H@' + ') +| A-—B*,—C2
a

|a

S 1
8¢'—2-B*s¢' ,—2—C*Ps¢' 4
a ' a ’

1
+-5¢',
J0¢

1

1 1
_ A pa_ a__o_~af _ Ble n
A= B 2HB -2 Ct Gl +

1 1
—A B+BB,+ —B,(2C*# ,— CAl)
a a

1
+ ZQIJ[F,RﬁRZ"' 2F | )0RSP+(f 3= 2V ) S 58M]

1 .
+2C“'B(;Baﬁ+ Coup

1 1
+ Eg”,LaqﬁL[F,ﬁm<f,u—2V,u>5¢L]+ Zg”,LMa&a(bM(f,J—zvﬂ

+Ty

S 1. 1 L 1 o
046" ~2_¢"5¢" B+ ;5&'“5&,&) ~ 205 0" $15" — Sy g oM $TP =N,
(128

SR can be read from EJ98). From Eq.(123) the effective energy-momentum tensor gives

!/

T = Tagt 500 &7~ 5@ (1 RF-2V) -85 F 4,6 867 + 501y 5050 &
00 8’]TG'|E 00 2 J 2 a J 2 J,

1 a )
- Eaz[(f,L—zv,L)&bL—R5F]—a2A(f—RF—2V)—3§5F'+A5F—(B“|a+cg )F’

+01

1 1’ J’ 1 | J 1 17 4J' 1’ J Ll J'
500" 647 + 554154 + 5BB ¢ ¢ B ¢! 04" .| +01y 50" 56

1 , o, 1
+ZQ|J,LM5¢L5¢M¢| ¢’ +ZaZ[F,RﬁRz_(f,LM_2V,LM)5¢L5¢M]_aZA[(f,L_ZV,L)5¢L_R5F]

!

' a
— (B, +Cy ) 0F' —2B"6F |, —| —B*+2C",— c;g“) 8F ,+2AASF—2C*F5F

al
5+BYB,| F"+ —F')
a

al

+[2A ,B“+B,(2C7 5~ Cgla) +2C*%(B,p+Clp)IF ] ,
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T [T, 4000 567 2B 67 + 21— RF—2V) 1+ 6F )~ o oF ,—B,F"
87GF 2 “oa
, ’ 1’ J 1’ J’ [N L 1’ J 1 R
| Aat 7 Ba|F +0ul0¢ 647 (+Bu(— ¢ 6¢7 +AD ¢7)]+095,6¢7| ¢ 64~ 5Bud ¢
1, L a’ 1 | 1 ,
—58B,[(f =2V, )8¢"~ROF]—B,0F"—| A .+ B, |oF - EBaB—EsﬁlaJrcg SF z+B,ASF
” a' B’ B ’ B B’ ’
+2AB,F"+|2AA ,+2~AB,+ByCl —B"Bjg+ B, (A =B~ C{)|F'/,
1

F-(eff) _
Tgleﬁ)——,.

¢ +a2(f—RF-2V
87 GF gue ¢ ( )

+Cyup

Tt g gdt ¢+ a2(f—RE-2V) + 2F"+ 20 F'
ap™ 598 gu¢ ¢ +a( ) a

!

a
+2F" 42— F'
a

’ ’ (3) 1’ J’ 17, J 1 Logl" 4 J
+6F 4p= (Bajpy T Cop)F' + 0,5 91s( 6¢° —Ad & )+§g|J,L5¢ P ¢

!

1 a
+ Eaz[(f,L—ZV,L)(S(ﬁ'——R&F]Jr OF"+ — OF' —ASF —2AF"—

!

a ’
A'+2—A-B7),—C] )F }

+g.J5¢',a5¢J,B+caﬁ{Zguw"aw’—A¢"¢J’>+gu,L5¢L¢"¢>J/+a2[<f,L—2V,L>5¢L—R5F]

!

a
OF"+ — OF' — ASF —2AF"

!

a ! ’ ’ ’
+2 A'+2-A-BY,~C] )F H—(B(QB,JFCQB)(aF —2AF')

1 ’ ’ ’ ’ ! r ’
—<zcza|ﬁ)—caﬂ")<5F,y—Bf’)+g£?4§gu[5¢' 547 —4Ag! 547 +(4A°=BB ) ¢! ¢” +2B7¢! 54

’ ’ ’ ’ 1 ’ ’ 1
_5¢|'75¢J,y]+g|J,L5¢L(¢’| 8¢’ —Ag' @)+ ZglJ,LM5¢L5¢M¢’| ¢’ +Zaz[_F,R5R2+(f,LM

!

a ) ) ,al
~2V () 8¢t 54M] —2ASF | A’ +2—A—BY| ~C] |6F ' +2B75F 4| ~A7+BY + B

!

a ’
+2C7 5~ c§|7) OF ,+2C7°8F 5+ (4P~ B7B,)| F"+ —F ) +[4AA'~A B”—B”B,—2A(B",+C)

—By(zcyﬁﬁ—cgw)—zcyﬁ(sy5+c;§)]F'H. (129

The fluid quantities follow from Eq(79):

1 | . S . 1 .
o0+ 5 (o0 = = [,U«"' ~0¢' ¢’ —(f=RF=2V)=3HF + ou+g5(¢' ¢’ ~ A¢' ¢?) + —0); L 64" ¢' ¢’
87GF 2 2 2

1

. (1 A
—E(f_,_—ZVYL)5¢'-—3H5F+

~R+
2

|a

1 .1 R |
- 5F—(—6HA+—B“ +C¢ F+—gu[5¢'5¢3+—25¢"“
a a 2 a

1
X 8¢’ ,—AAP 54"+ 255%' 8¢’ ,+(4A2—B°B,) ' ¢’

o o 1
+gIJ,L5¢L(¢I5¢J_A¢|¢J)+ZgIJ,LM5¢L

1

o 1 . . )
X M ' p'+ Z[F,R5R2—(f,LM—2v,LM)5¢L5¢M]—(—6HA+ aB“|a+cg (6F —2AF)

|

1 1 _ 1 _ 1 _
—[3HB+ 5(20“ﬁ|5—cg|“)}(gaF,a— BaF) —2¥c055|:,a‘ﬁ+ 2Fcaﬁ(asaﬁ+ Cup
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p(Eff) + 5p(9ff) =

1 . 1 . . S O 1 o
p [p-i- 59|J¢I¢J+ E(f_RF_ZV)‘H:"‘ZHF"‘ Sp+giy(¢'6d’—Ad' ¢+ EgIJ,L5¢L¢| ¢’
F

ar
1 . . (1 2A .| 2(1 ) .
+—(f | —2V ) 8¢t + 6F+2HSF — R+ - 5| 6F—2AF—| A+4HA—- ~ —B“‘Q+Cg F
2 ' 2 3a 3\la

1 1 1
+ai 5¢ 57— 2A¢' 5¢p"+ (4A2 B“Bo) o' ¢+ — B“¢ 5’ , a25¢""5¢3,a

L o 1 T |
+g|J,L5¢L(¢I5¢J_A¢I¢J)+ZglJ,LM5¢L5¢M¢I¢J_Z[F,R5R2_(f,LM_ZV,LM)5¢L5¢M]

—2ASF - +C*

|a

) 2/1 . . 1 )
A+4HA- —(—B“ }(5F—2AF)+2—B“§F «
3\la a '

4
a 2 a -
+ 323 CROF gt (4A2-B7B,)F

1 _ 2 1 _
+| = —A®+B*+HB+ —(zcaﬂﬁ—cga)}(—&: «—B.F
a 3a a

|

.2 4 1
+|2AA——A ,B*~HB“B —gcaﬁ Bais+ Cup
a

1 1 1 1 .1 _ _
QM= ——1Q,—=013¢'6¢° ,+ —(— 6F ,+HOF )+ —A F— —g,,(5¢'—Ag) 6¢” ,
87GF a " a ’ oa a ‘
1 . 1. 1 .
— =gy 08 ¢'6¢p” ,+ A —3—FA ,+ —(5F ,—HF ,)
a ’ a ' a ' '
L - Lt B B ~B L B ! B -
+—A _6F+—|—(B |P—BB )+ CP|sF ,— —BPSF .+ —BPB F1,
F a0t o (B, jo) T Cla | OF 5~ =3 gt 2 B Bas
e L 1 1 T P 1 1 o
meEn= — Haﬁ+ SF aip— B(Q‘B)Jrcaﬁ F-500) ZoF - BY,+C|F |+ 501,04 .64
87GF a
2 A 1 Y 1 _ _ 1 N _
— P | —RY Y — | — — — Y — Y — —
3caﬂ a25|: aB ,+CI|F aB(amﬁcaﬁ (SF —2AF) a(zc(al,g) Cog? a5F,y B,F
1 1 ] ) 1 2
—Eg 90 54" 75¢° ,+2C7° =B, ;+C s F——C7 SF s
1 1 .
~| 2B, C | (oF - 2AF)——(2C75§ CIN| ZoF,=B,F || (130

We have used Ed78) for the energy-momentum tensor. We 1 —_
indicate the quadratic parts agu(¢™®, sp(efa) Qe Ee_m_=—z\/—_gFabFab, (131
and 1% . We note again that in this generalized gravity
the basic equations in Sec. IV i@&@main validwith the fluid

quantities replaced by the effective ones. where Fap=Aa5~Apa. The energy-momentum tensor be-

comes

- ~ . - -
E. Electro.magnetlc Tleld -|'(e Mm)_F FacFu'— ZgabFCdFCd' (132
1. Covariant equations

The Lagrangian of the electromagnetic field is given as We introduce[20]

104011-22



SECOND-ORDER PERTURBATIONS OF THE FRIEDMANN . .. PHYSICAL REVIEW &9, 104011 (2004

ﬁab:aaﬁb_abﬁa_;‘?abctﬁcﬁd’ EaEEa’ F'aEHa! (141
SO " where E, and H, are based om}). Thus, Eo=—E,B"
Ea=FapU”, Ha=35%apcd’F (which follows fromE_ n?=0), etc. For5®°¢? see Eq(94).
Equations(136)—(140) become
E?=E%E,, H?*=H%H,, E®,—a%5q=2(C*E)|,— C&|4E~, (142
q=-]%,, J2=hdj". (133 H® ,=2(C*’Hg)|,— CyzH”,
(143

Then we have . 1
E*+HE+ = n®"H g, + ¢
Fem_ LG T B2 712) 4+ 20 e B B ]

ab 2Ualb (a?b)cgdU atp _ 1
= A(E“+HE®) — aE“mBB
_ﬁanb'l' ;ﬁab(ﬁz'l'ﬁz),

1
+ER _ paBy
a?]

1 1 B ~B
B+ 2C5 | —E| ZBF,+ Cf |+

3 2 Bydr~a
X(H,A g—Hg,C) —a” 7 C,BHy\&a (144
A 1 =212
p(e.m.)ZE(E +H?), (H,oE,), (145

. 1
~eml_~  ~emgm 5q+3Hb‘q=—3HA5q—aéq'aB“er‘Kb‘q

~ - e o~ o~ . . - _ a_ocaf arcB
™= BBy P+ han(E2+F2), (134) @277 2C"p)jat ICgat A,
. . . h t (146)
From the Maxwell equations and the conservation equation§€’¢ We S€t ~
b e = ~ q=q+4dq, J.=Ja, (147
ab =j2  Fipa=0, [2.=0, 13
0= [abic] Ja (139 with J,, based orgY); J,, in this subsection differs from the
we can derive the covariant forms of the relativistic Maxwell flux term in ADM otation used in the other sections. We
equationg 20]: haveq=0.
The energy-momentum tensor becomes
E® jh2+2H,0°=T0, (136)
TH™= —(E“Ea+H“Ha),
H2 ho—2E,0?=0, (137 B
, Tg%m-): — ﬂaﬁyEBH Y,
haEP. uc=EP| w? +0o?, — =6h?
v S TEM— _E Ey—H Hy+ = g®)(EYE +H™H
ap — "EaEp—HaHp 9 s(E'Ey ¥
+ 7 Up(acHg—He) - 3% (139 (148
2. The fluid quantities can be read from H@9) as
Rt o=t 2%+ 5%, §9ﬁg)

(e.m.) (e.m.) 1 @ @
~ o _ Sulem=35ple :F(E E,+tHH,),
+ 7 Up(acEa—Eqa) = 3% (139 .
QEye‘m.): az naByEBH 7:

q,.U%+6q+hT3°. +3%,=0. (140
2. Perturbations l_[(e m)— %[ E.EgtH.Hg
We take the normal frame; thus,=n, and thusw,,
=0. Due to the high symmetry the Friedmann tiackground _ —g(3)(E7Ey+H7H y)} (149
does not support an electric or magnetic field. THasand
H, are already at perturbed order. We set We havey(®™)=0=p(em),
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F. Null geodesic and temperature anisotropy Thus,

We introduce the photon four-velocity as q

o 1 ~ v gy =70 e, (152
KO= = (vt o), k*=——(e"+ e, y

can be considered as a derivative along the background pho-

Ko=—av| 1+ % on- B,e%+ . Bab‘ea>, ton four-velocity. The null equatiok®k,=0 gives
14 14
. Sv
- Sv k?k,=1? e%e,—1+2| e*Se,— — —A+B_e*
k,=—av|e,+ de,+B,+2C,zel+ Ba7+20a55e’3 : v
(150 v Sv
5 +C,pe%e? | + sede,~ — —2—(2A-B,e")
where e* and de” are based org), and v and e* are v v
assumed to be the background order. We have
+2(B,+2C, 468 5e%| =0. (153

d ox* 9 . v Sv
_———= = — — + — — a .
PN k%, do—e%d, » do— 6e%d, o

(151))  The geodesic equatid(f‘;bkb=0, using Eq.(52), gives

Y ((av)’ ov\" v v v, a’ a’ a’
0 kP=— +|—| +2—————e"+2—e"de,+A' —2—A+| B, s+ Clz+2—C,z |’
' a av v v v v a a a
a’ ov 6v' v, Sv Sv a’ a’ a’
-2|A,~—B,|e*+——— se*+2—A'—2—| A ,— —B,|e"+ —de“Se,—25e*| A ,— —B,
a v v v v 14 a a a
a! ! a!
—4—e*Se,A+2e% 5P| Cl 4+2—C,p+Bup | —| Al 2B, p+2C5+4—C,p| +B,(2CY 5~ C, 1) [e®e?
a a a
! a/ , al
+—(4A2—B"B,)+2| 2AA ,—2—AB,+B,CS + BB, 4 | e*—2AA'—A ,B“+B*| B+ —B,| =0,
a a a
(154
~ ~ VZ ’ ’ 51} ’ !
k. ko= —| —e* +efe’ ;— de” — —e* + je” 4ef + sefe’ ,+(2Cf),— CBJ“)eBeV—(BB'“—B“‘ﬁ+zcg ye?
' a v
, ov . Ov , ov ,
+A =B — — 5%’ +2—(A—B*)—| sef+ —ef | (By*—B“ 4 +2CY)
14 14 14
+ 5P 56 4+ 268 5e7(2Cf,— Cp, /") + A'B = 2A ,CP+2C5BF —2B7A 4o
+4C(Byg,+Cp,)ef—2C5(2C5,—Cp. /2 ePe?+BY (B, +Cy,)efe? =0, (155
where we used the null equation in E453). To the background order Eq&l53—(155 give
e%e,=1, vxa !, e¥=efe”y. (156)

Using Egs.(152),(153), Eq. (154) becomes
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d[év 5
—| —+A| A e*+(Byzt+Clze%e
ayl a8+ (Bajgt Cop)
Sv v a sv: v a’ ov , Sv a’
=——————F5 —2—|A'+2-A |+ Se“+2—A ,e*+25e"A ,+4—e*5e,A—2e*5eP(B 4+ Clp)
14 14 a v 14 a 14 14 a
a’ Y ly B a’ 2 a’ B'
+|2A| B, stClz+2—C,z| +B(2CY,—C, e“eP— —(4A*—-B*B,)—2| 2AA ,—2—AB,+B;C”
6+ Capt2Cap | TB,(2Co5~Cap) 3 ) a2 8
a/
+BPB[, 5 |€“+2AA +A ,B*~B%| B+ —B,|=N,. (157
a
|
Thus, we have Sv 1
KU,=—v| 1+ —+A+ ——Q,e”
v mEp
ov © o s
—+A|| = A e*—(B,s+C.ze“e’+N,]dy, B
v AL fE (Ao~ (Bajs Cap) Ady _(OutopQutTIQP | ov o Qq
(158 (n+p)2 v u+p
. . : 1 Qa “) 1
where the integral is along the ray’s null-geodesic path from +—| B+ ap — | ——A2l. (161
E, the emitted event at the intersection of the ray and the last 2 mtp mtp) 2
scattering surface, t@, the observed event here and now.
The temperatures of the CMB at two different poin@ (
andE) along a single null-geodesic ray in a given observa-Using Eq.(159 we have
tional direction ard27,17
T 1 (Kuy,) Te v 6Tg\  oT|°
~—°E—~E(~b~—a°, (159 Pl | ) P
TE 1+Z (k ub)E o VE TE T E
5 Tg vo| Ov 1
whereu, at O and E are the local four-velocities of the =——| —+tA+——Q.e"
. . ~ Tove| v mtp
observer and the emitter, respectively. Thug,should be
Eon3|dered as. the one .based on the energy frame Whlch sets (Su+ 5p)Qa+HaﬁQB Sv Q,
g,=0; or equivalently in a general frame vector which ab- - e+ —A+ Se*——
sorbs the flux term to the frame vector to second order. (ntp)? v Hutp
Using Egs.(53),(150 we have o
1 Qa Q| 1
Fol Bt 1B ) 2
—~ ov £ ov mTP mTP E
Kiu,=—v| 1+ —+A+(V.—B,e*+ —A
v % ov 1 oT
X|1—| —+A+—Q. e |+ —
+8e%(V5—B,)+ (AB,+2C,,VEF)e” v ,u,+pQ7 Tl
1 1 T ) 1 ©
Eay/E 2 E Vo[ oV
+§V Va— EA } (160) =_ - —+A+—Qae“ +NT! (162)
Tovel v ntp

E

We have denoted the energy-frame nature by repla¥ing

with VE; if we consider Eq(86), Eq. (160 in this form is o

valid in the general frame. Since the calculations in the reswhere  @T/T)|[g=(5T/T)[o—(6T/T)|e and (ET/T)le
of this paper are based on the normal-frame vector we us& 6T/T atE. Thus, if we takeTo/Tg=vo/ve, Egs.(162),
Eq. (88) to derive the result in the normal frame. We have (158 give
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o

ST
i Té&?=f 20(p°) 8(p°pe+ mM2)pLpyf

P0123
T

\/—_g

- [ 200 05Be+ P BTV 30505 (e

)

_Qa

f [A &%= (B, g+ C.pe“e’+N,]dy+Ny.

(163

On the large angular scale we are conside(iagyer than the
horizon size at the last scattering grdne detailed dynamics ~ ) 0 oY S0 SamB 2
at last scattering is not important. The physical processes of 9(P“Pct M%) =38(gooP P"+2goaP P+ gapP“pP”+m?)
last scattering are important at the small angular scale where

where

we need to solve the Boltzmann equation for the photon — ~5(r11ass fhell - 5(mas~s shell
distribution function(see Sec. IV G |2000P°+ 2000 2|po|
. (166
G. Boltzmann equation
1. Covariant equations Thus, after integrating oves®, we have
The relativistic Boltzmann equation j&8]
/_gd3'r3123
a gt dp® of i i TO=| ——=—Pabof (167)
d_ dx of dp? of _ of e of  _ ab B PaPoT,
—f=——+ ——=p2—- —=C[f], p
dh o dh X dh gpa Poxa oeP P ip LF] °

(164  with the mass-shell conditiop®p,+m?=0.

where f(x?,pP) is a distribution function with the phase
space variableg? and p2=dx?/d\, and C[f] is the colli-

sion term. The energy-momentum tensor of the collisionless Under our metric, using? as the phase space variable,
(or collisiona) component is we have

2. Perturbed equations

!

p f’+f>“'f,a—{—(p p%+g{p“p#) + A%+ 2

!

a/
A ——B

al
3 ’ oA
—Zgg(algA-i- Ba|,3+ Caﬁ+ chaﬁ) p pﬁ

P+

a’ ) ~
—2AA ,+2—AB,—BsCE + BBB[BM) pp“
a

a’ ~
—2AA'—A ,BY+ BB/ + —B“Ba> p7p0+2
a

a’

a/
(3>(4A2 B?B,)—2A

Jf
aﬁ+c;ﬁ+2;caﬁ) B,(2CY3—C, |’/)}p pﬁ]

+

ap°

!

a'_ -
- (2—p05“+ e, pfp?

’ a ~ I~ A~
" +| Ae—B® —;B”)p“ﬁovL(BB“—B“erZC% )p°p?
2 ) o) = o _
| 5 98BI 2CE, Cpy " 7P a5a=<:[f]. (168

As the phase space variable it is convenient to uge)(*) introduced as

32(50)2
aZ(BO) 2_ m2

g=ava’(p®)?-m?

1+

1 ) 1 a%p9*
A+-BB,| - - —————
2 2 [aZ(pO)Z_m2]2
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a ~ aZ(EO)Z 3 a4('l50)4
V= pe= 2,20\2 Ap _Bapo+cap’8+ 2 L2202 Azba
Va2(p%)2—m2 a®(p°)*~ 2 [a%(p%)?—m?]?
aZ(BO)Z

~ -, 1 ~
- ( AB“p°—ACpP - EBBBBp“ +C5BFp°— —cycapﬂ

+ ~
a%(p%)%—m
1

o= = /q2+ m2a2

3 1
1-A+ —-A?- —B*B, |,
2 2

-~ 1 3
pe= 2 qy*+Vg?+m?a?Be— qChy* - Vg?+m?a?(AB+ 2C4BF) + chgC%B (169

wherey” is based org(%). The mass-shell condition gives
(P%)?=giPp PP —m?/a’+2A(p°)*+ 2B, p*p’— 2C,p“pP=0, (170

and we can show“y,=1. The Boltzmann equation becomes
/qz +m?a2

q

- q dof
f+ — y“&f’a—r(s%’l},yﬁyy -

Vo s it 2%

1 [ Vg2 + m?a?

ot
Y

YA ot (Bajgt Clp) v*¥P

= — ————(qAY*+ Vg*+ m*a’B*“—qCp»”*) of ,— [A J(Ay*+Chy#)—BPBg "]

of
+2CA(Cl g+ Bayp) Yy +B,(2CY 5~ C o) vy ]q—q+ NS

8y AyPyY+BEyY

q

2+ m2a2

+T(A'“—A,w’37”) +(By"+Cy ) ¥P— (Bp,+Cp,) ¥Py?y"

36f a’
+

Y -
3" g?+m?a?

1 1 s
1+A— 5A2+ EB“BQ)C[f]ENC. (171

For convenience we located the collision termNgp. The q*dqd, |1
energy-momentum tensor becomes (C)_ — _J S

2+ m2a2

/q2+m2a2
a + -

q

5f],
~(c) a‘dq ( (s)f f 2f
. (3 T = +8fy,ys+ —fC,
Thus, usingf v,7,0Qq=3 ¢, we have ’—2+m a Ya¥pt 31 Cus

1. - g°dqdQ,

T=— | Pabol \/2: (172 X (VatAY¥atCapy?) +BsyPy,
g%+ m?a

a

+25f y(acﬁ)yw) . (173

- 1
T = ?f Vo2 +m?a?g?dqdQ,

f(142A)+ Sf(1+2A)

From Eq.(79) the fluid quantities become

1
w4 5u(0) = _J Vo?+m?a?q?dqdQ,(f+ 5f),
a

1 g? 2q
+-——|B*B, f+ ———B_y5f |,

3 g?+m?a? o2+ m2a?
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1 *dqdQ
p© + 5p© = — 499%%

3a% /q2+ m2a’?

(f+ of),

1
Q= - f 93dqdQq(y,+ C,py?) of,

4

H(c):i _A'dadiq v,y _fg(a)

apB a4 /q2+m2a2 alp 3 apB
2
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1=2a

1 -1
A+§R(3)) (VAL

~V,ATIVAV L),

174

If we have multiple components each described by the Bolt-

zmann equation, all equations in this subsection remain valid

for any component witfi replaced byf ;, etc., and the total
(collective fluid quantities as the sum of the individual ones.and let

V. DECOMPOSITION

A. Three perturbation types

We decompose the perturbation variables as follows:

A=q,
B.=f..+B,
= (3) (v) (t)
Cop=@9apt V.alpT Clalp T Cap
Qu=Q .+ QW=(u+p)(—v +vW),

1 1
Ha = +_H(U) _|_H(t) ,
B a2 a (alB) ap

1
3
H,am—ggfy,g)AH

with the properties

B®e =0, c® =0, v¥,=0, T¥* =0,

ce =0, M« =0, cs |EEO’ nms \ﬁEO'
(176

175

3 1 1 -1
W_m —> _Z4q® e
=1, Z(Vavﬁ 39 A+2R< >)
1 -1
XATIWVIVAIL -2V, A+—R(3))
3
X (VL gy, —Va ATIVIVOIL ). (177
We introduce
x=a(p+ay), ¥W=BW+aC?,6 (179
k=05K. (179

In the multicomponent situation we have H@5). For the
individual components we have

Qiya=((iyTPiy) (—v(i),at UE?))Q),

1 1 1
— 3 t
Mayap= 2| Mir.als™ gg(apgAHm +;H§iv))(alﬁ)+n§i3aﬁ’
(180
with
(e _ (Wa _ (a_ 0B _
vy 1a=0, Iy ,=0, Mie=0, Tl =0,
(181
and
8 (iya= iyt 811, 81, =0. (182

The definitions for the scalar-type perturbation variables are
introduced to match our notation used in the linear analysis
[7,12,29; compared with our previous definitions in the lin-

o+ p appearing in the decomposition@f, is assumed o be  ear theory oup andw ;, correspond ta/k andv gy /k in [29]
the background order quantity. The vector- and tensor-typgherek is the wave number. These are the notations intro-

perturbations are denoted by superscripty éand (), re-
spectively. We assume all these variables are bas

duced by Bardeen in 198g]. A complete set of equations
N written separately for the three perturbation types will be

The decomposed variables can also be expressed in termsgsented in Eq$195—(210), where the quadratic combina-

the original variables. For example, we hgfe A~ 1VeB,,
and Bg”)=Ba—VaA‘1VBBE, etc., whereV, meansV(f).

For the fluid quantities we have
Q=A71vQ,,

Qg}): Qa_ VaAi:LVBQﬁa

1 -1
3 - a
A+ SR >) ATIVEVAIL,,,

3
szaz

tions of the linear-order variables contribute to the second-
order perturbations. Thus, to second order the three pertur-
bation types couple with each other through quadratic
combinations of the linear-order terms. If needed we may
decompose the perturbed order quantities explicitly as in Eq.
(50):

aEa(1)+ a(z)' o= (P(l)—i- @(2), (183)

etc.
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B. Background equations
To background order, Eq$100),(102),(104),(112) give

, 871G K A
H2=— y— —+ —, 184
3 P23 (184
a__4m8 ey 18
3 T(M p) 3 (189
p+3H(u+p)=0, (186)
d+3Hp+V 4=0. (187)

In the multicomponent situations from Eg4.06),(119 we
have

. 1
iyt 3H(my T PGy = — 5'(00, (188
$(i)+3H¢(i)+V,¢(i):0, (189
with
1 - 1 -
/’“(¢):§Ek PtV p(¢):§§k: iy~ V, (190

which follow from Eq.(121).

In the generalized gravity considered in Sec. IV D, Egs. :
(184),(185 remain valid by replacing the fluid quantities to

the effective one in Eq130):

(eff) —
K 87GF

T | .
,u—i—Eg,ng'(ﬁJ—E(f—RF—ZV)—SHF ,

p(efM = : p+£g ¢'¢J+E(f—RF—2V)
87GF 291 2

+F+2HF]|. (192)
For the equation of motion, E¢128) gives
. . 1 —
¢ +3Hp' — Eg'J(f,J—2vyJ)+rJK¢J¢)K+r'=0.
(192

The null-geodesic equations are presented in (E§6).
The Boltzmann equation in EQ171) gives

a2
fr=——0C[f], (193

and from Eq.(174) we have

1
u© =¥f Va?+m?a?q?dqda,f,

PHYSICAL REVIEW &9, 104011 (2004

1 4dqdQ
p@=— 499%%

—f.
3a4 /q2+ m2a2

C. Decomposed equations

(194

We summarize a complete set of equations necessary to
analyze each perturbation type. We decompose the perturba-
tion variables according to Eq175. Algebraic manipula-
tions are made which can be recognized by examining the
right-hand sides of the following equations.

For the scalar-type perturbation,

. A
K—3Ha+3¢+§x=No, (195
A+3K 1
A7Gou+Hk+ >—¢=—Ny, (196
a 4
A+3K 3
Kt —x~127G(u +p)av = ATV N =NE,
(197
. A
k+2Hk—=4mwG(ou+36p)+| 3H+ —|a=Ngs,
a
(198

H_3 ZA 71A71 a B
xtHxy—¢o—a—87G —Ea( + 3K) VEVgN,,

=N, (199

) 1
Su+3H(Su+dp)—(u+p)| k—3Ha+ aAv)=N5,

(200
[a*(u+pv] 1 1 2 A+3K
—————a—————| P+ = ——5—
a*(u+p) a a(utp) 3 a
1
= — ——A"1VNg, =N, (201

mtp
5,iL(i)+ 3H( Sy + Pciy) — (meiy+ Pgiy)

1
X +55I(I)O: N5(i)! (202)

1
k—3Ha+ —Av(i)
a

[a* ey +Pay)v i) B 1 1

a —_—
a’(may+ Py a  aluq*Pa)

2 A+3K

aZ

— A"V N o, =NE (203
ot P (e=Ng()
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A
Sp+3HSp— 208V 5006~ d(k+a)—(2¢p+3Hp)a

. : A
0yt 3HIP)— 5 9¢a) T Ek V60600 0P
- (.ﬁ(i)(K"' d)_(2$(i)+3H ¢(i))a
:N¢(i)_¢(i)No- (209

For the vector-type perturbation,

A+ 2K
2a’

1
T+ 87G(u+p)vl)=—(Ny,— VA 1VANp)
a

NS,

(206)

PO 4 2HY V) —g7GITY
=2a(A+2K) H(VgNE-V,A IV IVN, A =NE)
(207)

[a*(u+p)w®]  A+2k TIY)
+ 2
2a° utp

a*(u+p)

1

=m<N6a—VaA—1VﬁNeB>ENé"3, (208

A+2k NI, 1 Ay,

[a4(u(i)+p(i))v§f))a]' N
2
a4(#0)Jr Py) 2a

1

= ————(Ng(ya— Vud VAN 5) =NE .
MGyt Py o 0F 0

M@y TP a syt P

(209
For the tensor-type perturbation,

50 4 3HEW - e 0
Clp+3HCL)— —7—Cl)—87GIIf)

3

1
=Ngap— 5( V,Vy— ngng (A+3K) Aty

X VsN4 o= 2V (A +2K)~?

X (V"Ngg),— Vg AV VN, =N . (210

In order to derive Eqs(199),(207),(210) it is convenient to
show that

PHYSICAL REVIEW D69, 104011 (2004

(j(—i- Hx—¢—a—8nGII)

1 1 @)
2 Vo Vg— EgaﬁA

1 1
— (a2yv) —_11(0) (1) ~(t)

A—-2K
2

Cl—87GIT ), =Ny, (211

a

which follows from Eq.(103). In our perturbative approach,

the second-order perturbations are sourced by the quadratic

combinations of all three types of linear-order terms.
For the scalar field, from Eq121), we have

ould)= EK ((.?”(k) 5¢(k)_ ¢%k)a+v,¢(k) Sbo) + o',
spt¥)= ZK (¢(k) 5¢(k)— ¢%k)a_v,¢(k) S+ opl@,

1 .
QW =—(u®+p@)p@=_ 2 ; by O
+A—1VQQ(Q)’

QU = () 4+ p#)p (3) = QU — 7 A= 17 AQ(E
(212

The anisotropic pressure follows from Eq$21),(177).
In the generalized gravity theory in Sec. IV D, E4298
gives

. A N A
5¢'+3H5¢'—¥5¢'—2a¢'+¢' 3¢—a—bHa+ x

1
- Eglj[F,JéR‘*' (f 32V ) 8¢ ]

1 . . L.
—Eg'J,L5¢L<f,J—2V,J>+2F5K<¢J6¢K—A¢J¢K>

+T Y 07K+ 6T =N, (213

Equations(195—(201),(206)—(208),(210 remain valid even
in generalized gravity by replacing the fluid quantities with

the effective ones. The decomposed effective fluid quantities

follow from Eqgs.(130,(177) as
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(eff) —

S Sutgi(¢'0¢’—ad'¢’)

87GF

1 o1 .
+ EgIJ,L§¢L¢I¢J_ E(f,L—ZV,L)b‘d)L—SH SF

1 A

SRF 5| oF+
2

A
6Ha——X 3(,0 F

—87GuEMsF |+ sueha),

1

Spleh =
P T 8aGF

op+9i(¢'0¢’— ad'¢p?)

1 o1 .
+ Eg|J,L5¢L¢I¢J+ E(f,L_ZV,L)5¢L+ oF

1 2 A

+2HS6F—| —R+ = —) SF —2aF
2 3 a?

2 A
a+4Ha—§—X ZQD)F 8wGp(eﬁ)5F}

+ splefha)

1 1 s
87GF Q- ggud’ o

Q(eff) =

1 . 1 .
+ (= OF+HOF)+ —AF +QUefta),

ffo) _ ff,v,
QEle v) _ +Q£,e vq)1

_ = W
87TGFQ“

1 :
e = gogg(Il+oF—xF)+ (e,

H&eﬁv): S-GE (Hg;)_q,glv)l':)_i_l—[&eﬁ,v,@ ,
IGRE = O —COF) +IErta, (214

where the quadratic parts follow from E@L77). As an ex-

ample, from Eqs(210),(214), the gravitational wave equa-

tion in generalized gravity becomes

PHYSICAL REVIEW &9, 104011 (2004

) F
Cl+ 3H+ =

K
C(t) e ()
32 ap
1
= Eng;ﬁ 8nGIT V+NY,. (215

For the electromagnetic field we can decompose
E,=EC™+EM, H,=HE™4HO),
E@la=g=H®)le, (216)
The decomposed forms of fluid quantities can be read from
Egs. (149,(177). Similarly, for the null-geodesic equations
we decompose

se,=se ,+0ev), seWle=p, (217

For the temperature anisotropy, EG63 gives

ST| 6T OJ“F( .
—| == v ,.e" —¢' t+a e
Tlog Tl e JE
1
— - X.ajge"e’ |dy+ule J P erefdy
o
— f cl e*efdy+ f N,dy+Nr. (218
E E

To linear order this result was first presented by Sachs and
Wolfe [17]; for further analyses using our notation, $86].
For the Boltzmann equation, E(L71) becomes

~ q J6f
freo — ,ya(sf’a_F(S)a'B -
Vg?+m?a? dy
/q2+m2a2
e,
q
(v) ®’ it
+ a|g+‘1’ it Coub | ¥ YP qEZNC' (219

The fluid quantities can be read from Eq$74),(177).

We emphasize that all the equations up to this point are
presented without fixing the gauge conditions. In order to
solve the equations in a given situation, we can chaose
allowed gauge conditions suitable for the situation. In this
sense, the equations are presented gawage-readyform.

VI. GAUGE ISSUE
A. Gauge transformation

We consider the following transformation between two
coordinatesx® andx2:
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1 1 1, 1
A=xAH E(x®) =X+ [0+ § e (220 &=+ §§O o+ Eio,aém, =0t 5L o+ Eéa,ﬁiﬁ-
(228
The variablesé® and Z?® are perturbed order quantities. To

second order we may have From the gauge transformation propertygpf, and the defi-
nitions of our perturbation variables we can derive

Fa=Ea F2a (221

!

a
&+ —go) —A'E0-2A
a

!

, a
& +—§°) —A £
a

and similarly forZ% For any tensor quantity we use the
tensor transformation property betweah and x® space-

1 ! 3 ! ' ! ’ a’
times: _Baga +E§O gO +§Ova§a +§a go,a+§§0,a)
. axP. o) ooa 1 a'? ol 1
D(xE) = H(xC = 5 (x® + +3—& + | —+ — ——E&r
B =B, valX) = —0p(x), LA P Peey [ Pt
(229
IX° &XA
Tap(X )_a 3 oD ted(X®). (222
N a’ ,
Bo=B,— & T £,72AE ,~| B, +2B, |~ B,

Comparing the tensor quantities at the same spacetime point
x?, we can derive the gauge transformation property of the B B_B.&B B _ g1 £0' 0’ ;0

' . - - +2C - +2
tensor quantity. We can show that a tensor quarttians- «.pb 580 apé” ~Eab €&
forms as[31]

!
g//+2a_§/ _gO’
a a c« L

+ go,ﬁgﬁ,a+ g’ygo,ay_ §0

t(X¢) =t(x%) — £ -+ —£§t (223 a’ . )
2 —2 80|~ 5 08 - ()¢
where £ is a Lie derivative alond?. We have (3)55 ), (230
2 ~ ~ o e L
B(x) = h(x°) = &5+ § 8" Eo+ 5 E", (224 a
3 3 3 0
Cap=Cup= €053~ (aﬁ) 7= 050E T BE )

!

= ey 7 e\_ 7 Fb_T %b 1 e
Va(X®)=v,4(X )_Ua,bf —vpé at Eva,bcg £ , a o )
7| CapT2 Cap| €~ Capyt"=2Cxat" p)

00 B B B B TRE p . .
0 b o, (225 &L 5§°,a§°,ﬁ+ 9ipeE",

!

(3)§0

" a/2

Tab(xe) :Tab(xe) - 2~t‘c(azrc,b) _Tab,czc+ 2At‘c(az:d,b)’éc,d g o (3)50
a

+1gl° &0, +E ZEC,(bTa)c,d+ZTc(aEC,b)d 1 o o
ey (3) _ 3 3)
+ 257 + a gy) gaﬁ,7+2 a gv(agy B) gy(ag ]

L Fc ¥ £C
+ Etab,cdg +tab,c§ dajf- (226)
1
5 ~(3) (3) s _ o3
We define +é ,(ﬂga)vfy,é 138 5 BTE 2 aﬁ,yfy,a
P=g, =g (227) ©) 1@ e g®
' ' &7 590)yy.6T ~9ap y66 +gy(a§ B)S (231
whereg“ is based o). In terms of{® we set{®=¢° and
=({“ where{* is based org(%). Thus, we have From the gauge transformation propertyTgf, and using the
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definitions of our perturbed fluid variables in the normal convenient to have the gauge-transformation properties of
frame we can derive the fluid quantities in the energy frame where we &gt
=0. These can be derived either by applying the frame-
transformation rule presented in Eq87),(88) or directly

Jp— ’ 1\ £0 a 10040 0 sa
Op=0op—(p'+0u" )& = op (£ + n' (6767 +& &%) from the gauge transformation property of the energy-
1 momentum tensor in Eq@82) with Q,=0 in the energy
+5 W EE+[2Q%+ (u+p)21€° . (2320  frame. We have

Op=0p—(p'+0p')E0— p L£7+p (260 +£° & . :
ppl ® pl)g PRI B BT (' + 8™ )0 B 7 3 80
+ Zp"e%e0+ Z120%+ + 0,7 £0 , 233

Qu=Qu+(n+p)é® ,—Qpt? ,—Q, p¢#

~ , 1
a 5pE:5pE_(p/+5pE )go_apE‘aga_l_ Ep//é‘Ogo
Qut — Q.
a

O+ (n+pAE,

+p (806 + ¢80 ),
+[Sp+Sp—(u' +p")E%NE° A TIEE ;= (u+p)

! a’
X goyago’_{_gﬁ’agov _I_go go,a_*_ _gova) . A a/
g a VE—B,=VE—B,+& ,—(VE-B,) %4 —(VE-B)&
’ a
B £0 ,
tee 4 (234 ~(V5=Bp)& ,—(Vi=B,) g+ (VEF+£)
(3) (3) 0’ a’ 0
4 X(gaﬂ,7§y+ zgy(agy,ﬁ))+ A_g - gg

~ a
Map=ap= 211y at” )~ ( g+ Zgﬂaﬁ> S L P 34

’ a,
+[2Q(ut+ (u+p)E° 1€ p) X(28° =€)+ By| £ +3;f°) —2C 5"
l !
_ —q®) )
39l 2Q7F (T PIETIE, @39 g s

Under the gauge transformation the individual fluid quanti-

ties 5,LL(i), 5p(|), Q(i)a! H(i)aﬁi and 5¢(|) transform jUSt

like the corresponding collective fluid quantities in Egs. A . al

(232—-(239 with all the fluid quantities changed into those HE,BZHE/;_(HE/;’L 2—H5B)50_H5ﬁ’7§7

for the individual one. Using the vector natureNIQf)a we a

have 2115 ,&7 4. (239

81 y0= 81 iyo— (1iy0€%) " = (81 (1)0€®) " — 81 (iy0 0"

+ 81 iy + 110 04 [1)0(£ £+ &% L€',
(236)

From the gauge transformation @fwe have

5p=0¢— (' +5¢") &= 5¢ &+ ' (£ &%+ &)
81 ya= 8 (iya— 1 (iy0€° o= 8l (170" o — O (1a€2— O (iya, &P
_5|(i),3§ﬁ,a+|('i)o§0,afo+|(i)0
X[(£° 49"+ (£ 59 o]. (237 _ ,
Using the gauge-transformation property of the vector quan-

The fluid quantities we use in this work are based on theity k? similar to Eqs(222),(225), and using the definition of
normal-frame four-vector Wher§a=0 [see Eq.(83)]. It is k2 in Eqg. (150, we can derive

LB (239
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ov v a’ v v  a OV o L (a"  a? ,
—= s2 880 et — 0 — | 0 — 0| - e et ) | -3 e e
v v v a v ’ a a2 '
a’' , a’'
&0 | e m2—et || gt =g m 280 8 el 0 e (240
, a , P , B85
~ ’ ' ’ r a, ’ 51/
Sev=0e"— £ e —2—e® | — ¥ + £ gef—e” jEP— 0| Se* —2— e | — &Y — + &7 yoeP— se” peP
a ’ ’ a v ’ ’
’ ’ a, 1 " a’ ’ a” a,z " ' ’ ’ r
+E%0 &% e —2—e | +&% e —2—e* —| ——3—|e¥ |+ —2—£7 ¢ gefret pff
a 2 a a a2 a ' ’
, a’ ,oal 1
+ &P e ’ﬁ—ZEe‘“‘B — & 4 f —ZEeﬂ + &P Ee“,ﬁygy—g“,7e7’ﬁ+e”‘,7§7’3
’ O a/
TET g 8T | €7 m2 et ] (241)
|
Using the scalar nature of the temperatiirand Eq.(224) 1 m2a?
we can show that 5 0 sy Pl (244)
ST(X®) = ST(X®)— (T + 6T") &%~ 6T ¢
, 1 R Vg?+m?a?
+Tr(§0 §O+ éo,a‘fa)—i_ E-rngOgO_ (242) Y= ,ya_i_T(gO,a_gO’ﬁ,yﬂ,ya)
Using the vector nature of the electric and magnetic vectors N 1 N 1 | g
and Eq.(225 we can show that +1 &% g~ 55 1B~ Efﬁ Y (249

Ea(X®)=E (X8 —EL&—E, sP—Exe ., (243

As y* always appears together with perturbed order terms
multiplied, it is evaluated only to linear order. From the sca-

lar nature off we have

and similarly forH,. Thus,E, andH, are gauge invariant
to linear order.

Since pA=dx®/d\, under the gauge transformation we
havep?=p?+ £ ,pP. Using the definitions ofj and y* in
Eqg. (169 we can derive

X Vg2 +m? a Vg2 +m?a?
q=9 +-—§° B —
q
/ a’ q2+m2a2
XE | v | A=+ — &0 —Cpf |+ ——
’ a q
1 , a’
o I A P
) 2 ) ’ a '
oo & o (1a 3g°%+2m? a'? 0.0
+ + H e
R L i Pl ey I
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T(xe,q, 79 =T(x®

St=of—

4,79 =T(xe+Z,.q+ 89,y + 6¥9).
(246)

At the same momentum space and spacetime point, we have

oo ;1
F1E0—1 qo0-+ 17 €% + S 17£%¢0+ 21" (£%6q

1
1,000,080+ 5 fqq00° = 6 &= 5f a8y (247)

] Using EQs.(244),(245),(229 we have
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a’ /q2+m2a2 . q2+m232
Tg ,a'ya _qf,q T

5f:5f—"f'§°—q"f,q(—§°+
a

q2+m2a2
| A A
q
1 2g°+m?a?
B S st P
2 9

— 82— %

( a2 /q2+ m2a2a’
X

a q a

+1/£0¢0 +

Notice that with our phase space variables introduced in Eq.
(169 the distribution functiorf is spatially gauge invariant
to linear order. We can check that the gauge transformation
property of 5f in Eq. (248 is consistent with the gauge

0’ a
& ot §§

q2+ m2a2

1
Ef”gogo— Sf (&%= Of La

PHYSICAL REVIEW &9, 104011 (2004

& Ly (A=) —ChyP]

0.0 1 a” 3g%+2m?a? 00, a’ 0.0 1, .
+ o — + - “
£&¢ 22 qPrmia £+ a§§ 2§,a§

2q2+ m2a2 a/2

— &0 L a—fof Yt quf
a2 /q2+m2a2 a o 2

0 0 _a.p ,Oa’ovq2+m2a20 «
& & gy Y| +2af" (¢ ;f +T§ Y

1 1
(=& Py | €5 €% 553|a> s (248

e - )42

1 -1
4+ —_R®
A 3R )

X (VBC§QB_ VQA_:LVVVBngB),

transformation properties of the fluid quantities identified in

Eq. (174).

We further decomposé, (and similarly for¢,) into the

scalar and vector types as

o 1
t) _ t 3 3
8=ClhCeap 3OO 5 W%~ 3050

1 _
£, __g +§(U) (249 X| A+ zR(g)) (3A71V’IV5C§75_ ngy/)
1 -1
with €% ,=0. In order to fix the gauge we can impose ~ V| A+ —R(3)) (V'Cep),— V)
three conditions on three variables such that these conditions 3

can fix£?, &, andé?) . We call these conditions fixingf, &,
and 551”) the temporal, spatial, and rotational gauge-fixing

conditions, respectively.

The decomposed variables in E4.75 and others trans-

form as

S
a=a—2(ag) +A;,

ys 0 1 , -lya
p=p-&+|S¢| +aveBy,,

BW=BW+¢W)' +B,,—V,AVAB,,

1

11
Y=y S+ 5| A+ 3 R<3>) (3A71Veve

X Cfaﬁ_ ng)i

!

- a °+1C“ 1A
P =@ ag 3 a 6

1 -1
+ —_R®
N

X(BATIVVAC,,5—Cl),

XATIVIVIC, ),
Sp=du—p' £+ S,
Sp=3p—p’' &%+ op;,

1
v=v—¢&"- TpA VQsa.

1
o) — )y T — -1lyB
v\W=p\W4 Qea— VLA VPQyp),
a a p( & §B)

. 3 1 -1
— 2 3 - a
=11+ 7a A+§R( >) ATIVVAIL,g,

=10+ 24

1 -1
A+ §R(3)) (VP gp
—V,ATIVAY L. ),
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() (0 3 1 @ ~ S e TR 1,
Haﬁ:HaB_Hfaﬁ_E Vavﬁ_ggaﬁA 5/1‘:5/*1‘_/*1‘51 6p:5p_p§1 U:U—af.

1 -1 -~ ~ .
X(A+§R(3)) ATIVIVI s =11, &¢=op— ¢,

Lo v BUI-BY+aEy), C-Cl- g,
~Via| A+ 3R] (V71lgg,— V)
GO g Oy 0) O

XATIWVIVIL,,),
. c=ct,, 1nW=n. (252)
5h=0¢—¢' £+ 5, g el el

. 1. Temporal gauge conditions
Sv S , ! S - " - .
or_ _V+§0 +2a_§0_§0 L%+ ﬁ, The temporal gauge-fixing condition, fixing, applies
v.ov a ' v only to a scalar-type perturbation. To linear order, we can
impose any one of the following temporal gauge conditions
to be valid at any spacetime point:

!

. 1 a
de=de— —¢' + S £-A1Y,
a a

! a,
go( ev — 2—e“)
a

synchronous gaugea=0 — £(x),

1
+A1{5A(§,a)e“+2K§£f’e“—e“|3a comoving gauge: v=0 — £&=0,
1 zero-shear gauge: y=0 — ¢'=0,
X| —gP+ VB 1V, 5ef ], . _
a uniform-expansion gauge: k=0 — &'=0,
5@55): Se,— de ,, uniform-curvature gauge: ¢=0 — ¢'=0,
5‘7':5T—T’§°+5T§, uniform-density gauge: du=0 — £'=0,

glem_gem A-iyeg, uniform-pressure gauge: s5p=0 — £'=0,

. uniform-field gauge: d¢=0 — &'=0.
EV=EW+E,,—V,AVPE,,, (253

_ of [a’ Vg?+ m?a?
Sf=of—q—| — &0+ —— 0y~
Jaql\ a q '

Except for the synchronous gauge condition, each of the

+5f other temporal gauge-fixing conditions completely removes

the temporal gauge mode. In the multicomponent situations

(250 in addition we can choose one of the following conditions as

the proper temporal gauge condition, which also removes the
temporal gauge mode completely:

whereA; indicates the quadratic parts of E§29), and simi-
larly for other variables. Fobf we usedf’=0 which fol-

lows from Eq.(171) for C[f]=0 to background order. Sp»=0, p}H=0, vyH=0, J¢;}=0. (254
Usingt instead ofy (indicated as Pas the time variable,
from the definitiondt=ad» we can show that All these variables which can be used to fix the temporal

gauge freedom in fact do not depend on the spatial gauge
transformationé and thus are naturally spatially gauge in-
variant.

The following are some examples of combinations of
variables that are temporally gauge invariant:

1 1
gozagt(l—EHgt). (251)

B. Linear order

From Eq.(250 we find that the decomposed metric and . 1
matter variables transform to linear order as Spy=du—pav, @=¢—Hy, v,=v-_x,
- ) R 1 & . 1
—q— & =g— ¢ 2 S H H
& ¢
o=0o—HE, y=x—¢&, x=x+ 3|'-|+£2 &, These are _comple_telyi.e., both spatia_lly and temporally
a gauge invariant to linear order. Any variable under any gauge
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condition in Egs.(253,(254) (except for the synchronous gauge and th€ gauge, respectiveljp]. These gauge condi-
gauge has a unigue equivalent gauge-invariant combinationtions are imposed so that we have

For example, we have
B gauge: B,=0,

¢X:¢|XEO' (256)
, . , C gauge: C,z=¢g'}+Cl). (260
Thus, ¢, is the sameas the¢ variable in the zero-shear
gauge where we sgt=0. Apparently, theB gauge conditions fail to fix the spatial and

All the equations in Secs. IV and V are presented withoutotational gauge modes completely; thus, even after impos-
imposing any gauge conditions. The equations are arrangeflg the gauge conditions we still have remaining gauge
using the above variables in E¢253), (254) which can be modes. In contrast, th€-gauge conditions successfully re-
used in fixing the temporal gauge condition. This allows usmove the gauge modes. To linear order, the variaplesd
to use the various temporal gauge conditions optimally de\pgyv) introduced in Eq(178) are natural and unique spatially
pending on the situation; thus the equations are presented jjge-invariant combinations. Notice that in tBegaugey
a sort ofgauge-readymanner. Usually we do not know the 5 the same aaB, and¥® is the same aB&v)_ Thus, the3

most suitable gauge conditian priori. In order to take ad- and B&u) variables in theC gauge conditions are equivalent

vantage of the gauge choice in the most optimal way it i the correspondingspatially and rotationally gauge-
desirable to use the gauge-ready form equations presentedinVariant combinations/a andw® respectively
this paper. Our set of equations is arranged so that we can a '

easily impose various fundamental gauge conditions in Egs.

(253), (254), and their suitable combinations as well. As we C. Second order

have so many different ways of fixing the temporal gauge 1. Gauge conditions

conditions it is convenient to denote the gauge condition, or . .
equivalently, the gauge-invariant combination, we are using. T We use any one of the gauge conditions which com-
Our notation for gauge-invariant combinations proposed irP'€tely fixes both the temporal and spatial gauge modes to
Eq. (255 is convenient for this purpose in the spirit of our linear order, the_ gauge tr%n_sformatmn properties of the
gauge strategy12,29. The notation is also practically con- Second-order vanable_s,_saa? in Eq. (183, follow exactly
venient for connecting solutions in different gauge condi-tN€ Same formas their linear counterparts. Using the trans-
tions as well as tracing the associated gauge conditions ea@rmation of ¢ in Eq. (239 as an example, to linear order

ily. Compared with the notations for gauge-invariantWe have
variables which were introduced by Bardg&n7], we have .

y Bardd@] SHW = 50— 7 ), (261)
€m=0,=0u,lu, Yy=0o,, vO=kp |
" nTe s X If we take gauge conditions which removix) £° and &¢
completely to linear order we haw®®=0=¢*(1), Thus,

A
pr{D=sp, pmi¥=- gn, (=ps, (2570  from Eg. (239 we have
8D =542 — ' (), (262

etc.; we ignored the harmonic functions used[@. The
perturbed curvature variable in the comoving galiyeften
used in the literature is the same as @yr, which is the
same asp,, in the scalar field.

which shows exactly the same form as in E861). Thus,
the gauge conditions in Eq$252),(254) apply to second-
order perturbation variables as well, and we can impose simi-
lar gauge conditions even to second order. For example, in
the zero-shear gauge we impgge 0 as the gauge condition
The spatial gauge transformatiogsand £ affect the to second order and thug™=0=x(?; unless otherwise
scalar- and vector-type perturbations, respectively. Due tonentioned, we always take ti@ gauge for the spatial and
spatial homogeneity of the background we have natural spaotational ones. In this gauge condition the gauge transfor-
tial gauge-fixing conditions to choo§g]. We have two natu- mation properties are completely fixed, and the gauge modes
ral spatial gauge-fixing conditions. From E@52 we can do not appear. Thus, we anticipate that each variable in that

2. Spatial gauge conditions

see that gauge condition has a unique corresponding gauge-invariant
combination of variables. Thus, using, we have that
B gauge=0, BW=0 — &(xt)xa, £Y(x), ¢l —0c gauge S free of gauge modes. We denote the corre-
(259 sponding gauge-invariant combination as
C gaugey=0, CW=0 — ¢=0, &V=0. @y (263
(259

with the C gauge condition assumed always. To linear order
For B8 we have considered a situation where the temporalve havee,=¢—Hy, but to second order we need correc-
gauge condition has already completely remogedVe call  tion terms to makep, gauge invariant. Construction of such
the spatial gauge-fixing conditions in Eq258),(259 theB  a gauge-invariant combination will be shown below.
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From Eqs(57),(58), assuming the pure scalar mode in thewhich follows from Eqs(252),(249), and moving terms with
C gauge we can show that carets to the LHS. Now, coming to the temporal gauge free-
dom, if we want to consider the uniform-field gauge we take

Kaﬂ: _(l_a)X,a\ﬁ+2X,(aQD,B)

o__ L o
& (86— 059¢), (269

1
— 30— (L-@)Ax+2x7, ], (264 ¢’

1 1 which follows from Eq.(252), and move terms with carets to
RO = _Z{R(3)_4 A+ ER(3)) ® the LHS. Then we have the gauge-invariant combination
a
1 M’ MI a (v)a
+16¢p| A+ ZR(?’) o+60 %0 ,|. (265 5M5¢E5M_$5¢_ 5ﬂ_$5¢ (y*+C%)
_ 1 ’ ! 1 ! ! 1
Thus, the gauge conditiop=0 impliesK,;=0, justifying ——| Su— 'u_(gqg) Sp— _(’u_) — 5¢?
its name as the zero-shear gauge to second order. Similarly, o' o 2\¢') ¢’
the gauge conditiop=0 impliesRM = (1/a?) R®) (we also 1
have R)=3R®g%), justifying its name as the uniform- PRy
curvature gauge to second order. We can show that the names a2 "
of gauge conditions in Eq253 remain valid to second or-
der. ,
In the perturbative approach, apparently, this method can =Su— “_,5¢+ 5M(§q)_ (269
be similarly applied to any higher-order perturbations. As ¢ ¢

long as we work in any of these gauge conditions, the gauge
mo_des are com_pletely removegl anc_zl the behawor_of all thgye have s 5= 5M|5¢<1)=o=5¢(2) ¢ gaugs thUS Su s, is the
variables is equivalently gauge invariant. As the variables arg;me assu under the gauge éonditior&;b(l): 0=5¢?

free of gauge modes, these can be considered as physicallyq theC gauges. If we want to take the uniform-curvature
important ones in the particular gauge conditions we choosgyayge to linear order we take

We can also choose different gauge conditions in secon
order compared with the ones imposed to linear order. Ex-
amples will be shown below. o__ & ~
&=—gle—9) (270

2. Constructing gauge-invariant combinations

Let us explain a method to derive the gauge-invariantwhich follows from Eq.(252), and move terms with carets to
combinations using an example. Since the gauge transform#ie LHS. Then we can identify the gauge-invariant combina-
tion properties oféu and 6¢ are available in convenient tion
forms in Egs.(232),(239 we consider the gauge-invariant
combinations involving these two variables to second order. ,

!

Thus, we consider the case with a scalar field. To linear order Sp——¢p—| S _’5¢) (y @+ Cwey
we can construct various gauge-invariant combinations in- ¢ ¢ W
volving Su, and as examples we consider two cases '
a M/ !
' - 5M——5¢) @
M , a a/ !
Ohsy=Ou— g7 06, S =ou—=' 7. (260 ¢
'\ a 1 a
o o = S| oPp—sd' e|e
Clearly, the combinations in Eq&66) are not gauge invari- @' a 2 a

ant to second order. In order to construct the gauge-invariant
ination i e 1(2) — ~ 1 a 1 a ¢

combination in the gauge with¢'“’=0, we constructdu 2 —| Sp——d'—o]| o.. (271)

—(u'l¢’)d¢ using Egs.(232),(239). Then, on the right- 2" a 2 a '

hand sidgRHS) we have a quadratic combination of linear-

order terms invplving,}0 andé&®. As thg spatial _and rotational This combination is equivalent @ in the following gauge

gauge we consider the gauge conditions, which remove the ¢qngitions: 5¢=0 in the linear and pure second-order part

corr.espondmg gauge modes completely. This can bﬁ.e., Su@—(u'14")66@)], and ¢=0 in the quadratic

achieved by taking parts, and th€ gauges. By replacing the linear-order part of
o Eq. (271 with suM—¢'(a/a’) oM we can make another

g=—(y o+ CWa) 4 yaqpce (2670  gauge-invariant combination:
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' 3. Gauge-invariant variables

a M
=51 = 45— H1) ) 542 . . .
Ot o), 5¢2)= Ok ‘f”a, ¢+ op Y 8¢ Now we present several useful gauge-invariant combina-

tions explicitly. We assumB® =0 and pure scalar-type per-

!

) ot ~(o)a turbations. We take the spati@lgauge,y=0. As long as we
—| ou— X&ﬁ (y*+C%) take the temporal gauge which fixé¢8 completely, we can
@ set¢,=0. The metric becomes
a 6 /1// 5 ! 1 ,
; K z ¢ ¢ A=a, Bazg)(,av Caﬁ’: (ng[% (277}
r'\a 1 a From Egs.(229—(235),(239 we have
|\ S|P dele
¢') a 2 a 1 a’ 3
1 a 1 a \=@ a=a—g(a§0)’—a’§o—2a &0 +;§0 +£§0 &0
—2—2¢'—,(5¢>——¢>'—,<P © o
a a 2 a ’ n 12
I a ’ a a
(272 T 3 | — o — 501,
a 2\ a g2
which is the same a8 ,(1)- o= 54(2),c gauge The calculation
becomes simpler if we take th& gauge condition: this sets a’ a’ a’

y=0=C"), thus we can simply sef,=0 (¢=0=¢).
Similarly, we can construct diverse combinations of the
gauge-invariant variables: several useful gauge-invariant

p=¢—— &%+ —¢'—2—+ —¢°
a a a

” 12
combinations will be presented in the next subsection. E a_ a_ 0 E E a0 _E )
, - N + + &+ XE T SEE
In the following, as in Eq(269), a gauge-invariant nota- 2l a g2 2\a 2
tion, say,¢, , indicates a combination that is equivalenizto
in the comoving gaugev(=0) to all orders(thus,v"=0 1 5 I
=v@) and in theC gauge. In order to denote gauge- _EA vev gX,af ,ﬁ—Ef «& gl

invariant combinations valid to second order, we introduce

the following notation: . a’
@ @ x=x—ag’+a £+ —¢+arive
e,=¢—aHvt+e, o¢,=o—Hx+e”,
1 ! 1 ,
: 1 X| =2a€ ,~—| X'+ —x| € Zx..&
5/-'Lv55M_MaU+5/-'Ll(;q)v UXEU_5X+U(q) @ g a @ at¢

X !

(273

1
Tooag0 T £0,as0
X 58 .

etc., where the uppdn) index indicates the quadratic com-
binations of linear-order terms. In the following we always
take the spatiaC gauge. We note thaiu® is the quadratic
correction term to makéu, a gauge-invariant combination

to second order; thus it differs from, sa(? — pav@. As

@, is the same a in thev=0 gauge, we have tha(?
vanishes under the=0 gauge, i.e.,
o,=¢],-0=0. (274

Using the definition of our gauge-invariant combinations we
can show, for example, that
e,=¢—aHv+oP=p —aHv,+o| , (279 -

where in the second step we have evaluated the first step in
the zero-shear gauge. Thus

(Pz()q)|)(: Py — ((PX_ aHvx) = ‘Pz(;q)_ ((Pg(q)_ ava(q)),
(276
and similarly for other correction terms.
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PU arZ A
k+| 3——6—+ —| &%+ quadratic terms,
a
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Su—p' &= ou' O+ ¢
1
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; , o Lo 1 [ .. 1 .
5h=00= '8~ 6"+ 4 5L @18y —y— x|+ HE D [y e D
a utp 2a mtp
1 . Oy
In the transformation of we have used E¢201). We have XX+ =AY 20, x 0t X (X —HX) — X
ignored the quadratic terms in the transformatiorkofthis a KTp
can be read from the definition af 1 1
- —— 1P, - EAI) x 4
2 a a )
k=——|3¢'=3—a+——(a+t2¢)| 3¢+ — a 1 3 :
a a 2 a A Y S ey — A Lyeys 283
+ 4 a2X X,a az (X,aX,B) ’ ( )
3a’ 1 1
+ =3 X Xa| = =X Ca|s (279 o
2a a a 1 wtp
XUEX—aU—EaZ H-——]0v?
which follows from Eqs(179),(57). ptp
Following the prescription in the previous subsection, _ _
from Eg. (278 we can construct the following gauge- +aA VY —2a,v o= (Xy+HXy) oV — X.a0
invariant combinations:
Sty 1 1
. 1 + Vot = ——(1F = 8EATv 4
QDXEGD_HX_(<PX+2HQDX)X_E(H+H )X mtp a‘ putp
1 1 1
1 +-a?A Y - —x* ,—Zv %,
+ E[X'“X,a—A’lV“VB(X,aX,ﬁ)] 2 a 2
) . 5 1 1 ’
+HATIV2a,x o+ (X—HX)X,a] FIATVEVA “X b T SVl s | (284
1 1 1 ’ . . . .
+—a?HA ! XX a—3—2A‘1V"Vﬁ(X oXp) | To linear order,s, (equivalently,é in the comoving gauge
4 a Cooa s behaves like a Newtonian density perturbation, andand
(280 — ¢, (equivalently,v and — ¢ in the zero-shear gaupee-

have like the Newtonian velocity and the gravitational poten-
_ . tial. Also to linear orderp, is known to be the best con-
e, =¢—aHv—(¢,+2H¢,)av served quantity on the super-sound-horizon scale. For

1 L 1 extensions of these results to second order, see Secs. VII C
__ H+2H2—HM— a%%+ — (2y—av)“v and VII D, respectively.
ut 4a “ In the case of a scalar field we have
1 H 1 8¢ 1 [a’H\| 6¢?
_EA WeVA(2x—av) v 4] %FQD—.—5¢——2(32<P5¢)'.——ﬁ(.—) —_
) a ¢ A\ ¢ ¢
O, 1 1
A vA1
+aHA™V M—f—pv'a + . X,ab‘(ﬁ’a__.ﬁqs,aéd)ﬂ
2a°¢ 2¢
o1 B B 1
+ = ——I'F —SCAI , 281 loa
a2 M+|O( a a )U,B ( ) — A lyeys X,a5¢,ﬁ_ £5¢,a5¢,ﬁ) 1' (285
& du, 1luH ¢ 1 ¢? [a?H|
8,=6— —av— —av— - — —av? O0p,=6¢p— —o— —6bot | —| @
P P 2 uH H™ H 2a’H?\ 4
BAP o P cagd O B
u v U,a u M+pv,a ZaZHZ X QD,a 2H(P go,a
t 1 B B 1 B !
+———I'" — 6CAIl , 28 —AT VeV P . 286)
a2 M+p( o O )U,B (282 X,a® B oH P aP B (286)
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Thus, to second order we ha\@,;qs#—(H/éﬁ)&ﬁ‘p. By
evaluating the RHSs of Eq$285),(286) in the ¢=0 gauge

and 6¢=0 gauge, respectively, we have the following rela-

tions between the two gauge-invariant variables:

H H _ 1 (&)
¢5¢:_;5¢¢+E5%5%+ —| 695

22\ ¢

1
2a%¢

1

+ qu’aad)qp,a_ £5¢¢’a5¢¢,a

—A~lyeyh

1
X(p,a5¢¢,ﬁ_ Z 5¢<p,a5¢<p,ﬁ) ‘| ’
(287)

a’e\’
H

¢ ¢ 1
0b=" 1 PooT 2 Po0PosT 222H

2
Psg

1

2H

¢

- 2a%H?

X5¢'a<P5¢,a_ ‘P5¢'a‘P5¢,a

—A~lyeyh

1
Xop,aPosep, B ﬁﬁpﬁ(ﬁ,agpﬁdz,ﬁ) } .

(288

To linear order 8¢, (equivalently, 5¢ in the uniform-

curvature gauge most closely resembles the scalar-field

equation in the fixed cosmological background metiid].
Since 6¢=0 implies Q{?=0 (thus v(?=0), we have

®s54= ¢y from Eq.(114) we see that this is valid to second

order.

4. Spatial gradient variable

The covariant density gradient variable
(289

is gauge invariant to linear ord¢B2]. In [32] the energy
frame is taken. Using the, frame in Eq.(53) we have

A

- e M e E
=155 % ot (Va~BatAB+2V PCup)

+ (290

5'+“—'<6—A>}<VE—BQ>],
o

where we sefl ,=A, with A, based ong{); from u®A,
=0 we haved,= —V“A,,. From Eqs.(85),(86) we see that

PHYSICAL REVIEW &9, 104011 (2004

1 { . rQu w' Ql
Ag=—i{ N +— —— 4|5+ —(6-A)
1+46 M optp M mtp
QYR . (s 3p)Q
wlatp) o (prpEn KT ORI
+HaBQNﬁ]] . (291

Thus, under the conditio,=0, we haveA,=46,/(1
+6); Q,=0 can be achieved by the comoving gauge con-
dition (Q=0) and the irrotational condition@"’=0); see
[33] and the note added in proof §21]. Under the gauge
transformation, either using Eq&32—(235 for Eq. (291

or using Eq.(238 for Eq. (290, we can show that

A=A, —ALE—(ApeP) =20, P, (292

Thus, A, is not gauge invariant to second order. To linear
order, the scalar-type part becomas,= 4, , where the
gauge-invariant combinatiod, is the same a$ in the co-
moving gauge.

VII. APPLICATIONS

A. Closed form equations

From Egs. (196),(197), Egs. (197),(200,(201), Egs.
(199, Egs.(199,(201), and EQgs.(195),(197),(199 we can
derive, respectively,

A+3K

" ¢, +4mGou,

A+3K 1
= ¢§(q)+4w66M§Q)+ZN1—HN(S),

(293

. A+3K
opy,+3H6pu, — ——[a(u+p)v,+2HII]
a

6 is frame invariant to linear order, and we ignore the super-

script E in such cases. Using the prescription in E&g) we
can expresd , in the normal frame as

" (a) @_ 23K (@
=5,uuq +3H5,uvq — 22 a(,u,+p)v)(q +Ng
+(p+p) (NP +3aHNY), (294)
@t CYX+87TGH=§D§(q)+ ag(Q)—NSS)
or
¢, +a,+87GIL,=—N), (295
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. 1 Sp, 2A+3K I Defined in this wayge is not necessarily gagge invariant to
UX+HUX_£ a,+ n +§ 2 n second order. To linear order we haee= 7 introduced
mrp mTP above Eq.24). Combining Eqs(298),(299), we can derive
_ S E)Q)
L C e R HeE [(urpat A
a pwtp o
(op (WTPIXL Ml &
- Hc z'
¢X+H(PX+47TG(M+ p)aUX+8’7TGHH — ; s v — _+C§A U:|
. a’Vu+ Z
=(p§(q)+HgD§(Q)+47TG(,u+ p)avg(“) pEp
L H%S ((u+p)a®[ H 2 A
= — e+——II
+ §(NO—N(23))—HNE15). (297) (n+p)a®| H3Z w+p 3a?
These equations are presented using mixed gauge-invariant ()| . '—czﬁ oH2 1 L P@LN
variables. We note that to linear ordéu,, —¢,, and @ S a2 w+p @[

kv, (~Vuv,) closely resemble the Newtonian density pertur-
bation, the perturbed gravitational potential, and the per- (302
turbed velocity perturbation, respectivdly4,35,13. To lin-

ear order these equations were presented by Bardeen in 1980+ p H? a i 5 A
[6]; see Eqs(4.3),(4.9),(4.4),(4.5,(4.7) in [6] and compare H m ESDX - sg%(
with our notation; see Eq257). Using Eq.(297) and Egs. .
(293),(296),(297) we can show that /,u+p (1/2)" ,
= - —+CZA U
b= B K/a2 a2 1/z S
P anG(u+p) P
47G(u+p) H 2 A II
H* a @ | £ on2 | p@ T H et s AN
= | Z(o - a
47G(u+p)a H((PX ¢x )| +2H ,u+p+q) rTP pTP
. mtp H? a B
+No, (298 +Ng—Ng |+ — | ——— _<P§(q)
H |(ut+p)a\H
Hc2A @ H 2 A A
P=—-—(¢p,— ——le+-——=II
47'rG(,u+p)a2((‘DX Py ) wtp 3 32 _ngwiq), (303
+P@D 4N, (299
where we used
where
K/a? la avutp _—
PO=p@ - ———— 0 v=z®», u==——¢,, CZ= =z. (309
" 4mG(utp) ZH H
H? 1 . : .
Ngp=-———| N+ = (N —Ny) |, [v in Egs. (302—(304) differs from the perturbed velocity
47G(pn+p) 3H related variable used in the rest of this pap&he equation

usingv in the linear theory was first derived by Field and

NP Kra? (Ng—N%) Shepley in 196§36]; see alsd37,21. Using Eq.(293), Eq.
*73 47G(u+p))- 0 2 (303 gives an equation fob, . Using Eqs.(293—(296) we
2 can derive an equation faf, in anotherform:
Hcs 1 N HN(S))
4nG(u+p)la ™t 2 w+p H2 [au ,A
| ——|—35,] | 25
K/a? a?uH | (p+pal H ° s@2
+ mHN&S)—aH N(6$)' (300 #HLEP)
moluTp _A+3K[e 2AT  ptpl HZ |
We have introduced an entropic perturbat@shy Y ;Jr 3 a2 ;+2 uH |t pH
' +p[ H? &3 A
sp=ciou+te, cﬁzg. (301) M2 il B —Mﬁfﬂ) —ci— ol
M a‘uH|[(n+plal H a
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B. Solutions to linear order

utp 1 © A+3K © ©
v | ZN1+HN2 T (aNg”—N.”) 1. Scalar type
1 N . We consider a single component ideal fluid. Several
5 . . . .
+= a2 N(Zs)Jr +3aH Ngs) _ (305 kno_vvn solutions in the I_|te_rature are the followw_wg.
a u+p (i) In the large-scale limitthe super-sound-horizon scale

i.e., ignoring thec2A term compared with the’/z and

1/z)"1(1/z) terms in Eqs(302),(303), we have the general
solutiong

The above set of equations is valid for a general imperfec
fluid. A minimally coupled scalar field can be regarded as al
imperfect fluid with special fluid quantities. We additionally
have an equation of motion of the field which is actually K2t c2H2
included in the energy and momentum conservation equa- d(k,t)=C(Kk)—d(k) f . dt,
tions. In fact, the above set of equations is valid even for 47GJ a’(utp)
multicomponent fluids and fields. In such cases, the fluid
guantities become collective fluid quantities and we addition- H rta(u+p) H
ally need the energy and momentum conservation equations ‘Px(k't):A'WGC(k)gf Tde(k)g-
for the individual fluids and the equations of motion for the

(311

individual fields.
In the single scalar field case, from Eq212),(190),
(293),(301) we have

1-c2 A+3K @
€= "1 G a2 (ey—¢3")+Ne,
1-c?

S

Ne= 471G
+3H(1-caA veQ®,

+ 6p@ — 5@

1
(Z N, —HNS
(306

Equation(298 remains valid, and Eq299 becomes

- HcZA o 2 A
q’—m(@x @) tp Nﬁg;H)
+ D@+ N, (307
where
CAA=A+3(1-cdHK. (309

Therefore, Eqs(302),(303),(304) remain valid withcg ande

replaced byc, andNg; in Eqg. (302 one can show that we

can ignore the operator nature &f * in c,z_\.

(312

C(k) andd(k) are the coefficients of the growing and de-
caying solutiongin an expanding mediumrespectively. To
second order in the large-scale expansion we have

2 7— 7/d7] — nd7]
d=Cj1l+k J’ z J -z dn—f ZdnJ -z
< [ (313
47GJ) 22’
H o H
<pX=47'rGC—f z?dp+d—
a a
7l [ 7 7dn
X { 14+Kk? f > f z°dy dn—f sznf (-
A A

(319

We emphasize that these solutions are validdgeneral K
and A, and a time-varying equation of state.

(ii) In the small-scale limitc2k?>2"/z, (1/2)"1(1/z)], if
we further assume that; is constant in time, Eqs302),
(303 give the general solutions

The rotational perturbation and the gravitational wave are 1

described by Eqg208),(210), respectively:

[a*(u+p)wP] o A+2K e

= +N&®) (309
a*(u+p) 2a® u+p
(1) o 272K
CY+3HCY) - > cl)
oo & )
=—|vap —| —FTA-2K|v
a3 af a aB
=87GI{,+N{,, (310

wherev{y=acl}y. We note that all the equations in this

section are valid fogeneral K

*icgkny

Py<er
AT

(iiif) ForkK=0= A andw=p/ = const we have exact so-
lutions [6,38]. For the background, from Eq$184),(186),
we have

v=zbxe k7 y=

(315

X is the wave vector wittk=|k|. With the wave numbek ap-
pearing in the equation the variables can be regarded as the Fourier
transformed ones. Ttinear order each Fourier mode decouples
from the other modes and evolves independently. The same equa-
tions in configuration space remain valid in Fourier space as well.
Thus, we ignore specific symbols distinguishing the variables in the
two spaces. Only in this subsection concerning the linear theory do
we use the Fourier transformation.
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2
2/3(1+W) o - 2/(1+3w) _
aot <y , aHp 153w (3106
Equation(304) giveszezx=a; thus
Z 2(1-3w) 1 (1/2)" 6(1+w) 1
—_——— —, = . (319

z  (1+3w)2 7 (17 (1+3w)2 2

In this case, Eqg302),(303) become Bessel's equations with
solutions:

3(1-w)
0=205/7(3,(%),Y,(x), x=ck|7, v S draw)
(318

1 . 5+3w

u= mqoxm\/;(J?(X)’Y?(X))' ~2(1+3w)
(319

We haver= v+ 1. Using Eqs(298),(299 we can normalize
the solutions as

J.,(X) Y, (X)
d=cy(k) ——+ (k) ——, (320
X X
3(1+w) J,(X) Y, (X)
=——| cy(k)—=—+cy(k
= g | 0 el —
(321
Equation(293 gives
(1+3w)?
6U_TX Py- (322)
In the large-scale limitX<1) we have
— C1 VF(V) —2v
C=rnan 2 X T (323

where forv=0 we have an additional 2 knfactor in thec,

PHYSICAL REVIEW D69, 104011 (2004

Equation (327 follows from Eg. (293 which gives &,
xal* Wy xp?p, in general. Equatior{327) includes the
well known solutions in the matterw(=0) and radiation-
(w=3%) dominated eras MDE and RDH]:

MDE: §,xCa, da ¥%cCt?® dt «Cy?, dy 3,

RDE: §,xCa? da '«Ct, dt™Y2«Cy? dy 1.

(328
If we consider only theC mode, which is the relatively
growing mode in an expanding phase, we have

d(x,t)=C(x), (329

+ 3w
Y= 53y

C(x). (330

The nontransient mode @b remains constant on the super-
sound-horizon scale, whereas thategf jumps as the back-
ground equation of state changes. Still, it4sp,, not
—¢,, Which closely resembles the perturbed Newtonian
gravitational potentia[13].

The asymptotic solution§) and (ii) remain valid for the
scalar field withK =0; in this case we hav(é replaced by 1.
The background solutions for tive= const. case considered
in (i), Eq. (316), are valid for a scalar field with an expo-
nential potential of the following formi39]:

V= —1_W —V247G(1+w) ¢
127G(1+w)? '

/ 1

For the perturbation, from Eq308 and the prescription
below it, the same equations of the fluid remain valid with
the coefficient of Laplacian term replaced byfar the field
instead ofc§ (for the fluid) [14]. Thus, the perturbation so-
lutions in the fluid remain valid for such a scalar field with
x=K| 7|, instead ofx=cck| 7| for the fluid case.

We emphasize that, if a solution is known in a given

mode. By matching the general large-scale solution in Eqgauge condition the rest of the variables in all gauge condi-

(311 we can identify

1 T Nead

=2 T(v+1)C, Cp=— o " g
=21 277 3(1+W) 2'T(v) a2y

(329
In the large-scale limitX<1) we have
PocC, da (W2 (329
¢,%C, da~(6+3w72 (326)
5U0<Ca1+3"", da-3(1-w)/2
o CRRAFIWBA+W) = (1-w)/(1+w)
«Cx?, dy 3@-WI(1+3w) (327)

tions can be derived through simple algebra; such solutions
are presented in tabular forms for an ideal fluid and a scalar
field in [38,40,15. Solutions in the situations of generalized
gravity theories considered in Sec. IV D can be found in
[24]. The cases with multiple components of the fluids and
fields were analyzed i¥1,42.

2. Vector type
The rotational perturbation is described by E§09). If
we assumdI”)=0, we have the general solution
a-a%(u+p) v (x,t) =LY (x). (332

Thus, to linear order the rotational perturbation is described
by the conservation of angular momentum and is transient in
expanding media. We note that E(09 follows from
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T2.,=0 and is thusindependenbf the gravitational field C. Pressureless irrotational fluid

equation. Thus the presence of scalar fields or the general- The equation of5, was derived in Eq(305 or can be
ized gravity theories considered in Sec. IV D do not affectderived from Eqs.(303),(296). In the pressureless case, a

the vector-type perturbation of the fluifia3]. simpler route is to use the basic equations in EG95—
(20D.
3. Tensor type We considera pressureless fluid, thgp=0=1I,4, and

ignore the vector-type perturbation. For the spatial gauge we
takey=0 and thusB= y/a. If we take the temporal comov-
ing gauge (=0) we haveQ,=0. Equation(201) gives «,
=—aN{)=-18, .B8,’“ and thusa vanishes to linear order;
Wdt in the pressureless medium, to linear order, the comoving
C(t)(kt) C(I)(k)+dg)ﬁ(k)J —. (333  particle follows a geodesic and thus=0 implies a=0.
a From Egs.(200), (1998, first evaluating these in the comov-
ing gauge, we can derive
Thus, ignoring the transient model (;) in an expanding

Now, we consider the gravitational wave wil=0 and
11,=0. The basic equation is presented in E310).
(|) The general large-scalé&{<a"/a) solution is

phase the tensor-type perturbation is characterized by its con- -, _ E )
served amplitude((k). %= ryt g V-(8,Vuy), (340
(ii) In the small- scale limit K?>>a"/a) we have the gen- _
eral solution Kyt 2Hk,—47Gué,
! ~() | ot 2 \
Chu(k, t)oc—e—"”7 (339 = 2LV (Vo) e+ Cop clely ;XU’“B ,

Thus the gravitational wave redshifts away. (341

(iii) ForK=0=A andw=const, we have the exact solu- where we have usegl,= —av,, following from Eq. (255,

tion and k,=(1/a)Av, following from Eg. (197 with K=0,
both to linear order.
® - 3(1-w) In order to compare with a Newtonian analysis we intro-
Vap=aCqp* \/;(JV(X)'YV(X))' ’Em’ x=k|7]. duceu=—Vu, to linear order. By combining Eq¢340),
(335) (341 we have

. ) — 1 1
Thus, we set 6,t2HS,—47Gus,=— —[aV (6,u)]'+—=V-(u-Vu)

a

J,(X) (x)
M oy 7 o 7 , 2 )
Cap=Clap™ 7 +Coap™ 7 (336 +CU =Veul+ C(‘)“5>. (342
a

In the large-scale limitX<1) we have We note that, to linear order, the growing solution of the
gravitational wave remains constant in time on the superho-
rizon scale, whereas it redshifts awagz%oca‘l) on the
subhorizon scale; see Sec. VII B 3. Ignoring the gravitational
wave we reproduce correctly the corresponding Newtonian
where for»=0 we have an additional 2 Infactor in the equation

cf) 5 mode. By matching with the general large-scale solu-

1 F(V) ~
C(t)z—v) clap—2"——x"¥chl,, (337)

2ap, ! . . . _ 1 1
tion in Eq. (333 we can identify 5+2H8—4mGoo=——[av-(6u)] + V- (u-Vu).
a a
NOJEp ORRG! il "Xzyd(t) 949
— oV + = . . .
Clap=2'T(r+1)Cop.  Cap 2" 10 (p+1) a2 ap We note that our Eq(342 is valid on the super-sound-

(339  horizon(Jeans scale, which is negligible in the pressureless
medium, and thus is valid even on the supesual)-horizon
Thus, scale. In the Newtonian context E¢343) is valid to all
ordersin perturbation, and follows from the mass conserva-
C® o o) ) 5-3(1-w)i2 tion, the momentum conservation, and the Poisson equation
ap = rapr"ab given by[10]
OCCExt,)B ’dg%t—(l—w)/(l+w)

o1 1
“Cff,)g ’dgén—s(l—w)/(l-%—sw)_ (339 S5+ aV ‘u=— aV -(ou), (344
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. 1 1 the analyses can be equivalently considered as spatially
utHu+ - Véd=—_u-Vu, (345  gauge-invariant ones. From Eq848),(349 we can derive
Eq. (342 to second order. We notice that, in contrast with the
1 Newtonian case, in general we anticipate having infinite per-
_2V25q>=477(;§5_ (346)  turbation series expansion, and E842) looks valid only to
a second order. If we have the higher-order terms nonvanish-

. _ . ing, these can be regarded as purely relativistic effects.
To linear order these equations can be compared with theg g purely

relativistic version in Eqs(294),(296),(293) with Eq. (295).

To second order, however, although the final result in Eq. ) N
(342 coincides with the Newtonian one in E(43, we Assuming the pressureless condition, E@),(27),(28)
notice some difference between Eq840),(341),(294)- in the energy framed,=0) become

(296) from Eq.(295 and Eqs(344)—(346). From Eq.(197),
to second order, we have

2. Nonlinear equation based on @3) formulation

ut =0, (350
A A _
Ky~ U= NES) — g(xgmav;q)). (347 a,=0, (352)
Slnqe the RHSs of th_ls equation and of K893 do not Dt B2+ 4nGh— A+ 2(52— @?) =0, (352
vanish we cannot directly relate-¢, and —Vuv, (or 3

aA~1Vk,) to the Newtonian counterpar® andu, re-
spectively. Still, we emphasize that the final equation identidn the energy frame the frame vector follows the possible
fied in Eq.(342) coincides exactly with the Newtonian one in energy flux; thus, the energy flux tergy vanishes. Equa-

Eq (343) For a similar conclusion in the relativistic situa- tions (350) and (352) can be combined to give
tion, see[43]. For analyses of Eq.343 in the Newtonian

context, se¢44]. ~ 2
Using 8=0 as the spatial gauge condition Kapéb] has

derived a different equation compared with ours in 84.2).

Kasai[45] took both the comoving gauge=0 and the origi-

nal synchronous gauge, which takes=0=p8. As we (353

showed above E(340 in a pressureless medium, the co- -

moving gaugev =0 implies a=—38 .68 and thus van- If we setu=u(1+6), whereu is the background energy

ishes if we take8=0 as the spatial gauge condition. How- density, Eq.(353 becomes

ever, in that gauge conditidithe spatiaB gauge the spatial

—47Gu+A—2(o?—0?)=0.

kL
kL

W =

gauge mode is incompletely fixed. Thus, comparison with, 2 ;,, 4 5 o
the Newtonian analyses is not tranparent in that gauge cond— 3 0= 4mGu(1+0)6— 7 7=~ 2(0%=w?)(1+0)
dition. H
S o\ 2
1. Nonlinear equation based on (1) formulation M K

+(146) -2 =

—47Gu+A|=0. (354

The general equation of the pressureless and irrotational s

ideal fluid can be derived from Eq&lL0),(12),(13). The pres- This i letel i i
sureless ideal fluid implieS,;=0. We take the temporal 'ﬁ IS a completely qon;nte_ar el?luz'idlolnlth ¢
comoving gauge conditiom=0. Together with the irrota- ow, weassumen irrotational fluid. In the energy frame,

tional condition we have),=0 and thus),=0. Equation the comoving gauge condition leadsttp=0; this is equiva-

(13) givesN ,=0; if we use the normalization in E@55), lent to taking the normal fr_ame With_ vaqishing energy flux.
we haveN=a. Equations(10),(12) give The momentum conservation equation in E861) implies
that our frame vector follows a geodesic path. In the comov-
E 1E, ing gauge Eqgs(351),(69) lead to A=—3B“B, to second
“ETNE N (348 order. Thus, to linear order we have=0 which coincides

with taking the synchronous gauge. We have

o1 1 _
K=K gNF— 2 K2=47GE— A +K*K 4.

N 3 = QU=+ a,u,yaB“, M=o, O=0di6+ 55,aBa-

(359
Apparently, the spatiaB gauge conditionB,=0 leads to
N,=0, thus simplifying the equations. However, such aOnly in the COTOVing gauge condition does the covariant
gauge condition leaves the spatial gauge mode removed imlerivative alongu? simplify to second order as in E¢B55).
completely. We prefer to take the spatfalgauge condition, In this derivation the pressureless condition is used essen-
which fixes the spatial gauge modes completely; in this wayially. Thus, in this comoving gauge E(B54) becomes

=

(349
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. . 1 .11
8+2HS—4mGué= —(a?8d) + -6~ —(as ,BY)
a 3 a '
1 -
— =38 ,B*+202, (356)
a

to second order. From this we can derive E3412) whereg?

follows from Eqs.(16),(57),(71).

3. Gravitational wave as a source

PHYSICAL REVIEW &9, 104011 (2004

t H2c2
<Pv—<P5:C(X)+d(X)J ———dt

(atpait (361

Therefore, ignoring the transient mode in the expanding
phase, we have
¢, = ¢, =C(x), (362

which remains constant even to second order in perturbations
[46,47]. Thus, ¢, is conserved to second order in the large-

From Eq.(342) considering the pure gravitational wave as Scale(super-sound-horizorimit.

the source for density perturbation we have

5,+2H5,—4mGus,=C{LCW*P=s  (357)

In the matter dominated era an exact solution is given in Eq.
in the large-scale limit, considering the
relatively growing modeS vanishes, whereas, in the small-

(336) with v=2:

scale limit it decays proportional to Hf)?xa ° [see Eq.

(334)]. If 6, and 54 denote two linear-order solutions, the

general solution can be written as

8, (X,1) = 8g(X, 1) + 54(X,1) + ftS(x,t’)

y Og(X,1") 64(X,t) = 84(X,t") 4(x,t) dt
Sg(X, ") Bg(x,t") = Sy(x,t') Sy(x,t")

(358

The particular solution is proportional ta”°t?«<a 2 and

Equation (359 is valid for p#0. For p=0 we have a
simpler form in Eq.(299), which gives

o H 2 A
d—P@—Ng+—| e+ = I1|=0. (363
i 3a

Equation (360 includes this as a case in the large-scale
(super-sound-horizgrimit. Thus, the above results in Egs.
(360—(362 remain valid for generap.
From Eqg.(114) we notice that for a minimally coupled
scalar fieldS¢=0 impliesv =0 to second order; thus
P=Ps¢ (364
and the uniform-field gauge coincides with the comoving

gauge. Thus, the above analyses are valid even for a mini-
mally coupled scalar field.

E. Pure rotation

decays more rapidly even compared with the decaying mode

in the linear theory which behaves &s'.

D. Pure scalar-type perturbation

Equation(302 can be written as

H%cS  ((u+p)a®
(p+pa®| H32

d—Pp@

H 2 A '
—Ng+——| e+ ==II
N mtp 3a?

II
_ 2 _H@_ 2 _
=Cci—|P-P 2H Ng |. (359
5a2 +p lIJ) ( )

In the case of pure rotation Eq&08),(105 provide a
complete set for a single component fluid; for the multicom-
ponent case see Eq&09),(107). AssumingII{”’=0 we
have

4 (v)7-
[t D)
a’(u+p)

Pl

1
N = — a[,)Eyv‘)ﬁ|3(v)ﬁ+ UE;U)B(U)BM

_ VaA*lvﬁ(vg‘)yB(v)V_Fv(;)B(U)V‘B)]_

(365

In the large-scale limit, if we ignore the second-order spatiaas a simple exercise, using E@R50), one can check the

derivative terms, we have

. H H2c?
O — D@D —Ng+ e 5
ptp  (ntpa

(360)

Now, we consideiK =0 and ideal fluids; thu#=0. From

Eq. (298 we have® = ¢, . Ignoring the second-order spatial

derivatives, from Eqs(300),(195—(201),(99)—(105 we can
show thatNg=(¢?)".
®@|, =@ =0; see Eq(274). Thus, we have

gauge transformation properties of both sides. InGlgauge

condition (CS”EO) we haveBg’)=\If£f) which is gauge in-
variant. From EQqs.(332),(206), to linear order we have
W oca?(u+p)vPoca=?; thus from Eq.(365 we have

[a(p+poP] =a"3[a% a*(u+p)NY]=a=3,
(366)

In the comoving gauge we have Thus, the additional second-order perturbation sourced by

the RHS of Eq(365) behaves as
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tdt second-order spatial derivative terms, and assuriirg0

a'(u+pu’=LP00+[a% a'(u+pINE)] | —. andI1{,=0, we have
(367 COL+3HCWE=ND %,
The time-dependent nonlinear solution is proportional to
ftdt/a®; for w=const it is proportional ta~3(:~")/2; thus it
always decaydin expanding phagefor w<1. The lower
bound of integration which could give a temporally constant 1
nonlinear solution can be absorbedL{3’ . + E(A*1V“VB+ SHATIVIVN,D,
As we explained in Sec. VIB 2, to linear order, tie

gauge condition removes the rotational gauge mode com-
pletely, whereas th® gauge condition fails to fix it com- 1
pletely. That is, even after imposing the gauge condition we a_ o ~ay~M) _ T sa(1)ys(t)
have some modes which are coordinate effects; undeBthe Naj=2| CU7Cy 3 SECU7°CT). 370
gauge, from Eq(252 we have£!) = ¢ (x). Then, in Eq.
(365 we notice an ironic situation where tlB2gauge con- ) o o 9
dition gives vanishing quadratic terms, whereas these termfyotice that in this large-scale limit we haw{},= const as
do not vanish in the€ gauge condition. That is, although we the relatively growing solutiofin the expanding phaseven
anticipate that the nonlinear solution in tfiegauge in Eq. o second-order perturbation. In this sense, ignoring the tran-
(367) is physical, in theB gauge condition the RHS of Eq. sient mode in the expanding phase, the amplitudeC$}
(366) vanishes, and we do not have the nonlinear solution ifemains constant even to second order in perturbations
Eq. (367). We can check this situation by using the gauge[46,47.
transformation property of the{") variable in the two gauge

NP E=N4G— A H(VV,N %+ VaVIN,S)

conditions. o Action { .
Considering pure vector-type perturbations, from Egs. - ACtion Tormuiation
(175,(177),(234),(249 we have We consider the action expanded to second order in per-

turbations which will give the equations of motion to linear
order in the perturbatiofi48,37,9. We consider the action
;gv)zvgv)_vg))g(v)ﬁ a_v(avagg(v)ﬁjL VaAflvﬁ(U(yv)g(v)vﬂ for a scalar field in Eq(108). The perturbed action can be
' ' ' derived by using Eqs(94), (98) and the ADM quantities
+o ) g0, (368 presented in Sec. lll. To background order, ignoring the sur-
face terms, we have

Now, let the variables with and without carets correspond to

the ones in theB and C gauge conditions, respectively. As 1 a 6K
the §g’)s appear in quadratic combination, we need them SBG:16 Gf \/@33 -6l -] +—=
only to linear order. From Eq(252), we haveB(")=B") i S
+a'§ff). Since the caret indicates th# gauge, we have 1.
aé®=—B®: thus ¢*)=— [{(BW)/a)dt. Thus, Eq.(369) +16”G(5¢’2‘V) dtd®x. (371
gives
4 ~ () To the second-order perturbation, ignoring the surface terms,
a(ptp)vy’le gauge the pure gravitational wave part becomes

tdt
= a4<u+p)vgv>—[a3~a4w+p>N82]f;}

C gauge 1 1
=—— | Jg®g3| cWesc) _ _c®aplyc(t)
(369 Sew= 167G gra ( C CH’B a2 C lyCaﬁW
Therefore, in theB gauge the nonlinear solution in ti@ _ Z_KC(t)aBC(t) dtdPx 372
gauge in Eq.(367) disappears exactly. We note, however, a? ap '

that the solution in EQ.(367) is the physical (gauge-

invariany one in theC gauge.

This action is valid for an arbitrary number of scalar fields

and fluids with vanishing tensor-type anisotropic stress. Now

we consider the pure scalar-type perturbation. We assume
In the case of pure gravitational wave E¢210),(103 K=0. To the second-order perturbation, ignoring the surface

provide a complete set. In the large-scale limit, thus ignoringerms, we have

F. Pure gravitational wave
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H
+—
alep

1 1 the electromagnetic fields, the null geodesic, and the relativ-
Secala™ _f a3[ 5('152— — 8,04 istic Boltzmann equation.
2 a (iv) In Sec. VII A we present closed form equations,
- which are simlar to the ones known in linear theory.
a3<f) 5¢2Jdtd3x (v) In Sec. VII C we show that up to second order in
H 4 perturbations the relativistic pressureless fluid coincides ex-
actly with the Newtonian one. We note that suitable choices
- and combinations of different gaugéthus gauge-invariant
1 3 . 2 1 « did combinationg are important to show the equivalence.
Ef 82| $o0 2900 Pov.a|ALAX. (vi) In Sec. VII D we have derived the large-scébeiper-
(373 sound-horizop conserved quantity to second ordey,, di-
rectly from the differential equation governing its evolution.
In this case we used the linear-order equations of motionsfhis conserved variable was first studied by Salopek and
thus it is an on-shell action. In the second step we used Ed3ond.
(255). Our equations are suitable for handling nonlinear evolu-
Maldacena has considered the perturbed action to thirdon in the perturbative manner. If we have the solutions to
order in perturbations, which is needed to have equations dinear order(see Sec. VII B for some exampjeshe evolu-
motion valid to the second ordda7]. For the temporal tion of second-order perturbations can be derived using the
gauge he used two gauge conditions, the uniform-field gaugguadratic combination of the linear variables as sources; our
(6¢=0) and the uniform-curvature gauge<0), and the  pasic sets of equations in Sec. V C and some closed forms in
C gauge for the spatial and rotational ones. Compared witlsec. || A are presented with this purpose. As long as we

our notation we have take such a perturbative approach, our formulation in this
) work can be trivially extended to any higher-order perturba-
{Maldacens™ P56~ Ps5pr PMaldacend 0b,- (374 tion; except for the fact that, of course, the needed algebra

would be quite demanding. We have also shown in Sec. VI

Thus, {\aidacenalS cOnserved in the large-scale limit; see Eqgs.that the gauge issue can be similarly handled even in such a
(362,(364). To linear order, from Eq.(255 we have higher-order perturbation.
¢5¢:—(H/¢) 8y, thus {yaidacens — (H/ &) ©maldacena Our formulation can be applied using several different
methods as follows.

(i) Quasilinear analyses using Fourier analyses as often
used in the Newtonian ca$d4]. In this approach the qua-

We have presented the basic equations to investigate thiratic combination of the linear-order terms will lead to
second-order perturbation of the Friedmann world model. Irmode-mode coupling among different scales, as well as
order to serve as a convenient reference for future studiesmong different types of perturbations.
and applications we have presented some useful relations (ii) Nonlinear back reaction. In our approach we have
and quantitieS needed for the second-order perturbations. T%Sumed the presence of a “fictitious” background metric
present study is, clearly, not entirely new in this rich field of \yhich is spatially homogeneous and isotropic. As the basic
cosmology and large-scale structure formation. In the latqyations of Einstein gravity are nonlinear, the nonlinear
1960s Tomita presented a series of work on the subject in thg,y,ations in the metric and the matter can affect the back-
context of a fluid[49]. Studies in the context of the ideal ground world model. One anticipates recovering the back-

fluid or the minimally coupled field can be found in ; :
) . ) round Friedmann world model through averaging the more
[31,50,47. In the case of a pressureless irrotational fluid, Sep?ealistic lumpy world model and finding the best fit to the

[45,43. The case with the null-geodesic equations was StUdiHealized world modef53],

I:odn;ri‘d[esr]é](,:i ?,?nghe case with the Boltzmann equation was (iii ) Fitting and averaging. Our basic equations in Sec. IV
Y are presented without separating the background order quan-

Compared with the previous work, perhaps we could em-< . .
phasize the following as the new points in our work. tities from the perturbed order ones. Thus, the equations are

(i) We present the complete sets of perturbed equations iﬁUItab|e for the operation of averaging. Usm.g our formula-
a gauge-ready form, so that we can easily apply the equdlon we cqulq apply and chepk the various different averag-
tions to any gauge conditions, which make the mathematicdNd Prescriptions suggested in the literat({8,54,43.
analyses of given problems as simple as possible. Our perturbative formulation would be a useful comple-
(i) We consider the most general Friedmann backgroundnent to the following formulations aiming to investigate the
with K and A. Previous studies considered the flat Fried-nonlinear evolution of cosmological structures.
mann background only. (i) The large-scaldlong wavelength approximation or
(iii ) We consider the most general imperfect fluid situationthe spatial gradient expansion studied by Salopek, Tomita,
which includes multiple imperfect fluids with general inter- Deruelle and others if46,55.
actions among them. In addition, we also include minimally (ii) The cosmological post-Newtonian formulation studied
coupled scalar fields, a class of generalized gravity theoriedy Futamase, Tomita, and others[B6].

VIIl. DISCUSSION
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(iii ) The relativistic Zel'dovich approximation studied in rapidly and inevitably reach the nonlinear sta§e60]. Such
[45,43,51. growth would cause the transition of our simgkpatially
(iv) General(spatially inhomogeneous and anisotropic homogeneous and isotropicackground world model to the
solutions near singularity where the large-scale conditionsinisotropic and inhomogeneous ones studied58]. Al-
are well met; in such a situation it was shown that the spathough we anticipate that the perturbations would become
tially different points decouple and evolve separately. Thesguite nonlinear, we hope we can investigate the transition
were studied by Belinsky, Lifshitz, Khalatnikov, and othersregion based on our second-order perturbation formulation.
in [58]. One simplifying fact is that in the collapsing phase the local
Our general formulation can be used to study the follow-range covered by the dynamical time scatéd ! shrinks
ing situations anticipated during the evolution of our uni- relative to the comoving scale, and thus effectively the scales
verse. o . we are interested in satisfy the conditions of the large-scale
(i) We can check the limit of linear theory. Current cos- jimit 2 Such large-scale conditions are well met for a given
mological observations can pe success_fully explained W't_h”?:omoving scale during the early evolution stdgear singu-
the current standard theoretical paradigm. In that paradignyjry) and as the background model approaches the singular-
linear perturbation theory plays a significant role in explain-j.; i, the collapsing phase. Investigation of situations in the
ing the quantum generation stage in the early universe and ifhjjapsing and subsequent bouncing background is left for
the classical evolution processes on the large scale and in they e study: for evolution under the linear assumption, see

early era. The linear theory provides a self-consistent explag) o the general cosmological investigation near singu-
nation of some important aspects of the origin and evolutio arity, see[58)].

of large-scale structures. qugver, the limit of the linear (iv) It is well known that the nonlinear effecgither in
theory cannotbe estimated within the linear theory. We ex- quantum generation or in classical evolution processes

pect that the second-order perturbation theory could providg, i lead to non-Gaussian effects in the observed quantities

a m_gamngful ways to Investigate S.'“.'Ch limits. ) of CMB anisotropies and large-scale galaxy distribution and
(i) We can investigate the quasilinear process in the relag, otion Maldacena has recently investigated such an effect

tivistic context. In the literature it is commonly assumed that,, the CMB based on second-order perturbation théseg

the relativistic linear perturbation theory is sufficient to 47)). The first year WMAP data show no positive detection

handle the large-scale structure, and the nonlinear processgs; on-Gaussian nature of the CMB sky maps under a couple

occur only in the Newtonian context which are often handled non-Gaussianity tes{§1].

by the numerical simulations. The quasilinear evolution (v) We can check evolution on the superhorizon scale

would be useful to investigate the transition regions betweeg o e the scale is larger than the causal domain during the

linear and nonlinear evolutions. Our perturbative approactaynamic time scale. See Secs. VII D and VII E for the con-

may have its own limit, because if we find the importanceggeq quantities to second order which were found by Sa-
of second-order contributions it may naturally follow that lopek and Bond if46].

h|gher-order contributions Wou!d_ |mm(_ed|ately become (vi) In Sec. VII C we showed that to second order a pres-
important as well. Thus, we anticipate, if successful, thaly,re|ess fluid with a pure scalar-type perturbation reproduces

relativistic qgasﬂmear analyses can p.e developed S|m|IarIy tge Newtonian result. It is likely that the relativistic effect
the Newtonian cosmological quasilinear analyses studiednears in higher-order perturbations; this is left for future

in [44]. ; -
(iiil) We can examine the fate of fluctuations in the Col_mvesngatmn.
lapsing phase, and possibly through a bounce. The fluctua-
tions of a single component medium and the gravitational
wave are described by second-order differential equations. In
the linear stage and in the large-scale limit, we have general ACKNOWLEDGMENTS
solutions in Eqgs(311),(312),(333. In an expanding phase,  We thank Ewan Stewart for encouraging us to continue
the C mode is growing relatively and theémode is decaying the project and sharing his enthusiasm and opinions on the
and thus transient. If the initial conditior(say, generated subject. We also wish to thank Professor George Efstathiou
from the quantum fluctuatiopsire imposed in the early ex- for inviting us to the Institute of Astronomy where the
panding phase, the mode parts disappear in a femfolding  project was resumed. J.H. wishes to thank Toshi Futamase
times of the scale factor increase and are thus uninterestingind Masumi Kasai for their hospitality and encouragement in
The relatively growing modes for both the scalar- and tensorthe beginning stage of the work at Hirosaki. J.H. and H.N.
type perturbations are characterized by a conserved amplvere supported by Grants No. R02-2003-000-10051-0 and
tude of certain gauge-invariant variables, (and the curva-  No. R04-2003-10004-0, respectively, from the Basic Re-
ture variables in other gaugeand CS};, in the large-scale search Program of the Korea Science and Engineering Foun-
limit. In the collapsing phase, however, the roles of growingdation.
and decaying modes are switched. In the collapsing phase
thed mode, and the vector mode as well, grows quite rapidly———
[see EQqs(325),(339),(332)]; our solutions in Sec. VIIB also  2james Bardeen and Ewan Stewart have suggested that the large-
cover the collapsing phase by considering|t| with t ap-  scale(long wavelengthexpansion or the spatial gradient expansion
proaching O(see[59]). Thus, the linear perturbations grow technique[46,55 would be useful to investigate such situations.
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