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One can construct families of static solutions that can be viewed as interpolating between nonsingular
spacetimes and those containing black holes. Although everywhere nonsingular, these solutions come arbi-
trarily close to having a horizon. To an observer in the exterior region, it becomes increasingly difficult to
distinguish these from a true black hole as the critical limiting solution is approached. In this paper we use the
Majumdar-Papapetrou formalism to construct such quasi-black hole solutions from extremal charged dust. We
study the gravitational properties of these solutions, comparing them with the quasi-black hole solutions based
on magnetic monopoles. As in the latter case, we find that solutions can be constructed with or without hair.
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I. INTRODUCTION launch and the return of such probes divergese aends
toward zero. Thus, given a fixed finite observing time, the
Nonsingular spacetimes and those containing black holesxternal observer would not be able to distinguish between
are usually viewed as being qualitatively quite distinct. How-nonsingular solutions sufficiently close to the critical limit
ever, one can construct families of static solutions that can be=0 and true black holes.
viewed as interpolating between these two types of space- To see how such a solution might come about, consider a
times. Although these solutions remain nonsingular, thewtatic spacetime with a spherically symmetric concentration
come arbitrarily close to having a horizon. To an observer irof matter near the origin;=0. If the spacetime is nonsin-
the “exterior” region, it becomes increasingly difficult to gular, thenA(0)=1. As one moves out from the origiA,~*
distinguish these from a true black hole as the critical limit-initially decreases until it reaches a minimum value, typically
ing solution is approached. These solutions provide a usefit a radius near the edge of the mass distribution, and then
theoretical laboratory for studying the properties of trueincreases toward its asymptotic value. The minimurAof
black holes[1], and can lead to insight into the nature of becomes deeper as the density of the mass distribution is

black hole entropy2]. increased. This suggests that one could approach the black
To make this more concrete, consider a spherically symhole limit simply by making the density large enough. The
metric spacetime with a metric of the form difficulty, of course, is in finding a form of matter that can
withstand the increasing gravitational forces and avoid gravi-
ds?=—B(r)dt?*+A(r)dr2+r?(d6>+sirfod ¢?). tational collapse. For example, this program cannot succeed

(1.1)  with a star composed of a fluid described by an equation of
state p=p(p) with the densityp and pressurg obeying
If the spacetime is asymptotically flat, as we will assume instandard conditions.
this paper, we can sd(*)=A(*)=1. A horizon corre- The quasi-black holes studied in REF] were constructed
sponds to a zero oA~ . If dA™!/dr also vanishes, the ho- by invoking the classical magnetic monopole solutions that
rizon is extremal. By a quasi-black hole solution, we will arise in spontaneously broken gauge theories. If the param-
mean one that is everywhere nonsingular and for wiich  eters of the theory are varied in such a way as to increase the
has a minimum valué~(r, ) = € that can be adjusted to be Higgs expectation value, the monopole mass increases,
arbitrarily close to zero. We will refer to the location of this while its core radius decreases. These two effects combine to
minimum,r,, , as the quasihorizon. An external observer or-lower the minimum oA~ 1. At a valuev, of the order of the
biting at some fixed radiusy,>r, could try to explore the Planck mass, the critical limit is reached and the nonsingular
“interior” region r <r, by sending in a series of probes and monopole goes over into a black hole with horizon radius
waiting for them to emerge. Because the spacetime is nom-,~ 1/ev [3—§].
singular, these probes would eventually return to the ob- In this paper we will study quasi-black hole solutions ob-
server. However, the minimum time delégs measured in tained from a much less exotic form of matter. We will use
terms of the external observer’s proper timeetween the charged dust; i.e., pressureless matter carrying nonzero elec-
tric charge, with its behavior described by the coupled
Einstein-Maxwell equations. More specifically, we take the
*Electronic address: lemos@Kkelvin.ist.utl.pt special case of extremal dust, where the energy defisity
"Electronic address: ejw@phys.columbia.edu Planck unit$ is everywhere equal to the charge density.
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Within the context of Newtonian gravity, any static distribu- ue=8U, A,= 524,. (2.6)
tion of this dust would clearly be stable, since the gravita-
tional attraction between particles would exactly cancel theiHere ¢ andU are functions of the spatial coordinates, with
Coulomb repulsion. The situation is perhaps less obvious ibeing the electric potential and 1—1 being the gravita-
general relativity, both because the simple Newtonian forceional potential in the Newtonian limit. Furthermore, in a
law description is lost and because the gravitational effectgery elegant papdi9] Majumdar showed that in the special
of the energy density in the electric field must be taken intccase of extremal dust,
account. Nevertheless, it was shown by Majumirand
Papapetrodi10] that the Newtonian result does in fact gen- Pe=p, 2.7
eralize.

Solutions of the Majumdar-Papapetrou system with exthe metric can be put in the form
tremal charged dust were investigated further by Bonnor and
Wickramasuriya[11,12, who pointed out that these solu- 4
tions can come arbitrarily close to being black holes. In this
article we will examine this possibility in some detail, paying

particular attention to the interior region of the solution, andwhere ¢,x,y,z) are called harmonic coordinates. The

comparing the gravitational properties of these quasi-blaclginstein-Maxwell equationg2.1) and (2.5) then reduce to
holes with those based on magnetic monopoles. We will alsgne pair of equations

investigate whether, as in the case of the quasi-black holes
built from monopoles, there are two classes of solutions, ( 2 52 32)
u

dt?
=—F+U2(dx2+dy2+dzz), (2.9

with one possessing hair and being less singular than the St ot =—4mpU3 (2.9
other[1,8]. oxs ay° oz

The remainder of the paper is organized as follows. In
Sec. Il we describe the general formalism that we use anand
present some basic formulas. In Sec. lll, we present a family 1
of quasi-black hole solutions whose exterior region tends p=——+1. (2.10
toward that of an extremal Reissner-Nordstrblack hole. U
In Sec. IV we discuss the possibility of solutions with hair.

We sum up briefly in Sec. V. Note that the second of these reduces in the Newtonian limit

to the requirement that the gravitational and electric poten-
tials be equat.
Solutions of this Maxwell-Einstein-extremal-dust system

A. Equations in harmonic coordinates are generically called Majumdar-Papapetrou solut{@nt0].

én particular, the vacuum solutions, with= p.=0, reduce to

a configuration of many extreme Reissner-Nordstiolack

holes, as was fully explored by Hartle and Hawkifig].
Gap= 8 (Tdusty Tom) (2.1  Solutions with matter have been examined in the papers of

Das[14], Bonnor[11,12], and othergsee Ref[15] and the
where G,, is the Einstein tensor and we have tc  references cited therein

Il. BASIC EQUATIONS

For charged dust the gravitational field equation takes th
form

=1. The dust part of the stress-energy tensor is Although solutions of Eq(2.9) need not have any spatial
g symmetry at all, we will focus on spherically symmetric so-
Tab = pUallp, (2.2 lutions, for which the line elemer{2.8) can be rewritten as
with p being the energy density ang, the four-velocity of dt2
the fluid. The electromagnetic part of the stress-energy tensor ~ ds?= — 0z +U[dR?+R2(d6?+sirfod¢?)],
is
(2.1)
1
ng]:ﬂ Fa'Foc— ZgabFCchd : (2.3  whereU=U(R). Equation(2.9) then takes the form
h he el ic fiel h 1 9 J
where the electromagnetic field strengt =R Rzﬁ) — 4mU%p, (212
Fab:Aa,b_Ab,a (2.9
satisfies This equation can be solved by guessing a potehtjand
then findingp. The solution is then complete becayseand
Fo0p=4mj=4mpdi®, (2.5
with pe the electric charge density of the dust. IAn arbitrary choice of sign was made in E@.7). If we had
For a static purely electric system one can make thehosen to consider extremal dust with=—p, the only change
choice would be to replace by — ¢ in Eq. (2.10.
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¢ follow directly. In order that the solution be physically and
acceptable, it must satisfy the additional requirement phat
be everywhere nonnegative.

1 (R
A \R+q

2
=(1—9 (2.20)

r

B. Equations in Schwarzschild coordinates

Although the field equations are most easily solved byWe recognize this as the metric for an extremal Reissner-
working in harmonic coordinates, the physical interpretationNordstran black hole with charge and mass equabto
of the solutions is clearer if one uses the Schwarzschild co- Some comment on the range of the radial coordinates is in
ordinates defined by the line element of Ef.1). By com-  order here. For a nonsingular solution with no horizon, the
paring Egs.(1.1) and (2.11), we see that the radial coordi- natural range of is O<r <. SinceB=1/U? is everywhere

nates in the two systems are related by nonzero and finite, Eq(2.13 maps the range 9r <« to
0=<R< . When there is a horizon, the vanishing®t the
r=UR (213 nhorizon produces a divergence lhthat can allowr to re-

main nonzero aR=0. This is precisely what happens for the
Reissner-Nordstra solution, whereR>0 covers only the
region outside the horizon; the region inside the horizon is

and that the metric components are related by

B=$ (2.14  obtained by continuing the solution to the rangej<R
<0.
q Aless trivial solution11,12 is the Bonnor star, for which
an
m(3 R?
1 R dU 1+ =—|s—"== R<R,,
=1 (2.15 Ry | 2 2R§)‘ b
VA U dR U= - (2.22
. . . — R>R,.
Note that Eq(2.13 givesr as a function oR. Although this 1+ R’ b
implicitly determinesk as a function of, it is only in special
cases that this can be done explicitly. This corresponds to a density
For later reference, we present here the Schwarzschild
coordinate form of the field equations. With the metric in the 3
form of Eq.(1.1), Egs.(2.1)—(2.5 reduce to —m, R<Ry,
p=1 4mwR3US (2.23
—(AB),—S A 2.1 0 R>R
AB omPA (2.1 ’ b
1\ P Note that in the region outside the mass distribution the
[r( 1- —) =8mr?p+-—¢'?, Bonnor solution takes the Reissner-Nordstriorm. This re-
Al AB sult carries over to a more general situation. Whenever the
(2.17) matter densityp vanishes identically for alR greater than
) . some valueR,, then for all R>R, we have U(R)=1
VB r N ——am (218 +m/R. Integration of Eq(2.12 shows that the constantis
r2JAB| VAB ] Pe ' given by

where primes denote differentiation with respect to Rp 3 .,
m=47 | dRRU3p+my=4x| drr2JAp+my
0 ro

C. Examples (2.249

Finally, we present two simple solutions. The first corre- ) ) _
sponds to vanishing density. Wigh=0, the general solution Wherero=r(R=0) andm is an integration constant. For a
of Eq. (2.12) takes the formU=k+q/R, wherek andq are  nonsingular spacetime,=0 andm is equal to the spatial
constants of integration. Without any loss of generality, weintegral(with the correct volume elemenof the matter den-
can rescale coordinates and adjust the overall sightofset  Sity- (Recall that the factor of/A is absent from the analo-

k=1 and makey positive, obtaining gous formula for neutral dust. This can be viewed as being
due to the contribution of gravitational potential energy to
q the total mass. For extremal dust the energy in the electric
Urn=1+ R (219 fielg precisely cancels the gravitational potential energy and
restores the factor ofA.) For the Reissner-Nordstmoblack
Equations(2.13—(2.15 then give hole, on the other hand, the matter density vanishes identi-
cally andm comes entirely fronmg, which can be viewed as
r=R+q (2.20  the contribution from the singularity at=0.
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1. QUASI-REISSNER-NORDSTRd M SOLUTIONS 1/A

We now want to find nonsingular solutions that can be 1
viewed as quasi-black holes. We start, in this section, by
seeking a family of solutions that will, in some sense, tend
toward the extremal Reissner-Nordstrgolution.

One possible approach would be to first postulate a den- - °

p pp p

sity profile and then solve Eq2.12 to obtain the metric. 4
Even aside from the possible difficulties in solving this dif- '
ferential equation, the identically vanishing of the 5
Reissner-Nordstm solution does not give us any useful '
hints as to what density profile we should choose. -

We therefore try a different approach. Working in har- 0.5 1 1.5 2 2.5 3
monic coordinates, we start by postulating a family of pro-
files for U(R) that includes the Reissner-Nordstrocase,
Eq. (2.19, as a limiting case. Specifically, we tgke

FIG. 1. A plot of 1A as a function of for g=1 and, reading
from the top downc=0.5, 0.3, 0.1, 0.001. The emergence of the
guasihorizon is quite evident in thee=0.001 curve.

_ q 3 R?, just as would be expected for a nonsingular configura-
U=1+ \/RZTCZ (3.1 tion with finite density near the origin.
Differentiation of Eq.(3.3) shows that /A has a mini-

Whenc=0, this reduces to Eq2.19, with the horizon ly- mum atR=R, , whereR, satisfies
ing atR=0 andr =q. For any finitec, on the other hand, it

2 2
gives a nonsingular spacetime, with the originRatr=0. 2_q_ E—Z . /R_*+1 (3.4
For R/c sufficiently large, we might expect this spacetime to C c? c2 ' '

approximate the Reissner-Nordstrsolution.
As described in the previous section, any choice f¢R) For c<q this gives
gives a solution of the Einstein equations. However, to make

sure that the solution is physically acceptable, we must check 2¢%\ 13 c?B
that the density is everywhere positivé.Substituting Eq. Re=|—| a1+0| —-||<a. (3.9
(3.1) into Eq.(2.12), we obtain q a

Substituting these results back into E8.3), we find that the

2
p= i 3qc 3.2 minimum of 1A is
47 (R?+c?)[q+ VR?+c?]? 1 3c2 \2 |\ 43
L . - . . €= == =9 —| +---. (3.6
This is indeed positive definite, as required. At short dis- A(R,) RZ +c? 2q

tances R<c), the density is approximately constant, but
whenR is greater than botj andc the density falls rapidly, This vanishes as—0, and so Eq(3.1) does indeed generate
as 1R®. quasi-black hole solutions. Furthermore, in the region out-
To explore the existence of a horizon or a quasihorizonside the quasihorizon A/approaches the extremal Reissner-
we need the Schwarzschild metric compongfit=1/A. Us-  Nordstran result axc—0.
ing Eq. (2.195, we find that Although the use of harmonic coordinates simplified the
task of finding these solutions, these coordinates are not well

1 qR?
—=1- . (3.3 B
JA (R2+c)[q+ VR + ¢2]
whereR should be viewed as a function nof For R>c, this .
differs from the Reissner-Nordstroresult by terms that are
no greater tharc?/R?. For smallR, on the other hand, the 0.3
behavior is quite different. Rather than finding a poleRat
=0, we see that 1/A differs from unity by terms of order 0.2
0.1
2For another possible choice, see Hap].
3As evidence that this is a nontrivial requirement, we note that the 0.5 1 15 > > 5 3 r
choiceU=1+q(R?+c?) " ” gives a negative energy density ' ' '
>1/2. If y<1/2, the density is positive, andALis bounded from FIG. 2. Aplot ofB(r) for g=1 and, reading from the top down,
below by 1-21y. c=0.5, 0.3, 0.1, 0.001.
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FIG. 3. A plot of AB as a function of for g=1 and, reading FIG. 5. A plot of ¢(r) for =1 and, reading from the bottom

from the top down along the vertical axis0.5, 0.3, 0.1, 0.001. up,¢=0.5, 0.3, 0.1, 0.001. Note that for=0.001 the potential is
Note that forc=0.001, VAB is virtually zero in the whole interior ~€ssentially constant up to the horizon and then drops @Bsal/

of the quasi-black hole solution. required for a no-hair solution.

suited for studying their properties near the critical limit. To cr

see this, note that Eq3.5) implies thatR, —0 asc—0. T+O(r3/q2), R<c,

Hence, when viewed in harmonic coordinates, the region 0 R=q0d7C (3.9
<R<R, inside the quasihorizon seems to collapse to a point r—gq+0(qc?r®, R>R,.

in the critical limit. This difficulty can be avoided by using

the Schwarzschild coordinate . .
In Fig. 1 we plot 1A as a function of for several values

gR of c. Its behavior is just as expected, starting from unity at
r=RU=R+ —— (3.7 the origin, decreasing to a minimum value, and then increas-
VR?+¢? ing at large distance toward an asymptotic value of unity. It

remains everywhere smooth in the critical limit, differing
because the behavior &f near the critical limit has the ef- from the extremal Reissner-Nordstnassolution in not having
fect of stretching the interior region back to its “natural” a singularity atr =0. The behavior oB is shown in Fig. 2.
size. From Eqgs(3.5) and(3.7) we find that For a black holeB should vanish at the horizon. Indeed,
3/ 2c2 B(r.)~=(2¢%q%)?° tends to zero in the critical limit. How-
1+ | — (3.9 ever, B does not have a minimum at the quasihorizon, but
4\ g? rather decreases monotonicallyras 0. In the limiting case,
_ _ _ _ Bisidentically zero for alt <r . Similarly, VAB, shown in
so that the Schwarzschild radial coordinate of the qua5|hor|Fig_ 3, also vanishes identically in the interior region in the

zon is approximately constant as the critical limit is ap-critical limit. Hence, although we have a nonsingular space-

1/3

r.=q + ...

proached. . . _ o time for all nonzercc, the limiting casec=0 is not itself a
More generally, inversion of E((3.7) gives the limiting  smooth manifold.
cases It is also interesting to look at the density which is
shown in Fig. 4. We see that asis decreased, the dust is
Al2p pulled back within the quasihorizon: The fraction of the mass

3 integral of Egq.(2.24 coming from r>r, is of order
(c/q)?3, and vanishes in the critical limit. Curiously, we see
that \/Ap is approximately constant in the interior region.
Finally, in Fig. 5 we show the electric potential as a
function ofr. It is interesting to note how asvanishes the
profile of ¢ approaches one that is constant in the interior

and then falls as t/outside the horizon. This clearly illus-

2.5
2

s

1 o= .
trates the absence of hair in these solutions.
0.5
0.5 1 15 2 25 3 ° IV. SOLUTIONS WITH HAIR
FIG. 4. A plot of \/Ap as a function of for g=1 and, reading In the previous section we have used extremal dust to

from the bottom up along the vertical axiss=0.5, 0.3, construct a family of spacetimes that come arbitrarily close
0.1, 0.001. Note that far=0.001 the density is essentially constant t0 having an extremal horizon. Astends toward zero, the

up to the quasihorizon radius and then drops sharply toward zerdnetric in the region outside the quasihorizon approaches that
showing that this is a no-hair solution. of an extremal Reissner-Nordsmnosolution. Also, the mass
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1/A [AB] 12
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0.8 0.8
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0.2 0.2
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FIG. 6. Aplot of 1A as a function of for the case with hair. We FIG. 8. A plot of VAB as a function of for the case with hair.
have takeq=1, m=1.3,r,=2, and, reading from the top down, We have takerg=1, m=1.3, r,=2, and, reading from the top
c=0.5, 0.3, 0.1, 0.001. Again the formation of the quasihorizon isdown along the vertical axi=0.5, 0.3, 0.1, 0.001.
quite evident in thee=0.001 curve.

It is natural to ask whether extremal dust can also give
and charge density tends to zero in this region, so the rise to quasi-black holes with less singular behavior, and
limiting solution has no hair. In the critical limi& remains  whether they can have hair. We begin by noting that the
finite and nonsingular inside the horizon, Mtand VAB  vanishing ofB at any horizon implies tha must diverge at
both tend toward zero everywhere in the interior region. Thehe horizon. Since =RU must remain finite, the horizon
sharp jump inyAB (which becomes a step function in the must lie atR=0, just as in the Reissner-Nordsinocase.
limiting casg means that an object falling through the quasi-This means that in the corresponding quasi-black holes the
horizon is subject to arbitrarily large tidal forces, and thatrange Gsr<r, must be mapped into an interval<R
these quasi-black hole solutions can be viewed as “nakee<R, that is shrinking to a point. Hence,
black holes” as defined by Horowitz and Rd4s].

All of these properties are similar to those found for the
quasi-black hole solutions obtained from magnetic mono- d_Rz[d(UR)}
poles in theories with weak Higgs self-coupling. However, a dr dR
second type of quasi-black hole is found in these theories if

the Higgs boson self-coupling is larger than a critical value h ithin th ihori .
[8,17]. These latter solutions tend toward black holes that ar&"Ust tend to zero everywhere within the quasihorizon, and in

much less singular at the horizon. The metric factor coeffitne limiting case bott and yAB must vanish identically in
cientB vanishes at the horizon, but then increases again witfl€ interior. _ _
decreasing, and is nonzero throughout the interior region. 10 S€€ whether there can be hair, we must examine the
Similarly, JAB is everywhere nonzero. Although it de- behawor_ ofp near the horl_zon. We combine Ed2.16 and
creases rapidly near the horizon, its derivative remains finité2-18 (With pe=p) to obtain

and there is no naked-black-hole behavior. Finally, the mas-

-1

=AB (4.1

sive gauge and Higgs fields have tails that extend beyond the 1(r2e"\"
horizon, so that the limiting cases of these solutions are black 4ap(l—re')= —2( —) 4.2
holes with hair. re\. A
B Al2
0.4 P
0.35 3
0.3 2.5
0.25 2
0.2 1.5
0.15
0.1 !
0.05 0.5 \/’;//
1 2 3 I 0.5 1 1.5 2 *
FIG. 7. A plot of B(r) for the case with hair. We have taken FIG. 9. A plot of \J/Ap as a function of for the case with hair.
=1, m=1.3, r,=2, and, reading from the top dowo=0.5, 0.3, We have takemm=1, m=1.3,r,=2, and, reading from the bottom
0.1, 0.001. up along the vertical axi$,=0.5, 0.3, 0.1, 0.001.

104004-6



QUASIBLACK HOLES FROM EXTREMAL CHARGED DUST PHYSICAL REVIEW D69, 104004 (2004

The right-hand side vanishes at an extremal horizon. Since ¢
¢'=—d(y/B)/dr also vanishes at the horizon, the second

factor on the left-hand side is nonzero, andgse0 at the 1
horizon. o

However, this does not quite rule out the possibility of
hair, since it does not preclude from being nonzero at

0.6
points other than the horizon. As an example of this, let us
consider modifying our previous ansatz 1d0{R) to 0.4

0.2

q
Up=1+ ———=+a—-bVR*+c% (4.3
VRP+c? 1 2 3 i T

Herea andb=0 are constants, with giving a rough mea- FIG. 10. A plot of ¢(r) for the case with hair. We have taken
sure of the amount of hair. If we applied this ansatz for allg=1, m=1.3, r,=2, and, reading from the top down;
positive values oR, we would find that the Schwarzschild =0.5, 0.3, 0.1, 0.001. Even in the limiting case, the decrease of
coordinater =RU(R) was not a monotonically increasing from r=1 tor=2 is slower than 1/ reflecting the presence of
function at largeR. To avoid this, we apply Eq4.3) only to  charged hair.
the regionR<R,, and atR=R, match the solution to an
extremal Reissner-Nordstrosolution with rametersy, m, andr,= Rp+m fixed. This implies thaa and
b vary so as to satisfy Eq$4.5 and(4.6).
In Fig. 6 we plot 1A as a function ofr. Its behavior is
Uou=1+ R (4.4) again just as expected, starting from unity at the origin, de-
creasing to a minimum value, and then increasing at inter-
In order to be able to match these two solutions withoutmediate distances, where it joffren to the extreme Reissner-
needing a thin shell of matter at the junction, we must reNordstran solution that tends to an asymptotic value of
quire thatU anddU/dR both be continuous &, . Applying  unity. It remains nonsingular in the critical limit, differing
these conditions to Eq¢4.3) and (4.4) fixes the values o from the extremal Reissner-Nordstnssolution in not having
andb to be a singularity atr =0, and also differing from the=0 case
in that it has hair. The functioB=1/U? is shown in Fig. 7.

2 N m DR24 2 4 For a black holeB should vanish at the horizon. As in the
a= \/m Rs( b+ ¢, 49 case without hairB does not have a minimum at the quasi-
b b horizon, but rather decreases monotonically as0. In the
limiting case,B is identically zero for alk <r, . At infinity,
q m . . . . . _
b= L R§+c2. 4.6 B tends to unity. Similarly,/AB, shown in Fig. 8, also van

 p2. a2 3 ishes identically in the interior region in the critical limit.
Ri+cc Ry . :

Hence, although we have a nonsingular spacetime for all
nonzeroc, the limiting casee=0 is again not itself a smooth
manifold.

It is also interesting to look at the density

With these conditions satisfied, it is straightforward not only
to show thatr is a monotonically increasing function &
but also to verify thap is everywhere positive.

As before, we should pass to Schwarzschild coordinates

2 4 204 4
(t,r,6,4), and obtain the metric functions and B. Equa- 3¢7q+b(2R"+5¢°R"+3c%)

tions (2.15), (4.3, and(4.4) lead to P 4m (R2+c®)[q+ (1—a) VR2+ 2~ b(R2+ )P
( R q+b(R?+c?)] X0O(R,—R). (4.8
1_ 1]
(R?+c?)[q+(1—a) VR?+c?>—b(R?*+c?)] The functiony/Ap is shown in Fig. 9. As before, we see that

=/ R<R,, the dust is pulled back within the quasihorizon asle-
creases. However, in contrast to the previous case, the den-
R sity does not vanish outside the horizon even in the critical
——, R>R,, mit. It i o i o
L R+m imit. It is zero at the quasihorizon, but non-zero inside and
4.7 outside this surface. We also see th#tp is again approxi-
mately constant in the interior region.
where R should be viewed as an implicit function of  The presence of hair can also be seen in the plot of the
r=RU(R); for R=R,, we have the simple relation electric potentialkp(r) in Fig. 10. Even in the limiting case
R=r—m.
As with the solutions without hair, we illustrate the ap-
proach to the critical limit by plotting a series of solutions “Note that whileA is continuous at this junction, its derivative
with decreasing values af In doing this, we keep the pa- need not be.

1
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c—0, the falloff of ¢ in the region Kr<?2 is slower than construct solutions both with and without hair. However, in
1/r, reflecting the presence of charged hair in this regioncontrast with the monopole case, the hair is more con-
Only for r>2 does the field have the pure Coulomb behav-strained: In the critical limit, the matter density precisely at
ior. the horizon must vanish. Furthermore, we find that the hair
does not soften the singularities of the solution to the same
V. CONCLUDING REMARKS extent that it does in the monopole case. Whether the hair is
] ] ] _ present or not, the solutions display naked-black-hole behav-
In this paper we have studied a class of solutions, whichor, with tidal forces that diverge as the critical limit is ap-

we have termed quasi-black holes, that can be viewed gsroached, and the interior solution in the limiting case does
interpolating between nonsingular spacetimes and true blaglot give a smooth manifold.

holes. Although these solutions are everywhere nonsingular,
they can come arbitrarily close to having horizons, in the
sense that the time required for an external observer to dis-
tinguish them from a true black hole can be made arbitrarily ~This work was supported in part by the U.S. Department
large. We have focused on solutions constructed from exef Energy. E.J.W. would like to thank the Aspen Center for
tremal dust—pressureless matter with equal charge and efhysics, where part of this work was done. J.P.S.L. would
ergy densities—and have compared these with the previouslike to thank the Portuguese Science Foundation FCT and
studied quasi-black hole solutions based on magnetic mond=SE for support, through POCTI along the Il Quadro Co-
pole soliton solutions. As in the latter case, it is possible tonunitaio de Apoio, reference number 327/2002.
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