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Quasiblack holes from extremal charged dust
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One can construct families of static solutions that can be viewed as interpolating between nonsingular
spacetimes and those containing black holes. Although everywhere nonsingular, these solutions come arbi-
trarily close to having a horizon. To an observer in the exterior region, it becomes increasingly difficult to
distinguish these from a true black hole as the critical limiting solution is approached. In this paper we use the
Majumdar-Papapetrou formalism to construct such quasi-black hole solutions from extremal charged dust. We
study the gravitational properties of these solutions, comparing them with the quasi-black hole solutions based
on magnetic monopoles. As in the latter case, we find that solutions can be constructed with or without hair.
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I. INTRODUCTION

Nonsingular spacetimes and those containing black h
are usually viewed as being qualitatively quite distinct. Ho
ever, one can construct families of static solutions that can
viewed as interpolating between these two types of spa
times. Although these solutions remain nonsingular, th
come arbitrarily close to having a horizon. To an observe
the ‘‘exterior’’ region, it becomes increasingly difficult t
distinguish these from a true black hole as the critical lim
ing solution is approached. These solutions provide a us
theoretical laboratory for studying the properties of tr
black holes@1#, and can lead to insight into the nature
black hole entropy@2#.

To make this more concrete, consider a spherically sy
metric spacetime with a metric of the form

ds252B~r !dt21A~r !dr21r 2~du21sin2udf2!.
~1.1!

If the spacetime is asymptotically flat, as we will assume
this paper, we can setB(`)5A(`)51. A horizon corre-
sponds to a zero ofA21. If dA21/dr also vanishes, the ho
rizon is extremal. By a quasi-black hole solution, we w
mean one that is everywhere nonsingular and for whichA21

has a minimum valueA21(r * )5e that can be adjusted to b
arbitrarily close to zero. We will refer to the location of th
minimum, r * , as the quasihorizon. An external observer
biting at some fixed radiusr 0@r * could try to explore the
‘‘interior’’ region r ,r * by sending in a series of probes an
waiting for them to emerge. Because the spacetime is n
singular, these probes would eventually return to the
server. However, the minimum time delay~as measured in
terms of the external observer’s proper time! between the
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launch and the return of such probes diverges ase tends
toward zero. Thus, given a fixed finite observing time, t
external observer would not be able to distinguish betw
nonsingular solutions sufficiently close to the critical lim
e50 and true black holes.

To see how such a solution might come about, consid
static spacetime with a spherically symmetric concentrat
of matter near the origin,r 50. If the spacetime is nonsin
gular, thenA(0)51. As one moves out from the origin,A21

initially decreases until it reaches a minimum value, typica
at a radius near the edge of the mass distribution, and
increases toward its asymptotic value. The minimum ofA21

becomes deeper as the density of the mass distributio
increased. This suggests that one could approach the b
hole limit simply by making the density large enough. T
difficulty, of course, is in finding a form of matter that ca
withstand the increasing gravitational forces and avoid gra
tational collapse. For example, this program cannot succ
with a star composed of a fluid described by an equation
state p5p(r) with the densityr and pressurep obeying
standard conditions.

The quasi-black holes studied in Ref.@1# were constructed
by invoking the classical magnetic monopole solutions t
arise in spontaneously broken gauge theories. If the par
eters of the theory are varied in such a way as to increase
Higgs expectation valuev, the monopole mass increase
while its core radius decreases. These two effects combin
lower the minimum ofA21. At a valuevcr of the order of the
Planck mass, the critical limit is reached and the nonsingu
monopole goes over into a black hole with horizon rad
r H;1/ev @3–8#.

In this paper we will study quasi-black hole solutions o
tained from a much less exotic form of matter. We will u
charged dust; i.e., pressureless matter carrying nonzero
tric charge, with its behavior described by the coupl
Einstein-Maxwell equations. More specifically, we take t
special case of extremal dust, where the energy density~in
Planck units! is everywhere equal to the charge densi
©2004 The American Physical Society04-1
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Within the context of Newtonian gravity, any static distrib
tion of this dust would clearly be stable, since the gravi
tional attraction between particles would exactly cancel th
Coulomb repulsion. The situation is perhaps less obviou
general relativity, both because the simple Newtonian fo
law description is lost and because the gravitational effe
of the energy density in the electric field must be taken i
account. Nevertheless, it was shown by Majumdar@9# and
Papapetrou@10# that the Newtonian result does in fact ge
eralize.

Solutions of the Majumdar-Papapetrou system with
tremal charged dust were investigated further by Bonnor
Wickramasuriya@11,12#, who pointed out that these solu
tions can come arbitrarily close to being black holes. In t
article we will examine this possibility in some detail, payin
particular attention to the interior region of the solution, a
comparing the gravitational properties of these quasi-bl
holes with those based on magnetic monopoles. We will a
investigate whether, as in the case of the quasi-black h
built from monopoles, there are two classes of solutio
with one possessing hair and being less singular than
other @1,8#.

The remainder of the paper is organized as follows.
Sec. II we describe the general formalism that we use
present some basic formulas. In Sec. III, we present a fam
of quasi-black hole solutions whose exterior region ten
toward that of an extremal Reissner-Nordstro¨m black hole.
In Sec. IV we discuss the possibility of solutions with ha
We sum up briefly in Sec. V.

II. BASIC EQUATIONS

A. Equations in harmonic coordinates

For charged dust the gravitational field equation takes
form

Gab58p~Tab
dust1Tab

em!, ~2.1!

where Gab is the Einstein tensor and we have setG5c
51. The dust part of the stress-energy tensor is

Tab
dust5ruaub , ~2.2!

with r being the energy density andua the four-velocity of
the fluid. The electromagnetic part of the stress-energy te
is

Tab
em5

1

4p S Fa
cFbc2

1

4
gabF

cdFcdD , ~2.3!

where the electromagnetic field strength

Fab5Aa,b2Ab,a ~2.4!

satisfies

Fab
;b54p j a54preu

a, ~2.5!

with re the electric charge density of the dust.
For a static purely electric system one can make

choice
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ua5d0
aU, Aa5da

0w. ~2.6!

Herew andU are functions of the spatial coordinates, withw
being the electric potential andU2121 being the gravita-
tional potential in the Newtonian limit. Furthermore, in
very elegant paper@9# Majumdar showed that in the speci
case of extremal dust,

re5r, ~2.7!

the metric can be put in the form

ds252
dt2

U2
1U2~dx21dy21dz2!, ~2.8!

where (t,x,y,z) are called harmonic coordinates. Th
Einstein-Maxwell equations~2.1! and ~2.5! then reduce to
the pair of equations

S ]2

]x2
1

]2

]y2
1

]2

]z2D U524prU3 ~2.9!

and

w52
1

U
11. ~2.10!

Note that the second of these reduces in the Newtonian l
to the requirement that the gravitational and electric pot
tials be equal.1

Solutions of this Maxwell-Einstein-extremal-dust syste
are generically called Majumdar-Papapetrou solutions@9,10#.
In particular, the vacuum solutions, withr5re50, reduce to
a configuration of many extreme Reissner-Nordstro¨m black
holes, as was fully explored by Hartle and Hawking@13#.
Solutions with matter have been examined in the paper
Das @14#, Bonnor@11,12#, and others~see Ref.@15# and the
references cited therein!.

Although solutions of Eq.~2.9! need not have any spatia
symmetry at all, we will focus on spherically symmetric s
lutions, for which the line element~2.8! can be rewritten as

ds252
dt2

U2
1U2@dR21R2~du21sin2udf2!#,

~2.11!

whereU5U(R). Equation~2.9! then takes the form

1

R2

]

]R S R2
]U

]RD524pU3r. ~2.12!

This equation can be solved by guessing a potentialU, and
then findingr. The solution is then complete becausere and

1An arbitrary choice of sign was made in Eq.~2.7!. If we had
chosen to consider extremal dust withre52r, the only change
would be to replacew by 2w in Eq. ~2.10!.
4-2
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w follow directly. In order that the solution be physical
acceptable, it must satisfy the additional requirement thar
be everywhere nonnegative.

B. Equations in Schwarzschild coordinates

Although the field equations are most easily solved
working in harmonic coordinates, the physical interpretat
of the solutions is clearer if one uses the Schwarzschild
ordinates defined by the line element of Eq.~1.1!. By com-
paring Eqs.~1.1! and ~2.11!, we see that the radial coord
nates in the two systems are related by

r 5UR ~2.13!

and that the metric components are related by

B5
1

U2 ~2.14!

and

1

AA
511

R

U

dU

dR
. ~2.15!

Note that Eq.~2.13! givesr as a function ofR. Although this
implicitly determinesR as a function ofr, it is only in special
cases that this can be done explicitly.

For later reference, we present here the Schwarzsc
coordinate form of the field equations. With the metric in t
form of Eq. ~1.1!, Eqs.~2.1!–~2.5! reduce to

~AB!8

AB
58prrA, ~2.16!

F r S 12
1

AD G858pr 2r1
r 2

AB
w82,

~2.17!

AB

r 2AAB
F r 2

AAB
w8G 8524pre, ~2.18!

where primes denote differentiation with respect tor.

C. Examples

Finally, we present two simple solutions. The first cor
sponds to vanishing density. Withr50, the general solution
of Eq. ~2.12! takes the formU5k1q/R, wherek andq are
constants of integration. Without any loss of generality,
can rescale coordinates and adjust the overall sign ofU to set
k51 and makeq positive, obtaining

URN511
q

R
. ~2.19!

Equations~2.13!–~2.15! then give

r 5R1q ~2.20!
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B5
1

A
5S R

R1qD 2

5S 12
q

r D 2

. ~2.21!

We recognize this as the metric for an extremal Reissn
Nordström black hole with charge and mass equal toq.

Some comment on the range of the radial coordinates i
order here. For a nonsingular solution with no horizon,
natural range ofr is 0<r ,`. SinceB51/U2 is everywhere
nonzero and finite, Eq.~2.13! maps the range 0<r ,` to
0<R,`. When there is a horizon, the vanishing ofB at the
horizon produces a divergence inU that can allowr to re-
main nonzero atR50. This is precisely what happens for th
Reissner-Nordstro¨m solution, whereR.0 covers only the
region outside the horizon; the region inside the horizon
obtained by continuing the solution to the range2q<R
,0.

A less trivial solution@11,12# is the Bonnor star, for which

U5H 11
m

Rb
S 3

2
2

R2

2Rb
2D , R,Rb ,

11
m

R
, R.Rb .

~2.22!

This corresponds to a density

r5H 3m

4pRb
3U3

, R,Rb ,

0, R.Rb .

~2.23!

Note that in the region outside the mass distribution
Bonnor solution takes the Reissner-Nordstro¨m form. This re-
sult carries over to a more general situation. Whenever
matter densityr vanishes identically for allR greater than
some valueRb , then for all R.Rb we have U(R)51
1m/R. Integration of Eq.~2.12! shows that the constantm is
given by

m54pE
0

Rb
dRR2U3r1m054pE

r 0

r b
drr 2AAr1m0

~2.24!

wherer 05r (R50) andm0 is an integration constant. For
nonsingular spacetimem050 andm is equal to the spatia
integral~with the correct volume element! of the matter den-
sity. ~Recall that the factor ofAA is absent from the analo
gous formula for neutral dust. This can be viewed as be
due to the contribution of gravitational potential energy
the total mass. For extremal dust the energy in the elec
field precisely cancels the gravitational potential energy a
restores the factor ofAA.! For the Reissner-Nordstro¨m black
hole, on the other hand, the matter density vanishes ide
cally andm comes entirely fromm0, which can be viewed as
the contribution from the singularity atr 50.
4-3
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III. QUASI-REISSNER-NORDSTRÖ M SOLUTIONS

We now want to find nonsingular solutions that can
viewed as quasi-black holes. We start, in this section,
seeking a family of solutions that will, in some sense, te
toward the extremal Reissner-Nordstro¨m solution.

One possible approach would be to first postulate a d
sity profile and then solve Eq.~2.12! to obtain the metric.
Even aside from the possible difficulties in solving this d
ferential equation, the identically vanishingr of the
Reissner-Nordstro¨m solution does not give us any usef
hints as to what density profile we should choose.

We therefore try a different approach. Working in ha
monic coordinates, we start by postulating a family of p
files for U(R) that includes the Reissner-Nordstro¨m case,
Eq. ~2.19!, as a limiting case. Specifically, we take2

U511
q

AR21c2
. ~3.1!

Whenc50, this reduces to Eq.~2.19!, with the horizon ly-
ing at R50 andr 5q. For any finitec, on the other hand, i
gives a nonsingular spacetime, with the origin atR5r 50.
For R/c sufficiently large, we might expect this spacetime
approximate the Reissner-Nordstro¨m solution.

As described in the previous section, any choice forU(R)
gives a solution of the Einstein equations. However, to m
sure that the solution is physically acceptable, we must ch
that the densityr is everywhere positive.3 Substituting Eq.
~3.1! into Eq. ~2.12!, we obtain

r5
1

4p

3qc2

~R21c2!@q1AR21c2#3
. ~3.2!

This is indeed positive definite, as required. At short d
tances (R!c), the density is approximately constant, b
whenR is greater than bothq andc the density falls rapidly,
as 1/R5.

To explore the existence of a horizon or a quasihoriz
we need the Schwarzschild metric componentgrr 51/A. Us-
ing Eq. ~2.15!, we find that

1

AA
512

qR2

~R21c2!@q1AR21c2#
, ~3.3!

whereR should be viewed as a function ofr. For R@c, this
differs from the Reissner-Nordstro¨m result by terms that are
no greater thanc2/R2. For smallR, on the other hand, the
behavior is quite different. Rather than finding a pole atR
50, we see that 1/AA differs from unity by terms of order

2For another possible choice, see Ref.@12#.
3As evidence that this is a nontrivial requirement, we note that

choiceU511q(R21c2)2g gives a negative energy density ifg
.1/2. If g,1/2, the density is positive, and 1/A is bounded from
below by 122g.
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R2, just as would be expected for a nonsingular configu
tion with finite density near the origin.

Differentiation of Eq.~3.3! shows that 1/AA has a mini-
mum atR5R* , whereR* satisfies

2q

c
5S R

*
2

c2 22DAR
*
2

c2 11. ~3.4!

For c!q this gives

R* 5S 2c2

q2 D 1/3

qF11OS c2/3

q2/3D G!q. ~3.5!

Substituting these results back into Eq.~3.3!, we find that the
minimum of 1/A is

e5
1

A~R* !
5S 3c2

R
*
2 1c2D 2

59S c

2q
D 4/3

1•••. ~3.6!

This vanishes asc→0, and so Eq.~3.1! does indeed generat
quasi-black hole solutions. Furthermore, in the region o
side the quasihorizon 1/A approaches the extremal Reissne
Nordström result asc→0.

Although the use of harmonic coordinates simplified t
task of finding these solutions, these coordinates are not

e

FIG. 1. A plot of 1/A as a function ofr for q51 and, reading
from the top down,c50.5, 0.3, 0.1, 0.001. The emergence of t
quasihorizon is quite evident in thec50.001 curve.

FIG. 2. A plot ofB(r ) for q51 and, reading from the top down
c50.5, 0.3, 0.1, 0.001.
4-4
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suited for studying their properties near the critical limit.
see this, note that Eq.~3.5! implies thatR* →0 as c→0.
Hence, when viewed in harmonic coordinates, the regio
,R,R* inside the quasihorizon seems to collapse to a p
in the critical limit. This difficulty can be avoided by usin
the Schwarzschild coordinate

r 5RU5R1
qR

AR21c2
~3.7!

because the behavior ofU near the critical limit has the ef
fect of stretching the interior region back to its ‘‘natura
size. From Eqs.~3.5! and ~3.7! we find that

r * 5qF11
3

4
S 2c2

q2 D 1/3

1•••G ~3.8!

so that the Schwarzschild radial coordinate of the quasih
zon is approximately constant as the critical limit is a
proached.

More generally, inversion of Eq.~3.7! gives the limiting
cases

FIG. 3. A plot ofAAB as a function ofr for q51 and, reading
from the top down along the vertical axis,c50.5, 0.3, 0.1, 0.001.
Note that forc50.001,AAB is virtually zero in the whole interior
of the quasi-black hole solution.

FIG. 4. A plot ofAAr as a function ofr for q51 and, reading
from the bottom up along the vertical axis,c50.5, 0.3,
0.1, 0.001. Note that forc50.001 the density is essentially consta
up to the quasihorizon radius and then drops sharply toward z
showing that this is a no-hair solution.
10400
0
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R5H cr

q1c
1O~r 3/q2!, R!c,

r 2q1O~qc2/r 3!, R@R* .

~3.9!

In Fig. 1 we plot 1/A as a function ofr for several values
of c. Its behavior is just as expected, starting from unity
the origin, decreasing to a minimum value, and then incre
ing at large distance toward an asymptotic value of unity
remains everywhere smooth in the critical limit, differin
from the extremal Reissner-Nordstro¨m solution in not having
a singularity atr 50. The behavior ofB is shown in Fig. 2.
For a black hole,B should vanish at the horizon. Indee
B(r * )'(2c2/q2)2/3 tends to zero in the critical limit. How-
ever, B does not have a minimum at the quasihorizon, b
rather decreases monotonically asr→0. In the limiting case,
B is identically zero for allr ,r * . Similarly,AAB, shown in
Fig. 3, also vanishes identically in the interior region in t
critical limit. Hence, although we have a nonsingular spa
time for all nonzeroc, the limiting casec50 is not itself a
smooth manifold.

It is also interesting to look at the densityr, which is
shown in Fig. 4. We see that asc is decreased, the dust i
pulled back within the quasihorizon: The fraction of the ma
integral of Eq. ~2.24! coming from r .r * is of order
(c/q)2/3, and vanishes in the critical limit. Curiously, we se
that AAr is approximately constant in the interior region.

Finally, in Fig. 5 we show the electric potentialw as a
function of r. It is interesting to note how asc vanishes the
profile of w approaches one that is constant in the inter
and then falls as 1/r outside the horizon. This clearly illus
trates the absence of hair in these solutions.

IV. SOLUTIONS WITH HAIR

In the previous section we have used extremal dus
construct a family of spacetimes that come arbitrarily clo
to having an extremal horizon. Asc tends toward zero, the
metric in the region outside the quasihorizon approaches
of an extremal Reissner-Nordstro¨m solution. Also, the mass
o,

FIG. 5. A plot of w(r ) for q51 and, reading from the bottom
up, c50.5, 0.3, 0.1, 0.001. Note that forc50.001 the potential is
essentially constant up to the horizon and then drops as 1/r , as
required for a no-hair solution.
4-5
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and charge densityr tends to zero in this region, so th
limiting solution has no hair. In the critical limitA remains
finite and nonsingular inside the horizon, butB and AAB
both tend toward zero everywhere in the interior region. T
sharp jump inAAB ~which becomes a step function in th
limiting case! means that an object falling through the qua
horizon is subject to arbitrarily large tidal forces, and th
these quasi-black hole solutions can be viewed as ‘‘na
black holes’’ as defined by Horowitz and Ross@16#.

All of these properties are similar to those found for t
quasi-black hole solutions obtained from magnetic mo
poles in theories with weak Higgs self-coupling. However
second type of quasi-black hole is found in these theorie
the Higgs boson self-coupling is larger than a critical va
@8,17#. These latter solutions tend toward black holes that
much less singular at the horizon. The metric factor coe
cientB vanishes at the horizon, but then increases again w
decreasingr, and is nonzero throughout the interior regio
Similarly, AAB is everywhere nonzero. Although it de
creases rapidly near the horizon, its derivative remains fi
and there is no naked-black-hole behavior. Finally, the m
sive gauge and Higgs fields have tails that extend beyond
horizon, so that the limiting cases of these solutions are b
holes with hair.

FIG. 6. A plot of 1/A as a function ofr for the case with hair. We
have takenq51, m51.3, r b52, and, reading from the top down
c50.5, 0.3, 0.1, 0.001. Again the formation of the quasihorizon
quite evident in thec50.001 curve.

FIG. 7. A plot of B(r ) for the case with hair. We have takenq
51, m51.3, r b52, and, reading from the top down,c50.5, 0.3,
0.1, 0.001.
10400
e

-
t
d

-

if
e
re
-
th
.

te
s-
he
ck

It is natural to ask whether extremal dust can also g
rise to quasi-black holes with less singular behavior, a
whether they can have hair. We begin by noting that
vanishing ofB at any horizon implies thatU must diverge at
the horizon. Sincer 5RU must remain finite, the horizon
must lie atR50, just as in the Reissner-Nordstro¨m case.
This means that in the corresponding quasi-black holes
range 0<r<r * must be mapped into an interval 0<R
<R* that is shrinking to a point. Hence,

dR

dr
5Fd~UR!

dR G21

5AAB ~4.1!

must tend to zero everywhere within the quasihorizon, an
the limiting case bothB andAAB must vanish identically in
the interior.

To see whether there can be hair, we must examine
behavior ofr near the horizon. We combine Eqs.~2.16! and
~2.18! ~with re5r) to obtain

4pr~12rw8!5
1

r 2 S r 2w8

A
D 8

. ~4.2!

s

FIG. 8. A plot ofAAB as a function ofr for the case with hair.
We have takenq51, m51.3, r b52, and, reading from the top
down along the vertical axis,c50.5, 0.3, 0.1, 0.001.

FIG. 9. A plot ofAAr as a function ofr for the case with hair.
We have takenq51, m51.3, r b52, and, reading from the bottom
up along the vertical axis,c50.5, 0.3, 0.1, 0.001.
4-6
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The right-hand side vanishes at an extremal horizon. S
w852d(AB)/dr also vanishes at the horizon, the seco
factor on the left-hand side is nonzero, and sor50 at the
horizon.

However, this does not quite rule out the possibility
hair, since it does not precluder from being nonzero a
points other than the horizon. As an example of this, let
consider modifying our previous ansatz forU(R) to

U in511
q

AR21c2
1a2bAR21c2. ~4.3!

Herea andb>0 are constants, withb giving a rough mea-
sure of the amount of hair. If we applied this ansatz for
positive values ofR, we would find that the Schwarzschil
coordinater 5RU(R) was not a monotonically increasin
function at largeR. To avoid this, we apply Eq.~4.3! only to
the regionR,Rb , and atR5Rb match the solution to an
extremal Reissner-Nordstro¨m solution with

Uout511
m

R
. ~4.4!

In order to be able to match these two solutions with
needing a thin shell of matter at the junction, we must
quire thatU anddU/dR both be continuous atRb . Applying
these conditions to Eqs.~4.3! and ~4.4! fixes the values ofa
andb to be

a52
2q

ARb
21c2

1
m

Rb
3
~2Rb

21c2!, ~4.5!

b52
q

Rb
21c2

1
m

Rb
3
ARb

21c2. ~4.6!

With these conditions satisfied, it is straightforward not on
to show thatr is a monotonically increasing function ofR,
but also to verify thatr is everywhere positive.

As before, we should pass to Schwarzschild coordina
(t,r ,u,f), and obtain the metric functionsA and B. Equa-
tions ~2.15!, ~4.3!, and~4.4! lead to

1

AA
55

12
R2@q1b~R21c2!#

~R21c2!@q1~12a!AR21c22b~R21c2!#
,

R,Rb ,

R

R1m
, R.Rb ,

~4.7!

where R should be viewed as an implicit function o
r 5RU(R); for R>Rb , we have the simple relation
R5r 2m.

As with the solutions without hair, we illustrate the a
proach to the critical limit by plotting a series of solution
with decreasing values ofc. In doing this, we keep the pa
10400
ce
d

f

s

ll

t
-

s

rametersq, m, andr b5Rb1m fixed. This implies thata and
b vary so as to satisfy Eqs.~4.5! and ~4.6!.

In Fig. 6 we plot 1/A as a function ofr. Its behavior is
again just as expected, starting from unity at the origin,
creasing to a minimum value, and then increasing at in
mediate distances, where it joins4 on to the extreme Reissne
Nordström solution that tends to an asymptotic value
unity. It remains nonsingular in the critical limit, differing
from the extremal Reissner-Nordstro¨m solution in not having
a singularity atr 50, and also differing from theb50 case
in that it has hair. The functionB51/U2 is shown in Fig. 7.
For a black hole,B should vanish at the horizon. As in th
case without hair,B does not have a minimum at the quas
horizon, but rather decreases monotonically asr→0. In the
limiting case,B is identically zero for allr ,r * . At infinity,
B tends to unity. Similarly,AAB, shown in Fig. 8, also van-
ishes identically in the interior region in the critical limi
Hence, although we have a nonsingular spacetime for
nonzeroc, the limiting casec50 is again not itself a smooth
manifold.

It is also interesting to look at the density

r5
1

4p

3c2q1b~2R415c2R413c4!

~R21c2!@q1~12a!AR21c22b~R21c2!#3

3Q~Rb2R!. ~4.8!

The functionAAr is shown in Fig. 9. As before, we see th
the dust is pulled back within the quasihorizon asc de-
creases. However, in contrast to the previous case, the
sity does not vanish outside the horizon even in the criti
limit. It is zero at the quasihorizon, but non-zero inside a
outside this surface. We also see thatAAr is again approxi-
mately constant in the interior region.

The presence of hair can also be seen in the plot of
electric potentialw(r ) in Fig. 10. Even in the limiting case

4Note that whileA is continuous at this junction, its derivativ
need not be.

FIG. 10. A plot of w(r ) for the case with hair. We have take
q51, m51.3, r b52, and, reading from the top down,c
50.5, 0.3, 0.1, 0.001. Even in the limiting case, the decrease ow
from r 51 to r 52 is slower than 1/r , reflecting the presence o
charged hair.
4-7
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c→0, the falloff of w in the region 1,r ,2 is slower than
1/r , reflecting the presence of charged hair in this regi
Only for r .2 does the field have the pure Coulomb beh
ior.

V. CONCLUDING REMARKS

In this paper we have studied a class of solutions, wh
we have termed quasi-black holes, that can be viewed
interpolating between nonsingular spacetimes and true b
holes. Although these solutions are everywhere nonsing
they can come arbitrarily close to having horizons, in t
sense that the time required for an external observer to
tinguish them from a true black hole can be made arbitra
large. We have focused on solutions constructed from
tremal dust—pressureless matter with equal charge and
ergy densities—and have compared these with the previo
studied quasi-black hole solutions based on magnetic mo
pole soliton solutions. As in the latter case, it is possible
10400
.
-

h
as
ck
r,

e
is-
y
x-
n-
ly
o-
o

construct solutions both with and without hair. However,
contrast with the monopole case, the hair is more c
strained: In the critical limit, the matter density precisely
the horizon must vanish. Furthermore, we find that the h
does not soften the singularities of the solution to the sa
extent that it does in the monopole case. Whether the ha
present or not, the solutions display naked-black-hole beh
ior, with tidal forces that diverge as the critical limit is ap
proached, and the interior solution in the limiting case do
not give a smooth manifold.
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