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Dynamical shift conditions for the Z4 and BSSN formalisms
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A class of dynamical shift conditions is shown to lead to a pseudohyperbolic evolution system, both in the
Z4 and in the BSSN numerical relativity formalisms. This is done by using a plane-wave analysis which can
be viewed as an extension of the standard Fourier analysis for this kind of systems. The proposed class
generalizes the harmonic shift condition, where light speed is the only nontrivial characteristic speed, and it is
contained into the multiparameter family of minimal distortion shift conditions recently proposed by Lindblom
and Scheel. The relationship with the analogous “dynamical freezing” shift conditions used in black hole
simulations is discussed.
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[. INTRODUCTION used to avoid collapse singularitiekd]. The main advantage
is that one can use now the shift degrees of freedom to sim-
General covariance is a characteristic property of Ein{lify the system, either using normal coordinatesro shifj

stein's theory of gravitation. There are four coordinate de-or any other kinematical choice adapted to the specific prob-
grees of freedom in the field equations, allowing us to freellem under study.

choose the spacetime coordinaésor, in the framework of Recently, there has been a renewed interest in the use of
the 3+1i decomposition, the lapse functienand the shift dynamical shift vectors. In the context of the Baumgarte-
vector 8. Shapiro-Shibata-Nakamu(BSSN formalism[20,21], some

This gauge freedom can be used, like in the early years ofhift conditions have been proposé??] that manage to

general relativity, to set up a complete evolution systeMreeze” black hole dynamics near the horizon, leading to
(consisting of the field equations plus the gauge condifions|, g term numerical simulations although. As we will see

with a well posed Cauchy problem. The well known har-|54er the harmonic shift condition given by Ed) is similar

monic coordinate conditions to (but not contained inthe ones discussed in R¢R2].
Ox*=(g°"V,V,)x*=0 (1) It is clear that the principal part of the original BSSN
system is modified by the choice of a dynamical shift, al-
provide a simple way to get a well posed initial value prob-though no hyperbolicity analysis of the modified system has
lem[1] with an extremely simple principal part, consisting of been yet published, to the best of our knowledge. This is not
one wave equation for every component of the four-surprising because the BSSN formalism, like the Arnowitt-

dimensional metric tensor: Deser-MisnefADM) one, is of a mixed type: first order in
time, but second order in space, and therefore the standard
Hgu=-- 2 Fourier analysis would lead to the conclusion that the mixed

o . order system is not hyperboli@3]. This has been explicitly
E)Zri’g]c’il\;\geggéhe ellipsis stands for terms not belonging to theshown by Fritelli and Gomez for both the ADM and BSSN

Although the resulting system is still currently used in formalisms[24]. We will present here_an aIternativ_e plane-
analytical approximations, its use in numerical relativity is @V analysis, based on the underlying physics, in order to
very limited, mainly because the four conditiofly com-  reveal a related property, which we will call “pseudohyper-
pletely exhaust the gauge degrees of freedom, and there is R9!iCity” to avoid confusion. As far as the underlying physics
flexibility left that could be used to fit the peculiarities of the d0€s not change when passing from the fully second order
specific systems one wants to modeailit see also some gen- system to the mixed order version of the same equations,
eralizations in Refs4—7]). pseudohyperbolicity can be seen as the imprint left on the

The current alternative, represented by the “new hypermixed order system by the true hyperbolicity of the fully
bolic formalisms” (Refs. [8-18)), is to use somehow the second order version which was at the starting point.
momentum constraint as a tool for ensuring hyperbolicity, From a different point of view, a generalization of the
instead of the three space coordinate conditions ifBgln ~ Minimal distortion shift condition has been proposed by

this way, only the time gauge condition Lindblom and Schee]25] in the context of the first order
Kidder-Scheel-Teukolsky(KST) formalism [17]. Surpris-
Ox%=0 (3) ingly enough, in spite of the fact that the resulting system

contains at least twenty-two free parameters, none of the
is kept, or one of its generalizatiofisarmonic slicing. This  cases discussed [@5] verifies the condition that all the non-
happens to be very convenient for numerical simulationstrivial characteristic speeds do coincide with light speed. The
because Eq(3) implies a direct relationship between the surprise comes from the fact that one would expect this con-
lapsea and the spatial volume elemexfty, which can be dition to be ensured by the use of the full set of harmonic
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coordinates(1), which are actually a particular case of the In arecent work27], a symmetry breaking mechanism is
gauge conditions proposed [iB5]. proposed that, starting from the Z4 systé®—(9), allows

As a contribution to clarify this issues, we will present one to recover an evolution system which is equivalent, up to
here a family of dynamical shift conditions, which is closely quadratic source terms, to the BSSN sys{@®,21] (partial
related with the ones presented[22] and[25]. We will do  symmetry breaking Also, in the first order case, the same
so first in the framework of the general-covariant Z4 formal-mechanism allows one to recover the multiparameter KST
ism[26], extending then the results to the BSSN case, whiclsystem[17] (full symmetry breakinyor, to be more precise,
can be derived from the Z4 one in a simple wW&7]. We  a “live gauge” version of the samgL8].
will perform a complete plane-wave analysis of both sys-
tems, analogous to the one presented in 8. The result- B. Gauge evolution equations
ing characteristic speeds are directly related with the main
free parameters of the proposed family. The further require-
ment that all the nontrivial characteristic speeds do coincid®
with light speed, allows one to recover the harmonic case. (0~ B, a=— aPtrK (11)

The harmonic gauge conditiond) can be easily ex-
ressed in the -B1 formalism as

Il. THE 24 SYSTEM (1= B'ap) B'=—a’[dIn(ary)+3;9"],
A. The evolution equations (12

The Z4 covariant formalism introduces a four- where the first equation is théaarmonig¢ slicing condition,
dimensional vector as a supplementary dynamical fieJd ~ Whereas the second one provides tharmonig shift once
The evolution equations are obtained by adding(#yenme-  the slicing is known.

trized covariant derivatives oZ,, to Einstein’s field equa- ~ The harmonic slicing conditiofl1) has been generalized
tions: in the context of the Z4 system as followa7]:
1 (8— B'9,)a=—a?f[trK—m@], (13
R,V Z,4V,2,=87T,,~5Tg,,|. (4)

where the parametefr is directly related with the gauge

propagation speed, whereasprovides a coupling with the

energy-constraint-violating modes, represented by the quan-
ds?=— a?dt2+ v, (dx + B'dt) (dx + gldt) (5) ity 6. We will see in the following analysis that, if one

wants the gauge speed to coincide with light spefed ),

wherea and ' are the lapse and the shift, respectively, andthen a pseudohyperbolic system is obtained onigf 2, so

vij is the spatial 3-metric. Using this decomposition, the genthe coupling given by then parameter cannot be neglected.

eral covariant equation@) do consist of a system of pure This conclusion coincides with the result of REZ7], where

In the 3+1 decomposition the line element is written as:

evolution equations: it was confirmed by the robust stability numerical test.
The harmonic shift evolution equatiqh?) can be gener-
(0:=Lp)vij= — 2aK;; (6) alized along the same lines:

. , (9— B'3,)B'=—a¥2uV'+adn a—ddInyy]— B
(&t—ﬁﬁ)Kij=—Viaj+a R|]+V|ZJ+V]Z|_2K” (14)

1 where we have defined
+(trK—2®)Kij_Sj+ E(trS— ’T)’)/ij

1
(7) V,=(9,|n\/;—§o7' y”—ZI . (15)
a3 " Notice that the advection term on the left-hand side, which
(=LpO=Z[R+2Z was absent in Ref22], is needed if one wants to recover the
harmonic shift as a particular case. As we will see in the
+(trK—20)trK —tr(K?)— 2Z%ay /a— 27] following analysis, the parametegs andd are directly re-

) lated with the characteristic speeds of the longitudinal and
transverse shift components, respectively, in the same way as

_ _ i g o f is related with gauge speed. The paramatenstead, has
(6= Lp)Zi= ol V(K= 8trK) + 4,0~ 2K]Z no direct relationship with the characteristic speeds: its role
-0Oa;la—S] (9) is very similar to the parameten in the lapse condition, as
we will see that specific values afwill be required to en-
where we have noted sure pseudohyperbolicity in degenerate cases, so one cannot
just neglect this kind of coupling. The parametgrin turn,
0=aZ° 1=87a*T%, S=8maT’%, S;=87T;. corresponds instead to a damping term which has shown to

(10 be crucial to get stable long term simulatid22]. We have
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not included, however, the term in our analysis to avoid The same thing can be done with the supplementary quan-
masking the genuine wave propagation effects with the artitities, which can be considered as an additional perturbation

ficial damping produced by this kind of terms. of the Einstein’s equations background. The original system
(4) is of first order inZ,,, but it can be viewed alternatively
ll. LINEAR PLANE-WAVE ANALYSIS as being of second order in some “potential” quantités

) ) ) o which time derivative can be defined to be precisgly. In
The system(6)—(9) is of a mixed type: first order in time  his way Eq.(4) could be seen as a fully second order system
but second order in space. This means that, accordmg to thg (Y0 Y,) and the same arguments as before would jus-
standard methodg3], based on the Fourier analysis of the i, the following plane-wave decomposition of the supple-
principal part, it cannot be classified as hyperbolic. This ISmentary quantities
also the case of the original ADM systel@4], where the

quantities @, Z,) are supposed to be zero. In what follows, O=iwe*®(w,1) (21)
we will present an alternative plane-wave analysis, starting
with the ADM case first and including the supplementary Z =i 08 Z(w,1), 22)

guantities @, Z,) later.

_Itis well known that any metric can be written down at @ here thei o factors still appear on the right-hand side.
given spacetime point P in a locally inertial coordinate sys-

tem such that the first derivatives of the metric coefficientqv PSEUDOHYPERBOLICITY OF THE 74 SYSTEM WITH
vanish at P. We will take advantage of this to write down the DYNAMICAL SHIET
line element at P as
22 0 i i . J. We will perform here a linear plane-wave analysis of the
ds’=—agdt?+ % (dx + Bo'dt)(dX+ Bo'dt).  (16) 74 system. This means to substitute the perturbations de-
scribed in the preceding section into the evolution equations

It is clear that the validity of the expressigh6) is strictly _ ; :
local: second and higher order derivatives of the metric co-(6) (9), (13), (14), keeping only the linear terms. We get

efficients at P cannot be supposed to vanish: they are rather .. . nNT 2 =
related to one another by the field equations. This suggests (G—Twpg)a lwapf[trk=mO] @3
the splitting of the metric into two components: . ~ . o~ ~a

A uniform static background of the fori16). (d—iwpBe")B'= —iwag[(2u—d)n'try=2u(y"'+Z))

A dynamical perturbation which, when superimposed to

i~
the background in a linear way, allows one to recover the full +an‘alao] (24
metric. 1
It makes sense then to decompose the dynamical pertur-((gt_iwlgon);,ij =—iw a’ORij - _(nifngrnj"/;i)
bation into plane waves, with a space dependence given by 2 (25
a—a Iei“"xzz(w,t) (17 - - - -
° (—1wBMB = —iwag[try— " —Z"] (26)
B =B =€ B (w,1) (18) - o
(h—iwBo")Zi=—iwag[ni(trK—0)—K{'] (27)
7~ 7% =26 " (,1) 19 s . N - -
(ﬁt_ | w,BO )K” =—1 wao['yij + ninj(tr v+ a/ao)

wherew = wny, y4n'ni=1. L L

Up to here, we have followed the standard Fourier analy- —Ni(Ynj+Z) —nj(ynitZ)] (28)
sis. Now we will depart from the standard path by decom- ) ) )
posing the dynamical variabl;; in a form which is consis- where the letten replacing one index means contracting that

tent with the exact evolution equatid@f), namely index withn; .
Notice that we have kept the linear source terms in Egs.
Ki; =iwe“"'xRij(w,t), (200 (23, (29), in contrast with the usual practice in the standard

Fourier analysis, where only the principal part of the system

where one must notice the factor on the right-hand side. is considered. In fact, our plane wave analysis incluydeso
This extra factor is not present in the standard hyperbolicitythe linear orderall the source termg@vith the only exception
analysis, where only the principal part of the system is usedyf the artificial damping one for the shift, as discussed be-
breaking in that way the direct relationshi) between the fore). Therefore, the underlying physics is accounted for in a
metric and the extrinsic curvature. consistent way. In particular, the direct relationship between

Note that Eq.(6) is crucial to relate the origindlkecond the metric and the extrinsic curvature is fully preserved. This
order in timg version of the field equation&) with the  means that the characteristic speeds we are going to compute
resulting (first order in timg 3+1 version(6)—(9). This is  should be the same ones that could be obtained from either
why we will choose the alternative decompositi®0) in  the fully second order or the fully first order versions, where
order to look for the imprint in the 81 system of the hy- the standard Fourier analysis can be applied in a way which
perbolicity properties of the original second order version. is consistent with the underlying physics of the problem.
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The system23)—(28) can be written in a compact way as  Longitudinal shift modeThere are 2 eigenmodes propa-
B B gating with speed = — 8+ a\/d,
du=—iw[A=pB"Iu, (29
VA[BY ap+BotrK+B3®]+[(a+B,)alapy—dtry
whereu is the perturbation array. The geometric properties -~ -
of matrix on the right-hand sidécharacteristic matrixare +(2u+2By+Bg)(try—y"—=2Z"]. (36)
obviously related with the dynamics of the plane-wave per- )
turbations. Allowing for the trivial structure of the shift term, W& have used again the shortcuts
the pseudohyperbolicity of the evolution systd@9) will
depend on the properties of the main matixWe will say B, ,
that the systen(29) is “pseudohyperbolic” if and only ifA f—d
has real eigenvalues and a complete set of eigenvectors, t%%c
al

is, the number of independent eigenvectors must be the sa . o
b g ctor d should be greater than zero. This condition is also

as the number of independent dynamical field§ in our sufficient in the generic case wheatés different from both 1
. This is th | f th h lici -
casg. This is the analogous of the strong hyperbolicity prop andf. Notice that in the degenerate cases one would need to

erty of first order systems. The use of the term “pseudo- » - .
hyperbolicity” is just to avoid confusion. impose additional conditions on the free parameters in order

We can start computing the eigenmodes which do nol0 get a well defined pair of eigenmodes. For instance, if
contain shift terms. In this list we have: =f one must hava=1, so that the paramet&, can take
any value(arbitrary mixing with the gauge copdf we have
further degeneracy, that is=f =1 (remember that=1 im-
pliesm=2), then it follows from Eq(37) thatu=1 also, so
~ ~ ~mn Sn that one gets the harmonic shift case.
Ox(try=y"=20). (30 In summary, there are 20 fields in the evolution system
Light cones.There are 10 more eigenmodes propagatinga”d we have got real characteristic speeds and 20 .indepen-
with light speedp = — B+ ag: dent eigenvectors, provided that all the character|st|.c speed
parameterd,u,d are greater than zero. The system in then

d—af (2—-mf)B,+2u—amf

By= e @7

necessary condition for pseudohyperbolicity is that the

Energy coneThere are 20-related eigenmodes, propa-
gating with light speedy = — 84+ aq:

R 4= (31) pseudohyperbolic in the generic case, although degenerate
na=¥na cases, where different characteristic speeds actually coincide,
~ ~ require additional conditions on the remaining parameters
Kab® Yab, (32 a,m.
where the letterg,b replacing an index mean the projection
orthogonal ton; . V. PSEUDOHYPERBOLICITY ANALYSIS FOR THE BSSN
Lapse coneThere are 2«-related eigenmodes propagat- SYSTEM WITH DYNAMICAL SHIFT
ing with speecv = — 85+ arg/f: A pseudospectral analyig9] of the original BSSN sys-
_ _ ~ o tem [20,21] has been done recent[30]. We will proceed
VItrK—B,8 1= [ @/ ag+(2—By) (tr'y—y""=ZM], here instead with the linear plane-wave analysis of the com-

(33 plete system, including the dynamical shift terms. We can
take advantage of the symmetry breaking mechanism pro-

where we have used the shortcut posed in Ref[27]. Starting from the Z4 system equatioi

mf—2 to (9), we will take the following steps:
B.= f—1" (34) (1) Perform the dynamical fields recombination
The factorf must be greater than zero for pseudohyperbolic- , n
ity. Notice that, in the degenerate casel (harmonic slic- Kij=Kij— §®7ij (38)
ing), a well defined pair of eigenmodes is obtained only if
m=2, so that the paramet8;, can take any valuérbitrary (2) Suppres® as a dynamical quantity, setting its value
mixing with the energy cone equal to zero wherever it appears in the evolution equations.
The shift-relat_ed cones are; _ This process alters the evolution equation for the extrinsic
Transverse shift cone$here are 4 eigenmodes propagat-curvatureK; , even if one ha&;; =K after the second step.
ing with speeds = — B,'= agu, One gets as a result a one parameter family of evolution
_ L systems, with different principal parts for every value of the
(Balag) = 2\/;( Ynat Za)- (35 n parameter, namely:
The factoru must be greater than zero for pseudohyperbo- (d,—B"d;)a=—a?f trK (39

licity. Notice that, in the vanishing shift case, they reduce to . . _ ' .
the second term, which would correspond to standing eigen- (3,— 879,)8'= — o[ 2 V' +ad'In a—dd'Iny]— 78
modes(zero characteristic speed (40)
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((9t_,gr(;r)7ij:_zaKij+yik((9],3k)+ ij(ﬁiﬁk) (41) cased=f, a well defined pair of eigenmodes is obtained
only if a=1, so thaB, can take any valu@rbitrary mixing

(0= B9 Zi+ o e SKtr K —KK) =+ - - (42)  with the lapse cone
In summary, there are 19 fields in the evolution system
(0= B ) Kij +3k[a)\kij]: o (43 and we have got real characteristic speeds and 19 indepen-
dent eigenvectors, provided that all the characteristic speed
where we have noted for short parameterd,u,d are greater than zero. The system is then
. ‘ ‘ pseudohyperbolic in the generic case, although the degener-
20K =y + 8(9In a+ g Iny+2V)) ate casel=f requires the additional conditica=1. Notice

that the h onic el C d cisely wh
+5}‘((9ilna+ailn\/§+2Vi)—ndyij. (44) at the harmonic case is recovered precisely when

In particular, it has been shown [[@7] that the principal part d=f=pu=1. (51)
of the system obtained whem=4/3 can be rewritten, by
further rearranging the dynamical fields, as that of the BSSN . ] » ] ~ ]
system. We will name this system Z3-BSSN to avoid confu- Gamma driver” shift conditions is thd™ one. It is clear
sion. Both systems are then linearly equivaléquivalent that this corresponds to our parameter choices

up to quadratic source terms, see R&t]), so that showing

pseudohyperbolicity_ for the Z3-BSSN system, as we will do a=0, pu= Ed (52)

in the present section, amounts to show the same for the 4

original BSSN system.

As far as the second step of the symmetry breaking proso that pseudohyperbolicity is ensured provided thatf.
cedure suppresses the dynamical fiéld the linear plane- The main difference, as stated before, is that our shift condi-
wave analysis must be repeated from scratch, although tHéns (14) are a generalization of the harmonic on@g).
results of the preceding section provide a useful guide. Wdhis is only possible by keeping, as we do, the advection
obtain the following list of eigenvectors and eigenvalues: term in the shift evolution equatiofi4). This term was sup-

Standing modeThere is 1 mode propagating along the pressed in Refl22] in order to freeze the dynamics in the

Comparing with Ref[22], the only relevant term in their

normal lines, that is with speag=— 3, neighborhood of the black hole’s apparent horizon.
try=y"-2". (45) VI. CONCLUSIONS
This is what is left of the energy cone in the Z4 system after In this paper, we have studied a multiparameter family of
suppressing as a dynamical field. dynamical gauge conditiori¢3), (14), which generalizes the
Light conesThere are 10 modes propagating with speedharmonic gauge conditiond) along the ways sketched in
v=—BJ* ay, namely Refs.[22,25 (Gamma-driver shift conditionsStarting with

(the second order version)othe general covariant Z4 for-

~ ~ 2 - o~ m=o~p malism, we have computed explicitly all the eigenmodes,
Kab®| Yab= 3(ry=»""=Z% vap (46)  identifying the choices of the gauge parametdisn, x,a,d}

that make the full evolution system pseudohyperbolic. The
Rnai;’na- (47) relationship between the gauge parameters and the character-

istic speeds is direct and simple. Depending on the param-
Lapse coneThere are 2 modes propagating with speeceters choice, gaugéapse and shiftpropagation speeds can
v=—B¢*a\f, be made to coincide or not with light speed.
The same kind of analysis has been done with the corre-
\/?trRiZu/ao. (48) sponding gauge conditions, for the second order system
(39—(43), which is linearly equivalent to that of the BSSN

Transverse shift coneghere are 4 modes propagating System[31]. The Gamma-driver shift condition which has

with speedv = — B+ ag Vi, been used in Ref22] corresponds to the parameters choice
(52), but with the advection term in the left-hand side of the
(Ea/ao)iz\/ﬁ(;’nﬁza)- (49) shift equation(40) suppressed. One could redo the analysis

without that term, just by adding it to the right-hand side of
Longitudinal shift coneThere are 2 modes propagating the same equation. This would affect the shift cof49),

with speedv = — 85+ aq/d: (50), which would then intersect the other ones, leading to a
more involved causal structure. We have chosen to keep in-
JA[BY ag+ Botr K]+ [ (a+By) alag—dtry stead the shift advection term in place, so that the original
harmonic gauge conditiofl) is kept inside our family.
+2u(try="y"-7Z"] (50) Finally, we will briefly discuss the relevance of our results

in connection with the ones presented in R&5], in the
where the parameteB, is the same that appears in the Z4 context of the(first ordey KST formalism. In that paper, a
system, as defined in EE37). Notice that, in the degenerate 22-parameter family of gauge conditions was presented
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which contains Eq9.39), (40) as a sub-family, but no param- and shift cones. This means that the results presented in Ref.
eter choice was found ensuring both symmetric hyperbolicity31] for the zero shift case, where the nontrivial characteris-
and the additional requirement that all the nontrivial charactic speeds were given explicitly in terms of the KST param-
teristic speeds should coincide with light speed. Is this beeters, can be applied as such. It follows that the light speed
cause these two conditions are actually incompatible in theondition imposes the following additional restrictions on the
KST formalisn . . . or is itrather because there are only few KST parameters:
“good” choices (maybe just ong hidden in the huge 22-
parameter space, just waiting to be identified? n=4(1+x), x=2y(1+x). (54)
We cannot fully answer this question here because we are . )
dealing in this paper just with pseudohyperbolicity, not with | NiS means thag andy [which amounts to the parameter
the stronger condition of symmetric hyperbolicity for first " Ed- (43): n=—27] are the only remainingindependent
order systems. However, there is a direct relationship beKST parameters, althougti=—1 is usually required for
tween the Z3 systems proposed in RE¥1] and the KST ~Symmetric hyperbolicity26]. - ,
formalism. This means that we can at least provide necessary |nere are, of course, the 10 additional coupling param-
conditions that can be helpful by reducing parameter space ifters# introduced in Ref[25], so that the question cannot be
the quest for a definitive answer: cp_mpletely solved here.' Nevertheless, we hope that the con-
The harmonic case is the only one in which we can gepltlons we provide, _Whlch actually reduce _by _haIf the 22
both pseudohyperbolicity and light speed as the only nonParameter space, will pave the way to a definitive answer.
trivial characteristic speed. We can easily identify the har-
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