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Dynamical shift conditions for the Z4 and BSSN formalisms

C. Bona and C. Palenzuela
Departament de Fisica, Universitat de les Illes Balears, Ctra de Valldemossa km 7.5, 07122 Palma de Mallorca, Spain

~Received 7 January 2004; published 7 May 2004!

A class of dynamical shift conditions is shown to lead to a pseudohyperbolic evolution system, both in the
Z4 and in the BSSN numerical relativity formalisms. This is done by using a plane-wave analysis which can
be viewed as an extension of the standard Fourier analysis for this kind of systems. The proposed class
generalizes the harmonic shift condition, where light speed is the only nontrivial characteristic speed, and it is
contained into the multiparameter family of minimal distortion shift conditions recently proposed by Lindblom
and Scheel. The relationship with the analogous ‘‘dynamical freezing’’ shift conditions used in black hole
simulations is discussed.
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I. INTRODUCTION

General covariance is a characteristic property of E
stein’s theory of gravitation. There are four coordinate d
grees of freedom in the field equations, allowing us to fre
choose the spacetime coordinatesxm or, in the framework of
the 311 decomposition, the lapse functiona and the shift
vectorb i .

This gauge freedom can be used, like in the early year
general relativity, to set up a complete evolution syst
~consisting of the field equations plus the gauge conditio!
with a well posed Cauchy problem. The well known ha
monic coordinate conditions

hxm5~grs¹r¹s!xm50 ~1!

provide a simple way to get a well posed initial value pro
lem @1# with an extremely simple principal part, consisting
one wave equation for every component of the fo
dimensional metric tensor:

hgmn5••• ~2!

@2,3#, where the ellipsis stands for terms not belonging to
principal part.

Although the resulting system is still currently used
analytical approximations, its use in numerical relativity
very limited, mainly because the four conditions~1! com-
pletely exhaust the gauge degrees of freedom, and there
flexibility left that could be used to fit the peculiarities of th
specific systems one wants to model~but see also some gen
eralizations in Refs.@4–7#!.

The current alternative, represented by the ‘‘new hyp
bolic formalisms’’ ~Refs. @8–18#!, is to use somehow the
momentum constraint as a tool for ensuring hyperbolic
instead of the three space coordinate conditions in Eq.~1!. In
this way, only the time gauge condition

hx050 ~3!

is kept, or one of its generalizations~harmonic slicing!. This
happens to be very convenient for numerical simulatio
because Eq.~3! implies a direct relationship between th
lapsea and the spatial volume elementAg, which can be
0556-2821/2004/69~10!/104003~6!/$22.50 69 1040
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used to avoid collapse singularities@19#. The main advantage
is that one can use now the shift degrees of freedom to s
plify the system, either using normal coordinates~zero shift!
or any other kinematical choice adapted to the specific pr
lem under study.

Recently, there has been a renewed interest in the us
dynamical shift vectors. In the context of the Baumgar
Shapiro-Shibata-Nakamura~BSSN! formalism@20,21#, some
shift conditions have been proposed@22# that manage to
‘‘freeze’’ black hole dynamics near the horizon, leading
long term numerical simulations although. As we will s
later, the harmonic shift condition given by Eq.~1! is similar
to ~but not contained in! the ones discussed in Ref.@22#.

It is clear that the principal part of the original BSS
system is modified by the choice of a dynamical shift,
though no hyperbolicity analysis of the modified system h
been yet published, to the best of our knowledge. This is
surprising because the BSSN formalism, like the Arnow
Deser-Misner~ADM ! one, is of a mixed type: first order in
time, but second order in space, and therefore the stan
Fourier analysis would lead to the conclusion that the mix
order system is not hyperbolic@23#. This has been explicitly
shown by Fritelli and Gomez for both the ADM and BSS
formalisms@24#. We will present here an alternative plan
wave analysis, based on the underlying physics, in orde
reveal a related property, which we will call ‘‘pseudohype
bolicity’’ to avoid confusion. As far as the underlying physic
does not change when passing from the fully second o
system to the mixed order version of the same equatio
pseudohyperbolicity can be seen as the imprint left on
mixed order system by the true hyperbolicity of the ful
second order version which was at the starting point.

From a different point of view, a generalization of th
minimal distortion shift condition has been proposed
Lindblom and Scheel@25# in the context of the first orde
Kidder-Scheel-Teukolsky~KST! formalism @17#. Surpris-
ingly enough, in spite of the fact that the resulting syste
contains at least twenty-two free parameters, none of
cases discussed in@25# verifies the condition that all the non
trivial characteristic speeds do coincide with light speed. T
surprise comes from the fact that one would expect this c
dition to be ensured by the use of the full set of harmo
©2004 The American Physical Society03-1
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coordinates~1!, which are actually a particular case of th
gauge conditions proposed in@25#.

As a contribution to clarify this issues, we will prese
here a family of dynamical shift conditions, which is close
related with the ones presented in@22# and@25#. We will do
so first in the framework of the general-covariant Z4 form
ism @26#, extending then the results to the BSSN case, wh
can be derived from the Z4 one in a simple way@27#. We
will perform a complete plane-wave analysis of both s
tems, analogous to the one presented in Ref.@28#. The result-
ing characteristic speeds are directly related with the m
free parameters of the proposed family. The further requ
ment that all the nontrivial characteristic speeds do coinc
with light speed, allows one to recover the harmonic cas

II. THE Z4 SYSTEM

A. The evolution equations

The Z4 covariant formalism introduces a fou
dimensional vector as a supplementary dynamical fieldZm .
The evolution equations are obtained by adding the~symme-
trized! covariant derivatives ofZm to Einstein’s field equa-
tions:

Rmn1¹mZn1¹nZm58pS Tmn2
1

2
TgmnD . ~4!

In the 311 decomposition the line element is written as:

ds252a2dt21g i j ~dxi1b idt!~dxj1b jdt! ~5!

wherea andb i are the lapse and the shift, respectively, a
g i j is the spatial 3-metric. Using this decomposition, the g
eral covariant equations~4! do consist of a system of pur
evolution equations:

~] t2Lb!g i j 522aKi j ~6!

~] t2Lb!Ki j 52¹ia j1aF (3)Ri j 1¹iZj1¹jZi22Ki j
2

1~ tr K22Q!Ki j 2Si j 1
1

2
~ tr S2t!g i j G

~7!

~] t2Lb!Q5
a

2
@ (3)R12¹kZ

k

1~ tr K22Q!tr K2tr~K2!22Zkak /a22t#

~8!

~] t2Lb!Zi5a@¹j~Ki
j2d i

j tr K !1] iQ22Ki
jZj

2Qa i /a2Si # ~9!

where we have noted

Q[aZ0, t[8pa2T00, Si[8paT i
0 , Si j [8pTi j .

~10!
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In a recent work@27#, a symmetry breaking mechanism
proposed that, starting from the Z4 system~6!–~9!, allows
one to recover an evolution system which is equivalent, up
quadratic source terms, to the BSSN system@20,21# ~partial
symmetry breaking!. Also, in the first order case, the sam
mechanism allows one to recover the multiparameter K
system@17# ~full symmetry breaking! or, to be more precise
a ‘‘live gauge’’ version of the same@18#.

B. Gauge evolution equations

The harmonic gauge conditions~1! can be easily ex-
pressed in the 311 formalism as

~] t2b r] r !a52a2tr K ~11!

~] t2b r] r !b
i52a2@] i ln~aAg!1] jg

i j #,
~12!

where the first equation is the~harmonic! slicing condition,
whereas the second one provides the~harmonic! shift once
the slicing is known.

The harmonic slicing condition~11! has been generalize
in the context of the Z4 system as follows@27#:

~] t2b r] r !a52a2f @ tr K2mQ#, ~13!

where the parameterf is directly related with the gauge
propagation speed, whereasm provides a coupling with the
energy-constraint-violating modes, represented by the qu
tity u. We will see in the following analysis that, if on
wants the gauge speed to coincide with light speed (f 51),
then a pseudohyperbolic system is obtained only ifm52, so
the coupling given by them parameter cannot be neglecte
This conclusion coincides with the result of Ref.@27#, where
it was confirmed by the robust stability numerical test.

The harmonic shift evolution equation~12! can be gener-
alized along the same lines:

~] t2b r] r !b
i52a2@2mVi1a] i ln a2d] i lnAg#2hb i

~14!

where we have defined

Vi5] i lnAg2
1

2
] jg j i 2Zi . ~15!

Notice that the advection term on the left-hand side, wh
was absent in Ref.@22#, is needed if one wants to recover th
harmonic shift as a particular case. As we will see in t
following analysis, the parametersm and d are directly re-
lated with the characteristic speeds of the longitudinal a
transverse shift components, respectively, in the same wa
f is related with gauge speed. The parametera, instead, has
no direct relationship with the characteristic speeds: its r
is very similar to the parameterm in the lapse condition, as
we will see that specific values ofa will be required to en-
sure pseudohyperbolicity in degenerate cases, so one ca
just neglect this kind of coupling. The parameterh, in turn,
corresponds instead to a damping term which has show
be crucial to get stable long term simulations@22#. We have
3-2
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DYNAMICAL SHIFT CONDITIONS FOR THE Z4 AND . . . PHYSICAL REVIEW D69, 104003 ~2004!
not included, however, theh term in our analysis to avoid
masking the genuine wave propagation effects with the a
ficial damping produced by this kind of terms.

III. LINEAR PLANE-WAVE ANALYSIS

The system~6!–~9! is of a mixed type: first order in time
but second order in space. This means that, according to
standard methods@23#, based on the Fourier analysis of th
principal part, it cannot be classified as hyperbolic. This
also the case of the original ADM system@24#, where the
quantities (Q, Zk) are supposed to be zero. In what follow
we will present an alternative plane-wave analysis, star
with the ADM case first and including the supplementa
quantities (Q, Zk) later.

It is well known that any metric can be written down at
given spacetime point P in a locally inertial coordinate s
tem such that the first derivatives of the metric coefficie
vanish at P. We will take advantage of this to write down t
line element at P as

ds252a0
2dt21g i j

0 ~dxi1b0
idt!~dxj1b0

jdt!. ~16!

It is clear that the validity of the expression~16! is strictly
local: second and higher order derivatives of the metric
efficients at P cannot be supposed to vanish: they are ra
related to one another by the field equations. This sugg
the splitting of the metric into two components:

A uniform static background of the form~16!.
A dynamical perturbation which, when superimposed

the background in a linear way, allows one to recover the
metric.

It makes sense then to decompose the dynamical pe
bation into plane waves, with a space dependence given

a2a05eiv•xã~v,t ! ~17!

bk2b0
k5eiv•xb̃k~v,t ! ~18!

g i j 2g i j
0 52eiv•xg̃ i j ~v,t ! ~19!

wherevk5vnk , g i j
0 ninj51.

Up to here, we have followed the standard Fourier ana
sis. Now we will depart from the standard path by deco
posing the dynamical variableKi j in a form which is consis-
tent with the exact evolution equation~6!, namely

Ki j 5 iveiv•xK̃ i j ~v,t !, ~20!

where one must notice theiv factor on the right-hand side
This extra factor is not present in the standard hyperboli
analysis, where only the principal part of the system is us
breaking in that way the direct relationship~6! between the
metric and the extrinsic curvature.

Note that Eq.~6! is crucial to relate the original~second
order in time! version of the field equations~4! with the
resulting ~first order in time! 311 version~6!–~9!. This is
why we will choose the alternative decomposition~20! in
order to look for the imprint in the 311 system of the hy-
perbolicity properties of the original second order version
10400
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The same thing can be done with the supplementary qu
tities, which can be considered as an additional perturba
of the Einstein’s equations background. The original syst
~4! is of first order inZm , but it can be viewed alternatively
as being of second order in some ‘‘potential’’ quantitiesYm
which time derivative can be defined to be preciselyZm . In
this way Eq.~4! could be seen as a fully second order syst
in (gmn , Ym) and the same arguments as before would j
tify the following plane-wave decomposition of the suppl
mentary quantities

Q5 iveiv•xQ̃~v,t ! ~21!

Zk5 iveiv•xZ̃k~v,t !, ~22!

where theiv factors still appear on the right-hand side.

IV. PSEUDOHYPERBOLICITY OF THE Z4 SYSTEM WITH
DYNAMICAL SHIFT

We will perform here a linear plane-wave analysis of t
Z4 system. This means to substitute the perturbations
scribed in the preceding section into the evolution equati
~6!–~9!, ~13!, ~14!, keeping only the linear terms. We get

~] t2 ivb0
n!ã52 iva0

2f @ tr K̃2mQ̃# ~23!

~] t2 ivb0
n!b̃ i52 iva0

2@~2m2d!ni tr g̃22m~g̃ni1Z̃i !

1ani ã/a0# ~24!

~] t2 ivb0
n!g̃ i j 52 ivFa0K̃ i j 2

1

2
~ni b̃ j1nj b̃ i !G

~25!

~] t2 ivb0
n!Q̃52 iva0@ tr g̃2g̃nn2Z̃n# ~26!

~] t2 ivb0
n!Z̃i52 iva0@ni~ tr K̃2Q̃!2K̃ i

n# ~27!

~] t2 ivb0
n!K̃ i j 52 iva0@ g̃ i j 1ninj~ tr g̃1ã/a0!

2ni~ g̃n j1Z̃j !2nj~ g̃ni1Z̃i !# ~28!

where the lettern replacing one index means contracting th
index with ni .

Notice that we have kept the linear source terms in E
~23!, ~25!, in contrast with the usual practice in the standa
Fourier analysis, where only the principal part of the syst
is considered. In fact, our plane wave analysis includes~up to
the linear order! all the source terms~with the only exception
of the artificial damping one for the shift, as discussed
fore!. Therefore, the underlying physics is accounted for i
consistent way. In particular, the direct relationship betwe
the metric and the extrinsic curvature is fully preserved. T
means that the characteristic speeds we are going to com
should be the same ones that could be obtained from e
the fully second order or the fully first order versions, whe
the standard Fourier analysis can be applied in a way wh
is consistent with the underlying physics of the problem.
3-3
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C. BONA AND C. PALENZUELA PHYSICAL REVIEW D69, 104003 ~2004!
The system~23!–~28! can be written in a compact way a

] tũ52 iv@A2b0
nI #ũ, ~29!

where ũ is the perturbation array. The geometric propert
of matrix on the right-hand side~characteristic matrix! are
obviously related with the dynamics of the plane-wave p
turbations. Allowing for the trivial structure of the shift term
the pseudohyperbolicity of the evolution system~29! will
depend on the properties of the main matrixA. We will say
that the system~29! is ‘‘pseudohyperbolic’’ if and only ifA
has real eigenvalues and a complete set of eigenvectors
is, the number of independent eigenvectors must be the s
as the number of independent dynamical fields~20 in our
case!. This is the analogous of the strong hyperbolicity pro
erty of first order systems. The use of the term ‘‘pseud
hyperbolicity’’ is just to avoid confusion.

We can start computing the eigenmodes which do
contain shift terms. In this list we have:

Energy cone.There are 2Q-related eigenmodes, propa
gating with light speed,v52b0

n6a0:

Q̃6~ tr g̃2g̃nn2Z̃n!. ~30!

Light cones.There are 10 more eigenmodes propagat
with light speed,v52b0

n6a0:

K̃na6g̃na ~31!

K̃ab6g̃ab , ~32!

where the lettersa,b replacing an index mean the projectio
orthogonal toni .

Lapse cone.There are 2a-related eigenmodes propaga
ing with speedv52b0

n6a0Af :

Af @ tr K̃2B1Q̃#6@ã/a01~22B1!~ tr g̃2g̃nn2Z̃n!#,
~33!

where we have used the shortcut

B1[
m f22

f 21
. ~34!

The factorf must be greater than zero for pseudohyperbo
ity. Notice that, in the degenerate casef 51 ~harmonic slic-
ing!, a well defined pair of eigenmodes is obtained only
m52, so that the parameterB1 can take any value~arbitrary
mixing with the energy cone!.

The shift-related cones are:
Transverse shift cones.There are 4 eigenmodes propag

ing with speedsv52b0
n6a0Am,

~ b̃a /a0!62Am~g̃na1Z̃a!. ~35!

The factorm must be greater than zero for pseudohyper
licity. Notice that, in the vanishing shift case, they reduce
the second term, which would correspond to standing eig
modes~zero characteristic speed!.
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Longitudinal shift mode.There are 2 eigenmodes prop
gating with speedv52b0

n6a0Ad,

Ad@b̃n/a01B2tr K̃1B3Q̃#6@~a1B2!ã/a02d tr g̃

1~2m12B21B3!~ tr g̃2g̃nn2Z̃n!#. ~36!

We have used again the shortcuts

B2[
d2a f

f 2d
, B3[

~22m f!B212m2am f

d21
. ~37!

A necessary condition for pseudohyperbolicity is that t
factor d should be greater than zero. This condition is a
sufficient in the generic case whered is different from both 1
and f. Notice that in the degenerate cases one would nee
impose additional conditions on the free parameters in or
to get a well defined pair of eigenmodes. For instance, id
5 f one must havea51, so that the parameterB2 can take
any value~arbitrary mixing with the gauge cone!. If we have
further degeneracy, that isd5 f 51 ~remember thatf 51 im-
pliesm52), then it follows from Eq.~37! thatm51 also, so
that one gets the harmonic shift case.

In summary, there are 20 fields in the evolution syst
and we have got real characteristic speeds and 20 inde
dent eigenvectors, provided that all the characteristic sp
parametersf ,m,d are greater than zero. The system in th
pseudohyperbolic in the generic case, although degene
cases, where different characteristic speeds actually coinc
require additional conditions on the remaining paramet
a,m.

V. PSEUDOHYPERBOLICITY ANALYSIS FOR THE BSSN
SYSTEM WITH DYNAMICAL SHIFT

A pseudospectral analysis@29# of the original BSSN sys-
tem @20,21# has been done recently@30#. We will proceed
here instead with the linear plane-wave analysis of the co
plete system, including the dynamical shift terms. We c
take advantage of the symmetry breaking mechanism
posed in Ref.@27#. Starting from the Z4 system equations~6!
to ~9!, we will take the following steps:

~1! Perform the dynamical fields recombination

Ki j8 [Ki j 2
n

2
Qg i j ~38!

~2! SuppressQ as a dynamical quantity, setting its valu
equal to zero wherever it appears in the evolution equatio

This process alters the evolution equation for the extrin
curvatureKi j , even if one hasKi j 5Ki j8 after the second step
One gets as a result a one parameter family of evolu
systems, with different principal parts for every value of t
n parameter, namely:

~] t2b r] r !a52a2f tr K ~39!

~] t2b r] r !b
i52a2@2mVi1a] i ln a2d] i lnAg#2hb i

~40!
3-4
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DYNAMICAL SHIFT CONDITIONS FOR THE Z4 AND . . . PHYSICAL REVIEW D69, 104003 ~2004!
~] t2b r] r !g i j 522aKi j 1g ik~] jb
k!1g jk~] ib

k! ~41!

~] t2b r] r !Zi1]k@a~d i
ktr K2Kk

i !#5••• ~42!

~] t2b r] r !Ki j 1]k@alk
i j #5••• ~43!

where we have noted for short

2lk
i j 5]kg i j 1d i

k~] j ln a1] j lnAg12Vj !

1d j
k~] i ln a1] i lnAg12Vi !2nVkg i j . ~44!

In particular, it has been shown in@27# that the principal part
of the system obtained whenn54/3 can be rewritten, by
further rearranging the dynamical fields, as that of the BS
system. We will name this system Z3-BSSN to avoid con
sion. Both systems are then linearly equivalent~equivalent
up to quadratic source terms, see Ref.@31#!, so that showing
pseudohyperbolicity for the Z3-BSSN system, as we will
in the present section, amounts to show the same for
original BSSN system.

As far as the second step of the symmetry breaking p
cedure suppresses the dynamical fieldQ, the linear plane-
wave analysis must be repeated from scratch, although
results of the preceding section provide a useful guide.
obtain the following list of eigenvectors and eigenvalues:

Standing mode.There is 1 mode propagating along th
normal lines, that is with speedv52b0

n :

tr g̃2g̃nn2Z̃n. ~45!

This is what is left of the energy cone in the Z4 system a
suppressingQ as a dynamical field.

Light cones.There are 10 modes propagating with spe
v52b0

n6a0, namely

K̃ab6F g̃ab2
2

3
~ tr g̃2g̃nn2Z̃n!g̃ab

0 G ~46!

K̃na6g̃na . ~47!

Lapse cone.There are 2 modes propagating with spe
v52b0

n6a0Af ,

Af tr K̃6ã/a0 . ~48!

Transverse shift cones.There are 4 modes propagatin
with speedv52b0

n6a0Am,

~ b̃a /a0!62Am~g̃na1Z̃a!. ~49!

Longitudinal shift cone.There are 2 modes propagatin
with speedv52b0

n6a0Ad:

Ad@b̃n/a01B2tr K̃#6@~a1B2!ã/a02d tr g̃

12m~ tr g̃2g̃nn2Z̃n!# ~50!

where the parameterB2 is the same that appears in the Z
system, as defined in Eq.~37!. Notice that, in the degenerat
10400
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cased5 f , a well defined pair of eigenmodes is obtain
only if a51, so thatB2 can take any value~arbitrary mixing
with the lapse cone!.

In summary, there are 19 fields in the evolution syst
and we have got real characteristic speeds and 19 inde
dent eigenvectors, provided that all the characteristic sp
parametersf ,m,d are greater than zero. The system is th
pseudohyperbolic in the generic case, although the dege
ate cased5 f requires the additional conditiona51. Notice
that the harmonic case is recovered precisely when

d5 f 5m51. ~51!

Comparing with Ref.@22#, the only relevant term in their

‘‘Gamma driver’’ shift conditions is theG̃ i one. It is clear
that this corresponds to our parameter choices

a50, m5
3

4
d ~52!

so that pseudohyperbolicity is ensured provided thatdÞ f .
The main difference, as stated before, is that our shift con
tions ~14! are a generalization of the harmonic ones~12!.
This is only possible by keeping, as we do, the advect
term in the shift evolution equation~14!. This term was sup-
pressed in Ref.@22# in order to freeze the dynamics in th
neighborhood of the black hole’s apparent horizon.

VI. CONCLUSIONS

In this paper, we have studied a multiparameter family
dynamical gauge conditions~13!, ~14!, which generalizes the
harmonic gauge conditions~1! along the ways sketched i
Refs.@22,25# ~Gamma-driver shift conditions!. Starting with
~the second order version of! the general covariant Z4 for
malism, we have computed explicitly all the eigenmod
identifying the choices of the gauge parameters$ f ,m,m,a,d%
that make the full evolution system pseudohyperbolic. T
relationship between the gauge parameters and the chara
istic speeds is direct and simple. Depending on the par
eters choice, gauge~lapse and shift! propagation speeds ca
be made to coincide or not with light speed.

The same kind of analysis has been done with the co
sponding gauge conditions, for the second order sys
~39!–~43!, which is linearly equivalent to that of the BSS
system@31#. The Gamma-driver shift condition which ha
been used in Ref.@22# corresponds to the parameters cho
~52!, but with the advection term in the left-hand side of t
shift equation~40! suppressed. One could redo the analy
without that term, just by adding it to the right-hand side
the same equation. This would affect the shift cones~49!,
~50!, which would then intersect the other ones, leading t
more involved causal structure. We have chosen to keep
stead the shift advection term in place, so that the origi
harmonic gauge condition~1! is kept inside our family.

Finally, we will briefly discuss the relevance of our resu
in connection with the ones presented in Ref.@25#, in the
context of the~first order! KST formalism. In that paper, a
22-parameter family of gauge conditions was presen
3-5
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which contains Eqs.~39!, ~40! as a sub-family, but no param
eter choice was found ensuring both symmetric hyperboli
and the additional requirement that all the nontrivial char
teristic speeds should coincide with light speed. Is this
cause these two conditions are actually incompatible in
KST formalism . . . or is itrather because there are only fe
‘‘good’’ choices ~maybe just one!, hidden in the huge 22
parameter space, just waiting to be identified?

We cannot fully answer this question here because we
dealing in this paper just with pseudohyperbolicity, not w
the stronger condition of symmetric hyperbolicity for fir
order systems. However, there is a direct relationship
tween the Z3 systems proposed in Ref.@31# and the KST
formalism. This means that we can at least provide neces
conditions that can be helpful by reducing parameter spac
the quest for a definitive answer:

The harmonic case is the only one in which we can
both pseudohyperbolicity and light speed as the only n
trivial characteristic speed. We can easily identify the h
monic case in the family of gauge conditions proposed
Ref. @25#, getting the following restrictions on their gaug
parameters:

mS52, mL52s51, eS521, eL50, l521. ~53!

As far as the damping terms containing$kS , kL% are not
relevant for the hyperbolicity analysis, this completely fix
the gauge parameters.

As seen in the preceding sections, the light cones
always be obtained independently of the details of the la
f
d

rk

th

10400
y
-
-
e

re

e-

ry
in

t
-
-
n

n
e

and shift cones. This means that the results presented in
@31# for the zero shift case, where the nontrivial characte
tic speeds were given explicitly in terms of the KST para
eters, can be applied as such. It follows that the light sp
condition imposes the following additional restrictions on t
KST parameters:

h54~11x!, x52g~11x!. ~54!

This means thatz andg @which amounts to the parametern
in Eq. ~43!: n522g] are the only remaining~independent!
KST parameters, althoughz521 is usually required for
symmetric hyperbolicity@26#.

There are, of course, the 10 additional coupling para
etersc introduced in Ref.@25#, so that the question cannot b
completely solved here. Nevertheless, we hope that the
ditions we provide, which actually reduce by half the 2
parameter space, will pave the way to a definitive answe
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D ~to be published!, gr-qc/0307067.
@28# M. Alcubierre, G. Allen, B. Bruegmann, E. Seidel, and W

Suen, Phys. Rev. D62, 124011~2000!.
@29# M. E. Taylor, Pseudo-Differential Operators~Princeton Uni-

versity Press, Princeton, NJ, 1981!.
@30# G. Nagy, O.E. Ortiz, and O. Reula~private communication!.
@31# C. Bona, T. Ledvinka, and C. Palenzuela, Phys. Rev. D66,

084013~2002!.
3-6


