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Measuring cosmic defect correlations in liquid crystals
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From the theory of topological defect formation proposed for the early Universe, the so-called Kibble
mechanism, it follows that the density correlation functions of defects and antidefects in a given system should
be completely determined in terms of a single length séalihe relevant domain size, which is proportional
to the average interdefect separatigp. Thus, when lengths are expressed in unitsgf these distributions
should show universal behavior, depending only on the symmetry of the order parameter and space dimen-
sions. We have verified this prediction by analyzing the distributions of defects and antidefects formed during
the isotropic-nematic phase transition in a thin layer in a liquid crystal sample. Our experimental results
confirm this prediction and are in reasonable agreement with the results of numerical simulations.
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[. INTRODUCTION context of the early Universe. It is usually referred to as the
Kibble mechanismit was first suggested by Zurdi] that
The big-bang theory of the Universe is well establishedsome of the aspects of the Kibble mechanism can be tested in
by now, with most of the observations being in good agreecondensed matter systems, such as superfltid. Indeed
ment with the predictions of the model. Accurate measurethe basic physical picture of the Kibble mechanism applies
ments of the cosmic microwave background radiationequally well to a condensed matter systy10,5,11. Using
(CMBR) have made cosmology into a precision sciencethis correspondence, the basic picture of defect formation
where competing models of the early Universe are put tavas first observed by Chuamrg al. in an isotropic to nematic
rigorous tests. One of the models which was very populafl-N) transition in liquid crystal systenid2]. The formation
earlier for explaining the formation of structure in the Uni- and evolution of string defects was observed to be remark-
verse, such as galaxies, clusters, and superclusters of galably similar to what had been predicted for the case of the
ies, utilized the concept dbpological defectsin particular  Universe, apart from obvious differences such as the velocity
cosmic string defectsl]. However, recent CMBR anisotropy of defects, time scales of the evolution of the defect network,
data are not in agreement with predictions of topological-etc. Subsequently, measurements of the string density were
defect-based models of structure formation. Data are in vergarried out by observing strings formed in the first-order I-N
good agreement with the predictions of density fluctuationgransition occurring via the nucleation of nematic bubbles in
from inflation, though at present it cannot be ruled out thatthe isotropic backgrounfil3]. The results were found to be
defects may also contribute to some part of structure formain good agreement with the prediction of the Kibble mecha-
tion [2] (see, also, Ref3]). Further, topological defects arise nism. (For testing the Kibble mechanism in other condensed
in many particle physics models of the unification of forces,matter systems, see Refd4,15.) Yet another quantitative
and their presence in the early Universe can lead to otheneasurement was made of the exponent characterizing the
important consequences, such as the production of baryarorrelation between the defects and antidefects formed in the
numbers below the electroweak scale, generating baryohN transition in liquid crystals, with results in good agree-
number inhomogeneities at the quark-hadron transition, etanent with the Kibble mechanisfii6].
[4]. It is therefore important to deepen our understanding of It is certainly dramatic that there is a correspondence be-
how these defects form in the Univerfg] and how they tween the phenomena expected to have occurred in the early
evolve. This paper relates to the first of these issues. Universe, during stages when its temperature was about
There are numerous examples of topological defects i10?° K, with those occurring in condensed matter systems at
condensed matter systems, such as flux tubes in supercoemperatures less than a few hundred K. The important ques-
ductors, vortices in superfluid helium, monopoles and stringsion is whether the observations and measurements per-
in liquid crystals, etc. It has long been known that such deformed in condensed matter systems provide rigorous tests
fects routinely form during a phase transition. The first de-of the theories being used to predict phenomena in the early
tailed theory of the formation of topological defects in a Universe, or they simply provide an analogy with the case of
phase transitiottapart from the usual equilibrium process of the early Universe or, at best, examples of other systems
thermal production was proposed by Kibblé6,7] in the  where similar theoretical considerationgan be made for
investigating defect formation. On the face of it, the differ-
ences between the two cases seem so profound that a rigor-
*Email address: rajarshi@theory.tifr.res.in ous test of the theories underlying the phenomena taking
"Email address: ajit@iopb.res.in place in the early Universe seems out of question within the
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domain of condensed matter systems. For example, a delomain structure arising in a phase transition. This domain-
scription of the matter, transformations between its varioudike structure arises from the fact that during the phase tran-
phases, etc., in the early Universe is given in terms of elsition, the phasé of the order parameter field can only be
ementary particle physics models, which require the framecorrelated within a finite regiordl can be taken to be roughly
work of relativistic quantum field theory. Indeed, typical ve- yniform within a region(domain of size ~ £, while varying
locities of particles, and even of topological defects formedrandomly from one domain to the other. This situation is
in such transitions, are close to the velocity of light. On theyery natural to expect in a first-order phase transition where
other hand, in condensed matter systems nonrelativistighe transition to the spontaneous symmetry-broken phase
quantum mechanics provides an adequate description @fappens via nucleation of bubbles. Inside a bub®leill be
most relevant systems. Typical velocities in such systems argniform, while 6 will vary randomly from one bubble to
extremely small in comparison. For example, in liquid crys-another. Eventually bubbles grow and coalesce, giving rise to
tals, the typical velocity of string defects is of the order of a; region of space whemvaries randomly at a distance scale
few microns per second, completely negligible in compari-of the interbubble separation, thereby leading to a domain-
son to the speed of light. Similarly, the value of the stringjike structure.[In certain situations—e.g., when the bubble
tension(i.e., string energy per unit lengtfor the case of the  \ya)| motion is highly dissipative—the effective domain size
Universe is of the order of £8GeV? (in natural unit$  may be largef17,5]. In between any two adjacent bubbles
which is about 18 tons/cm. In contrast, in condensed mat- (domaing, ¢ is supposed to vary with the least gradient. This
ter systemgsay, in liquid crystals the string tension is gov- s ysually called theyeodesic ruleand arises naturally from
erned by the scale of the free energy of the order 6F16V  consideration of minimizing the gradient energy for the case
(e.g., the free energy of a liquid crystal string of length aboulof global symmetry. For gauge symmetry, the situation is
the coherence length will be of this ordeindeed, it is due  more complicated, though it has been shown that under cer-
to this extremely large string tensiofie., mass per unit tajn situations the geodesic rule continues to Hagl. How-
length of cosmic string defects that they were proposed tQayer, the geodesic rule may not hold in the presence of strong
have seeded formation of galaxies, clusters of galaxies, etqjuctuationg19-21. See, also, Ref22] in this context. Re-
via their gravitational effects. Clearly such effects are Un-cently it has been showji21] that a defect distribution very
thinkable for Stl’ing defects in |IqUId CrySta|S orin Superﬂuid different from what is expected in the Kibble mechanism
helium, etc. may arise when defect formation is dominated by magnetic
Despite the fact that the two systems look completely disfig|q fluctuations]
similar, it turns out that there are ways in which specific The same situation happens for a second-order transition
condensed matter experiments can provide rigorous tests gfhere the orientation of the order parameter field is corre-
the theories of cosmic defect formation. This can be done byated only within a region of the size of the correlation length
identifying those predictions of the theory which show uni- ¢ This again results in a domainlike structure, with domains
versal behavior. As we will discuss below there are sever eing the correlation volumes. We mention that there are
predictions of the Kibble mechanism which show universalnontrivial issues in the case of a second-order phase transi-
behavior when expressed in terms of a suitable length scal@on in determining the appropriate correlation length for cal-
The paper is organized in the following manner. In Sec. Il,cyjating theabsolute initial defect densityvhere the appro-
we review the basic picture of defect formation. The corre-priate value of¢ may depend on the rate of the phase
lations of defects and antidefects are discussed in Sec. Il ransition[7] (see, also[5]). It was shown by Zurek9] that
Section 1V describes the numerical simulation and expecteghe appropriate value af should be determined by incorpo-
behavior of density correlation functions of defects. The €Xrating the effects of the critical slowing down of the dynam-
periment is described in Sec. V, while experimental result§cs of the order parameter field near the transition tempera-
and simulation results are discussed in Sec. VI. Conclusiong;re The theory which takes into account tiisr second-

are presented in Sec. VII. order transitionsis usually referred to as thiibble-Zurek
mechanism. Here, the absolute defect density is determined
Il. PHYSICAL PICTURE OF DEFECT FORMATION by critical fluctuations of the order parameter and depends on

details such as the rate of cooling of the system, etc. For a

We first recall the basic physics of the Kibble mechanismdiscussion of these issues, see R8f. We emphasize that
[6,7,10. For concreteness, we consider the case of a conthese considerations of the details of the critical dynamics of
plex scalar order parametef, with spontaneously broken the order parameter field during the phase transition are im-
U(1) symmetry(as in the case of the Abelian Higgs model, portant in calculating the absolute defect density. However,
superconductors, or superflutHe). The order parameter the defect densitper domainis insensitive to these details.
space(the vacuum manifoldis a circleSt in this case. Here, For the U1) case which we are discussing, string defects
string (vorteX defects arise when the phageof ¢ winds  (vortice9 arise at the junctions of domains f winds non-
nontrivially around the order parameter sp&e (Later we trivially around a closed path going through adjacent do-
will see that in our present experiment also, where defectmains. Consider a junctioR of three domains, as shown in
form at the I-N interface, the anchoring of the order param+ig. 1. For simplicity, we show here domains as spheres
eter at the I-N interface leads to the effective order parametge.g., bubbles for a first-order transitipmvith the centers of
space bein@?, rather than the usu@® P? for nematic liquid  the three nearest bubbles forming an equilateral triangle. The
crystals) In the Kibble mechanism, defects form due to avalues ofé in these three domains atg, 6,, andfd;. One
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between the defects and antidefects. Again, by focusing on
specific quantities and choosing proper length scales, this
6, prediction acquires a universal nature which can then be
tested experimentally in condensed matter systems. This pre-
diction is important as in many experimental situations it can
provide the only rigorous test of the underlying theory of
defect formation. This is for the following reason. As we
have discussed above, the prediction of defect density be-
comes universal only when expressed in the length units of
the domain size. For a first-order transition it can be done
0, easily if the average bubble diametassuming small vari-
A ance in bubble siz¢san be experimentally determined, as in
the liquid crystal experiments in R¢fL3]. However, this is a
highly nontrivial problem for the case of second-order tran-
FIG. 1. Defect formation due to coalescence of three domainssitions or for spinodal decomposition. For experimental situ-
ations with a second-order transitigtype-1l superconduct-
ors, superfluid®He), it has not been possible to make an
independent determination of the correlation length relevant
for defect formation. All one can do is to measure the abso-
: . : . - lute defect density, comparison of which to the prediction
JunctlonP and going thr.ough the three domaifisB, C, will from theory beco)r/nes dgpendent on various detgils of the
arise only whends I|e_s n the(shorte_) arc betweerd, + phase transition, which determine the relevant correlation
and 6,+ . The.maX|mum and minimum values of the an- length[9].
gular span of th|s_ arc are anq 0, with the average angular Defect-antidefect correlations, on the other hand, imply
span beingm/2. Sinced, can lie anywhere in the circle, the gheific spatial distributions of defects, which are indepen-
probability that it lies in the required range i®  gentof the prediction of the defect density. Within the frame-
=(m/2)/(2m)=1/4. Thus, we concludg23] that the prob- \ o of the Kibble mechanism, defect density distributions
ability of vortex (or antivortey formation at a junction of = 5.0 eypected to reflect defect-antidefect correlations at the
three domaingin two space dimensiopss equal to 1/4. typical distance scales of a domain size. At the same time,
It_|s important to _reahze th_at in the above argument, NOthe typical interdefect separatiory,, as given byp 2
use is made of the field equations. Thus, whether the systéfnere , is the average defect-antidefect density, is directly
is a reIat|V|s'§|c one for particle physics or a _nonrelatlw_stlc proportional to the domain siz& From this, one can con-
one appropriate for condensed matter physics, there is Ny ge that if defect and antidefect distributions are expressed
difference in the defe_ct production per domdfiis is so aS " in terms of the average interdefect separatign then these
long as Fhe geodesic rule holds. A‘C’. we have_ mentioned, ;g display universal behavior, the important point being
above, this may not be true when the field dynamics is dom'fhat the same experiment yields the value of the average
nated by fluctuationgl9—-21. In those situations, defect pro- interdefect separationr{,=p~*?, and the defect and an-

ducti%n will t\)/\(felldgterminecrj] by solrgez differbentﬂ ProOCESSES—afect distributions are analyzed by using this length scale.
e.g., by a newflipping mechanisnii19,2q or by fluctuating Details such as the bubble size or the relevant correlation

mhagneilc fledld$2_l], $ﬁaln,faparthfrom the uzual e%UIllb?udm length, therefore, become completely immaterial for testing
thermal production.Therefore, the expected number of de- the predictions regarding correlations.

fects per domainhas universal behavior, in the sense that it To understand how this correlation between defects and

only depends on the symmetry of the order parameter angntidefects arises, let us go back to Fig. 1. With the directions

the space dimensions. It is this universal nature of the Pres¢ arrows shown theréwhich denote values of), we see

diction of defect densitynumber of defects per domaim E?s

can show that with the use of the geodesic r(le., the
variation of @ in between any two domains is along the short-
est path on the order parameter sp&tg a nontrivial wind-
ing of # (i.e., by =27) along a closed path, encircling the

the Kibble mechanism because of which the measuremen at a defectvortex with winding+ 1) has formed ap. Let
of defects per domain in liquid crystals in Ré13] provide address the issue that, given that a defect has fornfed at

a rigorous test of the Kibble mechanisawhich was origi- how does the probability of a defect, or antidefect, change in

) ) . the nearest triangular region—say,@tAt Q, the three do-
nally given for cosmic defect product@nrj\lote that thg ab—. mains which intersect ar®, B, andD. Here 6 already has a
solute defect density does not show universal behavior sin

) o . ecific variation inA andB in order to yield a defect &®.
it depends on the domain siZze The entire dependence on Frr)om the point of view ofQ, this variati)(/)n inA andB is a

inale lenath € Th hen densiti di %artial winding configuration for an antivortex. With partial
single length scal¢. Thus, when densities are expresse Inantiwinding present irA andB, it can be seen from Fig. 1

the length scale of the prediction acquires a universal char- that whatever the value af in D, it is impossible to have a

acter. vortex atQ (i.e., # winding by +27 as we go aroun® in

an anticlockwise manngrOn the other hand, the probability

of an antivortex formation a@ is 1/4 by straightforward
The Kibble mechanism not only predicts the number den+epetition of the argument given above to calculate the prob-

sity of defects. It also predicts a very specific correlationability of the formation of a vortewr antivortex at a junction

IlI. DEFECT-ANTIDEFECT CORRELATIONS
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of three domains. This is the most dramatic example of the Y
correlation between defect and antidefect formation. If we A
consider defect formation due to the intersection(sdy) :
four domains, this correlation still exists; that is, close to a |
[}
|
]
1
1
|
|

N\

defect, the formation of another defect is less likéhlyough
not completely prohibited nopand the formation of an an-
tidefect is enhanced. This conclusion about a certain correla-
tion in the formation of a defect and an antidefect is valid for
other types of defects as wgh4,25. (See, for example, Ref.
[24] for a discussion of the correlation between global mono-
poles and antimonopolgs. /
To see what this correlation implies, let us consider a
two-dimensional regiorf) whose area i\ and whose pe-
rimeter L goes through./¢ number of elementary domains
(whereé is the domain size As 6 varies randomly from one
domain to another, one is essentially dealing with a random
walk problem with the average step size tbbeing /2 (the
largest step ism and the smallest is zeroThus, the net
winding number of aroundL will be distributed about zero
with a typical width given byo=%+/L/&, implying thato
« A4 (see Refs[26,16,1(). Assuming roughly uniform de-
fect density, we getr«N* (whereN is the total number of defect(making sure tha© is at least one domain away from
defects in the regiof), which reflects the correlation in the the boundary We then calculate the density of antidefects,
production of defects and antidefects. In the absence of anyg(r), as well as the density of defecjs;(r), as a function
correlations, the net defect number will not be as suppressesf the radial distance from the defect at the origin. For this,
and will follow a Poisson distribution witle~\/N. In gen-  we count number of antidefectslefect$ in an annular re-

FIG. 2. Defect formation due to the coalescence of four elemen-
tary domains, forming a square lattice.

eral one may write the following scaling relation for gion of width Ar centered at distanaefrom the origin and
divide this number by the area of the annular region. An
o=CN". (1) average of these densitiéf®r a givenr) is taken by taking

different defects at the origin, as well as by taking many

The exponent will be 1/2 for the uncorrelated case and realizations of the event of defect production. With the den-
1/4 for the case of the Kibble mechanism. Again, the predicsity in the central squar@vhich has a defettappropriately
tion of v=1/4 is of universal nature, depending only on thenormalized, this is the same as the density correlation func-
symmetry of the order parameter and space dimensions. Aion of defects. As should be clear by now, all dynamical
experimental measurement of this exponent was carried outetails of the specific model are relevant only in determining
in Ref.[16]. The experimental value aof was found in Ref.  the domain sizé (i.e., either the bubble diameter for a first-
[16] to be v=0.26+0.11 which is in good agreement with order transition case or the relevant correlation length for a
the predicted value of 1/4 from the Kibble mechanism andsecond-order transition case or for spinodal decompogition
reflects the correlated nature of defects and antidefects.  For the simulation, we take domain size to be unity, meaning

The exponent does not give complete information about that all lengths are measured in units of domain size. All
the correlation which arises between defects and antidefectemaining properties of the defect distributions should now
when they are produced via the Kibble mechanism. A morelisplay universal behavior, depending only on the symmetry
detailed understanding of the correlation can be achieved bgf the order parametdiJ(1) in this casé space dimensions
calculating the density correlation function of the defects and2 herg, and, possibly, fundamental domain struct(sguare
antidefects. Below, we first discuss the theoretical predictiorversus triangular Another important factor here is that there
about this and then describe the experimental measurements.no reason to expect that the defect or antidefect will be
exactly at the center of the square formed by the centers of
the four bubblegdomaing. In realistic situations, the defects
can be anywhere in the elementary square, which in some

We have carried out the numerical simulation of defectsense represents the collision region of the four correlation
formation via the Kibble mechanism for the square latticedomains(bubbles. However, since the correlation domains,
case(instead of the triangular case as shown in Figwhere by definition, have uniform order parameter, it should be
defects will form at the intersection of four domains; see Fig.increasingly unlikely that the defect is far from the center of
2. This is because we find slightly better agreement with théhe collision regiorfi.e., away fromO). To take into account
experimental results for the square lattice case. We will alsof these physical considerations, we have allowed the posi-
quote results for the triangular lattice case. The probahplity tion of defects and antidefects to float within a square with
of a defect or an antidefect per square regionFig. 2 is  an approximately Gaussian probability distribution, centered
obtained to be 0.33. We start with the origihof the coor-  in the middle of the square, with varying width. By changing
dinate system to be at the center of a square containing the width of this distribution we can change from almost-

IV. NUMERICAL SIMULATION
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centered defects to defects with uniform probability in thelarger. Since the probability (defects per domajris also of
elementary square region. universal nature, it follows from Ed2) that the distributions
With this picture and with a defect being in the central p4(r) and py(r) will still show universal behavior ifr is
square, we know that the probability of antidefect formationmeasured in units of,, . Asr,, can be directly measured
should be enhanced in the nearest squares, while the proyr a given defect distribution, without any recourse to the
ability of defect formation should be suppressed in thesgngerlying domain structure, we will use it as defining the
regions. These defects and antidefects cannot be too close (gt of length. In this unit, the peak jpg(r) will be expected
the central defect as that would imply variation of the order, ', ar = Jp=0.57 with p=0.33 for the square lattice
parameter at distance scales much smaller ¢ghadne there- case.(This is when the order parameter spac&ls which
fore expects that botpig(r) and py(r) will be almost zero as wé will discuss below, is the case for our experinjeBy’.

for r ¢ (discounting the central defect@). Both densities r=2.p=1.14, both densities will be expected to flatten out

will rise asr increases. At a distance of abaut &, one h } | ¢ h . | f
expects a peak ipy(r). The height of this peak will deter- to the e_lsympto_tlc value o 05 The asy_mptotlc valueg
and pg is 0.5 since by definition the unit length, is the

mine the suppression ipy(r) (compared to the asymptotic X _
value at that point. average separation between defects and antidefects. The

Forr=2¢ one expects both distributions to approach theheight of the peak fopy (atr=0.57) depends on the weight
average density expected asymptotically. This conclusioffdctor for centering the defects and antidefects inside square
may appear surprising as one might have expected that ifiegions. This is simply because perfectly centered defects
creased antidefect probability in the nearest square may ingnd antidefects will lead to large contributions when the cen-
ply suppressed antidefect probability in the next-nearesters of the squares fall inside the annular regions for calcu-
square, etc., leading to a damped oscillatory behavior ofating densities, while for neighboring valuesroftheir con-
pa(r) and py(r) (similar to the density correlation function tributions will be zero. When defects and antidefect positions
for a liquid). The reason that this does not happen here isre floated, then the contributions are averaged out. We find
simple and, again, intrinsic to the Kibble mechanism. Recalthat the height of the peak varies from about 1.2 for perfectly
that the antidefects were enhandedid defects suppresged centered defects and antidefects to about 0.75 for the case
in the squares nearest to the central square because, for eaghen defects and antidefect positions are uniformly distrib-
of these four squares, two out of four vertices lfacbmmon  uted inside a square. When comparing with the experimental
to the central square which already had a defect. The prolresults, we choose the weight factor appropriately so that the
ability of defects and antidefects in these squares was, therbeight of the peak irpy from simulations is similar to the
fore, affected by the presence of defects in the central squarene obtained from experimentdt will be interesting to in-

In contrast,d at three vertices of thaeext-neares{corney  vestigate the physics contained in the peak height resulting
squares and at all vertices farther away are completely rarfrom this weight factor for centering the defects in a square,
dom. This implies that the probability of defects and antide-which may depend on the interactions between defects and
fects must be equal in all such regions, leading to a flatteningntidefects.

of pg(r) and py(r) for r=2¢. As we will see below, this If we take the thickness of the annular regiam (for
theoretical reasoning is well borne out by the results of thecalculating densitiesto be about the domain siZee., 0.57
simulations and is consistent with the experimental resultsn units ofr,,), then one can relate the suppressiopjrat
within error bars. r=/p=0.57 to the height of the peak iy at that position.

We have explained above that this analysis of defectThis is done as follows. Note that the valueséoét all the
antidefect correlations does not require knowledge of the dosuter 12 vertices of the 8 squares, bordering the central
main size. In fact, the power of this technique is best illus-square containing the defect, are completely randoa,
trated in those experimental situations where domains are ndtey are not constrained by the fact that there is a defect in
identifiable (as in the experiments explained bejo\irhe  the central squajelLet us consider the distribution of the net
length scal€ is, therefore, not a convenient choice from this winding along the large square-shaped closed path going
point of view. We instead will use the interdefect separationthrough all these 12 vertices. Repetition of the earlier argu-
r,, to define our length scale. If the probability of defect ment[in writing Eq. (1)] shows that this net winding should
formation per(square domain isp, thenr ,, and¢ are related  be distributed about the value zdand should have a typical

in the following manner: width proportional toy12, but this part is not relevant hgre
Thus, the average number of defectg inside this large
¢ square should be same as the average number of antidefects,
M= (2 ng.
\/B Out of these eight outer squares, there are four squares,

each of which share one eddiee., two verticep with the
In our experiment, we have tried to record the defect discentral square containing the defect. As a result of the pres-
tributions immediately after their formation. Occasionally, ence of the defect in the central square, there will be a partial
some evolution of the defect network occurs by a coarseningvinding present at this edgen averagg affecting the prob-
of domains. This makes the effective correlation domain sizeabilities of defects and antidefects in these four outer
¢ larger, so the above relation still holds. Coarsening of dosquares. We take the densities for these squares to be given
mains only makes the effective correlation domain size by py(r=0.57), andog(r =0.57) for defects and antidefects,
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respectively. Now the remaining four squaresut of the
outer eight squarg¢sare at the corners and share only one
vertex with the central square containing the defect. Clearly,
the presence of defects in the central square cannot have any
effect on the probabilities of defects or antidefects in these
corner squaregAlso, these corner squares are at a distance
which is farther away from the center thars-0.57.) We
denote the defect densifgr the antidefect density, both be-
ing equal for these squaness pg.

Now, using the fact that the central square always has one
defect and that the area of each domaig?s p in the units
of r,, , we can write down the condition that on average the
defect number should equal the antidefect number in the area
containing all nine squardicluding the central one

FIG. 3. Network of strength-1 defects and antidefects formed in
the I-N transition. Crossing of brushes denotes defects with winding

1+4ppy(r=0.57+4ppo=4ppq(r=0.57)+4ppy. (3) *+ 1. Size of the image is about 0.45 m.32 mm.

This leads to the following relation betwegp and pg at allowed the possibility of slow heating and cooling by
r=0.57: changing the distance of the lamp from the sample. We ob-

served the defect production very close to the transition tem-
1 perature(in some cases we had some isotropic bubbles co-
pd(r=0.57) = pg(r=0.57) — 4—pZPE(f=0-57)—0-76, existing with the nematic layer containing deféctSor the
(4) observations, we used a Leica, DMRM microscope with
20X objective, a charge-coupled-devig@CD) camera, and
for p=0.33. a cross-polarizer setup, at the Institute of Physics, Bhu-

As we will see later, our simulation results as well asbaneswar. The phase transition process was recorded on a
experimental data are in reasonable agreement with thistandard video cassette recorder. The images were photo-
crude estimate. graphed directly from a television monitor by replaying the

cassette.
V. EXPERIMENT The I-N transition is of first order. When the transition
) ) . .. proceeds via nucleation of bubbles, we observe long horizon-
~ Our experiments have been carried out using nematic lidgy| strings(as in Ref.[13]), which are not suitable for our
uid crystals. For uniaxial nematic liquid crystdSLCs) the  yresent analysis. We selected those events where the transi-
orientation of the order parameter in the nematic phase i§on seems to occur uniformly in a thin layer near the top of
given by a unit vector(with identical opposite directios the droplet(possibly due to faster cooling from contact with
called the director. The order parameter spaceRE” g The depth of field of our microscope was about:20.
(?Sz_/zz)1 which allows for string defects with strength-1/2 5| gefects in the field of view were well focused, suggesting
windings. As a result of the birefringence of NLCs, when thenat they formed in a thin layer, especially since typical in-
liquid crystal sample is placed between crossed polarizergergefect separation was about 104@. (For us, the only
then in regions where the director is either parallel or peryhing relevant is that the layer be effectively two dimensional
pendicular to the electric fiel&, the polarization is main- over distances of the order of a typical interdefect separa-
tained, resulting in a dark brush. At other regions, the polartion.) Also, the transition happened over the entire observa-
ization changes through the sample, resulting in a brightion region roughly uniformly, suggesting that a process like
region. This implies that for a defect of strengthone will  spinodal decomposition may have been responsible for the
observe 4 dark brushe$27]. If the cross-polarizer setup is transition. This resulted in a distribution of strength-)
rotated, then brushes will rotate in the safopposite direc-  defects as shown in the photograph in Fig. 3. Points from
tion for positive (negativeé windings. Equivalently, if the which four dark brushes emanate correspond to defects of
sample is rotated between fixed crossed polarizers, thestrength +1. As a result of the resolution limitation the
brushes do not rotate far1 winding while they rotate in the crossings here do not appear as point like. It is practically
same direction(with twice the angle of rotation of the impossible to use the technique of the rotation of brushes to
sample for —1 winding. We have used this method to de-identify every winding in situations such as shown in Fig. 3
termine the windings(For earlier studies of the director field due to the very small interdefect separatiossulting from a
orientations as well as defects in liquid crystals see, e.ghigh defect density as well as due to the rapid evolution of
[28].) the defect distribution.

We now describe our experiment. We observed the I-N  We have developed a particular technique for determining
transition in a tiny droplet(size ~2-3mm) of NLC the individual windings of defects in situations like Fig. 3
4'-pentyl-4-biphenyl-carbonitrile (98% pure, purchased where one only needs to determine the winding of one of the
from Aldrich Chem). The sample was placed on a clean, defects by rotation in a cross-polarizer setup. The windings
untreated glass slide and was heated using an ordinary lamef the rest of the defects can then be determined using topo-
The I-N transition temperature is about 35.3°C. Our setupogical arguments; see R¢flL6] for details of this technique.
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Further, as explained in RdfL6], the anchoring of the direc- DEFECT DISTRIBUTION
tor at the I-N interface in our experiment forces the director 1
to lie on a cone, with half angle equal to about §4ée Ref.
[29]). This forces the order parameter space there to become
effectively a circleS!, instead of beind@k P?, with the order
parameter being an angle between 0 and Zhe only de-
fects allowed now are ones with integer windings, which is
consistent with the fact that no strength-1/2 defects are seer®
in our experiment[16]. Therefore the predictions of the
Kibble mechanism for the (1) case, as described above, are
valid for this case, with the picture that a domain structure
near the I-N interface is responsible for the formation of
integer windings(see Ref[16] for a detailed discussion of
these points

sity

05

defect den:

VI. RESULTS AND DISCUSSION L T A S

r/rav

After identifying the windings of all defectéwherever
possiblg in a picture, we note the positiong-f coordinates
of each defect and antidefect in the picture. We then deter- 1
mine the average defect-antidefect dengitywith the aver-
age interdefect separatian,, being p~ %2, we convert all
coordinate distances into scaled distances by dividing by
r., - We then choose one defect as the origin, making sure
that the defect is at least 1 uifwith the unit length being,,
now) away from the boundary of the picture. The density of
defectspqy(r), as well as the density of antidefecig(r), is
now calculated for each (at a step size oAr) by counting
number of defectgantidefects within an annular region of
thicknessAr centered at. Different values ofAr are used to
get the least possible statistical fluctuations, while at the.
same time retaining the structure of the peak, etc. The same
Ar is used in numerical simulations for comparison with the !
experimental data. We will present the results Aor=0.25 % o5 1 15 2 25 3 35 4 45 5
(in the units ofr,,). The calculation is repeated by taking
other defects as origins, and an average of dengitasa
given value ofr) is taken to determine the final values of  FIG. 4. Solid plots show the simulation results for the defect
p4(r) andpg(r). To increase the statistics, an average of thelensitypqy(r) (top figurg and antidefect densityg(r) (bottom fig-
distributions is taken by combining the results of all pictures.ure). Stars show the experimental data.
Different pictures have very different valuesrgf, , ranging
from about 5um to about 50um. However, when ex- pected, both densities reach asymptotic values-by. The
pressed in units of,, , the densitiepy andpg show similar ~ regular oscillations in the densities are due to the regular
behavior for all picturegat least those ones which had sig- lattice structure of the simulations, with defects and antide-
nificant statistics In all, we have analyzed 17 pictures, with fects remaining close to the centers of the domains. If defects
the total number of defects and antidefects being 833. and antidefects are assumed to be strictly at the centers of the

Figure 4 shows the results. The solid plots show the splinelomains, then the oscillations g(r) and pq4(r) are even
fitting of the simulation results which are denoted by openmore pronounced and regular. At the other extreme, if the
circles.(We mention that statistical errors are very small for positions of defects and antidefects are taken to be uniform
the simulation; we have taken a very large number of dewithin respective domains, then these oscillations completely
fects. However, there are larger errors due to uncertaintiegdisappear, except for the prominent peakpip at r=0.6.
like the floating of defect positions inside each domain, in-Here we have taken an intermediate case with the positions
stead of exact centralization of defects, as explained above iof defects and antidefects weighted by a Gaussian centered at
Sec. IV) We have used a square lattighown in Fig. 2 for  the middle of the elementary squa® that the peak height
the simulation, as described above. The antidefect distribus similar to the one obtained from the experiment, as dis-
tion clearly shows a peak near=0.6 as expected from the cussed above
Kibble mechanism. The defect density is suppressed in that The stars show the experimental values. The error bars
region atr=0.6, with the simulation results roughly in have been calculated by taking the error in the cauwf
agreement with the expected suppression—igy=pgy defects or antidefects within an annular st(gf the same
—0.76=0.14 [with p=0.33 andpg(r =0.57)=0.9]. As ex-  thicknessAr=0.25 used for the simulatigrto be \n. The

ANTI-DEFECT DISTRIBUTION

05

anti-defect density

r/rav
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peak in the data points of the antidefect density is prominenalso, Ref[33]), this leads to the formationkaubblestructure
and so is the suppression in the defect densityrfarl.0.  such that each bubble contains a defect-antidefec{ipaira
The data on the defect density seem to be in reasonably godd- 1,— 1) winding paif. In contrast, in our work defects are
agreement with the simulation results. Especially the amourgroduced during ghase transitionby cooling the sample.

of suppression in the defect density fo=0.57 is in good As & result of spinodal decomposition, the defect network is
agreement with the crude estimate provided above in4iq. formed in a large area. There i® perfectcorrelation be-
The position of the antidefect peak from experimental data i§Ween defects and antidefects at the time of formation in our
shifted by about 0.25 on the right, as compared to the peakork, while in Ref. [32] every bubble produces a+(l,
from the simulation. With the statistics we have at present, it~ 1) winding pair. Thus the defect production mechanisms
is not possible to resolve whether this shift is genuine oré fundamentally different in the two cases.

whether it is due to statistical fluctuations. We have done the Another important difference between our work and that

following checks to address this point. Instead of square ell? Ref. [32] is that, as mentioned above, our experiment
ementary domains, if we take triangular domains in theProbes the defect correlatioasthe time of defect formation

simulation[with due account of geometrical factors in Eq. the main purpose being to test the Kibble mechanism of the
(2), etc], we find the simulation peak at abaut0.4—that formatlorj of cosmic defects. That is \_/vhy defects are re-
is, slightly further shifted towards left compared to the ex-corded right at the time of their formation, before any sig-

perimental peak. This is consistent with the findings in Refnificant defect-antidefect annihilations can take place. In
[16] where it was found that experimental data favoredContrast, in Ref[32], defect correlations are studied during

square elementary domains. It is possible that the dynamid§e evolution of the defect network, when the system is al-
of coalescence of domains makes four-domain coalescencgdy in the scaling regime. In fact it is emphasized in Ref.
more likely than three-domain coalescence. This can b&32] that the correlation observed arises due to defect-
checked by carrying out the simulation of, say, a first-orde@ntidefect attraction during the evolution of a defect network.
transition, as in Ref[30], where one can directly compare AS mentioned above, if defect correlations were studied ex-

the probability of four-bubble coalescence to three-domairfiCtly at the time of formation in Ref32], they would have
coalescence. Again, just as in the case in IREd], the data found a perfect correlation between defects and antidefects
in the present analysis also do not have enough statistics & €ach bubble contains & (,—1) winding pair. This cor-
make definitive statements about this issue of the preferrefflation would then decrease as the defect network evolves
shape of elementary domains. Even though it is possible th&y @ coarsening of domains. In contrast, in our work there is
the simulation peak may shift further to the right for elemen-no perfect correlation between the defects and antidefects at
tary domains with a larger number of sid@ehich increases the time of defect formatior(This is why we had to invent a

the probabilityp), it is clear from Eq(2) that the position of New techniqug16] to identify individual windings in dense
the peak will always remain at<1 (in units ofr ). defect networks as in Fig. 3Defect correlations at the time

With a smaller set of data we had seen that the shift be©f formation in the Kibble mechanism arise because of the
tween the experimental peak and the simulation peak wadnderlying domain picture. As explained aboMeg. (2)],
larger. With the inclusion of all defects and antidefects€ven if defects evolve by a coarsening of domains, this pic-
(which could be analyzed using our technigueie shift ture remains vglld,_ the only change being an increase of th_e
was reduced, suggesting that it is possible that the shift ma ffective QOmam size. In contrast, as we discussed apove, in
be reduced further if larger data are available. Even afh€ experiment reported in R¢B2], the defect correlations
present, the shift between the two peaks is relatively smali@t the time of formation WO'U|d be d'lfferent. queyer, afte(
In fact the shift is about the same as the smallest separatidiffects evolve by coarsening, again a domain picture will
between defects and/or antidefects which we have found i§Merge. This is why the plots in R¢B2], which represent
our experiments. defect correlations during the coarsening of domains, look

We mention here that defect correlations have been thegiMmilar to those in our workwhich represent defect correla-
retically investigated beforg81] and have also been experi- tions at the time of formation
mentally studied in liquid crystal systeni82]. However,
these ;tudies relate to defect correlations for late stages of the VIl. CONCLUSIONS
evolution of defect networks when the defect network has
already entered the scaling regime. This is in contrast to our The observation of a peak ipg(r) (nearr=0.8) is
discussion where defect correlations are investigated at th@ughly in accordance with the theoretical prediction. What
time of defect formation itself. Depending on the mechanismis remarkable is that the data show a prominent peak near the
of defect formation, defect correlations at late stages may bposition where it is expected and at the same time show a
very different from the ones at the time of defect formation.suppression in the defect density by about the right amount,
For example, in Ref[32], density correlation functions of at the same point. At largethere is not sufficient statistics to
defects and antidefects have been measured and plots simikay whether the densities approach the asymptotic values at
to those in our paper have been obtained. However, there are=1.1, though the data are certainly consistent with this in
very important differences between our work and the experithe sense that there are no other prominent peaks visible and
ment reported in Ref.32]. The most important difference is the fluctuations are randomly distributed about the
that in Ref.[32] defect formation was achieved by applying asymptotic value(We note here that it is intriguing that a
a low-frequency electric field. As discussed in R82] (see, similar structure of the plots has been seen for the scaled
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radial distribution functions of islands formed on a single-in order to improve the error bars, so that more definitive
crystal substratg34]. It will be interesting to explore of any statements can be made about the comparison between
possible connection between the two cases. theory and experimeni&.g., about the apparent shift in the
We conclude by emphasizing again that our measurepeak position What is very encouraging and remarkable is
ments of the density correlation function of defects and anthat by appropriately focusing on the predictions of the
tidefects provide a rigorous test of the theory of cosmic detheory of cosmic defect formation which acquire universal
fect formation, as well as defect formation in condensedyehavior by a suitable change of length scales, one is able to

matter systems. For a liquid crystal system, is about rigorously test these theories in ordinary condensed matter
10 wm, whiler , will be about 10°*° cm for cosmic defects  experiments.

(those formed at the grand unified theory transitiddow-
ever, when expressed in the scaled lengtby dividing by

Iap), ONe expects in both cases a peak in antidefect density at
r=0.6 and a flattening out bry=1 [for the U1) case and for
two-dimensional cross sections of defect netwrk&mi- We are thankful to Mark Srednicki, Shikha Varma, Soma
larly the defect density is predicted to be suppressed relativBey, Sanatan Digal, Soma Sanyal, and Supratim Sengupta
to the antidefect density at=0.6 by a calculable factor, for useful discussions. A.M.S. acknowledges the hospitality
again flattening out by =1. The experimental data verify of the Physics Department, the University of California,
both these predictions, though fluctuations due to small stéSanta Barbara, where one of the early versions of the paper
tistics are large. It is clearly desirable to be able to carry outvas completed. His work at UCSB was supported by NSF
an experimental analysis with a significantly larger data seGrant No. PHY-0098395.
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