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Measuring cosmic defect correlations in liquid crystals
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From the theory of topological defect formation proposed for the early Universe, the so-called Kibble
mechanism, it follows that the density correlation functions of defects and antidefects in a given system should
be completely determined in terms of a single length scalej, the relevant domain size, which is proportional
to the average interdefect separationr av . Thus, when lengths are expressed in units ofr av , these distributions
should show universal behavior, depending only on the symmetry of the order parameter and space dimen-
sions. We have verified this prediction by analyzing the distributions of defects and antidefects formed during
the isotropic-nematic phase transition in a thin layer in a liquid crystal sample. Our experimental results
confirm this prediction and are in reasonable agreement with the results of numerical simulations.
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I. INTRODUCTION

The big-bang theory of the Universe is well establish
by now, with most of the observations being in good agr
ment with the predictions of the model. Accurate measu
ments of the cosmic microwave background radiat
~CMBR! have made cosmology into a precision scien
where competing models of the early Universe are pu
rigorous tests. One of the models which was very popu
earlier for explaining the formation of structure in the Un
verse, such as galaxies, clusters, and superclusters of g
ies, utilized the concept oftopological defects, in particular
cosmic string defects@1#. However, recent CMBR anisotrop
data are not in agreement with predictions of topologic
defect-based models of structure formation. Data are in v
good agreement with the predictions of density fluctuatio
from inflation, though at present it cannot be ruled out t
defects may also contribute to some part of structure for
tion @2# ~see, also, Ref.@3#!. Further, topological defects aris
in many particle physics models of the unification of force
and their presence in the early Universe can lead to o
important consequences, such as the production of ba
numbers below the electroweak scale, generating bar
number inhomogeneities at the quark-hadron transition,
@4#. It is therefore important to deepen our understanding
how these defects form in the Universe@5# and how they
evolve. This paper relates to the first of these issues.

There are numerous examples of topological defects
condensed matter systems, such as flux tubes in supe
ductors, vortices in superfluid helium, monopoles and stri
in liquid crystals, etc. It has long been known that such
fects routinely form during a phase transition. The first d
tailed theory of the formation of topological defects in
phase transition~apart from the usual equilibrium process
thermal production! was proposed by Kibble@6,7# in the
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context of the early Universe. It is usually referred to as
Kibble mechanism. It was first suggested by Zurek@8# that
some of the aspects of the Kibble mechanism can be teste
condensed matter systems, such as superfluid4He. Indeed
the basic physical picture of the Kibble mechanism app
equally well to a condensed matter system@9,10,5,11#. Using
this correspondence, the basic picture of defect forma
was first observed by Chuanget al. in an isotropic to nematic
~I-N! transition in liquid crystal systems@12#. The formation
and evolution of string defects was observed to be rema
ably similar to what had been predicted for the case of
Universe, apart from obvious differences such as the velo
of defects, time scales of the evolution of the defect netwo
etc. Subsequently, measurements of the string density w
carried out by observing strings formed in the first-order I
transition occurring via the nucleation of nematic bubbles
the isotropic background@13#. The results were found to b
in good agreement with the prediction of the Kibble mech
nism. ~For testing the Kibble mechanism in other condens
matter systems, see Refs.@14,15#.! Yet another quantitative
measurement was made of the exponent characterizing
correlation between the defects and antidefects formed in
I-N transition in liquid crystals, with results in good agre
ment with the Kibble mechanism@16#.

It is certainly dramatic that there is a correspondence
tween the phenomena expected to have occurred in the e
Universe, during stages when its temperature was ab
1029 K, with those occurring in condensed matter systems
temperatures less than a few hundred K. The important q
tion is whether the observations and measurements
formed in condensed matter systems provide rigorous t
of the theories being used to predict phenomena in the e
Universe, or they simply provide an analogy with the case
the early Universe or, at best, examples of other syste
where similar theoretical considerationscan be made for
investigating defect formation. On the face of it, the diffe
ences between the two cases seem so profound that a r
ous test of the theories underlying the phenomena tak
place in the early Universe seems out of question within
©2004 The American Physical Society25-1
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domain of condensed matter systems. For example, a
scription of the matter, transformations between its vario
phases, etc., in the early Universe is given in terms of
ementary particle physics models, which require the fram
work of relativistic quantum field theory. Indeed, typical v
locities of particles, and even of topological defects form
in such transitions, are close to the velocity of light. On t
other hand, in condensed matter systems nonrelativ
quantum mechanics provides an adequate description
most relevant systems. Typical velocities in such systems
extremely small in comparison. For example, in liquid cry
tals, the typical velocity of string defects is of the order o
few microns per second, completely negligible in compa
son to the speed of light. Similarly, the value of the stri
tension~i.e., string energy per unit length! for the case of the
Universe is of the order of 1032 GeV2 ~in natural units!
which is about 1018 tons/cm. In contrast, in condensed ma
ter systems~say, in liquid crystals!, the string tension is gov
erned by the scale of the free energy of the order of 1022 eV
~e.g., the free energy of a liquid crystal string of length ab
the coherence length will be of this order!. Indeed, it is due
to this extremely large string tension~i.e., mass per unit
length! of cosmic string defects that they were proposed
have seeded formation of galaxies, clusters of galaxies,
via their gravitational effects. Clearly such effects are u
thinkable for string defects in liquid crystals or in superflu
helium, etc.

Despite the fact that the two systems look completely d
similar, it turns out that there are ways in which speci
condensed matter experiments can provide rigorous tes
the theories of cosmic defect formation. This can be done
identifying those predictions of the theory which show u
versal behavior. As we will discuss below there are seve
predictions of the Kibble mechanism which show univer
behavior when expressed in terms of a suitable length sc

The paper is organized in the following manner. In Sec.
we review the basic picture of defect formation. The cor
lations of defects and antidefects are discussed in Sec
Section IV describes the numerical simulation and expec
behavior of density correlation functions of defects. The
periment is described in Sec. V, while experimental res
and simulation results are discussed in Sec. VI. Conclus
are presented in Sec. VII.

II. PHYSICAL PICTURE OF DEFECT FORMATION

We first recall the basic physics of the Kibble mechani
@6,7,10#. For concreteness, we consider the case of a c
plex scalar order parameterf, with spontaneously broken
U~1! symmetry~as in the case of the Abelian Higgs mode
superconductors, or superfluid4He). The order paramete
space~the vacuum manifold! is a circleS1 in this case. Here
string ~vortex! defects arise when the phaseu of f winds
nontrivially around the order parameter spaceS1. ~Later we
will see that in our present experiment also, where defe
form at the I-N interface, the anchoring of the order para
eter at the I-N interface leads to the effective order param
space beingS1, rather than the usualRP2 for nematic liquid
crystals.! In the Kibble mechanism, defects form due to
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domain structure arising in a phase transition. This doma
like structure arises from the fact that during the phase tr
sition, the phaseu of the order parameter fieldf can only be
correlated within a finite region.u can be taken to be roughl
uniform within a region~domain! of size;j, while varying
randomly from one domain to the other. This situation
very natural to expect in a first-order phase transition wh
the transition to the spontaneous symmetry-broken ph
happens via nucleation of bubbles. Inside a bubble,u will be
uniform, while u will vary randomly from one bubble to
another. Eventually bubbles grow and coalesce, giving ris
a region of space whereu varies randomly at a distance sca
of the interbubble separation, thereby leading to a doma
like structure.@In certain situations—e.g., when the bubb
wall motion is highly dissipative—the effective domain siz
may be larger@17,5#. In between any two adjacent bubble
~domains!, u is supposed to vary with the least gradient. Th
is usually called thegeodesic ruleand arises naturally from
consideration of minimizing the gradient energy for the ca
of global symmetry. For gauge symmetry, the situation
more complicated, though it has been shown that under
tain situations the geodesic rule continues to hold@18#. How-
ever, the geodesic rule may not hold in the presence of str
fluctuations@19–21#. See, also, Ref.@22# in this context. Re-
cently it has been shown@21# that a defect distribution very
different from what is expected in the Kibble mechanis
may arise when defect formation is dominated by magn
field fluctuations.#

The same situation happens for a second-order trans
where the orientation of the order parameter field is cor
lated only within a region of the size of the correlation leng
j. This again results in a domainlike structure, with doma
being the correlation volumes. We mention that there
nontrivial issues in the case of a second-order phase tra
tion in determining the appropriate correlation length for c
culating theabsolute initial defect density, where the appro-
priate value ofj may depend on the rate of the pha
transition@7# ~see, also,@5#!. It was shown by Zurek@9# that
the appropriate value ofj should be determined by incorpo
rating the effects of the critical slowing down of the dynam
ics of the order parameter field near the transition tempe
ture. The theory which takes into account this~for second-
order transitions! is usually referred to as theKibble-Zurek
mechanism. Here, the absolute defect density is determ
by critical fluctuations of the order parameter and depends
details such as the rate of cooling of the system, etc. Fo
discussion of these issues, see Ref.@9#. We emphasize tha
these considerations of the details of the critical dynamics
the order parameter field during the phase transition are
portant in calculating the absolute defect density. Howev
the defect densityper domainis insensitive to these details

For the U~1! case which we are discussing, string defe
~vortices! arise at the junctions of domains ifu winds non-
trivially around a closed path going through adjacent d
mains. Consider a junctionP of three domains, as shown i
Fig. 1. For simplicity, we show here domains as sphe
~e.g., bubbles for a first-order transition!, with the centers of
the three nearest bubbles forming an equilateral triangle.
values ofu in these three domains areu1 , u2 , andu3 . One
5-2
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MEASURING COSMIC DEFECT CORRELATIONS IN . . . PHYSICAL REVIEW D69, 103525 ~2004!
can show that with the use of the geodesic rule~i.e., the
variation ofu in between any two domains is along the sho
est path on the order parameter spaceS1), a nontrivial wind-
ing of u ~i.e., by 62p) along a closed path, encircling th
junctionP and going through the three domainsA, B, C, will
arise only whenu3 lies in the~shorter! arc betweenu11p
and u21p. The maximum and minimum values of the a
gular span of this arc arep and 0, with the average angula
span beingp/2. Sinceu3 can lie anywhere in the circle, th
probability that it lies in the required range isp
5(p/2)/(2p)51/4. Thus, we conclude@23# that the prob-
ability of vortex ~or antivortex! formation at a junction of
three domains~in two space dimensions! is equal to 1/4.

It is important to realize that in the above argument,
use is made of the field equations. Thus, whether the sys
is a relativistic one for particle physics or a nonrelativis
one appropriate for condensed matter physics, there is
difference in the defect production per domain.~This is so as
long as the geodesic rule holds. As we have mentio
above, this may not be true when the field dynamics is do
nated by fluctuations@19–21#. In those situations, defect pro
duction will be determined by some different processe
e.g., by a newflipping mechanism@19,20# or by fluctuating
magnetic fields@21#, again, apart from the usual equilibrium
thermal production.! Therefore, the expected number of d
fectsper domainhas universal behavior, in the sense tha
only depends on the symmetry of the order parameter
the space dimensions. It is this universal nature of the p
diction of defect density~number of defects per domain! in
the Kibble mechanism because of which the measurem
of defects per domain in liquid crystals in Ref.@13# provide
a rigorous test of the Kibble mechanism~which was origi-
nally given for cosmic defect production!. Note that the ab-
solute defect density does not show universal behavior s
it depends on the domain sizej. The entire dependence o
the dynamical details of the specific system is through
single length scalej. Thus, when densities are expressed
the length scale ofj the prediction acquires a universal cha
acter.

III. DEFECT-ANTIDEFECT CORRELATIONS

The Kibble mechanism not only predicts the number d
sity of defects. It also predicts a very specific correlati

FIG. 1. Defect formation due to coalescence of three doma
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between the defects and antidefects. Again, by focusing
specific quantities and choosing proper length scales,
prediction acquires a universal nature which can then
tested experimentally in condensed matter systems. This
diction is important as in many experimental situations it c
provide the only rigorous test of the underlying theory
defect formation. This is for the following reason. As w
have discussed above, the prediction of defect density
comes universal only when expressed in the length units
the domain size. For a first-order transition it can be do
easily if the average bubble diameter~assuming small vari-
ance in bubble sizes! can be experimentally determined, as
the liquid crystal experiments in Ref.@13#. However, this is a
highly nontrivial problem for the case of second-order tra
sitions or for spinodal decomposition. For experimental si
ations with a second-order transition~type-II superconduct-
ors, superfluid4He), it has not been possible to make
independent determination of the correlation length relev
for defect formation. All one can do is to measure the ab
lute defect density, comparison of which to the predicti
from theory becomes dependent on various details of
phase transition, which determine the relevant correlat
length @9#.

Defect-antidefect correlations, on the other hand, im
specific spatial distributions of defects, which are indep
dent of the prediction of the defect density. Within the fram
work of the Kibble mechanism, defect density distributio
are expected to reflect defect-antidefect correlations at
typical distance scales of a domain size. At the same ti
the typical interdefect separationr av , as given byr21/2

wherer is the average defect-antidefect density, is direc
proportional to the domain sizej. From this, one can con
clude that if defect and antidefect distributions are expres
in terms of the average interdefect separationr av , then these
should display universal behavior, the important point be
that the same experiment yields the value of the aver
interdefect separation (r av5r21/2), and the defect and an
tidefect distributions are analyzed by using this length sc
Details such as the bubble size or the relevant correla
length, therefore, become completely immaterial for test
the predictions regarding correlations.

To understand how this correlation between defects
antidefects arises, let us go back to Fig. 1. With the directi
of arrows shown there~which denote values ofu), we see
that a defect~vortex with winding11) has formed atP. Let
us address the issue that, given that a defect has formedP,
how does the probability of a defect, or antidefect, change
the nearest triangular region—say, atQ. At Q, the three do-
mains which intersect areA, B, andD. Hereu already has a
specific variation inA andB in order to yield a defect atP.
From the point of view ofQ, this variation inA andB is a
partial winding configuration for an antivortex. With partia
antiwinding present inA and B, it can be seen from Fig. 1
that whatever the value ofu in D, it is impossible to have a
vortex atQ ~i.e., u winding by 12p as we go aroundQ in
an anticlockwise manner!. On the other hand, the probabilit
of an antivortex formation atQ is 1/4 by straightforward
repetition of the argument given above to calculate the pr
ability of the formation of a vortexor antivortex at a junction

s.
5-3
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of three domains. This is the most dramatic example of
correlation between defect and antidefect formation. If
consider defect formation due to the intersection of~say!
four domains, this correlation still exists; that is, close to
defect, the formation of another defect is less likely~though
not completely prohibited now! and the formation of an an
tidefect is enhanced. This conclusion about a certain corr
tion in the formation of a defect and an antidefect is valid
other types of defects as well@24,25#. ~See, for example, Ref
@24# for a discussion of the correlation between global mo
poles and antimonopoles.!

To see what this correlation implies, let us conside
two-dimensional regionV whose area isA and whose pe-
rimeter L goes throughL/j number of elementary domain
~wherej is the domain size!. As u varies randomly from one
domain to another, one is essentially dealing with a rand
walk problem with the average step size foru beingp/2 ~the
largest step isp and the smallest is zero!. Thus, the net
winding number ofu aroundL will be distributed about zero
with a typical width given bys5 1

4 AL/j, implying that s
}A1/4 ~see Refs.@26,16,10#!. Assuming roughly uniform de-
fect density, we gets}N1/4 ~whereN is the total number of
defects in the regionV), which reflects the correlation in th
production of defects and antidefects. In the absence of
correlations, the net defect number will not be as suppres
and will follow a Poisson distribution withs;AN. In gen-
eral one may write the following scaling relation fors:

s5CNn. ~1!

The exponentn will be 1/2 for the uncorrelated case an
1/4 for the case of the Kibble mechanism. Again, the pred
tion of n51/4 is of universal nature, depending only on t
symmetry of the order parameter and space dimensions
experimental measurement of this exponent was carried
in Ref. @16#. The experimental value ofn was found in Ref.
@16# to be n50.2660.11 which is in good agreement wit
the predicted value of 1/4 from the Kibble mechanism a
reflects the correlated nature of defects and antidefects.

The exponentn does not give complete information abo
the correlation which arises between defects and antidef
when they are produced via the Kibble mechanism. A m
detailed understanding of the correlation can be achieved
calculating the density correlation function of the defects a
antidefects. Below, we first discuss the theoretical predic
about this and then describe the experimental measurem

IV. NUMERICAL SIMULATION

We have carried out the numerical simulation of def
formation via the Kibble mechanism for the square latt
case~instead of the triangular case as shown in Fig. 1! where
defects will form at the intersection of four domains; see F
2. This is because we find slightly better agreement with
experimental results for the square lattice case. We will a
quote results for the triangular lattice case. The probabilitp
of a defect or an antidefect per square region~in Fig. 2! is
obtained to be 0.33. We start with the originO of the coor-
dinate system to be at the center of a square containin
10352
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defect~making sure thatO is at least one domain away from
the boundary!. We then calculate the density of antidefec
r d̄(r ), as well as the density of defects,rd(r ), as a function
of the radial distancer from the defect at the origin. For this
we count number of antidefects~defects! in an annular re-
gion of width Dr centered at distancer from the origin and
divide this number by the area of the annular region.
average of these densities~for a givenr ) is taken by taking
different defects at the origin, as well as by taking ma
realizations of the event of defect production. With the de
sity in the central square~which has a defect! appropriately
normalized, this is the same as the density correlation fu
tion of defects. As should be clear by now, all dynamic
details of the specific model are relevant only in determin
the domain sizej ~i.e., either the bubble diameter for a firs
order transition case or the relevant correlation length fo
second-order transition case or for spinodal decompositi!.
For the simulation, we take domain size to be unity, mean
that all lengths are measured in units of domain size.
remaining properties of the defect distributions should n
display universal behavior, depending only on the symme
of the order parameter@U~1! in this case#, space dimensions
~2 here!, and, possibly, fundamental domain structure~square
versus triangular!. Another important factor here is that the
is no reason to expect that the defect or antidefect will
exactly at the center of the square formed by the center
the four bubbles~domains!. In realistic situations, the defect
can be anywhere in the elementary square, which in so
sense represents the collision region of the four correla
domains~bubbles!. However, since the correlation domain
by definition, have uniform order parameter, it should
increasingly unlikely that the defect is far from the center
the collision region~i.e., away fromO). To take into account
of these physical considerations, we have allowed the p
tion of defects and antidefects to float within a square w
an approximately Gaussian probability distribution, cente
in the middle of the square, with varying width. By changin
the width of this distribution we can change from almo

FIG. 2. Defect formation due to the coalescence of four elem
tary domains, forming a square lattice.
5-4
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MEASURING COSMIC DEFECT CORRELATIONS IN . . . PHYSICAL REVIEW D69, 103525 ~2004!
centered defects to defects with uniform probability in t
elementary square region.

With this picture and with a defect being in the cent
square, we know that the probability of antidefect formati
should be enhanced in the nearest squares, while the p
ability of defect formation should be suppressed in th
regions. These defects and antidefects cannot be too clo
the central defect as that would imply variation of the ord
parameter at distance scales much smaller thanj. One there-
fore expects that bothr d̄(r ) and rd(r ) will be almost zero
for r !j ~discounting the central defect atO). Both densities
will rise as r increases. At a distance of aboutr;j, one
expects a peak inr d̄(r ). The height of this peak will deter
mine the suppression inrd(r ) ~compared to the asymptoti
value! at that point.

For r>2j one expects both distributions to approach
average density expected asymptotically. This conclus
may appear surprising as one might have expected tha
creased antidefect probability in the nearest square may
ply suppressed antidefect probability in the next-nea
square, etc., leading to a damped oscillatory behavior
r d̄(r ) and rd(r ) ~similar to the density correlation functio
for a liquid!. The reason that this does not happen here
simple and, again, intrinsic to the Kibble mechanism. Rec
that the antidefects were enhanced~and defects suppresse!
in the squares nearest to the central square because, for
of these four squares, two out of four vertices hadu common
to the central square which already had a defect. The p
ability of defects and antidefects in these squares was, th
fore, affected by the presence of defects in the central squ
In contrast,u at three vertices of thenext-nearest~corner!
squares and at all vertices farther away are completely
dom. This implies that the probability of defects and antid
fects must be equal in all such regions, leading to a flatten
of r d̄(r ) and rd(r ) for r>2j. As we will see below, this
theoretical reasoning is well borne out by the results of
simulations and is consistent with the experimental resu
within error bars.

We have explained above that this analysis of defe
antidefect correlations does not require knowledge of the
main size. In fact, the power of this technique is best illu
trated in those experimental situations where domains are
identifiable ~as in the experiments explained below!. The
length scalej is, therefore, not a convenient choice from th
point of view. We instead will use the interdefect separat
r av to define our length scale. If the probability of defe
formation per~square! domain isp, thenr av andj are related
in the following manner:

r av5
j

Ap
. ~2!

In our experiment, we have tried to record the defect d
tributions immediately after their formation. Occasional
some evolution of the defect network occurs by a coarsen
of domains. This makes the effective correlation domain s
j larger, so the above relation still holds. Coarsening of
mains only makes the effective correlation domain sizej
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larger. Since the probabilityp ~defects per domain! is also of
universal nature, it follows from Eq.~2! that the distributions
r d̄(r ) and rd(r ) will still show universal behavior ifr is
measured in units ofr av . As r av can be directly measure
for a given defect distribution, without any recourse to t
underlying domain structure, we will use it as defining t
unit of length. In this unit, the peak inr d̄(r ) will be expected
to occur atr 5Ap.0.57 with p50.33 for the square lattice
case.~This is when the order parameter space isS1, which,
as we will discuss below, is the case for our experiment.! By
r 52Ap.1.14, both densities will be expected to flatten o
to the asymptotic value of 0.5. The asymptotic value ofrd

and r d̄ is 0.5 since by definition the unit lengthr av is the
average separation between defects and antidefects.
height of the peak forr d̄ ~at r .0.57) depends on the weigh
factor for centering the defects and antidefects inside squ
regions. This is simply because perfectly centered defe
and antidefects will lead to large contributions when the c
ters of the squares fall inside the annular regions for ca
lating densities, while for neighboring values ofr, their con-
tributions will be zero. When defects and antidefect positio
are floated, then the contributions are averaged out. We
that the height of the peak varies from about 1.2 for perfec
centered defects and antidefects to about 0.75 for the
when defects and antidefect positions are uniformly distr
uted inside a square. When comparing with the experime
results, we choose the weight factor appropriately so that
height of the peak inr d̄ from simulations is similar to the
one obtained from experiments.~It will be interesting to in-
vestigate the physics contained in the peak height resul
from this weight factor for centering the defects in a squa
which may depend on the interactions between defects
antidefects.!

If we take the thickness of the annular regionDr ~for
calculating densities! to be about the domain size~i.e., 0.57
in units of r av), then one can relate the suppression inrd at
r 5Ap.0.57 to the height of the peak inr d̄ at that position.
This is done as follows. Note that the values ofu at all the
outer 12 vertices of the 8 squares, bordering the cen
square containing the defect, are completely random~i.e.,
they are not constrained by the fact that there is a defec
the central square!. Let us consider the distribution of the ne
winding along the large square-shaped closed path go
through all these 12 vertices. Repetition of the earlier ar
ment@in writing Eq. ~1!# shows that this net winding shoul
be distributed about the value zero~and should have a typica
width proportional toA12, but this part is not relevant here!.
Thus, the average number of defectsnd inside this large
square should be same as the average number of antide
nd̄ .

Out of these eight outer squares, there are four squa
each of which share one edge~i.e., two vertices! with the
central square containing the defect. As a result of the p
ence of the defect in the central square, there will be a pa
winding present at this edge~on average!, affecting the prob-
abilities of defects and antidefects in these four ou
squares. We take the densities for these squares to be g
by rd(r 50.57), andr d̄(r 50.57) for defects and antidefect
5-5
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respectively. Now the remaining four squares~out of the
outer eight squares! are at the corners and share only o
vertex with the central square containing the defect. Clea
the presence of defects in the central square cannot have
effect on the probabilities of defects or antidefects in th
corner squares.~Also, these corner squares are at a dista
which is farther away from the center thanr 50.57.) We
denote the defect density~or the antidefect density, both be
ing equal for these squares! asr0 .

Now, using the fact that the central square always has
defect and that the area of each domain isj25p in the units
of r av , we can write down the condition that on average
defect number should equal the antidefect number in the
containing all nine squares~including the central one!:

114prd~r 50.57!14pr054pr d̄~r 50.57!14pr0 . ~3!

This leads to the following relation betweenrd andr d̄ at
r .0.57:

rd~r 50.57!5r d̄~r 50.57!2
1

4p
.r d̄~r 50.57!20.76,

~4!

for p50.33.
As we will see later, our simulation results as well

experimental data are in reasonable agreement with
crude estimate.

V. EXPERIMENT

Our experiments have been carried out using nematic
uid crystals. For uniaxial nematic liquid crystals~NLCs! the
orientation of the order parameter in the nematic phas
given by a unit vector~with identical opposite directions!
called the director. The order parameter space isRP2

([S2/Z2), which allows for string defects with strength-1
windings. As a result of the birefringence of NLCs, when t
liquid crystal sample is placed between crossed polariz
then in regions where the director is either parallel or p
pendicular to the electric fieldEW , the polarization is main-
tained, resulting in a dark brush. At other regions, the po
ization changes through the sample, resulting in a bri
region. This implies that for a defect of strengths, one will
observe 4s dark brushes@27#. If the cross-polarizer setup i
rotated, then brushes will rotate in the same~opposite! direc-
tion for positive ~negative! windings. Equivalently, if the
sample is rotated between fixed crossed polarizers,
brushes do not rotate for11 winding while they rotate in the
same direction~with twice the angle of rotation of the
sample! for 21 winding. We have used this method to d
termine the windings.~For earlier studies of the director fiel
orientations as well as defects in liquid crystals see, e
@28#.!

We now describe our experiment. We observed the
transition in a tiny droplet~size ;2 –3 mm) of NLC
48-pentyl-4-biphenyl-carbonitrile ~98% pure, purchased
from Aldrich Chem.!. The sample was placed on a clea
untreated glass slide and was heated using an ordinary la
The I-N transition temperature is about 35.3 °C. Our se
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allowed the possibility of slow heating and cooling b
changing the distance of the lamp from the sample. We
served the defect production very close to the transition te
perature~in some cases we had some isotropic bubbles
existing with the nematic layer containing defects!. For the
observations, we used a Leica, DMRM microscope w
203 objective, a charge-coupled-device~CCD! camera, and
a cross-polarizer setup, at the Institute of Physics, B
baneswar. The phase transition process was recorded
standard video cassette recorder. The images were ph
graphed directly from a television monitor by replaying t
cassette.

The I-N transition is of first order. When the transitio
proceeds via nucleation of bubbles, we observe long horiz
tal strings~as in Ref.@13#!, which are not suitable for ou
present analysis. We selected those events where the tr
tion seems to occur uniformly in a thin layer near the top
the droplet~possibly due to faster cooling from contact wi
air!. The depth of field of our microscope was about 20mm.
All defects in the field of view were well focused, suggesti
that they formed in a thin layer, especially since typical
terdefect separation was about 10–40mm. ~For us, the only
thing relevant is that the layer be effectively two dimension
over distances of the order of a typical interdefect sepa
tion.! Also, the transition happened over the entire obser
tion region roughly uniformly, suggesting that a process l
spinodal decomposition may have been responsible for
transition. This resulted in a distribution of strength-(61)
defects as shown in the photograph in Fig. 3. Points fr
which four dark brushes emanate correspond to defect
strength 61. As a result of the resolution limitation th
crossings here do not appear as point like. It is practica
impossible to use the technique of the rotation of brushe
identify every winding in situations such as shown in Fig.
due to the very small interdefect separation~resulting from a
high defect density!, as well as due to the rapid evolution o
the defect distribution.

We have developed a particular technique for determin
the individual windings of defects in situations like Fig.
where one only needs to determine the winding of one of
defects by rotation in a cross-polarizer setup. The windin
of the rest of the defects can then be determined using to
logical arguments; see Ref.@16# for details of this technique

FIG. 3. Network of strength-1 defects and antidefects formed
the I-N transition. Crossing of brushes denotes defects with wind
61. Size of the image is about 0.45 mm30.32 mm.
5-6
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Further, as explained in Ref.@16#, the anchoring of the direc
tor at the I-N interface in our experiment forces the direc
to lie on a cone, with half angle equal to about 64°~see Ref.
@29#!. This forces the order parameter space there to bec
effectively a circleS1, instead of beingRP2, with the order
parameter being an angle between 0 and 2p. The only de-
fects allowed now are ones with integer windings, which
consistent with the fact that no strength-1/2 defects are s
in our experiment@16#. Therefore the predictions of th
Kibble mechanism for the U~1! case, as described above, a
valid for this case, with the picture that a domain structu
near the I-N interface is responsible for the formation
integer windings~see Ref.@16# for a detailed discussion o
these points!.

VI. RESULTS AND DISCUSSION

After identifying the windings of all defects~wherever
possible! in a picture, we note the positions (x-y coordinates!
of each defect and antidefect in the picture. We then de
mine the average defect-antidefect densityr. With the aver-
age interdefect separationr av being r21/2, we convert all
coordinate distances into scaled distances by dividing
r av . We then choose one defect as the origin, making s
that the defect is at least 1 unit~with the unit length beingr av
now! away from the boundary of the picture. The density
defects,rd(r ), as well as the density of antidefects,r d̄(r ), is
now calculated for eachr ~at a step size ofDr ) by counting
number of defects~antidefects! within an annular region of
thicknessDr centered atr. Different values ofDr are used to
get the least possible statistical fluctuations, while at
same time retaining the structure of the peak, etc. The s
Dr is used in numerical simulations for comparison with t
experimental data. We will present the results forDr 50.25
~in the units ofr av). The calculation is repeated by takin
other defects as origins, and an average of densities~for a
given value ofr ) is taken to determine the final values
rd(r ) andr d̄(r ). To increase the statistics, an average of
distributions is taken by combining the results of all pictur
Different pictures have very different values ofr av , ranging
from about 5mm to about 50mm. However, when ex-
pressed in units ofr av , the densitiesrd andr d̄ show similar
behavior for all pictures~at least those ones which had si
nificant statistics!. In all, we have analyzed 17 pictures, wi
the total number of defects and antidefects being 833.

Figure 4 shows the results. The solid plots show the sp
fitting of the simulation results which are denoted by op
circles.~We mention that statistical errors are very small
the simulation; we have taken a very large number of
fects. However, there are larger errors due to uncertain
like the floating of defect positions inside each domain,
stead of exact centralization of defects, as explained abov
Sec. IV.! We have used a square lattice~shown in Fig. 2! for
the simulation, as described above. The antidefect distr
tion clearly shows a peak nearr .0.6 as expected from th
Kibble mechanism. The defect density is suppressed in
region at r .0.6, with the simulation results roughly i
agreement with the expected suppression—i.e.,rd.r d̄
20.76.0.14 @with p.0.33 andr d̄(r 50.57).0.9]. As ex-
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pected, both densities reach asymptotic values byr;1. The
regular oscillations in the densities are due to the regu
lattice structure of the simulations, with defects and anti
fects remaining close to the centers of the domains. If defe
and antidefects are assumed to be strictly at the centers o
domains, then the oscillations inr d̄(r ) and rd(r ) are even
more pronounced and regular. At the other extreme, if
positions of defects and antidefects are taken to be unif
within respective domains, then these oscillations comple
disappear, except for the prominent peak inr d̄ at r .0.6.
Here we have taken an intermediate case with the posit
of defects and antidefects weighted by a Gaussian center
the middle of the elementary square~so that the peak heigh
is similar to the one obtained from the experiment, as d
cussed above!.

The stars show the experimental values. The error b
have been calculated by taking the error in the countn of
defects or antidefects within an annular strip~of the same
thicknessDr 50.25 used for the simulation! to beAn. The

FIG. 4. Solid plots show the simulation results for the defe
densityrd(r ) ~top figure! and antidefect densityr d̄(r ) ~bottom fig-
ure!. Stars show the experimental data.
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R. RAY AND A. M. SRIVASTAVA PHYSICAL REVIEW D 69, 103525 ~2004!
peak in the data points of the antidefect density is promin
and so is the suppression in the defect density forr ,1.0.
The data on the defect density seem to be in reasonably g
agreement with the simulation results. Especially the amo
of suppression in the defect density forr .0.57 is in good
agreement with the crude estimate provided above in Eq.~4!.
The position of the antidefect peak from experimental dat
shifted by about 0.25 on the right, as compared to the p
from the simulation. With the statistics we have at presen
is not possible to resolve whether this shift is genuine
whether it is due to statistical fluctuations. We have done
following checks to address this point. Instead of square
ementary domains, if we take triangular domains in
simulation @with due account of geometrical factors in E
~2!, etc.#, we find the simulation peak at aboutr .0.4—that
is, slightly further shifted towards left compared to the e
perimental peak. This is consistent with the findings in R
@16# where it was found that experimental data favor
square elementary domains. It is possible that the dynam
of coalescence of domains makes four-domain coalesc
more likely than three-domain coalescence. This can
checked by carrying out the simulation of, say, a first-or
transition, as in Ref.@30#, where one can directly compar
the probability of four-bubble coalescence to three-dom
coalescence. Again, just as in the case in Ref.@16#, the data
in the present analysis also do not have enough statistic
make definitive statements about this issue of the prefe
shape of elementary domains. Even though it is possible
the simulation peak may shift further to the right for eleme
tary domains with a larger number of sides~which increases
the probabilityp), it is clear from Eq.~2! that the position of
the peak will always remain atr ,1 ~in units of r av).

With a smaller set of data we had seen that the shift
tween the experimental peak and the simulation peak
larger. With the inclusion of all defects and antidefec
~which could be analyzed using our techniques!, the shift
was reduced, suggesting that it is possible that the shift m
be reduced further if larger data are available. Even
present, the shift between the two peaks is relatively sm
In fact the shift is about the same as the smallest separa
between defects and/or antidefects which we have foun
our experiments.

We mention here that defect correlations have been th
retically investigated before@31# and have also been exper
mentally studied in liquid crystal systems@32#. However,
these studies relate to defect correlations for late stages o
evolution of defect networks when the defect network h
already entered the scaling regime. This is in contrast to
discussion where defect correlations are investigated at
time of defect formation itself. Depending on the mechani
of defect formation, defect correlations at late stages may
very different from the ones at the time of defect formatio
For example, in Ref.@32#, density correlation functions o
defects and antidefects have been measured and plots si
to those in our paper have been obtained. However, there
very important differences between our work and the exp
ment reported in Ref.@32#. The most important difference i
that in Ref.@32# defect formation was achieved by applyin
a low-frequency electric field. As discussed in Ref.@32# ~see,
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also, Ref.@33#!, this leads to the formation abubblestructure
such that each bubble contains a defect-antidefect pair@i.e., a
(11,21) winding pair#. In contrast, in our work defects ar
produced during aphase transitionby cooling the sample.
As a result of spinodal decomposition, the defect network
formed in a large area. There isno perfectcorrelation be-
tween defects and antidefects at the time of formation in
work, while in Ref. @32# every bubble produces a (11,
21) winding pair. Thus the defect production mechanis
are fundamentally different in the two cases.

Another important difference between our work and th
in Ref. @32# is that, as mentioned above, our experime
probes the defect correlationsat the time of defect formation,
the main purpose being to test the Kibble mechanism of
formation of cosmic defects. That is why defects are
corded right at the time of their formation, before any s
nificant defect-antidefect annihilations can take place.
contrast, in Ref.@32#, defect correlations are studied durin
the evolution of the defect network, when the system is
ready in the scaling regime. In fact it is emphasized in R
@32# that the correlation observed arises due to defe
antidefect attraction during the evolution of a defect netwo
As mentioned above, if defect correlations were studied
actly at the time of formation in Ref.@32#, they would have
found a perfect correlation between defects and antidef
as each bubble contains a (11,21) winding pair. This cor-
relation would then decrease as the defect network evo
by a coarsening of domains. In contrast, in our work there
no perfect correlation between the defects and antidefec
the time of defect formation.~This is why we had to invent a
new technique@16# to identify individual windings in dense
defect networks as in Fig. 3.! Defect correlations at the time
of formation in the Kibble mechanism arise because of
underlying domain picture. As explained above@Eq. ~2!#,
even if defects evolve by a coarsening of domains, this p
ture remains valid, the only change being an increase of
effective domain size. In contrast, as we discussed abov
the experiment reported in Ref.@32#, the defect correlations
at the time of formation would be different. However, aft
defects evolve by coarsening, again a domain picture
emerge. This is why the plots in Ref.@32#, which represent
defect correlations during the coarsening of domains, lo
similar to those in our work~which represent defect correla
tions at the time of formation!.

VII. CONCLUSIONS

The observation of a peak inr d̄(r ) ~near r .0.8) is
roughly in accordance with the theoretical prediction. Wh
is remarkable is that the data show a prominent peak nea
position where it is expected and at the same time sho
suppression in the defect density by about the right amo
at the same point. At larger there is not sufficient statistics t
say whether the densities approach the asymptotic value
r .1.1, though the data are certainly consistent with this
the sense that there are no other prominent peaks visible
the fluctuations are randomly distributed about t
asymptotic value.~We note here that it is intriguing that
similar structure of the plots has been seen for the sca
5-8



le

r
an
de
e

ty

ti
,
y
st
ou
se

ive
een
e
is

he
al

le to
tter

a
upta
lity
ia,
per

SF

MEASURING COSMIC DEFECT CORRELATIONS IN . . . PHYSICAL REVIEW D69, 103525 ~2004!
radial distribution functions of islands formed on a sing
crystal substrate@34#. It will be interesting to explore of any
possible connection between the two cases.!

We conclude by emphasizing again that our measu
ments of the density correlation function of defects and
tidefects provide a rigorous test of the theory of cosmic
fect formation, as well as defect formation in condens
matter systems. For a liquid crystal system,r av is about
10 mm, while r av will be about 10230 cm for cosmic defects
~those formed at the grand unified theory transition!. How-
ever, when expressed in the scaled lengthr ~by dividing by
r av), one expects in both cases a peak in antidefect densi
r .0.6 and a flattening out byr .1 @for the U~1! case and for
two-dimensional cross sections of defect networks#. Simi-
larly the defect density is predicted to be suppressed rela
to the antidefect density atr .0.6 by a calculable factor
again flattening out byr .1. The experimental data verif
both these predictions, though fluctuations due to small
tistics are large. It is clearly desirable to be able to carry
an experimental analysis with a significantly larger data
r
e,

,

.
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in order to improve the error bars, so that more definit
statements can be made about the comparison betw
theory and experiments~e.g., about the apparent shift in th
peak position!. What is very encouraging and remarkable
that by appropriately focusing on the predictions of t
theory of cosmic defect formation which acquire univers
behavior by a suitable change of length scales, one is ab
rigorously test these theories in ordinary condensed ma
experiments.
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