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Linear and nonlinear perturbations in dark energy models
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| present linear and second-order perturbation theory in dark energy models with an explicit interaction to
matter in view of its application tdl-body simulations and nonlinear phenomena. Several new or generalized
results are obtained: the general equations for the linear perturbation growth, an analytical expression for the
bias induced by a species-dependent interaction, the Yukawa correction to the gravitational potential due to
dark energy interaction, and the second-order perturbation equations in coupled dark energy and their New-
tonian limit. | also show that a density-dependent effective dark energy mass arises if the dark energy coupling
is varying.
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[. INTRODUCTION The linear growth functionD(z), defined asD(2)
=6m(2)/ 6m(0) if 64(2) denotes the matter density contrast,
Dark energy is defined as a fluid distributed almost homois a second observable quantity, in general independent of
geneously and capable of driving accelerated expansion. Ad(z). If the matter density parameter at preserfdjs,, D is
such, it can be observed mainly through large scale effectgiven on subhorizon scales by the solution of the perturba-
such as those relating to the cosmic expansion history and itgon equation
linear fluctuations. Indeed, the most weighty evidence in fa-
vor of dark energy comes from the acceleration of the Uni-
verse as seen in the Hubble diagram of the supernovae type
la[1] and on the angular size of the acoustic horizon on the D"+
cosmic microwave backgroun@]. Indications concerning
the growth of linear fluctuations, e.g., via the Integrated
Sachs-Wolfe(ISW) effect [3,4] are still very tentative, al- ) o
though the prospects from, e.g., weak lensifg and (_vglld for uncoupled Qark energy and _whgn ra(j|at|on is neg-
Lyman- clustering[6,7] appear promising. ligible) where the prime denotes derivation with respect to
However, all these observables depend ultimately on darfhe e-folding time o= loga and where we introduce the con-
energy Qn|y through the expansion histdﬂ'!{z) and the mat- formal Hubble functionH=da/dr, 7 being the conformal
ter linear growth functiorD(z), wherez is the cosmological time. The growth functionD is therefore an independent
redshift. For instance, the luminosity distance in flat space igrobe of dark energy: two models that give an identidét)
defined as will in general be distinguished by differebt(z)’s.
In principle, the degeneracy can be broken by a large
z dz number of observations at differezis of H(z) and/orD(z).
di(2)=(1+2) f0m1 @ However, this is hardly feasible, since real data is confined to
“small” ( z<5) or very large redshiftsz&=1100). Moreover,
in most models the dark energy components become sub-
dominant az>1, so that bottH(z) andD(z) becomes rap-

_ _3 311+ Wa idly insensitive tow ,(z) [see Ref[8] for a detailed discus-
H(Z)=Ho[Qma *+ Qa0 W) sion on the practicgl observability of ,(z) at largez].
+(1_Qm_Q¢)a_2]1/2’ 2 It would be desirable therefore to add new observables,
such as the evolution of the perturbations in the dark energy
field itself, the second order growth function or the full non-
linear properties as obtained throughbody simulations
(see, e.g., Ref§9—-11]). In this paper we derive the general
1 (a linear and nonlinear perturbation equations in dark energy

W(a=loga)= _f wy(a')da’, (3)  models in order to provide the basic material for the study of

aJo these additional observable quantities. Our dark energy

model is quite general: a scalar field with a generic potential

wy(2) being the equation of state of dark energy. It is clearand an explicit varying species-dependent coupling to bary-

that at any given redshift there will be different,(z)'s that  ons and dark matter. This cover most scalar field models

give indistinguishableal, (z)'s and that the degree of degen- presented in the literature, with the notable exception of
eration will increase with redshift. Similar integrals Id{z) models with nonstandard kinetic terfff&?]. In a subsequent

enter the definitions of angular-diameter distance and ag@aper we employ the formalism derived here to evaluate the

that will therefore be subject to the same ambiguity. large scale skewness in coupled dark energy.

1 H\ . 3Qm
E 1+W)D —Ta D=0 (4)

where

wherea=(1+2) ! is the scale factor); denotes the den-
sity at the present time of th¢h species, and
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[l. COUPLED DARK ENERGY keep track of the derivative order and to conform to the

notation in Ref[14]). The exponential case studied in Refs.

Our dark energy model is characterized by a general po- :
. . ; 13,14 therefore corresponds tb=1, a constant potential
tential V(¢) and general coupling€;(¢) to matter. This O[Similazg to that in[19] to 5:0 and the power IavV/p~ b "
class of models include those motivated by string theory pro- '

posed in Refsf13—24. The conservation equations with in- 0 f(¢)=V(3/2)nlog ¢/(xu). We will also use the defini-
teracting terms for the fields, cold dark matter ¢), and  tons

baryons(b) are
dv \F
Tlyvu=—Col D) T (0.0 . gxuflv, 9
T?b)v;,u.: _Cb(d))T(b)d’;vi d2V 2
——=—k2u’f,V, (10)
T u=[Cc( D) Tyt Co(P) Tyl b0, - dgp? 3
where

where the coupling functionS;, .(¢) depend on the species,
as first proposed in Ref23]. Radiation(subscripty) re- df
mains uncoupled because it is tracel@smdels with cou- f1= @‘f""f’ 1D
pling to the electromagnetic fiel?4,25 or neutrinos[26]
have also been proposedhe standard Einstein equations \/§2df
are assumed to hold. This coupling form is derived, through f=f2— _1‘ (12)
a conformal transformation, from a Brans-Dicke gravity with kp dé

species-dependent interacti@8,27. There are strong limits _ )

on the baryon couplinf28] and relatively looser ones on the The simple exponential case reduces theffi+d,=f,=1.
dark matter Coup“ng from either astrophys[dglzq or cos- Later on we will need h|gher derivatives Wfso we give the
mology [30]. However, all the limits have been derived as-9eneral rule

suming couplings constant in space and time while we wish 2

to derive fche equations in all generality: we therefore assume V(2)=(— 1)n(_) K"V

the couplings to be free functions. In a flat-space FRW met- ‘ 3

ric EQ. (5) plus the Friedmann equation reads
wherefy=1 and

b+3HG+V 4= \2/3k(Bepet Bopo), 5
/ (Vo

. . fo=Ff_.f,—f _ . 13
pet 3Hpe= — 23k Boped, n=Tn-1f1o-s 13
bb+3Hpb=— /2/3Kﬁbpb¢, (6) The systeni6) is best studied in the new variablgist,31]
. ! V
p,+4Hp =0, X:K‘f’_, yzf\ﬁ' Z:f\ﬁ{ v:ﬁ\/é

., J6 H V3 H V3 H V3
3H = k“(py+tpctpptpry), (14)

where «?=87G, B.=C.V3/2«?, B,=CyV3/2¢>, H  and in theefolding time. Then we obtain
=al/a. The matter conservation equations can be integrated 2
out: x’=(?—1)X—Mf1y2+,3c(1—X2—y2—02—22)+5b02,

2
— 73 - -
pcb=pP(0)¢pa exp[ \[3KJBc,b(¢)d¢l' ™ y'=ufixy+y

This shows one of the basic properties of dark energy inter-

aqtions: .although pressureless, matter density does not scalg: — _ E(l— 3x2+3y2—72), (15)
with the inverse of volume. In other words, matter appears to 2

be nonconserved to observers unaware of dark energy. As far

as the potentiaV/(¢) is concerned, we write in all generality , U

v'=- 2(3,8bx—3x2+ 3y?—7%).

Z!
2|
z

V(p)=Ae = Zl(9)3, ()
The CDM energy density parameter is obviousl.=1
whereu is a dimensionless constathich, of course, could —x?—y?—z?~v? while we also haveQ =x*+y? Q.
be absorbed i but we find it convenient to use in order to =z, and Q,=v2. The system is subject to the condition
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x2+y?+v?+27z°<1. To close the system one also needs thawith its dimensionless version
relationf,(y,H) and the Friedmann equation
2
m
H 1 2?5202
= 53433y 7). (16) Mo~ 2 2wy 12 22

In the perturbation calculations we will use the conformalPerturbing the Einstein equations and the conservation equa-
Hubble function’=aH, and we will need the following tions we obtain the linear perturbations below. We introduce
relation: the scale\: in real space we interprét™? as the operator
—"H ~2V?; in Fourier space\=H/k. In this way the fol-
lowing equations can be read equivalently in real or Fourier
space. Note also tha@t'=dB/da=¢'dB/d¢.
The perturbation equations for a generic equation of state
IIl. LINEAR PERTURBATIONS p=w(p)p, which includes unified models such as the Chap-
lygin gas[40] or phase transition moddl41], are as follows.
The aim of this section is to write down the linear pertur- Generic fluid componerjequation of stat@=w(p)p]:
bation equations for a combination of fluid components with
general equations of stape=w;(p) p; and a scalar field with ~ 6"=—(w+1)0+3(1+w)®'—2(1-3w)(Be '+ B ¢)
a general potentid/(¢) and couplingB;(¢) to the fluids.
Several works discussed the linear perturbations for un- —3w,,6(1=2xB), (23
coupled dark energy even before the evidence for accelera- ,
tion [32—35. A few papers included various kinds of cou- 4 _ _ (1-3w)(1—2xB8)—w A(W)+ H P
plings (e.g., in Refs[19,36 or in the conformally related P H
Jordan framg37,38)) but not at this level of generality. We

H
M Ry (17)

I +w 3w—1
choose the longitudinal gauge WTWp, 2 -2 -2
| g N POt 2B N PeH (LEw Y,
ds?=a?[— (1+2W¥)dr?+(1-2d)dxdx], (18 (24)
where 7 is the conformal time. In the-folding, time, our _
metric is effectively wherew ,=dw/dlogp and
A(w)=3+2xB8(1—-3w)/(1+w). (25

da?
_ A2« i
ds'=e (1+2¥) H2 (1= 2d)dxdx ] (19 Note that the sound speed téfdp/dp=W+W'p. The
equations for the scalar field coupled to several fluids with
It is well known that in the absence of anisotropic stréss equations of statp;=w;(p;)p; and the metric equations, re-
=¥, so we adopt this simplification from the start. We de-spectively, are as follows. Scalar field:
fine the perturbation variables

H' -
” ’ -2 2 _ Iy 2
26
where the dimensionless conformal velooityf a fluid with (26)
equation of motion x;(t) has components v;
=a[dx;(t)/dt]/H. Repeated indexes mean summation and =2 Bil1-3w,—3w; ,]Q;6+2> BQd
all spatial derivatives are with respect to the comoving coor- : :
dinatesx; . We also define the dark energy mass @
+2 (1-3w) B/, (27
d2V I X
2
my=—0- (21
’ de? metric:
— 3\ 6xp+2x¢’ —2y2uf o+ >, Qi(5+3(w;+1)\26;,)
o= ; (28)
2(1—37%x%)
’ 1 2
O’ =5 2(3xg—d)+\ > 3(wi+1)6,Q;|. (29)
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From these general equations one can derive the following; contribute to the equation as effective masses. If, for in-
equations for the three perfect fluid components, CDM ( giance Bi=PBo e'23<B1¢  then we can define a “coupling

~0~cg), baryons w~0, butc non-negligible at small

scaleg, radiation (v=1/3). CDM

8e=—0.1+30' —2B.0'— 2B, (30
: H' _2
O.=— 1+W—2ﬂcx Oc+N"(DP—28.9).
(3D
Radiation:
! 4 !
5y=—§67+4q> : (32
0’———,9 +E>\—25 +A 2
AR VIR ] b4 :
(33
Baryons:
Sp=—0p+ 3D’ —2B,¢' — 2B, (39
’ H, 2y —2
0b=— 1+ W—Zﬂbx 9b+cs)\ )
+NTAH(DP-2By0) (39

(to the equation forg; one should add the standard term

mass”

IBI

2
mﬁ_

=2QiBiB:- (40)

The Newtonian limit in Eq.(39) allows several simplifica-
tions. First, we can neglect the metric potentlalwhich is
proportional toA?. Second, we can also neglect the term
12x¢ since|x|<1 is much smaller that ~2. Finally, we also

neglectmy, and rAnzi with respect tox ~2 since otherwise the

dark energy would cluster on astrophysical scales and would
reduce to a form of massive dark mat{e?2]. In Sec. V,
however, we remove this approximation. Then we are left
with the equation

!

H
|2+ W)@'ﬁ”\_z@:z Bi€2i 6, (41)

whose solution is the sum of the solutigg,,, of the homo-
geneous equation and a particular inhomogeneous solution
¢inn- The solution of the homogeneous part is a rapidly
(k/'H>1) oscillating function with zero average. For the in-
homogeneous solution, we assume that its time derivatives
®inh»Pinn @re much smaller than the remaining terms; this
will be proved later on. Finally, we average over the oscilla-
tions to obtaing~ @i,

e=NA(Bccc+ BoQydp). (42

describing momentum exchange with photons due to Thom-

son scattering, see Ré89]). Scalar field:

!

H ’ -2 M2 ’ 2
+ 2+W e (N mMy) o — 4D X2y uf, P

= Bolde( 5 +20) + Byl 8y 20)
QB+ OBy, (36)

Let us derive now the Newtonian limismall scales)
<1). The gravitational potential is

3
b= EV(E Q0,5+ 6xp+ 2x<p’—2y2,uf1<p>, (37)

=3xp— . (39

Inserting Eq.(38) in Eq. (36) we obtain

!

2+ =

n
+
@ H

o'+

N24+mG 12x2——2 Q,B,)

+<I><4x—2y2,uf1—22 0, 5; ZE BiQi6, (39

where the sum is on the coupled compondhtre baryons
and dark matter It is interesting to observe that the terms in

Sinceg is of order\?, Eq.(37) reduces to the usual Poisson
equation(hereafter we neglect radiatipn

3
q>=—§>\2(9b5b+9050). (43)

Now, if we substitute in Eq(31) we can define a new poten-
tial acting on dark matter

O.=d-28.¢
— 3 2 4 3 2 4 2
=- E)\ Qpdy| 1+ §,8bﬂc) - E)\ Qb 1+ E’BC) .
(44)
In real space, this equation becomes
V20 =47Gpepp 0yt 4GP (45

where the gravitational constant is restored and define
Gij=Gvij,

so that G,.=G(1+4BpB./3) and G..=G(1+4p2/3).
Analogous equations hold for the baryon force equat&.
Therefore the Newtonian linear equations for dark matter and
baryons in coupled dark energy are

vij=1+4B:B;/3, (46)

S.=—0., (47)
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H' Ref.[14] we denoted these cases as stationary solytidiss
Oo=—| 1+ W_ZBCX 0o~ H 2V2D,, shown in Ref[14] this is realized on the critical points of a
(48) field governed by an exponential potential and a constant
coupling B. In this case is convenient to define a total equa-
Si=— 0y, (49)  fion of state that in absence of radiation is
H' We= Prot/ prot=X>—¥?, (57)
0p=—| 1+ W—z,ebx) 0,—H V2D,
(50 instead ofw,=p,/p4. Neglecting the baryons the relation
is simply
VZ(I)c: A7GpeppSp+4mGeepcde (51)
We= (1_QC)W¢,
V20, =47Gppp0p+ 47Gpepcde - (52
so that now
The B' ¢ terms in thed’ equations have been dropped be-
causeyp is of order\?. Deriving the ., equations we obtain H'

1
=== 5[1+3we]. (59)
' H’ ! 3
5,c+(1+w_2:8cx) 5c_§(')’cc5cﬂc+'yb05bﬂb):01 o
53 The scale factor in this case growsaas /(1P ~tP where
(53 p=2[3(w.+1)]. The solutions ares.=a™ and &,
and similarly for s} =b,.am= whe_rebt is as in Eq.(56) and, again neglecting
the baryons, i.e., fof), < [36]

!

H 3
1+ T Zﬂbx) Sy~ 5( YOt YobOp{2p) =0.
(54

Sp+

1
mt=Z(—1+3we+4,chiA), (59

These equations generalize previous res[m@ because | here A2=24y QO +(—1+3w.+4B8x)2 In this case
they are also valid for nonconstagt(provided mﬁ«)\*z). thenm andb are constant.

It is clear that since baryons and dark matter obey differ- The scalar field solution is
ent equations, they will develop a bias already at the linear
level. A simple result can be obtained in the case in which e~N2B:5.0c=H2k 2a2(-DPg 5.0 . (60)
one component dominates. Assumifig<<()., in fact, the
baryon solution will be forced by the dominating CDM to
follow asymptotically its evolution. Putting thend,
~e/m@de and §,=bs, with b=const we obtain the
coupled equations for the growth exponemn(«) o' =0
=dlog é./da (not to be confused with the scalar field mass

The derivativep’ is

Q¢

2(p—1 Q/
(-1 }

!

H
1+ W—Zﬁcx

which is much smaller thai ~?¢ in Eq. (41) for realistic
values ofp, m, and (}.. The same applies tg"”, which
completes our derivation of E¢42). For small wavelengths
3 @ (which here is proportional tép,/p,) is always much
m-— %VchCIO, smaller thané,, 6, at the present time, unless, of course,
(55) is exceedingly large. It is interesting to observe thatould
outgrow the matter perturbations in the future in an acceler-
from which by subtraction ated epoch, i.e., ip>1 and if Q. does not vanish.

m’ +m?+

3
m-— E ')’cch: 0,

!

H
m’+m2+(1+7—2,8bx

3Ypelde

3Yece+4(Bc— Bp)xm’ . ) .
Since most Boltzmann codes in CMB are implemented
Notice that all terms on the right hand side are, in generalyia the synchronous gauge we give here the relevant equa-
functions of time. This shows that a linear bias of gravita-tions in this gauge.
tional nature develops whenevgg# By, . This bias extends Generic fluid componerfequation of state@=w(p)p]:
to all Newtonian scales and therefore is distinguishable from

b (56) IV. SYNCHRONOUS GAUGE

the hydrodynamical or nonlinear bias that takes place in col- 1

lapsed objects. §'=—(w+1)o—S(w+1h'=2(1-3w)(Be'+B"¢)
Further insight can be gained when these equations have

constant coefficients, i.e., whew, and{) , are constantin —3w ,8(1-2xp), (61)
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!

0'= —[(1—3W)(1—2,8X)—WVPA(W)+ H— 0

H
PRI PP 62
WAl TS 62
Scalar field:
! 1
o'+ 2+W)go’+)\_2go+§h’x+2,u2y2f2go
Bi
= Bi[1_3Wi_3Wi,p]Qi5i+2 Qi(1—3Wi)?¢’-
(63
Metric:
h'=2\"29+3>, 5Q0,+6¢'x—6ufy2e,
’ 3 2
7= SN2 (Wi 1)0i 6+ 3¢x, (64)

x%(8y?ufi8,+2xh' +4x5,)
AP+ y2uf N(6x— BQ)]

X[4x28,— Y2 uf N?(— 24x 5.+ 8uf Y2 8.+ 4850+ 2xh' +4x5))]

PHYSICAL REVIEW D 69, 103524 (2004

!

h=—|1+ W) h'—2[12¢'x+6uf1y?e]

-3 (1+3w+3w,)50;.

Again in view of CMB applications, it is useful to detail
the adiabatic initial conditions. The condition of zero entropy
perturbations is

P % _g 65
a 1+Wi 1+W] o ( )
ss=| 2| [ %) g 66
- 1+Wi 1+W] e ( )
For the scalar field
oy @' +ea’H NV, xo'—eyiuf,
= = 1 (67)

1+W¢ ¢v2 X2

so that applying Egs(65), (66) to the scalar field and the
other components we obtain the initial conditions as

(68)

¢'=

In a radiation dominated era in whidh.—0 and on super
horizon scalesX>1), these become

X(4y?uf 8.+ xh’ +2x6.)

= , (70
12y°ufy
| —1XS+apfiy? S+ xh’+2x8;
- 12 '
(71)

Inserting 5. from Eg. (61) and putting initially 6.=0, we
can further simplify

AN

y2uf, ¢
. —3x+ufy?
°T Taepx (79

V. A MASSIVE DARK ENERGY FIELD

A%+ y?uf N %(6x— BQc)]

(69

section we assume the dark energy is coupled to a single
matter component, subscript, or, equivalently, that has a
universal coupling to all fields. Ik =2 is not much larger
thanm?=mj,+m5 (but still is larger than the coefficients of
®), Eq.(42) in Fourier space becomes

=Y (KB, (74)
where
k2
Y= K2+ a2m?’ (9

wherem=mH. If we substitute in Eq(31) we see that the
effective potential igneglecting the baryons

(76)

T 3 2 4 2
Q):_E)\ Qo 1+ 5,3 Y(k)|.

Here we take a digression to consider the two effectiveNow, let us write down the density contrast for a particle of
masses of the dark energy field, previously neglected. In thismassM located at the origin in empty space
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pm—p K2M () It is straightforward to generalize to the acceleration of a
Q0= m_ S (770 test particle of types’ due by a distribution of several par-
Perit 3H"a ticles of species at distances.y (dropping thep subscripk:
where . GYss(rss’)Ms(IB31¢)
Vg =—(1—2BgX)Hvg — >, . Fss s
/9.2 S r ’
M(p)=Mqe™ "2~ /3f pdg, (78 5 (85)

where we used Eq(7). It turns out then that the potential \where
originated by a dark matter particle is
4,85Bs’

Gysg(N =G| 1+ —3

~ 3 (1+mr)ye” ™. (86)
(I): - EQm5m)\2

4
1+ 3 ,BZY(k)}
In Ref. [10] these equations have been applied\tdody

1 4 1 1 simulations in the limit of constan® andm—_0.
=—47GM(¢) _2+_32ﬁ -, (79 In practice, in any dark energy model one expects the
k? 3 Kk*+a’m?/a mass scale to be much larger than the galaxy cluster scale

. . ) ~1 Mpc, in order to prevent clustering, se<1/m for all
which, upon inverse Fourier transform astrophysical scales. However, a nonvanishing nmassn
have some interesting effects.

First, it is to be observed that the background dynamics
depends on the potential and its first derivative only, while
the mass depends on the second derivative. It is then possible
to build viable dark energy models that accelerate the expan-
sion but whose mass scalemilis between a few Mpc and

d(r)= f ek *dd3k (80)

(2m)®

becomes the Yukawa potential

R GM(¢) 482 H, =3000 Mpch; in this case the perturbations of the sca-
d(r)=— ; ?em’), (81)  lar field would be directly observable through, e.g., weak
lensing.

Second, while the mass,, depends exclusively on the

wherer =ax is the physical coordinate. . .
pny potentialV(¢), the coupling mass

It is useful, in view of application tdN-body simulations,
to write down the acceleration on particles explicitly. Taking
Eg. (31 and using the definition of peculiar velocity, 2 1 o 6 )
=adx/dt in terms of the velocity used in E¢20) Mp=X""QpnBpH"= _ZQmIB,d:H (87)

vp="Ho, depends on the matter contefit,,. In a inhomogeneous

background, we can expect thsz, will be proportional to
Pm- This raises an interesting question, recently posed in the
context of @-varying modelg[25] and in the “chameleon”
- model of Ref[43]: is it possible to have a scalar field with a
(11— o @ large mass near a massive body such as the Earth and a very
Up,i (1 2,8)()va,| ar (82 . . oo
[ low one in space? This would open the possibility that scalar
] gravity escapes detection in Earth laboratories, where the
If we define Yukawa term would be exponentially suppressediifi ig on
4p? the submillimetric scale, even 8 were of order unityhere
_ P —mr we neglect any possible upper bound from cosmology
Gy(N=G| 1+ = (1+mne ™), (83 Ref.[43] it has been hypothesized that a model with a con-
stantB does in fact contain a density-dependent mass but our
we obtain the force on a dark matter particle calculations clearly show tha®’#0 is a necessary condi-
tion. This possibility will be discussed in another paper.

we can write the acceleration equation in ordinary tidte
=adr as

dd  Gy(rM(¢)
an 2 (84) VI. SECOND ORDER EQUATIONS
I

Here we extend the previous calculations to second order
In Eq. (82 the three effects of the coupling appear clearly:in the Newtonian regime and in the nonrelativistic limit. This
the masaM depends on the time evolution @f; the gravi-  will allow us to evaluate higher order moments of the gravi-
tational potential acquires the Yukawa correction; and theational clustering. Higher order perturbation equations in a
mass variation of the test particle induces an extra frictionvarying dark matter mass scenario and in scalar-tensor theo-
—2BX. ries which may be reduced to particular cases of the present

103524-7



LUCA AMENDOLA

model were studied in Ref38].

Here for simplification we consider a single matter fluid
with w=0. In the nonrelativistic limit the quadrivelocity
remains first order, with components

dx” dx*

ut=——=~ .
a5~ Voot

The general conservation equations at second order are th
(v2=vv")

(89)

8"+ V(14 6)v;=3(1+ 6)P'—2B¢' (14 5) + 6D D’
—v;Vi(¥—3D)—H%?%(1-28x)

-5

H' )
1+ ——-2px
5 2P

!

1+6+
X

(PZ

X

ﬁn_ﬁ/ﬂ

¢’
J
146 i

—?Vi(d>—2/3¢)+2\lf?—v,—vjvi

—2B'¢

|

(1+6-2% —2d)| v/ +

()
+0i(20'+V¥')+2B8'—Vig, (89
XH?

where the second line of each equation contains the terms

from the variation of3(¢). The scalar field equation is

HI

o'+ 2+W o —2y?uf¥|(1-2W)

+2y?uPe(fat ufze)+o (30" +W)
—D'X(3+6P—6W)—¥'x(1-4V)
V2 1
—(1+2<I>);<p+ ?(Vi(P)Vi((D_qf)
=BO[2V(1-2¥)+ 6—H%?]
2

qDQ
ox2

"

Brr_lBr_

¢
+—=Q,8 (1+6,)+
X ¢’

) ) (90

wheref; is defined in Eq(13).

Let us now derive the Newtonian limit. We can use the
metric equations at first order, in particular the relati®n
=V since, as beforap and¢ are of ordem? (with respect
to 6). Again as before, we neglect the time derivativegof
We obtain from Eq(89)

8 +Vi(1+ 8)vi=2v,;V,®—H?%?%(1-2px),
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|

!

1+ ——28x
” B

1
== N ®=2p0)

Ui,+

1

146 1

v;Vjv;.

Furthermore, in the first equation we can neglect the term
H2?v?(1—2Bx) because of the nonrelativistic approximation
gﬁd the term 2;V,® because both; andV,® are of ordem

at first order. Finally, in the second equation we can approxi-
mate 1+ 5~1 at the denominator in the last term, since it
gives a third order correction. Therefore we are left with

8 +V.(1+ 8)v,=0, (92)
! , 1
of +| 1+ o= 2px|vi=— EVi(CD—ZB(p)
_UjVjUi. (93)

Applying the same approximations for the scalar field we
obtain

H' V2
"+ 24+ — | —2y?uf, ®—280,&— —¢—4d'x
H H?2
+2y2 Pt o0+ 2y2utt 50
@ (P2 ¢/r
=B0no+ QB (1+0)+ —Qn| B"=B8'— |,
X 2X2 (;b,
(94)

which neglectingb and the time derivatives @f reduces to
the nonlinear Klein-Gordon equation

Vip—mPp— 0,0+ 0,0d=—BQ,0H?, (95

where we defined the nonlinear correction coefficients

"

¢
BH_BI_
¢

!

2 3 2 O 2
0,=2y > f3H +—2 H“, (96)
2X

op=x"1Q,8 H?2 (97)

If mando, ,, are negligible with respect to the length scale
then we see that the nonlinear conservation equations in
coupled dark energy coincide with the usual nonlinear New-

tonian perturbation equations with an effective poterrﬁal
and a correction in the Euler equation due to the time varia-
tion of the dark matter mass

8"+ V.(1+ 8)v;=0, (98)

1

H' -
vl + 1+%—2,8X vi+vjVjvi=——2Vi<1>, (99
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V2D = 47G o, (100 term of the fu.ndamental parameters in the case of an expo-
mmem nential potential.
If .92, 0,08 are negligible bum2¢ is not then one should  (¢) We discussed the Yukawa correction to the gravita-
use the Yukawa correction @,,,, [in this case one should tional potential due to dark energy interaction and we found
also assume that the coefficients of the term@jrib’ in Eq.  that a density-dependent effective dark energy mass arises
(95) are smaller tham?]. As has been shown, Eq98)— only if the co_upllng is nonconstant. The consequence of this
(100 are also valid wherg is a function ofé ' f—:-ffect on equivalence principle experiments will be discussed
' in another paper.

(d) We derived the second-order perturbation equations
in coupled dark energy and their Newtonian limit. We
showed that the coupling introduces three corrections to the

This paper is meant to set up the formalism for futureStandard Newtonian fluid equations, one proportional to the
work on nonlinear properties of dark energy, with an emphavelocity and the others which can be absorbed in the gravi-
sis on its coupling to matter. We found several results that wéational potential. These equations will be used in a subse-
summarize here. quent paper to derive the large scale skewness of coupled

(a) We derived the general equations for the linear perturdark energy.
bation growth for a general dark energy potential and a gen-
eral species-dependent interaction with matter. This general-
izes previous work.

(b) We derived an analytical relation between the bias | acknowledge useful discussions with S. Bonometto, J.
induced by a species-dependent coupling and the growth exhoury, A. Macci, R. Mainini, D. Mota, F. Perrotta, C. Quer-
ponent of the linear perturbations, as well as their values ircellini, N. Sakai, and D. Tocchini-Valentini.

VII. CONCLUSIONS
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