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Linear and nonlinear perturbations in dark energy models

Luca Amendola
INAF/Osservatorio Astronomico di Roma, Viale Frascati 33, 00040 Monte Porzio Catone (Roma), Italy

~Received 27 November 2003; published 28 May 2004!

I present linear and second-order perturbation theory in dark energy models with an explicit interaction to
matter in view of its application toN-body simulations and nonlinear phenomena. Several new or generalized
results are obtained: the general equations for the linear perturbation growth, an analytical expression for the
bias induced by a species-dependent interaction, the Yukawa correction to the gravitational potential due to
dark energy interaction, and the second-order perturbation equations in coupled dark energy and their New-
tonian limit. I also show that a density-dependent effective dark energy mass arises if the dark energy coupling
is varying.
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I. INTRODUCTION

Dark energy is defined as a fluid distributed almost hom
geneously and capable of driving accelerated expansion
such, it can be observed mainly through large scale eff
such as those relating to the cosmic expansion history an
linear fluctuations. Indeed, the most weighty evidence in
vor of dark energy comes from the acceleration of the U
verse as seen in the Hubble diagram of the supernovae
Ia @1# and on the angular size of the acoustic horizon on
cosmic microwave background@2#. Indications concerning
the growth of linear fluctuations, e.g., via the Integrat
Sachs-Wolfe~ISW! effect @3,4# are still very tentative, al-
though the prospects from, e.g., weak lensing@5# and
Lyman-a clustering@6,7# appear promising.

However, all these observables depend ultimately on d
energy only through the expansion historyH(z) and the mat-
ter linear growth functionD(z), wherez is the cosmological
redshift. For instance, the luminosity distance in flat spac
defined as

dL~z!5~11z!E
0

z dz

H~z!
, ~1!

where

H~z!5H0@Vma231Vfa23[11W(a)]

1~12Vm2Vf!a22#1/2, ~2!

wherea5(11z)21 is the scale factor,V i denotes the den
sity at the present time of thei th species, and

W~a5 loga!5
1

aE0

a

wf~a8!da8, ~3!

wf(z) being the equation of state of dark energy. It is cle
that at any given redshift there will be differentwf(z)’s that
give indistinguishabledL(z)’s and that the degree of dege
eration will increase with redshift. Similar integrals ofH(z)
enter the definitions of angular-diameter distance and a
that will therefore be subject to the same ambiguity.
0556-2821/2004/69~10!/103524~10!/$22.50 69 1035
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The linear growth functionD(z), defined as D(z)
5dm(z)/dm(0) if dm(z) denotes the matter density contra
is a second observable quantity, in general independen
H(z). If the matter density parameter at present isVm0 , D is
given on subhorizon scales by the solution of the pertur
tion equation

D91
1

2 S 11
H8

H DD82
3Vm0

2
a23D50 ~4!

~valid for uncoupled dark energy and when radiation is n
ligible! where the prime denotes derivation with respect
thee-folding timea5 loga and where we introduce the con
formal Hubble functionH5da/dt, t being the conformal
time. The growth functionD is therefore an independen
probe of dark energy: two models that give an identicalH(z)
will in general be distinguished by differentD(z)’s.

In principle, the degeneracy can be broken by a la
number of observations at differentz’s of H(z) and/orD(z).
However, this is hardly feasible, since real data is confined
‘‘small’’ ( z,5) or very large redshifts (z'1100). Moreover,
in most models the dark energy components become
dominant atz@1, so that bothH(z) andD(z) becomes rap-
idly insensitive towf(z) @see Ref.@8# for a detailed discus-
sion on the practical observability ofwf(z) at largez].

It would be desirable therefore to add new observab
such as the evolution of the perturbations in the dark ene
field itself, the second order growth function or the full no
linear properties as obtained throughN-body simulations
~see, e.g., Refs.@9–11#!. In this paper we derive the gener
linear and nonlinear perturbation equations in dark ene
models in order to provide the basic material for the study
these additional observable quantities. Our dark ene
model is quite general: a scalar field with a generic poten
and an explicit varying species-dependent coupling to ba
ons and dark matter. This cover most scalar field mod
presented in the literature, with the notable exception
models with nonstandard kinetic terms@12#. In a subsequen
paper we employ the formalism derived here to evaluate
large scale skewness in coupled dark energy.
©2004 The American Physical Society24-1
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II. COUPLED DARK ENERGY

Our dark energy model is characterized by a general
tential V(f) and general couplingsCi(f) to matter. This
class of models include those motivated by string theory p
posed in Refs.@13–22#. The conservation equations with in
teracting terms for the fieldf, cold dark matter (c), and
baryons~b! are

T(c)n;m
m 52Cc~f!T(c)f ;n ,

T(b)n;m
m 52Cb~f!T(b)f ;n ,

T(f)n;m
m 5@Cc~f!T(c)1Cb~f!T(b)#f ;n ,

~5!

where the coupling functionsCb,c(f) depend on the species
as first proposed in Ref.@23#. Radiation~subscriptg) re-
mains uncoupled because it is traceless~models with cou-
pling to the electromagnetic field@24,25# or neutrinos@26#
have also been proposed!. The standard Einstein equation
are assumed to hold. This coupling form is derived, throu
a conformal transformation, from a Brans-Dicke gravity w
species-dependent interaction@23,27#. There are strong limits
on the baryon coupling@28# and relatively looser ones on th
dark matter coupling from either astrophysics@10,29# or cos-
mology @30#. However, all the limits have been derived a
suming couplings constant in space and time while we w
to derive the equations in all generality: we therefore assu
the couplings to be free functions. In a flat-space FRW m
ric Eq. ~5! plus the Friedmann equation reads

f̈13Hḟ1V,f5A2/3k~bcrc1bbrb!,

ṙc13Hrc52A2/3kbcrcḟ,

ṙb13Hrb52A2/3kbbrbḟ, ~6!

ṙg14Hrg50,

3H25k2~rg1rc1rb1rf!,

where k258pG, bc5CcA3/2k2, bb5CbA3/2k2, H

5ȧ/a. The matter conservation equations can be integra
out:

rc,b5r~0!c,ba23expF2A2

3
kE bc,b~f!dfG . ~7!

This shows one of the basic properties of dark energy in
actions: although pressureless, matter density does not
with the inverse of volume. In other words, matter appear
be nonconserved to observers unaware of dark energy. A
as the potentialV(f) is concerned, we write in all generalit

V~f!5Ae2kA2/3m f (f)f, ~8!

wherem is a dimensionless constant~which, of course, could
be absorbed inf but we find it convenient to use in order t
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keep track of the derivative order and to conform to t
notation in Ref.@14#!. The exponential case studied in Re
@13,14# therefore corresponds tof 51, a constant potentia
similar to that in@19# to m50, and the power lawV;f2n

to f (f)5A(3/2)n logf/(kmf). We will also use the defini-
tions

dV

df
52A2

3
km f 1V, ~9!

d2V

df2
5

2

3
k2m2f 2V, ~10!

where

f 15
d f

df
f1 f , ~11!

f 25 f 1
22

A3/2

km

d f1

df
. ~12!

The simple exponential case reduces then tof 5 f 15 f 251.
Later on we will need higher derivatives ofV so we give the
general rule

V,f
(n)5~21!nS 2

3D n/2

knmnf nV,

where f 051 and

f n5 f n21f 12 f n218 Y SA2

3
km D . ~13!

The system~6! is best studied in the new variables@14,31#

x5k
f8

A6
, y5

k

H
AV

3
, z5

k

H
Arg

3
, v5

k

H
Arb

3
,

~14!

and in thee-folding time. Then we obtain

x85S z8

z
21D x2m f 1y21bc~12x22y22v22z2!1bbv2,

y85m f 1xy1yS 21
z8

z D ,

z852
z

2
~123x213y22z2!, ~15!

v852
v
2

~3bbx23x213y22z2!.

The CDM energy density parameter is obviouslyVc51
2x22y22z22v2 while we also haveVf5x21y2, Vg
5z2, and Vb5v2. The system is subject to the conditio
4-2
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x21y21v21z2<1. To close the system one also needs
relation f 1(y,H) and the Friedmann equation

H8

H
52

1

2
~313x223y21z2!. ~16!

In the perturbation calculations we will use the conform
Hubble functionH5aH, and we will need the following
relation:

H8

H 511
H8

H
. ~17!

III. LINEAR PERTURBATIONS

The aim of this section is to write down the linear pertu
bation equations for a combination of fluid components w
general equations of statepi5wi(r)r i and a scalar field with
a general potentialV(f) and couplingb i(f) to the fluids.
Several works discussed the linear perturbations for
coupled dark energy even before the evidence for acce
tion @32–35#. A few papers included various kinds of cou
plings ~e.g., in Refs.@19,36# or in the conformally related
Jordan frame@37,38#! but not at this level of generality. We
choose the longitudinal gauge

ds25a2@2~112C!dt21~122F!dxidxi #, ~18!

where t is the conformal time. In thee-folding, time, our
metric is effectively

ds25e2aF2~112C!
da2

H 2
1~122F!dxidxiG . ~19!

It is well known that in the absence of anisotropic stressF
5C, so we adopt this simplification from the start. We d
fine the perturbation variables

d5dr/r, w5kdf/A6, ¹iv i5u, ~20!

where the dimensionless conformal velocityv of a fluid with
equation of motion xi(t) has components v i
5a@dxi(t)/dt#/H. Repeated indexes mean summation a
all spatial derivatives are with respect to the comoving co
dinatesxi . We also define the dark energy mass

mf
2 5

d2V

df2
, ~21!
10352
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with its dimensionless version

m̂f
2 5

mf
2

H2
52m2y2f 2 . ~22!

Perturbing the Einstein equations and the conservation e
tions we obtain the linear perturbations below. We introdu
the scalel: in real space we interpretl22 as the operator
2H 22¹2; in Fourier space,l5H/k. In this way the fol-
lowing equations can be read equivalently in real or Fou
space. Note also thatb85db/da5f8db/df.

The perturbation equations for a generic equation of s
p5w(r)r, which includes unified models such as the Cha
lygin gas@40# or phase transition models@41#, are as follows.
Generic fluid component@equation of statep5w(r)r]:

d852~w11!u13~11w!F822~123w!~bw81b8w!

23w,rd~122xb!, ~23!

u852F ~123w!~122xb!2w,rA~w!1
H8

H Gu
1

w1w,r

w11
l22d12b

3w21

w11
l22w1~11w!l22C,

~24!

wherew,r[dw/d logr and

A~w!5312xb~123w!/~11w!. ~25!

Note that the sound speed iscs
2[dp/dr5w1w,r . The

equations for the scalar field coupled to several fluids w
equations of statepi5wi(r i)r i and the metric equations, re
spectively, are as follows. Scalar field:

w91S 21
H8

H Dw81~l221m̂f
2 !w24F8x22y2m f 1F

~26!

5(
i

b i@123wi23wi ,r#V id i12(
i

b iV iF

1(
i

~123wi !
w

x
b i8V i , ~27!

metric:
F5

23l2F6xw12xw822y2m f 1w1( V i~d i13~wi11!l2u i !G
2~123l2x2!

, ~28!

F85
1

2 F2~3xw2F!1l2( 3~wi11!u iV i G . ~29!
4-3
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From these general equations one can derive the follow
equations for the three perfect fluid components, CDMw
'0'cs), baryons (w'0, but cs

2 non-negligible at small
scales!, radiation (w51/3). CDM:

dc852uc13F822bcw822bc8w, ~30!

uc852S 11
H8

H 22bcxD uc1l22~F22bcw!.

~31!

Radiation:

dg852
4

3
ug14F8, ~32!

ug852
H8

H ug1
1

4
l22dg1l22F.

~33!

Baryons:

db852ub13F822bbw822bb8w, ~34!

ub852S 11
H8

H 22bbxD ub1cs
2l22d

1l22~F22bbw! ~35!

~to the equation forub8 one should add the standard ter
describing momentum exchange with photons due to Th
son scattering, see Ref.@39#!. Scalar field:

w91S 21
H8

H Dw81~l221m̂f
2 !w24F8x22y2m f 1F

5bcVc~dc12F!1bbVb~db12F!

1
w

x
~Vcbc81Vbbb8!. ~36!

Let us derive now the Newtonian limit~small scales,l
!1). The gravitational potential is

F52
3

2
l2S ( V id i16xw12xw822y2m f 1w D , ~37!

F853xw2F. ~38!

Inserting Eq.~38! in Eq. ~36! we obtain

w91S 21
H8

H Dw81S l221m̂f
2 212x22

1

x ( V ib i8Dw

1FS 4x22y2m f 122( V ib i D5( b iV id i , ~39!

where the sum is on the coupled components~here baryons
and dark matter!. It is interesting to observe that the terms
10352
g

-

b i8 contribute to the equation as effective masses. If, for

stance,b i5b0eA2/3kb1f, then we can define a ‘‘coupling
mass’’

m̂b i

2 [
V ib i8

x
52V ib ib1 . ~40!

The Newtonian limit in Eq.~39! allows several simplifica-
tions. First, we can neglect the metric potentialF which is
proportional tol2. Second, we can also neglect the te
12xw sinceuxu<1 is much smaller thatl22. Finally, we also
neglectm̂f

2 andm̂b i

2 with respect tol22 since otherwise the

dark energy would cluster on astrophysical scales and wo
reduce to a form of massive dark matter@42#. In Sec. V,
however, we remove this approximation. Then we are
with the equation

w91S 21
H8

H Dw81l22w5( b iV id i , ~41!

whose solution is the sum of the solutionwhom of the homo-
geneous equation and a particular inhomogeneous solu
w inh . The solution of the homogeneous part is a rapid
(k/H@1) oscillating function with zero average. For the i
homogeneous solution, we assume that its time derivat
w inh8 ,w inh9 are much smaller than the remaining terms; t
will be proved later on. Finally, we average over the oscil
tions to obtainw'w inh

w'l2~bcVcdc1bbVbdb!. ~42!

Sincew is of orderl2, Eq. ~37! reduces to the usual Poisso
equation~hereafter we neglect radiation!

F52
3

2
l2~Vbdb1Vcdc!. ~43!

Now, if we substitute in Eq.~31! we can define a new poten
tial acting on dark matter

Fc5F22bcw

52
3

2
l2VbdbS 11

4

3
bbbcD2

3

2
l2VcdcS 11

4

3
bc

2D .

~44!

In real space, this equation becomes

¹2Fc54pGbcrbdb14pGccrcdc , ~45!

where the gravitational constant is restored and define

Gi j 5Gg i j , g i j [114b ib j /3, ~46!

so that Gbc5G(114bbbc/3) and Gcc5G(114bc
2/3).

Analogous equations hold for the baryon force equation~35!.
Therefore the Newtonian linear equations for dark matter
baryons in coupled dark energy are

dc852uc , ~47!
4-4
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uc852S 11
H8

H 22bcxD uc2H 22¹2Fc ,

~48!

db852ub , ~49!

ub852S 11
H8

H 22bbxD ub2H 22¹2Fb ,

~50!

¹2Fc54pGbcrbdb14pGccrcdc , ~51!

¹2Fb54pGbbrbdb14pGbcrcdc . ~52!

The b8w terms in thed8 equations have been dropped b
causew is of orderl2. Deriving thedc8 equations we obtain

dc91S 11
H8

H 22bcxD dc82
3

2
~gccdcVc1gbcdbVb!50,

~53!

and similarly fordb8

db91S 11
H8

H 22bbxD db82
3

2
~gbcdcVc1gbbdbVb!50.

~54!

These equations generalize previous results@36# because
they are also valid for nonconstantb ~providedm̂b

2!l22).
It is clear that since baryons and dark matter obey diff

ent equations, they will develop a bias already at the lin
level. A simple result can be obtained in the case in wh
one component dominates. AssumingVb!Vc , in fact, the
baryon solution will be forced by the dominating CDM
follow asymptotically its evolution. Putting thendc
;e*m(a)da and db5bdc with b5const we obtain the
coupled equations for the growth exponentm(a)
[d logdc /da ~not to be confused with the scalar field mas!

m81m21S 11
H8

H 22bcxDm2
3

2
gccVc50,

m81m21S 11
H8

H 22bbxDm2
3

2b
gbcVc50,

~55!

from which by subtraction

b5
3gbcVc

3gccVc14~bc2bb!xm
. ~56!

Notice that all terms on the right hand side are, in gene
functions of time. This shows that a linear bias of gravi
tional nature develops wheneverbc5” bb . This bias extends
to all Newtonian scales and therefore is distinguishable fr
the hydrodynamical or nonlinear bias that takes place in
lapsed objects.

Further insight can be gained when these equations h
constant coefficients, i.e., whenwf andVc,b are constant~in
10352
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Ref. @14# we denoted these cases as stationary solutions!. As
shown in Ref.@14# this is realized on the critical points of
field governed by an exponential potential and a cons
couplingb. In this case is convenient to define a total equ
tion of state that in absence of radiation is

we5ptot /r tot5x22y2, ~57!

instead ofwf5pf /rf . Neglecting the baryons the relatio
is simply

we5~12Vc!wf ,

so that now

H8

H 52
1

2
@113we#. ~58!

The scale factor in this case grows asa;tp/(12p);tp, where
p52/@3(we11)#. The solutions aredc5am6 and db
5b6am6 whereb6 is as in Eq.~56! and, again neglecting
the baryons, i.e., forVb!Vc @36#

m65
1

4
~2113we14bcx6D!, ~59!

where D2524gccVc1(2113we14bcx)2. In this case
thenm andb are constant.

The scalar field solution is

w'l2bcdcVc5H0
2k22a2(p21)/pbcdcVc . ~60!

The derivativew8 is

w85wF2~p21!

p
1m1

Vc8

Vc
G ,

which is much smaller thanl22w in Eq. ~41! for realistic
values of p, m, and Vc . The same applies tow9, which
completes our derivation of Eq.~42!. For small wavelengths
w ~which here is proportional todrf /rf) is always much
smaller thandc ,db at the present time, unless, of course,bc
is exceedingly large. It is interesting to observe thatw could
outgrow the matter perturbations in the future in an acce
ated epoch, i.e., ifp.1 and if Vc does not vanish.

IV. SYNCHRONOUS GAUGE

Since most Boltzmann codes in CMB are implemen
via the synchronous gauge we give here the relevant e
tions in this gauge.

Generic fluid component@equation of statep5w(r)r]:

d852~w11!u2
1

2
~w11!h822~123w!~bw81b8w!

23w,rd~122xb!, ~61!
4-5
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u852F ~123w!~122bx!2w,rA~w!1
H8

H Gu
1

w1w,r

w11
l22d12b

3w21

w11
l22w. ~62!

Scalar field:

w91S 21
H8

H Dw81l22w1
1

2
h8x12m2y2f 2w

5( b i@123wi23wi ,r#V id i1( V i~123wi !
b i8

x
w.

~63!

Metric:

h852l22h13( d iV i16w8x26m f 1y2w,

h85
3

2
l2( ~wi11!V iu i13wx, ~64!
iv
th

10352
h952S 11
H8

H Dh822@12w8x16m f 1y2w#

23( ~113w13w,r!d iV i .

Again in view of CMB applications, it is useful to deta
the adiabatic initial conditions. The condition of zero entro
perturbations is

dS5
d i

11wi
2

d j

11wj
50, ~65!

dS85S d i

11wi
D 8

2S d j

11wj
D 8

50. ~66!

For the scalar field

df

11wf

5
w8f81wa2H 22V,f

f ,2
5

xw82wy2m f 1

x2
, ~67!

so that applying Eqs.~65!, ~66! to the scalar field and the
other components we obtain the initial conditions as
w52
x2~8y2m f 1dc12xh814xdc8!

4@x21y2m f 1l2~6x2bVc!#
, ~68!

w852
x@4x2dc2y2m f 1l2~224xdc18m f 1y2dc14bdcVc12xh814xdc8!#

4@x21y2m f 1l2~6x2bVc!#
. ~69!
ngle

f

of
In a radiation dominated era in whichVc→0 and on super
horizon scales (l@1), these become

w52
x~4y2m f 1dc1xh812xdc8!

12y2m f 1

, ~70!

w85
212xdc14m f 1y2dc1xh812xdc8

12
.

~71!

Insertingdc8 from Eq. ~61! and putting initiallyuc50, we
can further simplify

w52
x~y2m f 11bx2!

y2m f 1

dc , ~72!

w85
23x1m f 1y2

31bx
dc . ~73!

V. A MASSIVE DARK ENERGY FIELD

Here we take a digression to consider the two effect
masses of the dark energy field, previously neglected. In
e
is

section we assume the dark energy is coupled to a si
matter component, subscriptm, or, equivalently, that has a
universal coupling to all fields. Ifl22 is not much larger
thanm̂25m̂f

2 1m̂b
2 ~but still is larger than the coefficients o

F), Eq. ~42! in Fourier space becomes

w'Y~k!l2bVmdm , ~74!

where

Y~k!5
k2

k21a2m2
, ~75!

wherem5m̂H. If we substitute in Eq.~31! we see that the
effective potential is~neglecting the baryons!

F̂52
3

2
l2VmdmF11

4

3
b2Y~k!G . ~76!

Now, let us write down the density contrast for a particle
massM0 located at the origin in empty space
4-6
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Vmdm5
rM2rm

rcrit
5

k2M ~f!

3H2a
, ~77!

where

M ~f!5M0e2A2k2/3E bdf, ~78!

where we used Eq.~7!. It turns out then that the potentia
originated by a dark matter particle is

F̂52
3

2
Vmdml2F11

4

3
b2Y~k!G

524pGM~f!S 1

k2
1

4

3
b2

1

k21a2m2D 1

a
, ~79!

which, upon inverse Fourier transform

F̂~r !5
1

~2p!3
E eik•xF̂d3k ~80!

becomes the Yukawa potential

F̂~r !52
GM~f!

r S 11
4b2

3
e2mrD , ~81!

wherer5ax is the physical coordinate.
It is useful, in view of application toN-body simulations,

to write down the acceleration on particles explicitly. Taki
Eq. ~31! and using the definition of peculiar velocityvp
5adx/dt in terms of the velocity used in Eq.~20!

vp5Hv,

we can write the acceleration equation in ordinary timedt
5adt as

v̇p,i52~122bx!Hvp,i2
dF̂

dri
. ~82!

If we define

GY~r !5GF11
4b2

3
~11mr!e2mrG , ~83!

we obtain the force on a dark matter particle

dF̂

dri

5
GY~r !M ~f!

r 2
. ~84!

In Eq. ~82! the three effects of the coupling appear clear
the massM depends on the time evolution off; the gravi-
tational potential acquires the Yukawa correction; and
mass variation of the test particle induces an extra fricti
22bx.
10352
:
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It is straightforward to generalize to the acceleration o
test particle of types8 due by a distribution of several par
ticles of speciess at distancesr ss8 ~dropping thep subscript!:

v̇s852~122bs8x!Hvs82(
s

GYss8~r ss8!Ms~bs ,f!

r ss8
3

r ss8 ,

~85!

where

GYss8~r !5GF11
4bsbs8

3
~11mr!e2mrG . ~86!

In Ref. @10# these equations have been applied toN-body
simulations in the limit of constantb andm→0.

In practice, in any dark energy model one expects
mass scale to be much larger than the galaxy cluster s
'1 Mpc, in order to prevent clustering, sor !1/m for all
astrophysical scales. However, a nonvanishing massm can
have some interesting effects.

First, it is to be observed that the background dynam
depends on the potential and its first derivative only, wh
the mass depends on the second derivative. It is then pos
to build viable dark energy models that accelerate the exp
sion but whose mass scale 1/m is between a few Mpc and
H0

2153000 Mpc/h; in this case the perturbations of the sc
lar field would be directly observable through, e.g., we
lensing.

Second, while the massmf depends exclusively on th
potentialV(f), the coupling mass

mb
2[x21Vmbm8 H25A 6

k2
Vmb ,fH2 ~87!

depends on the matter contentVm . In a inhomogeneous
background, we can expect thatmb

2 will be proportional to
rm . This raises an interesting question, recently posed in
context ofa-varying models@25# and in the ‘‘chameleon’’
model of Ref.@43#: is it possible to have a scalar field with
large mass near a massive body such as the Earth and a
low one in space? This would open the possibility that sca
gravity escapes detection in Earth laboratories, where
Yukawa term would be exponentially suppressed if 1/m is on
the submillimetric scale, even ifb were of order unity~here
we neglect any possible upper bound from cosmology!. In
Ref. @43# it has been hypothesized that a model with a co
stantb does in fact contain a density-dependent mass but
calculations clearly show thatb85” 0 is a necessary condi
tion. This possibility will be discussed in another paper.

VI. SECOND ORDER EQUATIONS

Here we extend the previous calculations to second o
in the Newtonian regime and in the nonrelativistic limit. Th
will allow us to evaluate higher order moments of the gra
tational clustering. Higher order perturbation equations i
varying dark matter mass scenario and in scalar-tensor t
ries which may be reduced to particular cases of the pre
4-7
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model were studied in Ref.@38#.
Here for simplification we consider a single matter flu

with w50. In the nonrelativistic limit the quadrivelocityu
remains first order, with components

ua5
dxa

ds
'

dxa

Ag00dt
. ~88!

The general conservation equations at second order are
(v25v iv

i)

d81¹i~11d!v i53~11d!F822bw8~11d!16FF8

2v i¹i~C23F!2H2v2~122bx!

22b8wS 11d1
w8

x D2
w2

x S b92b8
f9

f8
D ,

~11d22C22F!Fv i81S 11
H8

H 22bxD v i G
52

11d

H 2
¹i~F22bw!12C

¹iC

H 2
2v j¹jv i

1v i~2F81C8!12b8
w

xH 2
¹iw, ~89!

where the second line of each equation contains the te
from the variation ofb(f). The scalar field equation is

Fw91S 21
H8

H Dw822y2m f 1CG ~122C!

12y2m2w~ f 21m f 3w!1w8~3F81C8!

2F8x~316F26C!2C8x~124C!

2~112F!
¹2

H 2
w1

1

H 2 ~¹iw!¹i~F2C!

5bVm@2C~122C!1d2H 2v2#

1
w

x
Vmb8~11dc!1

w2

2x2
VmS b92b8

f9

f8
D , ~90!

where f 3 is defined in Eq.~13!.
Let us now derive the Newtonian limit. We can use t

metric equations at first order, in particular the relationF
5C since, as before,F andw are of orderl2 ~with respect
to d). Again as before, we neglect the time derivatives ofw.
We obtain from Eq.~89!

d81¹i~11d!v i52v i¹iF2H2v2~122bx!,
10352
en

s

v i81S 11
H8

H 22bxD v i52
1

H 2
¹i~F22bw!

2
1

11d
v j¹jv i . ~91!

Furthermore, in the first equation we can neglect the te
H2v2(122bx) because of the nonrelativistic approximatio
and the term 2v i¹iF because bothv i and¹iF are of orderl
at first order. Finally, in the second equation we can appro
mate 11d'1 at the denominator in the last term, since
gives a third order correction. Therefore we are left with

d81¹i~11d!v i50, ~92!

v i81S 11
H8

H 22bxD v i52
1

H 2
¹i~F22bw!

2v j¹jv i . ~93!

Applying the same approximations for the scalar field
obtain

w91S 21
H8

H Dw822y2m f 1F22bVmF2
¹2

H 2
w24F8x

12y2m2f 2w12y2m3f 3w2

5bVmd1
w

x
Vmb8~11d!1

w2

2x2
VmS b92b8

f9

f8
D ,

~94!

which neglectingF and the time derivatives ofw reduces to
the nonlinear Klein-Gordon equation

¹2w2m2w2saw21sbwd52bVmdH 2, ~95!

where we defined the nonlinear correction coefficients

sa52y2m3f 3H 21
Vm

2x2 S b92b8
f9

f8
DH 2, ~96!

sb5x21Vmb8H 2. ~97!

If m andsa,b are negligible with respect to the length scalel
then we see that the nonlinear conservation equation
coupled dark energy coincide with the usual nonlinear Ne

tonian perturbation equations with an effective potentialF̂
and a correction in the Euler equation due to the time va
tion of the dark matter mass

d81¹i~11d!v i50, ~98!

v i81S 11
H8

H 22bxD v i1v j¹jv i52
1

H 2
¹iF̂, ~99!
4-8
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¹2F̂54pGmmrmd. ~100!

If saw2,sbwd are negligible butm2w is not then one should
use the Yukawa correction toGmm @in this case one should
also assume that the coefficients of the terms inF, F8 in Eq.
~95! are smaller thanm̂2]. As has been shown, Eqs.~98!–
~100! are also valid whenb is a function off.

VII. CONCLUSIONS

This paper is meant to set up the formalism for futu
work on nonlinear properties of dark energy, with an emp
sis on its coupling to matter. We found several results that
summarize here.

~a! We derived the general equations for the linear per
bation growth for a general dark energy potential and a g
eral species-dependent interaction with matter. This gene
izes previous work.

~b! We derived an analytical relation between the b
induced by a species-dependent coupling and the growth
ponent of the linear perturbations, as well as their value
n

L

ev

. J

-

.
.

rd

ys

-
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term of the fundamental parameters in the case of an ex
nential potential.

~c! We discussed the Yukawa correction to the gravi
tional potential due to dark energy interaction and we fou
that a density-dependent effective dark energy mass a
only if the coupling is nonconstant. The consequence of
effect on equivalence principle experiments will be discus
in another paper.

~d! We derived the second-order perturbation equati
in coupled dark energy and their Newtonian limit. W
showed that the coupling introduces three corrections to
standard Newtonian fluid equations, one proportional to
velocity and the others which can be absorbed in the gr
tational potential. These equations will be used in a sub
quent paper to derive the large scale skewness of cou
dark energy.
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