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First-order cosmological phase transitions in the radiation-dominated era
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We consider first-order phase transitions of the Universe in the radiation-dominated era. We argue that in
general the velocity of interfaces is nonrelativistic due to the interaction with the plasma and the release of
latent heat. We study the general evolution of such slow phase transitions, which comprise essentially a short
reheating stage and a longer phase equilibrium stage. We perform a completely analytical description of both
stages. Some rough approximations are needed for the first stage, due to the nontrivial relations between the
quantities that determine the variation of temperature with time. The second stage, instead, is considerably
simplified by the fact that it develops at a constant temperature, close to the critical one. Indeed, in this case the
equations can be solved exactly, including back reaction on the expansion of the Universe. This treatment also
applies to phase transitions mediated by impurities. We also investigate the relations between the different
parameters that govern the characteristics of the phase transition and its cosmological consequences, and
discuss the dependence of these parameters with the particle content of the theory.
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I. INTRODUCTION

It is well known that the Universe could have undergo
several phase transitions in the early stages of its hist
most of them associated with the spontaneous symm
breaking of some symmetry. Some examples are the qu
hadron phase transition at the QCD scale, the phase tra
tions associated to the electroweakSU(2)3U(1) symmetry
breaking or to grand unified theories, and the Peccei-Qu
phase transition, related to the axion field and the strongCP
problem. Cosmological phase transitions generically prod
cosmic relics, such as topological defects, magnetic fields
baryon number asymmetries, with potentially important c
mological consequences. The mechanisms for genera
these relics build on the dynamics of the phase transition

In a first-order phase transition the dynamics is essenti
determined by the nucleation and expansion of bubbles
zero temperature, when a true vacuum bubble nucleate
rapidly begins to expand with almost the velocity of light@1#.
On the contrary, at high temperature, the bubble expands
hot plasma, which is perturbed by the motion of the bub
walls. The plasma thus opposes a resistance to the expan
that depends on the wall velocity. As a consequence, bu
walls feel a friction force, which prevents them to acceler
indefinitely. Then, the velocity quickly reaches a stationa
value, determined by the viscosity of the plasma and
pressure difference between the low temperature phase
the supercooled one. These quantities depend on the m
and it is known that the friction can be large enough to p
vent the wall from acquiring relativistic velocities@2,3#. Fur-
thermore, the release of latent heat at the interfaces of
phase transition reheats the surrounding plasma up to a
perature that in most cases is close to the critical temp
ture. Consequently, the pressure difference that drives bu
expansion may decrease considerably, causing a dr
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slowdown of the phase transition@4,5#. Therefore, at the
radiation-dominated era bubble walls generically unde
nonrelativistic motion. Since the heat liberated at the int
faces is taken away by sound waves, the temperature ca
assumed to be homogeneous, which simplifies the analy

In order to have a first-order phase transition, the f
energy must allow the coexistence of two phases. Theref
we will assume that the free energy densityF depends on
some order parameter~usually a Higgs field! f(x). In a cer-
tain range of temperatures, the free energy bears two min
separated by a barrier; one of them atf50, which corre-
sponds to the symmetric phase, and the other at a non
valuefm(T), corresponding to the broken symmetry pha
The difference in free energy densityV(f,T) between some
valuef of the order parameter andf50, is generally given
by a finite-temperature effective potential. The free ene
difference between the two minima is thus given by

Fb2Fu5V~fm~T!,T![V~T!. ~1!

At the critical temperature the two minima are degenera
V(fm(Tc),Tc)50. Above the critical temperature the sym
metric phase is the stable one, while belowTc it becomes
metastable,fm being the absolute minimum. Finally, at som
temperatureT0,Tc , the barrier between the minima disa
pears, and the symmetric phase becomes unstable. At s
stage between the temperaturesTc and T0, bubbles of the
broken-symmetry phase will be formed in the sea of sy
metric phase. A bubble can be described as a configuratio
which the order parameter is nonvanishing inside a spher
region ~see e.g. Ref.@6#!. After being nucleated, a bubbl
will grow with a velocity that depends on the pressure d
ference at the interface,Dp52V(T), and on the viscosity of
the hot plasma in which it expands.

In this work we will be concerned with first-order phas
transitions in the radiation-dominated epoch. Our aim is
study the development of such phase transitions withi
completely analytical approach. Here we concentrate on
©2004 The American Physical Society21-1
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determination of the parameters that govern relic format
~e.g. number density of bubbles, bubble wall velocity, et!.
An analytic study of cosmological consequences will be
dressed in Ref.@7#, where the results of the present analy
will be used. In Sec. II we briefly review the influence
phase transition dynamics on the mechanisms for genera
cosmic remnants in first-order phase transitions.

In Sec. III we study a phase transition that complet
develops atT5Tc , with the two phases in equilibrium. Thi
is a good approximation in the case of inhomogeneous nu
ation in the presence of impurities. In the case of homo
neous nucleation of bubbles, this approximation correctly
scribes the evolution of the phase transition after some la
heat has been released. An interesting feature of phase
librium is that it is simple enough to solve analytically, in
cluding back reaction on the expansion of the Universe. T
is due to the fact that temperature is constant all the w
through the phase transition. We thus can obtain the frac
of volume of the Universe that is occupied by the lo
temperature phase as a function of time, with no need of
numerical calculations.

Section IV is devoted to the analysis of the phase tra
tion in the case of homogeneous nucleation. The main
ference with the previous case is the initial stage of sup
cooling and quick reheating back to the critical temperatu
Section V contains an analytical study of the phase transi
dynamics. In Secs. VI and VII we analyze the relations
tween the different physical parameters involved in the
namics of the phase transition, leaving some technical
cussions to the Appendixes. Our conclusions are summar
in Sec. VIII.

II. COSMOLOGICAL CONSEQUENCES OF PHASE
TRANSITIONS

Several cosmological objects may be formed in a ph
transition of the Universe. Their abundance and characte
tics depend on details of the development of the phase t
sition. Due to the complexity of the mechanisms by whi
these objects are created and the difficulty of describing
phase transition, several details of the dynamics~e.g. the
variation of the nucleation rate or the wall velocity durin
the transition! are often disregarded for the sake of simpl
ity. An analytical study of the phase transition is thus imp
tant since analytical expressions will help taking into acco
the dynamics in a more rigorous way. In this section
review how phase transition dynamics affects the cosmol
cal remnants.

Electroweak baryogenesis.During the last two decade
there has been much interest in the possibility that the e
troweak phase transition could be the framework for the g
eration of the baryon number asymmetry of the Unive
~BAU!. A first-order electroweak phase transition provid
the three Sakharov’s conditions for the generation of a BA
although physics beyond the minimal standard model~SM!
is mandatory in order to obtain a quantitatively satisfact
result~for reviews on electroweak baryogenesis see Ref.@8#!.
Due toCP violating interactions of particles with the bubb
walls, an asymmetry between left handed quarks and t
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antiparticles is generated in front of the walls of expand
bubbles. This asymmetry biases the baryon number viola
sphaleron processes in the symmetric phase. The resu
baryon asymmetry is caught by the walls and enter
bubbles, where baryon number violating processes are tu
off.

It is important that the sphaleron processes be suppre
in the broken symmetry phase, in order to avoid the wash
of the generated BAU when equilibrium is established af
the phase transition. This requirement imposes a condi
on the value of the Higgs field at the temperature of
transition@9#, fm(Tt)/Tt*1. Sincefm is the order param-
eter, this is a condition on the strength of the first-order ph
transition.

The resulting BAU depends also on the bubble wall v
locity. On one hand, if the velocity is too large, the lef
handed density perturbation will pass so quickly through
given point in space that sphaleron processes will not h
enough time to produce baryons; thus the resulting BAU w
be small. On the other hand, for very small velocities therm
equilibrium will be restored and the baryon asymmetry w
be erased by sphalerons; thus the BAU will be small aga
As a consequence, the generated baryon number will ha
peak at a given wall velocity, which is of order 1022 @10–
12#.

Both values offm andvw depend onT and vary during
the phase transition. The dependence of the wall velocit
more critical, since reheating may cause it to descend
orders of magnitude before the transition completes. Bar
genesis may be either enhanced or suppressed by this e
@5,13#, depending on which side of the peak the initial v
locity lies.

Baryon inhomogeneities.A general feature of cosmologi
cal phase transitions is the difference of particle masses
tween the high- and low-temperature phases. These mas
ferences give rise to different number densities in the t
phases. At the QCD phase transition, for instance, bary
are much heavier in the hadron phase than in the deconfi
quark phase. As the hadron phase expands, baryons
pushed into the quark phase region, leading to locali
clumps of high density surrounded by large voids of lo
baryon density@14–16#. An important consequence is tha
large amplitude, small scale density fluctuations may surv
until the nucleosynthesis epoch, affecting the standard
nario of big bang nucleosynthesis. Therefore, inhomo
neous nucleosynthesis may put constraints on the qu
hadron phase transition~see e.g. Ref.@17#!. Moreover, if the
quark phase reaches sufficiently high density, its press
may balance that of the hadron phase. The quark ma
trapped in small regions of space forms quark plasma obj
that may survive until the present epoch@14,18#.

Baryon inhomogeneities may also arise at the electrow
phase transition, since the amount of baryons produ
through electroweak baryogenesis depends drastically on
wall velocity, and the latter has a considerable variation d
ing the phase transition@5#. The geometry of the electrowea
inhomogeneities is in general quite different from the QC
case. If the BAU peaks at a certain wall velocity, then t
high density regions will form spherical walls, whose radi
1-2
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depends on the moment in the bubble evolution at which
peak velocity is attained. Furthermore, baryon number d
sities with the wrong sign may arise in some regions
space, depending on the baryogenesis scenario@12,13,19#.
This gives rise to the interesting possibility of nucleosynth
sis in the presence of antibaryons~see for example Ref
@20#!.

However, due to baryon diffusion and ‘‘neutrino infla
tion,’’ baryon inhomogeneities generated at the electrow
phase transition hardly survive until the nucleosynthesis t
~see e.g. Refs.@5,21#!. Nevertheless, they may survive un
the QCD scale. In that case, electroweak scale inhomog
ities can act as impurities for the quark-hadron phase tra
tion ~see the next section!.

In summary, we can say that the amplitude and scale
baryon inhomogeneities generically depend on the m
nucleation distance and on the variation of the velocity
bubble expansion.

Topological defects and magnetic fields.If a global U(1)
symmetry is spontaneously broken at a first-order phase t
sition, the phase angleu of the Higgs field within each nucle
ated bubble is essentially constant, but phases in diffe
bubbles are uncorrelated. When bubbles collide, the disc
tinuity in the Higgs phase is smoothed out to become a c
tinuous variation. The so called ‘‘geodesic rule’’ states th
~for energetic reasons! the shortest path between the tw
phases is chosen@23#. When three bubbles meet, a vortex~in
two spatial dimensions! or a string~in three dimensions! may
be trapped between them. This mechanism is obviously g
eralized to higher symmetry groups and other kinds of to
logical defects. Ignoring the dynamics of phase equilibrati
it is easy to see that the number density of defects is pro
tional to the number density of bubbles. However, the fi
number of defects will depend strongly on the velocity
bubble expansion@24#. If the latter is much less than th
velocity of light, then phase equilibration between tw
bubbles will have probably completed before they encoun
a third bubble, thus reducing the chances of trapping a str

The above picture is in fact a rough simplification of t
defect-formation problem. One complication is due to dis
pation, since the Higgs field is coupled to the other fields
the thermal bath. Another complication arises when con
ering a gauge symmetry, and is caused by the fact that
phase of the Higgs field is not a gauge-invariant quantity
it is convenient to define a gauge-invariant phase differe
between two bubbles@24#. The phase difference is thu
linked to the gauge field. In this case, dissipation can
taken into account by introducing the conductivity of t
plasma. Then one can model the collision of three bubb
and calculate the evolution of the phase difference and ga
field. One can say that a vortex is formed whenever a qu
tum of magnetic flux is trapped in the unbroken-symme
region between the three bubbles.

From the above it is clear that the formation of local vo
tices is associated with the generation of magnetic fie
Therefore bubble collision constitutes also a mechanism
generating the cosmic magnetic fields~e.g., see Ref.@25#!.
Of course, the magnetic field that is formed in this way c
responds to a spontaneously broken symmetry which ca
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be the electromagneticU(1)em. Nevertheless, this mecha
nism can take place at the electroweak phase transit
where unstable cosmic strings1 and hypermagnetic fields
may be formed. The latter are subsequently converted
U(1)em magnetic fields. It is interesting to note that the pre
ence of magnetic fields may affect the dynamics of the e
troweak phase transition~see e.g. Ref.@27#!.

Calculating the magnitude of the magnetic fields and
density of defects that are left at the end of the phase tra
tion involves the passage from three-bubble collision sim
lations to the computation of the full phase transition. E
dently, this is a difficult task. Although some simulation
have been made~e.g. Ref.@28#!, several simplifications are
generally required, which include forgetting about variatio
in the nucleation rate and the velocity of expansion
bubbles during the transition. An analytical investigation
phase transition dynamics may therefore clarify the pict
and provide useful tools for the calculation of defect form
tion and magnetic field generation.

III. PHASE EQUILIBRIUM

We begin by considering the limiting case in which th
first-order phase transition is as slowest as possible, nam
that of coexistence of the high- and low-temperature pha
at the critical temperatureTc . Such a cosmic separation o
phases has been studied for the QCD phase trans
@14,16,29,30#. At the critical temperature there is no pressu
difference between phases at the bubble walls, so the bu
expansion takes place almost in equilibrium. Assume aT
5Tc there are already regions with low-temperature pha
As the Universe expands, the fraction of space occupied
these regions increases, as the high-temperature phase
verts to low-temperature phase. The loss of energy due to
expansion of the Universe is thus compensated by the la
heat released at the interfaces, and the temperature rem
constant. In this scenario there is no supercooling.

Since atTc the nucleation rate vanishes, such a first-ord
phase transition is only possible in the presence of impuri
that induce the formation of bubbles. In this case inhomo
neous nucleation theory applies. In a phase transition m
ated by impurities there will still be some supercoolin
which we neglect in this section for simplicity. The role o
impurities in the early Universe could be played for instan
by topological @31,32# or nontopological solitons@33–35#.
These may exist in the high-temperature phase, contain
the low-temperature phase in their core. In this case th
configurations become unstable or metastable below
critical temperature. When the system cools belowTc these
objects begin to expand and convert the Universe into
true vacuum.

Another example of inhomogeneous nucleation is the c
of the QCD phase transition in the presence of baryon nu
ber inhomogeneities@36#. These may arise as a natural co
sequence of electroweak baryogenesis@5#, and can survive
until the QCD scale@37#. Since the critical temperature i

1See for example Ref.@26#.
1-3
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different in regions with different chemical potential@38,39#,
bubbles will nucleate first in those regions with a higherTc
@22#. If such regions are relatively small, and if they achie
the necessary amount of supercooling while the surround
background reaches the critical temperature, then the ba
inhomogeneities operate as impurities for inhomogene
nucleation.

Even if the phase transition proceeds by homogene
nucleation of bubbles, phase equilibrium will describe qu
well a good part of the transition, whenever the latent hea
at least comparable to the energy density difference betw
the critical temperature and that at which nucleation eff
tively begins. In that case, the energy released will reheat
plasma back to a temperature very close toTc . At that mo-
ment bubble nucleation virtually stops and the two pha
remain close to equilibrium until the full latent heat of th
transition is eliminated. We will analyze this case in the n
section.

The customary equation for the adiabatic expansion,ṙ5
23H(r1p), tells us how the Universe takes energy fro
the hot plasma. Herer is the energy density,p is the pres-
sure, andH is the expansion rate. It can be equivalen
written in terms of entropy density,ṡ523Hs, which is just
the statement of entropy conservation,S5const. It will be
convenient to use it in the forms}a23. At the beginning of
the phase transition the whole Universe is in the symme
phase, while at the end of the transition it is filled with t
broken symmetry one, so we can write

s5su~Tc!ai
3/a35sb~Tc!af

3/a3, ~2!

wheresu(b) is the entropy density of the unbroken~broken!
symmetry phase,a is the cosmic scale factor, andai ( f )
[a(t i ( f )) its value at the beginning~end! of the transition.
We assume that, since the phase transition occurs
slowly, the latent heat released at the interfaces is quic
distributed throughout space and the temperature is hom
neous. We also assume that pressure and temperature re
constant during the phase transition. Phase coexistenceT
5Tc means that there are regions of space with differ
equations of state. Thus the entropy density has diffe
constant valuessb(Tc) and su(Tc) inside and outside the
bubbles of broken symmetry phase respectively. The quan
s in Eq. ~2! is the average entropy density of the who
system. The entropy in a comoving volumeVU5Vb1Vu is
the sum of two contributions,S5sbVb1suVu . Thus,

s5su1~sb2su! f b , ~3!

wheref b is the fraction of space that is already in the broke
symmetry phase. The entropy, energy and pressure are
rived from the free energy. AtT5Tc the pressurepc is the
same in the two phases,Dp52V(Tc)50. The latent heat of
the phase transition is

L5ru2rb5Tc~su2sb!5TcV8~Tc!. ~4!

From Eqs.~2! and ~3!, and using Eq.~4!, we obtain the
dependence off b on the scale factor
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Tcsu

L S 12
ai

3

a3D . ~5!

The dependence of the scale factor on time is given by
Friedman equation

H2[S ȧ

a
D 2

5
8pG

3
r, ~6!

where for simplicity we have neglected the termk/a2. At
constant temperatureTc and pressurepc , the energy density
is given by

r5Tcs2pc5Tcsuai
3/a32pc , ~7!

where we have used Eq.~2! in the last equality. Insertingr in
Eq. ~6! and writingH5 1

3 a23da3/dt we can easily solve the
equation fora3(t),

S a

ai
D 3

5
Tcsu

pc
sin2@v~ t2t i !1d#, ~8!

wherev5A6pGpc and the constant phase is determined
the initial conditiona(t i)5ai , d5arcsinApc /Tcsu.

During the phase transition we have two coexisti
phases in the radiation dominated era, and we may cons
different possibilities for the equations of state. The simpl
one is to assume that the Universe is radiation domina
before the phase transition, i.e.,

pu5ru/3, ~9!

with

ru~T!5p2g* T4/30, ~10!

whereg* is the number of effectively massless species.2 In
fact, this is not a realistic situation. In the symmetric pha
the Higgs vacuum expectation value~VEV! does not corre-
spond to the true vacuum, so we should add a constant
ergy density to account for the energy of this state and h
a negligible cosmological constant after the phase transit
It is interesting, however, to consider first this simpler ca
Hence, atT5Tc Eqs. ~9! and ~10! give pc5ru/3 andTcsu

54ru/3, soTcsu /pc54, d5p/6, andv5A3Hi /2.
Before the phase transitionH5A8pGru/3, with ru}T4

}a24, so Eq.~6! gives the familiar relationH5(2t)21. The
temperature descends liket21/2, and atT5Tc the phase tran-
sition begins, since we are assuming that no supercoo
occurs. Hence we can use the relationHi51/2t i as an initial
condition. The scale factor thus takes the very simple for

S a

ai
D 3

54 sin2SA3

4

t2t i

t i
1

p

6 D , ~11!

2In generalg* depends onT. We will assume for simplicity that
g* is constant during the phase transition. We discuss the effec
a variation ofg* in Sec. VI.
1-4
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which does not depend on any parameter, i.e., during
transition the expansion of the Universe seems to be affe
always in the same way, regardless the thermodynamica
rameters of the theory. However, thermodynamics affects
duration of the phase transition and the subsequent evolu
of the Universe, as we shall see immediately.

In the above equations it is apparent that the dynamic
the phase transition depends on thermodynamics o
through the ratio

r[
su2sb

su
5

L

Tcsu
. ~12!

The fraction of volume is thusf b5r 21@12(a/ai)
23#, with

a/ai given by Eq.~11!. The phase transition concludes wh
f b51 @equivalently@29#, whens in Eq. ~2! equalssb], so its
duration can be determined easily. Making use of some tr
nometric algebra,

t f2t i

t i
5

4

A3
arcsin

A3~12A124r /3!

4A12r
. ~13!

Notice that Eq.~13! fails to give an answer forr .3/4. The
problem is that the scale factor given by Eq.~11! reaches a
maximum when the argument of the sinus isp/2. If r is
small enough, that never occurs betweent i and t f . For r
53/4 it occurs att5t f , and for largerr it happens beforet f ,
which means that the Universe begins to collapse before
phase transition has completed. This is not surprising.
deed, if the energy density of the unbroken phase is given
Eq. ~10!, then the energy density of the broken symme
phase isrb(Tc)5p2g* T4/302L. So, there is a negativ
cosmological constant, which will begin to dominate soon
or later. If L,ru ~i.e., r ,3/4), this will not happen during
the phase transition, but below the critical temperature
Universe will collapse.

In Fig. 1 we have plotted the expansion rate of the U
verse from the beginning of the phase transition to the m
ment at whichH becomes zero. The evolution ofH without
a phase transition is represented with a dashed line~long
dashes!. We have chosen a relatively large valuer 50.5 in
order to get a visible departure during the phase transit

FIG. 1. The expansion rate of the Universe for a phase trans
at constantT5Tc , in the caseru5p2g* T4/30 ~negative cosmo-
logical constant!.
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which occurs betweent i and t f ~solid line!. After the phase
transition~short dashes! the expansion slows down, and th
rate eventually vanishes at a timet0.

To consider a more realistic situation we must add a c
stant term;L to the initial energy density, so that we do n
have a cosmological constant of the order of the scale of
phase transition. We take for simplicity

ru~T!5p2g* T4/301L. ~14!

It will be more convenient to re-express the general solut
~8! in terms of the conditions at t5t f , (a/af)

3

5(Tcsb /pc)sin2@v(t2tf)1d8#, with d85arcsinApc /Tcsb.
From Eq. ~14! it follows that rb(Tc)5p2g* Tc

4/30, Tcsu

54rb/3, Tcsb5Tcsu2L, and pc5rb/32L. Therefore we
can write

S a

af
D 3

5
424r

124r
sin2FA3A124r

4

t2t f

t̃
1d8G ~15!

with

d85arcsinA124r

424r
, ~16!

where we have defined the time scalet̃ 5(2H f)
21. Before

the phase transition,r is given by Eq. ~14!, so a
}sinh1/2(A32pGL/3t). This has the forma;t1/2 for t
!(32pGL/3)21/2, and departs from the radiation
domination behavior unlessp2g* T4/30@L.

The fraction of volume in the broken symmetry phase

f b5
1

r F12~12r !S a

af
D 23G , ~17!

and the duration of the phase transition is given by

t f2t i

t̃
5

4/A3

A124r
arcsin

A124r ~A114r /321!

~4/A3!A12r
. ~18!

It can be easily checked that, for smallr, this solution coin-
cides with the previous one. Furthermore, forr→0, the du-
ration of the phase transition vanishes, as expected. At
sight, there seems to be a problem ifL>rb/3 ~i.e., for r
>1/4). However, all the previous expressions are still va
and real in the range 1/4<r ,1. They can be written in the
form

S a

af
D 3

5
424r

4r 21
sinh2FA3A4r 21

4

t2t f

t̃
1d8G , ~19!

with

d85arcsinhA124r

424r
, ~20!

and

n
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t f2t i

t̃
5

4/A3

A4r 21
arcsinh

A4r 21~A114r /321!

~4/A3!A12r
. ~21!

For r→1 the duration of the phase transition becomes i
nite because the constant energy densityL is comparable to
the energy density of the radiation, playing the role o
cosmological constant that starts dominating atT;Tc .
Therefore the expansion of the Universe becomes too
and the phase transition never ends. One expects that s
of our initial assumptions will break down near this lim
For instance, the temperature and expansion rate will no
homogeneous, due to the significant energy density con
between the two phases and the rapid expansion of the
verse.

In Fig. 2 we plot the expansion rate as a function of tim
for r 50.8. We see that without the phase transition the U
verse would enter exponential expansion (H→const). After
the phase transition the evolution returns to the radiati
dominated relationH51/2t. By the end of the transition the
departure of the expansion rate from its previous evolut
becomes appreciable, because in this caset f2t i; t̃;t i . If
the duration of the phase transition is short in compari
with the age of the Universe, the back reaction onH can be
disregarded. According to Eq.~18!, this happens when th
energy released is small in comparison to the energy den
of the plasma~small r ).

IV. SUPERCOOLING

In the case of a phase transition mediated by homo
neous nucleation, bubbles start to nucleate at a tempera
T,Tc , when the gain in free energy inside a bubble
enough to compensate the cost of gradient energy at the
face. We have seen in the previous section that, eve
bubbles begin to grow atT5Tc , the phase transition ma
not come to an end if the parameterr is close to 1. The case
of homogeneous nucleation is even worse due to the a
tional supercooling. As we shall see, a large latent heat
general feature of strongly first-order phase transitions
this case there may be extreme supercooling from which
Universe may never recover@32,40#. Considerable super
cooling and latent heat release may occur for instance in

FIG. 2. The expansion rate of the Universe for a phase trans
at constantT5Tc , in the caseru5p2g* T4/301L.
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quark-hadron phase transition@41#. Notice that in the case o
large supercooling there will be an important departure fr
equilibrium, at least at the beginning of the phase transiti
For the rest of the paper we will be mostly interested in
caser !1.

The nucleation and growth of bubbles in a first ord
phase transition has been extensively studied in the con
of the QCD @4,41# and electroweak@4,5,30,42–44# phase
transitions. After a bubble is formed, it grows due to t
pressure difference at its surface. There is a very short ac
eration stage until the wall reaches a terminal velocity due
the friction of the plasma. It can be seen that this init
period in the history of the bubble expansion is negligib
We will assume again that the system remains close to e
librium, in accordance with the assumption that the veloc
of the bubble wall is small. If the wall velocity is less tha
the speed of sound in the relativistic plasma,vw,cs

5A1/3, the wall propagates as a deflagration front. T
means that a shock front precedes the wall, with a velo
vsh.cs . For vw!cs , the latent heat is transmitted awa
from the wall and quickly distributed throughout space. W
can take into account this effect by considering a homo
neous reheating of the plasma during the expansion
bubbles@5,13#. ~For detailed treatments of hydrodynamics
different wall velocities see, e.g., Refs.@4,30#.!

A. Bubble nucleation

The thermal tunnelling probability for bubble nucleatio
per unit volume and time is@45,46#

G.A~T!e2S3 /T. ~22!

The prefactor involves a ratio of determinants associa
with the quantum fluctuations around the instanton. In g
eral it must be evaluated numerically. It is usually assum
to be roughly of orderT4, since the nucleation rate is dom
nated by the exponential in Eq.~22!. We will consequently
assumeA(T).Tc

4 . S3(T) is the three-dimensional instanto
action, which coincides with the free energy of a critic
bubble~i.e., a bubble in unstable equilibrium between expa
sion and contraction!,

S354pE
0

`

r 2drF1

2 S df

dr D 2

1V~f~r !,T!G . ~23!

The configuration of the nucleated bubble may be o
tained by extremizing this action. Hence it obeys the eq
tion

d2f

dr2
1

2

r

df

dr
5V8~f!. ~24!

For temperatures very close toTc , the width of the bubble
wall at the moment of formation is much smaller than
radius, and a thin wall approximation can be used@1,46#, in
which S3 is expressed as a function of the critical bubb
radius Rc , the free energy differenceV between the two
minima of the potential, and the bubble wall surface ene

n

1-6
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s. The radiusRc can thus be obtained by finding the max
mum ofS3. A similar approximation can be used to estima
the free energy and radius of a thick-walled bubble wh
temperature is not so close toTc @43#. However, as pointed
out in Ref.@44#, due to the exponential dependence, the t
nelling probability may be strongly overestimated by usi
approximations toS3, leading to a sooner completion of th
phase transition.3 In Ref. @48#, different approaches~i.e., thin
wall approximation, one- and two-loop perturbative es
mates, etc.! have been compared to lattice results~which
include calculation of the prefactor! for the case of the elec
troweak phase transition in the minimal standard mod
There, it was found that the different approximations ma
errors that range from 20% to a factor of 2. Since we do
intend to do numerical calculations in the present work,
will use the thin wall approximation. This approximatio
may be reasonable or not, depending on the amount of
percooling~see the next section!.

B. Phase transition dynamics

In the previous section we assumed constant tempera
and used Eqs.~2! and~3! to obtain the fraction of volumef b
in terms of the scale factora. Then the Friedman equatio
determineda(t). In the present case the temperature is
constant, so we need an extra equation to solve for the t
quantitiesf b , a andT. Such an equation arises by consid
ing the nucleation and growth of bubbles@32#,

f b~ t !512expH 2
4p

3 E
t i

tFa~ t8!

a~ t ! G3

G~T8!R~ t8,t !3dt8J ,

~25!

whereT8 is the temperature att5t8, t i is the time at which
the Universe reaches the critical temperature,

t i.jM P /Tc
2 , ~26!

wherej5A90/32p3g* , andR(t8,t) is the radius of a bubble
that nucleated at timet8 and expanded until the timet,

R~ t8,t !5Rc~T8!
a~ t !

a~ t8!
1E

t8

t

vw~T9!
a~ t !

a~ t9!
dt9. ~27!

The factors ofa in Eqs.~25! and ~27! take into account the
fact that the number density of nucleated bubbles is dilu
and the radius of a bubble enlarged, due to the expansio
the Universe fromt8 to t ~see e.g. Ref.@49#!. We can assume
that this effect is negligible if the duration of the phase tra
sition is small in comparison with the age of the Univers
As we have seen in the previous section, this is true w
L/rb!1, which is the case we will consider.~This assump-

3In many cases the phase transition occurs in a tiny range
temperature aboutTc , so it is a good approximation to replac
almost every quantity by its value atT.Tc . The important excep-
tion are quantities such asS3, that depend directly on the fre
energy differenceV(f,T), which varies drastically withT at the
critical temperature@47#.
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tion will not hold, in principle, for the QCD phase trans
tion.! The wall velocityvw is determined by the equilibrium
between the pressure differenceV(T) and the friction force
exerted by the plasma. The latter is proportional to the w
velocity. The constant of proportionality is the friction coe
ficient h ~see Sec. VI!, so

vw52V~T!/h. ~28!

The exponent in Eq.~25! is minus the fraction of volume
occupied by bubbles that nucleated betweent i andt, if we do
not take into account overlapping of bubbles. At the beg
ning of nucleation the formula f b(t)
.(4p/3)*G(T8)R(t8,t)3dt8 is correct.

Using again Eqs.~2! and ~3!, we obtain the analogous o
Eq. ~5!,

f b5
1

su~T!2sb~T! S su~T!2su~Tc!
ai

3

a3D , ~29!

but since we already have an equation forf b , namely, Eq.
~25!, we use Eq.~29! to expressT in terms of f b anda,

T35
V8~T!

2p2g* /45
f b1

Tc
3ai

3

a3
. ~30!

Equation~30! has come across within an approach that d
fers from previous works, so it is worthwhile spending a fe
words discussing its physical meaning. We may follow f
instance Ref.@5#, and use energy~non!conservation in the
following way. On one hand, we may write the total ener
in a volume VU5Vu1Vb as E5@ru1Dr f b#VU5rVU ,
where Dr5rb2ru . If the Universe were not expanding
energy conservation during the phase transition would g

ṙ5 ṙu1Dṙ f b1Dr ḟ b50. ~31!

This gives the rateṙu at which the plasma takes energy fro
the change of phase. On the other hand, when it is not
dergoing a phase transition, the Universe takes energy f
the plasma at a rate

ṙu5 ṙ524ruH. ~32!

If we join the two equations, we obtain the total rate
change of energy as

ṙu52Dṙ f b2Dr ḟ b24ruH, ~33!

from where we get an equation forṪ. However, if the phase
transition and the expansion of the Universe are taken
account at the same time, additional terms appear bot
Eqs.~31! and~32!. On one hand, there is a term of the for
rV̇U in Ė, which produces a new term23Hr. This just
accounts for energy dilution. On the other hand, the exp
sion of the Universe takes energy not only from radiatio
since it is not the only component in the equation of sta
Bearing in mind the two coexisting phases during the ph

of
1-7
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ARIEL MÉGEVAND PHYSICAL REVIEW D 69, 103521 ~2004!
transition, the rate at which energy conservation is violate
given bydE52pudVu2pbdVb . Using this to obtainṙ, we
finally find

ṙu52Dṙ f b2Dr ḟ b23H~ru1pu1Dr f b1Dp fb!2Dp ḟb ,
~34!

whereDp5pb2pu . Sincer1p5Ts, it can be seen that th
first terms of this equation reproduce Eq.~33!, but there are
additional terms. Usings5dp/dT and rearranging Eq.~34!,
we see that it is just the equation for entropy conservatio

ṡu1D ṡf b1Ds ḟb523H~su1Ds fb!, ~35!

from which we may re-obtain the result~30!. The discrepan-
cies between Eq.~33! and Eq.~34! will not be important as
long as the latent heatL is not significant andT remains
close toTc . Indeed, we can neglect the last two terms ins
the parenthesis in Eq.~34!, provided thatDr!r. The last
term in Eq. ~34! is responsible for the appearance of t
entropy differenceDs52V8(T) as the factor ofḟ b in Eq.
~35!, instead of the energy differenceDr5V(T)2TV8(T).
Since V(Tc)50, the two quantities are related byDr
.TDs for T.Tc . Therefore, Eq.~33! gives a good approxi-
mation in the caser !1. Still, the fact that in Eq.~30! the
temperature is already integrated may constitute an ad
tage for analytical calculations.

Finally, the evolution of the scale factor is given by th
Friedman equation,

H25
8pG

3
@ru~T!1Dr f b#. ~36!

If Dr!r, then one can use the customary formulaH}T2 for
the expansion rate. In fact, the variation ofru is of the same
order ofDr, so if we neglectDr, to be consistent we shoul
also setH5const}Tc

2 in this approximation. Again, this is
reasonable if the duration of the phase transition is sh
enough.

In each particular model, Eqs.~25!, ~30!, and~36! can be
used to calculate numerically the evolution of the phase tr
sition. In this paper, though, we will make analytical es
mates of the parameters that are relevant for the cosmo
cal consequences, such as the temperature and wall vel
in the different stages of the transition.

C. Bubble coalescence

When bubbles occupy more than 30% of space, they m
and percolate. This occurs when bubbles have a charact
tic radiusR0;(0.3/nb)1/3, wherenb is the number density o
bubbles. Bubble coalescence provides a different mechan
of bubble growth, in which the driving force is surface te
sion instead of pressure difference. When bubbles collide
percolate, they arrange themselves into a system of fe
larger bubbles in order to minimize the surface area. We
estimate the characteristic time of this process as follo
@14#. Assume that when two spherical bubbles of radiusR
meet, they form a single bubble of radius 21/3R. In this pro-
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cess, a mass of fluidm;rR3 is moved a distance of orderR.
If this is done in a timet, the kinetic energy involved in the
process isK;m(R/t)2. This energy is supplied by the su
face of the bubbles. The surface energy released in the
cess isDE;sR2, so this occurs in a timet;(rR3/s)1/2.

Once bubble coalescence begins, it will be the fas
mechanism of bubble growth if the ratet21 is larger than the
rate vw /R given by the wall velocity~28!. Therefore this
process will dominate until bubbles reach a characteri
sizeR1;s/vw

2 r. If R1,R0, then it never dominates. Othe
wise, during the period in which the radius varies fromR0 to
R1 bubble coalescence is the fastest process and mus
taken into account.

The process of bubble coalescence may end in two dif
ent ways. Ifvw is large enough, the radiusR1 is very close to
R0, and after a short period bubbles continue to grow w
velocity vw . If, on the contrary,vw is very small, then coa-
lescence dominates for a larger period, until the lo
temperature phase occupies more than 50% of the total
ume. At this moment the regions of high-temperature ph
detach into isolated bubbles and the process stops. The i
face velocity is again determined by pressure difference, f
tion, and latent heat release, so these bubbles shrink
velocity vw . This occurs at a bubble radiusR2
;(0.5/nb)1/3. Notice that, although this expression is simil
to that forR0, in factR2 may be very different fromR0 since
nb may decrease significantly during the process due to
expansion of the Universe.

Finally, when bubbles of the high temperature phase
so small that surface energy becomes dominant over vol
energy, the shrinking is accelerated until the symmet
phase bubbles disappear or, eventually, until a topolog
defect is formed.

V. BUBBLE NUMBER AND INTERFACE VELOCITY

In the case of homogeneous nucleation, the Unive
cools down to a temperatureTN,Tc before bubble nucle-
ation becomes appreciable, so the phase transition effecti
starts at a timetN.t i . Then, the phase transition proceeds
two main steps. At the beginning bubbles nucleate with a r
G(TN), and expand with a velocity given by the frictio
coefficient h and the pressure differenceV(TN). After a
short time the energy released by the change of phase re
the Universe up to a temperatureTr close toTc . Then, a
longer period begins, in which the two phases are close
equilibrium. How long is this period, and how close isTr to
Tc , depends on the latent heat. The free energy differenc
this stage isV(Tr).0, so the velocity of bubble expansio
decreases and the bubble nucleation rate becomes extre
suppressed. Therefore, this second stage may be very si
to the inhomogeneous nucleation phase transition discu
in Sec. III.

In order to avoid numerical calculations, we will nee
some approximations for the fraction of volumef b , the tem-
peratureT, and the expansion rate of the UniverseH @formu-
las ~25!, ~30!, and~36!#. We notice that the latter cannot b
affected by the phase transition until the energy released
1-8
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comes appreciable. Furthermore, when this occurs,
plasma has reheated up toTr.Tc , and enters the phase equ
librium stage. We have seen in Sec. III thatH is not modified
significantly if the parameterr defined in Eq.~12! is small.
So, we do not need to consider back reaction on the s
factor and we will assume that the evolution of the Unive
does not depart from the standard relationsH.1/2t, a
}t1/2. We will also need an approximation for the nucleati
rate and free energy difference.

A. Thin wall approximation and linearization of V

If the width of the wall is much less than the radius of t
bubble, we can neglect the second term in Eq.~24! to obtain
the wall profile ~this approximation is exact at the critica
temperature, at whichRc→`, and gives the usual kink pro
file!. If we then multiply bydf/dr and integrate using the
boundary conditionsdf/dr50 and V50 outside the
bubble, we find that

1

2 S df

dr D 2

5V~f!, ~37!

so, df/dr52A2V since at the wallf falls from fm to 0.
Inserting this in Eq.~23! we obtain the free energy of th
critical bubble in the thin wall approximation,

S35
4p

3
Rc

3V~T!14pRc
2s~T!, ~38!

where the free energy differenceV(T) is defined in Eq.~1!,
ands(T) is the surface tension of the bubble wall,

s5E S df

dr D 2

dr5E
0

fmA2Vdf. ~39!

Maximizing with respect toRc we get the values of the criti
cal radius and action,

Rc522s/V,

S3516ps3/3V2.

Sinces does not change significantly during the phase tr
sition, it can be approximated bys(Tc).

Since the thin wall approximation is valid whenT does
not depart significantly fromTc , we can also make a linea
approximation for the free energy difference,

V~T!.L~T2Tc!/Tc . ~40!

So, the exponent in the nucleation rate~22! becomes

S3~T!

T
.

16ps3Tc

3L2~Tc2T!2
, ~41!

and the critical radius is

Rc.2sTc /L~Tc2T!. ~42!
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With the linear approximation~40!, the wall velocity is given
by

vw5L~Tc2T!/hTc . ~43!

B. First stage: Nucleation and reheating

Neglecting the effects of latent heat, the phase transi
may be assumed to occur roughly att5tN , since it goes on
for a very short intervaldt!tN @47#. With the inclusion of
latent heat the phase transition evolves during a longer
riod, that begins attN . In this case, we expect that the fir
part of the evolution, in which the Universe is reheated up
a temperatureTr , has a time scale of the same order of t
time intervaldt of the phase transition without latent hea
This is confirmed by numerical calculations@13#. The nucle-
ation rateG vanishes atT5Tc , but it changes very quickly
with temperature and becomes of orderT4 at T5T0, where
the barrier between the two minima of the free energy d
appears. This is an extremely large rate, so it is imposs
that the Universe supercools close toT0 @47#. We will as-
sume that the temperatureTN is close enough toTc that the
approximations of the previous subsection can be used.

In Ref. @43# the onset of nucleation was assumed to oc
when the probability that a bubble was nucleated inside e
causal volume is 1,

E
t i

tN
VHGdt;1. ~44!

The causal volume is given byVH5dH
3 , where the horizon

size dH scales like the age of the Universe,dH;2t. The
cosmological scalet, however, is in general too large in com
parison with the scale of phase transition dynamics, which
t5tN is given by tN2t i . The scale of phase transition dy
namics is roughly determined by the temperature variat
during the phase transition, which is bounded by the diff
enceTc2T0.

Consequently, it may be more appropriate to conside
different causal distancedc , related to the dynamics of th
phase transition in the following way. We may say th
bubbles begin to ‘‘see’’ each other at a timetN when their
mean separation is of the order of the distance travelled b
sound wave since timet i . Then, the causal distance is give
by dc;cs(tN2t i), wherecs51/A3 is the velocity of sound
in the relativistic fluid. This defines a causal volume in term
of TN

Vc5@csjM P~1/TN
2 21/Tc

2!#3. ~45!

We remark that the real improvement in using Eq.~45! in-
stead ofVH does not come from considering the velocity
sound, which is;1, but from the fact that in many cases th
time elapsed fromt i to tN will be much less than the age o
the Universet i.jM P /Tc

2 . The volume Vc is thus sup-
pressed with respect toVH by a factor@(Ti2TN)/T#3. The
nucleation timetN calculated in this way is larger, since mo
bubbles need to be nucleated before they are separated
distance at which they are causally connected to each o
1-9
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There will be a bubble in each volumeVc when

E
t i

tN
VcT

4e2S3(T)/Tdt;1. ~46!

To evaluate the integral in Eq.~46! we make use of the
following approximation @43# ~see also@30#!. The three-
dimensional action in Eq.~41! can be expanded about an
temperatureT* in the form

S3~T!

T
5

S3~T* !

T*

1

~12x!2
5

S3~T* !

T*
~112x1••• !,

~47!

where x5(T2T* )/(Tc2T* ). Since the integrand in Eq
~46! is sharply peaked atTN , we chooseT* 5TN and use the
expansion~47! to evaluate the integral. We find

S3~TN!/TN.4 log
2jM P

TN
14 log

Tc2TN

Tc
2 log

S3~TN!

TN
,

~48!

which will be in general dominated by the first term. F
temperaturesT several orders of magnitude belowM P , we
haveS3(TN)/TN*100 ~it is e.g. ;140 for the electroweak
scale, and;180 for the QCD scale!. From Eq.~41! we ob-
tain

S Tc

Tc2TN
D 2

.
3L2Tc

16ps3 S 4 log
2jM P

Tc
1 log

3L2Tc

8ps3

16 log
Tc2TN

Tc
D , ~49!

where we have used thatTN.Tc . In some of the following
estimations we will replaceTc2TN by Tc2T0 inside the
logs, since both differences are generally of the same or

Immediately aftert5tN , the temperature increases at
rate which is given by Eq.~34!. Under the current approxi
mations we can writeṙ5L ḟ b24rH. Therefore, the rate o
change of energy of the plasma isṙ/r.(3r /4) ḟ b24H.
Thus, on one hand energy is increased at a rate;rd f 1 /dt1,
whered f 1 is the fraction of volume converted to the low-
phase during the reheating stage, anddt1 is the duration of
this stage. The rate of energy decrease, on the other han
given byH;1/t. Sincedt1 is much shorter than the age o
the Universe, the increasing rate is much larger than the
ter. The total change in energy density is thusdr;Ld f 1.

The temperature cannot increase beyondTc , so if L
*r(Tc)2r(TN), the fractiond f 1 will be less than 1. This
means that before the phase transition completes, a final
peratureTr very close toTc is reached, and the phase tra
sition proceeds more slowly untild f 51. For L,r(Tc)
2r(TN) we have a variationdr;L during the phase transi
tion, which gives us an idea of the reheating that occu
There may be significant reheating and a considerable va
tion of the wall velocity, but there will not be a long phas
equilibrium stage, since in this cased f 1.1. The caseL
10352
er.

, is

t-

m-

s.
ia-

!r(Tc)2r(TN) corresponds to weakly first-order phase tra
sitions, which most likely occur by spinodal decompositi
rather than by nucleation and expansion of bubbles@47,50#.
We could also haveL@r(Tc)2r(TN), although we are as
suming L!r(Tc). In this case we haved f 1!1, which
means that most of the phase transition happens with the
phases near equilibrium, and we can apply the analysi
Sec. III. In this section we thus concentrate in the case
which the latent heat is comparable with the energy diff
encer(Tc)2r(TN).

The expansion of bubbles is governed by Eq.~27!. At T
5TN bubbles nucleate with a radiusRc given by Eq.~42!,
and after a timedt the radius has increased an amountvwdt,
with vw given by Eq.~43!. The ratio of the two distances i

vwdt

Rc
.

L2~Tc2TN!2dt

2hsTc
2

. ~50!

For the time scale of the phase transition dynamics,dt
;jM P(Tc2T0)/T3, we have

vwdt

Rc
;

L2j

hsT

M P

T S Tc2T0

T D 3

. ~51!

Thus, if the phase transition takes place at a tempera
sufficiently below the plank scale, the bubbles will grow
rapidly that we can safely neglect the initial radiusRc in Eq.
~27!.

At the beginning, bubbles expand with constant veloc
vw(TN). When reheating becomes important, the bubble
pansion slows down and we enter the second stage. Co
quently, during the first stageḟ b can be roughly estimated
without taking into account the liberation of latent heat. W
can thus estimate the rateṪ/T;r ḟ b without considering the
back-reaction of the reheating onḟ b . It is only at the begin-
ning and at the end of reheating thatr ḟ b;H and Ṫ.0.
Indeed, soon aftert5tN , the temperature takes its minimum
valueTm&TN ~see Fig. 3!, then it increases toTr&Tc . The
value ofTm is important because the nucleation rate turns
at t.tN , is maximal att5tm , and turns off again when the

FIG. 3. Typical evolution of the temperature during a pha
transition with supercooling.
1-10
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temperature has increased back toTN . All the process occurs
in a timedtG;(tm2tN), which is determined by the speed
which temperature changes. This intervaldtG in which G is
not negligible is much less thandt1, due to the exponentia
dependence ofG on Tc2T.

Accordingly, the temperatureTm occurs when

r4pvw~Tm!E
t i

tm
G~T!vw

2 ~T!~ tm2t !2dt.H, ~52!

where the time-temperature relationt5jM P /T2 must be
used to evaluate the integral. Using the expansion~47! about
T* 5Tm , we find

FS3~Tm!

Tm
G21

e2S3(Tm)/Tm.
2ps6h3Tc

2

9j6L8 S Tc

M P
D 4S Tc

Tc2Tm
D 10

.

~53!

The number density of bubbles is given by

nb5E
tc

t f
G~ t !dt. ~54!

SinceG(t) is sharply peaked attm , we can estimatenb as
2* tc

tmG(t)dt and use again the dependencet}T22. The inte-

gral can be calculated again using the expansion~47!, which
gives

nb;Tc
3 jM P

Tc

Tc2Tm

Tc
FS3~Tm!

Tm
G21

e2S3(Tm)/Tm. ~55!

We may define the intervaldtG by writing nb.G(tm)dtG .
Then we can easily see in Eq.~55! that

dtG;@S3~Tm!/Tm#21~ tm2t i !. ~56!

Therefore,tm2tN is much less thantm2t i ~most typically,
about two orders of magnitude4!. Using the result~53!, with
Tm.TN , we finally obtain the density of bubbles,

nb;
2ps6h3Tc

2

9j5L8 S Tc

M P
D 3S T

Tc2TN
D 9

Tc
3 . ~57!

The bubbles thus nucleate during the short timedtG about
t5tm , and expand with a velocityv1.vw(tN) for a time
dt1, until the temperature gets close toTc . According to
Eqs.~43! and ~49!,

v1.
1

h S 16ps3

3Tc
D 1/2

K21/2, ~58!

where K is a shorthand for the sum of logs in Eq.~49!.
Notice that in Eq.~43!, vw}L(Tc2T), but also Tc2TN
}L21, so vw only depends onL through the logs inK.

4This shows that it is more accurate to estimate the differe
tm2tN;dtG in this way, rather than subtracting the values given
Eqs.~49! and ~53!.
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If a non-negligible fraction of the volume is taken up b
bubbles during the first stage, the intervaldt1 can be esti-
mated from (4p/3)vw

3 (tN)dt1
3nb;1. This gives

dt1;S L4

s3Tc
7D 1/6S S3~Tm!

Tm
D 21/2

~ tN2t i !. ~59!

So, apart from a model-dependent factor, we find a gen
tendency to the relationsdtG!dt1,tN2t i . The value of
S3(Tm)/Tm ~and that ofTm) can be obtained similarly to the
case ofTN . It is interesting to note thatdt1 has only a loga-
rithmic dependence on the friction coefficienth. This is be-
cause the dependence on the wall velocity is twofold. On
hand, the lower the wall velocity, the longer the timedt1
needed to reheat the plasma. But on the other hand, the lo
the wall velocity, the longer will also be the timedtG in
which bubbles are formed, and the larger their number. T
causes a shorterdt1, since there are more bubbles to produ
the reheating.

C. Second stage: Phase equilibrium

1. Inhomogeneous nucleation

If the formation of bubbles is associated with the prese
of impurities, the phase transition occurs atT.Tc , and the
number density of bubblesnb is an external parameter tha
depends on the density of impurities. According to E
~15!–~17!, for smallr the evolution of the phase transition
given by

f b.3Hr 21~ t2t i !, ~60!

and the rate at which the phase transition goes on isḟ b
53H/r , i.e., a factor of 1/r larger than the rate of expansio
3H of a comoving volume. Our assumptionr !1 implies
that ḟ b@H anddt!t.

To calculate the velocity of the interfaces, we assume t
all the bubbles begin to expand att5t i . Thus, the fraction of
volume occupied by bubbles isf b5nb(4p/3)Rb

3 , where
Rb(t) is the bubble radius. At the midpoint of the transitio
we haveḟ b;4pnbR̄2vw , whereR̄5(4pnb/3)21/3 is the av-
erage radius. Therefore the mean velocity is given byvw
5(4pnb/3)21/3H/r . We notice, however, that even in th
case in whichḟ b is constant, the wall velocity may chang
significantly during the transition, sincevw}Rb

22 . The total
variation ofvw depends onnb .

2. Homogeneous nucleation

In the case of a phase transition with supercooling,
situation is very similar after the plasma has reheated up
temperatureTr.Tc . The transition proceeds at a rate

ḟ b;4pvw~ t !E
t i

t

G~ t8!R2~ t8,t !dt8. ~61!

In this stage the nucleation rate has turned off. We have s
that G peaks sharply at a certain timetm in the previous

e

1-11
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stage, so we can write Eq.~61! as ḟ b;4pv2nbR2(tm ,t),
where v2[vw(Tr), nb is given by Eq.~57!, and R(tm ,t)
.v2(t2tm). In any case, the integral in Eq.~61! is an aver-
age of the squared radius of the bubbles, and for the pre
estimations we can setḟ b;4pv2nbR̄2, with R̄ given bynb ,
just as in the case of inhomogeneous nucleation. Since
temperature is almost constant,L ḟ b.4rH, i.e., all the re-
leased latent heat is taken away by the expansion of
Universe. Thus, againḟ b53H/r and the velocity coincides
with that of the inhomogeneous nucleation case

v2.S 3

4pnb
D 1/3H

r
. ~62!

Although in Eq.~62! it seems that the wall velocity durin
phase equilibrium does not depend on the friction, in fac
is proportional toh21 due to the dependence ofnb .

Since ḟ b;H/r , the duration of this stage is

dt2;rH 21. ~63!

The reheating temperatureTr must be such that the pressu
difference is adjusted so as to give the velocity~62!. Using
Eq. ~43!, we find

Tc2Tr

Tc
5

hH

rL S 4pnb

3 D 21/3

. ~64!

As expected, the larger the latent heat, the closer will beTr
to Tc . Unlike dt2, the values ofTr and v2 are not easy to
determine, since they depend on the number of bubbles
nucleated in the previous stage. Using Eq.~57! and taking
into account thatHM P /T2;1, we find that roughly

Tc2Tr;S Tc2TN

Tc
D 2

~Tc2TN!, ~65!

which confirms that generally,Tc2Tr!Tc2TN . According
to Eq. ~43!, the same relation holds for the velocitiesv1 and
v2.

D. Coalescence

In the range 0.3& f b&0.5 bubble percolation takes plac
We have seen that this process gives a contribution to
bubble expansion rate, of order (s/rR3)1/2. For f b;1 this
rate is

ḟ coalescence;~s/rnb!1/2. ~66!

To establish the importance of this rate we should compa
with the ratesdt1

21 or dt2
21, corresponding to the two stage

we have studied. Such a comparison is difficult to carry
without specifying a model, so we will ignore this effect
the subsequent discussions.

Although coalescence is bounded to occur in the ab
range of f b , it could have important consequences if t
associated bubble growth rate is significantly larger th
those given by the time scalesdt1 and dt2. In a specific
10352
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model, comparison of Eqs.~59! and ~63! with Eq. ~66!
should not be hard to do, oncenb has been evaluated.

VI. THERMODYNAMICAL PARAMETERS

We have seen that all the parameters that describe
dynamics of the phase transition~i.e. dt1 , dt2, etc.! depend
on a few thermodynamical parameters, such as the latent
or the friction coefficient. The formation of the different co
mological products of a phase transition thus depends
these quantities, and also on other parameters, such a
conductivity of the plasma. These quantities are physica
related, since all of them come from the equilibrium or no
equilibrium thermodynamics of the same underlying theo
This should be taken into account in phase transition ca
lations, when ranges of parameters are considered. Unfo
nately, it is hard in practice to establish general relatio
between these physical parameters. Depending on the th
it may even be impossible to compute some of these qua
ties.

One can gain some insight on the relations between t
modynamical quantities by conveniently modeling the fr
energy. The problem is further simplified by referring to t
general form of the perturbative effective potential. In th
case the thermodynamical quantities can be related to
parameters of the microscopic theory. We dedicate this s
tion and the following to study the aforementioned relatio
We will concentrate only in those parameters which infl
ence directly the dynamics of the phase transition. An ana
sis of other parameters that affect the generation of cos
logical remnants is considered in Ref.@7#.

A. Free energy and viscosity

We assume the free energy density takes the form

F52
p2

90
g* T41V~f,T!1L, ~67!

where the scalar fieldf is the order parameter, and

V~f,T!5D~T22T0
2!f22ETf31

l

4
f4 ~68!

is the free energy density difference between the symme
and the broken-symmetry phases. The parameterg* is the
number of light species of the plasma. In general,g* de-
pends on temperature, but it is usually approximated by

g* 5 (
bosons

gi1
7

8 (
fermions

gi , ~69!

where the sums are on particles with massesmi,T, andgi is
the number of degrees of freedom of speciesi ~see Appendix
A!.

It depends on each particular case whether Eqs.~67! and
~68! can be derived from the microscopic theory. At any ra
they can be regarded just as a simple model for studying
dynamics of the phase transition, being the latter first-orde
the coefficientE is nonvanishing. The parameters ofV(f,T)
1-12
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FIRST-ORDER COSMOLOGICAL PHASE TRANSITIONS . . . PHYSICAL REVIEW D 69, 103521 ~2004!
can be chosen in such a way that the free energy carries
thermodynamical properties of the theory we wish to stu
@4,5,13#. For instance, these parameters determine the va
of the critical temperature, latent heat, surface tension,
correlation length. The thermodynamical parameters co
be obtained, e.g., with lattice simulations~see for example
Ref. @51#!. Then one can use those values to calculate
parametersT0 , D, E andl. Furthermore, in general the o
der parameterf is a Higgs field or a combination of Higg
fields, andV(f,T) is the finite-temperature effective pote
tial ~see e.g. Ref.@6#!. We will consider this case in the nex
section.

The effect of viscosity on the propagation of the bubb
wall is calculated by considering its equation of motion
the hot plasma,

hf1V8~f!1(
i

gi

dmi
2

df E d3p

~2p!32Ei

f i~k,x!50,

~70!

which can be derived by energy conservation considerat
@2,10,44,52#. Here V(f) is the zero temperature effectiv
potential, the sum is over all particles that couple tof, mi
are thef-dependent masses~see the Appendixes!, and f i are
the phase space population densities. This equation ca
obtained by thermally averaging the operator equation forf.
If we separatef into the equilibrium populationf 0 plus a
small deviationd f , we obtain the equation

hf1V8~f,T!1( gi

dmi
2

df E d3p

~2p!32Ei

d f i50,

~71!

where V(f,T) is the finite temperature effective potentia
given by Eq.~68!. Since the departure from equilibrium
proportional to the velocity of the bubble wall, it is the la
term in Eq.~71! which gives the friction force of the plasma

A simple approach to the calculation of the wall veloc
@4,5# consists in replacing the last term in Eq.~71! with a
typical damping term of the formdf/dt. Due to Lorentz
invariance this term must be in fact of the formum]mf,
whereum is the four-velocity of the plasma. Equation~71!
then may be written as

hf1V81~ h̃T!um]mf50, ~72!

whereh̃ is a dimensionless damping coefficient that depe
on the viscosity of the medium. Boosting to a frame th
moves with the wall, and assuming stationary and nonr
tivistic motion in thez direction, we have

f95V8~f!2h̃Tvwf8, ~73!

wheref8[df/dz. Multiplying both sides byf8 and inte-
grating over2`,x,` we obtain

h̃Tsvw5V~T!, ~74!
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whereV(T) is the free energy difference between the tw
phases, defined in Eq.~1!, ands is the surface tension of th
wall, given by Eq.~39!. We have assumed here that tempe
ture is constant across the wall. This is right if the w
velocity is small enough, so that the latent heat it releases
time to be uniformly distributed throughout space.

Hence, the pressure difference is equilibrated by a frict
force proportional to the wall velocity. The constant of pr
portionality is the friction coefficienth5h̃Ts. Since the
tension of the wall is related to the wall widthLw by s
.fm

2 /Lw @see the first integral in Eq.~39!#, we can also write

h5h̃Tfm
2 /Lw .

A shortage of modeling the viscosity of the plasma in th
way is thath̃ is a free parameter. The correct expression
h can be derived from Eq.~71!. In Appendix B we show that
particles with a thermal distribution give a friction coeffi
cient

h th.h̃ th

fm
2

T
s, ~75!

while the contribution of infrared gauge bosons is

h ir.h̃ ir

T3

Lw
. ~76!

Evidently, both formulas agree with the above result iffm
;T. This treatment also allows for the evaluation of t
coefficientsh̃, which depend only on the particle content
the plasma.

B. Thermodynamical quantities and phase transition dynamics

The free energy given by Eqs.~67! and~68! bears a first-
order phase transition, with two minima separated by a b
rier. The critical temperature is related toT0 by

Tc
22T0

2

Tc
2

5
E2

lD
. ~77!

At T.Tc the global minimum of the potential isf50. At
the critical temperature the two minima become degener
and below this temperature the stable minimum is

fm~T!5
3ET

2l F11A12
8

9

lD

E2 S 12
T0

2

T2D G . ~78!

At T5T0 the barrier between minima disappears andf50
becomes a maximum of the potential. Therefore the ph
transition occurs at some stage in betweenTc and T0. The
valuef50 corresponds to the symmetric, high-temperat
phase, andfÞ0 corresponds to the broken-symmetry, low
temperature phase. The jump of the order parameter from
high temperature phase to the low temperature one is th

fm~Tc!52ETc /l. ~79!
1-13
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According to Eqs.~67! and ~68!, the free energy density
of the symmetric phase is

Fu52
p2

90
g* T41L. ~80!

This gives the equation of state of a hot relativistic plas
with a positive cosmological constant

ru5
p2

30
g* T41L, pu5ru/324L/3. ~81!

The free energy of the broken-symmetry phase isF5Fu
1V(T). The energy density of the broken-symmetry pha
is rb5ru1Dr, with

Dr5V~T!2TV8~T!. ~82!

The entropy density of the symmetric phase issu
52p2g* T4/45, and that of the broken-symmetry phase
sb5su2V8(T). The latent heat of the phase transition
given byL5Dr(Tc)5TcDs(Tc); hence,

L58DS E

l D 2

Tc
2T0

2 . ~83!

Comparing with Eq.~79!, we find the relationL52Dfm
2 T0

2

between the discontinuity of the order parameter and tha
the energy density. As expected, strongly first-order ph
transitions~i.e., with largefm) have large latent heat.

The surface tension of the bubble wall is given by E
~39! in the thin wall approximation. At the critical tempera
ture the effective potential is given by

V~f,Tc!5
4~ETc!

4

l3
x2~12x!2, ~84!

wherex[lf/2ETc5f/fm . Hence, Eq.~39! is easily inte-
grated and

s~Tc!5
2A2E3

3l5/2
Tc

3 . ~85!

Although we have not used it explicitly, in this approxim
tion the field configuration near the wall can be solved a
lytically with the help of Eq.~84!, and gives the kink profile

f~z!5
fm

2 S 11tanh
z

Lw
D , ~86!

where

Lw5fm
2 /3s ~87!

is the wall width.5

5Lw may change during the bubble expansion due to the fric
with the plasma@2#. We shall neglect this effect.
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Using Eqs.~79!, ~85!, and~87! we find the values of the
friction coefficients~75! and ~76!,

h th5
8A2

3

E5h̃ th

l9/2
Tc

4 ,

h ir5
Eh̃ ir

A2l
Tc

4 . ~88!

The two contributions have different parametrical depe
dence, so each will dominate in different regions of para
eter space. For instance, ifE!l the infrared boson contri-
bution may be much larger than that of thermal particles. T
maximum velocity of bubble walls occurs atT.TN . Ac-
cording to Eqs.~58! and ~88!, this velocity is the smalles
among

v th;
l3/4

E1/2h̃ th

K21/2, v ir;
E7/2

l13/4h̃ ir

K21/2. ~89!

To determine which one is the correct, it is necessary
know the relations between the coefficientsE, l, andh̃. We
see that in the opposite limiting casesE!l andE@l, one
of the two velocities is!1, unlessh̃ is too small. In the case
E;l, the wall velocity will be small if one of the condition
E1/4!h̃ th or E1/4!h̃ ir is fulfilled, which does not seem un
likely in general ~see the next section!. This supports the
assumption of nonrelativistic wall velocities.

It is evident that with the aid of the model~67!, ~68! we
can get more information about the generalities of ph
transition dynamics. For instance, if we write Eq.~49! as a
function ofE, D, andl, and compare with Eq.~77!, then we
can locate the nucleation temperature in the intervalTc
2T0,

Tc2TN;
E1/2

l3/4
K21/2~Tc2T0!. ~90!

If E and l are comparable, this gives a value ofTc2TN
roughly an order of magnitude less thanTc2T0.

The relations between the different quantities that de
mine the dynamics of the phase transition are apparent in
above expressions. Specific relations will be of interest
different cosmological consequences. As an example, le
consider the effect of modifying the theory in order to obta
a more strongly first-order phase transition. To do that,
have to enlarge the value of the order parameter. Assume
accomplish this by increasing the value of the parameteE
and keeping the other parameters invariant@see Eq.~79!#.
Then, there will be more supercooling, and one expect
larger departure from thermal equilibrium, since the press
difference atT5TN will be larger. However, according to
Eqs. ~83! and ~88!, L and h also increase. This tends t
decrease the wall velocity in the two stages of the ph
transition, in opposition to the effect of supercooling.

In this work we assume for simplicity thatg* remains
constant throughout the phase transition. In fact, the num

n

1-14
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of effectively massless degrees of freedom may change
ing the phase transition. It is conceivable that some parti
acquire large masses and decouple from the thermal b
then Dg* [g* u2g* b.0. For instance, during the quark
hadron phase transitiong* changes substantially. It is inte
esting to note that such a change may affect considerably
dynamics of the phase transition, even in the caseDg*
!g* . The effect of a decrease ofg* during the phase tran
sition is twofold. To begin with, the free energy of th
broken-symmetry phase is larger than in the case of cons
g* , so the critical temperature is lower@it is given by
V(Tc)52p2Dg* Tc

4/90 @32,41##. Therefore the phase trans
tion is stronger,6 and the latent heatTcV8(Tc) is larger. In
addition, the entropy released by the decoupling spe
gives an extra contribution of 4p2Dg* Tc

4/90 to the latent
heat. This contribution is comparable to the value ofL as
given by Eq. ~83!, if Dg* *D(E/l)2(12E2/lD). In the
case of a perturbative effective potential, this condition m
be easily fulfilled forDg* ;1.

VII. PHYSICAL QUANTITIES IN PERTURBATION
THEORY

If perturbation theory is applicable, the one-loop effecti
potential at high temperature often has the form of Eq.~68!,
with parameters generally given by

D5 (
bosons

gihi
2

24
1 (

fermions

gihi
2

48
,

T0
25

1

D

mh
2

4
,

E5
2

3 (
gauge
bosons

gihi
3

12p
,

l5mh
2/2v2. ~91!

Here,hi are the couplings of the particles withf, mh is the
Higgs mass, andv its zero temperature VEV. The coefficien
E in general involves only gauge bosons. In Appendix A
review the derivation of these results and discuss on the
eral assumptions and approximations that lead to Eqs.~68!,
~69!, and~91!. In the discussions that follow we will some
times take the electroweak theory as a reference point.
parameterT0 gives the temperature scale of the phase tr
sition. Its order of magnitude is determined bymh , so it may
be quite less than the scalev if l is small. Anyway, for the
dynamics of the phase transition, the differenceTc2T0 is
more important than the temperature scaleT0.

Regarding the viscosity of the plasma, we show in App
dix B that the contribution of thermal particles to the para
eter h̃ is given by

6This could be important for baryogenesis@7#.
10352
r-
s

th;

he

nt

es

y

n-

he
-

-
-

h̃ th.( 3S logx i

2p2 D 2

gihi
4 ~92!

wherex i52 for fermions andx i5hi
21 for bosons. Therefore

the contributions of bosons toh have an enhancement o
(loghi

21/log 2)2 with respect to fermions with the sam
Yukawa coupling. For instance, forh;0.1 the boson en-
hancement is;10. This means that friction may be muc
stronger in supersymmetric theories than in nonsupers
metric ones. For instance, it was found in Ref.@3# that a light
stop may slow down the electroweak bubble wall in t
minimal supersymmetric standard model~MSSM! an order
of magnitude with respect to the SM. The enhancemen
larger for lighter particles, but these do not contribute to
friction due to thehi

4 dependence.
The contribution of infrared gauge bosons is

h̃ ir.(
gbḡhb

2

32p
log@mb~fm!Lw#. ~93!

Here, the sum is only on gauge bosons, but the coefficieḡ
also involves a sum over particle species~see Appendix B!.
Furthermore, the gauge coupling appears only squa
which means less suppression. The log enhancement in
case is. log(hbfm

3 /s);(loghbl
21/2).

It is important to compare the value of the parameteE
with the other parameters, sinceE is responsible for the first-
order nature of the phase transition. We can see in the
mulas of the previous section that all the thermodynam
quantities are proportional to some power ofE, while the
parametersD and l usually appear in the denominators.
the perturbative approach~91!, this parameter is generall
smaller than the others. This is becauseE is a sum of gauge
couplings to the third power, weighted with gauge bos
degrees of freedom, whileD involves squared couplings, an
the sum is over all degrees of freedom. Regardingl, it can
be comparable toE, but this constrains the value of th
Higgs mass.

The smallness ofE indicates a tendency of perturbativ
effective potentials to give weakly first-order pha
transitions.7 This is apparent in the dependence of the or
parameter,fm /T;E/l, or in the temperature interval in
which the first-order phase transition can occur, (Tc
2T0)/Tc;E2/lD. For example, in the case of the ele
troweak phase transition, we haveE;1023 andD;1021 for
the minimal standard model. If we take a nonrealistic va
for l;E to get an order parameter of orderT, we find a
temperature rangeTc2T0;1022Tc . In the specific case o
the electroweak phase transition, a small value of the Hi
field fm(T) is undesirable for electroweak baryogenesis.
general, if this parameter is too small, the perturbative
proximation breaks down~see Appendix A!. In the elec-
troweak case, the way out is to consider extensions of
SM which provide additional bosons that contribute to t
parameterE @53,54#.

7We are only discussing one-loop order here. Things may be
ferent at two loops@42#.
1-15
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In the previous section we found that if we increase
parameterE while keeping the others constant, then we ge
stronger phase transition and larger supercooling, but
larger values ofh andL, which slow down the dynamics. I
is evident that ifE is augmented by adding particles to th
theory, the value ofD enlarges too, giving an additional in
crease of the latent heatL. If we add only a boson, the rela
tive change will be more appreciable inE, because there ar
only a few terms in its expression, but if the boson com
together with several new species~as in the case of super
symmetry!, then the change ofD will be much more substan
tial. According to Eqs.~92! and ~93!, the friction coefficient
will also increase significantly when adding bosons to
theory.

If E2/lD!1, thenTc.T0, andL/Tc
4.8D(E/l)2. It is

interesting to compare the value ofL with that of dr
[r(Tc)2r(TN), to assess the effect of reheating, as d
cussed in Sec. V. Using Eqs.~90! and ~77!, we may write

dr.4
Tc2TN

Tc
;K21/2

E5/2

Dl7/4
. ~94!

Therefore,

L

dr
;S 30K1/2

p2g*
D S D2

E1/2l1/4D . ~95!

The first factor is likely of order 1 and depends essentially
the energy scale of the transition. The second factor is de
mined by the dynamics. It depends mainly onD, and may
vary considerably if we change the particle content of
theory. Exemplifying again with the electroweak theory,D
can vary from;1021 in the SM toD.1 in the MSSM, so
we pass from little reheating in the first case to large reh
ing in the latter. We remark that things may be quite differe
if Eqs. ~91! are not valid. For instance, in the case of t
quark-hadron phase transitionL anddr are typically of the
order of the energy densityr.

VIII. CONCLUSIONS

In this paper we have performed an entirely analyti
study of first-order phase transitions in the radiatio
dominated era. We have seen that typically the hi
temperature phase is supercooled to a temperatureTN , after
which the transition proceeds in two steps, as sketche
Fig. 3. The first stage is complex, and some rough appr
mations must be made for an analytical treatment. Never
less, it can be checked with numerical results~e.g., Ref.
@13#!, that the orders of magnitude are correct. The sec
stage is much more simple, since bubble nucleation has
fectively stopped and bubbles expand very slowly. This st
develops very close to the critical temperature, with alm
zero pressure difference between the two phases. There
this part of the evolution is similar to the case of inhomog
neous nucleation, in which the presence of impurities
duces bubble nucleations without need of supercooling.

We have studied the case of a phase transition at p
equilibrium in some detail, taking advantage of the fact t
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it can be solved analytically for any value of the releva
parameterr 5L/Tcs(Tc);L/r(Tc). This approach has al
lowed us to calculate the back reaction on the expansion
H, which is important for larger. It is well known that su-
percooling may lead to exponential expansion of the U
verse@32,40#. This possibility has been considered not on
in the context of inflationary models, but also for the qua
hadron phase transition@49#. Although our approximations
break down forL*r(Tc), we observe the manifestation o
the energy of the false vacuum for largeL. Even if the phase
transition begins atT5Tc , when L is comparable to the
energy density of the plasma the transition may take a l
time to complete due to vacuum energy dominance.

For the more probable case of a phase transition w
variation of temperature, we have given a derivation of
integro-differential equations that govern the dynamics.
particular, we have found a simple algebraic relation betw
the temperature, the fraction of volume occupied by the lo
temperature phase, and the scale factor of the Unive
which holds under the usual assumption of adiabatic exp
sion. Using the thin wall approximation and the lineariz
form of the free energy difference, we have found analyti
formulas for all the quantities that characterize the dynam
of the phase transition and may be relevant for the deter
nation of its cosmological consequences. These parame
are the durationsdt1 anddt2 of the two stages of the trans
tion, the wall velocitiesv1 and v2 at each stage, the tota
number density of bubbles, the time intervaldtG in which
bubble nucleation is active, etc. We have expressed th
quantities in terms of those that determine the dynam
namely, thermodynamical parameters like the latent heaL,
the wall tensions, or the friction coefficienth. As expected,
for the phase equilibrium stage we have simple expressi
of the sort dt2.rH 21, with obvious interpretation. More
complex formulas arise instead for the reheating stage.
though these parameters must be calculated in each parti
case, some relations can be established, that hold q
broadly. They allowed us to confirm some natural premi
for the dynamics, e.g., thatdtG!dt1!dt2 andv2!v1.

We have studied also the interrelations between the t
modynamical parameters. When necessary, we made use
simple model for the free energy. Aside from reproducing
desired features of the phase transition, it is well known t
this model corresponds to the simplest high-temperature
fective potential that arises in perturbation theory. We ha
derived general expressions for the parameters of this po
tial, which is useful in establishing further relations betwe
the thermodynamical parameters. We have also derived
eral expressions for the friction on the bubble walls. This
caused by the perturbation from equilibrium of the partic
of the plasma due to the motion of the interfaces. We h
compared the case of thermal particles to that of cohe
infrared bosons. We have found a different parametric dep
dence of each contribution, which indicates that each of th
will dominate in different parameter ranges. We have argu
that probably one of these contributions will cause the w
to move nonrelativistically. This justifies the nea
equilibrium approximations that simplify the analysis of th
phase transition.
1-16
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We have thus been able to find some general relat
between the parameters that determine the dynamics.
instance, we have seen that if the first-order phase trans
is strengthened, then the supercooling is intensified, but
the friction and latent heat are generically enlarged, givin
slower evolution. This general feature is easily detected w
ad hocvariations of the parameters of the free energy, a
further confirmed by the relations that arise for perturbati
theory values of these parameters. The amount of superc
ing is characterized by the difference between the ene
density of the plasma at the critical temperature, and tha
which nucleation begins,dr5r(Tc)2r(TN). The specific
relation betweendr and the latent heat is decisive for th
phase transition dynamics. As we have seen, the ratioL/dr
can either be small or large, depending on the theory.
course, it is larger for stronger phase transitions. We h
argued that the case of interest corresponds to a latent
comparable todr. On one hand, a smallL is related to too
weakly first-order phase transitions. On the other hand,
large L most of the phase transition occurs close to ph
equilibrium, and can be described as a phase transitio
constantT.Tc . This includes the caser;1 if dr!r, thus
justifying the approximationr !1 in the case of supercoo
ing.

For the study of the different cosmological consequenc
additional specific relations will be relevant in each case@7#,
which can be obtained from the present analysis. Our a
lytical approximations will thus prove useful to include d
tails of phase transition dynamics in the calculation of c
mic remnants, particularly with regard to the variation of t
pertinent parameters throughout the phase transition. Fo
ample, the importance of the phase equilibrium stage
been already investigated in Refs.@5,13# in the context of
electroweak baryogenesis. Other cosmological conseque
are affected as well. For instance, the fact that the nuclea
rate is turned off due to reheating evidently modifies
number of nucleated bubbles, and thus the density of to
logical defects.
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APPENDIX A: PERTURBATIVE FREE ENERGY

Following Ref. @6#, we will obtain the high-temperatur
effective potential~or free energy! in the one-loop approxi-
mation, including leading-order plasma effects. Addition
terms appear at higher-loop order. For instance, potent
important terms of the formf2logf arise at two loops@42#.
However, inclusion of two-loop corrections makes the situ
tion more complicated and lies out of the scope of our g
eral analysis.

We consider a gauge theory which is spontaneously b
ken by a VEV of a scalar fieldf. The tree-level potential is
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V0~f!52
m2

2
f21

l

4
f4, ~A1!

so the VEV is given byv25m2/l and the Higgs mass by
mh

252lv2.
At one-loop the effective potential picks up zer

temperature and finite-temperature corrections. With a cu
regularization and tree level values forv andmh , the zero-
temperature contribution of a particle species is@43#

6
g

64p2 H m4~f!F log
m2~f!

m2~v !
2

3

2G12m2~v !m2~f!J ,

~A2!

where the6 is for bosons~fermions!, g is the number of
degrees of freedom of the species, andm(f) is the mass of
the particle in the presence of the background scalar field
is in general of the form

m2~f!5m21h2f2, ~A3!

where h is the coupling of the particle withf ~i.e., the
Yukawa coupling, gauge coupling, etc.!. The finite-
temperature corrections are of the form

6
g

2p2b4
JB,F@m2~f!b2#, ~A4!

where the functionsJB andJF can be expanded in powers o
m/T for m!T, and fall off exponentially for largem/T.
Therefore species withm@T decouple from the plasma an
we make a high-temperature approximation in which
consider only particles withm,T. Expanding up to
O(m/T)4 we have~see e.g. Ref.@6#!

F~f,T!5const2
p2

90
g* T42

mh
2

4
f21(

b
gbS mb

2

32p2

1
T2

24D mb
2~f!1(

f
gfS 2

mf
2

32p2
1

T2

48D mf
2~f!

2
T

12p (
b

gbmb
3~f!1

l

4
f4

2(
b

gb

64p2
logS mb

2

T2Ab
D mb

4~f!

1(
f

gf

64p2
logS mf

2

T2Af
D mf

4~f!, ~A5!

whereg* is the effective number of relativistic degrees
freedom, given in Eq.~69! andmi[mi(f5v) are the physi-
cal masses. We assume that particles contributing toF do not
decouple during the phase transition, i.e., that the condi
m(f)!T is preserved in the range of temperatures of int
est. This is a reasonable assumption provided thatf!v for
temperatures close toTc , which is consistent with the one
1-17
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loop approximation. If some particles decouple from t
plasma during the transition, the main effect is a change
g* .

Them3 term is the contribution of the bosonic zero mod
to the one-loop effective potential. This term is the mo
important to us; without it the phase transition would be
second order. However, for the zero modes the loop exp
sion has an infrared problem. The perturbative expans
breaks down at higher-loop order, since higher loops cont
ute powers ofa5h2T2/m2(f) and of b5h2T/m(f) @6#.
The way out is to dress the zero modes with daisy and
perdaisy diagrams. The result of this resummation is a c
tribution of the form@to all order ina and toO(b)]

2
T

12p (
b

gbM b
3~f! ~A6!

plus contributions proportional tof2 which are unimportant
within the present approximations. Thus the massmb gets
replaced with its Debye mass

M b
25mb

2~f!1Pb~f,T!, ~A7!

wherePb is the self-energy of the boson particle. In gene
it is a combination of squared coupling constants timesT2.
The exception are the transverse components of the g
bosons, for whichP50.

If we replace the Debye mass~A7! in the cubic term of
Eq. ~A5!, and the masses~A3! everywhere else, the resultin
terms can be grouped as follows:

a. Constant terms.These are contributions to the cosm
logical constant. The total cosmological constant must be
by hand, so that it is almost zero after the phase transiti

b. T-dependent,f-independent terms.Apart from the first
term in Eq.~A5!, there are alsoT2 and logarithmic terms, bu
these are of order (m i /T)2 and (m i /T)4 with respect to the
T4 term, so we can neglect them within the approximat
mi!T. We notice, however, that we could have a large ne
tive m i of orderT, such thatmi is small ~see below!. In any
case, these corrections modify the equations of state of
phases in the same way, and we do not expect them to a
significantly the dynamics of the phase transition.

c. f2 terms.The coefficient off2 is the sum of a term
proportional toT2, a constant termmh

2/4, and other constan
and logarithmic terms, which are;hi

2mi
2/32p2. The latter

are suppressed unless the Higgs mass is too small, so we
disregard them. In any case, these corrections are inco
quential for our purposes. They contribute to the value of
characteristic temperatureT0 of the phase transition. How
ever, for the dynamics of the phase transition the prec
value of T0 is not relevant; the important parameter is t
relative difference between this temperature and the crit
one, (Tc2T0)/T0, which is independent ofT0.

d. f3 terms.TheM 3 term has contributions from all th
bosons, proportional to

~hb
2f21mb

21Pb!3/2. ~A8!
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These terms may strongly affect the nature of the phase t
sition, depending on the value ofmb

21Pb(Tc). There are
two limiting cases:

~i! if mb
21Pb(Tc).0, Eq.~A8! contributes a term of the

form Tf3 to the free energy, which favors a strongly firs
order phase transition, and

~ii ! if mb
21Pb(Tc)@hb

2f2, we can expand Eq.~A8! in
powers off. This gives higher-order corrections to the c
efficients off2 andf4, and no contribution tof3.

Almost all particles fall in the second case, sinceP is of
order h2T2, andf!T near the phase transition. The tran
verse components of the vector bosons, on the contrary
protected against this thermal screening. Another excep
may be a scalar with a negativem;T. Such a particle would
fall in the first case or in an intermediate case, and may p
a role in determining the character of the phase transi
@53#. However, such a tuning may induce unwanted mini
in the scalar potential@53,54#. We are not going to conside
this possibility here. Accordingly, the cubic term in the e
fective potential is

2
T

12p (
2

3
gbhb

3f3 ~A9!

where the sum is only over gauge bosons, and the factor
is due to the fact that only two degrees of freedom of
massive vector contribute@44#.

e. f4 terms.The corrections tol depend logarithmically
on T, so the effective value ofl may be regarded to be
constant during the phase transition. Furthermore, these
rections are of orderhi

4/64p2, so they can be neglected pro
vided thatl*hi

2 . For simplicity we will assume that this is
the case.

Putting all these terms together we see that, under
above assumptions and approximations, the free energy
sity takes the form displayed in Eqs.~67!, ~68!, with coeffi-
cients given by Eqs.~91!.

APPENDIX B: FRICTION COEFFICIENT

In this appendix we make a derivation of the friction e
erted by the hot plasma on the bubble walls. For that,
must calculate the departure from equilibrium of the pha
space population functions,d f in Eq. ~71!. The friction on
the wall has been extensively studied in the case of the e
troweak phase transition@2,3,10,44,52,55,56#. Our aim here
is to discuss the general dependence of the friction on
particle content of a theory, so we will need to use so
approximations in order to keep the description as genera
possible.

1. Fluid approximation

We begin by considering the contribution of particles w
p@Lw

21 (Lw5wall width!, for which the background field
varies slowly and the semiclassical~WKB! approximation is
valid. Since in generalLw

21@T, this condition is satisfied for
all but the most infrared particles@2#, which we study below.
We follow Refs.@2,3#, but we use a simpler ansatz for th
1-18



e
o

n

-

k

e
io

ce
ac

-
r-
he
on

ht
be

ce
ou-
par-
nd

to

s
he

the

e
e

tion

two

n
re

a-
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deviations from equilibrium distributions. This will suffic
for our purposes. We assume that the population density
particle species in the background of the domain wall~that
moves along thez direction! is governed by the Boltzman
equation

@] t1~]pz
E!]z2~]zE!]pz

# f 52C@ f #, ~B1!

whereE5Ap21m(z,t)2 is the particle energy,]pz
E5pz /E

is the particle velocity,2]zE52]z(m
2)/2E is the force on

the particle, andC@ f # is the collision integral.
We use the ansatzf 5 f 0(E/T2d), where

f 0~x!5
1

ex61
, ~B2!

so the deviation fromf 0(E/T) is d f 52 f 08(E/T)d. Thus we
obtain an equation ford by linearizing the Boltzmann equa
tion. Keeping only terms of order (m/T)2 we have

S 1

2ET
] tm

22] td1
pz

E
]zd D f 081C@ f #50. ~B3!

The mass of the particle is a function ofz2vwt, and so is the
perturbationd if we assume a stationary state. Thus we ma
the replacements] tm

252vw(m2)8 and ] td52vwd8,
where the prime means derivative with respect toz. We fur-
ther simplify Eq. ~B3! by making the integration
*d3p/(2p)3. We obtain

c2vwd82Gd5c1vwm28/2T2, ~B4!

wherec1 andc2 are defined by the integrals

c1[2
1

T2E d3p

~2p!3E
f 08 , c2[2

1

T3E d3p

~2p!3
f 08 ,

and we have written the collision integral in the form@2#

E d3p

~2p!3

C@ f #

T2
5TGd. ~B5!

To lowest order inm/T we havec1 f5 log 2/2p2 and c2 f
51/12 for fermions, andc1b5 log(T/m)/2p2 and c2b51/6
for bosons.

For each particle speciesi we have a fluid equation of th
form ~B4!. These equations are coupled through the collis
term~B5!, andG is in principle a matrix with indices running
over all particle species.8 However, only particles with large
Yukawa couplings are relevant for the friction force, sin
they have stronger interactions with the bubble wall. In

8In Refs. @2,3# a more complex approximation was made, whe
the perturbationd is split up into three different perturbations,d
5m/T1EdT/T21pzv/T. In that case there are three fluid equ
tions for each particle species, with different ratesGm , GT andGv ,
and there arise additional constantsc3 andc4. Our approximation
corresponds to considering only the termm/T.
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cordance with Refs.@2,3#, in this appendix we call ‘‘heavy’’
these particles with largehi . Notice however that heavy par
ticles with large massm i in the unbroken phase may be the
mally decoupled and not contribute to the friction at all. T
remaining ‘‘light’’ particles can be treated as a comm
background perturbationdbg . The fluid equation for the
background is simpler and can be solved to eliminatedbg .
Moreover, the heavy particles primarily collide with the lig
particles, so direct coupling between heavy species can
neglected. The effect of the light background, though, on
eliminated from the equations, is to introduce a weak c
pling between heavy particles. As a consequence, heavy
ticles are only weakly coupled through the background, a
the nondiagonal terms ofG are suppressed with respect
the diagonal terms by a factor 1/g* light , whereg* light is the
number of light species of the background~it is proportional
to the heat capacity of the plasma!. We will therefore neglect
nondiagonal terms ofG in our analysis. Calculating the rate
G is well beyond the scope of this work. They are of t
form a2log(1/a)T, wherea is a gauge coupling@2#. We will
assume that in general,G&1021T.

The right-hand side of Eq.~B4! is the source term of the
equation. It is localized at the bubble wall, so we expect
same ford. Therefore we haved8/d;1/Lw . Normally, Lw
*10T21, so if the wall velocity is small, the first term on th
left-hand side of Eq.~B4! is much less than the second on
and can be neglected. With this approximation the equa
has a simple solution,

d52vw

c1m28

2T2
. ~B6!

If we now insertd f i52 f 08(Ei /T)d i in Eq. ~71! we obtain

~vw
2 21!f91V8~f,T!1

T2

2 ( gic1i

dmi
2

df
d i . ~B7!

Replacing the value ofd i given by Eq.~B6!, multiplying
timesf8, then integrating with respect toz, we get

2V~fm ,T!5vw( giE c1i
2 ~mi

28!2

4G
dz. ~B8!

The left-hand side is the pressure difference between the
phases. It is equilibrated by a friction force of the formhvw .
The friction coefficient is thus

h5 (
i 5 ‘‘heavy’’

gihi
4

G E c1i
2 f2f82dz. ~B9!

The coefficientc1 for bosons depends onmi , but it is easy to
see that its variation withz can be neglected, and we ca
make the approximation

c1b5 loghb
21/2p2. ~B10!

To evaluate the integral in Eq.~B9! we use the thin wall
approximation~37!,
1-19
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E f2f82dz5E
0

fm
f2A2Vdf.

It is clear that this integral goes likefm
2 s. For the model

~68!, the integral is easily calculated using Eq.~84!. It gives
(3/10)fm

2 s, so the friction coefficient is given by

h5( 3S logx i

2p2 D 2
gihi

4

~G i /1021T!

fm
2 s

T
, ~B11!

wherex i52 for fermions andx i5hi
21 for bosons. Accord-

ing to the arguments above, we will make the assump
that the parentheses in the denominator of the last equati
roughly ;1. This gives Eqs.~75! and ~92!.

2. Infrared bosons

It has been shown@55# that coherent gauge fields can ha
important contributions to the friction. Following Ref.@55#,
we will estimate the contribution of a gauge boson toh.
Infrared boson excitations must be treated classically@56#;
furthermore, the dynamics of the soft fields is overdamp
by hard particles@57#. As a consequence, the equation for t
population function is given by@55#

pmD
2

8p

d f

dt
52E2f 1noise, ~B12!

which comes from a similar equation for the amplitude of t
field. Here,mD is the Debye mass, given bymD

2 ;ḡh2T2,
where, according to our previous notation,h is the gauge
coupling, andḡ is roughly proportional to the number o
particles that couple to the gauge field. Averaging over
noise, we get the restoring term2E2d f in the right-hand
side of Eq.~B12!. Since f 5 f 0(E/T)1d f , and d f ! f 0 for
small vw , we can write

d f 52
pmD

2

16pTE3
f 08

dm2

df
f8vw . ~B13!
-

cl
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Inserting in Eq.~71!, multiplying by f8, and integrating
as before, we obtain

V~T!52 (
gauge

gb

vwpmD
2

8 E dz~mb
28!2E d3p

~2p!3

f 08

4pTE4
.

~B14!

Since the momentum integral is infrared dominated, we
approximate f 08(x).21/x2, so the momentum integra
yields T/32p2mb

4 . With mb
25hb

2f2, we have

V~T!5vw (
gauge

gbmD
2 T

64p E dz
f82

f2
. ~B15!

The last integral can be calculated using again the thin w
approximation, Eqs.~37! and ~84!,

E
0

fm df

f2
A2V5

2

Lw
E

0

1

dx
12x

x
. ~B16!

There is a logarithmic divergence that must be cut off wh
the approximations used in this derivation break down@55#.
Perturbation theory breaks down whenmb(f);hb

2T, i.e., at
f/fm;hbl/E. The kinetic theory description that leads
Eq. ~71! breaks down whenmb(f);Lw

21 , i.e., at f/fm

;Al/hb
2. The latter occurs first, so the log is cut off

mb(f)Lw;1. In Ref. @55# it is argued that the contribution
of very infrared degrees of freedom is subdominant, sin
their wavelength cannot resolve the thickness of the w
Hence, the integral in Eq.~B16! gives to leading log,
logfm/f5log@mb(fm)Lw#, and the friction coefficient is

h5 (
gauge

gbmD
2 T

32pLw
log@mb~fm!Lw#, ~B17!

which gives Eqs.~76! and ~93!.
s.
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