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We consider first-order phase transitions of the Universe in the radiation-dominated era. We argue that in
general the velocity of interfaces is nonrelativistic due to the interaction with the plasma and the release of
latent heat. We study the general evolution of such slow phase transitions, which comprise essentially a short
reheating stage and a longer phase equilibrium stage. We perform a completely analytical description of both
stages. Some rough approximations are needed for the first stage, due to the nontrivial relations between the
quantities that determine the variation of temperature with time. The second stage, instead, is considerably
simplified by the fact that it develops at a constant temperature, close to the critical one. Indeed, in this case the
equations can be solved exactly, including back reaction on the expansion of the Universe. This treatment also
applies to phase transitions mediated by impurities. We also investigate the relations between the different
parameters that govern the characteristics of the phase transition and its cosmological consequences, and
discuss the dependence of these parameters with the particle content of the theory.
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I. INTRODUCTION slowdown of the phase transitig®,5]. Therefore, at the
radiation-dominated era bubble walls generically undergo
It is well known that the Universe could have undergonenonrelativistic motion. Since the heat liberated at the inter-
several phase transitions in the early stages of its historjaces is taken away by sound waves, the temperature can be
most of them associated with the spontaneous symmetr§ssumed to be homogeneous, which simplifies the analysis.
breaking of some symmetry. Some examples are the quark- In order to have a first-order phase transition, the free
hadron phase transition at the QCD scale, the phase tranginergy must allow the coexistence of two phases. Therefore,
tions associated to the electroweBl(2)x U(1) symmetry We will assume that the free energy densftydepends on
breaking or to grand unified theories, and the Peccei-Quinfome order parametéusually a Higgs fielfl (x). In a cer-
phase transition, related to the axion field and the st@Rg tain range of temperatures, the free energy bears two minima
problem. Cosmological phase transitions generically producgeparated by a barrier; one of them¢at-0, which corre-
cosmic relics, such as topological defects, magnetic fields, ggponds to the symmetric phase, and the other at a nonzero
baryon number asymmetries, with potentially important cosvalue ¢,(T), corresponding to the broken symmetry phase.
mological consequences. The mechanisms for generatinthe difference in free energy densi(¢,T) between some
these relics build on the dynamics of the phase transition. value ¢ of the order parameter anfl=0, is generally given
In a first-order phase transition the dynamics is essentiallppy a finite-temperature effective potential. The free energy
determined by the nucleation and expansion of bubbles. Adifference between the two minima is thus given by
zero temperature, when a true vacuum bubble nucleates, it
rapidly begins to expand with almost the velocity of ligjht. Fo=Fu=V(n(T), T)=V(T). (1)
On the contrary, at high temperature, the bubble expands in a
hot plasma, which is perturbed by the motion of the bubbleAt the critical temperature the two minima are degenerate,
walls. The plasma thus opposes a resistance to the expansiof,¢,(T¢),T.)=0. Above the critical temperature the sym-
that depends on the wall velocity. As a consequence, bubblmetric phase is the stable one, while beldw it becomes
walls feel a friction force, which prevents them to acceleratemetastableg,, being the absolute minimum. Finally, at some
indefinitely. Then, the velocity quickly reaches a stationarytemperaturel <T,, the barrier between the minima disap-
value, determined by the viscosity of the plasma and theears, and the symmetric phase becomes unstable. At some
pressure difference between the low temperature phase asthge between the temperatuigsand T, bubbles of the
the supercooled one. These quantities depend on the modékoken-symmetry phase will be formed in the sea of sym-
and it is known that the friction can be large enough to preimetric phase. A bubble can be described as a configuration in
vent the wall from acquiring relativistic velociti¢,3]. Fur-  which the order parameter is nonvanishing inside a spherical
thermore, the release of latent heat at the interfaces of thegion (see e.g. Ref[6]). After being nucleated, a bubble
phase transition reheats the surrounding plasma up to a termill grow with a velocity that depends on the pressure dif-
perature that in most cases is close to the critical temperderence at the interfacdp=—V(T), and on the viscosity of
ture. Consequently, the pressure difference that drives bubbtle hot plasma in which it expands.
expansion may decrease considerably, causing a drastic In this work we will be concerned with first-order phase
transitions in the radiation-dominated epoch. Our aim is to
study the development of such phase transitions within a
*Electronic address: megevand@ifae.es completely analytical approach. Here we concentrate on the
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determination of the parameters that govern relic formatiorantiparticles is generated in front of the walls of expanding
(e.g. number density of bubbles, bubble wall velocity, Jetc. bubbles. This asymmetry biases the baryon number violating
An analytic study of cosmological consequences will be adsphaleron processes in the symmetric phase. The resulting
dressed in Ref.7], where the results of the present analysishbaryon asymmetry is caught by the walls and enter the
will be used. In Sec. Il we briefly review the influence of pubbles, where baryon number violating processes are turned
phase transition dynamics on the mechanisms for generating.
cosmic remnants in first-order phase transitions. It is important that the sphaleron processes be suppressed
In Sec. Ill we study a phase transition that completely;, the proken symmetry phase, in order to avoid the washout
develops al =T, with the two phases in equilibrium. This of the generated BAU when equilibrium is established after
is a good approximation in the case of inhomogeneous nuclgne phase transition. This requirement imposes a condition
ation in the presence of impurities. In the case of homogegy, the value of the Higgs field at the temperature of the
neous nucleation of bubbles, this approximation correctly defransition[Q], d(T)/T=1. Sinced,, is the order param-
scribes the evolution of the phase transition after some latendier, this is a condition on the strength of the first-order phase
heat has been released. An interesting feature of phase eqiznsition.
librium is that it is simple enough to solve analytically, in-  1p¢ resulting BAU depends also on the bubble wall ve-
cluding back reaction on the expansiqn of the Universe. Thi%city. On one hand, if the velocity is too large, the left-
is due to the fact that temperature is constant all the wayanded density perturbation will pass so quickly through a
through the phase tran5|tlon. We thus can pbtaln the fractloai\,en point in space that sphaleron processes will not have
of volume of the Universe that is occupied by the low- gnoygh time to produce baryons; thus the resulting BAU will
temperature phase as a function of time, with no need of anje small. On the other hand, for very small velocities thermal
numerical calculations. , ‘equilibrium will be restored and the baryon asymmetry will
_ Section IV is devoted to the analysis of the phase transipe erased by sphalerons; thus the BAU will be small again.
tion in the case of homogeneous nucleation. The main difag 5 consequence, the generated baryon number will have a
ference with the previous case is the initial stage of SUPeTpeak at a given wall velocity, which is of order 19[10—
cooling and quick reheating back to the critical temperatureiz]_
Sectior_n V contains an analytical study of the phase t.ransition Both values ofg,, andv,, depend onl and vary during
dynamics. In Secs. VI and VIl we analyze the relations beye phase transition. The dependence of the wall velocity is
tween the different physical parameters involved in the dyinore critical, since reheating may cause it to descend two
namics of the phase transition, leaving some technical dissgers of magnitude before the transition completes. Baryo-
cussions to the Appendixes. Our conclusions are summarlzeéienesiS may be either enhanced or suppressed by this effect

in Sec. VIII. [5,13], depending on which side of the peak the initial ve-
locity lies.
IIl. COSMOLOGICAL CONSEQUENCES OF PHASE Baryon mhompgengﬂe&&\ g_eneral feature o_f cosmologi-
TRANSITIONS cal phase transitions is the difference of particle masses be-

tween the high- and low-temperature phases. These mass dif-

Several cosmological objects may be formed in a phasérences give rise to different number densities in the two
transition of the Universe. Their abundance and characterigphases. At the QCD phase transition, for instance, baryons
tics depend on details of the development of the phase trarare much heavier in the hadron phase than in the deconfined
sition. Due to the complexity of the mechanisms by whichquark phase. As the hadron phase expands, baryons are
these objects are created and the difficulty of describing theushed into the quark phase region, leading to localized
phase transition, several details of the dynaniesg. the clumps of high density surrounded by large voids of low
variation of the nucleation rate or the wall velocity during baryon densityf14—16. An important consequence is that
the transition are often disregarded for the sake of simplic- large amplitude, small scale density fluctuations may survive
ity. An analytical study of the phase transition is thus impor-until the nucleosynthesis epoch, affecting the standard sce-
tant since analytical expressions will help taking into accounnario of big bang nucleosynthesis. Therefore, inhomoge-
the dynamics in a more rigorous way. In this section weneous nucleosynthesis may put constraints on the quark-
review how phase transition dynamics affects the cosmologihadron phase transitigisee e.g. Ref.17]). Moreover, if the
cal remnants. quark phase reaches sufficiently high density, its pressure

Electroweak baryogenesi®uring the last two decades may balance that of the hadron phase. The quark matter
there has been much interest in the possibility that the eledrapped in small regions of space forms quark plasma objects
troweak phase transition could be the framework for the genthat may survive until the present epdd#,18,.
eration of the baryon number asymmetry of the Universe Baryon inhomogeneities may also arise at the electroweak
(BAU). A first-order electroweak phase transition providesphase transition, since the amount of baryons produced
the three Sakharov’s conditions for the generation of a BAUthrough electroweak baryogenesis depends drastically on the
although physics beyond the minimal standard ma@&&ll)  wall velocity, and the latter has a considerable variation dur-
is mandatory in order to obtain a quantitatively satisfactorying the phase transitigrb]. The geometry of the electroweak
result(for reviews on electroweak baryogenesis see F83f. inhomogeneities is in general quite different from the QCD
Due toCP violating interactions of particles with the bubble case. If the BAU peaks at a certain wall velocity, then the
walls, an asymmetry between left handed quarks and thehigh density regions will form spherical walls, whose radius
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depends on the moment in the bubble evolution at which th@e the electromagnetit/(1),,,. Nevertheless, this mecha-
peak velocity is attained. Furthermore, baryon number denmism can take place at the electroweak phase transition,
sities with the wrong sign may arise in some regions ofwhere unstable cosmic strifgand hypermagnetic fields
space, depending on the baryogenesis scerdélal3,19. may be formed. The latter are subsequently converted to
This gives rise to the interesting possibility of nucleosynthe-U(1).,, magnetic fields. It is interesting to note that the pres-
sis in the presence of antibaryoitsee for example Ref. ence of magnetic fields may affect the dynamics of the elec-
[20]). troweak phase transitiofsee e.g. Refl27]).

However, due to baryon diffusion and “neutrino infla-  Calculating the magnitude of the magnetic fields and the
tion,” baryon inhomogeneities generated at the electroweaklensity of defects that are left at the end of the phase transi-
phase transition hardly survive until the nucleosynthesis tim&on involves the passage from three-bubble collision simu-
(see e.g. Refd5,21]). Nevertheless, they may survive until lations to the computation of the full phase transition. Evi-
the QCD scale. In that case, electroweak scale inhomogengently, this is a difficult task. Although some simulations
ities can act as impurities for the quark-hadron phase transhave been madee.g. Ref.[28]), several simplifications are
tion (see the next section generally required, which include forgetting about variations

In summary, we can say that the amplitude and scale oh the nucleation rate and the velocity of expansion of
baryon inhomogeneities generically depend on the meaRubbles during the transition. An analytical investigation of
nucleation distance and on the variation of the velocity ofPhase transition dynamics may therefore clarify the picture
bubble expansion. and provide useful tools for the calculation of defect forma-

Topological defects and magnetic fieltlsa globalU(1)  tion and magnetic field generation.
symmetry is spontaneously broken at a first-order phase tran-
sition, the pha_lse angl@_of the Higgs field within each nuple- Ill. PHASE EQUILIBRIUM
ated bubble is essentially constant, but phases in different
bubbles are uncorrelated. When bubbles collide, the discon- We begin by considering the limiting case in which the
tinuity in the Higgs phase is smoothed out to become a confirst-order phase transition is as slowest as possible, namely,
tinuous variation. The so called “geodesic rule” states thatthat of coexistence of the high- and low-temperature phases
(for energetic reasonsthe shortest path between the two at the critical temperaturg.. Such a cosmic separation of
phases is chosd23]. When three bubbles meet, a vori@gx  phases has been studied for the QCD phase transition
two spatial dimensionsor a string(in three dimensionsnay ~ [14,16,29,30 At the critical temperature there is no pressure
be trapped between them. This mechanism is obviously gertlifference between phases at the bubble walls, so the bubble
eralized to higher symmetry groups and other kinds of topoexpansion takes place almost in equilibrium. Assumd at
logical defects. Ignoring the dynamics of phase equilibration="T. there are already regions with low-temperature phase.
it is easy to see that the number density of defects is propoAs the Universe expands, the fraction of space occupied by
tional to the number density of bubbles. However, the finathese regions increases, as the high-temperature phase con-
number of defects will depend strongly on the velocity of verts to low-temperature phase. The loss of energy due to the
bubble expansiofi24]. If the latter is much less than the expansion of the Universe is thus compensated by the latent
velocity of light, then phase equilibration between two heat released at the interfaces, and the temperature remains
bubbles will have probably completed before they encountegonstant. In this scenario there is no supercooling.

a third bubble, thus reducing the chances of trapping a string. Since afT ;. the nucleation rate vanishes, such a first-order

The above picture is in fact a rough simplification of the phase transition is only possible in the presence of impurities
defect-formation problem. One complication is due to dissi-that induce the formation of bubbles. In this case inhomoge-
pation, since the Higgs field is coupled to the other fields inneous nucleation theory applies. In a phase transition medi-
the thermal bath. Another complication arises when considated by impurities there will still be some supercooling,
ering a gauge symmetry, and is caused by the fact that thehich we neglect in this section for simplicity. The role of
phase of the Higgs field is not a gauge-invariant quantity, sdémpurities in the early Universe could be played for instance
it is convenient to define a gauge-invariant phase differencéy topological[31,32 or nontopological soliton$33—-35.
between two bubble$24]. The phase difference is thus These may exist in the high-temperature phase, containing
linked to the gauge field. In this case, dissipation can béghe low-temperature phase in their core. In this case their
taken into account by introducing the conductivity of the configurations become unstable or metastable below the
plasma. Then one can model the collision of three bubblesritical temperature. When the system cools belbwthese
and calculate the evolution of the phase difference and gauggbjects begin to expand and convert the Universe into the
field. One can say that a vortex is formed whenever a quartfue vacuum.
tum of magnetic flux is trapped in the unbroken-symmetry Another example of inhomogeneous nucleation is the case
region between the three bubbles. of the QCD phase transition in the presence of baryon num-

From the above it is clear that the formation of local vor- ber inhomogeneitieg36]. These may arise as a natural con-
tices is associated with the generation of magnetic fieldssequence of electroweak baryogend§ik and can survive
Therefore bubble collision constitutes also a mechanism fountil the QCD scalg37]. Since the critical temperature is
generating the cosmic magnetic fielgsg., see Refl25]).

Of course, the magnetic field that is formed in this way cor-
responds to a spontaneously broken symmetry which cannot!See for example Ref26].
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different in regions with different chemical potentj&i8,39, Ts a3
bubbles will nucleate first in those regions with a higfier fo=—| 1— —'3) . (5)
[22]. If such regions are relatively small, and if they achieve L a

the necessary amount of supercooling while the surrounding L
background reaches the critical temperature, then the baryon | N€ dependence of the scale factor on time is given by the

inhomogeneities operate as impurities for inhomogeneouk'€dman equation

nucleation. S\ 2
Even if the phase transition proceeds by homogeneous H2§<E) :SWGP (6)
nucleation of bubbles, phase equilibrium will describe quite a 3 7

well a good part of the transition, whenever the latent heat is o )

at least comparable to the energy density difference betweeffhere for simplicity we have neglected the tekia®. At
the critical temperature and that at which nucleation effec€onstant temperatufg; and pressur@,, the energy density
tively begins. In that case, the energy released will reheat thi$ given by
plasma back to a temperature very closd o At that mo-

ment bubble nucleation virtually stops and the two phases

remain close to equilibrium until the full latent heat of the
transition is eliminated. We will analyze this case in the nex
section.

The customary equation for the adiabatic expansion,
—3H(p+p), tells us how the Universe takes energy from
the hot plasma. Herg is the energy density is the pres-
sure, andH is the expansion rate. It can be equivalently
written in terms of entropy densitg=—3Hs, which is just wherew= /677G p, and the constant phase is determined by
the statement of entropy conservati@y const. It will be  the initial conditiona(t;)=a;, d=arcsin/p./T.S,.
convenient to use it in the formea 3. At the beginning of During the phase ftransition we have two coexisting
the phase transition the whole Universe is in the symmetriphases in the radiation dominated era, and we may consider
phase, while at the end of the transition it is filled with the different possibilities for the equations of state. The simplest

p=TcS—pPc= Tcsua?/a3_ Pc, (7)

where we have used E®) in the last equality. Inserting in
tEq. (6) and writingH = $a~3da®/dt we can easily solve the
equation fora3(t),

a 3

a

Tesy

sirf[ w(t—t;)+ 4], (8

C

broken symmetry one, so we can write one is to assume that the Universe is radiation dominated
before the phase transition, i.e.,
s=su(To)aj/a’=sy(To)af/a’, 2
Pu=pul3, €)

wheres,, is the entropy density of the unbrokébroken _
symmetry phasea is the cosmic scale factor, anal s, with
=a(tj) its value at the beginningend of the transition.

We assume that, since the phase transition occurs very
slowly, the latent heat released at the interfaces is quickl hereg, is the number of effectively massless spediés
distributed throughout space and the temperature is homoge- * '

neous. We also assume that pressure and temperature rem?ﬁﬁt’l_itih'Ss'svggltjféiﬂ'sélgtifgﬁt:/%ﬁ]@z\%e d(sjyér:r:gttré%r;:gase
constant during the phase transition. Phase coexisterte at 99 P

—T. means that there are regions of space with differen pond to the true vacuum, so we should add a constant en-
equcations of state. Thus the gentropy dgnsity has differen%rgy density to account for the energy of this state and have
constant values,(T.) and s,(T,) inside and outside the negligible cosmological constant after the phase transition.

bubbles of broken symmetry phase respectively. The uantitlt is interesting, however, to consider first this simpler case.
. . y yp pectively. d fience, atfT=T, Egs.(9) and (10) give p.=p,/3 andT.s,
s in Eqg. (2) is the average entropy density of the Whole_4 13, S0T.S,/po=4, 8= /6, andw= 3H,/2
system. The entropy in a comoving volug=V,+V,is Ef)gfo;estheczjh;sce_tréns;t:jﬁ ' 8 “é— A \I/vit.h T
the sum of two contributionsS=s,V,+s,V,. Thus, ) L NOTP, Au
S=SVotsuVy «a~ 4, so Eq.(6) gives the familiar relatiotd = (2t) 1. The
s=5,+(Sy—5u)fp, (3y  temperature descends like'?, and afT=T, the phase tran-_
sition begins, since we are assuming that no supercooling

wheref,, is the fraction of space that is already in the broken-0ccurs. Hence we can use the relatitp= 1/2t; as an initial
symmetry phase. The entropy, energy and pressure are deendition. The scale factor thus takes the very simple form
rived from the free energy. AT=T_ the pressur@, is the

same in the two phaseAp=—V(T.) =0. The latent heat of (3 .y sinz(ﬁ i i Z)
the phase transition is 4 6/’

pu(T) =729, T30, (10)

3
1y

L=pu=pp=Tc(Sy=Sp) =TV '(To). (4)
2In generalg, depends ofl. We will assume for simplicity that
From Egs.(2) and (3), and using Eq.(4), we obtain the g, is constant during the phase transition. We discuss the effect of
dependence of, on the scale factor a variation ofg, in Sec. VI.
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N which occurs betweet) andt; (solid ling). After the phase
N transition(short dashesthe expansion slows down, and the
rate eventually vanishes at a tirhg
To consider a more realistic situation we must add a con-
stant term~L to the initial energy density, so that we do not
have a cosmological constant of the order of the scale of the
- - phase transition. We take for simplicity

pu(T) =729, T430+ L. (14)

. It will be more convenient to re-express the general solution
0 - (8 in terms of the conditions att=t;, (a/a;)®

ti tf to = (Tesy/po) S w(t—t)+ &7, with &' =arcsinp,/Tos,.
- _ . 2 T4
FIG. 1. The expansion rate of the Universe for a phase transitiof FOM EQ. (14) it follows that py(Tc) =779, Tc/30, Tes,

at constanfT=T,, in the casep,= 7?g, T*/30 (negative cosmo- :4Pb/3_’, Tesp=Tcesy—L, and pc=pp/3—L. Therefore we
logical constant can write

which does not depend on any parameter, i.e., during the a 3_4—4r - JV3V1—4r t—ty

transition the expansion of the Universe seems to be affected a_f T 1—4r Si 4 £ +6 (15

always in the same way, regardless the thermodynamical pa-
rameters of the theory. However, thermodynamics affects thg,iin
duration of the phase transition and the subsequent evolution
of the Universe, as we shall see immediately. [1—4ar

In the above equations it is apparent that the dynamics of o' =arcsi =4 (16)
the phase transition depends on thermodynamics only

through the ratio ~
g where we have defined the time scate (2H;) . Before

Su—Sp L the phase transitionp is given by Egq. (14), so a
= s Ty (120 «sint¥2(\327GL/3t). This has the forma~tY2 for t

<(327GL/3)" Y2 and departs from the radiation-
The fraction of volume is thu,=r ~[1—(a/a;) "], with  domination behavior unless?g, T*/30>L.
a/a; given by Eq.(11). The phase transition concludes when  The fraction of volume in the broken symmetry phase is
fp=1 [equivalently[29], whensin Eqg. (2) equalss,], so its

duration can be determined easily. Making use of some trigo- fo==|1—(1—r) a 3 17
nometric algebra, b=y as '
ti—t;, 4 VJ3(1—\1-4r/3) and the duration of the phase transition is given by
e ﬁarcsm PN . (13
| -t 4N3  JI-4r(J1+4r/3-1)
Notice that Eq.(193) fails to give an answer for>3/4. The i marcsm (4I3)1—-1 - (18

problem is that the scale factor given by Eijl) reaches a

maximum when the argument of the sinus7i#2. If r is |t can be easily checked that, for smallthis solution coin-
small enough, that never occurs betweerandt;. Forr  cides with the previous one. Furthermore, for0, the du-
=3/4 it occurs at=t, and for larger it happens befor&,  ration of the phase transition vanishes, as expected. At first
which means that the Universe begins to collapse before thgight, there seems to be a problemLit py/3 (i.e., for r
phase transition has completed. This is not surprising. In=1/4). However, all the previous expressions are still valid

deed, if the energy density of the unbroken phase is given bYnd real in the range 1#4r <1. They can be written in the
Eq. (10), then the energy density of the broken symmetrysorm

phase ispy(T.) =g, T*30—L. So, there is a negative

cosmological con_stant, which wi!l begin to dominate sooner a\® 4—4r \/g far—1 t—t
or later. If L<p, (i.e.,r<3/4), this will not happen during = =2 1smh2 TT‘l' o', (19
the phase transition, but below the critical temperature the ar r= t

Universe will collapse. )
In Fig. 1 we have plotted the expansion rate of the Uni-With
verse from the beginning of the phase transition to the mo-
ment at whichH becomes zero. The evolution bf without 5 arcsintm /22" 20
a phase transition is represented with a dashed (lioreg 4—4r’
dashes We have chosen a relatively large value 0.5 in
order to get a visible departure during the phase transitiorgnd
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N quark-hadron phase transitip#il]. Notice that in the case of
H; large supercooling there will be an important departure from
equilibrium, at least at the beginning of the phase transition.
For the rest of the paper we will be mostly interested in the
Hy caser<1.

The nucleation and growth of bubbles in a first order
phase transition has been extensively studied in the context
of the QCD[4,41] and electroweaK4,5,30,42—44 phase
transitions. After a bubble is formed, it grows due to the
pressure difference at its surface. There is a very short accel-
0 eration stage until the wall reaches a terminal velocity due to

Py : the friction of the plasma. It can be seen that this initial
¢ f period in the history of the bubble expansion is negligible.

FIG. 2. The expansion rate of the Universe for a phase transitioere_ will assume again th‘_'ﬂ the system remains close to equi-
at constanT=T,, in the case,= w2g, T4/30+L. librium, in accordance with the assumption t_hat the velocity
of the bubble wall is small. If the wall velocity is less than

the speed of sound in the relativistic plasma,<<cg
tf:t‘ :ﬂarcsinhvm_l( V1tar/3- 1). (21) =VU3, the wall propagates as a deflagration front. This
t Var—1 (41\3)J1—r means that a shock front precedes the wall, with a velocity

vsn>Cs. Forv,<<cg, the latent heat is transmitted away

Forr—1 the duration of the phase transition becomes infifrom the wall and quickly distributed throughout space. We
nite because the constant energy denkiig comparable to can take into account this effect by considering a homoge-
the energy density of the radiation, playing the role of aneous reheating of the plasma during the expansion of
cosmological constant that starts dominating Tat T, . bubbleg5,13). (For detailed treatments of hydrodynamics at
Therefore the expansion of the Universe becomes too fagtifferent wall velocities see, e.g., Ref4.,30].)
and the phase transition never ends. One expects that some
of our initial assumptions will break down near this limit. A. Bubble nucleation
For instance, the temperature and expansion rate will not be , . ,
homogeneous, due to the significant energy density contrast '€ thermal tunnelling probability for bubble nucleation
between the two phases and the rapid expansion of the UnRer Unit volume and time is45,46
verse. - ~S3IT

In Fig. 2 we plot the expansion rate as a function of time F=A(T)e ' 22
for r=0.8. We see that without the phase transition the Uni-the prefactor involves a ratio of determinants associated
verse would enter exponential expansiéfi-¢ const). After  yith the quantum fluctuations around the instanton. In gen-
the phase transition the evolution returns to the radiationgrg| jt must be evaluated numerically. It is usually assumed
dominated relatiotd =1/2t. By the end of the transition the 5 pe roughly of ordef™®, since the nucleation rate is domi-
departure of the expansion rate from its previo~us evolutiohated by the exponential in E¢R2). We will consequently
becomes appreciable, because in this dasej~t~t;. If  assumeA(T)=Ts. S;(T) is the three-dimensional instanton
the duration of the phase transition is short in comparisomction, which coincides with the free energy of a critical
with the age of the Universe, the back reactiontbean be  bubble(i.e., a bubble in unstable equilibrium between expan-
disregarded. According to E18), this happens when the sjon and contraction
energy released is small in comparison to the energy density

of the plasmasmallr).

2
+V(e(r),T)|. (23

o 1/d
53=4wa r2dr[§(d—(f

The configuration of the nucleated bubble may be ob-

In the case of a phase transition mediated by homoget’ained by extremizing this action. Hence it obeys the equa-
neous nucleation, bubbles start to nucleate at a temperat 8

T<T., when the gain in free energy inside a bubble is
enough to compensate the cost of gradient energy at the sur- 2
face. We have seen in the previous section that, even if d_d’ Ed_¢: ’

; - + V(). (24)
bubbles begin to grow ai=T., the phase transition may dr2 1 dr
not come to an end if the parameteis close to 1. The case
of homogeneous nucleation is even worse due to the addFor temperatures very close 1q, the width of the bubble
tional supercooling. As we shall see, a large latent heat is wall at the moment of formation is much smaller than its
general feature of strongly first-order phase transitions. Imadius, and a thin wall approximation can be ufed6), in
this case there may be extreme supercooling from which theshich S; is expressed as a function of the critical bubble
Universe may never recovéB2,40. Considerable super- radiusR;, the free energy differenc¥ between the two
cooling and latent heat release may occur for instance in theinima of the potential, and the bubble wall surface energy

IV. SUPERCOOLING
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o. The radiusk; can thus be obtained by finding the maxi- tion will not hold, in principle, for the QCD phase transi-
mum of S;. A similar approximation can be used to estimatetion.) The wall velocityv,, is determined by the equilibrium
the free energy and radius of a thick-walled bubble wherbetween the pressure differengéT) and the friction force
temperature is not so close 1@ [43]. However, as pointed exerted by the plasma. The latter is proportional to the wall
out in Ref.[44], due to the exponential dependence, the tunvelocity. The constant of proportionality is the friction coef-
nelling probability may be strongly overestimated by usingficient » (see Sec. Vj| so

approximations t@;, leading to a sooner completion of the

phase transitiod.In Ref.[48], different approacheg.e., thin vw=—V(T)/7. (28)
wall approximation, one- and two-loop perturbative esti- ) ) . .

mates, etg. have been compared to lattice resufighich The e_xponent in Eq(25) is minus the fraction qf volume
include calculation of the prefactofor the case of the elec- 0ccupied by bubbles that nucleated betwgemdt, if we do

troweak phase transition in the minimal standard modelOt take into account overlapping of bubbles. At the begin-
There, it was found that the different approximations make?"d of _ nucleation — the — formula  f4(t)
errors that range from 20% to a factor of 2. Since we do nof=(47/3)JT(T")R(t’,t)"dt’ is correct.

intend to do numerical calculations in the present work, we  USing again Eqs(2) and(3), we obtain the analogous of
will use the thin wall approximation. This approximation Eq. (5,
may be reasonable or not, depending on the amount of su-

. L 3
percooling(see the next section

a
fb SU(T) - Su(Tc)E) ) (29)

B 1
su(T)—sp(T)
B. Phase transition dynamics
In the previous section we assumed constant temperatur%lJt since we already have an equation for namely, Eq.
and used Eqg2) and(3) to obtain the fraction of volumé, 5), we use Eq(29) to expressT in terms off, anda,
in terms of the scale facta. Then the Friedman equation

determineda(t). In the present case the temperature is not T3- V'(T) Tifa? (30
constant, so we need an extra equation to solve for the three 272g, 145 BT g3
quantitiesf,,, a andT. Such an equation arises by consider-
ing the nucleation and growth of bubblg32], Equation(30) has come across within an approach that dif-
t . fers from previous works, so it is worthwhile spending a few
fb(t)zl—exp{ _ 4_7"f w T(THR(t' t)3dt’] words discussing its physical meaning. We may follow for
3 Jyl a(t) ' ' instance Ref[5], and use energynonconservation in the

(250  following way. On one hand, we may write the total energy
. Lo . ) in a volume Vy=V,+V, as E=[p,+Apf]Vy=pVy,
whereT’ is the temperature dt=t’, t; is the time at which where Ap=p,—p,. If the Universe were not expanding,

the Universe reaches the critical temperature, energy conservation during the phase transition would give
P 2 . . - -
ti=&Me/Te, (26) p=putApfy+Apfy=0. 31)
whereé= \/90/32773g*, andR(t’,t) is the radius of a bubble o . .
that nucleated at timg and expanded until the tinte This gives the ratg, at which the plasma takes energy from
the change of phase. On the other hand, when it is not un-
a(t) t a(t) dergoing a phase transition, the Universe takes energy from
R(t',t)= RC(T’)—+f vW(T")———dt".  (27)  the plasma at a rate
a(t/) ’ a(t/!)
The factors ofa in Egs.(25) and (27) take into account the pu=p=—4pyH. (32

fact that the number density of nucleated bubbles is diluted I . .

and the radius of a bubble enlarged, due to the expansion gtn\;vr?géog (tar;]zrtgv;/loasquatlons, we obtain the total rate of
the Universe front’ to t (see e.g. Ref49]). We can assume
that this effect is negligible if the duration of the phase tran-
sition is small in comparison with the age of the Universe.

As we have seen in the previous section, this is true whe? h ion i if the oh
L/pp<1, which is the case we will considehis assump- rom where we get an equation o However, If the phase
transition and the expansion of the Universe are taken into

R account at the same time, additional terms appear both in
3In many cases the phase transition occurs in a tiny range olT:'qs'(gl) and(32). On one hand, there is a term of the form

temperature abouT,, so it is a good approximation to replace PYu in E, which produces a new term 3Hp. This just
almost every quantity by its value @=T,. The important excep- accounts for energy dilution. On the other hand, the expan-
tion are quantities such aS;, that depend directly on the free sion of the Universe takes energy not only from radiation,
energy difference/(¢,T), which varies drastically withT at the ~ since it is not the only component in the equation of state.
critical temperaturé¢47]. Bearing in mind the two coexisting phases during the phase

pu=—Apf,—Apf,—4p H, (33
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transition, the rate at which energy conservation is violated igess, a mass of ﬂuim~pR3 is moved a distance of ord&
given bydE= —p,dV,— p,dV,. Using this to obtairp, we |f this is done in a timd, the kinetic energy involved in the
finally find process iK ~m(R/t)2. This energy is supplied by the sur-
) ) ) ) face of the bubbles. The surface energy released in the pro-
pu=—Apfp—Apfp—=3H(py+pu+Apfp+Apfy) —Apf,,  cessisAE~oR? so this occurs in a time~ (pR%/ o) Y2
Once bubble coalescence begins, it will be the fastest
mechanism of bubble growth if the rate! is larger than the

whereAp=p,—p,. Sincep+p=Ts, it can be seen that the rate v,,/R given by the wall velocity(28). Therefore this

first terms of this equation reproduce E83), but there are ; . i -
additional terms. Using=dp/dT and rearranging Eq34),  Process will dominate until bubbles reach a characteristic

2 . .
we see that it is just the equation for entropy conservation,SiZeéRi~a/vyp. If Ri<Ro, then it never dominates. Other-
wise, during the period in which the radius varies fregito

sy+Asf,+Asf,=—3H(s,+Asfp), (35) Ry bubble coalescence is the fastest process and must be
taken into account.
from which we may re-obtain the res80). The discrepan- The process of bubble coalescence may end in two differ-

cies between Eg33) and Eq.(34) will not be important as  ent ways. Ifv,, is large enough, the radil, is very close to
long as the latent hedt is not significant andl remains R, and after a short period bubbles continue to grow with
close toT,. Indeed, we can neglect the last two terms insidevelocity v,,. If, on the contraryp,, is very small, then coa-
the parenthesis in Eq34), provided thatAp<p. The last |escence dominates for a larger period, until the low-
term in Eq.(34) is responsible for the appearance of thetemperature phase occupies more than 50% of the total vol-
entropy differenceAs=—V'(T) as the factor off, in Eq.  ume. At this moment the regions of high-temperature phase
(35), instead of the energy differencep=V(T)—-TV'(T). detach into isolated bubbles and the process stops. The inter-
Since V(T.)=0, the two quantities are related hp  face velocity is again determined by pressure difference, fric-
=TAsfor T=T,. Therefore, Eq(33) gives a good approxi- tion, and latent heat release, so these bubbles shrink with
mation in the case<1. Still, the fact that in Eq(30) the  velocity v,,. This occurs at a bubble radiuRR,
temperature is already integrated may constitute an advan-(0.5h,)Y*. Notice that, although this expression is similar

tage for analytical calculations. to that forRy, in factR, may be very different froniR, since
Finally, the evolution of the scale factor is given by the n, may decrease significantly during the process due to the
Friedman equation, expansion of the Universe.

Finally, when bubbles of the high temperature phase are
so small that surface energy becomes dominant over volume
energy, the shrinking is accelerated until the symmetric-
phase bubbles disappear or, eventually, until a topological
If Ap<<p, then one can use the customary formidlaT? for  defect is formed.
the expansion rate. In fact, the variationgfis of the same
order ofAp, so if we neglectA p, to be consistent we should V. BUBBLE NUMBER AND INTERFACE VELOCITY
also setH =const<T2 in this approximation. Again, this is

reasonable if the duration of the phase transition is short !N the case of homogeneous nucleation, the Universe
enough. cools down to a temperaturBy<T. before bubble nucle-

In each particular model, Eq&5), (30), and(36) can be ation becomes appreciable, so the phase transition effectively

used to calculate numerically the evolution of the phase tranSta'ts at @ timéy=>t; . Then, the phase transition proceeds in

sition. In this paper, though, we will make analytical estij- WO main steps. At the peginning bgbblgs nucleate Wit.h a rate
mates of the parameters that are relevant for the cosmologl-(Tn), and expand with a velocity given by the friction

cal consequences, such as the temperature and wall velocft@efficient 7 and the pressure differencé(Ty). After a
in the different stages of the transition. short time the energy released by the change of phase reheats

the Universe up to a temperatufe close toT.. Then, a
longer period begins, in which the two phases are close to
equilibrium. How long is this period, and how closeTisto
When bubbles occupy more than 30% of space, they meéi., depends on the latent heat. The free energy difference in
and percolate. This occurs when bubbles have a characterithis stage isV(T,)=0, so the velocity of bubble expansion
tic radiusRy~ (0.3h,)*3, wheren, is the number density of decreases and the bubble nucleation rate becomes extremely
bubbles. Bubble coalescence provides a different mechanissuppressed. Therefore, this second stage may be very similar
of bubble growth, in which the driving force is surface ten-to the inhomogeneous nucleation phase transition discussed
sion instead of pressure difference. When bubbles collide anith Sec. IIl.
percolate, they arrange themselves into a system of fewer, In order to avoid numerical calculations, we will need
larger bubbles in order to minimize the surface area. We casome approximations for the fraction of volurfig, the tem-
estimate the characteristic time of this process as followgeratureT, and the expansion rate of the Univet$¢formu-
[14]. Assume that when two spherical bubbles of radius las (25), (30), and(36)]. We notice that the latter cannot be
meet, they form a single bubble of radiu¥®R. In this pro-  affected by the phase transition until the energy released be-

) 87G
H2="3=[pu(T)+ Apfy]. (36)

C. Bubble coalescence
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comes appreciable. Furthermore, when this occurs, th®/ith the linear approximatiod0), the wall velocity is given
plasma has reheated upTp=T,., and enters the phase equi- by

librium stage. We have seen in Sec. Il théts not modified

significantly if the parameter defined in Eq.(12) is small. vw=L(T,—T)/75T,. (43
So, we do not need to consider back reaction on the scale
factor and we will assume that the evolution of the Universe
does not depart from the standard relatidds=1/2t, a . N
«t2 We will also need an approximation for the nucleation Neglecting the effects of latent heat, th_e phase transition
rate and free energy difference. may be assumed to occur roughlytatty, since it goes on

for a very short intervalst<ty [47]. With the inclusion of
latent heat the phase transition evolves during a longer pe-
riod, that begins aty . In this case, we expect that the first

If the width of the wall is much less than the radius of the part of the evolution, in which the Universe is reheated up to
bubble, we can neglect the second term in @4) to obtain  a temperaturd, , has a time scale of the same order of the
the wall profile (this approximation is exact at the critical time interval 8t of the phase transition without latent heat.
temperature, at whicR.— o, and gives the usual kink pro- This is confirmed by numerical calculatiof3]. The nucle-
file). If we then multiply byd¢/dr and integrate using the ation ratel’ vanishes al =T, but it changes very quickly
boundary conditionsd¢/dr=0 and V=0 outside the with temperature and becomes of ordérat T=T,, where

B. First stage: Nucleation and reheating

A. Thin wall approximation and linearization of V

bubble, we find that the barrier between the two minima of the free energy dis-
5 appears. This is an extremely large rate, so it is impossible
E(d_‘ﬁ =V(¢) (37) that the Universe supercools closeTg [47]. We will as-
2\ dr ' sume that the temperatulg, is close enough td . that the
approximations of the previous subsection can be used.
so,d¢/dr=— 2V since at the walkb falls from ¢y, to O. In Ref.[43] the onset of nucleation was assumed to occur
Inserting this in Eq.(23) we obtain the free energy of the when the probability that a bubble was nucleated inside each
critical bubble in the thin wall approximation, causal volume is 1,
a7 . 5 N
S3=—5 RV(T)+4aR¢a(T), (39 Jt vyldt~1. (44)
where the free energy differendT) is defined in Eq(1),  The causal volume is given by, =d3, where the horizon
ando(T) is the surface tension of the bubble wall, size dy; scales like the age of the Universé,~2t. The
cosmological scalg however, is in general too large in com-

UIJ d_‘/’) zdr: fd)m\/ﬁdd% (39) parisqn w.ith the scale of phase transition dynamics.,,'which at
dr 0 t=ty is given byty—t;. The scale of phase transition dy-

namics is roughly determined by the temperature variation

Maximizing with respect tdr, we get the values of the criti- during the phase transition, which is bounded by the differ-

cal radius and action, enceT.—T,.
Consequently, it may be more appropriate to consider a
R.=—20/V, different causal distance,, related to the dynamics of the
phase transition in the following way. We may say that
S3=16ma/3V2. bubbles begin to “see” each other at a timg when their

_ o . mean separation is of the order of the distance travelled by a
Sinceo does not change significantly during the phase transound wave since timg. Then, the causal distance is given
sition, it can be approximated hy(T.). by d.~c(ty—t;), wherecs=1/\/3 is the velocity of sound

Since the thin wall approximation is valid whéndoes in the relativistic fluid. This defines a causal volume in terms
not depart significantly fronT., we can also make a linear of T

approximation for the free energy difference,
V. =[CéMp(1/T3—1/T2)75. (45)
V(T)=L(T—T)/Te. (40) o LR N e
We remark that the real improvement in using E4f) in-
stead ofVy does not come from considering the velocity of
3 sound, which is-1, but from the fact that in many cases the
S(T)  16mo°T, time elapsed front; to ty will be much less than the age of

So, the exponent in the nucleation r@22) becomes

T 3LYT,~T)? (1) the Universet;=¢M p/Tﬁ. The volumeV, is thus sup-
pressed with respect 86, by a factor[(T,—Ty)/T]. The
and the critical radius is nucleation time calculated in this way is larger, since more
bubbles need to be nucleated before they are separated by a
R.=20T./L(T.—T). (42 distance at which they are causally connected to each other.
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There will be a bubble in each volumé& when

t
f "V T4e S(MITgt~1. (46)
t

To evaluate the integral in EqJ46) we make use of the
following approximation[43] (see also[30]). The three-
dimensional action in Eq4l) can be expanded about any
temperaturel , in the form

S3(T)  S(Ty)
T T,

1 S(Ty)
(1-x)? Ty

(142x+--),
47)

where x=(T-T,)/(T,—T,). Since the integrand in Eq.
(46) is sharply peaked aty, we choosdl', =T and use the
expansion47) to evaluate the integral. We find

S5(Th)
—log T,

(48)

2eMp
Tn

c_TN
Te

T
S3(Ty)/Ty=4log +4 log
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TC T
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FIG. 3. Typical evolution of the temperature during a phase
transition with supercooling.

t

tm

<p(Ty)—p(Ty) corresponds to weakly first-order phase tran-
sitions, which most likely occur by spinodal decomposition
rather than by nucleation and expansion of bubblgs50.
We could also havé>p(T.)—p(Ty), although we are as-

which will be in general dominated by the first term. For suming L<p(T.). In this case we havesf;<1, which

temperature§ several orders of magnitude beldWp, we
have S;(Ty)/Ty=100 (it is e.g. ~140 for the electroweak
scale, and~180 for the QCD scale From Eq.(41) we ob-

tain
( T, )2 3L2T, Al 2§MP+I 3L2T,
= O O
Te—Ty 16703 9 T g 8mod
T—T
+6 log—2 N), (49)
Te

where we have used th@if,=T.. In some of the following
estimations we will replacd.— Ty by T.— T, inside the

logs, since both differences are generally of the same orde
Immediately aftert=ty, the temperature increases at a

rate which is given by Eq(34). Under the current approxi-
mations we can writp=Lf,—4pH. Therefore, the rate of
change of energy of the plasma jgp=(3r/4)f,—4H.
Thus, on one hand energy is increased at aratéf,/6t,,
where 6f, is the fraction of volume converted to the low-T
phase during the reheating stage, aitd is the duration of

means that most of the phase transition happens with the two
phases near equilibrium, and we can apply the analysis of
Sec. lll. In this section we thus concentrate in the case in
which the latent heat is comparable with the energy differ-
encep(Tc) —p(Ty)-

The expansion of bubbles is governed by E2i7). At T
=Ty bubbles nucleate with a radil& given by Eq.(42),
and after a timedt the radius has increased an amowpbt,
with v, given by Eq.(43). The ratio of the two distances is

vt LA(T,—Ty)2%6t
Re 290T?

(50
l|?or the time scale of the phase transition dynamiés,
~EMp(T.—To)/ T3, we have

vwdt L2¢ Mp
R noT T

TC_TO 3

T

(51)

Thus, if the phase transition takes place at a temperature
sufficiently below the plank scale, the bubbles will grow so
rapidly that we can safely neglect the initial radRgsin Eq.

this stage. The rate of energy decrease, on the other hand,(is7),

given byH~1/t. Sinceét; is much shorter than the age of

At the beginning, bubbles expand with constant velocity

the Universe, the increasing rate is much larger than the la; (T,). When reheating becomes important, the bubble ex-

ter. The total change in energy density is thigs~L 6f ;.
The temperature cannot increase beyond so if L
=p(T.)—p(Ty), the fractionsf; will be less than 1. This

means that before the phase transition completes, a final tem-
peratureT, very close toT, is reached, and the phase tran-

sition proceeds more slowly untibf=1. For L<p(T.)
—p(Ty) we have a variatiodp~ L during the phase transi-

pansion slows down and we enter the second stage. Conse-

quently, during the first stagh, can be roughly estimated
without taking into account the liberation of latent heat. We

can thus estimate the raféT~rf,, without considering the
back-reaction of the reheating dp. It is only at the begin-
ning and at the end of reheating thet,~H and T=0.

tion, which gives us an idea of the reheating that occursindeed, soon after=ty, the temperature takes its minimum
There may be significant reheating and a considerable variaalue T,,<Ty (see Fig. 3, then it increases td,<T.. The
tion of the wall velocity, but there will not be a long phase value ofT,, is important because the nucleation rate turns on

equilibrium stage, since in this cas¥,=1. The caseL

att=ty, is maximal at =t,,, and turns off again when the
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temperature has increased bacK tp. All the process occurs

PHrSICAL REVIEW D 69, 103521 (2004

If a non-negligible fraction of the volume is taken up by

in a time 8t~ (t,,—ty), which is determined by the speed at bubbles during the first stage, the intend} can be esti-

which temperature changes. This interdg in which T is
not negligible is much less thaft,, due to the exponential
dependence of on T,—T.

Accordingly, the temperatur€,, occurs when

r47TUW(Tm)fth(T)va(T)(tm—t)zdtzH, (52
1§

where the time-temperature relatids éMp/T? must be
used to evaluate the integral. Using the expan&idi about
T,=T,, we find

[83(Tm)

m

Mp

-1 s 277067731%( Tc )4( Tc )10
e m. e ———— .
9518 Te= T
(53

The number density of bubbles is given by

Ny= f:'r(t)dt. (54)

Sincel'(t) is sharply peaked &t,, we can estimatey, as
ZII”‘F(t)dt and use again the dependertied ~2. The inte-
gral can be calculated again using the expan&iah which
gives

S5(Trm)
Tm

_ 3§MPTC_Tm
CTe T

Np

-1
} e S(Mm/Tm  (55)

We may define the intervabt; by writing n,=I'(t,,) St .
Then we can easily see in E(5) that

&FN[%(Tm)/Tm]_l(tm_ti)-

Therefore,t,—ty is much less tham,,—t; (most typically,
about two orders of magnitutle Using the result53), with
T,=Ty, We finally obtain the density of bubbles,

9
)Tg.

The bubbles thus nucleate during the short tifhe about
t=t,,, and expand with a velocity,=v,/(ty\) for a time
Stq, until the temperature gets close 1T@. According to
Egs.(43) and (49),

(56)

(57)

27706173T§( T, )3( T
Ny~ ———————

9£5L8  (Mp) | T—Ty

U= 7\ 3T, ) (58

3\ 1/2
l(l&m’ ) =
where K is a shorthand for the sum of logs in E@9).
Notice that in EQ.(43), v,*L(T,—T), but alsoT.—Ty
«L"1, sov,, only depends ot through the logs irK.

mated from (4r/3)v3(ty) st3n,~1. This gives

L4
5t ~
' O'STZ

1/6
( S5(Tm) 59

~12
T ) (tn—t).

So, apart from a model-dependent factor, we find a general
tendency to the relationstr<<t;<ty—t;. The value of
S5(T,)/ T, (and that ofT,,,) can be obtained similarly to the
case ofTy . Itis interesting to note thadt, has only a loga-
rithmic dependence on the friction coefficient This is be-
cause the dependence on the wall velocity is twofold. On one
hand, the lower the wall velocity, the longer the tindg,
needed to reheat the plasma. But on the other hand, the lower
the wall velocity, the longer will also be the timét in
which bubbles are formed, and the larger their number. This
causes a shorteit,, since there are more bubbles to produce
the reheating.

C. Second stage: Phase equilibrium
1. Inhomogeneous nucleation

If the formation of bubbles is associated with the presence
of impurities, the phase transition occursTat T, and the
number density of bubbles, is an external parameter that
depends on the density of impurities. According to Egs.
(15—(17), for smallr the evolution of the phase transition is
given by

fo=3Hr (t—ty, (60)
and the rate at which the phase transition goes ofﬁbis
=3H/r, i.e., a factor of I larger than the rate of expansion
3H of a comoving volume. Our assumptior<1l implies
that f,>H and st<t.

To calculate the velocity of the interfaces, we assume that
all the bubbles begin to expandtatt; . Thus, the fraction of
volume occupied by bubbles i§,=n,(47/3)R3, where
Ry(t) is the bubble radius. At the midpoint of the transition
we havef,~4m7n,R%,,, whereR= (47n,/3)~ 3 is the av-
erage radius. Therefore the mean velocity is givenvhy
=(4ny/3)"Y3H/r. We notice, however, that even in this
case in whichf,, is constant, the wall velocity may change
significantly during the transition, sinag,« Rgz. The total
variation ofv,, depends omy,.

2. Homogeneous nucleation

In the case of a phase transition with supercooling, the
situation is very similar after the plasma has reheated up to a
temperaturel, =T, . The transition proceeds at a rate

i‘b~47rvw(t)ftF(t’)Rz(t’,t)dt’. (61)
§

“This shows that it is more accurate to estimate the difference ) _
t,,— ty~ Stp in this way, rather than subtracting the values given byIn this stage the nucleation rate has turned off. We have seen

Egs.(49) and(53).

that I' peaks sharply at a certain tintg, in the previous
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stage, so we can write Eq61) as f,~4mv,n,R%(t,,t),  Model, comparison of Eqs59) and (63) with Eq. (66)
wherev,=v,(T,), n, is given by Eq.(57), and R(ty,,t) should not be hard to do, oncg has been evaluated.
=p,(t—t,). In any case, the integral in E¢1) is an aver-

age of the squared radius of the bubbles, and for the present VI. THERMODYNAMICAL PARAMETERS

. . y — _2 . —— .
estimations we can sé~4mv,nyR", with R given byn,, We have seen that all the parameters that describe the
just as in the case of inhomogeneous nucleation. Since ﬂ}f‘ynamics of the phase transitidie. &t;, ot,, etc) depend
temperature is almost constatf,=4pH, i.e., all the re- on a few thermodynamical parameters, such as the latent heat
leased latent heat is taken away by the expansion of thgr the friction coefficient. The formation of the different cos-
Universe. Thus, agaifi,=3H/r and the velocity coincides mological products of a phase transition thus depends on

with that of the inhomogeneous nucleation case these quantities, and also on other parameters, such as the
conductivity of the plasma. These quantities are physically
[ 3 13 5 related, since all of them come from the equilibrium or non-
v2= 4arny, T (62) equilibrium thermodynamics of the same underlying theory.

This should be taken into account in phase transition calcu-
Although in Eq.(62) it seems that the wall velocity during lations, when ranges of parameters are considered. Unfortu-
phase equilibrium does not depend on the friction, in fact itnately, it is hard in practice to establish general relations

is proportional to ! due to the dependence of. between these physical parameters. Depending on the theory,

Sincef,~H/r, the duration of this stage is it may even be impossible to compute some of these quanti-
ties.

Sto~rH L, (63 One can gain some insight on the relations between ther-

_ modynamical quantities by conveniently modeling the free
The reheating temperatule must be such that the pressure energy. The problem is further simplified by referring to the
difference is adjusted so as to give the velocig). Using  general form of the perturbative effective potential. In that

Eq. (43), we find case the thermodynamical quantities can be related to the
13 parameters of the microscopic theory. We dedicate this sec-

Te—Tr _7H 47Tnb) 64 tion and the following to study the aforementioned relations.

T, rL 3 We will concentrate only in those parameters which influ-

ence directly the dynamics of the phase transition. An analy-
As expected, the larger the latent heat, the closer wilTpe sis of other parameters that affect the generation of cosmo-
to T.. Unlike ét,, the values ofT, andv, are not easy to |ogical remnants is considered in RET].
determine, since they depend on the number of bubbles that
nucleated in the previous stage. Using Egj7) and taking A. Free energy and viscosity

into account thaHM /T2~ 1, we find that roughly _
We assume the free energy density takes the form

Tc—Tn
Te

2
Fe s G THV(BT) 4L, (67)

2
TC_TTN( ) (Te—=Th)s (65)
which confirms that generallyf,,—T,<T.— Ty . According
to Eq.(43), the same relation holds for the velocities and
Uo.

where the scalar fielg is the order parameter, and

A
V(¢.T)=D(T*~Tg)¢*~ET4*+ 7¢* (69
D. Coalescence
In the range 0.3 f,=<0.5 bubble percolation takes place. is the free energy density difference between the symmetric

We have seen that this process gives a contribution to thand the broken-symmetry phases. The paramgfeis the
bubble expansion rate, of ordesfpR%)Y2 For f,~1 this  number of light species of the plasma. In geneggl, de-

rate is pends on temperature, but it is usually approximated by
; — 12 7
f coatescence” (07 pNp) ™= (66) g, = E g+ 5 2 i, (69)
bosons fermions

To establish the importance of this rate we should compare it

with the ratesst; * or ét, *, corresponding to the two stages where the sums are on particles with masses T, andg; is

we have studied. Such a comparison is difficult to carry outhe number of degrees of freedom of speciesee Appendix

without specifying a model, so we will ignore this effect in A).

the subsequent discussions. It depends on each particular case whether E&jg. and
Although coalescence is bounded to occur in the abové68) can be derived from the microscopic theory. At any rate,

range off,, it could have important consequences if thethey can be regarded just as a simple model for studying the

associated bubble growth rate is significantly larger thardynamics of the phase transition, being the latter first-order if

those given by the time scale®; and ét,. In a specific the coefficient is nonvanishing. The parameters\tf¢, T)
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can be chosen in such a way that the free energy carries thvehere V(T) is the free energy difference between the two
thermodynamical properties of the theory we wish to studyphases, defined in E¢l), ando is the surface tension of the
[4,5,13. For instance, these parameters determine the valuegall, given by Eq.(39). We have assumed here that tempera-
of the critical temperature, latent heat, surface tension, antlire is constant across the wall. This is right if the wall
correlation length. The thermodynamical parameters coul@elocity is small enough, so that the latent heat it releases has
be obtained, e.g., with lattice simulatiofsee for example time to be uniformly distributed throughout space.

Ref. [51]). Then one can use those values to calculate the Hence, the pressure difference is equilibrated by a friction
parameterS,, D, E and\. Furthermore, in general the or- force proportional to the wall velocity. The constant of pro-

der parametetp is a Higgs field or a combination of Higgs portionality is the friction coefficienty="7%To. Since the
fields, andV(¢,T) is the finite-temperature effective poten- tension of the wall is related to the wall width, by o
tial (see e.g. Ref.6]). We will consider this case in the next — $2/L,, [see the first integral in Eq39)], we can also write
section. n=7TH2/L
1 i i - m'=w -
The effect of viscosity on the propagation of the bubble A shortage of modeling the viscosity of the plasma in this

wall is calculated by considering its equation of motion in ) = .
the hot plasma, way is thatz is a free parameter. The correct expression for

7 can be derived from Eq71). In Appendix B we show that
particles with a thermal distribution give a friction coeffi-

fi(k,x)=0, cient
(70 2

m

h= 77thT ag, (79

d®p
(27)32E;

dn¢
Op+V'(¢)+2 g d¢f

which can be derived by energy conservation considerations
[2,10,44,52 Here V(¢) is the zero temperature effective
potential, the sum is over all particles that couplegtom;
are theg-dependent massésee the Appendixg¢sandf; are

while the contribution of infrared gauge bosons is

the phase space population densities. This equation can be =T T_3 (76)
obtained by thermally averaging the operator equatiorjfor e
If we separatef into the equilibrium populatiorf, plus a
small deviationéf, we obtain the equation Evidently, both formulas agree with the above resulij
~T. This treatment also allows for the evaluation of the
) dmi2 d3p coefficientsz, which depend only on the particle content of
O¢+V'(6,T)+2 g quf (2m)2E, ofi=0, the plasma.
(71

B. Thermodynamical quantities and phase transition dynamics

whereV(¢,T) is the finite temperature effective potential, 114 free energy given by EqE7) and (69) bears a first-

given by Eq.(68). Since the departure from equilibrium IS qer hhase transition, with two minima separated by a bar-
proportional to the velocity of the bubble wall, it is the last fier. The critical temperature is related Tg by
term in Eq.(71) which gives the friction force of the plasma. '

A simple approach to the calculation of the wall velocity T2_T2 g2
[4,5] consists in replacing the last term in EF.1) with a °—2°= J—
typical damping term of the fornd¢/dt. Due to Lorentz Te AD
invariance this term must be in fact of the foratd, ¢,
whereu,, is the four-velocity of the plasma. Equati¢iil) ~ At T>T, the global minimum of the potential i¢=0. At
then may be written as the critical temperature the two minima become degenerate,

and below this temperature the stable minimum is

T1+\/1 BAD [ T2
9 g2\ T2/

(77

O¢+V'+(3T)u*d,¢=0, (72

3
where?; is a dimensionless damping coefficient that depends Pm(T)= 2\ (78)

on the viscosity of the medium. Boosting to a frame that
moves with the wall, and assuming stationary and nonreIaA
tivistic motion in thez direction, we have

t T=T, the barrier between minima disappears a0
becomes a maximum of the potential. Therefore the phase
- transition occurs at some stage in betw@enand T,. The
"=V'($)—nToued', (73 value =0 corresponds to the symmetric, high-temperature
phase, andp#0 corresponds to the broken-symmetry, low-
where ¢’ =d¢/dz. Multiplying both sides by¢" and inte-  temperature phase. The jump of the order parameter from the
grating over—o <x<c we obtain high temperature phase to the low temperature one is thus

7Tov,=V(T), (74) dm(Te)=2ET,/\. (79
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According to Eqs(67) and (68), the free energy density Using Egs.(79), (85), and(87) we find the values of the

of the symmetric phase is friction coefficients(75) and(76),
2 5~
I 82 E%p_,
Fu 90g*T +L. (80) =g o Tc
This gives the equation of state of a hot relativistic plasma ~
with a positive cosmological constant o E 7ir T4 (89)
Tir \/ﬁ c*
2

a
_ 4 _
Pu=759x T L, pu=py/3-4L3. 81 The two contributions have different parametrical depen-

dence, so each will dominate in different regions of param-
The free energy of the broken-symmetry phaseFis 7,  eter space. For instance, Bf<\ the infrared boson contri-
+V(T). The energy density of the broken-symmetry phasebution may be much larger than that of thermal particles. The

iS pp=pyt+Ap, with maximum velocity of bubble walls occurs d@t=Ty. Ac-
cording to Eqgs.(58) and (88), this velocity is the smallest
Ap=V(T)=TV'(T). (82  among
The entropy density of the symmetric phase $5 N34 E72
=279, T#45, and that of the broken-symmetry phase is LT K2y~ NEL K2 (89
th Nir

sp=s,— V'(T). The latent heat of the phase transition is

given byL=Ap(Tc) =TcAS(T); hence, To determine which one is the correct, it is necessary to

E\2 know the relations between the coefficieBts\, andz. We
L=8D(X) T2TG. (83)  see that in the opposite limiting casEs<\ andE>\, one
of the two velocities is<1, unlessy is too small. In the case
Comparing with Eq(79), we find the relatiol. =2D¢$3T5  E~X, the wall velocity will be small if one of the conditions
between the discontinuity of the order parameter and that o 4<7,, or E¥*<7, is fulfilled, which does not seem un-
the energy density. As expected, strongly first-order phaskkely in general(see the next sectipnThis supports the
transitions(i.e., with large¢,,) have large latent heat. assumption of nonrelativistic wall velocities.

The surface tension of the bubble wall is given by Eq. It is evident that with the aid of the mod&7), (68) we
(39 in the thin wall approximation. At the critical tempera- can get more information about the generalities of phase
ture the effective potential is given by transition dynamics. For instance, if we write E49) as a

function of E, D, and\, and compare with Eq77), then we

4(ETo)* ) can locate the nucleation temperature in the intefUal
V($,Te)= 3 X(1=x)*%, (84) ~To,
1/2
wherex=\ ¢/2ET.= ¢/ ¢,,. Hence, Eq(39) is easily inte- B
grated and Te—Tn )\3,4K (Te—To). (90)
2\2E8 3 If E and N\ are comparable, this gives a value Bf—Ty

a(Te)= T (895

roughly an order of magnitude less th@p—T.
The relations between the different quantities that deter-

Although we have not used it explicitly, in this approxima- Mine the dynamics of the phase transition are apparent in the
tion the field configuration near the wall can be solved ana2bove expressions. Specific relations will be of interest for

lytically with the help of Eq(84), and gives the kink profile, ~different cosmological consequences. As an example, let us
consider the effect of modifying the theory in order to obtain

z a more strongly first-order phase transition. To do that, we
1+tanhL—) : (86)  have to enlarge the value of the order parameter. Assume we
" accomplish this by increasing the value of the paramEter
where and keeping the other parameters invarigsge Eq.(79)].
Then, there will be more supercooling, and one expects a
L,= qﬁﬁ,l/S(r (87 larger departure from thermal equilibrium, since the pressure
difference atT=Ty will be larger. However, according to
is the wall width® Egs. (83) and (88), L and # also increase. This tends to
decrease the wall velocity in the two stages of the phase
transition, in opposition to the effect of supercooling.
5L,, may change during the bubble expansion due to the friction In this work we assume for simplicity thaf, remains
with the plasmd2]. We shall neglect this effect. constant throughout the phase transition. In fact, the number

3)\5/2

b2)= 20
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2
giht (92)

of effectively massless degrees of freedom may change dur- 5
ing the phase transition. It is conceivable that some particles =2, 3
acquire large masses and decouple from the thermal bath;

Lhedn Ag*hzg*ut— 9« ?t.>0' Fk(])r mstancg,tdutr_ml? trllte. q_uz-ilrk- wherey; =2 for fermions andy;=h; * for bosons. Therefore
adron phase transitiagy, changes substantially. 1t 1S Inter- o contributions of bosons tg have an enhancement of

esting to note that such a change may affect considerably t hYlog 2 ith fermi ith th
dynamics of the phase transition, even in the casg ht‘?og | flog f with respect to fermions with the same

< The eff fad during the oh Yukawa coupling. For instance, fdi~0.1 the boson en-
<9, . The effect of a decrease gj. during the phase tran- pancement is-10. This means that friction may be much

sition is twofold. To begin with, the free energy of the guonger in supersymmetric theories than in nonsupersym-
broken-symmetry phase is larger than in the case of constafietric ones. For instance, it was found in R&fl that a light

9, . so the critical temperature is lowgit is given by  siop may slow down the electroweak bubble wall in the
V(To)=—m?Ag, T¢/90[32,41]]. Therefore the phase transi- minimal supersymmetric standard mod#SSM) an order
tion is strongef, and the latent heaf.V'(T,) is larger. In  of magnitude with respect to the SM. The enhancement is
addition, the entropy released by the decoupling specielrger for lighter particles, but these do not contribute to the
gives an extra contribution of #°Ag, T#/90 to the latent friction due to theh dependence.

heat. This contribution is comparable to the valuelLoés The contribution of infrared gauge bosons is

given by Eq.(83), if Ag,=D(E/\)?(1—E?/\D). In the
case of a perturbative effective potential, this condition may
be easily fulfilled forAg, ~1.

log x;
22

5 gpgh?
7= 25 10g[My( fm)Ly]. (93

Here, the sum is only on gauge bosons, but the coeffigient
also involves a sum over particle specisse Appendix B
Furthermore, the gauge coupling appears only squared,

If perturbation theory is applicable, the one-loop effectivewhich means less suppression. The log enhancement in this
potential at high temperature often has the form of G§), case is= Iog(hb¢ﬁ/cr)~(log ho\ ™12,

VII. PHYSICAL QUANTITIES IN PERTURBATION
THEORY

with parameters generally given by It is important to compare the value of the paramdier
with the other parameters, sinEds responsible for the first-

gih? gih? order nature of the phase transition. We can see in the for-

D=> S+ mulas of the previous section that all the thermodynamical

bdsons 24 fefimions 48 quantities are proportional to some power Bf while the

parameterd and\ usually appear in the denominators. In

T2 i ﬂﬁ the perturbative approact®l), this parameter is generally
0D 4 smaller than the others. This is becalisiss a sum of gauge
couplings to the third power, weighted with gauge boson
2 gih® degrees of freedom, whil involves squared couplings, and
E=— 2 L, the sum is over all degrees of freedom. Regardingt can
3 ggg{g&lzw be comparable tds, but this constrains the value of the
Higgs mass.
N = m2/202 (91) The smallness oE indicates a tendency of perturbative
h ' effective potentials to give weakly first-order phase

) ) ) _ transitions’ This is apparent in the dependence of the order

Here,h; are the couplings of the particles withy my is the  parameter,¢,,/T~E/\, or in the temperature interval in
Higgs mass, and its zero temperature VEV. The coefficient \yhich the first-order phase transition can occuff, (
E in general involves only gauge bosons. In Appendix Awe_ T y/T_~E2/\D. For example, in the case of the elec-
review the de_rivation of these.resullts and discuss on the geRqoweak phase transition, we halze- 10~ andD ~ 10~ for
eral assumptions and approximations that lead to B,  the minimal standard model. If we take a nonrealistic value
(69), and(91). In the discussions that follow we will some- ¢4 \ —E to get an order parameter of ord&f we find a
times take the electroweak theory as a reference point. Thl%mperature rang&.— To~ 10 2T.. In the specific case of
parametefT, gives the temperature scale of the phase trang,e electroweak phase transition, a small value of the Higgs
sition. Its order of magnitude is determinedimy, so it may  fie|d 4 _(T) is undesirable for electroweak baryogenesis. In
be quite less than the scaleif A is small. Anyway, for the  ganeral, if this parameter is too small, the perturbative ap-
dynamics of the phase transition, the differeice-To IS proximation breaks dowrisee Appendix A In the elec-
more important than the temperature scije _ troweak case, the way out is to consider extensions of the

_ Regarding the viscosity of the plasma, we show in Appens) which provide additional bosons that contribute to the
dix B that the contribution of thermal particles to the param-parameteiE [53,54.

eter7 is given by

"We are only discussing one-loop order here. Things may be dif-
5This could be important for baryogene$i. ferent at two loop$42].
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In the previous section we found that if we increase thet can be solved analytically for any value of the relevant
parameteE while keeping the others constant, then we get parametermr =L/T_s(T.)~L/p(T.). This approach has al-
stronger phase transition and larger supercooling, but alspwed us to calculate the back reaction on the expansion rate
larger values ofy andL, which slow down the dynamics. It H, which is important for large. It is well known that su-
is evident that ifE is augmented by addlng particles to the percoonng may lead to exponentia| expansion of the Uni-
theory, the value oD enlarges too, giving an additional in- yerse[32,40. This possibility has been considered not only
crease of the latent heht If we add only a boson, the rela- jn the context of inflationary models, but also for the quark-
tive change will be more appreciable iif) because there are npadron phase transitio9]. Although our approximations
only a few terms in its expression, but if the boson comesyreak down forL=p(T,), we observe the manifestation of
together with several new speciéas in the case of super- the energy of the false vacuum for largeEven if the phase
symmetry, then the change @ will be much more substan- transition begins alf=T., whenL is comparable to the
tial. According to Egs(92) and(93), the friction coefficient energy density of the plasma the transition may take a long
will also increase significantly when adding bosons to thejme to complete due to vacuum energy dominance.
theory. For the more probable case of a phase transition with

If E?/AD<1, thenT =T, andL/T¢=8D(E/\)% Itis  variation of temperature, we have given a derivation of the
interesting to compare the value &f with that of dp  integro-differential equations that govern the dynamics. In
=p(To)—p(Ty), to assess the effect of reheating, as disparticular, we have found a simple algebraic relation between
cussed in Sec. V. Using Eq&0) and (77), we may write the temperature, the fraction of volume occupied by the low-
temperature phase, and the scale factor of the Universe,
which holds under the usual assumption of adiabatic expan-
sion. Using the thin wall approximation and the linearized
form of the free energy difference, we have found analytical
Therefore, formulas for all the quantities that characterize the dynamics

of the phase transition and may be relevant for the determi-
L 30K 12 nation of its cosmological consequences. These parameters
5_p“ W ' (95 are the durationst, and ét, of the two stages of the transi-
* tion, the wall velocitiesv; andv, at each stage, the total
The first factor is likely of order 1 and depends essentially olumber density of bubbles, the time intenl- in which
the energy scale of the transition. The second factor is detepubble nucleation is active, etc. We have expressed these
mined by the dynamics. It depends mainly Bn and may quantities in terms of those that determine the dynamics,
vary considerably if we change the particle content of thehamely, thermodynamical parameters like the latent heat
theory. Exemplifying again with the electroweak theapy, the wall tensionr, or the friction coefficient;. As expected,
can vary from~10! in the SM toD>1 in the MSSM, so for the phase equilibrium stage we have simple expressions,
we pass from little reheating in the first case to large reheatof the sortst,=rH ™', with obvious interpretation. More
ing in the latter. We remark that things may be quite differentcomplex formulas arise instead for the reheating stage. Al-
if Egs. (91) are not valid. For instance, in the case of thethough these parameters must be calculated in each particular
quark-hadron phase transitidnand 5p are typically of the ~case, some relations can be established, that hold quite

— 5/2
Te~Tn e E

Sp=4 T, DN T4’

(99

D 2
El/Z)\ 1/4

order of the energy density. broadly. They 'allowed us to confirm some natural premises
for the dynamics, e.g., thalt < 6t;<<6t, andv,<v;.
VIIl. CONCLUSIONS We have studied also the interrelations between the ther-

modynamical parameters. When necessary, we made use of a

In this paper we have performed an entirely analyticalsimple model for the free energy. Aside from reproducing the
study of first-order phase transitions in the radiation-desired features of the phase transition, it is well known that
dominated era. We have seen that typically the highthis model corresponds to the simplest high-temperature ef-
temperature phase is supercooled to a temperaiyreafter ~ fective potential that arises in perturbation theory. We have
which the transition proceeds in two steps, as sketched iderived general expressions for the parameters of this poten-
Fig. 3. The first stage is complex, and some rough approxitial, which is useful in establishing further relations between
mations must be made for an analytical treatment. Neverthehe thermodynamical parameters. We have also derived gen-
less, it can be checked with numerical resultsg., Ref. eral expressions for the friction on the bubble walls. This is
[13]), that the orders of magnitude are correct. The secondaused by the perturbation from equilibrium of the particles
stage is much more simple, since bubble nucleation has e6f the plasma due to the motion of the interfaces. We have
fectively stopped and bubbles expand very slowly. This stageompared the case of thermal particles to that of coherent
develops very close to the critical temperature, with almosinfrared bosons. We have found a different parametric depen-
zero pressure difference between the two phases. Therefordgnce of each contribution, which indicates that each of them
this part of the evolution is similar to the case of inhomoge-will dominate in different parameter ranges. We have argued
neous nucleation, in which the presence of impurities inthat probably one of these contributions will cause the wall
duces bubble nucleations without need of supercooling. to move nonrelativistically. This justifies the near-

We have studied the case of a phase transition at phasjuilibrium approximations that simplify the analysis of the
equilibrium in some detall, taking advantage of the fact thafphase transition.
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We have thus been able to find some general relations m?2 A\
between the parameters that determine the dynamics. For Vo(¢)=—7¢2+ Z¢4’ (A1)
instance, we have seen that if the first-order phase transition
is strengthened, then the supercooling is intensified, but alsg, the VEV is given byw2=m#\ and the Higgs mass by
the friction and latent heat are generically enlarged, giving "ﬁ‘nﬁ=2)\vz.
slower evolution. This general feature is easily detected with 5, one-loop the effective potential picks up zero-

ad hocvariations of the parameters of the free energy, andemnerature and finite-temperature corrections. With a cutoff

further confirmed by the relations that arise for pert“rbat'on'regularization and tree level values forandm,,, the zero-

Fheo'ry values of'these parameters. The amount of SUPercoqlerature contribution of a particle specie4g]
ing is characterized by the difference between the energy

density of the plasma at the critical temperature, and that at m2($) 3

which nucleation beginsgp=p(T.)—p(Tn). The specific + {m“(q&) log S +2m2(v)m2(¢)},
relation betweensp and the latent heat is decisive for the 64m” m’(v) 2

phase transition dynamics. As we have seen, the tdtfp (A2)

can either be small or large, depending on the theory. Of . . .
course, it is larger for stronger phase transitions. We havd/here thex 'is for bosons(fermions, g is the number of

argued that the case of interest corresponds to a latent he fdrees of f_reedom of the species, and) is the mass.of
comparable tap. On one hand, a smalll is related to too the particle in the presence of the background scalar field. It

weakly first-order phase transitions. On the other hand, foi’s in general of the form
large L most of the phase transition occurs close to phase 20) = 2+ h2>
equilibrium, and can be described as a phase transition at MA$)=p "+ 17¢% A3)

constantT=T,. This includes the case~1 if dp<p, thus  \yhere h is the coupling of the particle withp (i.e., the
justifying the approximatiom <1 in the case of supercool- v kawa coupling, gauge coupling, etc. The finite-

ing. ) ] temperature corrections are of the form
For the study of the different cosmological consequences,

additional specific relations will be relevant in each cg8e
which can be obtained from the present analysis. Our ana- t—
lytical approximations will thus prove useful to include de- 2m°B
tails of phase transition dynamics in the calculation of cos- ) )
mic remnants, particularly with regard to the variation of theWhere the functionsg andJg can be expanded in powers of
pertinent parameters throughout the phase transition. For e/ T for m<T, and fall off exponentially for largen/T.
ample, the importance of the phase equilibrium stage hasherefore species witm>T decouple from the plasma and
been already investigated in Ref&,13] in the context of W€ make a high-temperature approximation in which we
electroweak baryogenesis. Other cosmological consequenc(é@ns'def1 only particles withm<T. Expanding up to
are affected as well. For instance, the fact that the nucleatio?(M/T)” we have(see e.g. Ref.6])

rate is turned off due to reheating evidently modifies the

g e[M*(¢) B%1, (A4)

2 2 2
number of nucleated bubbles, and thus the density of topo- _ 7 o Mo, M,
logical defects. F(.T)=const- gog*T 4 ¢ +§b: 9o 32572
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APPENDIX A: PERTURBATIVE FREE ENERGY
2
Fol_lowing Re_f. [6], we will obtgin the high-temperatu_re +2 9t log M m?((ﬁ), (A5)
effective potentialor free energyin the one-loop approxi- T 6472 T2A

mation, including leading-order plasma effects. Additional

terms appear at higher-loop order. For instance, potentiallwhereg, is the effective number of relativistic degrees of

important terms of the forng?log ¢ arise at two loop$42].  freedom, given in Eq(69) andm,=m;(¢=v) are the physi-

However, inclusion of two-loop corrections makes the situa-cal masses. We assume that particles contributirf§do not

tion more complicated and lies out of the scope of our gendecouple during the phase transition, i.e., that the condition

eral analysis. m(®)<<T is preserved in the range of temperatures of inter-
We consider a gauge theory which is spontaneously broest. This is a reasonable assumption provided ¢hab for

ken by a VEV of a scalar fieleb. The tree-level potential is temperatures close 6., which is consistent with the one-
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loop approximation. If some particles decouple from theThese terms may strongly affect the nature of the phase tran-
plasma during the transition, the main effect is a change imition, depending on the value gf2+1II1,(T.). There are
* - two limiting cases:

Them?® term is the contribution of the bosonic zero modes (i) if wi+1I,(T,)=0, Eq.(A8) contributes a term of the
to the one-loop effective potential. This term is the mostiorm T¢° to the free energy, which favors a strongly first-
important to us; without it the phase transition would be oforder phase transition, and
second order. However, for the zero modes the loop expan- (jj) if Wi+ T, (T)>h2¢?, we can expand EqAS8) in
sion has an infrared problem. The perturbative expansiopowers of¢. This gives higher-order corrections to the co-
breaks down at higher-loop order, since higher loops contribggficients of$? and ¢*, and no contribution ta®.
ute powers ofae=h?T?/m?*(¢) and of B=h?T/m(¢) [6]. Almost all particles fall in the second case, sifdss of
The way out is to dress the zero modes with daisy and SUsrdern?T2, and <T near the phase transition. The trans-
perdaisy diagrams. The result of this resummation is a congerse components of the vector bosons, on the contrary, are
tribution of the form[to all order ina and toO(3)] protected against this thermal screening. Another exception

may be a scalar with a negatiye~T. Such a particle would
_ L 2 oM ﬁ(q&) (A6) fall in the first case or in an intermediate case, and may .pllay
127 4 a role in determining the character of the phase transition

[53]. However, such a tuning may induce unwanted minima
in the scalar potentidh3,54]. We are not going to consider
this possibility here. Accordingly, the cubic term in the ef-
fective potential is

plus contributions proportional t¢? which are unimportant
within the present approximations. Thus the magsgets
replaced with its Debye mass

T <2 .,
M2=mZ(¢)+T1y($,T), (A7) ~om 2 39he¢ (A9)

wherelly, is the self-energy of the boson particle. In generalwhere the sum is only over gauge bosons, and the factor 2/3
it is a combination of squared coupling constants tifiégs  is due to the fact that only two degrees of freedom of the
The exception are the transverse components of the gaugeassive vector contribufet4].
bosons, for whicHI=0. e. ¢* terms.The corrections ta. depend logarithmically
If we replace the Debye maga7) in the cubic term of on T, so the effective value ok may be regarded to be
Eg. (A5), and the massg#3) everywhere else, the resulting constant during the phase transition. Furthermore, these cor-
terms can be grouped as follows: rections are of ordelnf‘/64772, so they can be neglected pro-
a. Constant termsThese are contributions to the cosmo- vided that\ =h?. For simplicity we will assume that this is
logical constant. The total cosmological constant must be sehe case.
by hand, so that it is almost zero after the phase transition. Putting all these terms together we see that, under the
b. T-dependentp-independent term#part from the first  above assumptions and approximations, the free energy den-
term in Eq.(A5), there are als@? and logarithmic terms, but sity takes the form displayed in Eq&7), (68), with coeffi-
these are of ordery(/T)? and (u;/T)* with respect to the cients given by Eqs(91).
T# term, so we can neglect them within the approximation
m;<T. We notice, however, that we could have a large nega- APPENDIX B: FRICTION COEFFICIENT
tive u; of orderT, such thatm; is small(see below. In any
case, these corrections modify the equations of state of both In this appendix we make a derivation of the friction ex-
phases in the same way, and we do not expect them to affegtted by the hot plasma on the bubble walls. For that, we
significantly the dynamics of the phase transition. must calculate the departure from equilibrium of the phase
c. ¢? terms.The coefficient of$? is the sum of a term  space population functiongf in Eq. (71). The friction on
proportional toT2, a constant terrmﬁ/4, and other constant the wall has been exfcgnsively studied in the case of the elec-
and logarithmic terms, which are h2m%/32x2. The latter ~troweak phase transitiof2,3,10,44,52,55,96 Our aim here
are suppressed unless the Higgs mass is too small, so we wi tq discuss the general dependence' of the friction on the
disregard them. In any case, these corrections are inconsBarticle content of a theory, so we will need to use some
quential for our purposes. They contribute to the value of théPProximations in order to keep the description as general as
characteristic temperatug, of the phase transition. How- POSSible.
ever, for the dynamics of the phase transition the precise
value of Ty is not relevant; the important parameter is the 1. Fluid approximation
relative difference bgtwe_en this temperature and the critical o begin by considering the contribution of particles with
one, (Te—To)/To, which is independent dfo. p>L,* (L,=wall width), for which the background field
d.¢ terms.T.heM term has contributions from all the varies slowly and the semiclassid®VKB) approximation is
bosons, proportional to valid. Since in generdl,, '>T, this condition is satisfied for

29 2 a2 all but the most infrared particlgg], which we study below.
(hgd®+ pp+11p) = (A8)  We follow Refs.[2,3], but we use a simpler ansatz for the
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deviations from equilibrium distributions. This will suffice cordance with Refd.2,3], in this appendix we call “heavy”
for our purposes. We assume that the population density of tnese particles with large, . Notice however that heavy par-
particle species in the background of the domain Wiblat ticles with large masg; in the unbroken phase may be ther-
moves along the direction is governed by the Boltzmann mally decoupled and not contribute to the friction at all. The

equation

[d1+(dp E)d,—(9,E)d, 1f=—C[f], (B1)
whereE= \/p2+ m(z,t)2 is the particle energprE: p,/E
is the particle velocity— d,E=— d,(m?)/2E is the force on
the particle, andcC[ f] is the collision integral.

We use the ansatiz=f,(E/T— ), where

1
fo(x)= ; (B2)

e‘*+1

so the deviation fronfy(E/T) is 6f = —fo(E/T) 8. Thus we

obtain an equation foé by linearizing the Boltzmann equa-

tion. Keeping only terms of ordem{/T)? we have

1 2 pZ ’ _

2ET

The mass of the particle is a functionof v,,t, and so is the

remaining “light” particles can be treated as a common
background perturbatiod,,. The fluid equation for the
background is simpler and can be solved to elimingig.
Moreover, the heavy particles primarily collide with the light
particles, so direct coupling between heavy species can be
neglected. The effect of the light background, though, once
eliminated from the equations, is to introduce a weak cou-
pling between heavy particles. As a consequence, heavy par-
ticles are only weakly coupled through the background, and
the nondiagonal terms df are suppressed with respect to
the diagonal terms by a factorgljign;, Whereg, jign is the
number of light species of the backgrouidis proportional
to the heat capacity of the plasin@ve will therefore neglect
nondiagonal terms df in our analysis. Calculating the rates
I' is well beyond the scope of this work. They are of the
form a?log(1/a) T, wherea is a gauge couplinf2]. We will
assume that in generdl, <10 1T.

The right-hand side of EqB4) is the source term of the
equation. It is localized at the bubble wall, so we expect the
same foré$. Therefore we havé'/5~1/L,,. Normally, L,,

perturbations if we assume a stationary state. Thus we make=10T %, so if the wall velocity is small, the first term on the

the replacementsg,m?=—v,(m?)’ and &,6=—v,5,
where the prime means derivative with respect.t@ve fur-
ther simplify Eqg. (B3) by making the
fd3p/(27)3. We obtain

covyd —T'é=civ,m? 12T, (B4)

wherec, andc, are defined by the integrals
1 d*p 1 d®p .

’ Co=——= ’
o 13 2m)3 0

!

Cr1=
Yo12) (2mBE

and we have written the collision integral in the fof&]

d®p C[f
f P Cl ]=TF6. (B5)
(2m)?3 T?
To lowest order inm/T we havec;=log 2/27? and cy
=1/12 for fermions, anc,,=log(T/m)/27? and c,,=1/6
for bosons.

left-hand side of Eq(B4) is much less than the second one
and can be neglected. With this approximation the equation

integration has a simple solution,

cm?
w .
272

S=-—v (B6)
If we now insertsf; = —f((E; /T) 8, in Eq.(71) we obtain
2

2 " ’ T2 dmi
(vam "V (D5 2 giciggd. (BY)

Replacing the value of; given by Eq.(B6), multiplying
times ¢’, then integrating with respect & we get

2,,.2'\2
cgi(m?)

~V(¢m, T)=vy gif TdZ. (B8)

The left-hand side is the pressure difference between the two

For each particle speciésve have a fluid equation of the Phases. Itis equilibrated by a friction force of the form,, .
form (B4). These equations are coupled through the collision' N€ friction coefficient is thus

term(B5), andI” is in principle a matrix with indices running
over all particle speci€sHowever, only particles with large
Yukawa couplings are relevant for the friction force, since

h? )
g'—'f c%p%¢ %dz.

B9
i="heavy’ r ( )

7]:

they have stronger interactions with the bubble wall. In ac-

The coefficient; for bosons depends an;, but it is easy to
see that its variation witlz can be neglected, and we can

8n Refs.[2,3] a more complex approximation was made, wheremake the approximation

the perturbations is split up into three different perturbations,

=ulT+EST/T?+p,w/T. In that case there are three fluid equa-

tions for each particle species, with different rakgs, I'y andT",,,
and there arise additional constantsandc,. Our approximation
corresponds to considering only the tepmT.

cip=logh, Y272, (B10)

To evaluate the integral in EGB9) we use the thin wall
approximation(37),
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, bm Inserting in Eq.(71), multiplying by ¢', and integrating
f ¢*p dz= Jl) $*\2Vde. as before, we obtain

It is clear that this integral goes Iik¢§1o. For the model UW7Tm2D 2o p fo
(68), the integral is easily calculated using E84). It gives ~ V(T)=— 2 s 8 f dz(my ) f (27 apTE*

gauge

(3/10)¢ﬁqa, so the friction coefficient is given by (B14)
logy\> agih?  io . : . .
77:2 3 Xi r m (B11) Since the momentum integral is infrared dominated, we can
272 ) (Tya07tT) T approximate f4(x)=—1/x2, so the momentum integral

. . yields T/3272mg . With m2=h2¢?, we have
where y;=2 for fermions andy;=h; ~ for bosons. Accord-

ing to the arguments above, we will make the assumption

2 '2
that the parentheses in the denominator of the last equation is V(T)=v E gmeTJ dzi. (B15)
roughly ~1. This gives Eqs(75) and(92). Ygauge 64w P
2. Infrared bosons The last integral can be calculated using again the thin wall

It has been showfB5] that coherent gauge fields can have @PProximation, Eqs(37) and (84),
important contributions to the friction. Following Rd65],
we will estimate the contribution of a gauge bosonzo om do 2 (1 1-x
Infrared boson excitations must be treated classid&i6y; f ?m: L_fo dXT-
furthermore, the dynamics of the soft fields is overdamped v
by hard particle$57]. As a consequence, the equation for the
population function is given b{55]

(B16)

There is a logarithmic divergence that must be cut off where
the approximations used in this derivation break d¢@/).
7Tm2D df ) ' Perturbation theory breaks down Whmg(qb)~h§T, i.e., at
8p dt —E“f+noise, (B12)  @/¢,,~hpA/E. The kinetic theory description that leads to
Eq. (71) breaks down whemy(¢)~L,*, i.e., at ¢/dp,
which comes from a similar equation for the amplitude of the~\/)\/hb2. The latter occurs first, so the log is cut off at
field. Here,mp is the Debye mass, given hy3~gh?T?, mp(p)L,,~1. In Ref.[55] it is argued that the contribution
where, according to our previous notatidnjs the gauge Of very infrared degrees of freedom is subdominant, since
coupling, anda is roughly proportional to the number of their wavelength cannot resolve the thickness of the wall.

particles that couple to the gauge field. Averaging over thd1ence, the integral in Eq(B16) gives to leading log,
noise, we get the restoring termE25f in the right-hand 109 ém/¢=loglmy(én)Ly], and the friction coefficient is

side of Eq.(B12). Sincef="fy(E/T)+ 6f, and §f<f, for

smallv,,, we can write gomaT
7= 2 o —log my( )L, (B17)
2 2 gauge w
sfo_ o g dm (B13)
16pTE® dg ¥ W which gives Eqs(76) and (93).
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