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Inflationary potentials yielding constant scalar perturbation spectral indices
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We explore the types of slow-roll inflationary potentials that result in scalar perturbations withséant
spectral index, i.e., perturbations that may be described by a single power-law spectrum over all observable
scales. We devote particular attention to the type of potentials that result in the Harrison-Zel'dovich spectrum.
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[. INTRODUCTION best present description of cosmological data uses a scale-
invariant (W=1) spectrun{18]. It therefore makes sense to
Inflation, a cornerstone of the modern framework for un-be considering the inflationary potentials associated with that
derstanding the early univer§g,2], predicts the initial con-  spectrum.
ditions for the formation of structure and the cosmic micro- It is known that inflaton potential¥( ¢) =exp(—a¢) for
wave backgroundCMB) anisotropies. During inflation, the constante®<2 lead to perturbation spectra that are exact
primordial scalar(density and tensor(gravitational wavg  power laws; i.e.nis a constanf19]. However, there has not
perturbations generated by quantum fluctuations are redtet been a systematic analysis of the types of inflaton poten-
shifted beyond the Hubble radius, becoming frozen as pe,tjals that yield constant. Here we take a first step in that
turbations in the background metrﬁ@_?] However, even direction, ClaSSifying those pOtentialS within the framework
when there is only one scalar field—thelaton—the num-  Of the slow-roll approximatiori20].
ber of inflation models proposed in the literature is Iage In the next section the basic. results employeq to calculate
Determination of the properties of the scalar perturbationshe properties of the perturbation spectrum using the slow-
and tensor perturbations from CMB and large-scale structurfoll parametrization of the inflaton potential are reviewed. In
observations allows one to constrain the space of possibteec. lll two exact differential equations connecting the po-
inflation modelg8—14). tential and the field to the slow-roll parameters are derived
It is often adequate to characterize inflationary perturba@nd the general method used to calculate all the relevant
tions in terms of four quantities: the scalar and tensor powegosmological quantities is outlined. In Sec. IV this method is
spectra;Pr andP,, and the scalar and tensor spectral indi-@Pplied to the determination of the inflationary potential
cesn andny. In this paper we focus on thecalar spectral yielding a k-independent density spectral index: both the
index which, unless explicitly indicated otherwise, we referHarrison-Zel'dovich 6=1) and the generaln(=1-2nj)
to simply as the “spectral index.” Successful inflation mod- cases are considered to lowest order and to next order in the
els predictn close to 1(the so-called Harrison-Zel'dovich Slow-roll parameter approximation. In Sec. V the flowedf
spectrun), andn typically has a small scale dependence. Theexamined to understand the number of solutions that arise.
best data available to date, combining the Wilkinson Micro-The conclusions are contained in Sec. VI.
wave Anisotropy Prob¢l5] and Sloan Digital Sky Survey
[16] data sets, indicate that the evidence for anything other
than a scale-invariant spectra is marginal at best, with no Il. REVIEW OF BASIC CONCEPTS
evidence for significant running of the scalar spectral index
[17]. Moreover, one of us has recently argued that when
information criteria are used to carry out cosmological model The dynamics of the standard Friedmann-Robertson-
selection based on the current data sets available, then thgalker (FRW) universe driven by the potential energy of a

A. Inflationary dynamics and slow-roll parameters

0556-2821/2004/620)/1035198)/$22.50 69 103519-1 ©2004 The American Physical Society



VALLINOTTO, COPELAND, KOLB, LIDDLE, AND STEER

single scalar field—the inflato—is usually expressed by
the Friedmann equation for flat spatial sections and by the

energy conservation equation:

2 o7 1¢2+V<¢>} M
3m2[2 ’
d+3Hp+V'($)=0, 2)

whereV(¢) is the inflaton potentialM ,=G~*2 the Planck

mass andH=a/a the Hubble expansion parameter. Once
V(@) is specified, the field dynamics is determined by solv-

ing the coupled equatior{d) and(2). Often it is simplest to
do this using the Hamilton-Jacobi approgd@t] in which

H(¢) is considered the fundamental quantity to be specified.
Equations(1) and(2) then become two first-order equations

H'(¢)2—12aH%($)IM2= —327°V($)IM5,  (3)

$=—MZH'(¢)l4m, (4)
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d?V( )
d¢?

=HX3e+3n—(n*+£)]. 11

B. Hierarchy of approximation orders

As mentioned in the Introduction, the observable quanti-
ties of interest are the power spectrdip of the curvature
perturbatioriR on comoving hypersurfaces and the spectrum
of gravity wavesP,. These define(k) andn(k) through

dinPr(k

n(k)—lz—r; |an( ), (12)
dinPy(k

nr(k)= 2 |ng|i) (13

As discussed in Ref§23,24), the expressions for these quan-
tities differ depending on the approximation order assumed
in the slow-roll expansion. The approximation order is de-
fined in general by considering how many terms in a slow-
roll parameter expansion of a generic expression are re-

where '=d/d¢. Whichever the method, once the dynamicSiained, the lowest-order approximation corresponding to
of the mflatpn field is knowna(t) is obta_lned by integrating retaining only the lowest-order term and thext-orderap-
Eq. (1). Without any loss of generality we assume thaty oximation corresponding to retaining terms up to the next-

¢>0 during inflation. Here we use the Hubble slow-roll to-lowest order term.

parameters:, » and&? as defined in Refl22]:

-1

3'2 2 M2 H’ 2
e<¢>z%ﬁ{w¢>+% -2 H(((f))}, ©)
__ % _MiH(9)
. My HI(H"(9)
§(p)= : (7)

1672  H%(¢)

The parameters; and &2 are the first terms in an infinite

hierarchy of slow-roll parameters, whok member is de-
fined by

2
Mp
4

|(Hr)l—1 d(|+1)H(¢)
Hl d¢(|+1)

(8)

A'H<¢)E(

During slow-roll {e,\};}<1, and inflation ends whea=1.
The potential and its derivatives can be expressedxast

functions of these slow-roll parameters: up to second order in

derivatives ofV one has

2

_MP 2/
V(¢)= g H(3-e), ©)
dv(¢) M,
———=———H%e(3-7), 10
" e Ve(3— ) (10)

For the perturbation power spectra and spectral indices,
the lowest-order term is linear in the slow-roll parameters. To
orderl,, these expressions will contain the set of slow-roll
parameterge, A} with |=(1,2, ... ]o) where\, is a term
of orderl. At next order(l,=2), the expressions will contain
the parameterge,n,£2=\2} as well as all second-order
combinations thereotnamely €, »?> and 5e¢). Hence, for
order consistengywhenever an exact and an approximate
expression are combingads shall often be the case below
the result is accurate only to the order of the approximate
expression, and the result must be expanded in a power se-
ries of slow-roll parameters up to and including terms of an
overall degree consistent with the level of approximation as-
sumed.

Recalling Lidseyet al.[24], it is then possible to think of
an infinite hierarchy of expressions for the perturbation spec-
tra and for the spectral indices. It is unfortunate that, as a
result of the complexity of the problem, only the first two
approximation orders are currently available in general: in-
deed, at next-to-lowest order,

2
11201 _ —
PHAK)=2[1—{(2C+1)e (:7;}]'\/|§|H,| . (14)
731’2<k>:i[1—{(cz+1)e}]i (15)
’ \/; Mp k=aH
n(k)—1=—4e+27—{8(C+1)e’?—(6+10C)ey
+2Cé&2, (16)
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np(k)=—2e—{2€*3+2C)—4(1+C)en}, (17 Given n(€), EqQ.(22) can be integrated to give

de
n(e)—e)’

whereC=—0.73[23,24. As in Ref.[24], the symbol ="

is used to indicate that the results are accurateupe order

of approximation assumedhe lowest-order results are ob-

tained by setting all the terms in curly brackets to zero. ~ whereV, is the integration constant which can be obtained
from the observed perturbation amplitude. Finally from Eg.

(23

V(e)=V,|3— E|€XF{

IIl. PARAMETRIZATION METHOD (9) the following expression foH can be obtained:
We now focus on the case of constaufk). To any order 81V, de
I, in the slow-roll approximation, imposink independence H%(e)= 5 € f el (24)
of n(k) endows the problem with the additional set of M5 S

(Io—1) relations . . . . . .
As noted in the previous section, once the integrations in

din(k) Egs.(23) and (24) have been carried out, order consistency
=0, i=1,...(ly—1). (18 requires that the resulting expressions be expanded in powers
d(Ink)' of € and only terms up to and including ordgrare kept.

Once the expressions fdf(€) and ¢(€) have been com-

Therefore, since there atg+ 1 slow-roll parameters at this puted, it is then possible to determine all the other relevant
order, the conditiong18) together with the constancy of cosmological quantities. Equati¢@4) together with the ex-
n(k) mean that only one of those is independent: throughoupression fore(¢) givesH(¢) to the given ordety. This,
the rest of this paper we take it to lae As we show in this together with the equation obtained fdg(¢), then enables
section, it is then possible to determigde) andV($) to  ¢(t) to be calculated using E¢R).! Once this step is carried
this order. out, the time evolution of the Hubble parameter can be

The method is the following. First we derive two exact derived—either using Eq2) or the solution of Eq(24)—
differential equations forp and V which, as we shall see and its integration then yields the dynamics of the scale fac-
below, only contain the slow-roll parametegsande. Then,  tor a(t).
at a given ordet,, we impose the conditions given in Eq.  Before turning to the specific cases of the constant spec-
(18) which yield n(¢). As a result the two differential equa- tral index, it is worth commenting on the apparently singular
tions can be integrated to obtaif(e) and ¢(€) correct to  case of p=e. This is nothing other than the usual exact
order |l,. Finally, provided¢(e) can be inverted, we can power-law inflation model and is perfectly regular. From Eq.
obtainV(¢). This will be done in the next section where we (20), we see that in this case the solutioreis €,, a constant
also solve for all the dynamics of the problem, namelyindependent o%. Substituting this value into Eq$5) and
H(¢), a(t) and ¢(t). (9) we obtain

From Eq.(5) it is straightforward to obtain

V8V, p[ 2\mepd
H= exp — ————

de 2M2 H'H" H’ 3 ) (25)
—=— - ( —) , (19 Mp Mp
d¢p 4w | H2 H
4meod
which, together with the definitions of and 7, yields the V=V(3—€p)expg — | (26)
exactdifferential equation P
Substituting this into the Friedmann equatidn, we obtain
de 4\/;\/— ¢(t) through
a6 M e(e— 7). (20)
" — et [2Vmeod
Once 7(e€) is specified, integration of this equation yields 8mVo M_p:ex YR (27)
#(€). P
Also, Egs.(10) and(20) give Hence in Eq(25) we finda(t) ~tP wherep= 1/e,, the usual
2012 power-law inflation result.
d_V: d_Vd_¢:_ MEH® 13— 7% (21) Finally, we note that it is also possible to address the
de do¢ de 8w |e—7n| present problem using the definitions of the slow-roll param-

_ o _ _ eters in the expression for the spectral index to obtain a dif-
which, divided by Eq(9), produces the followingxactdif-  ferential equation foH(¢) [25]. While at lowest order this

ferential equation, useful because it is independent of th@pproach yields results which are equivalent to the ones de-
Hubble parameter:

l d_V: 3—7 _ 1 + 1 (22) 10nce again, note that the conservation equation must be trun-
Vde (n—¢€)(3—€) €-3 n—¢€ cated to the correct ordeég in the approximation scheme.
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rived in the next sectiohthe differential equation arising at This, together with the expression f@f (), can then be

next order does not seem to allow an analytical solution andised in the Friedmann equation which becomes

in that case the parametrization method outlined above

proves to be preferable. : \/2_\/oM§
p=—,

¢* 1 (36)
IV. APPLICATIONS &
In this section the method outlined above is applied toS° that
determination of the inflationary potentials which yield a
y P y B(t)=do (t/tg)"?, (37)

k-independent spectral index. Two cases will be considered:
the Harrison-Zel'dovich power spectrum and the case of a 31 > _
kindependent spectral index not equal to unity. For eact{!nere éoto ~=3v2VoMp/4m. Equation(31) can then be

case, both lowest-order and next-order approximation resul{¢s€d to compute the dynamics of the slow-roll parameter:

will be derived.

A. Harrison-Zel'dovich case

1. Lowest-order approximation

Imposingn(k) =1 in the lowest-order expression for the

spectral index, Eq16), yields
n(€e)=2e. (28

Thus Eqs.(20) and(23) become

de 4\/;

—=———¢" (29
d¢ M,
dinVv 1 +1 30
de e-3 €’ (30

which can be integrated immediately, giving

My
P(e)= : (3D
2\ e
V(e)=V(3—€)e=V,3e, (32
and hence
3M}
V(¢)=Vq 5" (33
A
Equation(24) then yields
87TVO 2VO
H2(§)= ——e=—, (34)
M3 ¢

and the constant, can be read off from the lowest-order

version of Eq.(14) as

4

Vo= 5 Pr- (35

2t is straightforward to show that the conditiop=We for
W=1 is solved byH(¢)=A+BgY1~W),

2
p

e(t)= (t/tg) 23, (39

Am 3

Finally, the time evolutions of the Hubble parameter and
scale factor are given by

H(t)=H(to)(t/tg) ",

a(t) \/8Vo[(t)2’3 }
=exX — —1.

a(to) 3oty HL\ o

Let us now recall the work of Barrow and Liddle am-
termediate inflatior}26]. Though the present work differs in
spirit from that papefwhich starts by postulating a specific
dynamics and then goes on to derive the corresponding po-
tential), the two approaches share a common point, as we
now outline. In Ref[26] the scale factor is assumed to take
the form

(39

a(t)=expAt", (40)

with 0<f<1, A>0= const. The authors then prove that this
is an exact solution of the “intermediate” inflation potential

8A? B

=(B+4)2

where B=4(f"1—1), and that it is also a solutiom the
slow-roll approximationfor the potential

(ZAB)lIZ

\%
(¢) $

, (41)

48A? B

(B+4)?

To see how the present results relate to the ones reported
in Ref.[26], we first quote the expressions for the slow-roll
parameters obtained in the intermediate inflation case:

(ZAB)l/Z
)

V(g)= (42

BZ
=—, 1+_
2

51 (43

¢2

€ n=

Exploiting Eq.(43), the equation for the exact intermediate
inflation potential can be recast in the form
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(2AB)Y2)7 \ | ' '
5| [Bme@] @ (O ]

\ — — — — next—order potential

16A2
(B+4)?

Now, we can think of this expression as a function of the o
slow-roll parametek instead of the fieldp. In this perspec- S
tive, neglecting thee in the (3—¢) factor is the same as 0.5
saying thatowest-orderslow-roll approximation is assumed

and that by order consistency one should retain only the
lowest-order term arising frord ™~ #(¢€). In other words, the

e appearing in the (3 €) factor will generate terms of 0
higher order, all of which can be consistently neglected in a
lowest-order calculation.

Note furthermore that imposing thgk) =1 condition in
the form consistent with the lowest-order approximation
(that is, =2¢) and using Eq.(43) yields =2 and
f=2/3. This is consistent with the previous calculation, since

V(g)=

\ lowest—order potential

0.5 1 :5 2 25
/M

FIG. 1. Potentials giving the Harrison-Zel'dovich density spec-
tral index, computed to the lowest-order approximation and to the
next-order approximation.

inserting this value of into Eq.(42) produces an expression Mp| 1 . 1
- - (9= —r| =2t (Vo) |= —=| =2V,
for the inflaton potential analogous to E§3), o \/; 2\/; \/;
(51)
V("s)wﬁ' (45) V(€)=Voe(3— €)(1+ €)2=V,(3e+5€2). (52

thus showing that the present analysis and the one carried out ! this case it is neither straightforward nor very enlight-

by Barrow and Liddle in Refl26] agree on the lowest-order ening to obtain an explicit expression for the potential as a
potential able to produce a Harrison-Zel'dovich densityfunCtIon of field. Numerically, however_ we can pletgrmme
power spectrum. V(¢) from Egs.(51) and(52). The result is plotted in Fig. 1

together with the lowest-order result.

2. Next-order approximation

As discussed at the beginning of Sec. lll, the two condi- B. General power laws

tions given in Eq.(18) must now be imposed in order to Having determined the inflationary potential generating a
determinez(e). The first condition is simply obtained from Harrison-Zel'dovich spectrum, in this section we consider

Eq. (16): imposingn(k) =1 at next order gives the more general case for which
4e—27+8(C+1)e’—(6+10C)en+2CE2=0. (46) n(k)=1-2n5 Vk. (53
The second conditiordn/d In k=0, yields[24] We focus primarily on then(2)>0 case: the results for
5 5 n§<0 are obtained by analytic continuation, with some care
—2£°—8€°+10en=0. (47 being taken over the number of solutions available in that
case.
These expressions then allow us to solve érand » as
functions ofe, giving 1. Lowest-order approximation
e+ 4€? Inserting the lowest-order expression fotk), Eq. (16),
(€)= —3 1 =2€- 267, into Eq. (53) gives
6c24 863 7(€)=2¢=ng, (54)
2 2
=———"—=6¢". 48
&°(e) 3e+1 € (“48) so that Egs(20) and (23) become
Equations(20) and (23) become de \/—
)s (55)
de 4 \/; e(e+1l) d¢ Mp
—=——/€ , (49
do M, 3e+1 dinv 1 1
= + . (56)
dinv 1 3e+1 de €3 ¢—n
= + . (50
de €e—3 e€(et+l) . ) 5 _
Let us first consider theg>0 case. Depending on whether
These can be integrated exactly to yield > ng or e< né, integration of Eq(55) above yields
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ST T T T T T T
04 n=0.990 -
E ————n=0975
- T n=0.950 .
L - n=0.900
03f
>°
Z L
>
0.2
0.1
0 1
2

(4m)/29 /M,

FIG. 2. Four potentials computed to lowest order, yielding den- £%(¢e)=

sity perturbation spectral indices of 0.9, 0.95, 0.975, 0.99.

M, coth™( \/Tné) (e>nj),
¢(6)22no—\/;x[tanh‘1(\/jr1§) (e<nd).
Similarly, integration of Eq(56) gives
V(€)=Vo(3—€)|e—nd|=*+V[e(3+n3)—3n3], (59)

where the uppetlowen sign refers to thee>n3 (e<n3)
case. Combining these results produces

V(¢)=Vonj
—3+(3+n§)cothz(2n0\/;¢>) (e>nj),
» p
3—(3+n§)tank?(2n0\/;¢) (e<nj).
p (59

Examples of such potentials fof>n§ are illustrated in

Fig. 2.
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At this point it seems rather puzzling that there are two
different solutions for the potential wheri>0 and only one
whenn3<0. In Sec. V it will be shown that the reason for
this is related to the behavior that E5) exhibits as a
function of the initial value of the slow-roll parametey,.

2. Next-order approximation

First it is necessary to express the slow-roll parameters
and£? as functions of andnj. At next order the condition
(53) gives

4e—27+8(C+1)e*—(6+10C)en+2CE2=2n3.

(63)
On imposing the conditiodn(k)/d In k=0 we find
26+462—ng
~ __n2 2y 2y 2
ne)=—3_77 ng+(2+3ng)e—(2+9ng) €2,

(64)

6e’+8e%—5nje

] =~—5n2e+(6+15n2)€?,  (65)

so that Egs(20) and (23) in this case take the form

do M, 1 3e+tl
=P , (66)
de 4\/; \/; €?+e—nj
dinv 1 3e+1
= (67)

+ .
de €3 62+e—n§

To solve these equations, latand b be the two roots of
€?+e—n3=0 so that

2a=-1-6, 2b=—-1+6 with 6=\1+4n3.
(68)

Furthermore we assume<thj<1, so thata=—(1+n3)
<0 andb=n3>0. Using

(3=671)
with p. :T (69

3et+1l P p_
= +
e?+e—n3 €-a €e-b

When n3<0, the corresponding lowest-order results for gne can integrate E@66) to find, in the cases>b=n3 and

V(e) and ¢(€) are given by
V(€e)=V[ e(3+n3)—3n3] (60)

B~ —> 1(\/ 6) (61
€)= ——1an — .
2+ 7|nj| In3|

Inverting Eq.(61) we obtain

and

V(¢)=V,|n3| , (62

2¢¢wma)_3

p

(3+ nS)tar?(

where now only one solution exists becausen3>0.

e<b=n3 respectively:

b(e) Me
o e
2\

Finally, integration of Eq(67) yields

103519-6
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2 T T T T T T T inflation in the IimitnS—>0 (i.e. p—), which corresponds
T \l - to pure de Sitter expansid4].
& 0 > I Turning our attention to the casg# n%, it is easier to
}_1 B consider the derivative ap with respect toe,
2-2r d¢ M, 1
a i e "
3_4 i T Ve(ng—e€)
f I t which is also shown in Fig. 3. The interesting feature here is
’s?x that the pointezng represents an asymptote @$/de: in-
N 1 tegrating it on either side With—>n3 yields a logarithmically
& diverging field. This necessarily implies that the value of the
g 0 > field, parametrized by, will tend to infinity while e tends
L | toward ng. Remembering that Eq55) is integrated to yield
ﬁ_l L | @(€), itis then possible to note that the three distinct regions
s | | e<n3, e=n3 and e>n3 will give rise to three different dy-
_2 . L . L . | namical behaviors fog, which, once inserted in the expres-
0 0.01 0.02 0.03 0.04 0.05 sion forV(e), are able to produce the same density pertur-
€ bation spectral index. The apparent puzzle that arose at the

end of Sec. IV B 1 has therefore been solved: there are in
fact two potentials, and both their domains @re [00[. It

is now possible to understand that each one of them—
together with power law inflation—is able to generate the
desired power spectrum, depending on the initial condition
chosen for the slow-roll parameter.

FIG 3. The values ofle/d¢ andd¢/de for an assumed value
of n0 0.03. Notice that the sign of the derivatives implies that for .
e—n3 the value of the field tends toward infinity.

V(e)=Vy(3—¢€)|e—al|P+|e—Db|P-. (71)

As in Sec. IV A 2 the potential and the field have been suc-
cessfully parametrized with respect to they can be in- B. n3=<0 case

verted numerically to find/(¢). The cases3=0 andn3<0 are similar. From Eq55) we

see that, independent &, the value ofe will tend toward

zero as inflation proceeds. In th§<0 case the solution
As was pointed out in Sec. IV B, it is interesting that more derived in Sec IV B is the only one available, while in the

than one solution arises in the general power-law case. Tepecial casen3=0 (Harrison-Zel'dovich it is possible to

further explore the reason for this, it is necessary to conside¢laim that two different inflationary potentials will be able to

again the evolution ok(¢) given by Eq.(55), keeping in ~ generate such a power spectrum: the flat one giving rise to

mind that without loss of generalit$>0 is assumed. the classical de Sitter expansion and the one derived in Sec.

IV A 1, whose first term is proportional teh 2.

V. THE FLOW OF €

A. n3>0 case
VI. DISCUSSION

From Fig. 3, which showse/d¢ as a function of, it is ) ) )
tive for e>n2. One can see that ¥, the initial value ofe potentials yielding the Harrison-Zel’dovich flat spectrum can
is smaller tr?am2 then the sIow—rc,)II parameter will in—’ be determined to thiewest-orderandnext-orderapproxima-
2O o . tions in the slow-roll parameters. Similarly, potentials pro-
crease towardhg, while if the initial valuee, is greater than

2 ih il d @2 In then2>0 h ducing ak-independent spectral index slightly different from
Mo, thene wi ecrease towardhg. In t .eno> case, then, unity have been derived fowest orderand tonext order
independent of its initial value,, e will tend toward the

) 5 It is also possible to speculate that the same procedure can
point €= ng. _ _ be carried out to any order of expansion in the slow-roll
We have already seen thatdf= 7, thene is a constant parameters. This is because the implications of the spectral
given by e;=n§, and that this fixed point corresponds to index k independence are not as trivial as they may seem at
power-law inflation generating lalndependent density spec- first glance. Notice in fact that every time a higher approxi-
tral index given byn(k)=1—2n3. This result also allows mation order is assumed, new slow-roll parameters will ap-
one to reconcile the apparent contradictory requirements fasear in the expression for the spectral index: going from
the generation of a Harrison-Zel'dovich power spectrumiowest order to next order, for exampl& was introduced.
stemming from the lowest-order slow-roll approximation This is hardly surprising, though, because these new param-
condition, n=2e, and by the power-law inflation definition eters just correspond to higher derivativesvgip) or H( )
e=7n=¢&=-.-=n5. One can see once again that a Harrison{whatever is the degree of freedom chosen to express the
Zel'dovich power spectrum can be generated by power-lavslow-roll parametesand a higher order treatment necessar-
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ily needs to take into account more derivative terms of theials we have found do not lead to inflation ending by viola-
potential. However, the requirement of the spectral index tdion of the slow-roll conditions. This shows that there are no
be k independent implies not only a particular value k) purely single-field inflation models which, in the slow-roll

but also that all its derivatives are equal to zero: approximation, give a constant spectral index across all
. scales(see Ref.[27] for a further discussion of the con-

d'n(k) o straints coming from the need to end inflation in single-field

a0 =0, with i=12,.... (73 models. However, inflation could end by another mecha-

nism, such as the hybrid inflation mechanig2g].

Furthermore, the expression for thiy{ 1)th derivative
of the spectral index contains slow-roll parameters up to the

|0th one. So once the apprOXimation Ord@ris Chosen, the This work was Supported in part by NASA grant NAG5-
problem is characterized by +1 parameters anth equa-  10842. A.V. would like to thank the David and Lucile Pack-
tions of constraint relating them. This allows the eXpl’eSSithrd Foundation and Hotel Victoria, Torino, for financial sup-
of all the slow-roll parametera, as functions ofe. The  port. E.J.C. thanks the Kavli Institute for Theoretical
choice ofe is not arbitrary, because once the expression folPhysics, Santa Barbara for their support during the comple-
(7—€) appropriate for the approximation level assumed istion of part of this work. A.R.L. was supported in part by the
derived, theexactexpressions fode/d¢ and ford In V/de, Leverhulme Trust and by PPARC. This work was initiated
Egs.(20) and(22), can be exploited to computg andV as  during a visit by E.W.K. to Sussex supported by PPARC. We
functions ofe, thus yielding the mag— V(). thank Cesar Terrero-Escalante for extensive comments on the

Finally, it is worth commenting on the fact that in both the original version of this paper, and also Filippo Vernizzi for
Harrison-Zel'dovich case and the power-law case, the poteniseful comments.
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