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Inflationary potentials yielding constant scalar perturbation spectral indices

Alberto Vallinotto
Physics Department, The University of Chicago, Chicago, Illinois 60637-1433, USA

and Dipartimento di Fisica, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy

Edmund J. Copeland
Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom

Edward W. Kolb
Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500, USA

and Department of Astronomy and Astrophysics, Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637-1433, U

Andrew R. Liddle
Astronomy Centre, University of Sussex, Brighton BN1 9QH, United Kingdom
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We explore the types of slow-roll inflationary potentials that result in scalar perturbations with aconstant
spectral index, i.e., perturbations that may be described by a single power-law spectrum over all observable
scales. We devote particular attention to the type of potentials that result in the Harrison-Zel’dovich spectrum.
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I. INTRODUCTION

Inflation, a cornerstone of the modern framework for u
derstanding the early universe@1,2#, predicts the initial con-
ditions for the formation of structure and the cosmic mic
wave background~CMB! anisotropies. During inflation, the
primordial scalar~density! and tensor~gravitational wave!
perturbations generated by quantum fluctuations are
shifted beyond the Hubble radius, becoming frozen as
turbations in the background metric@3–7#. However, even
when there is only one scalar field—theinflaton—the num-
ber of inflation models proposed in the literature is large@2#.
Determination of the properties of the scalar perturbati
and tensor perturbations from CMB and large-scale struc
observations allows one to constrain the space of poss
inflation models@8–14#.

It is often adequate to characterize inflationary pertur
tions in terms of four quantities: the scalar and tensor po
spectra,PR andPg , and the scalar and tensor spectral in
cesn andnT . In this paper we focus on thescalar spectral
index which, unless explicitly indicated otherwise, we re
to simply as the ‘‘spectral index.’’ Successful inflation mo
els predictn close to 1~the so-called Harrison-Zel’dovich
spectrum!, andn typically has a small scale dependence. T
best data available to date, combining the Wilkinson Mic
wave Anisotropy Probe@15# and Sloan Digital Sky Survey
@16# data sets, indicate that the evidence for anything ot
than a scale-invariant spectra is marginal at best, with
evidence for significant running of the scalar spectral ind
@17#. Moreover, one of us has recently argued that wh
information criteria are used to carry out cosmological mo
selection based on the current data sets available, then
0556-2821/2004/69~10!/103519~8!/$22.50 69 1035
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best present description of cosmological data uses a sc
invariant (n51) spectrum@18#. It therefore makes sense t
be considering the inflationary potentials associated with
spectrum.

It is known that inflaton potentialsV(f)5exp(2af) for
constanta2,2 lead to perturbation spectra that are ex
power laws; i.e.,n is a constant@19#. However, there has no
yet been a systematic analysis of the types of inflaton po
tials that yield constantn. Here we take a first step in tha
direction, classifying those potentials within the framewo
of the slow-roll approximation@20#.

In the next section the basic results employed to calcu
the properties of the perturbation spectrum using the sl
roll parametrization of the inflaton potential are reviewed.
Sec. III two exact differential equations connecting the p
tential and the field to the slow-roll parameters are deriv
and the general method used to calculate all the relev
cosmological quantities is outlined. In Sec. IV this method
applied to the determination of the inflationary potent
yielding a k-independent density spectral index: both t
Harrison-Zel’dovich (n51) and the general (n5122n0

2)
cases are considered to lowest order and to next order in
slow-roll parameter approximation. In Sec. V the flow ofe is
examined to understand the number of solutions that ar
The conclusions are contained in Sec. VI.

II. REVIEW OF BASIC CONCEPTS

A. Inflationary dynamics and slow-roll parameters

The dynamics of the standard Friedmann-Roberts
Walker ~FRW! universe driven by the potential energy of
©2004 The American Physical Society19-1
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single scalar field—the inflatonf—is usually expressed b
the Friedmann equation for flat spatial sections and by
energy conservation equation:

H25
8p

3Mp
2 F1

2
ḟ21V~f!G , ~1!

f̈13Hḟ1V8~f!50, ~2!

whereV(f) is the inflaton potential,Mp5G21/2 the Planck
mass andH5ȧ/a the Hubble expansion parameter. On
V(f) is specified, the field dynamics is determined by so
ing the coupled equations~1! and~2!. Often it is simplest to
do this using the Hamilton-Jacobi approach@21# in which
H(f) is considered the fundamental quantity to be specifi
Equations~1! and ~2! then become two first-order equation

H8~f!2212pH2~f!/Mp
25232p2V~f!/Mp

4, ~3!

ḟ52Mp
2H8~f!/4p, ~4!

where 8[d/df. Whichever the method, once the dynam
of the inflaton field is known,a(t) is obtained by integrating
Eq. ~1!. Without any loss of generality we assume th
ḟ.0 during inflation. Here we use the Hubble slow-ro
parameterse, h andj2 as defined in Ref.@22#:

e~f![
3ḟ2

2
FV~f!1

ḟ2

2
G21

5
Mp

2

4p FH8~f!

H~f! G2

, ~5!

h~f![2
f̈

Hḟ
5

Mp
2

4p

H9~f!

H~f!
, ~6!

j2~f![
Mp

4

16p2

H8~f!H-~f!

H2~f!
. ~7!

The parametersh and j2 are the first terms in an infinite
hierarchy of slow-roll parameters, whosel th member is de-
fined by

lH
l ~f![S Mp

2

4p
D l ~H8! l 21

Hl

d( l 11)H~f!

df ( l 11)
. ~8!

During slow-roll $e,lH
l %!1, and inflation ends whene51.

The potential and its derivatives can be expressed asexact
functions of these slow-roll parameters: up to second orde
derivatives ofV one has

V~f!5
Mp

2

8p
H2~32e!, ~9!

dV~f!

df
52

Mp

2Ap
H2Ae~32h!, ~10!
10351
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d2V~f!

df2
5H2@3e13h2~h21j2!#. ~11!

B. Hierarchy of approximation orders

As mentioned in the Introduction, the observable quan
ties of interest are the power spectrumPR of the curvature
perturbationR on comoving hypersurfaces and the spectr
of gravity wavesPg . These definen(k) andnT(k) through

n~k!21[
d ln PR~k!

d ln k
, ~12!

nT~k![
d ln Pg~k!

d ln k
. ~13!

As discussed in Refs.@23,24#, the expressions for these qua
tities differ depending on the approximation order assum
in the slow-roll expansion. The approximation order is d
fined in general by considering how many terms in a slo
roll parameter expansion of a generic expression are
tained, the lowest-order approximation corresponding t
retaining only the lowest-order term and thenext-orderap-
proximation corresponding to retaining terms up to the ne
to-lowest order term.

For the perturbation power spectra and spectral indic
the lowest-order term is linear in the slow-roll parameters.
order l 0 , these expressions will contain the set of slow-r
parameters$e,lH

l % with l 5(1,2, . . . ,l 0) wherelH
l is a term

of orderl. At next order( l 052), the expressions will contain
the parameters$e,h,j2[lH

2 % as well as all second-orde
combinations thereof~namely e2,h2 and he). Hence, for
order consistency, whenever an exact and an approxima
expression are combined~as shall often be the case below!
the result is accurate only to the order of the approxim
expression, and the result must be expanded in a powe
ries of slow-roll parameters up to and including terms of
overall degree consistent with the level of approximation
sumed.

Recalling Lidseyet al. @24#, it is then possible to think of
an infinite hierarchy of expressions for the perturbation sp
tra and for the spectral indices. It is unfortunate that, a
result of the complexity of the problem, only the first tw
approximation orders are currently available in general:
deed, at next-to-lowest order,

PR
1/2~k!.2@12$~2C11!e2Ch%#

H2

Mp
2uH8u

U
k5aH

~14!

P g
1/2~k!.

4

Ap
@12$~C11!e%#

H

Mp
U

k5aH

, ~15!

n~k!21.24e12h2$8~C11!e22~6110C!eh

12Cj2%, ~16!
9-2
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nT~k!.22e2$2e2~312C!24~11C!eh%, ~17!

whereC.20.73 @23,24#. As in Ref. @24#, the symbol ‘‘. ’’
is used to indicate that the results are accurate upto the order
of approximation assumed. The lowest-order results are ob
tained by setting all the terms in curly brackets to zero.

III. PARAMETRIZATION METHOD

We now focus on the case of constantn(k). To any order
l 0 in the slow-roll approximation, imposingk independence
of n(k) endows the problem with the additional set
( l 021) relations

din~k!

d~ ln k! i
50, i 51, . . . ,~ l 021!. ~18!

Therefore, since there arel 011 slow-roll parameters at thi
order, the conditions~18! together with the constancy o
n(k) mean that only one of those is independent: through
the rest of this paper we take it to bee. As we show in this
section, it is then possible to determinef(e) and V(f) to
this order.

The method is the following. First we derive two exa
differential equations forf and V which, as we shall see
below, only contain the slow-roll parametersh ande. Then,
at a given orderl 0 , we impose the conditions given in Eq
~18! which yieldh(e). As a result the two differential equa
tions can be integrated to obtainV(e) and f(e) correct to
order l 0 . Finally, providedf(e) can be inverted, we can
obtainV(f). This will be done in the next section where w
also solve for all the dynamics of the problem, name
H(f), a(t) andf(t).

From Eq.~5! it is straightforward to obtain

de

df
5

2Mp
2

4p FH8H9

H2
2S H8

H
D 3G , ~19!

which, together with the definitions ofe and h, yields the
exactdifferential equation

de

df
5

4Ap

Mp

Ae~e2h!. ~20!

Once h(e) is specified, integration of this equation yield
f(e).

Also, Eqs.~10! and ~20! give

dV

de
5

dV

df

df

de
52

Mp
2H2

8p F32h

e2h G , ~21!

which, divided by Eq.~9!, produces the followingexactdif-
ferential equation, useful because it is independent of
Hubble parameter:

1

V

dV

de
5

32h

~h2e!~32e!
5

1

e23
1

1

h2e
. ~22!
10351
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e

Given h(e), Eq. ~22! can be integrated to give

V~e!5V0u32euexpF E de

h~e!2eG , ~23!

whereV0 is the integration constant which can be obtain
from the observed perturbation amplitude. Finally from E
~9! the following expression forH can be obtained:

H2~e!5
8pV0

Mp
2

expF E de

h~e!2e
G . ~24!

As noted in the previous section, once the integrations
Eqs. ~23! and ~24! have been carried out, order consisten
requires that the resulting expressions be expanded in po
of e and only terms up to and including orderl 0 are kept.

Once the expressions forV(e) andf(e) have been com-
puted, it is then possible to determine all the other relev
cosmological quantities. Equation~24! together with the ex-
pression fore(f) gives H(f) to the given orderl 0 . This,
together with the equation obtained forV(f), then enables
f(t) to be calculated using Eq.~2!.1 Once this step is carried
out, the time evolution of the Hubble parameter can
derived—either using Eq.~2! or the solution of Eq.~24!—
and its integration then yields the dynamics of the scale f
tor a(t).

Before turning to the specific cases of the constant sp
tral index, it is worth commenting on the apparently singu
case ofh5e. This is nothing other than the usual exa
power-law inflation model and is perfectly regular. From E
~20!, we see that in this case the solution ise5e0 , a constant
independent off. Substituting this value into Eqs.~5! and
~9! we obtain

H5
A8pV0

Mp

expF2
2Ape0f

Mp
G , ~25!

V5V0~32e0!expF2
4Ape0f

Mp
G . ~26!

Substituting this into the Friedmann equation~1!, we obtain
f(t) through

A8pV0

e0t

Mp

5expF2Ape0f

Mp
G . ~27!

Hence in Eq.~25! we finda(t);tp wherep51/e0 , the usual
power-law inflation result.

Finally, we note that it is also possible to address
present problem using the definitions of the slow-roll para
eters in the expression for the spectral index to obtain a
ferential equation forH(f) @25#. While at lowest order this
approach yields results which are equivalent to the ones

1Once again, note that the conservation equation must be t
cated to the correct orderl 0 in the approximation scheme.
9-3
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rived in the next section,2 the differential equation arising a
next order does not seem to allow an analytical solution
in that case the parametrization method outlined ab
proves to be preferable.

IV. APPLICATIONS

In this section the method outlined above is applied
determination of the inflationary potentials which yield
k-independent spectral index. Two cases will be conside
the Harrison-Zel’dovich power spectrum and the case o
k-independent spectral index not equal to unity. For e
case, both lowest-order and next-order approximation res
will be derived.

A. Harrison-Zel’dovich case

1. Lowest-order approximation

Imposingn(k)51 in the lowest-order expression for th
spectral index, Eq.~16!, yields

h~e!.2e. ~28!

Thus Eqs.~20! and ~23! become

de

df
.2

4Ap

Mp

e3/2, ~29!

d ln V

de
.

1

e23
1

1

e
, ~30!

which can be integrated immediately, giving

f~e!.
Mp

2Ape
, ~31!

V~e!.V0~32e!e.V03e, ~32!

and hence

V~f!.V0

3Mp
2

4pf2
. ~33!

Equation~24! then yields

H2~f!.
8pV0

Mp
2

e.
2V0

f2
, ~34!

and the constantV0 can be read off from the lowest-orde
version of Eq.~14! as

V0.
Mp

4

8
PR . ~35!

2It is straightforward to show that the conditionh5We for
WÞ1 is solved byH(f)5A1Bf1/(12W).
10351
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This, together with the expression forV8(f), can then be
used in the Friedmann equation which becomes

f2ḟ.
A2V0Mp

2

4p
, ~36!

so that

f~ t !.f0 ~ t/t0!1/3, ~37!

where f0
3t0

2153A2V0Mp
2/4p. Equation ~31! can then be

used to compute the dynamics of the slow-roll paramete

e~ t !.
Mp

2

4pf0
2
~ t/t0!22/3. ~38!

Finally, the time evolutions of the Hubble parameter a
scale factor are given by

H~ t !.H~ t0!~ t/t0!21/3,

a~ t !

a~ t0!
.expH A8V0

3f0t0
21 F S t

t0
D 2/3

21G J .

~39!

Let us now recall the work of Barrow and Liddle onin-
termediate inflation@26#. Though the present work differs in
spirit from that paper~which starts by postulating a specifi
dynamics and then goes on to derive the corresponding
tential!, the two approaches share a common point, as
now outline. In Ref.@26# the scale factor is assumed to ta
the form

a~ t !5exp~Atf !, ~40!

with 0, f ,1, A.05 const. The authors then prove that th
is an exact solution of the ‘‘intermediate’’ inflation potenti

V~f!5
8A2

~b14!2
F ~2Ab!1/2

f
GbF62

b2

f2G , ~41!

where b54( f 2121), and that it is also a solutionin the
slow-roll approximationfor the potential

V~f!5
48A2

~b14!2
F ~2Ab!1/2

f
Gb

. ~42!

To see how the present results relate to the ones repo
in Ref. @26#, we first quote the expressions for the slow-ro
parameters obtained in the intermediate inflation case:

e5
b2

2f2
, h5S 11

b

2
D b

f2
. ~43!

Exploiting Eq. ~43!, the equation for the exact intermedia
inflation potential can be recast in the form
9-4
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V~f!5
16A2

~b14!2
F ~2Ab!1/2

f
Gb

@32e~f!#. ~44!

Now, we can think of this expression as a function of t
slow-roll parametere instead of the fieldf. In this perspec-
tive, neglecting thee in the (32e) factor is the same a
saying thatlowest-orderslow-roll approximation is assume
and that by order consistency one should retain only
lowest-order term arising fromf2b(e). In other words, the
e appearing in the (32e) factor will generate terms o
higher order, all of which can be consistently neglected i
lowest-order calculation.

Note furthermore that imposing then(k)51 condition in
the form consistent with the lowest-order approximati
~that is, h52e) and using Eq.~43! yields b52 and
f 52/3. This is consistent with the previous calculation, sin
inserting this value ofb into Eq.~42! produces an expressio
for the inflaton potential analogous to Eq.~33!,

V~f!;
3

f2
, ~45!

thus showing that the present analysis and the one carried
by Barrow and Liddle in Ref.@26# agree on the lowest-orde
potential able to produce a Harrison-Zel’dovich dens
power spectrum.

2. Next-order approximation

As discussed at the beginning of Sec. III, the two con
tions given in Eq.~18! must now be imposed in order t
determineh(e). The first condition is simply obtained from
Eq. ~16!: imposingn(k)51 at next order gives

4e22h18~C11!e22~6110C!eh12Cj2.0. ~46!

The second condition,dn/d ln k50, yields@24#

22j228e2110eh.0. ~47!

These expressions then allow us to solve forj2 and h as
functions ofe, giving

h~e!.
2e14e2

3e11
.2e22e2,

j2~e!.
6e218e3

3e11
.6e2. ~48!

Equations~20! and ~23! become

de

df
.2

4Ap

Mp

Ae
e~e11!

3e11
, ~49!

d ln V

de
.

1

e23
1

3e11

e~e11!
. ~50!

These can be integrated exactly to yield
10351
e
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f~e!.
Mp

2Ap
F 1

Ae
22 tan21~Ae!G.

Mp

2Ap
S 1

Ae
22Ae D ,

~51!

V~e!.V0e~32e!~11e!2.V0~3e15e2!. ~52!

In this case it is neither straightforward nor very enligh
ening to obtain an explicit expression for the potential a
function of field. Numerically, however, we can determin
V(f) from Eqs.~51! and~52!. The result is plotted in Fig. 1
together with the lowest-order result.

B. General power laws

Having determined the inflationary potential generating
Harrison-Zel’dovich spectrum, in this section we consid
the more general case for which

n~k!5122n0
2 ;k. ~53!

We focus primarily on then0
2.0 case: the results fo

n0
2,0 are obtained by analytic continuation, with some ca

being taken over the number of solutions available in t
case.

1. Lowest-order approximation

Inserting the lowest-order expression forn(k), Eq. ~16!,
into Eq. ~53! gives

h~e!.2e2n0
2 , ~54!

so that Eqs.~20! and ~23! become

de

df
.

4Ap

Mp

Ae~n0
22e!, ~55!

d ln V

de
.

1

e23
1

1

e2n0
2

. ~56!

Let us first consider then0
2.0 case. Depending on whethe

e.n0
2 or e,n0

2, integration of Eq.~55! above yields

FIG. 1. Potentials giving the Harrison-Zel’dovich density spe
tral index, computed to the lowest-order approximation and to
next-order approximation.
9-5
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f~e!.
Mp

2n0Ap
3H coth21~Ae/n0

2! ~e.n0
2!,

tanh21~Ae/n0
2! ~e,n0

2!.
~57!

Similarly, integration of Eq.~56! gives

V~e!.V0~32e!ue2n0
2u.6V0@e~31n0

2!23n0
2#, ~58!

where the upper~lower! sign refers to thee.n0
2 (e,n0

2)
case. Combining these results produces

V~f!.V0n0
2

35 231~31n0
2!coth2S 2n0Ap

Mp

f D ~e.n0
2!,

32~31n0
2!tanh2S 2n0Ap

Mp

f D ~e,n0
2!.

~59!

Examples of such potentials fore.n0
2 are illustrated in

Fig. 2.
When n0

2,0, the corresponding lowest-order results f
V(e) andf(e) are given by

V~e!.V0@e~31n0
2!23n0

2# ~60!

and

f~e!.
Mp

2Apun0
2u

tan21SA e

un0
2u
D . ~61!

Inverting Eq.~61! we obtain

V~f!.V0un0
2uF ~31n0

2!tan2S 2fApun0
2u

Mp
D 23G , ~62!

where now only one solution exists becausee2n0
2.0.

FIG. 2. Four potentials computed to lowest order, yielding d
sity perturbation spectral indices of 0.9, 0.95, 0.975, 0.99.
10351
r

At this point it seems rather puzzling that there are t
different solutions for the potential whenn0

2.0 and only one
when n0

2,0. In Sec. V it will be shown that the reason fo
this is related to the behavior that Eq.~55! exhibits as a
function of the initial value of the slow-roll parameter,e0 .

2. Next-order approximation

First it is necessary to express the slow-roll parameterh
andj2 as functions ofe andn0

2. At next order the condition
~53! gives

4e22h18~C11!e22~6110C!eh12Cj2.2n0
2 .

~63!

On imposing the conditiondn(k)/d ln k50 we find

h~e!.
2e14e22n0

2

3e11
.2n0

21~213n0
2!e2~219n0

2!e2,

~64!

j2~e!.
6e218e325n0

2e

3e11
.25n0

2e1~6115n0
2!e2, ~65!

so that Eqs.~20! and ~23! in this case take the form

df

de
.2

Mp

4Ap

1

Ae

3e11

e21e2n0
2

, ~66!

d ln V

de
.

1

e23
1

3e11

e21e2n0
2

. ~67!

To solve these equations, leta and b be the two roots of
e21e2n0

250 so that

2a5212d, 2b5211d with d5A114n0
2.

~68!

Furthermore we assume 0,n0
2!1, so thata.2(11n0

2)
,0 andb.n0

2.0. Using

3e11

e21e2n0
2

5
p1

e2a
1

p2

e2b
with p65

~36d21!

2
~69!

one can integrate Eq.~66! to find, in the casese.b.n0
2 and

e,b.n0
2 respectively:

f~e!.
Mp

2Ap

35 2
p1

Auau
tan21A e

uau
1

p2

Ab
coth21Ae

b
,

2
p1

Auau
tan21A e

uau
1

p2

Ab
tanh21Ae

b
.

~70!

Finally, integration of Eq.~67! yields

-

9-6
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V~e!.V0~32e!ue2aup1ue2bup2. ~71!

As in Sec. IV A 2 the potential and the field have been s
cessfully parametrized with respect toe: they can be in-
verted numerically to findV(f).

V. THE FLOW OF e

As was pointed out in Sec. IV B, it is interesting that mo
than one solution arises in the general power-law case
further explore the reason for this, it is necessary to cons
again the evolution ofe(f) given by Eq.~55!, keeping in
mind that without loss of generalityḟ.0 is assumed.

A. n0
2Ì0 case

From Fig. 3, which showsde/df as a function ofe, it is
possible to note thatde/df is positive fore,n0

2 and is nega-
tive for e.n0

2. One can see that ife0 , the initial value ofe,
is smaller thann0

2, then the slow-roll parametere will in-
crease towardn0

2, while if the initial valuee0 is greater than
n0

2, thene will decrease towardn0
2. In then0

2.0 case, then,
independent of its initial valuee0 , e will tend toward the
point e5n0

2.
We have already seen that ife5h, thene is a constant

given by e05n0
2, and that this fixed point corresponds

power-law inflation generating ak-independent density spec
tral index given byn(k)5122n0

2. This result also allows
one to reconcile the apparent contradictory requirements
the generation of a Harrison-Zel’dovich power spectru
stemming from the lowest-order slow-roll approximatio
condition,h52e, and by the power-law inflation definition
e5h5j5•••5n0

2. One can see once again that a Harriso
Zel’dovich power spectrum can be generated by power-

FIG. 3. The values ofde/df anddf/de for an assumed value
of n0

250.03. Notice that the sign of the derivatives implies that
e→n0

2 the value of the field tends toward infinity.
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inflation in the limit n0
2→0 ~i.e. p→`), which corresponds

to pure de Sitter expansion@24#.
Turning our attention to the casee0Þn0

2, it is easier to
consider the derivative off with respect toe,

df

de
.

Mp

4Ap

1

Ae~n0
22e!

, ~72!

which is also shown in Fig. 3. The interesting feature here
that the pointe5n0

2 represents an asymptote ofdf/de: in-
tegrating it on either side withe→n0

2 yields a logarithmically
diverging field. This necessarily implies that the value of t
field, parametrized bye, will tend to infinity while e tends
towardn0

2. Remembering that Eq.~55! is integrated to yield
f(e), it is then possible to note that the three distinct regio
e,n0

2, e5n0
2 ande.n0

2 will give rise to three different dy-
namical behaviors forf, which, once inserted in the expre
sion for V(e), are able to produce the same density pert
bation spectral index. The apparent puzzle that arose a
end of Sec. IV B 1 has therefore been solved: there are
fact two potentials, and both their domains arefP@0,̀ @ . It
is now possible to understand that each one of them
together with power law inflation—is able to generate t
desired power spectrum, depending on the initial condit
chosen for the slow-roll parameter.

B. n0
2Ï0 case

The casesn0
250 andn0

2,0 are similar. From Eq.~55! we
see that, independent ofe0 , the value ofe will tend toward
zero as inflation proceeds. In then0

2,0 case the solution
derived in Sec. IV B is the only one available, while in th
special casen0

250 ~Harrison-Zel’dovich! it is possible to
claim that two different inflationary potentials will be able
generate such a power spectrum: the flat one giving ris
the classical de Sitter expansion and the one derived in
IV A 1, whose first term is proportional tof22.

VI. DISCUSSION

The analysis that has been carried out shows that infla
potentials yielding the Harrison-Zel’dovich flat spectrum c
be determined to thelowest-orderandnext-orderapproxima-
tions in the slow-roll parameters. Similarly, potentials pr
ducing ak-independent spectral index slightly different fro
unity have been derived tolowest orderand tonext order.

It is also possible to speculate that the same procedure
be carried out to any order of expansion in the slow-r
parameters. This is because the implications of the spe
index k independence are not as trivial as they may seem
first glance. Notice in fact that every time a higher appro
mation order is assumed, new slow-roll parameters will
pear in the expression for the spectral index: going fr
lowest order to next order, for example,j2 was introduced.
This is hardly surprising, though, because these new par
eters just correspond to higher derivatives ofV(f) or H(f)
~whatever is the degree of freedom chosen to express
slow-roll parameters! and a higher order treatment necess

r
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ily needs to take into account more derivative terms of
potential. However, the requirement of the spectral index
bek independent implies not only a particular value forn(k)
but also that all its derivatives are equal to zero:

din~k!

d~ ln k! i
50, with i 51,2, . . . . ~73!

Furthermore, the expression for the (l 021)th derivative
of the spectral index contains slow-roll parameters up to
l 0th one. So once the approximation orderl 0 is chosen, the
problem is characterized byl 011 parameters andl 0 equa-
tions of constraint relating them. This allows the express
of all the slow-roll parameterslH

l as functions ofe. The
choice ofe is not arbitrary, because once the expression
(h2e) appropriate for the approximation level assumed
derived, theexactexpressions forde/df and for d ln V/de,
Eqs.~20! and ~22!, can be exploited to computef andV as
functions ofe, thus yielding the mapf→V(f).

Finally, it is worth commenting on the fact that in both th
Harrison-Zel’dovich case and the power-law case, the po
v.

te

r-

.
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tials we have found do not lead to inflation ending by vio
tion of the slow-roll conditions. This shows that there are
purely single-field inflation models which, in the slow-ro
approximation, give a constant spectral index across
scales~see Ref.@27# for a further discussion of the con
straints coming from the need to end inflation in single-fie
models!. However, inflation could end by another mech
nism, such as the hybrid inflation mechanism@28#.
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