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This paper describes the computation of cosmic microwave backgr@Mme) anisotropies in a universe

with multiconnected spatial sections and focuses on the implementation of the topology in standard CMB
computer codes. The key ingredient is the computation of the eigenmodes of the Laplacian with boundary
conditions compatible with multiconnected space topology. The correlators of the coefficients of the decom-
position of the temperature fluctuation in spherical harmonics are computed and examples are given for
spatially flat spaces and one family of spherical spaces, namely, the lens spaces. Under the hypothesis of
Gaussian initial conditions, these correlators encode all the topological information of the CMB and suffice to
simulate CMB maps.

DOI: 10.1103/PhysRevD.69.103514 PACS nuni$er98.80.Jk, 02.40.Pc, 98.70.Vc

[. INTRODUCTION In a simply connected spatially homogeneous and iso-
tropic universe, the angular correlation function depends
) ) ) only on the angle between the two directions and the coeffi-
Future cosmic microwave backgroun@MB) experi-  cientsa,,, of the decomposition of the temperature fluctua-
ments such as the Wilkinson Microwave Anisotropy Probetion in spherical harmonics, which are uncorrelated for dif-
(WMAP) [1] and later the Planck satellit¢2] will provide  ferent sets of andm. Multiconnectedness breaks the global
full sky maps of CMB anisotropietup to the galactic clit  isotropy and sometimes the global homogeneity of the uni-
These data sets offer the opportunity to probe the topologicalerse, except in projective spatsee, e.g., Ref14]). Con-
properties of our Universe. A series of tests to detect théequently, the CMB temperature angular correlation function
topology, including the use of the angular power spectrunyVill depend on the two directions of observation, not only on
[3—6], the distribution of matched patterns such as circledh€ir relative angle, and possibly on the position of the ob-
[7], the correlation of antipodal point§8] and non-  SErver This induces correlations betweenahg of different

- ¢ and m. Such correlations are hidden when one considers
Gaussianity{9] have been propose@ee Refs[10-17 for . . : -
reviews of CMB methods to search for the topolagyhe only the angular correlation function and its coefficients, the

. so-calledC,, in a Legendre polynomial decomposition, be-
study of the detectability of the topology by any of these ,yse they pick up only the isotropic part of the information
methods first requires simulating maps with the topologicalnq are therefore a poor indicator of the topology. This work

signature for a large set of topologies. These maps will allowgims to detail the whole computation of the correlation ma-
one to test the detection methods, estimate their run timgyix

and, once all sources of noise are added, determine to what .
extent a given method detects the topological sigimathe Cﬁmm E<a€ma§,m,>, 1)
same spirit as the investigation of the “crystallographic”

methods based on galaxy cataldgs]). which encodes all the topological properties of the CMB,

and from which one can compute the us@yl, simulate
maps, and so on.

1Geometers and cosmologists often refer to simple connectedness

*Electronic address: riazuelo@spht.saclay.cea.fr as the “trivial topology.” However, trivial topology has a different
"Electronic address: uzan@iap.fr meaning in the context of point-set topology: in that formalism, the
*Electronic address: lehoucq@cea.fr trivial topology is the smallest topology on a $&tnamely the one
SElectronic address: weeks@geometrygames.org in which the only open sets are the empty set and the entirX.set
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The study of the detectability of a topological sigiidlit radius, because Euclidean geometry—unlike spherical and
existy in forthcoming CMB data sets requires simulating hyperbolic geometry—has no preferred scale and admits
high quality maps containing the topological signature for asimilarities. Note that in the Euclidean case, there are only
wide class of topologies. Up to now, most CMB studies conten compact topologies, which reduces and simplifies the
sidered only compact Euclidean spadés-6,15,16 and  analysis (in particular regarding the computation of the
some compact hyperbolic spacé$7—-22, and focused eigenmodes of the Laplacianin a spherical universe the
mainly on theC, . The approach developed in this paper, andtopology scale depends on the curvature radius, but, in con-
first introduced in Ref[14], is well suited to simulate the trast to the hyperbolic case, as the topology of a spherical
required CMB maps in any topology once the eigenmodes ofmanifold gets more complicated, the typical distance be-
the Laplacian have been determined. It paves the way to theveen two images of a single cosmic source decreases. No
simulation of maps for a wide range of topologies, particu-matter how closé) is to 1, only a finite number of spherical
larly spherical ones. topologies are excluded from detection. The particular case

Recent measurements of the density param@témply  of the detectability of lens spaces was studied in [R&3],
that the observable universe is “approximately flatger-  which also considers the detectability of hyperbolic topolo-
haps with a slight curvature. The exact constraint on the totajies.
density parameter obtained from CMB experiments depends At present, the status of the constraints on the topology of
on the priors used during the data analysis. For example witthe universe is still very preliminary. Regarding locally Eu-

a prior on the nature of the initial conditions, the Hubble clidean spaces, it was shown on the basis of the COBE data
parameter and the age of the Universe, recent analysis of tlikat in the case of a vanishing cosmological constant the size
DASI, BOOMERanG, MAXIMA and DMR datg23-25  of the fundamental domain of a 3-torus has to be larger than
lead to 2=0.99+0.12 at the ¥ level, and toQ=1.04 L=480"* Mpc [3—6], where the lengtth is related to the
+0.05 at the & level if one takes into account only the smallest wave number 2L of the fundamental domain,
DASI, BOOMERanG and CBI data. Including stronger pri- which induces a suppression of fluctuations on scales beyond
ors can indeed sharpen the bound. For instance, includintpe sizeL of the fundamental domain. This constraint does
information, respectively, on large scale structure and on suAot exclude a toroidal universe since there can be up to eight
pernovae data leads f=1.01"592and=1.02"33% at the  copies of the fundamental cell within our horizon. This con-
1o level while including both finally leads to() straint relies mainly on the fact that the smallest wave num-

= ]_OOtgég This has been recently improved by the Ar- ber is 2#/L, which induces a suppression of fluctuations on

cheops balloon experimenf&5,26 which get, with a prior ~scales beyond the size of the fundamental domain. This re-
on the Hubble constanf)=1.00"3%. In conclusion, it is sult was generalized to all Euclidean manifolds in R&g].
fair to assert that current cosmological observations set & hon-vanishing cosmological constant induces more power
reliable bound 0.8Q<1.1. These results are consistent©n large scales, via the integrated Sachs-Wolfe effect. For
with Friedmann-Lemare universe models with spherical, instance, if2,=0.9 andQ2,=0.1, the constraint is relaxed
flat or hyperbolic spatial sections. In the spherical and hypert® allow for 49 copies of the fundamental cell within our
bolic casesQ =1 implies that the curvature radius must be horizon. The co.nstramt is also milder in the case of compact
larger than the horizon radius. In all three cases—sphericallyperbolic manifolds and it was shoyyh7-19 that the an-
flat and hyperbolic—the universe may be simply connecte@‘“a_r power spgctrum was consistent with the COBE data on
or multiply connected. mult|_poles ranging from 2 to 20 for the Weeks and Thurstpn
The possibility of detecting the topology of a nearly flat manifolds. Another approach, based on the mgthod of im-
universe was discussed in RER7). It was noted that the @des, was developed [20—22. Only one spherical space
chances of detecting a multiply connected topology are th&Sing this m_eth_od of images was considered in the !ltera_ture,
worst in a large hyperbolic universe. The reason is that th@amely projective spacg34]. The tools developed in this
typical translation distance between a cosmic source and ifaPer. as well as in our preceding wofkst 35,36, will let
nearest topological image seems to be on the order of ths fill the gap regarding the simulation of CMB maps in
curvature radius, and that whéh=1 the distance to the last SPherical universes. o .
scattering surface is less than the half of that distance. See 1€chnically, in standard relativistic cosmology, the uni-
Refs.[28—37 for some studies on detectability of nearly flat Verse is described by a Friedmann-Lemrespacetime with
hyperbolic universes. In a multiply connected flat universgocally isotropic and homogeneous spatial sections. These

the topology scale is completely independent of the horizorsPatial séctions can be defined as constant density or time
hypersurfaces. With such a splitting, the equations of evolu-

tion of the cosmological perturbations, which give birth to
qthe large scale structures of the universe, reduce to a set of
general relativity the “universe” is not three dimensional, but four coupled. dlﬁerentlgl equations ,'nVOlV'ng the Laplacian. This
dimensional, and the Friedmann-Leéiaisolutions are dynamical, SyStem is conveniently solved in Fourier space. In the case of
so that the universe is not flat—only its spatial section may be flaf Multiply connected universe, we visualize space as the
or nearly so. In what follows, we will implicitly assume we are quotientX/I" of a simply connected spac¢é(which is just a
talking about thethree-dimensional spacelike sectioothe uni-  3-sphereS®, a Euclidean spac®®, or a hyperbolic space
verse when talking about flat, hyperbolic, or spherical spacesH®, depending on the curvatyrby a groupl’ of symmetries
universes. of X that is discrete and fixed point free. The grolipis

2The popular expression “flat universe” is misleading, because i
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called the holonomy group. To solve the evolution equation€uclidean. The &' coefficients can be determined analyti-
we must first determine the eigenmodél ! and eigenval- cally for Euclidean manifolds. In the case of a spherical
ues — «¢ of the Laplacian orX/T" through the generalized manifold, the modes are discrete,

Helmholtz equation

AYI = - 2Y1T, @) k=(v+ 1)\/E 5
with where v is a non-negative integethe casesr=0 and v
=1 correspond to pure gauge modgt2]), so that 2

Kﬁ: k2—K, 3 =yp(v+2)K, and the sum ovef is finite and runs from 0 to

v since the multiplicity of a mod& is at most its multiplicity
where k indexes the set of eigenmodes, the constéris  in the universal cover, which isv(+1)?. Among spherical
positive, zero or negative according to whether the space ispaces, the case of prism and lens spaces are the simplest
spherical, flat or hyperbolic, respectivélgnd the boundary since one can determine these coefficients analyti¢agy.
conditions are compatible with the given topology. The La-The worst situation is that of compact hyperbolic manifolds,
placian in Eq.(2) is defined as\=D'D;, D; being the co- which is analogous to the Euclidean case since the universal
variant derivative associated with the metyig of the spatial coveringR?® is not compact but for which no analytical forms
sections {,j=1,2,3). Theeigenmodes ofX/T", on which  are known for the eigenmodes. One then needs to rely on
any function onX/T" can be developed, respects the bound-humerical computationtsee, e.g., Ref§35,41)).
ary conditions imposed by the topology. That is, the eigen- Our preceding works provided a full classification of
modes ofX/T" correspond precisely to those eigenmodeX of spherical manifold$35] and developed methods to compute
that are invariant under the action of the holonomy grbup the eigenmodes of the Laplacian in th¢d#]. Among all
Thus any linear combination of such eigenmodes will satisfyspherical manifolds, we were able to obtain analytically the
by construction, the required boundary conditions. In thisspectrum of the Laplacian for lens and prism spa@&
way we visualize the space of eigenmodesX¢F as a sub- which form two countable families of spherical manifolds.
space of the space of eigenmodes(phamely the subspace The goal of the present paper is to simulate CMB maps for
that is invariant under the action &f. The computational these two families of spherical topologies, as well as for the
challenge is to find thi§ -invariant subspace and construct Euclidean topologies.
an orthonormal basis for it. In the case of flat manifolds the We first review briefly the physics of CMB anisotropies
eigenmodes oK/T'=R3/T can be found analytically. In the (Sec. 1) mainly to explain how to take into account the to-
case of hyperbolic manifolds, many numerical investigationgrology (Sec. Il B) once the coefficient[!!S are determined.
of the eigenmodes oX/I'=H3T" have been performed We then detail the computation of these coefficients, focus-
[18,37-41. In the case of spherical manifolds, the eigen-ing on the cases where it can be performed analytically, that
modes ofX/T'=S%T have been found analytically for lens is for flat spaces and lens and prism spaces. We then present
and prism spacef36] and otherwise can be found numeri- results of numerical simulationSec. IV) as well as simu-
cally [14]. lated maps. We discuss these maps qualitatively and confirm

In the following, we will develop the eigenmodes XfT" that the expected topological correlatiofmamely matching
on the basigy[;l of the eigenmodes of the universal cover- circles[7]) are indeed present. The effects of the integrated
ing space as Sachs-Wolfe and Doppler terms, as well as the thickness of
the last scattering surface, are discussed in order to give
some insight into the possible detectability of these correla-
é[kl;],ﬁy[k% (4) tions. Figure 1 summarizes the different independent steps of
¢ the computation as well as their interplay.

M ~

N
ks €§=:0 m

so that all the topological information is encoded in the co-

efficients&l/1S, wheres labels the various eigenmodes shar- Notations

ing the same eigenvalue «¢, both of which are discrete  The local geometry of the universe is described by a
numbers: The sum over{ runs from 0 to infinity if the  Friedmann-Lemane metric
universal covering space is non-compégat., hyperbolic or

ds?= — c?dt?+ a?(t) [dy*+ sz (x)dQ?], (6)

3We work here in comoving units, but when spatial sections areyherea(t) is the scale factot, the cosmic time, 082=dp?

not flat, the curvature of the comoving spacedd normalized: itis  + sin’gde? the infinitesimal solid angley is the comoving
not assumed to be: 1 in the spherical case nor is it assumed to beradial distance, and where

—1 in the hyperbolic case. Thus our eigenvalues may differ nu-

merically from those found in the mathematical literature, although .

of course they agree up to a fixed constant multjplg /2 sinh( \/MX)/\/W (hyperbolic casp
“The spectrum is _discrete when the space is compapt, e.g. the sc(x)=14 x (flat case 7)

torus or any spherical space. In a non-compact multiconnected

space such as a cylinder it will have a continuous component. sin( \/EX)/\/E (spherical case
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I: Universal cover (X ) eigenmodes II: CMB in X

Perturbation equations Initial conditions
(local physics)

CplX) [N pe1r2
Ry = WK{GP—UHW (coshx) OLX} (RL\;])
we [0,00f or iwel01] ¢
> Golk P (k)

0 R =/ Zie(kx)

k€ [0, 00 greemeneannennn s .
<(Le m(l;, mr) = C£5£ B’(sm m's
. 2 (PGP
> 08 x =8t R =\ [RG P (cos ) | O p PGP
v=23,... (see App. A) (see Sec. ITA)

V: Output: ag,, maps, Cy. ..

Y 1

III: Eigenmodes of X/T IV: CMB in X/T'

R PIX] T :
@ > Zﬂm um Viem (@emay ) = CEalt s :

'''''''' [’m'_ZZ [I]s =
- k.s kﬂm ke m!

Ge(k)Ge (k)Pgy(E)

(see Sec. 1V)

<0 numerical {35, 41]

analytical [10, 12]...

[(X] {~-(T]
Ok (Tk s)
Y general case: numerical [35] Perturbation equations  Initial conditions

: : . . local physics, h d hanged
‘------! lens and prism: analytical [35, 36] (local physics, unchanged) (unchanged)

(see Sec. I11B 2) (see Sec. IIB)

FIG. 1. The computation of CMB anisotropies in multiconnected spaces follows a series of independent steps. From the knowledge of the
spatial curvaturéK, one determines the universal covering spAcas well as the eigenmodes of the Laplacian in this simply-connected
space(upper left box; these functions are well known and frequently used in standard cosmology computations, and are recalled in

Appendix A (we have introduceab=k/\/m for the hyperbolic case and= k/\/E—l for the spherical cageecall Eq.(5)], and used?

defined by Eq(8)). Once some cosmological parameters and a scenario of structure formation has beerfugpesenght box, the CMB
anisotropies in the universal covering space can be computed. This step is also a standard step that can be achieved numerically by a numbe
of codes(see Sec. Il A An independent computatidiiower left boy is the determination of the eigenmodes of the Laplacian compatible

with the topology of space, specified by the choice of the holonomy gfoupur approach is to encode all the topological information in

a set of paramete F]S . Their computation is described in Sec. Il B 2 and can be performed either numerically or analytically according

to the case at hand. The implementation of the topology in a standard CMB(lowde right box is described in Sec. Il B and yields the
complete correlation matrix of the,,, from which one car{center right box computeC,, simulate maps, etc.
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In the case of spherical and hyperbolic spatial sections, W@heseC}?bS can be seen as estimators of the variance of the

also introduce the dimensionless coordinate a,m and represent the rotationally invariant angular power
_ spectrum. They have therefore to be compared to the values
x=VI[Kl|x, (8 C, predicted by a given cosmological model, which is speci-

. . . . . fied by (i) a model of structure formation which fixes the
which expresses radial distances in units of the curnvaturgisia| conditions for the perturbatiofe.g., inflation, topo-
radius. logical defects, etg, (i) the geometry and matter content of

the universeglvia the cosmological parametgrand (iii ) the
Il. CMB ANISOTROPIES topology of the universe.

The equations dictating the evolution of cosmological per- FOr the case of a simply connected topology, Gieare
turbations are local differential equations, and remain unYSually computed as follows. First, one starts from a set of
changed by the topology of the spatial sections. Indeed thifitial conditions given by an early universe scenario. Typi-
goal of this section is not to derive the whole set of equation$@/ly these are the initial conditions predicted in the frame-
that has to be solvetsee, e.g., Refd43—44 for reviews work of an inflationary model, although this is of no impor-

but to explain the steps that must be changed to take intfNC€ in the discussion that follows. Second, the modes of
account the topology. cosmological interest are evolved from an epoch before they

enter into the Hubble radius till now. Third, one computes
the variance for the,,,. The details of this procedure are
well known[43-4§.

The CMB is observed to a high accuracy as blackbody For simplicity let us sketch the case of a flat universe. The
radiation with temperaturé,=2.726+ 0.002 K[47], almost  temperature fluctuation in a given direction of the sky can be
independently of the direction. After accounting for the pe-related to(i) the eigenmodes exii(-x) of the Laplacian
culiar motion of the Sun and Earth, thesCMB has tiny tem-(herex represents a vector in the usual Cartesian coordinate
perature fluctuations of ordefT/T,~10"" that are usually  gystem by a linear convolution operatd])[kRBJ[eXka%)],

decomposed in terms of spherical harmonics depending on the modullsonly [as well as on the universal
cover(here,R®) and the cosmological parametgrand(ii) a

w ¢

ST obsum i c o "

T (0,@)—2 E armY,(0,9). 9 three-dimensional variabkg, related to the initial conditions,
0 (=0 m=-¢ by the formula

A. Local physics of cosmological perturbations

This relation can be inverted by using the orthonormality of
the spherical harmonics to get oT d
?(0&0): f

k
(277)3/2

ORI )\ Py(k)&, (14
oT
a€m=J?Y?*sin6d0d<p. (10

whereP (k) is the gravitational initial power spectrum, nor-
The coefficientsa,,, obviously satisfy the conjugation rela- malized so thzﬂ?(,,(k)ock‘3 for a Harrison-Zel'dovich spec-
tion trum, and where in most inflationary models the random

variablee, describes a Gaussian random field and satisfies
ap-m=(—1)"af,. (1) “

The angular correlation function of these temperature <éké:,): 5P(k—k") (15
anisotropies is observed on a 2-sphere around us and can be

decomposed on a basis of the Legendre polynonfialas ~ ~
P g poly @ with e_,=e; when the space is simply connected. This re-

lation stems from the fact that the temperature fluctuation is
o real, but it may be expressed differently for multiconnected
¥1-¥2=C0S0y, spaces. Decomposing the exponential by means of &q).

and using Eq(C5) allows us to rewrite the temperature fluc-

tuation as
2 .
—Je(kx)
T

Y?(60,0)

oT . oOT .
7(71)T(72)
=C6,,)

1 ob
=0 ; (2¢+1)C%P,(coshyy), (12 ST

—(0,0)=> i J k2dk\/P,4(k) O
where the brackets stand for an average on the sky, i.e., on all T Am

pairs of directions {;,7,) subtending an angl®,,. The

coefficientsC%of the development oE°°Y 6;,) on the Leg- X
endre polynomials are thus given by

dekern*(aky(Pk)ék

2bS: 1 2 €(a2bsa2b5* ] (13) 50One can show that this is indeed the best estimator of their vari-
20+1 m=y meem ance when the fluctuations are isotropic and Gaudgigh
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:ez i€ | K2dk P, () OFFT (VIR &em(K),
’ (16)

where we have defined
é(m(k)EJ dQ Y™ (0, @i, (17)

which is the “average” of the random fields over all thek

PHYSICAL REVIEW D 69, 103514 (2004

B. Implementing the topology

The topology does not affect local physics, so the equa-
tions describing the evolution of the cosmological perturba-
tions are left unchanged. As a consequence, quantities such
as the Bardeen potentiafB, W, etc., are computed in the
same way as described above, and the ope@{f&is there-
fore the same. However, a change of topology translates into
a change of the modes that can exist in the universe. In
particular, the functiongi[k>§]m are typically not well defined
on the quotient spack/I". Therefore, the only change that

of the same modulus. This quantity can therefore be identihas to be performed is the substitution

fied as a two-dimensional Gaussian random variable satisfy-

ing (eem(K)€}, ./ (K'))=8°(k—K') 8¢+ S IK2. 1t follows
that the coefficients,,, take the general form

aym=i" f k2dk VP 4(K) G (K)€rm(K), (18)

with
3 3
G.(k)=OF (R, (19)

and here the functioG,(k) can be approximated bfsee,
e.g.,[46,57)

Ge(K)=][k(mo— 759 ]

oT
X| 5 (ki msg) + (K, 59+ (K, 7L59)

K
ko s9]

+fﬂ0 j o(k(7m0— )P (K, 7)+ W (k,7)]d7y,
7LSS
(20)

L . . . 3
which is indeed a linear convolution operator actingRy |

A (22)
where theY[) form an orthonormal basis for the space of
eigenmodes of the Laplacian on the given topology.
One must then remember that the mode functivifg can
be decomposed uniquely by E@) and that the convolution
operat0|0[kx] is linear. When the multiconnected topology is
compact, it follows that Eq(16) will take the form

ST (2m)°

kE oI (YihVPyke, (23

where nowe, is a three-dimensional random variable which
is related to the discrete mo#te Equivalently one can write

e,=€ys Wherek is the modulus ok and the indexs de-
scribes all the eigenmodes of the Laplacian for fixed modu-
lus k in the topologyX/T" of volumeV. These random vari-
ables satisfy the normalization

<éké:/>: —3 5kk’ 5551 . (24)
(27)

For a given value of the wave numbky there are fewer

eigenmodes in the multiconnected case, so $hiaas to be

seen as a “subset” of the s¢f,m}.

By inserting the expansion af[.! in terms of the cover-

as announced above. Herg,ss and 7, are the conformal
times at the last scattering epoch and today, respectiyely, ing space eigenmodes, as given by B, we obtain
is the spherical Bessel function of indéx® andV¥ are the
two Bardeen potentials, and, is the velocity divergence of T (2m)® s
the baryons. The only modification of note when one consid- ?(0’4’) = v kE; Z«n Ekem
ers a non-flat universe is that the are to be replaced by T
their analog for non-flat geometries, the so-called ultras-
pherical Bessel functiongt9,43, and for a closed universe ; o|jows that thea,,,,, seen as random variables, are given
the integral ovek is replaced by a discrete sum. by '

In conclusion, and without loss of generality, the tempera-

ORI YVIRIINP (ke .
(25)

ture fluctuation can be decomposed as in @6) whatever (2m)3
the curvature of space. For a simply connected topology and a, = > A P (K)OPI(RDHYD lllsg (26
Gaussian initial conditions the addition prope(€5) of the myf ¢ KT Sk

spherical harmonics imposes that

Note that the sum ovexis analogous to the sum over angles
defining the two-dimensional random variat#g,, in Eq.
(16). Since thea,,, are linear functions of the initial three-
and therefore th€, coefficients encode all the information dimensional random variables, they are still Gaussian distrib-
regarding the CMB anisotropies. uted but they are not independent anym@as explained

(aem@p ) =CeOeer Smm » (21)
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before, this is the consequence of the breakdown of globado that the labek can be chosen to be the “unit” integer
isotropy and/or homogeneityThe correlation between the vectorn. The label multiplicity multk)=cards} of a mode

coefficientsa,n is given by kis given in this case by the number of representations?of

(2m)3 by 3 squares, i.e., by ce{nﬁi} (see Fig. 2. The corresponding

(Agmal, )= —— 2 Py(k)OPIREH ORI normalized eigenmodes in Cartesian coordinates are thus
VX simply given by
ik-r
X2 Eintiim (27) (rad, €
s Y, ()= : (34)
(277)3/2

Clearly these correlations can have non-zero off-diagonal . . . .
terms, reflecting the global anisotropy induced by the multi-W'th K given k_)y Eq.(29). Us_mg _the decomposmofc_7) of
connected topology, so that E@1) no longer holds and the the exponential and plugging in the closure relati@®),
observational consequences of a given topology on the CMIEN€ gets that

anisotropies are given by the correlation mat(ly. This [Tils_ AT4n —itym (R) (35)
means in particular that for fixe€l, the a,,, might not have kém — S2an/Lém ¢ '

the same variance, although they all follow Gaussian statis- - ) .

tics as long as the initial conditions do. This translates into afneren can also be defined by the two spherical angles

apparent non-Gaussianity in the sense thatGpewill not (¢, ¢n) Which are explicitly given by

follow the usualy? distribution. Strictly speaking, this is not 2
C o . Vni+n;
a signature of non-Gaussianity but of anisotropy. tang.— (36)
Note also that the correlation matr{7) is not rotation " ng
invariant. It will explicitly depend on the orientation of the
manifold with respect of the coordinate system. However, tane.= N2 37)
knowing how the spherical harmonics transform under a ro- anen= ng’

tation allows us to compute the correlation matrix under any
other orientation of the coordinate system. To finish let usThis expression could also have been obtained by simply

note that one can define the US@J coefficients in any Considering the Fourier transform Oﬂ(?i‘% as given by Eq
topology by the formula (C6). One can check that the normalization of the bafs’ki;sﬂ

1 e, [Y YT x gy 5P(k—k’)] implies that the coeffi-
m cients¢, " satisfy the closure relation

which is easily shown to be rotationally invariant. AR

w
— oD _
;0 ng_e Ekem §Wm = 6-(cosh,—cosby)

[ll. EIGENMODES OF MULTICONNECTED SPACES o
X 6" (@n—@n) Ok - (39)
A. Flat spaces

The purpose of this section is to compute in detalil thel he Dirac distribution in the above expression can be shown,
by using either Eqs(C4), (C5) or Eq.(C8) alone, to be

coefficients¢}!13 in the case of a cubic 3-torus of comoving
sizelL, referred to asl';. The method generalized easily to 2 20+1 o
any compact flat manifold. 8°(cos,— cosby,) °(on—@n) = >, 7 P.,(n.n").
In the case at hand, the topology implies the “quantiza- ¢=o0 &
tion” of the allowed wave vectors (39
27 . - -~ 2T N From these results, we deduce that the correlation matrix of
k=~ (n1x+nzy+nsz)= ——n=kn, 29 thea,, is given by
., [2ar\® 2mn 2mn 2mn
; € _ =L
with Cim' =T ; i P¢( 3 >G€( i )Ge,( i )
n=(ny,N,,N3), (30 ,
X2 YP*()YD (). (40)
n=+n-n, (31 n
A=(ny.np.ng)/N, 32 (L:lelrrg Erqe. (S(i:ri)p%nd the fact that, ;==,, the C, coeffi-
2w 1 [2m\3 2mn 2mn
= . = —_—— = — — — 2 —
k=k-k —n, (33) C, 277( L) ;734)( i )Gg( - ) (42)
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FIG. 2. (Color online Multiplicity of the modek as a function oh (cubic torus, top panelor v [lens spacé.(p,q), bottom panels
For the cubic torusn is of the form \/ﬁ whereN is an integer, and for lens spadesd more generally spherical spagasis an integer.
The left panels show the multiplicity of each mode for a given value of eithef ». We have also given an estimate of the “average”
number of modes, given byz#h for the torus and £+ 1)?/p for the lens spaces, respectively. For lens spdd,5), the mode multiplicity
closely follows the analytical estimate, whereas for lens spd&&,1), modes exist only for even valuesiofFor the cubic torus, the mode
multiplicity is even more irregular, and varies between 0 ar2Dn. For example, it is always 0 when= y8m+ 7. Right panels show the
integrated mode multiplicity, which is the number of modes smaller or equal to some[2attél and (v + 1)\/E, respectively. Here, the
analytical estimateg47n%/3 and (v+1)(v+2)(2v+3)/6p, respectively provide a much better estimatideee Sec. 5 of Ref14] for a
detailed discussion of these properties

which was used in many earlier work3—6] on the influence YT(6,7)=€emY7(6,0), (44)
of topology on the CMB.
Note that spherical harmonics satisfy the following sym- YP(m—0,0)=(— 1)“”‘Y?‘( 0,0) (45

metry relation:
. imply
YT(6,— ¢)=€e "M Y](6,p). (42 .
CimM =—[1+(-1)™ ™][1+ (-1 ¢ICL™, (4
Due to the symmetry of the torus with respect to the0 mo4 o
plane, in the sum oven in Eq. (40) a term @,,¢,) Wil so that
always be associated with a term,,(— ¢,), leading to a

term of the form 4 cdgm’ —m)e, ] YI'* (an,O)Y;“,'(an,O), the  Cim #0=m-m’'=0mod2) and ¢—¢'=0mod?2).
only exception being the term arising whap=0, which is (47)
real._From_ thls result, one easily shows that the Cmmlat'o%urthermore, Eqs43), (C2) imply

matrix satisfies

[ Cg,m, = Cgl__m/ . (48)
cimMeR. (43) " "
Let us emphasize that these properties of the correlation ma-
Along similar lines, the relations trix still hold even if the torus is not cubic. However, a cubic
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torus is invariant under a/2 rotation about the axis, so if I'=I';xT, with (I'y,I';)=(Z1,Z,),(Dn.Z0),(T*,Z,),
(ny,n,,n3) corresponds to a wave number then so doedO*.Zy),(1*,Z;), with gecdm,n)=1, gcd(4n,n)=1,

(n,,—ny,nz), and one has Q_Cdl(24n)=1- gcd(48p)=1, and gcd(12@)=1, respec-
tively.
Cﬁ,’nm'#O: m—m’'=0 mod4). (49 The linked-action manifoldsre similar to the double ac-

tion manifolds, except that each elementRfoccurs with
only some of the elements &f

The classification of these manifolds is summarized in
The goal of this section is to recall the basic analyticalFig. 8 of Ref.[35].

results concerning the lens and prism spd&ez. Il B 2. In

these spaces, the eigenmodes and eigenvalues of the Laplac- 2. Lens and prism spaces
ian operator can be determined analytically using toroidal
coordinateq 36]. CMB computations use spherical coordi-
nates, so we must perform a change of coordinates and sépacesl_(p,q). . .

change of basisdetailed in Appendix B Fortunately, this The lens space(p,q) is the quotient of the 3-sphere by

Iso b hieved Ivtically t te th ffici tgyclic group whose generator is th(_e isometry defineddby
C?rr]]sa S0 be achieved analytically to compute fhe coetlicien — 0+ 2m/q ande— ¢+ 27/p) in toroidal coordinate8 The

Ekem fundamental domain of a lens space is a lens shaped solid,
the two faces of which are identified after a rotation of
) ) ~ 2apl/q for p andq relatively prime integers with € g<p. It

In our preceding papdB5], we presented in a pedestrian follows that exactlyp copies tile the 3-sphere, their faces
way the Complete classification of three-dimensional Spherirying a|0ng great Z_Spheres_ Furthermore, we may restrict
cal topologies and we described how to compute their hogyr attention to B q=<p/2 because for values af in the
lonomy transformations. range p/2<q<p the twist 2rq/p is the same as-2x(p

The isometry group of the 3-sphere is SO(4). Every isc_)m-_ a)/p, thusL(p,q) is the mirror image of.(p,p—q). Lens
etry in SO(4) can be decomposed as the product of a righpaces can be single action, double action, or linked action;
handed and a left-handed Clifford translation, and the factorpig. 9 of Ref.[35] summarizes their classification.
ization is unique up to simultaneous muIt_ipIicatior_1 of both The eigenmodes and eigenvalues of prism and lens spaces
factors by —1. Furthermore, the spac®’ itself enjoys a can be obtained analytically by working in toroidal coordi-
group structure as the s&f of unit length quaternions. Each nateq[36]. Starting from Cartesian coordinates, in which the
right-handed(left-handed Clifford translation corresponds equation for the 3-sphere i€+ y2+ z2+w?=1, the toroidal

to left (right) quaternion multiplication oS3, so the group coordinates {1,601, ¢7) are defined via the equations
of right-handedleft-handed Clifford translations is isomor-

B. Spherical spaces

In this paper, we focus on prism spac®¥D’, and lens

1. Generalities

phic to S3. It follows that SO(4) is isomorphic taS3 X=COsyt COosfr, (50
X 83{+(1,1)} and thus the classification of the subgroups y=CoSyy sinér, (51)
of SO(4) can be deduced from the classification of sub-

groups ofS2. There is a two-to-one homomorphism fre#v Z=sin 7 CoSeT, (52

to SO(3); the finite subgroups of SO(3) are the cyclic, dihe-

dral, tetrahedral, octahedral and icosahedral groups, so the W=sinytSineT, (53
finite subgroups o2 are their lifts, namely, with
the cyclic group<Z, of ordern, 0<yr=<ml2, (54)
the binary dihedral groupB?}, of order 4n, m=2,
the binary tetrahedral group* of order 24, O0=<6r=<2m, (55)
the binary octahedral group* of order 48, O<g=<27 (56)

the binary icosahedral grodg of order 120,

where a binary group is the twofold cover of the correspond-Reference[%] gives the eigenmodes & explicitly as

ing plain group. Qypom =B co8l yrsin™! y PUMTHD (o521
From this classification, it can be shown that there are G v T T T
three categories of spherical 3-manifolds. X f(|€1] 61)F(|my] o7), (57)

The single action manifoldsre those for which a sub-
group R (L) of S*® acts as pure right-handegure left-  wherev is the integer parametrizing= (v+ 1)\/E as in Eq.
handed Clifford translations. They are thus the simplest s) pUmrll) is the Jacobi polynomial, arfdstands for the
spherical manifolds and can all be written &§T" with T d
=Z,,Df,T*,0% 1%, —_—

The double-action manifoldsare those for which sub-  éthe toroidal coordinates are such that the 3-sphere of equation
groupsR andL of S* act simultaneously as right- and left- x2+y2+72+w?=1) is parametrized asx=cosycosf, Yy
handed Clifford translations, and every elemenRaficcurs  =cosysin6, z=sinycose and w=sinysine with 0<y<m/2,
with every element otf.. These are obtained for the groups 0<¢<2# and O<op<2.

103514-9



RIAZUELO et al. PHYSICAL REVIEW D 69, 103514 (2004

cosine(sing function whenf or my=0 ({7 ormy<<0). For ficients ¢[11$ of the decomposition(4). Since yke] and
each value ofy, the indicesf; and m; range over all inte- 0, are two orthogonal bases of dimensiant{1)?, all
gers, satisfying vorm S

of whose elements have the same norm, there is an orthogo-

[€7]+|me|<v (58)  nal transformation taking one to the other
and
QueTmT: E av(meTmTy[kfnL : (63
[€4]+ [mr|=vmod 2), (59 tm

The “transpose” of this transformatiomr takes a given

and for convenience we define
eigenmode’sQ-based coefficients; to its Y-based coeffi-

1 cientsé:
dIE(V_|€T|_|mT|)- (60) , ,
_ [Tlv
The normalization coefficient8,,,_, are given by kem (;_V m;_y Evemlrme Tsezmy - (64)
Te.Om 20+ 1)dl (€] +|me] +d)! The orthonormality of the basiL.] implies that the coeffi-
B,m. = cients&L1S satisfy
T m(v+1) (|€+]+d)!(|mg|+d)!

61
(61 z z sl * = 5., 69

with ;= 1/\/2 if i=0 ando,=1 otherwise.
Using these definitions, Ref36] shows that for lens Thjs relation is simpler than the closure relati88) ob-

spaces the explicit set of coefficient;!;, such that tained in the flat case because, for a gikerthe space of
modes is finite dimensional. The computation of the coeffi-
Y[r] — E nveTmTQMTmT(XT!aT o), (62 cientsa, ym¢m, appears in Appendix B. Because both he

basis and thé&’ basis are orthonormal, the transformatien

. is orthogonal:
can be obtained as follows. 9

Theorem 1: lens spaces. The eigenspace of the Laplacian
on the lens space (Ip,q) has an orthonormal basis that
when lifted to Z-invariant eigenmodes of tt&sphere com-
prises thos_e eigenm_ode_s in the left column for v_vhich the =5eTe;5me'TSV(€T,mT)8V(€+'m+) (66)
corresponding condition in the right column is satisfisdb-

ject to the restriction that an eigenmod®,,_,_exists if and  \ynares (€+,mp) =1 if the conditions(59), (59) are satisfied
only if the integersy, €, and my satisfy|€¢|+|m{|<v and  and 0 otherwise.

v

~ Omz eavfmemT vemejm

| €1 +[m+|=v mod(2). With these coefficients, the CMB computation goes as in
the flat case, except for the fact that some integrals have to
Basis vectors Condition be replaced by discrete sums. One easily gets that
Qu00 always ST (2 )3 oc
Q0 £+=0 mod(p) —(0,9)= 22> gl[(léj]n? kem)VPqﬁ(k)eka
T _ T v=2"s €,m
QvOmT qu=0 mOd(p) (67)
(QveTmT+ QV b= m-l-)/\/—
(Q,,_gTmT ,,@T_mT)/\/— {t=gqm;y mod(p) so that
(Queym = Qo ty-mp) N2, (277)3 -
(Qu- ey Quey-m)/ V2 tr=—amr (p) 2 VPROIRIENS dilie,
S
(68)
An analogous theorem was demonstrated for prism spaces
and can be found in Ref36]. and
Unfortunately, for practical purposes the eigenmodes of 5 =
the lens and prism spaces are needed in spherical coordi- ;. (2 ) [F]s [T]s%
nates, while they are most easily obtained in toroidal coordi- Cim = E P¢(k)G€(k)Gf’(k)E SkemEkerm
nates. As explained in the Introduction, one needs the coef- (69)

as first obtained in Refl14]. Note also that, following Refs.
"Note the factor 1/¢+1) which differs from Ref[36] due to a  [50,51], a scale invariant spectrum will in that case be de-
different choice of normalization. fined as
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scale one can reliably approximate the correlation matrix by
* —— . (70 its isotropic diagonal palthe C,) remains an open question.
k(k*=K) Also, if one wants to simulate CMB maps from the cor-
- . . _relation matrix, one needs to diagonalize it. This procedure
To finish, let us discuss the properties of the random vari- . .
can also take a lot of time because it is &}, process. For

able . Since the eigenmodes in toroidal coordinateshe case of the torus, however, this problem is not serious as

Py(k)

Qy¢;mp» and the coeﬁ|C|ent9;[V1;]TsmT are real valued, it fol-  the symmetries of the torus ensure that the matrix is block
lows from Eq.(C2) that diagonal, with eight blocks if the torus is cubic or four
. m blocks otherwise.
av€m€TmT:(_ 1) Ayl —memp (71 Strictly speaking, one does not need the correlation matrix
to compute maps. One can do it directly by using Bd@).
It follows that This amounts to performing a realization of the three-
[Tls _ (_ 1ymglTls 79 dimensional random field describing the cosmological per-
Siem = (= D) e m, (72) turbations, and projecting it onto the sphere. In this case, one

has only¥ . coefficients to computéthe a,,,) instead of
T n ) the correlation matrix, so that the memory requirements are
ued. This |mp'I|es thagy is a real random variable, contrary roughly the saméone only needs to store the value of the
to the preceding example of the torus. random field for each modebut the computational time
scales aseﬁqaxl_?’. In this case, computing maps for a cubic
IV. NUMERICAL COMPUTATIONS torus of sizel = 2Ry, till €,5,=120 taks 3 h on a 1.7 GHz
A. Implementation CPU and allocates 300 MB of memory.
In the case of spherical spaces, the coefficigfts must
also be computed numerically. This involves determining
both the coefficient37[s£];nT anda,¢me,m,- This computation

can be reduced by taking into account their symmetries, as

whatevers and thus that the eigenmod¥§.! are real val-

The correlation matrix fol < ., has{ sy Coefficients.
However, the parity and symmetry relations

Cg;nm’:(_l)m—m’cg'_—mm’* (73)  described in Appendix B, which imply that—|m|+|¢+]| is
odd, [m|=|my|, [€7]+|ms|<v, and [€[+]my]
o'm' _ ~fmo oy =pmod(2). Thecomputation can be performed analytically
Cem =Corm (74)

with the use of symbolic computation software such as
reduce the problem to computing only a quarter of themMATHEMATICA. In the case of the lens spatg17,5), the
Then, for a given topology, symmetries can further reduc€omputation up tov=43 and =55 takes 3 and 12 h, re-
the number of coefficients to compute. For example, with sSPectively, @ a 1 GHz CPU with a negligible amount of
cubic torus, Eqs(47), (49) ensure that only one coefficient MemMory.
out of eight is nonzero, and the symmetrié8) also give the
coefficients when one changes the sign of botland m’. B. Expected results
This leaves only(y /64 coefficients to compute. For ex-
ample, a COBE scale magd {.,~30) requires 12500 coef-
ficients, while a Planck scale mag . 1500) requires
~8x 10 coefficients.

Each coefficients is computed using Eg0), which in-
volves a sum over all the wave modesFor a given reso-

The three main effects that are expected on a CMB map
computed in a multiconnected topology di¢ the appear-
ance of¢—¢' and m—m’ correlations reflecting the break-
down of global isotropy(ii) the existence of a cutoff in the
CMB angular power spectrum on large angular scéles
lution € 5 the modulus of the largest wave mode is given byﬁ;’irsngf(“::?rélr:aes ev)\(lﬁéergcihgf Pearggg?af&réelﬁﬂgtr:;tizﬁgh :rz
Kmax = 3Cmax/ 770. Moreover, the density of wave modes is strongly correlated as they represent the intersection of the

proportional to the size of the torus, so that we haveI . e
o(¢? L3) modes. Therefore, the computational time and ast scattering surface Wlth |ts_;elf and_ therefore _show the_tem-
ma ' ' perature of the same emission region from different direc-

. VA 3 3 3
the memory requirement scale &5, L. and€ina, L, réspec-  iqnq Note that the effecti) and(iii ) will show up only if

tively. This is obviously a serious Iimit_ation of our algorithm. o topological identification scdlés smaller than the radius
For example, computing the correlation matrix for a COBE

scale map on a relatively small torus=€ 2Ry, whereR, is
the Hubble radiustakes approximately 10 h on a 900 MHz

CPU and allocates 60 MB memory. associated with a given generator of the holonomy group. If the

When the topology is _simply connected, it is a well- holonomy is a Clifford translation then it does not depend on the
known fact that theC, are in general a smooth function of ,osition of the point. This is the case of the torus for which the

the multipole €. This reduces the computational time be- topological scales are given by the size of the FP, narhgly
cause for 5= 1500 one needs to compute onhb0 coef-  —2| .. In the case of a lens space it is given by@q in units of
ficients. For the topologies we have studied, we did not findhe curvature radius. This scales gives the distance of the nearest
any evidence for a smooth structure of the correlation matrixiopological image and thus the distance between two matched
at least at the relatively large scales we considered. At whichircles.

8The topological identification scale is the comoving length scale
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of the last scattering surface while the effdct may be no significant correlations are expected from this effect,
present even if the topological scale is a bit larger than thevhich is therefore considered a noise term for our purposes.
diameter of the last scattering surface. Actually, one aim of this work is precisely to compute the

So far, the main constraints that have been given on multypical amount of correlation one can expect on pairs of
ticonnected topologies come from the absence of a cutoff atircles. Note that this correlation is likely to depend on scale:
large angular scales in the COBE spectrum. This gives strongn large scales, one should be annoyed by the late integrated
constraints on the minimal size of the topology as the cutoffSachs-Wolfe effect; between the Sachs-Wolfe plateau and the
is given by the angular size of the torus projected on the ladfirst Doppler peakand, at a lesser extent, at every dip be-
scattering surface. However, as previously discussed, thisveen two Doppler peaksthe Doppler effect dominates; at
cutoff in the “true” temperature fluctuations can be compen-the first peak, there is usualgspecially when the matter
sated, at least partially, by an integrated Sachs-Wolfe effeatontent is low a significant contribution of the early inte-
which arises, for example, when the cosmological constant igrated Sachs-Wolfe effe¢see Fig. $; at very small scales,
large. one feels the finite width of the last scattering surfésee

The third, and up-to-now never computed, effect of apelow), etc. Also, as explained above, the relative position of
multi connected topology is the appearance of pairs of circleghe circles will play a role because of the Doppler contribu-
which are correlated in temperature. This correlation, howyjon, It is therefore interesting to look at the best way to find
ever, is. not perfect. It would be pgrfect if the temperatu_rerm‘tchmg circles on a realistic CMB map. We leave this im-
fluctuation were a pure scalar fgnctlon on the last scatterlngPOrtant point to future work52].
surface 2-sphere around us which would be the case only If | 4 secondand probably less importaneffect that re-

(Sl)alctﬁse-vt/et)?leoee:;;ljc%?ir?tn'ltsa(r)rtrzogfleé vzlzecr))e] ggvde(?i)otwg Ig)s{,t theduces the correlation between the circles is the finite width of
. S q. the last scattering surface. As far as we know, this effect has
scattering surface were infinitely thin. not yet been carefully analyzed. It plays a role when one

It is well known that the temperature fluctuations ob- y . y yzed. 1t piay .
looks at fluctuations on scales smaller than the projected

served in a given direction are in fact a combination of sev-". . . :
eral effects: first, one has the intrinsic temperature ﬂuctuaf—NIdth of the last scattering surface. In this case when looking

tions of the emitting region, which is eventually affected byin @ given direction, one picks up fluctuations which are
a gravitational redshift. These two contributions form theSituated “on one side” of the last scattering surface, but for
so-called Sachs-Wolfe effefthe first term in the right-hand Pairs of circles, one sees opposite sides of the last scattering
side of Eq.(20)]. Second, if the emission region is not at restSurface. On larger scales, the effect is negligible as one av-
with respect to the observer, one will observe some appare@ages temperature fluctuations on regions much larger than
temperature fluctuations which in fact result from a Dopplerthe thickness of the last scattering surface.

shift [second term in the right-hand side of Eg0)]. Third,

several events can alter the photons energy and trajectory V. RESULTS

while traveling toward us. In particular, they can be slightly )
disturbed from their trajectorylensing and, more impor- We now outline some of the results we have already ob-

tantly, they can exchange energy when they cross timdained from our simulations. The main aim of this section is
varying potential wells. This last effect is usually referred toto provide a series of tests to check our simulations. A more
as the integrated Sachs-Wolfe effdtte third term in the detailed analysis of the structure of the correlation matrix
right-hand side of Eq(20), see Fig. 9 beloW Obviously, the  C‘'™ as well as a search for accurate tests to detect the
Sachs-Wolfe effect is a scalar quantity that depends only ofppology are left for future work52].

the emission region. Therefore, it should be the same what-

ever the direction of observation. By contrast, the Doppler

effect will explicitly depend on the direction of observation. A. Flat case: cubic torus

If one observes two directions that correspond to the same . . .
point of the last scattering surface and that form a small N @ll the simulations we performed, we have considered a
angle, then one expects that the Doppler contribution will bdat ACDM moglel W'tlh ,=0.7, a Hubble parameter of
almost the same. If the matching points are 90° from eacfiio=10th km s Mpc™ with h=0.62, a baryon density,
other, then one expects on average no correlation at alFF h?=0.019 and a spectral index=1. With this choice
whereas the Doppler effect between two antipodal points wilPf cosmological parameters, the Hubble radius Ry
become anticorrelateti Finally, since photons originating ~4.8 Gpc, the “horizon” radiugunder the hypothesis of a
from the same emission region but observed from differenfadiation dominated universe at early timess R,
directions will travel through different regions of space, they~15.6 Gpc, and the radius of the last scattering surface is

will undergo different integrated Sachs-Wolfe effects, so thaR ss~15.3 Gpc. The volume of the observable universe is
thereforeV s~ 15X 10° Gpc.

Let us first compare th€, in the simply connected to-
*This simple reasoning is true for a torus and is in fact true in anyP0logy to theC, in a torus(Fig. 3). As expected, we see a
Euclidean topology. For spherical and hyperbolic manifolds, thecutoff at some angular size which corresponds to the angular
correlation of the Doppler term depends both on the diameter of théize of the torus on the last scattering surface. This corre-
matching circles and on the curvature. sponds to the multipole
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FIG. 3. (Color onling CMB anisotropies in the simply con- FIG. 4. (Color onling Variance of thea,, for fixed values oft.

nected(i.e., usual topology and in toroidal universes based on cu-The average of these values give tg coefficients shown in Fig.

bic fundamental domains of various sizes, expressed here in units af \we insist that this does not correspond to a realization of the
the Hubble radius. With our choice of cosmological parameters, th@andom variables describing CMB anisotropies, but to the variance
situationL=8 corresponds to a torus larger than the observabley thea,,, . These coefficients are far from sufficient to build maps

universe, which shows a small depletion of power on large scales;f cMB anisotropies as they do not include the correlations be-
For smaller tori, the cutoff is much sharper. tween differenta, .

simply connected case, but computing this scale remains an
, (75) open problem at the moment.
¢ L So far, we have considered only tlg , which represent
only some average of the diagonal part of the correlation

wherelL is the length of the cubic torus’ fundamental domain ”?at”x' The t“;n‘? d|ggonal part of the correlaﬂon matrix Is
(%lven by theC;,, which represent the variance of the,,.

27TRLSS

[53,54. Note that even when the torus is larger than the siz n example of their behavior is shown in Fig. 4 for the same

of the observable universe, the spectrum exhibits a loss L bologies as in Fia. 3. Several features apoear on this fioure
power on large scales. This is because the Harrisonl-:p 9 9. o PP gure.

Zel'dovich spectrum exhibits a significant amount of power
at large scalegby definition, it is scale invariaht and in

irst and most importantly, the dispersion in the variance of
thea,, at fixed{ is very large. It appears that it is maximal

practice, the modes that contribute to the quadrupole of th tthe cutoff scalé., where the dispersion in the variance Of.
e a,m can be as large as two orders of magnitude. This

CMB anisotropies can be as large as ten times the size of tH . .
ispersion slowly decays at larger multipoles, where one

observable universéhe exact number depends mostly on o o
the spectral index and on the amplitude of the integrate t'ends (in the sense of observaplg quantilieswards the
Sachs-Wolfe term Therefore, this leaves us hope for detect—Slmply connected case, and surprisingly also decays at scales

ing the topology “beyond the horizon” where the circles Iarg;er dthar_1 the Cl#](.)ﬁ(')dwnh the hypol'[(Ij1e_5|s of atlml_JIttlcon-
method would fail. Note that the situation is somewhat dif-N€Ct€d UNIVETSE, this | |s.pe.r_su.)n.wou (lmz_:orrec .3& inter-
ferent when the fundamental domain is squashed in soml reted as non-Gaussianity: it is in fact anisotropic Gaussian-

direction. This is because the mode density on scales bdY- Since at present no non-Gaussianity or anisotropy was

tween the largest and the smallest torus direction foIIOWSobserved in the data, this allows new constraints of the size

more closely that of a one- or two-dimensional object, and

hence can boost the spectrum as the weight of large scales i§OW ] o
larger, see Ref§55-54. e think that the reason for this is that at the cutoff scale, only

It is not easy to predict the amplitude of the power atthe(few) largest modes contribute significantly to t8g. The dis-

scales larger than the cutoff because it depends mostly on trggrsion in thea,, is therefore the result of the anisotropy in the

. . .~ .. direction of these modes. Below the cutoff, although the largest
amplitude of the integrated Sachs-Wolfe effect, which is dif- . I L
ficult to estimate even when the topology is multiconnectedmodes still have the largest contribution to tBg, the contribution

Anoth f i ted t | . .I'of other modes is comparatively larger. This can be seen from Fig.
nother consequence of a multiconnected opology IS 0SClly ¢ par [46] which shows how a given wavelength contributes to

Iations_ in the spectrum._ These come bOFh from the fact_ thaﬁﬂe angular power spectrum: at the cutoff scale, one is at the angular
there is a sharp cutoff in the spectrumhich causes oscil-  sc51e which corresponds to peak of the contribution of the smallest
lations in Fourier/Legendre spacand that the spectrum is y and to the tail of the contribution of the largkrwhereas larger

“spiky” on large 395“95- Should we consider a simply con-angular scales correspond to angular scales which are in the tail of
nected universe with a cutoff at some scales, then the corrgne contribution of all modes, so that the relative contribution of

spondingC, would be less irregular. Finally, note that on largek is larger, which translates into the fact that the distribution of
small angular scales, the spectrum tends to behave as in thedes which contribute to these scales is less anisotropic.
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FIG. 5. (Color onling Four realizations of CMB maps of the whole temperature anisotropies for a cubic torus. The resolution of each
map ist = 120. The last scattering surface is seen from the outside as well as two of its closest topological images after trarislation of
and —L along one axis of the torus. One can check by eye that the temperature fluctuations dtitvedit perfectly correlated along
matching circledi.e., along the intersection between the last scattering surface and its nejgbbated at latitudeg= +19°. Note that as
expected, there are very few fluctuations on scales larger than the size of thentoiatsis given here by the distance between the cijcles

of the fundamental domain. Note that the dispersion dependemperaturé! In order to see the circles, it is convenient to
explicitly on the orientation of the fundamental domain with show the last scattering surface as a sphere seen from the
respect to the coordinate system. It may therefore be smallgutside and to look at its intersection with itself after a trans-
than what is shown here. lation of the formL-(n;,n,,n3), as shown in Figs. 5-8.

We did not find any convenient way to represent the off- |n the preceding section, we pointed out that the correla-
diagonal terms of the correlation matrix. We therefore switchtign would depend on the amount of Sachs-Wolfe, Doppler
to showing and analyzing some realizations corresponding tgnq integrated Sachs-Wolfe effects. The decomposition of
the numerically _computed_correlann matrix. In what fol- o temperature anisotropies both in the simply connected
lows, we have fixed the size of the torus lie-2Ry. We  yq5010gy and in the toroidal cases are shown in Fig. 9. Note

therefore ha(\j/e:\l~ 16E C;’pieﬁ_ of the torus;j inghe é)bservable that we show only the relative amplitude of these effects and
universe, and from Ed75) this corresponds t6,~9, as can | Gy ool S

ge fﬁsc dkaetg[g‘_%]g'ﬁéﬂmugg iséui(rih daegicl)drﬁloi‘tlnofvt\)l rexgléjecli_ed We now turn to the correlation between pairs of circles, as
y ’ y y P introduced in[7]. If the topology is not known in advance,

gogical purposesand also because the computing tlmethe relative position between matching circles can be arbi-

3
scales as."). In the case where the torus, or more general_lytrary, so that in general the search for circles is a six param-
the fundamental domain, is smaller than the last scattering

surface, one expects to see pairs of circles where the tem-_
perature |s_(_:orr_elateﬁ7]. Seeing these cwples at their ex- The circles correspond to the intersection of the last scattering
pected position is therefore the most crucial test of the pro- .

. . surface with translates of the formi-(n;,n,,n3), where
cedure outlined in Secs. II, lll and IV. As already announced, = = " )=(0,0,1), (0,0.2), (0,0.3), (0,1.1). (0,1,2), (0.2.2)
the aim here is not to derive a detailed procedure to deteéll’ SR A R T e L T

. : ,1,1), (1,1,2), and (1,2,2) plus all permutations and sign changes
these circles, but to check our algorithm and to explore som mong each tripletr(; ,n,,ns). The pairs of points correspond to

of the properties of these matching circles. Here, we havg,e case where the intersection between the last scattering surface
2R, ss/L=3.17~V10. One therefore expects to have 61and its translate reduces to almost a single point, as is the case for
pairs of circles and 12 pairs of points having correlated(n;,n,,n3)=(0,1,3) and its permutations and sign changes.
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FIG. 6. (Color onling Same as in Fig. 5, but with the Sachs-Wolfe contribution only. These maps have comparatively less small scale
power than the previous one és-120 is close to the first dip in the Sachs-Wolfe spectrum, so that one sees the largéugctdehe torus
angular sizgbetter. Note that the matching between circles is almost perfect here.

eter problem: two parameters for the center of the first circlewhere we have séd= 5T/T. If the temperature fluctuations
two more for the center of the second circle, one for theiron a pair of circles are completely uncorrelated, then on av-
common radius, and one for their relative phése the twist  erageC=0. If they are completely correlated, th&=1,

with which they are identified In the case of a torus, the gnd if they are anticorrelated, th€w — 1. Eacha,,, can be
circles sit directly opposite each other on the s&fiminat-  seen either as the theoretical expectation for a given model or
ing two parametejsand there is no twisteliminating an-  as an observed quantity that can be measured from the CMB
other parametgy so the problem reduces to a three paramyy |n the first case, it represents a feature that one can
eters searcf. We are not going to perform such a study, but ey hect from a given model, and in the second case it repre-
rather focus on some features of matching circles in a toroi-Sents an estimator of some features predicted by the topol-
ogy. Here, we shall concentrate on tbbserved C6,6,)

dal universe.
A simple estimator for the correlation between pairs Ofthat we compute from simulated maps, first to check the

circles that are horizontal with respect to the coordinate sys\-/ali ditv of our procedure to compute the correlation matrix
tem is obviously Yy P p

Cg;nm', and second to convince us that it is possible to see
1 20(04,0)0(05,0) the presence of matching circles using simple technigales
C(61,02)= o 02(0,,0)+0%(0,,0) ¢, (76 though we do not pretend that this method is optjmal
e 2:® In principle, two matching circles have the same angular
diameter, so that only the cagg= — 6, is relevant, but we

2Another way to see that in a torus it is a three parameter searctﬂave chosen to Ieave_z as a f_r ee parameter to see to what
xtent uncorrelated circles might happen to seem correlated

is to visualize the situation in the universal covering space. Plac

one copy of the last scattering surface with its center at the origin; y Chance. L
and imagine a translated copy with its center at some paiyt£). We first show in Fig. 10 a few examples of the observed

Each choice ofX,y,z) uniquely determines a circle of intersection function C(6y,65) for a _Simply connected universe. As ex-
(assuming &x2+y2+72<R%9, and conversely each pair of Pected, the correlation is quite large whép~ 6, because
circles arises from exactly two point,{/,z) and (—x,—y,—z)  the circles are near each other and the real space correlation
and no others. Thus the poink,f{,z) serves to parametrize the function C(6) (the Legendre transform of th@,) is not O
circle search. when §— 0. With our normalization ofC(64,6,), one has
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FIG. 7. (Color online Same as in Fig. 5, but for the Doppler component only. Left panels show as previously the last scattering surface
and two of its images from the outside, with large circles, which are therefore well corrébatedbot as well as for the Sachs-Wolfe or total
contributions, howevegr On the right panel, we show smaller matching circl@s-¢-71°), which are more conveniently shown from the
inside of the last scattering surface. Here, the anticorrelation between circles is obvious.

lim C(6y,6,)=1, (77 Figures 11, 12, 13 and 14 show contour plots for several
Py realizations of the correlation matrix in a torus universe. The
torus aligns naturally with the coordinate system, so one ex-

. . . . . ects correlated pairs of circles at
which will of course remain valid when the topology is mul- P P

ticonnected. When the separation betwégiand 6, is large,
one can neglect the correlation between the two circles, and 0,=—0,= tarcsir(
the main contribution taC comes from statistical fluctua-

tions: it is always possible that two circ!es exhibit similar for each positive integen such that the arcsine exists. For
temperature patterns by chance. The variance of these stati§;; choice of cosmological parameters we h&ge=3.17

tical fluctuations is probably given by the number of inde- —9 (i ; Ne myivi
pendent pixels on the map and therefore by a combination o?nd L=2 (in units of the Hubble radiusgiving

the scgle at which the power spectrum is large and of the 0,=— 0,= +18°,+39°,+71°, (79
resolution of the maghere,f .= 30). In any case, the am-

plitude of the largest statistical fluctuations 6f(6,,6,) For these values of, and 6,, one expects a perfect corre-
gives an idea of the amplitude of the signal needed to detedation for the Sachs-Wolfe contribution

a multiconnected topology. For the maps we have gener-

ated, the correlation reaches 30% for a few pairs of falsely Csw=1. (80
matched circles.

nL
2Rss

(78)

This formula holds both when one consid€s,, as an en-
semble average and when one considers a given realization
3The signal threshold could therefore be reduced by performinﬁ’f the density field since in both cases it follows from the
the same analysis on a higher resolution map, but because t @Ct that one sees the same region from different directions.
search for circles is in general a six-parameter problem, it might bd hese correlations appear clearly in Fig. 11 which considers
necessary to search low resolution maps first to find likely candionly the Sachs-Wolfe contribution. In this case one would
dates, and then search higher resolution maps to confirm them. have even expected perfect correlations for the value, of
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FIG. 8. (Color onling Eight pairs of matching circles among the 61 existing pairs for a single realization of the density fields. For clarity,
the orientation of the last scattering surface is the same in all panels.
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FIG. 9. (Color online Decomposition of CMB anisotropies into the Sachs-Wolfe, Doppler and ISW contributions. When the topology is
simply connectedleft pane), the Sachs-Wolfe contribution is dominant at the peaks and usually on the largest scales. The Doppler term is
dominant only before the first peak, and has a significant contribution between peaks. The ISW term appears mostly at thétfiistipeak
referred to as the early ISW eff@ahen the radiation-to-matter transition occurs léigically at low h), and at large scaledate ISW
effec) when the universe is not matter dominatedat0. For standard values of the cosmological parameters, it is not dominant. The right
panel shows the initial portion of the spectrui<{100) for a model with the same cosmological parameters but with a toroidal topology.

The Sachs-Wolfe contribution shows a sharp cutoff at the expected scale. Note that neither the Doppler nor ISW contributions show a similar
cutoff. This is due to two different projection effects: for the Doppler term, this comes from the fact that it is always negligible on large
scales ink space(it scales a%?), and when one goes  space, the convolutiof20) always transfers some power from the small scales

(where there is power ik space to large scales; for the ISW, the presence of power comes from the fact that it is generating long after the
last scattering epoch, so that it appears on large scales simply because it describes phenomena that occur near us. However, since th
Sachs-Wolfe contribution is usually largest on large scales, the final spectrum still exhibits a sharp cutoff.

and 6, given in Eq.(79). This is not what we have, but the ensemble average or if we consider a given realization of the
reason for this is easy to understand: imposigé, , o) density field. One recovers as expected that the correlation is
=0(—0,,¢) in real space induces in Legendre space corred, 0, —1 for |§;— 0,]=0°, 90°, 180°, respectively. For the
lations at arbitrary large multipoleé. Here, for computa- values of the angle given in E¢79), one obtaintC=0.51,
tional reasons, we were forced to truncate the correlation.07, —0.49, respectively. These are the results that we ob-
matrix at a rather low value of, so the matching is signifi- tain qualitatively in Fig. 12, where no correlation at all is
cant but not perfect. It would presumably increase in highegeen for the circles at 39°, and positivenegative corre-
resolution maps. o lation is seen for the circles at71° (+18°).

If one considers the Doppler contribution to the CMB  £inq)ly the correlations due to the integrated Sachs-Wolfe
anisotropies, the situation IS somewhat dlﬁgrent. AS @Nutact are shown in Fig. 13. As expected, no particular cor-
nounced above, the correlation between two circles dependzion is seen for the values 6f and o, of Eq. (79). The

gie. precisely, it1s given by contour plots are, however, quite different from those of the
Sachs-Wolfe and Doppler contributions. The reason is two-

z(ﬁl. ﬁ)(ﬁz. n) fold. First, most of the power lies at the smallest multipoles.
Coop={ ——= s 5] (81) This translates into the fact that the contours are broad in the
(ng-n)+(nz-n)*/ - sense that they do not vary a lot on small interval®pénd

6,. Second, the fact that most of the power is at large scales
N - . . implies that a very small number of modes contributes to it
wheren; andn; are two constant unit Vectors spanning an since we see a finite region of the univeysso there is a
angle |6, — 92|j an.d where the t')racketAs denote an averageyrge cosmic variance that makes the statistical uncertainty
over all the directions of the unit vector: After some ma-  very large(thus serendipitously similar temperature patterns

nipulations, one obtains on two unrelated circles are easily achieved here
Combining all the contributions to the CMB anisotropies
7 |0,— 6, allows one to simulate realizations of the ex@g¢w, ,0,) as
Cpop= tar(z— T) (82 shown in Fig. 14. Since the Sachs-Wolfe contribution is

dominant, the spikes are still clearly visible at their expected
positions, but appear less prominent than in Fig. 11. As ex-
Again, for the same reason as for the Sachs-Wolfe contribupected, it seems that the circles @t,= =39° are slightly
tion, this formula holds both if one conside@,, as an less correlated than the other two pairs because their Doppler
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FIG. 10. (Color onling Contour plots of the functiol©(6,,6,) for four realizations of the temperature anisotropies in a universe with
a simply connected topology. Whé#, — 6,| is small, the correlation between circles exists. When- 6,| is larger, the apparent corre-
lation between circles comes from statistical fluctuations, which would be reduced for higher resolution maps.

contribution is not correlated, but this deserves a more care2MB only whenQ — 1> 1/p? and that the second factor, if it
ful analysis. exists, is in general undetectable.
Let us emphasize some differences with the torus case.
First, concerning the eigenmodes, let us take the example of
B. Spherical case: lens spaces a lens space(p,1) of orderp. Forp=1 it reduces t&® and

Among the spherical spaces, the procedure presentd@ P=2 it reduces to projective space; more generally the
above can be applied most easily to lens and prism spacegdex plays a role analogous to the sitg,of the torus in
because their eigenmodes are known explicitly. The eigenEuclidean space. The first non-zero eigenvalue is always
modes are known analytically in toroidal coordinatese =2 and has a multiplicity 3 fop>2 and 9 otherwise. This
Sec. Il B), and Appendix B shows how to convert them to constancy of the first eigenvalue contrasts sharply with the
spherical coordinates. In this section we present some sampt@ase of a cubic torus, for which the smallest eigenvalue
maps exhibiting the matching circles to demonstrate that thecales ag ~*. It can be understood by realizing that when
whole computational chaiicomputation of the modes and increases the space is becoming smaller only in one direction
implementation in a CMB codes working. A complete and  and remains large in perpendicular directions.

detailed study, along the same lines as the study done for the The |ens spacek(p,1) are globally homogeneouitike

cubic torus in the previous section, will be presented in he torus so that the coefficients[klglnf do not depend on the
follow-up article.

. . . . observer’s positiori.e., they are the same no matter where
As explained in Ref[27], because our universe is almost P " y

flat, observational methods such as the circles method wiI'In the space you choose the base poifius neither the

. . [’ ! .y .
typically detect only a cyclic subgroup of the holonomy correlation matrixC,,," nor the positions of the matching

group, so the universe “looks like a lens space” no mattercircles depend on the base point. Unfortunately, this is not
what its true topology is. It follows that lens spaces are parihe case for a general lens spadgp,q). For a general lens
ticularly interesting to capture the observational properties ogpace, the coefficients[k?n?, the correlation matri>(:§r/nm'
multiconnected spherical spaces. In particular, we showednd the positions of the matching circles all depend on the

[27] that a cyclic factorZ, creates matching circles in the observer’s position. For instance, the “canonical” choice of
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FIG. 11. (Color onling Contour plots of the functiorC(6,,6,) for four realizations of the Sachs-Wolfe part of the temperature
anisotropies in a toroidal universe. No large correlations are found except|@he,| is small and for the three pairs of matching circles.
The resolution of the simulated mapstis 30. Note that the correlation between matching circles is not as high as expected because of the
cutoff at € =30 in the map. In order to find the expected 100% correlation, we should consider all the scales which are contributed by the
modes we considere@hstead of considering all the modes which contribute 630 as we digl

coordinates used in Sec. Il B 2 for the toroidal coordinate2#/p, because Clifford translations twist and translate the
system puts the preferred symmetry axes in thg) (and  same amount.

(zw) directions(i.e., the axes are the intersection@fwith Figure 15 shows a CMB map with resolutiép,,,= 30 for

the (x,y) plane and theZ,w) plane, respectively, in four- the lens spacé (21,1) considering the Sachs-Wolfe term
dimensional Euclidean spacérom a cosmological point of only. A far more detailed discussion about CMB anisotropies
view, this is a poor choice, because the observer’s translatad lens spaces will appear elsewhggs].

images are “atypically close.” For example, ib(12,5),

which has cyclic factorZ; andZ,, a generic observer will VI. DISCUSSION AND CONCLUSIONS

see three lines of four images each, but a nongeneric ob- _ ) ) , .
server sitting on a symmetry axis will see a single line of 12 This paper des_crlbes the_ lmplement_atlon of topology in
images. CMB codes and gives explicitly the required tools to perform

such an implementation in flat and spherical spaces. As em-
For z'a glgbally homogeneous sp?abegl), the closest phasized in the Introduction, these two cases are observation-
topological image is located at a distange27/p, so the )iy the most relevant for an almost flat universe.
topology is detectable just gpis not too small. More pre-  “Examples of simulated maps were given in the two cases.
cisely, the topology is potentially detectable if and only if Here we presented only low resolution maps due to the com-
mIp<x.ss- For example, this implies that the topology is putational time limitation but higher resolution maps will be
detectable for alp>10 if Q—1~10 2. presented elsewhere. It was checked that the expected topo-
Circles match differently in a homogeneous lens spacéogical correlationgthe matched circlgsvere present, con-
than in a tours. In a torus the circles match straight acrosrming the quality of our simulations.
because the holonomies are all pure translations. In a homo- Our method relies on the computation of the correlation
geneous lens space, by contrast, the holonomies are Clifforahatrix of the coefficients of the decomposition of the tem-
translations, and so the matching circles are still diametriperature fluctuation in spherical harmonics. This matrix en-
cally opposite but match with a twist that is a multiple of codes all the topological information. We emphasize that,
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FIG. 12. (Color online Contour plots of the functio©(4,, 6,) for four realizations of the Doppler part of the temperature anisotropies
in a toroidal universe. Some correlation or anti-correlation is found for two of the circles, but the signal is not very large compared to the
statistical fluctuations. Note that the correlation would have been slightly larger if we would have simulated these maps from a higher
resolution correlation matrixThe resolution of the simulated mapsfis- 30.)

due to the breakdown of global isotropy, this matrix is notfor providing computational support, Dorian Goldfeld for his
purely diagonal. This also offers a working example to con-help in evaluating some sums of Appendix B, and Jean-
struct tests for the detection of deviation from global iso-Pierre Luminet for a very careful reading of this manuscript
tropy. and numerous discussions. J.W. thanks the MacArthur Foun-

We have illustrated the influence of different effects thatdation for its support. J.-P.U. thanks the University of Bar-
will tend to blur these patterns and affect the perfect circlecelona for hospitality while a part of this work was per-
matching, namely the Doppler effect and the integratedofmed- Part of this quk was gchleved Wh|IeA.R._Was_at the
Sachs-Wolfe effect. We also considered the effect of thé>epartement de Physique Torigue of Geneva University.
thickness of the last scattering surface, but found it to be
negligible on the scales considered here. A more detailed
guantitative analysis of these effects on the detectability of
the topological signal is left for future studi€s?2].

A complete investigation of the detectability of the topol- ~ This appendix follows the work by Abbott and Schaeffer
ogy in coming CMB data requires the construction of reli-[42] and Harrisor{60] and borrows heavily from Appendix
able simulation tools. Besides the quantification of the amA of Ref. [14]. It summarizes, without proof, the explicit
plitude of the effects cited above, one would also need tdorms of the scalar harmonic functions solutions of the
include all other observational effects, such as instrumentatielmholtz equatior(2).

noise, foreground contamination, etc. The present work It is convenient to factor the eigenfunctions into radial
paves the way to all these essential studies. and angular functions as

APPENDIX A: EIGENMODES OF CONSTANT
CURVATURE THREE-DIMENSIONAL SPACES

ACKNOWLEDGMENTS Ykt 0,0) =R Y0, ), (A1)

We want to thank Nabila Aghanim, Francis Bernardeauwith Y{'(6,¢) being the spherical harmonics. The associated
Francois Bouchet, Gilles Esposito-Fsee and Simon Prunet eigenvalues arg>=k?—K, with
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FIG. 13. (Color onling Contour plots of the functio€( ., 6,) for four realizations of the integrated Sachs-Wolfe part of the temperature
anisotropies in a toroidal universe. No significant correlation is seen on the matching circles, whereas large values arg @(uhd g
extending across broad regions as a consequence of the fact that the integrated Sachs-Wolfe effect appears on large angular scales. Th
resolution of the simulated maps fis= 30.

K<0=ke[0x[ orike[0,|K]], (A2) R[g](x):( My )szl,;’”[cos(\/ix)] o
ksc(x) o
K=0=ke[0x], (A3)
with
K>0=k=(v+1)VK, wveN. (A4)

w=k|K|, v=kVK-1. (A9)

In the case of spatially hyperbolic spaces, this normalization
is valid only for subcurvature modes, and for the supercur-

[X] [X]

f Vhi(X: 0,0) Vi ™ (X, 0,0) St (x) dxdQ2 vature modesik €[0,V|K|]) the radial function is obtained
by analytic continuatiorisee Ref[61] for detailg. The two
numerical coefficients are given by

With the normalization

1
=—6°%k—K") 8¢ Sy » (A5)
k2 ¢
o _ _ Nee=I1 (0?+n?), (A10)
where () is defined in Eq(7), the normalized radial func- n=0
tions take the form
¢

Mkeznﬂo [(v+1)%2—n?],

N 1/2
RLT](x):(ksKE’;)) P12 LlcoshVKIx)1. (A6)

M =0 if €>v. (A1)

2 1/2
R y=Z]
Rie " (x) (77) Je(kx), (A7) For any function, we can perform the mode decomposition
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FIG. 14. (Color onling Contour plots of the functiol©(#6,,6,) for four realizations of the total temperature anisotropy in a toroidal
universe(Sachs-Wolfe, Doppler, and ISW effects combinethe three pairs of matching circles @&t= — 6,= *=18°,=39°,=71° are still
visible despite the presence of the Doppler and integrated Sachs-Wolfe contributions. The resolution of the simulated-A&(ps is

2k the dimensionless radial variabE defined in Eq.(8), the
Helmholtz equation then reduces to
f0=2 - FremY ki
T KDY (v+1)? 1 df  .d e(e+1
v=2 — — Sinz)(—_RLSf]) + V(V+2)—¥ R[k%\?]:O.
sir? y dy dy Sir? x '

< fk(m:f NI \/;/dx, (A14)

(A12) Note that this is a second order equation and that only one of

the two independent solutions is well behaved at the origin,

. . : so the radial functions are completely determined once the
universal covering space is compact or not. The sym&l pletely

stands for the square root of the determinant of the spatidlormalization has been chosen. After settirigl;
metric. In the case of spatially hyperbolic spaces, the super=(sinx)‘f,¢, it can be checked that it reduces to EG11),
curvature modes add a term to this mode expansion, nametfze solution of which is simply given in terms of ultraspheri-
félkzld(ik)ze,mfk{imywr? - see Ref[61] for detalils. cal Gegenbauer polynomials aggz_AMCff}}. The normal-

In the spherical case one can, however, find a solution ogation condition(A5) implies, using the integral relation
the Helmholtz equatiof2) which does not involve Legendre (C12), that

functions. The radial part of the Helmholtz equation reduces,
after setting[S1=RIS1(x)Y(8,¢), to 2(+172 \/V+1 (v—10)!
!

A .

q v m V(v e+1)!
(s
Si(X)aRM

choosing the sum or the integral according to whether th

(A15)

1 d :V+l

d B €(€+1)
si(x) dx

+ [——
%(x)

S
RZ1=0.
(A13) Expressing the spherical harmonics in terms of Gegenbauer
polynomials by means of EqC9), one ends up with an
It is obviously much more convenient to work in a coordi- expression of the eigenmodes in terms of Gegenbauer poly-

nate system where the curvati¢ereduces to 1. In terms of nomials only as

(k*=K)
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FIG. 15. (Color onling A realization of a CMB map in the case of the lens spla¢&8,1). For purposes of illustration we chose a closed
universe Q= 1.3) with a large last scattering surfake radiusy, ssis 0.88 times the curvature radius of the universal covering sp¥ce
in order to produce higher resolution images with a large number of correlated circles. In each panel, the matching is obtained by performing
a translation ohR.27/18 and a twist oh27/18 between the last scattering surface and its two copies. The six panels correspond to
=2,...,7, witheach panel showing both the positiveX0) and negative{<0) translates.

VI = A, A sin™ o sin L L Ao gl -1 D (C—[m))! o
= m|— H
fm=om 47 (C+|m|)!

X (cosy)C{™ /% coso)em?, (A16)
with ¢, given by Eg.(C10 and we used the notation
with @2lm=1)!"=(2|m|-1)(2lm|—=3) ... 1.
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APPENDIX B: CHANGE OF BASIS BETWEEN TOROIDAL Sin(|m-r|<p)
AND SPHERICAL COORDINATES sin™ XT[
cog|my|e)

Section 1l B 2 found the eigenmodes of lens and prism _ cog|mil@) m=0,
spaces in toroidal coordinates and converted them to spheri- =(siny sin 0)|mT[ .
cal coordinates. In this appendix we give the expression for sin([m¢[¢)  m<0,
the matriXa,,mTmT necessary to perform the change of ba- (B10)
sis.

(3) to develop the Jacobi polynomial appearing in E5j)

The spherical coordinate system, as used in @Y. is by using Eq.(C11) and with

related to the embedding of the 3-sphe® in four-
dimensional Euclidean space by C0S 27— 1= — 2 sirf x Sir6. (B11)
x=cos;, (B1)  This leads, after an easy integration @nto the somewhat
heavy expressions involving two surferising from the de-
velopment of the Jacobi polynomials and the power in Eqg.

=siny cosé, B2 _ -
y X B2 (B9)] and an integral ovef and y,
z=siny sin6 cose, (B3) Wyemegme= (12 TAL A 0By, Cot gy
ainy i ; R
w=siny sinésing, (B4) Xl [Tvi€,m;lr,mp)]
j L L 1 1
with
(5m|mT\+ 5m7|mT\) ( ;
_ . B12
O<ys<=m, (B5) —1(Smjmy = Sm—|mq|)-
0<o<m, (B6) Here, the first and second line of the first brace areffpr

=0 and¢<0, respectivelysee Eq(B9)], the first and sec-
ond line of the second brace are for=0 andm;<O0, re-
O<¢p=2m. (B7) spectively [see Eq.(B10)], and the numerical coefficient
CVngT is given by
The (compley coefficients a,¢m¢.m, Characterizing the
change of basis are defined by c L(jmg|+d+1)
vamT T (|my| + €] +d+ 1)

(B13)

@ pemem, = (VF 1)2f Querm (X1, 07, 07) The function7 is explicitly given by
x YIS (3. 6,¢)(sinx) dy sin 6ddde. Jvi€,m; ey, my)
d
B d r'(m¢+|€++d+qg+1
(B8) =E( )(_1)q (Imrl+| €| +d+q+1)
d=0\q L([m¢|+q+1)

In this expression the integér ranges from 0 tov and m o]
ranges from— ¢ to €, while €t andmy range from— v to v. i y
To compute this integral, one needs to express the eigen- Xj_o i

7l ) 1
i j-2q+[m|+[mq|; € ~[m],[m[+ 5
modesQ, ¢ m. as polynomials irx, y, zandw (see Ref[36]),

and replace these rectangular coordinates by their expres- XI([€rl=j.29+]+ €+ |me|+ 10— €,6+1).
sions(B1), (2) to use the relations (B14)
cos|¢+]6) Note that the index is even wher =0 and odd wher 1
Cogé’ﬂXT . < 0. This quantity involves only two sums, once the quantity
sin(|€1| 0) I(p,qg;n,a), defined by

I(p,q;n,a)zfllxp(l—xz)q’zcrﬂ’(x)dx, (B15)

M[(cosy+i siny cosd) /(1] €1=0,
J[(cosy+i siny cose)lfT]  €1<0,

(B9) is known. Using the expressioiC14) for the Gegenbauer
polynomials in terms of hypergeometric functions and the
and integral (C16), it can be shown that
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I(p,g;2m, a)
“Harm BamiD D
« oFs _m,m+a7p;1;%,q+g+3; )
(B16)
I(p,q;2m+1,a)
:(_1)mB(q/2+1,(p+2)/2)[1_(_1)p]

B(a,m+1)

X gFo| —mym+ a+1; 5 i 5 :

(B17)

p+2 3 q+p+4 )

whereB is the Euler beta function. It follows directly from
these expressions thaf(v;¢,m;€+,m;)=0 when v—|m|
+|€1| is odd.

APPENDIX C: SOME PROPERTIES OF SOME
SPECIAL FUNCTIONS

PHYSICAL REVIEW D 69, 103514 (2004

where « is the angle between the two direction& ¢) and
(6',¢'), and P, is the Legendre polynomial. The Fourier
transform of the spherical harmonics is given biq.
(5.9.2.6 of Ref.[62]]

o 2w T ék'r
J r2drf dqof sing dé Je(K'T)YJ(0,0)
0 0 0 (27T)3/2

2 S°(k" — k)
=\ ' ——— Y0090,
T k2

wherej, is a spherical Bessel function, from which it fol-
lows that[Eq. (5.17.3.14 of Ref.[62]]

(C6)

éFT= 3, (20+1)i% (kNP (c0sh) (€D

and[Eq. (5.17.4.18 of Ref.[62]]

P(ri—r,) O 20+1

2471'

2 —
ri €=0

P(ri—ry)= P,(cosb;,).

(C8)

This appendix gathers some useful relations used in the _ ) )
paper, to make the paper more self-contained. The spherical harmonics can also be expressed in terms of

The spherical harmonice? are related to the associated G&genbauer polynomials &&q. (5.2.6.39¢ of Ref. [62]]

Legendre polynomial®}' by [see Eq(5.2.]) of Ref.[62]]

20+1 ((—m)!
47 ((+m)!

YP(0,0)= PP(cosg)é™. (C1)

They satisfy the conjugation relatioiEq. (5.4.1) of Ref.
[62]]

Yi*(0,0)=(—1)"Y,"(0,0)=Y{(0,—¢), (C2
the normalizatiofEq. (5.6.1) of Ref.[62]]
2 T ’
f dq;f sin@dOYY* (0,0) Yy, (6,0) =S¢ Sy
0 0 )
(C3
the closure relatiofEq. (5.2.2 of Ref.[62]]
o ¢
> 2 YN6,e)YP*(6e)
=0 m=—¢
= 6P(cosf—cosh’)(p—¢'), (C4)

and the addition theorefiq. (5.17.2.9 of Ref. [62]]

€
20+1
sze YP(0,0)Y7* (0", ¢")=

. yp= P,(cosa), (C5H)

(€—|m)!
(€+|m|)!

_ 2¢0+1
an( 0,¢):§melm(p 477_

X (2|m| = 1)1t (sing)ImMC)m 2 cos)
(C9

with ¢, defined by

m>0

{m=

r(—l)m,
(C10

1, m=<0.

The ultrasphericalor GegenbaugrpolynomialsC; are so-
lutions of the differential equatiofEq. (22.6.5 of Ref.[63]]
(1—x2)y"— (2a+1)y’+n(n+2a)y=0, (C11)

and they satisfy the normalization conditipiaqg. (7.313 of
Ref.[64]]

w217 2T (2a+n)

f " (LX) () 2= |
-1 n'(n+a)[T(a)]?
(C12

if R(a)>—1/2.
The Jacobi polynomials are given figq. (22.3.2 of Ref.
[63]]
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I'a+n+1)
nNT'(a+B+n+1)

n
x 2
=0

PR =

(x—1)),

n)F(a+B+ n+j+1)
i) 2ir(a+j+1)
(C13

under the conditiongy>—1 and 8> — 1. Interestingly, the

Gegenbauer polynomials can be expressed in terms of hyper-

geometric functions a$Eqgs. (8.932.2, (8.932.3 of Ref.
[64]]
(="
X —
Canl 0= R TmBnT 1)

F(—n,\+n;1/2:x%),
(C14

PHYSICAL REVIEW D 69, 103514 (2004

(-1)"

- _ . w2
B0 D) (OF(-nA+n+1;3/255),

(C19

an+1(x):

which satisfies the integral properf§gs. (7.513 of Ref.
[64]]

1 1
f x5~ H(1-x3)"F(—n,a;b;x?)dx= 5B(r+18/2)5F,
0

X(—n,a,s/2;b,v+1+5s/2;1) (C16

if 2R(s)>0 andR(v)>—1.
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