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Simulating cosmic microwave background maps in multiconnected spaces
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This paper describes the computation of cosmic microwave background~CMB! anisotropies in a universe
with multiconnected spatial sections and focuses on the implementation of the topology in standard CMB
computer codes. The key ingredient is the computation of the eigenmodes of the Laplacian with boundary
conditions compatible with multiconnected space topology. The correlators of the coefficients of the decom-
position of the temperature fluctuation in spherical harmonics are computed and examples are given for
spatially flat spaces and one family of spherical spaces, namely, the lens spaces. Under the hypothesis of
Gaussian initial conditions, these correlators encode all the topological information of the CMB and suffice to
simulate CMB maps.
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I. INTRODUCTION

Future cosmic microwave background~CMB! experi-
ments such as the Wilkinson Microwave Anisotropy Pro
~WMAP! @1# and later the Planck satellites@2# will provide
full sky maps of CMB anisotropies~up to the galactic cut!.
These data sets offer the opportunity to probe the topolog
properties of our Universe. A series of tests to detect
topology, including the use of the angular power spectr
@3–6#, the distribution of matched patterns such as circ
@7#, the correlation of antipodal points@8# and non-
Gaussianity@9# have been proposed~see Refs.@10–12# for
reviews of CMB methods to search for the topology!. The
study of the detectability of the topology by any of the
methods first requires simulating maps with the topologi
signature for a large set of topologies. These maps will al
one to test the detection methods, estimate their run ti
and, once all sources of noise are added, determine to
extent a given method detects the topological signal~in the
same spirit as the investigation of the ‘‘crystallographi
methods based on galaxy catalogs@13#!.
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In a simply connected,1 spatially homogeneous and iso
tropic universe, the angular correlation function depen
only on the angle between the two directions and the coe
cientsa,m of the decomposition of the temperature fluctu
tion in spherical harmonics, which are uncorrelated for d
ferent sets of, andm. Multiconnectedness breaks the glob
isotropy and sometimes the global homogeneity of the u
verse, except in projective space~see, e.g., Ref.@14#!. Con-
sequently, the CMB temperature angular correlation funct
will depend on the two directions of observation, not only
their relative angle, and possibly on the position of the o
server. This induces correlations between thea,m of different
, and m. Such correlations are hidden when one consid
only the angular correlation function and its coefficients, t
so-calledC, , in a Legendre polynomial decomposition, b
cause they pick up only the isotropic part of the informati
and are therefore a poor indicator of the topology. This wo
aims to detail the whole computation of the correlation m
trix

C,m
,8m8[^a,ma,8m8

* &, ~1!

which encodes all the topological properties of the CM
and from which one can compute the usualC, , simulate
maps, and so on.

1Geometers and cosmologists often refer to simple connected
as the ‘‘trivial topology.’’ However, trivial topology has a differen
meaning in the context of point-set topology: in that formalism, t
trivial topology is the smallest topology on a setX, namely the one
in which the only open sets are the empty set and the entire seX.
©2004 The American Physical Society14-1
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The study of the detectability of a topological signal~if it
exists! in forthcoming CMB data sets requires simulatin
high quality maps containing the topological signature fo
wide class of topologies. Up to now, most CMB studies co
sidered only compact Euclidean spaces@3–6,15,16# and
some compact hyperbolic spaces@17–22#, and focused
mainly on theC, . The approach developed in this paper, a
first introduced in Ref.@14#, is well suited to simulate the
required CMB maps in any topology once the eigenmode
the Laplacian have been determined. It paves the way to
simulation of maps for a wide range of topologies, partic
larly spherical ones.

Recent measurements of the density parameterV imply
that the observable universe is ‘‘approximately flat,’’2 per-
haps with a slight curvature. The exact constraint on the t
density parameter obtained from CMB experiments depe
on the priors used during the data analysis. For example
a prior on the nature of the initial conditions, the Hubb
parameter and the age of the Universe, recent analysis o
DASI, BOOMERanG, MAXIMA and DMR data@23–25#
lead to V50.9960.12 at the 1s level, and toV51.04
60.05 at the 1s level if one takes into account only th
DASI, BOOMERanG and CBI data. Including stronger p
ors can indeed sharpen the bound. For instance, inclu
information, respectively, on large scale structure and on
pernovae data leads toV51.0120.06

10.09 andV51.0220.08
10.09 at the

1s level while including both finally leads toV
51.0020.06

10.10. This has been recently improved by the A
cheops balloon experiments@25,26# which get, with a prior
on the Hubble constant,V51.0020.02

10.03. In conclusion, it is
fair to assert that current cosmological observations se
reliable bound 0.9,V,1.1. These results are consiste
with Friedmann-Lemaıˆtre universe models with spherica
flat or hyperbolic spatial sections. In the spherical and hyp
bolic cases,V.1 implies that the curvature radius must
larger than the horizon radius. In all three cases—spher
flat and hyperbolic—the universe may be simply connec
or multiply connected.

The possibility of detecting the topology of a nearly fl
universe was discussed in Ref.@27#. It was noted that the
chances of detecting a multiply connected topology are
worst in a large hyperbolic universe. The reason is that
typical translation distance between a cosmic source an
nearest topological image seems to be on the order of
curvature radius, and that whenV.1 the distance to the las
scattering surface is less than the half of that distance.
Refs.@28–32# for some studies on detectability of nearly fl
hyperbolic universes. In a multiply connected flat unive
the topology scale is completely independent of the hori

2The popular expression ‘‘flat universe’’ is misleading, because
general relativity the ‘‘universe’’ is not three dimensional, but fo
dimensional, and the Friedmann-Lemaıˆtre solutions are dynamical
so that the universe is not flat—only its spatial section may be
or nearly so. In what follows, we will implicitly assume we a
talking about thethree-dimensional spacelike sectionsof the uni-
verse when talking about flat, hyperbolic, or spherical spac
universes.
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radius, because Euclidean geometry—unlike spherical
hyperbolic geometry—has no preferred scale and adm
similarities. Note that in the Euclidean case, there are o
ten compact topologies, which reduces and simplifies
analysis ~in particular regarding the computation of th
eigenmodes of the Laplacian!. In a spherical universe the
topology scale depends on the curvature radius, but, in c
trast to the hyperbolic case, as the topology of a spher
manifold gets more complicated, the typical distance
tween two images of a single cosmic source decreases
matter how closeV is to 1, only a finite number of spherica
topologies are excluded from detection. The particular c
of the detectability of lens spaces was studied in Ref.@33#,
which also considers the detectability of hyperbolic topo
gies.

At present, the status of the constraints on the topology
the universe is still very preliminary. Regarding locally E
clidean spaces, it was shown on the basis of the COBE
that in the case of a vanishing cosmological constant the
of the fundamental domain of a 3-torus has to be larger t
L>4800h21 Mpc @3–6#, where the lengthL is related to the
smallest wave number 2p/L of the fundamental domain
which induces a suppression of fluctuations on scales bey
the sizeL of the fundamental domain. This constraint do
not exclude a toroidal universe since there can be up to e
copies of the fundamental cell within our horizon. This co
straint relies mainly on the fact that the smallest wave nu
ber is 2p/L, which induces a suppression of fluctuations
scales beyond the size of the fundamental domain. This
sult was generalized to all Euclidean manifolds in Ref.@15#.
A non-vanishing cosmological constant induces more po
on large scales, via the integrated Sachs-Wolfe effect.
instance, ifVL50.9 andVm50.1, the constraint is relaxe
to allow for 49 copies of the fundamental cell within ou
horizon. The constraint is also milder in the case of comp
hyperbolic manifolds and it was shown@17–19# that the an-
gular power spectrum was consistent with the COBE data
multipoles ranging from 2 to 20 for the Weeks and Thurst
manifolds. Another approach, based on the method of
ages, was developed in@20–22#. Only one spherical spac
using this method of images was considered in the literat
namely projective space@34#. The tools developed in this
paper, as well as in our preceding works@14,35,36#, will let
us fill the gap regarding the simulation of CMB maps
spherical universes.

Technically, in standard relativistic cosmology, the un
verse is described by a Friedmann-Lemaıˆtre spacetime with
locally isotropic and homogeneous spatial sections. Th
spatial sections can be defined as constant density or
hypersurfaces. With such a splitting, the equations of evo
tion of the cosmological perturbations, which give birth
the large scale structures of the universe, reduce to a s
coupled differential equations involving the Laplacian. Th
system is conveniently solved in Fourier space. In the cas
a multiply connected universe, we visualize space as
quotientX/G of a simply connected spaceX ~which is just a
3-sphereS3, a Euclidean spaceR3, or a hyperbolic space
H3, depending on the curvature! by a groupG of symmetries
of X that is discrete and fixed point free. The groupG is
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SIMULATING COSMIC MICROWAVE BACKGROUND MAPS . . . PHYSICAL REVIEW D 69, 103514 ~2004!
called the holonomy group. To solve the evolution equatio
we must first determine the eigenmodesYk

[G] and eigenval-
ues2kk

2 of the Laplacian onX/G through the generalized
Helmholtz equation

DYk
[G]52kk

2Yk
[G] , ~2!

with

kk
25k22K, ~3!

where k indexes the set of eigenmodes, the constantK is
positive, zero or negative according to whether the spac
spherical, flat or hyperbolic, respectively,3 and the boundary
conditions are compatible with the given topology. The L
placian in Eq.~2! is defined asD[DiDi , Di being the co-
variant derivative associated with the metricg i j of the spatial
sections (i , j 51,2,3). Theeigenmodes ofX/G, on which
any function onX/G can be developed, respects the boun
ary conditions imposed by the topology. That is, the eig
modes ofX/G correspond precisely to those eigenmodes oX
that are invariant under the action of the holonomy groupG.
Thus any linear combination of such eigenmodes will sati
by construction, the required boundary conditions. In t
way we visualize the space of eigenmodes ofX/G as a sub-
space of the space of eigenmodes ofX, namely the subspac
that is invariant under the action ofG. The computational
challenge is to find thisG-invariant subspace and constru
an orthonormal basis for it. In the case of flat manifolds
eigenmodes ofX/G5R3/G can be found analytically. In the
case of hyperbolic manifolds, many numerical investigatio
of the eigenmodes ofX/G5H3/G have been performed
@18,37–41#. In the case of spherical manifolds, the eige
modes ofX/G5S3/G have been found analytically for len
and prism spaces@36# and otherwise can be found nume
cally @14#.

In the following, we will develop the eigenmodes ofX/G
on the basisY k,m

[X] of the eigenmodes of the universal cove
ing space as

Yks
[G]5 (

,50

`

(
m52,

,

jk,m
[G]sY k,m

[X] , ~4!

so that all the topological information is encoded in the c
efficientsjk,m

[G]s , wheres labels the various eigenmodes sha
ing the same eigenvalue2kk

2 , both of which are discrete
numbers.4 The sum over, runs from 0 to infinity if the
universal covering space is non-compact~i.e., hyperbolic or

3We work here in comoving units, but when spatial sections
not flat, the curvature of the comoving space isnot normalized: it is
not assumed to be11 in the spherical case nor is it assumed to
21 in the hyperbolic case. Thus our eigenvalues may differ
merically from those found in the mathematical literature, althou
of course they agree up to a fixed constant multipleuKu21/2.

4The spectrum is discrete when the space is compact, e.g
torus or any spherical space. In a non-compact multiconne
space such as a cylinder it will have a continuous component.
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Euclidean!. Thejk,m
[G]s coefficients can be determined analy

cally for Euclidean manifolds. In the case of a spheric
manifold, the modes are discrete,

k5~n11!AK ~5!

where n is a non-negative integer~the casesn50 and n
51 correspond to pure gauge modes@42#!, so that kk

2

5n(n12)K, and the sum over, is finite and runs from 0 to
n since the multiplicity of a modek is at most its multiplicity
in the universal cover, which is (n11)2. Among spherical
spaces, the case of prism and lens spaces are the sim
since one can determine these coefficients analytically@36#.
The worst situation is that of compact hyperbolic manifold
which is analogous to the Euclidean case since the unive
coveringR3 is not compact but for which no analytical form
are known for the eigenmodes. One then needs to rely
numerical computations~see, e.g., Refs.@35,41#!.

Our preceding works provided a full classification
spherical manifolds@35# and developed methods to compu
the eigenmodes of the Laplacian in them@14#. Among all
spherical manifolds, we were able to obtain analytically t
spectrum of the Laplacian for lens and prism spaces@36#
which form two countable families of spherical manifold
The goal of the present paper is to simulate CMB maps
these two families of spherical topologies, as well as for
Euclidean topologies.

We first review briefly the physics of CMB anisotropie
~Sec. II! mainly to explain how to take into account the t
pology ~Sec. II B! once the coefficientsjk,m

[G]s are determined.
We then detail the computation of these coefficients, foc
ing on the cases where it can be performed analytically,
is for flat spaces and lens and prism spaces. We then pre
results of numerical simulations~Sec. IV! as well as simu-
lated maps. We discuss these maps qualitatively and con
that the expected topological correlations~namely matching
circles @7#! are indeed present. The effects of the integra
Sachs-Wolfe and Doppler terms, as well as the thicknes
the last scattering surface, are discussed in order to
some insight into the possible detectability of these corre
tions. Figure 1 summarizes the different independent step
the computation as well as their interplay.

Notations

The local geometry of the universe is described by
Friedmann-Lemaıˆtre metric

ds252c2dt21a2~ t !@dx21sK
2 ~x!dV2#, ~6!

wherea(t) is the scale factor,t the cosmic time, dV2[du2

1sin2u dw2 the infinitesimal solid angle,x is the comoving
radial distance, and where

sK~x!5H sinh~AuKux!/AuKu ~hyperbolic case!

x ~flat case!

sin~AKx!/AK ~spherical case!.

~7!
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FIG. 1. The computation of CMB anisotropies in multiconnected spaces follows a series of independent steps. From the knowled
spatial curvatureK, one determines the universal covering spaceX, as well as the eigenmodes of the Laplacian in this simply-conne
space~upper left box!; these functions are well known and frequently used in standard cosmology computations, and are rec

Appendix A „we have introducedv5k/AuKu for the hyperbolic case andn5k/AK21 for the spherical case@recall Eq.~5!#, and usedx̄
defined by Eq.~8!…. Once some cosmological parameters and a scenario of structure formation has been chosen~upper right box!, the CMB
anisotropies in the universal covering space can be computed. This step is also a standard step that can be achieved numerically b
of codes~see Sec. II A!. An independent computation~lower left box! is the determination of the eigenmodes of the Laplacian compa
with the topology of space, specified by the choice of the holonomy groupG. Our approach is to encode all the topological information
a set of parametersjk,m

[G]s . Their computation is described in Sec. III B 2 and can be performed either numerically or analytically acc
to the case at hand. The implementation of the topology in a standard CMB code~lower right box! is described in Sec. II B and yields th
complete correlation matrix of thea,m from which one can~center right box! computeC, , simulate maps, etc.
103514-4
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SIMULATING COSMIC MICROWAVE BACKGROUND MAPS . . . PHYSICAL REVIEW D 69, 103514 ~2004!
In the case of spherical and hyperbolic spatial sections,
also introduce the dimensionless coordinate

x̄5AuKux, ~8!

which expresses radial distances in units of the curva
radius.

II. CMB ANISOTROPIES

The equations dictating the evolution of cosmological p
turbations are local differential equations, and remain
changed by the topology of the spatial sections. Indeed
goal of this section is not to derive the whole set of equati
that has to be solved~see, e.g., Refs.@43–46# for reviews!
but to explain the steps that must be changed to take
account the topology.

A. Local physics of cosmological perturbations

The CMB is observed to a high accuracy as blackbo
radiation with temperatureT052.72660.002 K @47#, almost
independently of the direction. After accounting for the p
culiar motion of the Sun and Earth, the CMB has tiny te
perature fluctuations of orderdT/T0;1025 that are usually
decomposed in terms of spherical harmonics

dT

T0
~u,w!5 (

,50

`

(
m52,

,

a,m
obsY,

m~u,w!. ~9!

This relation can be inverted by using the orthonormality
the spherical harmonics to get

a,m5E dT

T
Y,

m* sinududw. ~10!

The coefficientsa,m obviously satisfy the conjugation rela
tion

a,2m5~21!ma,m* . ~11!

The angular correlation function of these temperat
anisotropies is observed on a 2-sphere around us and ca
decomposed on a basis of the Legendre polynomialsP, as

K dT

T
~ ĝ1!

dT

T
~ ĝ2!L

ĝ1 .ĝ25cosu12

5Cobs~u12!

5
1

4p (
,

~2,11!C,
obsP,~cosu12!, ~12!

where the brackets stand for an average on the sky, i.e., o
pairs of directions (ĝ1 ,ĝ2) subtending an angleu12. The
coefficientsC,

obsof the development ofCobs(u12) on the Leg-
endre polynomials are thus given by

C,
obs5

1

2,11 (
m52,

,^a,m
obsa,m

obs* &. ~13!
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TheseC,
obs can be seen as estimators of the variance of t5

a,m and represent the rotationally invariant angular pow
spectrum. They have therefore to be compared to the va
C, predicted by a given cosmological model, which is spe
fied by ~i! a model of structure formation which fixes th
initial conditions for the perturbation~e.g., inflation, topo-
logical defects, etc.!, ~ii ! the geometry and matter content
the universe~via the cosmological parameters! and ~iii ! the
topology of the universe.

For the case of a simply connected topology, theC, are
usually computed as follows. First, one starts from a se
initial conditions given by an early universe scenario. Ty
cally these are the initial conditions predicted in the fram
work of an inflationary model, although this is of no impo
tance in the discussion that follows. Second, the modes
cosmological interest are evolved from an epoch before t
enter into the Hubble radius till now. Third, one comput
the variance for thea,m . The details of this procedure ar
well known @43–46#.

For simplicity let us sketch the case of a flat universe. T
temperature fluctuation in a given direction of the sky can
related to ~i! the eigenmodes exp(ik•x) of the Laplacian
~herex represents a vector in the usual Cartesian coordin

system! by a linear convolution operatorOk
[R3]@exp(ik•x)#,

depending on the modulusk only @as well as on the universa
cover~here,R3) and the cosmological parameters#, and~ii ! a
three-dimensional variableêk related to the initial conditions
by the formula

dT

T
~u,w!5E dk

~2p!3/2
Ok

[R3]~eik•x!APf~k!êk , ~14!

wherePf(k) is the gravitational initial power spectrum, no
malized so thatPf(k)}k23 for a Harrison-Zel’dovich spec-
trum, and where in most inflationary models the rando
variableêk describes a Gaussian random field and satisfi

^êkêk8
* &5dD~k2k8! ~15!

with ê2k5êk* when the space is simply connected. This
lation stems from the fact that the temperature fluctuation
real, but it may be expressed differently for multiconnect
spaces. Decomposing the exponential by means of Eq.~C7!
and using Eq.~C5! allows us to rewrite the temperature flu
tuation as

dT

T
~u,w!5(

,,m
i ,E k2dkAPf~k!Ok

[R3]SA2

p
j ,~kx!D

3F E dVkY,
m* ~uk ,wk!êkGY,

m~u,w!

5One can show that this is indeed the best estimator of their v
ance when the fluctuations are isotropic and Gaussian@48#.
4-5
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RIAZUELO et al. PHYSICAL REVIEW D 69, 103514 ~2004!
5(
,,m

i ,E k2dkAPf~k!Ok
[R3]~Y k,m

[R3] !ê,m~k!,

~16!

where we have defined

ê,m~k![E dVkY,
m* ~uk ,wk!êk , ~17!

which is the ‘‘average’’ of the random fieldsêk over all thek
of the same modulus. This quantity can therefore be ide
fied as a two-dimensional Gaussian random variable sat
ing ^ê,m(k)ê,8m8

* (k8)&5dD(k2k8)d,,8dmm8 /k2. It follows
that the coefficientsa,m take the general form

a,m5 i ,E k2dkAPf~k!G,~k!ê,m~k!, ~18!

with

G,~k!5Ok
[R3]~Rk,

[R3] !, ~19!

and here the functionG,(k) can be approximated by~see,
e.g.,@46,57#!

G,~k!5 j ,@k~h02hLSS!#

3S dT

T
~k,hLSS!1F~k,hLSS!1C~k,hLSS! D

1 j ,8@k~h02hLSS!#
vb~k,hLSS!

k

1E
hLSS

h0
j ,~k~h02h!!@Ḟ~k,h!1Ċ~k,h!#dh,

~20!

which is indeed a linear convolution operator acting onRk,
[R3]

as announced above. Here,hLSS and h0 are the conformal
times at the last scattering epoch and today, respectivelj ,

is the spherical Bessel function of index,, F andC are the
two Bardeen potentials, andvb is the velocity divergence o
the baryons. The only modification of note when one cons
ers a non-flat universe is that thej , are to be replaced by
their analog for non-flat geometries, the so-called ultr
pherical Bessel functions@49,42#, and for a closed univers
the integral overk is replaced by a discrete sum.

In conclusion, and without loss of generality, the tempe
ture fluctuation can be decomposed as in Eq.~16! whatever
the curvature of space. For a simply connected topology
Gaussian initial conditions the addition property~C5! of the
spherical harmonics imposes that

^a,ma,8m8
* &5C,d,,8dmm8 , ~21!

and therefore theC, coefficients encode all the informatio
regarding the CMB anisotropies.
10351
ti-
y-

-

-

-

d

B. Implementing the topology

The topology does not affect local physics, so the eq
tions describing the evolution of the cosmological perturb
tions are left unchanged. As a consequence, quantities
as the Bardeen potentialsF, C, etc., are computed in the
same way as described above, and the operatorOk

[X] is there-
fore the same. However, a change of topology translates
a change of the modes that can exist in the universe
particular, the functionsY k,m

[X] are typically not well defined
on the quotient spaceX/G. Therefore, the only change tha
has to be performed is the substitution

Y k,m
[X] →Yks

[G] , ~22!

where theYks
[G] form an orthonormal basis for the space

eigenmodes of the Laplacian on the given topologyX/G.
One must then remember that the mode functionsYks

[G] can
be decomposed uniquely by Eq.~4! and that the convolution
operatorOk

[X] is linear. When the multiconnected topology
compact, it follows that Eq.~16! will take the form

dT

T
~u,w!5

~2p!3

V
(
k,s

Ok
[X]~Yks

[G] !APf~k!êk , ~23!

where nowêk is a three-dimensional random variable whi
is related to the discrete modek. Equivalently one can write
êk[êks where k is the modulus ofk and the indexs de-
scribes all the eigenmodes of the Laplacian for fixed mo
lus k in the topologyX/G of volumeV. These random vari-
ables satisfy the normalization

^êkêk8
* &5

V

~2p!3
dkk8dss8 . ~24!

For a given value of the wave numberk, there are fewer
eigenmodes in the multiconnected case, so thats has to be
seen as a ‘‘subset’’ of the set$,,m%.

By inserting the expansion ofYks
[G] in terms of the cover-

ing space eigenmodes, as given by Eq.~4!, we obtain

dT

T
~u,w!5

~2p!3

V
(
k,s

(
,,m

jk,m
[G]sOk

[X]~Y k,m
[X] !APf~k!êk .

~25!

It follows that thea,m , seen as random variables, are giv
by

a,m5
~2p!3

V
(

k

APf~k!Ok
[X]~Rk,

[X] !(
s

jk,m
[G]sêk . ~26!

Note that the sum overs is analogous to the sum over angl
defining the two-dimensional random variableê,m in Eq.
~16!. Since thea,m are linear functions of the initial three
dimensional random variables, they are still Gaussian dist
uted but they are not independent anymore~as explained
4-6
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before, this is the consequence of the breakdown of glo
isotropy and/or homogeneity!. The correlation between th
coefficientsa,m is given by

^a,ma,8m8
* &5

~2p!3

V (
k

Pf~k!Ok
[X]~Rk,

[X] !Ok
[X]~Rk,8

[X]
!

3(
s

jk,m
[G]sjk,8m8

[G]s* . ~27!

Clearly these correlations can have non-zero off-diago
terms, reflecting the global anisotropy induced by the mu
connected topology, so that Eq.~21! no longer holds and the
observational consequences of a given topology on the C
anisotropies are given by the correlation matrix~1!. This
means in particular that for fixed,, thea,m might not have
the same variance, although they all follow Gaussian sta
tics as long as the initial conditions do. This translates into
apparent non-Gaussianity in the sense that theC, will not
follow the usualx2 distribution. Strictly speaking, this is no
a signature of non-Gaussianity but of anisotropy.

Note also that the correlation matrix~27! is not rotation
invariant. It will explicitly depend on the orientation of th
manifold with respect of the coordinate system. Howev
knowing how the spherical harmonics transform under a
tation allows us to compute the correlation matrix under a
other orientation of the coordinate system. To finish let
note that one can define the usualC, coefficients in any
topology by the formula

C,[
1

2,11 (
m

C,m
,m , ~28!

which is easily shown to be rotationally invariant.

III. EIGENMODES OF MULTICONNECTED SPACES

A. Flat spaces

The purpose of this section is to compute in detail
coefficientsjk,m

[G]s in the case of a cubic 3-torus of comovin
size L, referred to asT1 . The method generalized easily
any compact flat manifold.

In the case at hand, the topology implies the ‘‘quantiz
tion’’ of the allowed wave vectors

k5
2p

L
~n1x̂1n2ŷ1n3ẑ!5

2p

L
n5kn̂, ~29!

with

n[~n1 ,n2 ,n3!, ~30!

n[An•n, ~31!

n̂[~n1 ,n2 ,n3!/n, ~32!

k[Ak•k5
2p

L
n, ~33!
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so that the labels can be chosen to be the ‘‘unit’’ intege
vectorn̂. The label multiplicity mult(k)[card$s% of a mode
k is given in this case by the number of representations on2

by 3 squares, i.e., by card$n̂% ~see Fig. 2!. The corresponding
normalized eigenmodes in Cartesian coordinates are
simply given by

Y
kn̂

[T1]
~r !5

eik•r

~2p!3/2
, ~34!

with k given by Eq.~29!. Using the decomposition~C7! of
the exponential and plugging in the closure relation~C5!,
one gets that

jk,m
[T1]s

5j2pn/L,m
[T1] n̂

5 i ,Y,
m* ~ n̂!, ~35!

where n̂ can also be defined by the two spherical ang
(un , wn) which are explicitly given by

tanun5
An1

21n2
2

n3

, ~36!

tanwn5
n2

n1
. ~37!

This expression could also have been obtained by sim

considering the Fourier transform ofY k,m
[R3] as given by Eq.

~C6!. One can check that the normalization of the basisY
kn̂

[T1]

@i.e., *Y
kn̂

[T1]
Y

k8n̂8

[T1]
* dx5dD(k2k8)] implies that the coeffi-

cientsjk,m
[T1] n̂ satisfy the closure relation

(
,50

`

(
m52,

,

jk,m
[T1] n̂

j
k8,m

[T1] n̂8* 5dD~cosun2cosun8!

3dD~wn2wn8!dkk8 . ~38!

The Dirac distribution in the above expression can be sho
by using either Eqs.~C4!, ~C5! or Eq. ~C8! alone, to be

dD~cosun2cosun8!d
D~wn2wn8!5 (

,50

`
2,11

4p
P,~ n̂.n̂8!.

~39!

From these results, we deduce that the correlation matri
the a,m is given by

C,m
,8m85S 2p

L D 3

(
n

i ,2,8PfS 2pn

L DG,S 2pn

L DG,8S 2pn

L D
3(

n̂
Y,

m* ~ n̂!Y,8
m8~ n̂!. ~40!

Using Eq.~C5! and the fact that(n,n̂5(n , the C, coeffi-
cients are simply

C,5
1

2p S 2p

L D 3

(
n

PfS 2pn

L DG,
2S 2pn

L D , ~41!
4-7
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FIG. 2. ~Color online! Multiplicity of the modek as a function ofn ~cubic torus, top panels! or n @lens spaceL(p,q), bottom panels#.

For the cubic torus,n is of the formAN, whereN is an integer, and for lens spaces~and more generally spherical spaces!, n is an integer.
The left panels show the multiplicity of each mode for a given value of eithern of n. We have also given an estimate of the ‘‘averag
number of modes, given by 2pn for the torus and (n11)2/p for the lens spaces, respectively. For lens spaceL(17,5), the mode multiplicity
closely follows the analytical estimate, whereas for lens spaceL(12,1), modes exist only for even values ofn. For the cubic torus, the mod

multiplicity is even more irregular, and varies between 0 and;20n. For example, it is always 0 whenn5A8m17. Right panels show the

integrated mode multiplicity, which is the number of modes smaller or equal to some value@2pn/L and (n11)AK, respectively#. Here, the
analytical estimates@4pn3/3 and (n11)(n12)(2n13)/6p, respectively# provide a much better estimation~see Sec. 5 of Ref.@14# for a
detailed discussion of these properties!.
m

tio

ma-
ic
which was used in many earlier works@3–6# on the influence
of topology on the CMB.

Note that spherical harmonics satisfy the following sy
metry relation:

Y,
m~u,2w!5e22imwY,

m~u,w!. ~42!

Due to the symmetry of the torus with respect to they50
plane, in the sum overn̂ in Eq. ~40! a term (un ,wn) will
always be associated with a term (un ,2wn), leading to a

term of the form 4 cos@(m82m)wn#Y,
m* (un,0)Y,8

m8(un,0), the
only exception being the term arising whenn250, which is
real. From this result, one easily shows that the correla
matrix satisfies

C,m
,8m8PR. ~43!

Along similar lines, the relations
10351
-

n

Y,
m~u,p!5eimwY,

m~u,0!, ~44!

Y,
m~p2u,w!5~21!,1mY,

m~u,w! ~45!

imply

C,m
,8m85

1

4
@11~21!m2m8#@11~21!,2,8#C,m

,8m8 , ~46!

so that

C,m
,8m8Þ0⇒m2m8[0 mod~2! and ,2,8[0 mod~2!.

~47!

Furthermore, Eqs.~43!, ~C2! imply

C,m
,8m85C,2m

,82m8 . ~48!

Let us emphasize that these properties of the correlation
trix still hold even if the torus is not cubic. However, a cub
4-8
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torus is invariant under ap/2 rotation about thez axis, so if
(n1 ,n2 ,n3) corresponds to a wave number then so d
(n2 ,2n1 ,n3), and one has

C,m
,8m8Þ0 ⇒ m2m8[0 mod~4!. ~49!

B. Spherical spaces

The goal of this section is to recall the basic analyti
results concerning the lens and prism spaces~Sec. III B 2!. In
these spaces, the eigenmodes and eigenvalues of the La
ian operator can be determined analytically using toroi
coordinates@36#. CMB computations use spherical coord
nates, so we must perform a change of coordinates an
change of basis~detailed in Appendix B!. Fortunately, this
can also be achieved analytically to compute the coefficie
jk,m

[G]s .

1. Generalities

In our preceding paper@35#, we presented in a pedestria
way the complete classification of three-dimensional sph
cal topologies and we described how to compute their
lonomy transformations.

The isometry group of the 3-sphere is SO(4). Every iso
etry in SO(4) can be decomposed as the product of a ri
handed and a left-handed Clifford translation, and the fac
ization is unique up to simultaneous multiplication of bo
factors by 21. Furthermore, the spaceS3 itself enjoys a
group structure as the setS 3 of unit length quaternions. Eac
right-handed~left-handed! Clifford translation correspond
to left ~right! quaternion multiplication ofS 3, so the group
of right-handed~left-handed! Clifford translations is isomor-
phic to S 3. It follows that SO(4) is isomorphic toS 3

3S 3/$6(1,1)% and thus the classification of the subgrou
of SO(4) can be deduced from the classification of s
groups ofS 3. There is a two-to-one homomorphism fromS 3

to SO(3); the finite subgroups of SO(3) are the cyclic, dih
dral, tetrahedral, octahedral and icosahedral groups, so
finite subgroups ofS 3 are their lifts, namely,

the cyclic groupsZn of ordern,
the binary dihedral groupsDm* of order 4m, m>2,
the binary tetrahedral groupT* of order 24,
the binary octahedral groupO* of order 48,
the binary icosahedral groupI * of order 120,

where a binary group is the twofold cover of the correspo
ing plain group.

From this classification, it can be shown that there
three categories of spherical 3-manifolds.

The single action manifoldsare those for which a sub
group R ~L! of S 3 acts as pure right-handed~pure left-
handed! Clifford translations. They are thus the simple
spherical manifolds and can all be written asS3/G with G
5Zn ,Dm* ,T* ,O* ,I * .

The double-action manifoldsare those for which sub
groupsR andL of S 3 act simultaneously as right- and lef
handed Clifford translations, and every element ofR occurs
with every element ofL. These are obtained for the group
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G5G13G2 with (G1 ,G2)5(Zm ,Zn),(Dm* ,Zn),(T* ,Zn),
(O* ,Zn),(I * ,Zn), with gcd(m,n)51, gcd(4m,n)51,
gcd(24,n)51, gcd(48,n)51, and gcd(120,n)51, respec-
tively.

The linked-action manifoldsare similar to the double ac
tion manifolds, except that each element ofR occurs with
only some of the elements ofL.

The classification of these manifolds is summarized
Fig. 8 of Ref.@35#.

2. Lens and prism spaces

In this paper, we focus on prism spacesS3/Dm* and lens
spacesL(p,q).

The lens spaceL(p,q) is the quotient of the 3-sphere b
cyclic group whose generator is the isometry defined byu
→u12p/q andw→w12p/p) in toroidal coordinates.6 The
fundamental domain of a lens space is a lens shaped s
the two faces of which are identified after a rotation
2pp/q for p andq relatively prime integers with 0,q,p. It
follows that exactlyp copies tile the 3-sphere, their face
lying along great 2-spheres. Furthermore, we may res
our attention to 0,q<p/2 because for values ofq in the
rangep/2,q,p the twist 2pq/p is the same as22p(p
2q)/p, thusL(p,q) is the mirror image ofL(p,p2q). Lens
spaces can be single action, double action, or linked act
Fig. 9 of Ref.@35# summarizes their classification.

The eigenmodes and eigenvalues of prism and lens sp
can be obtained analytically by working in toroidal coord
nates@36#. Starting from Cartesian coordinates, in which t
equation for the 3-sphere isx21y21z21w251, the toroidal
coordinates (xT ,uT ,wT) are defined via the equations

x5cosxT cosuT , ~50!

y5cosxT sinuT , ~51!

z5sinxT coswT , ~52!

w5sinxT sinwT , ~53!

with

0<xT<p/2, ~54!

0<uT<2p, ~55!

0<wT<2p. ~56!

Reference@36# gives the eigenmodes ofS3 explicitly as

Qn,TmT
5Bn,TmT

cosu,Tu xT sinumTu xTPd
(umTu,u,Tu)

~cos 2xT!

3 f ~ u,TuuT! f ~ umTuwT!, ~57!

wheren is the integer parametrizingk5(n11)AK as in Eq.
~5!, Pd

(umTu,u,Tu) is the Jacobi polynomial, andf stands for the

6The toroidal coordinates are such that the 3-sphere of equa
x21y21z21w251) is parametrized as x5cosx cosu, y
5cosx sinu, z5sinx cosw and w5sinx sinw with 0<x<p/2,
0<u<2p and 0<w<2p.
4-9
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cosine~sine! function when,T or mT>0 (,T or mT,0). For
each value ofn, the indices,T andmT range over all inte-
gers, satisfying

u,Tu1umTu<n ~58!

and

u,Tu1umTu[n mod~2!, ~59!

and for convenience we define

d5
1

2
~n2u,Tu2umTu!. ~60!

The normalization coefficientsBn,TmT
are given by7

Bn,TmT
5

s,T
smT

p~n11!
A2~n11!d! ~ u,Tu1umTu1d!!

~ u,Tu1d!! ~ umTu1d!!
~61!

with s i51/A2 if i 50 ands i51 otherwise.
Using these definitions, Ref.@36# shows that for lens

spaces the explicit set of coefficientshs,TmT

[G]n such that

Yks
[G]5 (

,T ,mT

hn,TmT

[G]s Qn,TmT
~xT ,uT ,wT!, ~62!

can be obtained as follows.
Theorem 1: lens spaces. The eigenspace of the Lapla

on the lens space L(p,q) has an orthonormal basis that,
when lifted to Zp-invariant eigenmodes of the3-sphere, com-
prises those eigenmodes in the left column for which
corresponding condition in the right column is satisfied, sub-
ject to the restriction that an eigenmodeQn,TmT

exists if and

only if the integersn, ,T , and mT satisfyu,Tu1umTu<n and
u,Tu1umTu[n mod(2).

Basis vectors Condition

Qn00 always
Qn,T0 ,T[0 mod(p)
Qn0mT

qmT[0 mod(p)
(Qn,TmT

1Qn2,T2mT
)/A2,

(Qn2,TmT
2Qn,T2mT

)/A2 ,T[qmT mod(p)

(Qn,TmT
2Qn2,T2mT

)/A2,

(Qn2,TmT
1Qn,T2mT

)/A2 ,T[2qmT (p)

An analogous theorem was demonstrated for prism sp
and can be found in Ref.@36#.

Unfortunately, for practical purposes the eigenmodes
the lens and prism spaces are needed in spherical co
nates, while they are most easily obtained in toroidal coo
nates. As explained in the Introduction, one needs the c

7Note the factor 1/(n11) which differs from Ref.@36# due to a
different choice of normalization.
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[G]s of the decomposition~4!. Since Y k,m

[S3] and
Qn,TmT

are two orthogonal bases of dimension (n11)2, all
of whose elements have the same norm, there is an orth
nal transformation taking one to the other

Qn,TmT
5(

,,m
an,m,TmT

Y k,m
[S3] . ~63!

The ‘‘transpose’’ of this transformationa takes a given
eigenmode’sQ-based coefficientsh to its Y-based coeffi-
cientsj:

jk,m
[G]s5 (

,T52n

n

(
mT52n

n

an,m,TmT
hs,TmT

[G]n . ~64!

The orthonormality of the basisYks
[G] implies that the coeffi-

cientsjk,m
[G]s satisfy

(
,50

n

(
m52,

,

jk,m
[G]sjk,m

[G]s8* 5dss8 . ~65!

This relation is simpler than the closure relation~38! ob-
tained in the flat case because, for a givenk, the space of
modes is finite dimensional. The computation of the coe
cientsan,m,TmT

appears in Appendix B. Because both theQ
basis and theY basis are orthonormal, the transformationa
is orthogonal:

(
,50

n

(
m52,

,an,m,TmT
an,m,

T8m
T8

*

5d,T,
T8
dmTm

T8
«n~,T ,mT!«n~,T8 ,mT8! ~66!

where«n(,T ,mT)51 if the conditions~58!, ~59! are satisfied
and 0 otherwise.

With these coefficients, the CMB computation goes as
the flat case, except for the fact that some integrals hav
be replaced by discrete sums. One easily gets that

dT

T
~u,w!5

~2p!3

V
(
n52

`

(
s

(
,,m

jk,m
[G]sOk

[S3]~Y k,m
[S3] !APf~k!êk ,

~67!

so that

a,m5
~2p!3

V
(
n52

`

APf~k!Ok
[S3]~Rk,

[S3] !(
s

jk,m
[G]sêk ,

~68!

and

C,m
,8m85

~2p!3

V (
n52

`

Pf~k!G,~k!G,8~k!(
s

jk,m
[G]sjk,8m8

[G]s* ,

~69!

as first obtained in Ref.@14#. Note also that, following Refs
@50,51#, a scale invariant spectrum will in that case be d
fined as
4-10
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Pf~k!}
1

k~k22K !
. ~70!

To finish, let us discuss the properties of the random v
able êk . Since the eigenmodes in toroidal coordinat
Qn,TmT

, and the coefficientshn,TmT

[G]s are real valued, it fol-

lows from Eq.~C2! that

an,m,TmT
* 5~21!man,2m,TmT

. ~71!

It follows that

jk,m
[G]s* 5~21!mjk,2m

[G]s , ~72!

whatevers and thus that the eigenmodesYks
[G] are real val-

ued. This implies thatêk is a real random variable, contrar
to the preceding example of the torus.

IV. NUMERICAL COMPUTATIONS

A. Implementation

The correlation matrix for,<,max has,max
4 coefficients.

However, the parity and symmetry relations

C,m
,8m85~21!m2m8C,2m

,82m8 * ~73!

C,m
,8m85C,8m8

,m * ~74!

reduce the problem to computing only a quarter of the
Then, for a given topology, symmetries can further redu
the number of coefficients to compute. For example, wit
cubic torus, Eqs.~47!, ~49! ensure that only one coefficien
out of eight is nonzero, and the symmetries~48! also give the
coefficients when one changes the sign of bothm and m8.
This leaves only,max

4 /64 coefficients to compute. For ex
ample, a COBE scale map (,max;30) requires 12500 coef
ficients, while a Planck scale map (,max;1500) requires
;831010 coefficients.

Each coefficients is computed using Eq.~40!, which in-
volves a sum over all the wave modesk. For a given reso-
lution ,max the modulus of the largest wave mode is given
kmax;3,max/h0 . Moreover, the density of wave modes
proportional to the size of the torus, so that we ha
O(,max

3 L3) modes. Therefore, the computational time a
the memory requirement scale as,max

7 L3 and,max
3 L3, respec-

tively. This is obviously a serious limitation of our algorithm
For example, computing the correlation matrix for a COB
scale map on a relatively small torus (L52RH , whereRH is
the Hubble radius! takes approximately 10 h on a 900 MH
CPU and allocates 60 MB memory.

When the topology is simply connected, it is a we
known fact that theC, are in general a smooth function o
the multipole ,. This reduces the computational time b
cause for,max51500 one needs to compute only;50 coef-
ficients. For the topologies we have studied, we did not fi
any evidence for a smooth structure of the correlation mat
at least at the relatively large scales we considered. At wh
10351
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scale one can reliably approximate the correlation matrix
its isotropic diagonal part~theC,) remains an open question

Also, if one wants to simulate CMB maps from the co
relation matrix, one needs to diagonalize it. This proced
can also take a lot of time because it is an,max

6 process. For
the case of the torus, however, this problem is not seriou
the symmetries of the torus ensure that the matrix is bl
diagonal, with eight blocks if the torus is cubic or fou
blocks otherwise.

Strictly speaking, one does not need the correlation ma
to compute maps. One can do it directly by using Eq.~18!.
This amounts to performing a realization of the thre
dimensional random field describing the cosmological p
turbations, and projecting it onto the sphere. In this case,
has only,max coefficients to compute~the a,m) instead of
the correlation matrix, so that the memory requirements
roughly the same~one only needs to store the value of th
random field for each mode!, but the computational time
scales as,max

5 L3. In this case, computing maps for a cub
torus of sizeL52RH till ,max5120 takes 3 h on a 1.7 GHz
CPU and allocates 300 MB of memory.

In the case of spherical spaces, the coefficientsjk,m
[G]s must

also be computed numerically. This involves determini
both the coefficientshs,TmT

[G]n andan,m,TmT
. This computation

can be reduced by taking into account their symmetries
described in Appendix B, which imply thatn2umu1u,Tu is
odd, umu5umTu, u,Tu1umTu<n, and u,Tu1umTu
[n mod(2). Thecomputation can be performed analytical
with the use of symbolic computation software such
MATHEMATICA . In the case of the lens spaceL(17,5), the
computation up ton543 andn555 takes 3 and 12 h, re
spectively, on a 1 GHz CPU with a negligible amount o
memory.

B. Expected results

The three main effects that are expected on a CMB m
computed in a multiconnected topology are~i! the appear-
ance of, –,8 and m–m8 correlations reflecting the break
down of global isotropy,~ii ! the existence of a cutoff in the
CMB angular power spectrum on large angular scales~low
,), and ~iii ! the existence of pattern correlations, such
pairs of circles where the temperature fluctuations
strongly correlated as they represent the intersection of
last scattering surface with itself and therefore show the te
perature of the same emission region from different dir
tions. Note that the effects~ii ! and~iii ! will show up only if
the topological identification scale8 is smaller than the radius

8The topological identification scale is the comoving length sc
associated with a given generator of the holonomy group. If
holonomy is a Clifford translation then it does not depend on
position of the point. This is the case of the torus for which t
topological scales are given by the size of the FP, namelyL1 ,L
22,L3 . In the case of a lens space it is given by 2pp/q in units of
the curvature radius. This scales gives the distance of the ne
topological image and thus the distance between two matc
circles.
4-11
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of the last scattering surface while the effect~i! may be
present even if the topological scale is a bit larger than
diameter of the last scattering surface.

So far, the main constraints that have been given on m
ticonnected topologies come from the absence of a cuto
large angular scales in the COBE spectrum. This gives str
constraints on the minimal size of the topology as the cu
is given by the angular size of the torus projected on the
scattering surface. However, as previously discussed,
cutoff in the ‘‘true’’ temperature fluctuations can be compe
sated, at least partially, by an integrated Sachs-Wolfe ef
which arises, for example, when the cosmological constan
large.

The third, and up-to-now never computed, effect of
multi connected topology is the appearance of pairs of circ
which are correlated in temperature. This correlation, ho
ever, is not perfect. It would be perfect if the temperatu
fluctuation were a pure scalar function on the last scatte
surface 2-sphere around us which would be the case on
~i! the temperature anisotropies were given only by
Sachs-Wolfe effect@first term of Eq.~20!# and ~ii ! the last
scattering surface were infinitely thin.

It is well known that the temperature fluctuations o
served in a given direction are in fact a combination of s
eral effects: first, one has the intrinsic temperature fluct
tions of the emitting region, which is eventually affected
a gravitational redshift. These two contributions form t
so-called Sachs-Wolfe effect@the first term in the right-hand
side of Eq.~20!#. Second, if the emission region is not at re
with respect to the observer, one will observe some appa
temperature fluctuations which in fact result from a Dopp
shift @second term in the right-hand side of Eq.~20!#. Third,
several events can alter the photons energy and trajec
while traveling toward us. In particular, they can be sligh
disturbed from their trajectory~lensing! and, more impor-
tantly, they can exchange energy when they cross ti
varying potential wells. This last effect is usually referred
as the integrated Sachs-Wolfe effect@the third term in the
right-hand side of Eq.~20!, see Fig. 9 below#. Obviously, the
Sachs-Wolfe effect is a scalar quantity that depends only
the emission region. Therefore, it should be the same w
ever the direction of observation. By contrast, the Dopp
effect will explicitly depend on the direction of observatio
If one observes two directions that correspond to the sa
point of the last scattering surface and that form a sm
angle, then one expects that the Doppler contribution will
almost the same. If the matching points are 90° from e
other, then one expects on average no correlation at
whereas the Doppler effect between two antipodal points
become anticorrelated.9 Finally, since photons originating
from the same emission region but observed from differ
directions will travel through different regions of space, th
will undergo different integrated Sachs-Wolfe effects, so t

9This simple reasoning is true for a torus and is in fact true in a
Euclidean topology. For spherical and hyperbolic manifolds,
correlation of the Doppler term depends both on the diameter of
matching circles and on the curvature.
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no significant correlations are expected from this effe
which is therefore considered a noise term for our purpos

Actually, one aim of this work is precisely to compute th
typical amount of correlation one can expect on pairs
circles. Note that this correlation is likely to depend on sca
on large scales, one should be annoyed by the late integr
Sachs-Wolfe effect; between the Sachs-Wolfe plateau and
first Doppler peak~and, at a lesser extent, at every dip b
tween two Doppler peaks!, the Doppler effect dominates; a
the first peak, there is usually~especially when the matte
content is low! a significant contribution of the early inte
grated Sachs-Wolfe effect~see Fig. 9!; at very small scales
one feels the finite width of the last scattering surface~see
below!, etc. Also, as explained above, the relative position
the circles will play a role because of the Doppler contrib
tion. It is therefore interesting to look at the best way to fi
matching circles on a realistic CMB map. We leave this i
portant point to future work@52#.

The second~and probably less important! effect that re-
duces the correlation between the circles is the finite width
the last scattering surface. As far as we know, this effect
not yet been carefully analyzed. It plays a role when o
looks at fluctuations on scales smaller than the projec
width of the last scattering surface. In this case when look
in a given direction, one picks up fluctuations which a
situated ‘‘on one side’’ of the last scattering surface, but
pairs of circles, one sees opposite sides of the last scatte
surface. On larger scales, the effect is negligible as one
erages temperature fluctuations on regions much larger
the thickness of the last scattering surface.

V. RESULTS

We now outline some of the results we have already
tained from our simulations. The main aim of this section
to provide a series of tests to check our simulations. A m
detailed analysis of the structure of the correlation ma

C,m
,8m8 as well as a search for accurate tests to detect

topology are left for future work@52#.

A. Flat case: cubic torus

In all the simulations we performed, we have considere
flat LCDM model with VL50.7, a Hubble parameter o
H0[100h km s-1 Mpc-1 with h50.62, a baryon densityvb

[Vbh
250.019 and a spectral indexnS51. With this choice

of cosmological parameters, the Hubble radius isRH
;4.8 Gpc, the ‘‘horizon’’ radius~under the hypothesis of a
radiation dominated universe at early times! is Rh
;15.6 Gpc, and the radius of the last scattering surfac
RLSS;15.3 Gpc. The volume of the observable universe
thereforeVobs;153103 Gpc3.

Let us first compare theC, in the simply connected to
pology to theC, in a torus~Fig. 3!. As expected, we see
cutoff at some angular size which corresponds to the ang
size of the torus on the last scattering surface. This co
sponds to the multipole

y
e
e
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,c;
2pRLSS

L
, ~75!

whereL is the length of the cubic torus’ fundamental doma
@53,54#. Note that even when the torus is larger than the s
of the observable universe, the spectrum exhibits a los
power on large scales. This is because the Harris
Zel’dovich spectrum exhibits a significant amount of pow
at large scales~by definition, it is scale invariant!, and in
practice, the modes that contribute to the quadrupole of
CMB anisotropies can be as large as ten times the size o
observable universe~the exact number depends mostly
the spectral index and on the amplitude of the integra
Sachs-Wolfe term!. Therefore, this leaves us hope for dete
ing the topology ‘‘beyond the horizon’’ where the circle
method would fail. Note that the situation is somewhat d
ferent when the fundamental domain is squashed in s
direction. This is because the mode density on scales
tween the largest and the smallest torus direction follo
more closely that of a one- or two-dimensional object, a
hence can boost the spectrum as the weight of large sca
larger, see Refs.@55–58#.

It is not easy to predict the amplitude of the power
scales larger than the cutoff because it depends mostly on
amplitude of the integrated Sachs-Wolfe effect, which is d
ficult to estimate even when the topology is multiconnect
Another consequence of a multiconnected topology is os
lations in the spectrum. These come both from the fact
there is a sharp cutoff in the spectrum~which causes oscil-
lations in Fourier/Legendre space! and that the spectrum i
‘‘spiky’’ on large scales. Should we consider a simply co
nected universe with a cutoff at some scales, then the co
spondingC, would be less irregular. Finally, note that o
small angular scales, the spectrum tends to behave as i

FIG. 3. ~Color online! CMB anisotropies in the simply con
nected~i.e., usual! topology and in toroidal universes based on c
bic fundamental domains of various sizes, expressed here in un
the Hubble radius. With our choice of cosmological parameters,
situation L58 corresponds to a torus larger than the observa
universe, which shows a small depletion of power on large sca
For smaller tori, the cutoff is much sharper.
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simply connected case, but computing this scale remain
open problem at the moment.

So far, we have considered only theC, , which represent
only some average of the diagonal part of the correlat
matrix. The true diagonal part of the correlation matrix
given by theC,m

,m which represent the variance of thea,m .
An example of their behavior is shown in Fig. 4 for the sam
topologies as in Fig. 3. Several features appear on this fig
First and most importantly, the dispersion in the variance
thea,m at fixed, is very large. It appears that it is maxima
at the cutoff scale,c , where the dispersion in the variance
the a,m can be as large as two orders of magnitude. T
dispersion slowly decays at larger multipoles, where o
‘‘tends’’ ~in the sense of observable quantities! towards the
simply connected case, and surprisingly also decays at sc
larger than the cutoff.10 With the hypothesis of a multicon
nected universe, this dispersion would be~incorrectly! inter-
preted as non-Gaussianity: it is in fact anisotropic Gauss
ity. Since at present no non-Gaussianity or anisotropy w
observed in the data, this allows new constraints of the s

10We think that the reason for this is that at the cutoff scale, o
the ~few! largest modes contribute significantly to theC, . The dis-
persion in thea,m is therefore the result of the anisotropy in th
direction of these modes. Below the cutoff, although the larg
modes still have the largest contribution to theC, , the contribution
of other modes is comparatively larger. This can be seen from
3 of Ref. @46# which shows how a given wavelength contributes
the angular power spectrum: at the cutoff scale, one is at the ang
scale which corresponds to peak of the contribution of the sma
k and to the tail of the contribution of the largerk, whereas larger
angular scales correspond to angular scales which are in the ta
the contribution of all modes, so that the relative contribution
largek is larger, which translates into the fact that the distribution
modes which contribute to these scales is less anisotropic.

-
of
e

le
s.

FIG. 4. ~Color online! Variance of thea,m for fixed values of,.
The average of these values give theC, coefficients shown in Fig.
3. We insist that this does not correspond to a realization of
random variables describing CMB anisotropies, but to the varia
of thea,m . These coefficients are far from sufficient to build ma
of CMB anisotropies as they do not include the correlations
tween differenta,m .
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FIG. 5. ~Color online! Four realizations of CMB maps of the whole temperature anisotropies for a cubic torus. The resolution o
map is,max5120. The last scattering surface is seen from the outside as well as two of its closest topological images after translaL
and 2L along one axis of the torus. One can check by eye that the temperature fluctuations are well~but not perfectly! correlated along
matching circles~i.e., along the intersection between the last scattering surface and its neighbors! located at latitudesu5619°. Note that as
expected, there are very few fluctuations on scales larger than the size of the torus~which is given here by the distance between the circle!.
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of the fundamental domain. Note that the dispersion depe
explicitly on the orientation of the fundamental domain w
respect to the coordinate system. It may therefore be sm
than what is shown here.

We did not find any convenient way to represent the o
diagonal terms of the correlation matrix. We therefore swi
to showing and analyzing some realizations correspondin
the numerically computed correlation matrix. In what fo
lows, we have fixed the size of the torus toL52RH . We
therefore haveN;16 copies of the torus in the observab
universe, and from Eq.~75! this corresponds to,c;9, as can
be checked in Fig. 3. Although such a model is now exclud
by the data@3–6#, we analyze it in detail mostly for peda
gogical purposes~and also because the computing tim
scales asL3). In the case where the torus, or more genera
the fundamental domain, is smaller than the last scatte
surface, one expects to see pairs of circles where the
perature is correlated@7#. Seeing these circles at their e
pected position is therefore the most crucial test of the p
cedure outlined in Secs. II, III and IV. As already announc
the aim here is not to derive a detailed procedure to de
these circles, but to check our algorithm and to explore so
of the properties of these matching circles. Here, we h

2RLSS/L53.17;A10. One therefore expects to have
pairs of circles and 12 pairs of points having correla
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temperature.11 In order to see the circles, it is convenient
show the last scattering surface as a sphere seen from
outside and to look at its intersection with itself after a tran
lation of the formL•(n1 ,n2 ,n3), as shown in Figs. 5–8.

In the preceding section, we pointed out that the corre
tion would depend on the amount of Sachs-Wolfe, Dopp
and integrated Sachs-Wolfe effects. The decomposition
the temperature anisotropies both in the simply connec
topology and in the toroidal cases are shown in Fig. 9. N
that we show only the relative amplitude of these effects a
not their cross-correlation.

We now turn to the correlation between pairs of circles,
introduced in@7#. If the topology is not known in advance
the relative position between matching circles can be a
trary, so that in general the search for circles is a six para

11The circles correspond to the intersection of the last scatte
surface with translates of the formL•(n1 ,n2 ,n3), where
(n1 ,n2 ,n3)5(0,0,1), (0,0,2), (0,0,3), (0,1,1), (0,1,2), (0,2,2
(1,1,1), (1,1,2), and (1,2,2) plus all permutations and sign chan
among each triplet (n1 ,n2 ,n3). The pairs of points correspond t
the case where the intersection between the last scattering su
and its translate reduces to almost a single point, as is the cas
(n1 ,n2 ,n3)5(0,1,3) and its permutations and sign changes.
4-14
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FIG. 6. ~Color online! Same as in Fig. 5, but with the Sachs-Wolfe contribution only. These maps have comparatively less sma
power than the previous one as,5120 is close to the first dip in the Sachs-Wolfe spectrum, so that one sees the large scales~up to the torus
angular size! better. Note that the matching between circles is almost perfect here.
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eter problem: two parameters for the center of the first cir
two more for the center of the second circle, one for th
common radius, and one for their relative phase~i.e. the twist
with which they are identified!. In the case of a torus, th
circles sit directly opposite each other on the sky~eliminat-
ing two parameters! and there is no twist~eliminating an-
other parameter!, so the problem reduces to a three para
eters search.12 We are not going to perform such a study, b
rather focus on some features of matching circles in a to
dal universe.

A simple estimator for the correlation between pairs
circles that are horizontal with respect to the coordinate s
tem is obviously

C~u1 ,u2![
1

2pE 2Q~u1 ,w!Q~u2 ,w!

Q2~u1 ,w!1Q2~u2 ,w!
dw, ~76!

12Another way to see that in a torus it is a three parameter se
is to visualize the situation in the universal covering space. P
one copy of the last scattering surface with its center at the ori
and imagine a translated copy with its center at some point (x,y,z).
Each choice of (x,y,z) uniquely determines a circle of intersectio
~assuming 0,x21y21z2,RLSS

2 ), and conversely each pair o
circles arises from exactly two points (x,y,z) and (2x,2y,2z)
and no others. Thus the point (x,y,z) serves to parametrize th
circle search.
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where we have setQ[dT/T. If the temperature fluctuation
on a pair of circles are completely uncorrelated, then on
erageC50. If they are completely correlated, thenC51,
and if they are anticorrelated, thenC521. Eacha,m can be
seen either as the theoretical expectation for a given mode
as an observed quantity that can be measured from the C
sky. In the first case, it represents a feature that one
expect from a given model, and in the second case it re
sents an estimator of some features predicted by the to
ogy. Here, we shall concentrate on theobserved C(u1 ,u2)
that we compute from simulated maps, first to check
validity of our procedure to compute the correlation mat

C,m
,8m8 , and second to convince us that it is possible to

the presence of matching circles using simple techniques~al-
though we do not pretend that this method is optimal!.

In principle, two matching circles have the same angu
diameter, so that only the caseu252u1 is relevant, but we
have chosen to leaveu2 as a free parameter to see to wh
extent uncorrelated circles might happen to seem correl
by chance.

We first show in Fig. 10 a few examples of the observ
function C(u1 ,u2) for a simply connected universe. As ex
pected, the correlation is quite large whenu1;u2 because
the circles are near each other and the real space correl
function C(u) ~the Legendre transform of theC,) is not 0
whenu→0. With our normalization ofC(u1 ,u2), one has

ch
e

n,
4-15
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FIG. 7. ~Color online! Same as in Fig. 5, but for the Doppler component only. Left panels show as previously the last scattering
and two of its images from the outside, with large circles, which are therefore well correlated~but not as well as for the Sachs-Wolfe or tot
contributions, however!. On the right panel, we show smaller matching circles (u5671°), which are more conveniently shown from th
inside of the last scattering surface. Here, the anticorrelation between circles is obvious.
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lim
u2→u1

C~u1 ,u2!51, ~77!

which will of course remain valid when the topology is mu
ticonnected. When the separation betweenu1 andu2 is large,
one can neglect the correlation between the two circles,
the main contribution toC comes from statistical fluctua
tions: it is always possible that two circles exhibit simil
temperature patterns by chance. The variance of these s
tical fluctuations is probably given by the number of ind
pendent pixels on the map and therefore by a combinatio
the scale at which the power spectrum is large and of
resolution of the map~here,,max530). In any case, the am
plitude of the largest statistical fluctuations ofC(u1 ,u2)
gives an idea of the amplitude of the signal needed to de
a multiconnected topology.13 For the maps we have gene
ated, the correlation reaches 30% for a few pairs of fals
matched circles.

13The signal threshold could therefore be reduced by perform
the same analysis on a higher resolution map, but because
search for circles is in general a six-parameter problem, it migh
necessary to search low resolution maps first to find likely can
dates, and then search higher resolution maps to confirm them
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Figures 11, 12, 13 and 14 show contour plots for seve
realizations of the correlation matrix in a torus universe. T
torus aligns naturally with the coordinate system, so one
pects correlated pairs of circles at

u152u256arcsinS nL

2RLSS
D ~78!

for each positive integern such that the arcsine exists. Fo
our choice of cosmological parameters we haveRLSS53.17
andL52 ~in units of the Hubble radius!, giving

u152u25618°,639°,671°. ~79!

For these values ofu1 andu2 , one expects a perfect corre
lation for the Sachs-Wolfe contribution

CSW51. ~80!

This formula holds both when one considersCSW as an en-
semble average and when one considers a given realiza
of the density field since in both cases it follows from t
fact that one sees the same region from different directio
These correlations appear clearly in Fig. 11 which consid
only the Sachs-Wolfe contribution. In this case one wou
have even expected perfect correlations for the values ou1

g
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e
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FIG. 8. ~Color online! Eight pairs of matching circles among the 61 existing pairs for a single realization of the density fields. For
the orientation of the last scattering surface is the same in all panels.
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RIAZUELO et al. PHYSICAL REVIEW D 69, 103514 ~2004!
FIG. 9. ~Color online! Decomposition of CMB anisotropies into the Sachs-Wolfe, Doppler and ISW contributions. When the topol
simply connected~left panel!, the Sachs-Wolfe contribution is dominant at the peaks and usually on the largest scales. The Doppler
dominant only before the first peak, and has a significant contribution between peaks. The ISW term appears mostly at the first pe~this is
referred to as the early ISW effect! when the radiation-to-matter transition occurs late~typically at low h), and at large scales~late ISW
effect! when the universe is not matter dominated atz50. For standard values of the cosmological parameters, it is not dominant. The
panel shows the initial portion of the spectrum (,<100) for a model with the same cosmological parameters but with a toroidal topo
The Sachs-Wolfe contribution shows a sharp cutoff at the expected scale. Note that neither the Doppler nor ISW contributions show
cutoff. This is due to two different projection effects: for the Doppler term, this comes from the fact that it is always negligible o
scales ink space~it scales ask2), and when one goes to, space, the convolution~20! always transfers some power from the small sca
~where there is power ink space! to large scales; for the ISW, the presence of power comes from the fact that it is generating long a
last scattering epoch, so that it appears on large scales simply because it describes phenomena that occur near us. Howeve
Sachs-Wolfe contribution is usually largest on large scales, the final spectrum still exhibits a sharp cutoff.
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andu2 given in Eq.~79!. This is not what we have, but th
reason for this is easy to understand: imposingQ(u1 ,w)
5Q(2u1 ,w) in real space induces in Legendre space co
lations at arbitrary large multipoles,. Here, for computa-
tional reasons, we were forced to truncate the correla
matrix at a rather low value of,, so the matching is signifi-
cant but not perfect. It would presumably increase in hig
resolution maps.

If one considers the Doppler contribution to the CM
anisotropies, the situation is somewhat different. As
nounced above, the correlation between two circles depe
on their relative angle. More precisely, it is given by

CDop5K 2~ n̂1•n̂!~ n̂2•n̂!

~ n̂1•n̂!21~ n̂2•n̂!2L
n̂

, ~81!

where n̂1 and n̂2 are two constant unit vectors spanning
angle uu12u2u, and where the brackets denote an aver
over all the directions of the unit vectorn̂. After some ma-
nipulations, one obtains

CDop5tanS p

4
2

uu12u2u
2 D . ~82!

Again, for the same reason as for the Sachs-Wolfe contr
tion, this formula holds both if one considersCDop as an
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ensemble average or if we consider a given realization of
density field. One recovers as expected that the correlatio
1, 0, 21 for uu12u2u50°, 90°, 180°, respectively. For th
values of the angle given in Eq.~79!, one obtainsC50.51,
0.07,20.49, respectively. These are the results that we
tain qualitatively in Fig. 12, where no correlation at all
seen for the circles at639°, and positive~negative! corre-
lation is seen for the circles at671° (618°).

Finally, the correlations due to the integrated Sachs-Wo
effect are shown in Fig. 13. As expected, no particular c
relation is seen for the values ofu1 andu2 of Eq. ~79!. The
contour plots are, however, quite different from those of
Sachs-Wolfe and Doppler contributions. The reason is tw
fold. First, most of the power lies at the smallest multipole
This translates into the fact that the contours are broad in
sense that they do not vary a lot on small intervals ofu1 and
u2 . Second, the fact that most of the power is at large sc
implies that a very small number of modes contributes to
~since we see a finite region of the universe!, so there is a
large cosmic variance that makes the statistical uncerta
very large~thus serendipitously similar temperature patte
on two unrelated circles are easily achieved here!.

Combining all the contributions to the CMB anisotropi
allows one to simulate realizations of the exactC(u1 ,u2) as
shown in Fig. 14. Since the Sachs-Wolfe contribution
dominant, the spikes are still clearly visible at their expec
positions, but appear less prominent than in Fig. 11. As
pected, it seems that the circles atu1,25639° are slightly
less correlated than the other two pairs because their Dop
4-18
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SIMULATING COSMIC MICROWAVE BACKGROUND MAPS . . . PHYSICAL REVIEW D 69, 103514 ~2004!
FIG. 10. ~Color online! Contour plots of the functionC(u1 ,u2) for four realizations of the temperature anisotropies in a universe w
a simply connected topology. Whenuu12u2u is small, the correlation between circles exists. Whenuu12u2u is larger, the apparent corre
lation between circles comes from statistical fluctuations, which would be reduced for higher resolution maps.
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contribution is not correlated, but this deserves a more c
ful analysis.

B. Spherical case: lens spaces

Among the spherical spaces, the procedure prese
above can be applied most easily to lens and prism spa
because their eigenmodes are known explicitly. The eig
modes are known analytically in toroidal coordinates~see
Sec. III B!, and Appendix B shows how to convert them
spherical coordinates. In this section we present some sa
maps exhibiting the matching circles to demonstrate that
whole computational chain~computation of the modes an
implementation in a CMB code! is working. A complete and
detailed study, along the same lines as the study done fo
cubic torus in the previous section, will be presented in
follow-up article.

As explained in Ref.@27#, because our universe is almo
flat, observational methods such as the circles method
typically detect only a cyclic subgroup of the holonom
group, so the universe ‘‘looks like a lens space’’ no mat
what its true topology is. It follows that lens spaces are p
ticularly interesting to capture the observational properties
multiconnected spherical spaces. In particular, we sho
@27# that a cyclic factorZp creates matching circles in th
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CMB only whenV21.1/p2 and that the second factor, if i
exists, is in general undetectable.

Let us emphasize some differences with the torus ca
First, concerning the eigenmodes, let us take the exampl
a lens spaceL(p,1) of orderp. For p51 it reduces toS3 and
for p52 it reduces to projective space; more generally
index plays a role analogous to the size,L, of the torus in
Euclidean space. The first non-zero eigenvalue is alwayn
52 and has a multiplicity 3 forp.2 and 9 otherwise. This
constancy of the first eigenvalue contrasts sharply with
case of a cubic torus, for which the smallest eigenva
scales asL21. It can be understood by realizing that whenp
increases the space is becoming smaller only in one direc
and remains large in perpendicular directions.

The lens spacesL(p,1) are globally homogeneous~like
the torus! so that the coefficientsjk,m

[G]s do not depend on the
observer’s position~i.e., they are the same no matter whe
in the space you choose the base point!. Thus neither the

correlation matrixC,m
,8m8 nor the positions of the matchin

circles depend on the base point. Unfortunately, this is
the case for a general lens spaceL(p,q). For a general lens

space, the coefficientsjk,m
[G]s , the correlation matrixC,m

,8m8

and the positions of the matching circles all depend on
observer’s position. For instance, the ‘‘canonical’’ choice
4-19



ure
s.

e of the
d by the

RIAZUELO et al. PHYSICAL REVIEW D 69, 103514 ~2004!
FIG. 11. ~Color online! Contour plots of the functionC(u1 ,u2) for four realizations of the Sachs-Wolfe part of the temperat
anisotropies in a toroidal universe. No large correlations are found except whenuu12u2u is small and for the three pairs of matching circle
The resolution of the simulated maps is,530. Note that the correlation between matching circles is not as high as expected becaus
cutoff at ,530 in the map. In order to find the expected 100% correlation, we should consider all the scales which are contribute
modes we considered~instead of considering all the modes which contribute to,530 as we did!.
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coordinates used in Sec. III B 2 for the toroidal coordina
system puts the preferred symmetry axes in the (xy) and
(zw) directions~i.e., the axes are the intersection ofS3 with
the (x,y) plane and the (z,w) plane, respectively, in four
dimensional Euclidean space!. From a cosmological point o
view, this is a poor choice, because the observer’s transl
images are ‘‘atypically close.’’ For example, inL(12,5),
which has cyclic factorsZ3 andZ4 , a generic observer wil
see three lines of four images each, but a nongeneric
server sitting on a symmetry axis will see a single line of
images.

For a globally homogeneous spaceL(p,1), the closest

topological image is located at a distancex̄52p/p, so the
topology is detectable just sop is not too small. More pre-
cisely, the topology is potentially detectable if and only

p/p,x̄LSS. For example, this implies that the topology
detectable for allp.10 if V tot21;1022.

Circles match differently in a homogeneous lens sp
than in a tours. In a torus the circles match straight acr
because the holonomies are all pure translations. In a ho
geneous lens space, by contrast, the holonomies are Cli
translations, and so the matching circles are still diame
cally opposite but match with a twist that is a multiple
10351
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e
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o-
rd
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2p/p, because Clifford translations twist and translate
same amount.

Figure 15 shows a CMB map with resolution,max530 for
the lens spaceL(21,1) considering the Sachs-Wolfe ter
only. A far more detailed discussion about CMB anisotrop
in lens spaces will appear elsewhere@59#.

VI. DISCUSSION AND CONCLUSIONS

This paper describes the implementation of topology
CMB codes and gives explicitly the required tools to perfo
such an implementation in flat and spherical spaces. As
phasized in the Introduction, these two cases are observa
ally the most relevant for an almost flat universe.

Examples of simulated maps were given in the two cas
Here we presented only low resolution maps due to the c
putational time limitation but higher resolution maps will b
presented elsewhere. It was checked that the expected t
logical correlations~the matched circles! were present, con-
firming the quality of our simulations.

Our method relies on the computation of the correlat
matrix of the coefficients of the decomposition of the te
perature fluctuation in spherical harmonics. This matrix e
codes all the topological information. We emphasize th
4-20
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FIG. 12. ~Color online! Contour plots of the functionC(u1 ,u2) for four realizations of the Doppler part of the temperature anisotrop
in a toroidal universe. Some correlation or anti-correlation is found for two of the circles, but the signal is not very large compare
statistical fluctuations. Note that the correlation would have been slightly larger if we would have simulated these maps from
resolution correlation matrix.~The resolution of the simulated maps is,530.)
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due to the breakdown of global isotropy, this matrix is n
purely diagonal. This also offers a working example to co
struct tests for the detection of deviation from global is
tropy.

We have illustrated the influence of different effects th
will tend to blur these patterns and affect the perfect cir
matching, namely the Doppler effect and the integra
Sachs-Wolfe effect. We also considered the effect of
thickness of the last scattering surface, but found it to
negligible on the scales considered here. A more deta
quantitative analysis of these effects on the detectability
the topological signal is left for future studies@52#.

A complete investigation of the detectability of the topo
ogy in coming CMB data requires the construction of re
able simulation tools. Besides the quantification of the a
plitude of the effects cited above, one would also need
include all other observational effects, such as instrume
noise, foreground contamination, etc. The present w
paves the way to all these essential studies.
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APPENDIX A: EIGENMODES OF CONSTANT
CURVATURE THREE-DIMENSIONAL SPACES

This appendix follows the work by Abbott and Schaeff
@42# and Harrison@60# and borrows heavily from Appendix
A of Ref. @14#. It summarizes, without proof, the explic
forms of the scalar harmonic functions solutions of t
Helmholtz equation~2!.

It is convenient to factor the eigenfunctions into rad
and angular functions as

Y k,m
[X] ~x,u,w!5Rk,

[X]~x!Y,
m~u,w!, ~A1!

with Y,
m(u,w) being the spherical harmonics. The associa

eigenvalues arekk
25k22K, with
4-21
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FIG. 13. ~Color online! Contour plots of the functionC(u1 ,u2) for four realizations of the integrated Sachs-Wolfe part of the tempera
anisotropies in a toroidal universe. No significant correlation is seen on the matching circles, whereas large values are found foruC(u1 ,u2)u
extending across broad regions as a consequence of the fact that the integrated Sachs-Wolfe effect appears on large angular
resolution of the simulated maps is,530.
-

ion
ur-

n

K,0⇒kP@0,̀ @ or ikP@0,AuKu#, ~A2!

K50⇒kP@0,̀ @ , ~A3!

K.0⇒k5~n11!AK, nPN. ~A4!

With the normalization

E Y k,m
[X] ~x,u,w!Y k8,8m8

[X] * ~x,u,w!sK
2 ~x!dxdV

5
1

k2
dD~k2k8!d,,8dmm8 , ~A5!

where sK(x) is defined in Eq.~7!, the normalized radial func
tions take the form

Rk,
[H3]~x!5S Nk,

ksK~x!
D 1/2

P21/21 iv
21/22, @cosh~AuKux!#, ~A6!

Rk,
[R3]~x!5S 2

p D 1/2

j ,~kx!, ~A7!
10351
Rk,
[S3]~x!5S Mk,

ksK~x!
D 1/2

P1/21n
21/22,@cos~AKx!# ~A8!

with

v5k/AuKu, n5k/AK21. ~A9!

In the case of spatially hyperbolic spaces, this normalizat
is valid only for subcurvature modes, and for the superc

vature modes (ikP@0,AuKu#) the radial function is obtained
by analytic continuation~see Ref.@61# for details!. The two
numerical coefficients are given by

Nk,[ )
n50

,

~v21n2!, ~A10!

Mk,[ )
n50

,

@~n11!22n2#,

Mk,50 if ,.n. ~A11!

For any function, we can perform the mode decompositio
4-22
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FIG. 14. ~Color online! Contour plots of the functionC(u1 ,u2) for four realizations of the total temperature anisotropy in a toroi
universe~Sachs-Wolfe, Doppler, and ISW effects combined!. The three pairs of matching circles atu152u25618°,639°,671° are still
visible despite the presence of the Doppler and integrated Sachs-Wolfe contributions. The resolution of the simulated maps is,530.
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f ~x!5(
,,m H E k2dk

K3/2(
n52

`

~n11!2J f k,mY k,m
[X]

⇔ f k,m5E f ~x!Y k,m
[X] *Agdx,

~A12!

choosing the sum or the integral according to whether

universal covering space is compact or not. The symbolAg
stands for the square root of the determinant of the spa
metric. In the case of spatially hyperbolic spaces, the su
curvature modes add a term to this mode expansion, nam

*0
1uk2ud(ik)(,,mf k,mY k,m

[H3] ; see Ref.@61# for details.
In the spherical case one can, however, find a solution

the Helmholtz equation~2! which does not involve Legendr
functions. The radial part of the Helmholtz equation reduc

after settingY k,m
[S3] 5Rk,

[S3] (x)Y,
m(u,w), to

1

sK
2 ~x!

d

dx S sK
2 ~x!

d

dx
Rk,

[S3] D1F ~k22K !2
,~,11!

sK
2 ~x!

GRk,
[S3]50.

~A13!

It is obviously much more convenient to work in a coord
nate system where the curvatureK reduces to 1. In terms o
10351
e
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of

s,

the dimensionless radial variablex̄ defined in Eq.~8!, the
Helmholtz equation then reduces to

1

sin2 x̄

d

dx̄
S sin2 x̄

d

dx̄
Rk,

[S3] D 1Fn~n12!2
,~,11!

sin2 x̄
GRk,

[S3]50.

~A14!

Note that this is a second order equation and that only on
the two independent solutions is well behaved at the orig
so the radial functions are completely determined once

normalization has been chosen. After settingRk,
[S3]

5(sinx̄),fn, , it can be checked that it reduces to Eq.~C11!,
the solution of which is simply given in terms of ultrasphe
cal Gegenbauer polynomials asf n,5An,Cn2,

,11. The normal-
ization condition ~A5! implies, using the integral relation
~C12!, that

An,5
2,11/2

n11
,!An11

p
A ~n2, !!

~n1,11!!
. ~A15!

Expressing the spherical harmonics in terms of Gegenba
polynomials by means of Eq.~C9!, one ends up with an
expression of the eigenmodes in terms of Gegenbauer p
nomials only as
4-23



ed

erforming
to

RIAZUELO et al. PHYSICAL REVIEW D 69, 103514 ~2004!
FIG. 15. ~Color online! A realization of a CMB map in the case of the lens spaceL(18,1). For purposes of illustration we chose a clos
universe (V tot51.3) with a large last scattering surface~the radiusxLSS is 0.88 times the curvature radius of the universal covering spaceS3)
in order to produce higher resolution images with a large number of correlated circles. In each panel, the matching is obtained by p
a translation ofnRc2p/18 and a twist ofn2p/18 between the last scattering surface and its two copies. The six panels correspondunu
52, . . . ,7, witheach panel showing both the positive (n.0) and negative (n,0) translates.
n

Y k,m
[S3] 5An,Ã,msinumuu sin,x̄Cn2,

,11

3~cosx̄ !C,2umu
umu11/2~cosu!eimw, ~A16!

with
10351
Ã,m5zm~2umu21!!!A~2,11!

4p

~,2umu!!

~,1umu!!
~A17!

with zm given by Eq. ~C10! and we used the notatio
(2umu21)!! 5(2umu21)(2umu23) . . . 1.
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APPENDIX B: CHANGE OF BASIS BETWEEN TOROIDAL
AND SPHERICAL COORDINATES

Section III B 2 found the eigenmodes of lens and pri
spaces in toroidal coordinates and converted them to sp
cal coordinates. In this appendix we give the expression
the matrixan,m,TmT

necessary to perform the change of b
sis.

The spherical coordinate system, as used in Eq.~6!, is
related to the embedding of the 3-sphereS3 in four-
dimensional Euclidean space by

x5cosx̄, ~B1!

y5sinx̄ cosu, ~B2!

z5sinx̄ sinu cosw, ~B3!

w5sinx̄ sinu sinw, ~B4!

with

0<x̄<p, ~B5!

0<u<p, ~B6!

0<w<2p. ~B7!

The ~complex! coefficients an,m,TmT
characterizing the

change of basis are defined by

an,m,TmT
5~n11!2E Qn,TmT

~xT ,uT ,wT!

3Y k,m
[S3] * ~ x̄,u,w!~sinx̄ !2dx̄ sinududw.

~B8!

In this expression the integer, ranges from 0 ton and m
ranges from2, to ,, while ,T andmT range from2n to n.
To compute this integral, one needs~1! to express the eigen
modesQn,TmT

as polynomials inx, y, z andw ~see Ref.@36#!,
and replace these rectangular coordinates by their exp
sions~B1!, ~2! to use the relations

cosu,TuxTH cos~ u,Tuu!

sin~ u,Tuu!

5H R@~cosx̄1 i sinx̄ cosu! u,Tu# ,T>0,

I@~cosx̄1 i sinx̄ cosu! u,Tu# ,T,0,

~B9!

and
10351
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s-

sinumTuxTH sin~ umTuw!

cos~ umTuw!

5~sinx̄ sinu! umTuH cos~ umTuw! mT>0,

sin~ umTuw! mT,0,

~B10!

~3! to develop the Jacobi polynomial appearing in Eq.~57!
by using Eq.~C11! and with

cos 2xT21522 sin2 x̄ sin2u. ~B11!

This leads, after an easy integration onw, to the somewhat
heavy expressions involving two sums@arising from the de-
velopment of the Jacobi polynomials and the power in E
~B9!# and an integral overu and x̄,

an,m,TmT
5~n11!2pAn,Ã,mBn,TmT

Cn,TmT

3H R

I
@J~n;,,m;,T ,mT!#

3H ~dmumTu1dm2umTu!

2 i ~dmumTu2dm2umTu!.
~B12!

Here, the first and second line of the first brace are for,T
>0 and,T,0, respectively@see Eq.~B9!#, the first and sec-
ond line of the second brace are formT>0 andmT,0, re-
spectively @see Eq.~B10!#, and the numerical coefficien
Cn,TmT

is given by

Cn,TmT
5

G~ umTu1d11!

d!G~ umTu1u,Tu1d11!
. ~B13!

The functionJ is explicitly given by

J~n;,,m;,T ,mT!

5 (
q50

d S d

qD ~21!q
G~ umTu1u,Tu1d1q11!

G~ umTu1q11!

3(
j 50

u,Tu

u i j S u,Tu

j D I S j ,2q1umu1umTu;,2umu,umu1
1

2D
3I ~ u,Tu2 j ,2q1 j 1,1umTu11;n2,,,11!.

~B14!

Note that the indexj is even when,T>0 and odd when,T
,0. This quantity involves only two sums, once the quant
I (p,q;n,a), defined by

I ~p,q;n,a![E
21

1

xp~12x2!q/2Cn
a~x!dx, ~B15!

is known. Using the expression~C14! for the Gegenbaue
polynomials in terms of hypergeometric functions and t
integral ~C16!, it can be shown that
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I ~p,q;2m,a!

5
~21!m

2~a1m!

B~q/211,~p11!/2!

B~a,m11!
@11~21!p#

3 3F2S 2m,m1a,
p11

2
;
1

2
,
q1p13

2
;1D ,

~B16!

I ~p,q;2m11,a!

5~21!m
B~q/211,~p12!/2!

B~a,m11!
@12~21!p#

3 3F2S 2m,m1a11,
p12

2
;
3

2
,
q1p14

2
;1D ,

~B17!

whereB is the Euler beta function. It follows directly from
these expressions thatJ(n;,,m;,T ,mT)50 when n2umu
1u,Tu is odd.

APPENDIX C: SOME PROPERTIES OF SOME
SPECIAL FUNCTIONS

This appendix gathers some useful relations used in
paper, to make the paper more self-contained.

The spherical harmonicsY,
m are related to the associate

Legendre polynomialsP,
m by @see Eq.~5.2.1! of Ref. @62##

Y,
m~u,w!5A2,11

4p

~,2m!!

~,1m!!
P,

m~cosu!eimw. ~C1!

They satisfy the conjugation relation@Eq. ~5.4.1! of Ref.
@62##

Y,
m* ~u,w!5~21!mY,

2m~u,w!5Y,
m~u,2w!, ~C2!

the normalization@Eq. ~5.6.1! of Ref. @62##

E
0

2p

dwE
0

p

sinuduY,
m* ~u,w!Y,8

m8~u,w!5d,,8dmm8 ,

~C3!

the closure relation@Eq. ~5.2.2! of Ref. @62##

(
,50

`

(
m52,

,

Y,
m~u,w!Y,

m* ~u8,w8!

5dD~cosu2cosu8!dD~w2w8!, ~C4!

and the addition theorem@Eq. ~5.17.2.9! of Ref. @62##

(
m52,

,

Y,
m~u,w!Y,

m* ~u8,w8!5
2,11

4p
P,~cosa!, ~C5!
10351
e

wherea is the angle between the two directions (u,w) and
(u8,w8), and P, is the Legendre polynomial. The Fourie
transform of the spherical harmonics is given by@Eq.
~5.9.2.6! of Ref. @62##

E
0

`

r 2dr E
0

2p

dwE
0

p

sinu du
eik•r

~2p!3/2
j ,~k8r !Y,

m~u,w!

5A2

p
i ,

dD~k82k!

k2
Y,

m~uk ,wk!, ~C6!

where j , is a spherical Bessel function, from which it fo
lows that@Eq. ~5.17.3.14! of Ref. @62##

eik•r5 (
,50

`

~2,11!i , j ,~kr !P,~cosuk,r ! ~C7!

and @Eq. ~5.17.4.18! of Ref. @62##

dD~r12r2!5
dD~r 12r 2!

r 1
2 (

,50

` 2,11

4p
P,~cosu12!.

~C8!

The spherical harmonics can also be expressed in term
Gegenbauer polynomials as@Eq. ~5.2.6.39c! of Ref. @62##

Y,
m~u,w!5zmeimwA2,11

4p
A~,2umu!!

~,1umu!!

3~2umu21!!! ~sinu! umuC,2umu
umu11/2~cosu!

~C9!

with zm defined by

zm5H ~21!m, m.0

1, m<0.
~C10!

The ultraspherical~or Gegenbauer! polynomialsCn
a are so-

lutions of the differential equation@Eq. ~22.6.5! of Ref. @63##

~12x2!y92~2a11!y81n~n12a!y50, ~C11!

and they satisfy the normalization condition@Eq. ~7.313! of
Ref. @64##

E
21

1

~12x2!a21/2@Cn
a~x!#2dx5

p2122aG~2a1n!

n! ~n1a!@G~a!#2
,

~C12!

if R(a).21/2.
The Jacobi polynomials are given by@Eq. ~22.3.2! of Ref.

@63##
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Pn
(a,b)~x!5

G~a1n11!

n!G~a1b1n11!

3(
j 50

n S n

j DG~a1b1n1 j 11!

2 jG~a1 j 11!
~x21! j ,

~C13!

under the conditionsa.21 andb.21. Interestingly, the
Gegenbauer polynomials can be expressed in terms of hy
geometric functions as@Eqs. ~8.932.2!, ~8.932.3! of Ref.
@64##

C2n
l ~x!5

~21!n

~l1n!B~l,n11!
F~2n,l1n;1/2;x2!,

~C14!
tu

y

. L

n

n.

tu
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er-

C2n11
l ~x!5

~21!n

B~l,n11!
~2x!F~2n,l1n11;3/2;x2!,

~C15!

which satisfies the integral property@Eqs. ~7.513! of Ref.
@64##

E
0

1

xs21~12x2!nF~2n,a;b;x2!dx5
1

2
B~n11,s/2! 3F2

3~2n,a,s/2;b,n111s/2;1! ~C16!

if R(s).0 andR(n).21.
rav.

m

.

m

.
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@10# M. Lachièze-Rey and J.-P. Luminet, Phys. Rep.254, 135
~1995!.

@11# J.-P. Uzan, R. Lehoucq, and J.-P. Luminet, inXIXth Texas Sym-
posium on Relativistic Astrophysics and Cosmology, edited by
E. Aubourg, T. Montmerle, J. Paul, and P. Peter~Tellig, Châ-
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