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Probing primordial non-Gaussianity with large-scale structure
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We consider primordial non-Gaussianity due to quadratic corrections in the gravitational potential param-
etrized by a nonlinear coupling parameterf NL . We study constraints onf NL from measurements of the galaxy
bispectrum in redshift surveys. Using estimates for idealized survey geometries of the 2dF and SDSS surveys
and realistic ones from SDSS mock catalogs, we show that it is possible to probeu f NLu.100, after marginal-
ization over bias parameters. We apply our methods to the galaxy bispectrum measured from the PSCz survey,
and obtain a 2s constraintu f NLu&1800. We estimate that an all sky redshift survey up toz.1 can probe
u f NLu.1. We also consider the use of cluster abundance to constrainf NL and find that in order to be sensitive
to u f NLu.100, cluster masses need to be determined with an accuracy of a few percent, assuming perfect
knowledge of the mass function and cosmological parameters.
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I. INTRODUCTION

Rapid progress in microwave background anisotropy
periments and large galaxy redshift surveys is providing h
quality data that can be used to test the nature of primor
fluctuations. The leading scenario for explaining the init
seeds for the formation of structure in the universe is in
tion, a period of accelerated expansion in the early unive
during which quantum fluctuations in a scalar field drivi
the expansion are stretched outside the Hubble radius
stay frozen until they cross back during matter dominat
and grow by gravitational instability. The predictions fro
this scenario have been worked out in great detail during
last 20 years, with most models of inflation predicting
scale-invariant spectrum of adiabatic Gaussian fluctuatio

The Gaussian nature of primordial perturbations is a
rect consequence of the slow-roll conditions on the inflat
potential, required for the potential energy to dominate o
the kinetic energy of the field and produce a sufficiently lo
period of accelerated expansion. Under these circumstan
non-Gaussianities are very small, of the order of the tilt
the scalar spectrum@1#. The tilt is known to be rather sma
@2–4#, in the language of Eq.~1! below, f NL&0.05. This
bound can be relaxed tof NL;1 if higher dimensional opera
tors are suppressed by the lowest possible scale consi
with slow roll @5#. Also non-Gaussianity can be generat
considering a nonvacuum initial state for the scalar field p
turbations, leading to a nonvanishing connected four-po
function in the cosmic microwave background~CMB!. The
excess kurtosis in this case is expected to be too small t
detected, see for instance@6#.

There are several modifications to the basic physics
inflation that can lead to larger non-Gaussianities. In so
sets of these models there are additional light degree
freedom during inflation. For example, if the inflation fie
has more than one component, it is possible to generate
nificant non-Gaussianity in the adiabatic component thro
the coupling to isocurvature components; see, e.g.,@7–9#. A
0556-2821/2004/69~10!/103513~12!/$22.50 69 1035
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second scalar field, usually called the ‘‘curvaton’’ could
light during inflation and come to dominate the energy de
sity of the universe after the end of inflation before produ
ing effectively a second reheating@10–15#. The density fluc-
tuations we observe today could be due to fluctuations in
curvaton and could be non-Gaussian.

In addition, recent work@16–18# suggested a new poss
bility in which the fluctuations are generated during the
heating period when the inflaton energy density is conver
into standard model particles with a fluctuating decay rate
all these models non-Gaussianities are primarily as given
Eq. ~1! and could naturally be of orderf NL'5 –30 @17,18#.
Primordial non-Gaussianity at this level should be detecta
through measurements of the bispectrum of the CMB@19,20#
and in galaxy surveys, as we shall show in this paper. Fin
there are models in which the inflaton is not a slowly rollin
scalar field but rather a fast moving ghost condensate@21#. In
this case non-Gaussianities are much larger, close to the
rent upper limit but are not as simple as Eq.~1!.

In this paper we consider departures of Gaussianity wh
the primordial gravitational potential at subhorizon sca
has the form@22#

Fprim5f1
f NL

c2
~f22^f2&! ~1!

wheref is a random Gaussian field,c is the speed of light,
and for simplicity we assumef NL is a number independent o
scale. These are generically predicted by all models in wh
the non-Gaussianities are generated outside the horizon@17#.

Measurements of the microwave background anisotr
bispectrum give 1s limits from the Cosmic Background Ex
plorer ~COBE! u f NLu<1500 @23#, MAXIMA u f NLu<950
@24#, and recently 2s limits from the Wilkinson Microwave
Anisotropy Probe~WMAP! of 258< f NL<134 @20# ~see
also@25#!. Upon completion, WMAP is expected to reach 1s
©2004 The American Physical Society13-1
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SCOCCIMARRO, SEFUSATTI, AND ZALDARRIAGA PHYSICAL REVIEW D69, 103513 ~2004!
sensitivity of orderu f NLu&20, whereas the Planck satelli
would yield u f NLu&5 @19#.

An alternative way of constraining primordial non
Gaussianity is by measuring the bispectrum of the gal
distribution and looking for deviations from the predictio
of gravitational instability from Gaussian initial condition
@26–28# ~see, e.g.,@29# for a review!. In this case, there ha
been no constraint yet on the particular model given by
~1!, although estimates have been made in@28# regarding the
ability of large-scale structure to constrainf NL , concluding
that galaxy surveys such as 2dF and SDSS will be abl
probe onlyu f NLu;103–104, and that galaxy surveys in gen
eral will not be competitive with CMB experiments in prob
ing this type of non-Gaussianity.

In this paper we revisit the issue of how well large-sc
structure can constrain non-Gaussianity of the type given
Eq. ~1!, and reach a quite different conclusion. We show
particular that the SDSS galaxy bispectrum should be abl
probe values of orderu f NLu;102, and that a hypothetica
all-sky survey with a similar density up toz;1 should be
able to probeu f NLu;1. We illustrate our results by applyin
these ideas to the measurement of the galaxy bispectru
the PSCz survey@30#, and find 2s constraintsu f NLu&1800,
comparable to the limits from CMB measurements bef
WMAP.

The difference between our results and those in@28# can
be traced to the assumption made in@28# that constraints on
primordial non-Gaussianity can be effectively ‘‘read of
from constraints on the nonlinear bias parameter, which
independent of scale. This ignores the anomalous scale
pendence of the bispectrum induced by primordial n
Gaussianity, which plays a crucial role in obtaining limits
it @30,31#.

Constraints on primordial non-Gaussianity of the ty
given by Eq.~1! have been considered also by using gra
tational lensing@32#, where it was found that it is possible t
achievef NL'150f sky

21/2, with f sky the fraction of sky covered
using lensing tomography with four redshift bins up to,
5500. In addition, the use of the abundance of massive c
ters to constrainf NL has been studied in@33,34#. In this work
we also consider how well it is necessary to determine c
ter masses to be able to use cluster abundance to probef NL to
the accuracy required by present upper limits.

This paper is organized as follows. In Sec. II we discu
how the large-scale structure~LSS! bispectrum is modified
due to primordial non-Gaussianity given by Eq.~1!. Section
III presents a signal-to-noise analysis for determining b
parameters andf NL from surveys, including a somewhat d
tailed calculation for the particular case of the SDSS surv
and application to the bispectrum of galaxies in the PS
survey~Sec. III D!. Finally, in Sec. IV we consider the use o
the abundance of clusters to constrain primordial n
Gaussianity.

II. THE LSS BISPECTRUM

Well after the universe becomes matter dominated,
fluctuations in the gravitational potential at time given by t
scale factora are related to the primordial fluctuations by
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Fk~a!5
9

10

D1

a
T~k!Fk

prim , ~2!

where T(k) is the transfer function,D1(a) is the growth
factor linear perturbation theory, andFprim denotes the pri-
mordial gravitational potential at subhorizon scales bef
matter-radiation transition, and we have neglected an
tropic stresses. The matter density is related to the pote
by Poisson’s equation, which in Fourier space reads

dk~a!52
2

3

ak2

VmH0
2
Fk~a!, ~3!

whereVm is the present value of the dark matter density
terms of the critical density andH05100h Mpc21 km/s is
the present value of the Hubble constant. We assume cos
logical parameters consistent with current data@2,4#, Vm
50.27, Vbh250.0224, h50.71, assuming a flat univers
with a cosmological constant. The transfer function is co
puted usingCMBFAST @35#, leading to a power spectrum no
malizations850.82. Introducing

M ~k,a![2
3

5

k2T~k!

VmH0
2

D1~a! ~4!

we can write

dk~a!5M ~k,a!Fk
prim , ~5!

and in general

^dk1
dk2

•••dkN
&5M ~k1!M ~k2!•••M ~kN!

3^Fk1

primFk2

prim
•••FkN

prim&. ~6!

Henceforth we shall suppress the dependence on the s
factor, assuminga51, and drop the superscript denoting th
primordial gravitational potential, which is understood in a
our expressions that follow. In our convention the pow
spectrum and the bispectrum are given by

^dk1
dk2

&[dD~k12!P~k1!, ~7!

^dk1
dk2

dk3
&[dD~k123!B~k1 ,k2 ,k3!, ~8!

where k i ••• j[k i1•••1k j . We can write the linear powe
spectrum of the density field asPL(k)5M2(k)PF(k) where
PF(k) is the primordial gravitational potential power spec
trum, given by Eq.~1!

PF~k!5Pf~k!12
f NL

2

c4
E d3qPf~q!Pf~ uk2qu!

.Pf~k!. ~9!

Equation~1! can be seen as a quadratic approximation t
more general power series expansion; for consistency we
glect higher-order corrections than those of leading orde
3-2
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PROBING PRIMORDIAL NON-GAUSSIANITY WITH . . . PHYSICAL REVIEW D69, 103513 ~2004!
the primordial non-Gaussianity parameterf NL . For example,
the second-order correction in Eq.~9! changes the value o
s8 by less than 1% forf NL5102. From Eq.~6!, it follows
that the bispectrum in linear perturbation theory is given

B123
L 5M ~k1!M ~k2!M ~k3!BF~k1 ,k2 ,k3!, ~10!

whereB123[B(k1 ,k2 ,k3) and

BF~k1 ,k2 ,k3!5
2 f NL

c2
@Pf~k1!Pf~k2!1cyc.#1O~ f NL

3 !.

~11!

To get a sense of how significant primordial no
Gaussianity is for thedensity fieldas a function off NL , we
calculate the dimensionless skewness parameter, define

s3~R![
^dR

3&

^dR
2&3/2

, ~12!

where the smoothed density fielddR is given by

dR5E d3kW~kR!dk , ~13!

whereW(kR) denotes the Fourier transform of a spheric
top-hat window of radiusR in real space. From Eqs.~5!,
~11!, ~12! we have

s3~R!5
6 f NL

c2
^dR

2&23/2E d3k1d3k2Pf~k1!Pf~k2!

3M1M2M12W1W2W12, ~14!

whereMi[M (ki) andWi[W(kiR) andk125uk11k2u. We
can integrate this equation numerically@33#, but it is also
possible to derive an analytic expression that is exact at la
scales and illustrates the basic dependence ofs3(R) on cos-
mological parameters. The non-trivial part in Eq.~14! is the
integration over the angle betweenk1 and k2 , due to the
dependence ofM12 on the transfer functionT(k12). We use
the approximation,

E dV12

4p
W12k12

2 T12'k1
2T1W1S W21

k2R

3
W28D11↔2,

~15!

which is exact at large scales whereT(k) is independent ofk,
in view of the summation theorem of Bessel functions~see
Appendix C in@29#!. After simple algebra, Eq.~15! leads to

s3~R!'12
f NL

c2

^dRfR&

A^dR
2&

F11
1

6

d ln^dRfR&

d ln R
G . ~16!

This formula illustrates that the level of non-Gaussianity
proportional tof NL times the amplitude of potential fluctua
tions smoothed on scaleR, with a constant of proportionality
that depends on the shape of the density-potential po
10351
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spectrum. Figure 1 shows a plot ofs3(R) as a function of
scaleR calculated by numerically integrating Eq.~14! ~solid
line! and the analytic expression in Eq.~16!, which matches
the exact result at large scales.

At the scales relevant for galaxy surveys, we must ta
into account second-order corrections in perturbation the
~PT!, which read

dk.dk
L1E d3qF2~q,k2q!dq

Ldk2q
L ~17!

where (x[ k̂1• k̂2)

F2~k1 ,k2!5
5

7
1

x

2 S k1

k2
1

k2

k1
D1

2

7
x2. ~18!

This gives for the power spectrum,

P~k!5PL~k!12E d3qF2~k1q,2q!BL~k,q!

[PL~k!1PB~k!. ~19!

However, this correction is basically negligible at the sca
we are interested, see Eq.~25! below. For the bispectrum we
have three contributions@26#,

B1235B123
L 1B123

G 1B123
T ~20!

of which BL is the linearly evolved bispectrum due to pr
mordial fluctuations,BT is the contribution due to the initia
trispectrum, andBG is the usual bispectrum generated
gravitational instability from Gaussian initial condition
They are given by

FIG. 1. The dimensionless skewness parameters3(R) against
smoothing scaleR for f NL52100 ~solid line! and the approxima-
tion given by Eq.~16! ~dashed line!.
3-3
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B123
G 52F2~k1 ,k2!P1P21cyc. ~21!

B123
T 5E d3qF2~k122q,q!TL~k1 ,k2 ,k122q,q!1cyc.

~22!

wherePi[P(k i). The linearly evolved initial trispectrumTL

is a quantity of second order inf NL and can therefore be
ignored as we now show. We can estimate the correct
due to primordial non-Gaussianity for an equilateral trian
of sidek ~at large enough scales!,

BL5
7

2
«BG, ~23!

BT.23«2k2sv
2BG, ~24!

PB.2
4

7
«k2sv

2PL, ~25!

wheresv
2 is the one-dimensional velocity dispersion in un

of the Hubble constant,

sv
25

1

3
E d3q

P~q!

q2
.40 ~h21 Mpc!2, ~26!

and the small parameter« is given by

«5
f NL

M ~k!c2
.20.07

f NL

100

1

T~k!
S 0.01h Mpc21

k
D 2

,

~27!

which leads to

«k2sv
2.331024

f NL

100

1

T~k!
. ~28!

Equation~25! says that the power spectrum correction due
primordial non-Gaussianity, Eq.~19!, is suppressed by
«k2sv

2 at large scales, and becomes of order a few percen
k*0.1h Mpc21, inducing a scale dependence on the bisp
trum, see Fig. 2 below. At these scales other effects du
nonlinearities~specially redshift distortions! become impor-
tant, we found that in redshift space it is very difficult to s
the effects of nonzerof NL at these scales. Equation~24!
shows the trispectrum correction given by Eq.~22! is negli-
gible. Therefore we only probe primordial non-Gaussian
through Eq.~23!.

It is convenient to introduce thereduced bispectrum@36#,
defined as

Q123[
B123

P1P21P1P31P2P3
, ~29!

which is independent of time for Gaussian initial condition
moreover, in tree-level perturbation theory it reduces to
scale independent value for equilateral configurations@36#
10351
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Qeq
G ~k!5

BG~k,k,k!

3@P~k!#2
5

4

7
. ~30!

For general triangles,Q retains approximately this simpl
behavior, it is independent of power spectrum normalizati
and only very weakly dependent onVm through the factor
.Vm

22/63 @37#, the only relevant dependence ofQ is on the
local spectral indexneff(k)[d ln P/d lnk and triangle shape
through Eq.~18!.

An important consequence of primordial non-Gaussian
from Eq.~1! is that it violates the scaling induced by gravit

FIG. 2. Primordial non-Gaussianity corrections to the reduc
bispectrum for equilateral configurations as a function of the w
numberk ~top panel! and for k150.02h Mpc21 and k252k1 as a
function of the angleu betweenk1 andk2 ~bottom!.
3-4
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PROBING PRIMORDIAL NON-GAUSSIANITY WITH . . . PHYSICAL REVIEW D69, 103513 ~2004!
sinceQeq
L (k);«;1/@k2T(k)#, see Eq.~27!. The top panel in

Fig. 2 illustrates the deviations from Eq.~30! when u f NLu
5102. Note that the scale dependence seen here is opp
to that in the skewness~compare to Fig. 1!; this is simply due
to the difference in normalizations between Eqs.~12! and
~29!. The bottom panel in Fig. 2 shows the corrections due
primordial non-Gaussianity as a function of triangle sha
for k150.02h Mpc21 and k252k1 . We now explore how
well these deviations can be probed with galaxy surveys

III. BISPECTRUM SIGNAL TO NOISE

A. Order of magnitude estimate

In this section we will calculate the minimumf NL that can
be measured by a galaxy redshift survey as a function of
survey parameters. We start by making a simple estimat
put the results of the next sections in context. A survey w
volumeV contains

Nk;
4p

3
kmax

3
V

~2p!3

;4.53105
V

~1h21 Gpc!3 S kmax

0.3h Mpc21D 3

. ~31!

Fourier modes, wherekmax is the largest wave number tha
can be used in the analysis. Let us use the skewness to
mate f NL . With this number of modes we expect to be ab
to measure the skewness roughly to the level,

Ds3;A15

Nk

, ~32!

where we have used the Gaussian variance. In the prev
section we showed that the skewness is of orders3;2
31024f NL so we expect to be able to detectf NL;30 if V
;(1h21 Gpc)3.

The above estimate indicates that we expect LSS surv
to be competitive with CMB experiments in constraining p
mordial non-Gaussianity. However, there are several sim
fications in this estimate:~1! the density field fluctuations ar
not Poisson distributed, thus the skewness is not the
estimate off NL ; ~2! the galaxy density field is a biased trac
of the underlying mass and biasing modifies the bispectr
therefore one must determine simultaneouslyf NL and bias
parameters;~3! the survey geometry can significantly com
plicate the determination of the bispectrum. We will tack
these problems in the rest of this section to obtain a m
robust estimate of the capabilities of redshift surveys.

B. Ideal geometry

We first consider the case of ideal survey geometry,
suming that bispectra for different triangle shapes are un
related, i.e., the bispectrum covariance matrix is diago
and given by Gaussian statistics. In order to see how w
one can probe non-Gaussianity one has to include also
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possibility that galaxies are biased tracers of the den
field. At large scales, it is reasonable to assume that bia
is local, then@38#

dg5b1d1
b2

2
d21•••, ~33!

whereb1 andb2 are constants. The bispectrum in the gala
distribution, including primordial non-Gaussianity, will b
given by

Bg~k1 ,k2 ,k3!5b1
3B123

G 1b1
2b2~P1P21cyc.!1b1

3B123
L .

~34!

In terms of the galaxy reduced bispectrumQg , we have

Qg5
Q123

G

b1

1
b2

b1
2

1
Q123

L

b1

. ~35!

Note that each term in this expression has a different beh
ior. Q123

G depends very weakly on scale through the lo
spectral index ~which can be measured! and depends
strongly on triangle configuration, the second term due
nonlinear bias is a constant, and the last term due to prim
dial non-Gaussianity depends rather strongly on scale~see
Fig. 2!. Therefore it is possible to simultaneously obtain co
straints onb1 , b2 , and f NL .

For the reasons discussed above, we work with the
duced bispectrumQ123,1 which has an identical signal to
noise toB123 in the limit of Gaussian fluctuations. Indeed, fo
Q1235B123/S123, whereS123 is the denominator in Eq.~29!,
^DQ2&/Q25^DB2&/B21^DS2&/S2, and ^DB2&/B2

.@3D(k)#21 @see Eq.~39!# and ^DS2&/S2.12/Nk
2 , where

Nk is the number ofk modes contributing to the estimate o
the power spectrumP(k) and D(k)54pk3P(k). In other
words, the signal to noise ofQ is dominated by that ofB and
the power spectrum can be considered perfectly determ
for our purposes.

The bispectrum signal to noise for a given triangle can
written as

S S

ND
123

[
Q123

DQ123
.

B123

DB123
, ~36!

where the last equality follows from the discussion abo
The bispectrum variance in the Gaussian limit can be co
puted in similar fashion to the standard power spectrum c
@39#. For a bispectrum estimator@40#

B̂123[
Vf

V123
E

k1

d3q1E
k2

d3q2E
k3

d3q3dD~q123!dq1
dq2

dq3
,

~37!

1From now on we refer toQ as the bispectrum rather than th
reduced bispectrum.
3-5
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where the integration is over the bin defined byqiP(ki
2dk/2,ki1dk/2), Vf5(2p)3/V is the volume of the funda
mental cell, and

V123[E
k1

d3q1E
k2

d3q2E
k3

d3q3dD~q123!

.8p2k1k2k3dk3, ~38!

the variance is2

DB123
2 5kf

3 s123

V123
Ptot~k1!Ptot~k2!Ptot~k3!, ~39!

wheres12356,2,1 for equilateral, isosceles, and general
angles, respectively, and

Ptot~k![P~k!1
1

~2p!3

1

n̄
, ~40!

where the number densityn̄ accounts for the shot noise.
For simplicity, in this section we shall assume that t

estimates of the bispectrum are Gaussian distributed~in prac-
tice one can check this assumption for a given survey ge
etry, see@41#!. We shall go beyond this in the next sectio
when we obtain bounds onf NL from the PSCz survey. In the
Gaussian approximation, the likelihood for the bispectr
estimatesL obeys@42#

22 lnL5const1(
T

~Qobs2Qmod!
2

DQmod
2

, ~41!

where T denotes the sum over triangles@defined precisely
below, Eq.~43!#, Qobs is the observed bispectrum, andQmod

andDQmod
2 are computed from Eqs.~35! and~39! in terms of

the model parametersb1 ,b2 , f NL . If observations are consis
tent with the fiducial model withb151, b250, and f NL50,
Qobs5QG and we have

22 lnL5const1 (
i , j 51

3

a ia jFi j , ~42!

where a15(12b1), a25b2 /b1 , a35 f NL and the Fisher
matrix is given by

Fi j [ (
k15kmin

kmax

(
k25kmin

k1

(
k35kmin*

k2 B123
( i ) B123

( j )

DB123
2

~43!

with kmin* 5max(kmin ,uk12k2u), and we have assumed that th
varianceDB123

2 is computed only including linear bias. Her
B123

(1)5B123
G , B123

(2)5S123, andB123
(3)5B123

L / f NL , which are, re-
spectively, the bispectra induced by gravity, nonlinear b
and primordial non-Gaussianity. Equation~42! is now the

2Equation~39! corrects Eq.~A16! in @40#.
10351
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standard Gaussian likelihood for the parametersa i and their
error bars~marginalized over all othera j ) are simply given
by

s i
25~F21! i i . ~44!

Figure 3 shows the minimal detectable value off NL , given
by 1s error bars from Eq.~44!, for different survey volumes
and galaxy number densities. The left panel shows how
f NL limits improve as we include more triangles towar
smaller scales by increasingkmax, whereas the right pane
shows the opposite regime, wherekmax is held fixed and one
probes larger scales~from right to left! by decreasingkmin all
the way up to the fundamental mode of the surveykmin
5kf . Figures 3 and 4 assume bispectra whose sides
binned withdk5kf .

The different lines in Fig. 3 have been chosen to roug
represent the 2dF survey~short-dashed line!, the main
sample~long-dashed line!, and the LRG sample~dotted line!
of the SDSS survey, and a hypothetical survey with the sa
volume as the LRG sample but with high enough density
make shot noise negligible atkmax. In the absence of sho
noise~and keeping our ideal survey geometry constant! the
minimum detectable value off NL scales simply asV21/2.
The scaling withkmax is basically given by the naive expec
tation that the constraints onf NL should be inversely propor
tional to the square root of the number of modes availab
Nk}kmax

3 V. We thus see from Fig. 3 that an all-sky surv

with n̄;331023(h Mpc21)3 up to redshiftz;1 can probe

FIG. 3. Minimum detectable value off NL as a function ofkmax

~left! and kmin ~right!, after marginalization over bias paramete
The solid line corresponds to an ideal survey withV51(Gpc/h)3

and no shot noise. The other lines correspond toV51(h21 Gpc)3

with n̄51024(h Mpc21)3 ~dotted line!, V50.3(h21 Gpc)3 with n̄
5331023(h Mpc21)3 ~long dashed line!, andV50.1(h21 Gpc)3

with n̄51023(h Mpc21)3 ~short dashed line!.
3-6
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PROBING PRIMORDIAL NON-GAUSSIANITY WITH . . . PHYSICAL REVIEW D69, 103513 ~2004!
values of f NL of order unity. A redshift survey of such
volume may be realistic in the not too distant future@43#.

Figure 4 shows the corresponding results for the bias
rametersb1 and b2 , showing that 2dF and SDSS surve
should be able to determine the bias parameters to wi
1–2 % accuracy. This is in rough agreement with previo
estimates@42,44#, we will provide a more detailed asses
ment for the SDSS case in Sec. III C.

It is worth comparing the right panels of Figs. 3 and 4
see from what scales is most of the signal coming from.
the case of biasing parameters, the dependence onkmin at
large scales is rather weak compared to that forf NL , saying
that large-scale triangles contribute significantly more inf
mation toward constraining primordial non-Gaussianity th

FIG. 4. Same as Fig. 3 but for the linear (b1) and quadratic bias
parameters (b2).
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biasing parameters. This is again a consequence of thescale
dependenceof primordial non-Gaussianity; in fact, the sign
to noise for an equilateral triangle of sizek is given by (D
[4pk3P)

BG

DB
5

4

7
A3pD~k!, ~45!

S

DB
5A3pD~k!, ~46!

for linear and quadratic bias, respectively, whereas for
mordial non-Gaussianity,

BL

DB
5A48p2k3Pf

c2
f NL51.431024f NL5const, ~47!

where we have used a scale invariant primordial spect
normalized to produce the correct level of CMB anisotropi
(4pk3Pf /c4)1/2.2.331025. Equation ~47! says thatthe
signal to noise per triangle is constant.3 In other words, for
primordial non-Gaussianity given by Eq.~1! the total signal
to noise is only decreased at large scales by the decline in
number of triangles, whereas for biasing parameters ther
an additional suppression due to the decrease in thermsfluc-
tuation amplitude at large scales@40,45#.

This explains why our constraints onf NL are about two-
orders of magnitude better than those obtained in@28#, where
the bound onf NL is derived by translating the constraint o
b2 to an effective value off NL at k;0.6h Mpc21.

C. Including survey geometry: SDSS forecast

Let us improve the above treatment, considering a rea
tic survey geometry with the induced covariance matrix b
tween different triangles. We also include redshift dist
tions, as calculated by second-order Lagrangian perturba
theory~2LPT! from non-Gaussian initial conditions given b
Eq. ~1!, see@41# for a comparison of 2LPT againstN-body
simulations for the redshift-space bispectrum. For biasi
we assume Eq.~35! still holds in redshift space, which is
reasonable approximation near our fiducial unbiased mo
A treatment of bias and primordial non-Gaussianity in t
presence of redshift distortions is beyond the scope of
paper.

We consider two survey geometries that approximate
north part of the SDSS survey, a 7300 square degree reg4

and a second one with 10 400 square degrees.5 We do not
include the South part of the survey in our analysis, wh
has a smaller volume and a nearly two-dimensional geo

3Here by ‘‘triangle’’ we mean all triangles with sides withinki

6kf /2; see Eq.~37!.
4See http://www.sdss.org/status under ‘‘spectroscopy.’’ It cor

sponds to omitting stripes 17 through 28, and ignoring 76–86 in
south.

5This adds stripes 17 through 28.
3-7
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SCOCCIMARRO, SEFUSATTI, AND ZALDARRIAGA PHYSICAL REVIEW D69, 103513 ~2004!
etry that complicates the simplified bispectrum analysis
will do below. For the radial selection function we use th
corresponding to the ‘‘NYU LSS Samples’’ 10–12@46#, and
we assume that the angular selection function is unity ev
where inside the survey region, which is a very good
proximation.

Using a 2LPT code@41# with about 423106 particles in
a rectangular box of sidesLi5660, 990, and 1320h21 Mpc,
we have created about 63103 realizations of each geometry
for Gaussian initial conditions and models with primord
non-Gaussianity withf NL5100 and 400~see Table I!. In all
cases, cosmological parameters are as given in Sec. II
b151, b250. For each of these realizations, we have m
sured the redshift-space bispectrum for triangles of all sha
with sides between kmin50.02h Mpc21 and kmax
50.3h Mpc21, giving a total of Ntriangles57.531010 tri-
angles. These are binned intoNT51015 triangles with a bin
size of dk50.015h Mpc21. The generation of each moc
catalog takes about 15 min, and has about 43105 galaxies
for the smaller area and 5.73105 galaxies in the larger are
case. The redshift-space density field in each mock catalo
then weighed using the FKP procedure@39#, see, e.g.,@41,42#
for a discussion in the bispectrum case. We have tried dif
ent weightsP0 ~see Table I! to minimize the error bars; the
results we present correspond toP055000 (h21 Mpc)3.
The bispectrum in each realization is then measured for
(.7.531010 binned into 1015! triangles, taking about 2 min
per realization.6

In order to generalize the discussion given above to
case of arbitrary survey geometry, we introduce the bisp
trum eigenmodesq̂n @41#,

q̂n5 (
m51

NT

gmn

Qm2Q̄m

DQm
, ~48!

where Q̄m[^Qm&, (DQm)2[^(Qm2Q̄m)2&. By definition
they diagonalize the bispectrum covariance matrix,

^q̂nq̂m&5ln
2dnm , ~49!

and have signal to noise,

S S

ND
n

5
1

ln
U (

m51

NT

gmn

Q̄m

DQm
U. ~50!

The eigenmodes are easy to interpret when ordered in te
of their signal to noise@41#. The best eigenmode~highest
signal to noise!, say n51, corresponds to all weightsgm1

6Timings are for a 1.26 GHz, Pentium III processor.

TABLE I. SDSS mock catalogs~for each geometry! and bispec-
trum measurements used in the analysis. Cosmological param
are as in Sec. II,kmin50.02h Mpc21, andkmax50.3h Mpc21.

1022f NL Nmocks 1023P0 Ntriangles NT

0,1,4 6080 2,5,10 7.531010 1015
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.0; that is, it represents the overall amplitude of the bisp
trum averaged overall triangles. The next eigenmode,n
52, hasgm2.0 for nearly collinear triangles andgm2,0
for nearly equilateral triangles, thus it represents the dep
dence of the bispectrum on the triangle shape~see Fig. 2!.
Higher-order eigenmodes contain further information, su
as the dependence ofQ with scale, important to constrain
primordial non-Gaussianity@30,31#; see Fig. 6 for an illus-
tration of this point.

If the bispectrum likelihood is Gaussian, we can wr
down the likelihood as a function of the parametersa j as

L~$a j%!})
i 51

NT

Pi@ q̂i~$a j%!#, ~51!

where thePi(x) are all equal and Gaussian with unit var
ance. We have checked from our Monte Carlo pool that
distribution ofQ is indeed Gaussian even at the largest sca
we consider. In practice, Gaussianity ofPi is not guaranteed
at large scales due to the deviations from the central li
theorem by lack of enough uncorrelated triangles@31,41#. If
not Gaussian, diagonalization of the covariance matrix d
not guarantee independence of the eigenmodes, thusL does
not necessarily factorize as in Eq.~51!, but this is a good
approximation for small deviations from Gaussianity wh
the non-GaussianPi(x) are determined from mock catalog
@41#.

We calculate the bispectrumNT3NT covariance matrix
from our Nmocks realizations of the survey~see Table I! and
from that obtaingmn andln , which gives the ingredients to
implement Eq.~51!. The results from such likelihood analy
sis are shown in Fig. 5. Contours denote joint 68% probab

ers

FIG. 5. Joint 68% confidence intervals for two parameters a
time, with the third parameter marginalized over. The inner cont
corresponds to the larger survey volume case. The lower right p
shows the resulting 1s error bars after marginalization, with
smaller errors corresponding to the larger volume survey geom
3-8
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PROBING PRIMORDIAL NON-GAUSSIANITY WITH . . . PHYSICAL REVIEW D69, 103513 ~2004!
ties, two parameters at a time marginalized over the th
parameter. The inner contour corresponds to the survey
ometry with the larger area. The lower right panel shows
resulting 1s error bars after marginalization; smaller unce
tainties correspond to the larger volume survey geometry.
have scaled ourf NL5100 bispectrum measurements to co
tinuous values off NL ; identical results are obtained by sca
ing the f NL5400 mock catalogs.

It is difficult to compare these results to those of the p
ceding section, since they correspond to very different s
vey geometries. However, comparing Fig. 5 to the lon
dashed lines in Figs. 3 and 4 shows that our more real
estimates give error bars larger by a factor of 4–5. There
reasons to expect our ‘‘realistic’’ treatment to be actually
upper bound to the achievable error bars with a more sop
ticated analysis, for the following reasons. First, we on
considered the north part of the survey; second we use
weighting, which is not optimal at large scales and th
could potentially reduce our sensitivity, particularly to p
mordial non-Gaussianity; and finally, we have only us
closed triangles in Fourier space. Due to the lack of tran
tion invariance there is also a signal in open configuratio

It is interesting to compare the results of Fig. 5 betwe
the two geometries. The larger volume survey leads to
improvement in marginalized error bars of 20% forb1 , 35%
for b2 , and 45% forf NL . This is more than what one expec
for uncorrelated contributions to the constraining power
the survey due to the increased volume (;20%), and is a
manifestation in the improvement of the bispectrum cova
ance matrix due to the narrower survey window function
Fourier space.

D. f NL from the PSCz galaxy bispectrum

We now consider constraints onf NL from the galaxy
bispectrum measured in the PSCz survey in@30#. The PSCz
survey @47# is based upon the IRAS Point Source Catalo
the bispectrum measurements we use are based on 1
galaxies in the range 20h21 Mpc<R<500h21 Mpc, with
galactic latitude ubu>10°, and IRAS 60mm flux f 60
.0.6 J y; see@30# for more details. We use triangles from
kmin50.05h Mpc21 to kmax50.3h Mpc21, binned intoNT
5183 triangles. We use the eigenmodes and their probab
distributionsPi(x) computed from;103 2LPT mock cata-
logs in @41#.

Figure 6 shows the 95% confidence limits onf NL after
marginalization over the bias parameters as a function of
number of eigenmodes~ranked by signal to noise! included
in the likelihood analysis. Note how the constraint onf NL is
set by then.2 eigenmodes, which are sensitive to sc
dependence of the bispectrum. The bound onf NL converges
after the best;100 eigenmodes are included, since the
maining half of the eigenmodes does not add any signific
signal to noise. The 95% confidence limits corresponding
123 eigenmodes are

22000< f NL<1600 ~95%!. ~52!

This is comparable to the constraint from CMB fluctuatio
before WMAP@23,24#, although LSS is sensitive to some
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what smaller scales than the CMB. Our analysis in the p
vious section suggests that these limits should be impro
by about an order of magnitude by the 2dF and SDSS
veys.

IV. CLUSTER ABUNDANCE AND PRIMORDIAL
NON-GAUSSIANITY

The abundance of clusters probes the probability distri
tion function~PDF! of the matter fluctuations, and it is thus
natural candidate to constrain primordial non-Gaussian
@33,34,48–51#. For large masses, the abundance of clus
depends on the right tail of the PDF which decays expon
tially for Gaussian initial conditions. However, before th
can be used to place a constrain onf NL , it is necessary to
have under control a number of systematic effects.

Even with recent progress in the determination of cosm
logical parameters, uncertainties onVm and in particulars8
can alter the Gaussian abundance prediction enough to m
difficult probing the small levels of primordial non
Gaussianity corresponding to, e.g.,f NL.100. In addition,
calculation of the mass function from a given PDF is n
straightforward. Even for Gaussian initial conditions, me
surements in numerical simulations suffer from systema
uncertainties of order 10–30 %, depending on the definit
of halo mass@52#. For primordial non-Gaussianity of th
type given by Eq.~1!, the mass function has been estimat
analytically in@33#, but there has been so far no compleme
tary study using numerical simulations to give a sense of
uncertainties involved.

At a more fundamental level, it is not even clear that o
can probef NL using rare events such as clusters, given t
the tail of the PDF in generalis notdetermined by the skew

FIG. 6. 95% confidence limits onf NL from the PSCz galaxy
bispectrum@30# after marginalization over bias parameters as
function of the number of eigenmodes included in the likeliho
analysis.
3-9
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SCOCCIMARRO, SEFUSATTI, AND ZALDARRIAGA PHYSICAL REVIEW D69, 103513 ~2004!
ness alone, but rather all the higher-order cumulants of
distribution through its generating function@29#. In other
words, the mass function for massive clusters will in gene
depend on a higher order than quadratic terms in Eq.~1!. On
the other hand, the first step is to see whether deviat
from Gaussianity can be detected at all for models such
Eq. ~1!, keeping in mind that predictions for the mass fun
tion in a fully specified modelF(f) may be rather differen
than truncating Eq.~1! to second order inf.

An important source of uncertainty in comparing theor
ical predictions with observations of cluster abundance is
determination of cluster masses. Here we will ignore all
sources of uncertainty mentioned above, and estimate
what accuracy it is necessary to determine cluster mass
order to distinguish a Gaussian from a model withf NL
5250,2100, which being positively skewed gives a larg
abundance than the Gaussian case. For simplicity we ass
the Press-Schechter~PS! formula for the mass function
@53,54#,

dn~M ,z!

dM
5

2r̄

M2
Ud lnsM~z!

d lnM
UnP~n! ~53!

where the massM54pr̄R3/3 is related to the smoothin
scale R and mean densityr̄ by a top hat filter andn
5dc /sM(z), with dc.1.686 andsM(z) the variance of the
density field at redshiftz smoothed at scaleR. A more accu-
rate analytic estimate of the mass function in the Gaus
case is given by the Sheth-Tormen~ST! mass function based
on ellipsoidal collapse@55–57#, but it is unclear how to gen
eralize it for the non-Gaussian case; therefore, we will
Eq. ~53! instead by changing the PDFP(n). This has been
found to be a reasonable approximation when compare
numerical simulations, at least for largen in non-Gaussian
models withx2 initial conditions @58#. We will only deal
with ratios of non-Gaussian to Gaussian abundances, th
fore our estimates should be more accurate than differe
in the absolute calibration of the mass function. When e
mating the total number of clusters expected in the Gaus
case, we will quote both PS and ST values.

The total number of clusters with mass larger thanM that
can be observed in an all-sky survey between redshiftsz1
andz2 is given by

Ncl~.M !5E
z1

z2
dzE dVE

M

`

dM8
dn~M 8,z!

dM8

dV

dzdV
,

~54!

where

dV

dzdV
5

cDc
2~z!

HoE~z!
~55!

with

Dc5
c

Ho
E

0

z dz8

E~z8!
~56!
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and E(z)5AVM(11z)31VL. We assume a flat Univers
with the cosmological parameters given in Sec. II.

Figure 7 shows the excess in the abundance of clus
due to non-Gaussianity, given by

DNG~ f NL![
Ncl

NG~.M !

Ncl
G~.M !

~57!

for f NL52100 ~dashed lines! and f NL5250 ~dotted lines!,
compared to the excess that may come from an under
mate in the mass determination, given by

DG~DM /M ![
Ncl

G~.M2DM !

Ncl
G~.M !

~58!

plotted as a function ofDM /M . To use Eq.~53!, we have
measured the non-Gaussian PDF for the density field fr
realizations of Eq.~1! on a 5123 grid in a box of 1h21 Gpc
a side, smoothing the density field on a scale of 10h21 Mpc
~other smoothing lengths in the relevant range do not cha
the results!. Our results in Fig. 7 for the excess abundan
are in reasonable agreement with Fig. 8 in@33#, where an
analytic approximation was developed to calculate the m
function instead of using Eq.~53!.

We see from Fig. 7 that in order to probe primordial no
Gaussianity at levelsu f NLu&100, uncertainties in the mas
limit M should be well below 10%, assuming perfect know

FIG. 7. The horizontal lines show the excess in the numbe
clusters in an all-sky survey with redshift limits as shown f
masses above 1014 and 1015h21M ( expected for non-Gaussian pr
mordial fluctuations withf NL52100 ~dashed lines! and f NL5
250 ~dotted lines!. The solid curves show the excess in the numb
of clusters in the Gaussian case due to an underestimate of the
limit M by an amountDM as a functionDM /M . The number of
clusters in the Gaussian caseNG for such a survey is given assum
ing the PS and ST mass functions.
3-10
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PROBING PRIMORDIAL NON-GAUSSIANITY WITH . . . PHYSICAL REVIEW D69, 103513 ~2004!
edge of cosmological parameters, and negligible cos
variance. At present, direct mass determinations thro
weak lensing seems to suffer an absolute uncertainty not
low DM;1014h21M ( and larger at high redshift@59# with
the contribution of distant large scale structures of the or
of 6% alone@60#, while the estimates provided by x-ray tem
perature measurements havestatisticalerrors of 10–30 %.

It is interesting to note here that future cluster surve
using the Sunyaev-Zel’dovich effect@61# require similar ac-
curacy in the determination of the mass threshold for de
tion. The goal for these observations to be able to pr
cosmological parameters is to achieve an accuracy of 5%
the mass limit and 10% on the mass function@62,63#. These
turn out to be minimal requirements for the use of clusters
probe primordial non-Gaussianity at levels comparable
that within reach of CMB and LSS methods.

V. CONCLUSIONS

We studied constraints on primordial non-Gaussianity,
the form given by Eq.~1!, from measurements of the bispe
trum in galaxy redshift surveys. We find that taking into a
count the scale dependence of the bispectrum induced
primordial non-Gaussianity is essential to obtain relia
constraints onf NL . As a preliminary application, we derive
the first constraints onf NL from LSS using the galaxy
bispectrum measured in the PSCz survey, obtaining22000
< f NL<1600 at the 95% confidence level.

We estimate that the SDSS survey should achieve 6
level constraints foru f NLu of at least 150–200. The unce
tainty in this number is due to the simplifications used in o
analysis. Although we have taken into account the geom
8
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in detail by using mock catalogs with the same select
function, there are many features of our analysis that nee
be improved for a more accurate assessment. We only
sider the north part of the survey, since the south region
a geometry that is nearly two dimensional and which wo
invalidate our analysis that assumes the window function
the survey is sufficiently narrow in all directions. To mak
our analysis more tractable, we have used a weigh
scheme that is not necessarily optimal at large scales;
primordial non-Gaussianity this can make a difference si
significant information is coming from large scales. For the
reasons, our estimate is likely to be an upper limit to t
value of f NL to be probed by SDSS.

In addition, we showed using simple signal to noise e
mates that an all-sky survey withn̄;331023(h Mpc21)3

up to redshiftz;1 can probe values off NL of order unity. A
redshift survey of such a volume may be realistic in the
too distant future@43#.

We have also studied the use of cluster abundance to
strain primordial non-Gaussianity. At present, uncertaint
appear too large to be able to compete with CMB or LSS,
this can change if cluster masses can be determined wit
accuracy of a few percent and other systematic errors in
theoretical understanding improve.
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