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Probing primordial non-Gaussianity with large-scale structure
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We consider primordial non-Gaussianity due to quadratic corrections in the gravitational potential param-
etrized by a nonlinear coupling parametgr . We study constraints ofy,, from measurements of the galaxy
bispectrum in redshift surveys. Using estimates for idealized survey geometries of the 2dF and SDSS surveys
and realistic ones from SDSS mock catalogs, we show that it is possible to |pxpbe 100, after marginal-
ization over bias parameters. We apply our methods to the galaxy bispectrum measured from the PSCz survey,
and obtain a 2 constraint|fy, |=1800. We estimate that an all sky redshift survey ug4el can probe
|faLl=1. We also consider the use of cluster abundance to consfgaiand find that in order to be sensitive
to |fy.|=100, cluster masses need to be determined with an accuracy of a few percent, assuming perfect
knowledge of the mass function and cosmological parameters.
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[. INTRODUCTION second scalar field, usually called the “curvaton” could be
light during inflation and come to dominate the energy den-
Rapid progress in microwave background anisotropy exsity of the universe after the end of inflation before produc-
periments and large galaxy redshift surveys is providing highng effectively a second reheatifi0—15. The density fluc-
quality data that can be used to test the nature of primordiduations we observe today could be due to fluctuations in the
fluctuations. The leading scenario for explaining the initialcurvaton and could be non-Gaussian. _
seeds for the formation of structure in the universe is infla- In addition, recent work16—-1§ suggested a new possi-
tion, a period of accelerated expansion in the early universgility in which the fluctuations are generated during the re-
during which quantum fluctuations in a scalar field driving heating period when the inflaton energy density is converted
the expansion are stretched outside the Hubble radius ari@to standard model particles with a fluctuating decay rate. In
stay frozen until they cross back during matter dominatior@ll these models non-Gaussianities are primarily as given by
and grow by gravitational instability. The predictions from EQ. (1) and could naturally be of ordefy, ~5-30[17,18].
this scenario have been worked out in great detail during thErimordial non-Gaussianity at this level should be detectable
last 20 years, with most models of inflation predicting athrough measurements of the bispectrum of the 820
scale-invariant spectrum of adiabatic Gaussian fluctuationsand in galaxy surveys, as we shall show in this paper. Finally
The Gaussian nature of primordial perturbations is a dithere are models in which the inflaton is not a slowly rolling
rect consequence of the slow-roll conditions on the inflatiorscalar field but rather a fast moving ghost condenszig In
potential, required for the potential energy to dominate ovethis case non-Gaussianities are much larger, close to the cur-
the kinetic energy of the field and produce a sufficiently longreént upper limit but are not as simple as Ed).
period of accelerated expansion. Under these circumstances, In this paper we consider departures of Gaussianity where
non-Gaussianities are very small, of the order of the tilt inthe primordial gravitational potential at subhorizon scales
the scalar spectruifl]. The tilt is known to be rather small has the forn(22]
[2—4], in the language of Eq(l) below, fy, =<0.05. This
bound can be relaxed f, ~1 if higher dimensional opera- f
tors are suppressed by the lowest possible scale consistent dPIM= b+ ﬂ(¢z_<¢2>) 1)
with slow roll [5]. Also non-Gaussianity can be generated c?
considering a nonvacuum initial state for the scalar field per-
turbations, leading to a nonvanishing connected four-point
function in the cosmic microwave backgrouf@VB). The  where¢ is a random Gaussian field,is the speed of light,
excess kurtosis in this case is expected to be too small to #nd for simplicity we assumfy,_ is a number independent of
detected, see for instanf@). scale. These are generically predicted by all models in which
There are several modifications to the basic physics ofhe non-Gaussianities are generated outside the hdrizgn
inflation that can lead to larger non-Gaussianities. In some Measurements of the microwave background anisotropy
sets of these models there are additional light degrees dfispectrum give & limits from the Cosmic Background Ex-
freedom during inflation. For example, if the inflation field plorer (COBE) |fy, |<1500 [23], MAXIMA |f\.|<950
has more than one component, it is possible to generate si§24], and recently 2z limits from the Wilkinson Microwave
nificant non-Gaussianity in the adiabatic component througi\nisotropy Probe(WMAP) of —58<f,, <134 [20] (see
the coupling to isocurvature components; see, €7¢:9]. A also[25]). Upon completion, WMAP is expected to reacti 1
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sensitivity of order|fy |=20, whereas the Planck satellite 9D, prim
would yield | fy |=5 [19]. (@)= 755 TP, )

An alternative way of constraining primordial non-
Gaussianity is by measuring the bispectrum of the galaxwhere T(k) is the transfer functionD , (a) is the growth
distribution and looking for deviations from the predictions factor linear perturbation theory, anbP™™ denotes the pri-
of gravitational instability from Gaussian initial conditions mordial gravitational potential at subhorizon scales before
[26—29 (see, e.g.[29] for a review. In this case, there has matter-radiation transition, and we have neglected aniso-
been no constraint yet on the particular model given by Eqtropic stresses. The matter density is related to the potential
(1), although estimates have been madg28] regarding the by Poisson’s equation, which in Fourier space reads
ability of large-scale structure to constrdig, , concluding

that galaxy surveys such as 2dF and SDSS will be able to 2 ak?

probe only|fy |~10°-10%, and that galaxy surveys in gen- o(a)=—< Dy (a), (©)
. o, . . . 30 H2?

eral will not be competitive with CMB experiments in prob- mo

ing this type of non-Gaussianity. . o
In this paper we revisit the issue of how well Iarge-scaIeWhereQm is the present value of the dark matter density in

e . _ _1 .
structure can constrain non-Gaussianity of the type given bi[/erms of the critical density anblo=10th Mpc “km/s is
Eq. (1), and reach a quite different conclusion. We show in helpresent value of the Hubble constant. We assume cosmo-
particular that the SDSS galaxy bispectrum should be able fpgical parameters consistent with current dg2ad], Qp,

il 2_ _ . -
probe values of ordeffy |~10?, and that a hypothetical =0.27, Qh"=0.0224, h=0.71, assuming a flat universe
all-sky survey with a similar density up ~1 should be with a cosmological constant. The transfer function is com-

able to probdfy, |~ 1. We illustrate our results by applying puted usingeMBrasT [35), leading to a power spectrum nor-

these ideas to the measurement of the galaxy bispectrum mal|zat|on08=0.82. Introducing
the PSCz surve}30], and find 2r constraintgfy, |=1800,

2
comparable to the limits from CMB measurements before M(k,a)=— E KTo D.(a) %)
WMAP. ' 5 QpHj§

The difference between our results and thosg2#] can
be traced to the assumption made 28] that constraints on we can write
primordial non-Gaussianity can be effectively “read off” .
from constraints on the nonlinear bias parameter, which is d(a)=M(k,a)®p"", 6)
independent of scale. This ignores the anomalous scale de-
pendence of the bispectrum induced by primordial non@nd in general
i(?e[\;g%%r'nty, which plays a crucial role in obtaining limits on <5k15k2. - 5kN>: M (k)M (Ky) - - - M(Ky)
Constraints on primordial non-Gaussianity of the type prim g, prim prim
given by Eq.(1) ha\f)e been considered also b))// using grg&- (Pl Pl Pl ©
tational lensind 32], where it was found that it is possible to
achievef y, ~ 150f 3,/?, with f, the fraction of sky covered,
using lensing tomography with four redshift bins up #o

Henceforth we shall suppress the dependence on the scale
factor, assuming= 1, and drop the superscript denoting the

—500. In additi h ¢ the abund ¢ b | rimordial gravitational potential, which is understood in all
=500. In addition, the use of the abundance of massive cluss,. expressions that follow. In our convention the power

ters to constrgiriNL has beerj gtudied 83,34 In this vyork spectrum and the bispectrum are given by
we also consider how well it is necessary to determine clus-

ter masses to be able to use cluster abundance to pgplie (8. 6. )= 6p(k1p) P(kq), 7)
the accuracy required by present upper limits. v
This paper is organized as follows. In Sec. Il we discuss (8¢ .8 =0(Kr29B(Ky Ko Ks) (8)
1 K27Kg e !

how the large-scale structufeSS) bispectrum is modified
due to primordial non-Gaussianity given by Ed). Section wherek;...j=k;+ - +k;. We can write the linear power

lll presents a signal-to-noise analysis for determining bia%pectrum of the density field & (k) =M?2(k) Py (k) where

parameters anfly,_from surveys, including a somewnhat de- P4(K) is the primordial gravitational potential power spec-
tailed calculation for the particular case of the SDSS survey,m(j’r(n )given bF;, Eq(1) g P P P

and application to the bispectrum of galaxies in the PSCz

survey(Sec. lll D). Finally, in Sec. IV we consider the use of £2,
the abundance of clusters to constrain primordial non- Po(k)= P‘/’(kHZ_f d*qP,4(q)P4(|k—q])
Gaussianity. ct

Il. THE LSS BISPECTRUM =Py(K). ©)

Well after the universe becomes matter dominated, th&quation(1) can be seen as a quadratic approximation to a
fluctuations in the gravitational potential at time given by themore general power series expansion; for consistency we ne-
scale factora are related to the primordial fluctuations by  glect higher-order corrections than those of leading order in

103513-2



PROBING PRIMORDIAL NON-GAUSSIANITY WITH . .. PHYSICAL REVIEW D69, 103513 (2004

the primordial non-Gaussianity parametgr . For example, ~ 0.05 L L LA
the second-order correction in E@) changes the value of

og by less than 1% foff, =10%. From Eq.(6), it follows

that the bispectrum in linear perturbation theory is given by ;o4

Bls=M (k)M (k)M (k3)Bo(Ky Ko ks),  (10)
whereB1,:=B(kq,k,,k3) and

Bo(Ky,Ko,k3)= —2[P¢(k1)P¢(k2)+Cyc.]+(9(fﬁ,_).
C

(11)

To get a sense of how significant primordial non-

Gaussianity is for thelensity fieldas a function offy, , we 0.01 - a
calculate the dimensionless skewness parameter, defined a
_ <§R> 0 1 1 1 I 1111 | 1 1 1 I | -
ss(R)= (62)3’2’ (12 10 50 100 500 1000
R R [Mpc/h]
where the smoothed density fiefi is given by FIG. 1. The dimensionless skewness paramsi¢R) against
smoothing scal& for fy, = —100 (solid line) and the approxima-
S f PWKR) 6, (13 tion given by Eq/(16) (dashed ling

spectrum. Figure 1 shows a plot 8§(R) as a function of

scaleR calculated by numerically integrating E@.4) (solid

line) and the analytic expression in Ed.6), which matches

the exact result at large scales.

6fy _ At the scales reljevagt for gala>_<y surveys, V\;)e r_nusthtake
__ Nrev-32] 431 43 into account second-order corrections in perturbation theory

s3(R) 2 (Or) Jd k1d°koP (k1) P 4(k3) (PT), which read

where W(kR) denotes the Fourier transform of a spherical
top-hat window of radiusk in real space. From Eq$5),
(1), (12) we have

MMM AW Wz o oo+ | CaFsak-aie,  ap
whereM; =M (k;) andW,=W(k;R) andky,=|k;+Kk,|. We

can integrate this equation numerically3], but it is also |\ here &=k, -k,)

possible to derive an analytic expression that is exact at large

scales and illustrates the basic dependencg(@) on cos- 5 x ( k; K,

22 18
k_2 kl+7X. (18

mological parameters. The non-trivial part in Ef§4) is the Fo(kq,ky)= 7+ >
integration over the angle betwedén and k,, due to the
dependence o, on the transfer functiol (k). We use

the approximation,

This gives for the power spectrum,

kR

Wy |+ 102 P(k)=PL(k)+2J d*qF,(k+a,—q)B"(k,Q)
3 1

(19

ﬁwlzklz-rlz* kiT1Wi| W+
=PL(k)+ PB(k). (19
which is exact at large scales whérgk) is independent o, ] o ) o

in view of the summation theorem of Bessel functidese However, this correction is basically negligible at the scales

Appendix C in[29]). After simple algebra, Eq(15) leads to W€ are interested, see H@5) below. For the bispectrum we
have three contribution6],

s T dnR (16) B12s= Blogt BHst Blas (20)
n

S3(R)=12— 1+
3(R) 2 —< 2
of which Bt is the linearly evolved bispectrum due to pri-
This formula illustrates that the level of non-Gaussianity ismordial fluctuationsB is the contribution due to the initial
proportional tof , times the amplitude of potential fluctua- trispectrum, andB® is the usual bispectrum generated by
tions smoothed on scak with a constant of proportionality gravitational instability from Gaussian initial conditions.
that depends on the shape of the density-potential powekhey are given by

L <5R¢R>{ 1 dIn{Srer)
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BS,.=2F 5(ky,k,)P1P,+cyc. (21 F ' o T ]
0.8 [y 3
RY 4
F
BIzszf d®aFa(kia—a,a) TH(Kq k2, k1o~ 0,0) +cyc. N ]
(22) o7 | N\ 3
E N £ =100 E
whereP;=P(k;). The linearly evolved initial trispectrurfi- - hNY
is a quantity of second order ify, and can therefore be . TS~ 3
ignored as we now show. We can estimate the corrections® *®F .. cion Tt - E
due to primordial non-Gaussianity for an equilateral triangle & [ - Tl b
of sidek (at large enough scalgs E P ]
05 [ L7 4
7 F +7 ty=—100 ]
BL= EsBG, (23 = "
oaf / =
BT=—3s%k?¢2B®, (24) ) ]
E/l
4 [l L L R |
PB~— Zek2o2PL, (25 *? oor o1
7 k [h/Mpc]
whereai is the one-dimensional velocity dispersion in units 1.7 T T T | | T T
of the Hubble constant, el ;=002 h/Mpe P
>\ k=2 k, /
2 1 (Q) 1 1.5 :\\\ \\\ f\p=—100 ks=ka(k1'kz-6) /// —
o,= q—~40 (h~* Mpc)?, (26)
3 q 1.4
and the small parameteris given by 1.3
2ol
faL fau 1 (0.0th Mpc 1) 2 &
e= =—-0.07— , < b
M (k)c? 100 T(k) k =4
(27 =
which leads to 0.9 -
f 1 0.8 -
2 2 -4 _NL
ekcof=3x%10 100T(K) (28 0 b
Equation(25) says that the power spectrum correction dueto %8, 0!1 o!z o!s of4 0!5 ;_e o!7 o!a o!g 1
primordial non-Gaussianity, Eq(19), is suppressed by 6/m

8k20' at large scales, and becomes of order a few percent as
k=0. Jh Mpc ™%, inducing a scale dependence on the blspecbls
trum, see Fig. 2 below. At these scales other effects due tq
nonlinearities(specially redshift distortionsbecome impor-
tant, we found that in redshift space it is very difficult to see
the effects of nonzerd,, at these scales. Equatid@4)

FIG. 2. Primordial non-Gaussianity corrections to the reduced
pectrum for equilateral configurations as a function of the wave
umberk (top panel and fork,;=0.0zh Mpc™! andk,=2k; as a
function of the angled betweenk; andk, (bottom).

shows the trispectrum correction given by E22) is negli- BC(k,k,k) 4
gible. Therefore we only probe primordial non-Gaussianity q(k)_ 3TP(K) 12 - 7 (30)
through Eq.(23). [P(k)]
It is convenient to introduce theduced bispectrurf36],
defined as For general trianglesQ retains approximately this simple
behavior, it is independent of power spectrum normalization,
Bios and only very weakly dependent di,, through the factor

(29 =(),%/3[37], the only relevant dependence @fis on the

local spectral indexgg(k)=dInP/dInk and triangle shape
which is independent of time for Gaussian initial conditions;through Eq.(18).
moreover, in tree-level perturbation theory it reduces to a An important consequence of primordial non-Gaussianity
scale independent value for equilateral configurati®@ from Eq.(1) is that it violates the scaling induced by gravity,

Que=p 1P+ P P3+P,P;’
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sincngq(k)NSNy[kZT(k)], see Eq(27). The top panel in possibility that galaxig; are biased tracers of the dgns_ity
Fig. 2 illustrates the deviations from E¢B0) when |fy| field. At large scales, it is reasonable to assume that biasing
—10%. Note that the scale dependence seen here is opposiglocal, then[38]
to that in the skewnegsompare to Fig. & this is simply due b
to the difference in normalizations between E(k2) and 8y=b, 6+ ?252+ . (33
(29). The bottom panel in Fig. 2 shows the corrections due to
primordial non-Gaussianity as a function of triangle shape
for k;=0.0h Mpc™! and k,=2k;. We now explore how whereb; andb, are constants. The bispectrum in the galaxy
well these deviations can be probed with galaxy surveys. distribution, including primordial non-Gaussianity, will be
given by
I1l. BISPECTRUM SIGNAL TO NOISE 306 ) 3ol
. . Bg(kl,kz,k3)2b18123+ blbz(P1P2+ Cyc.)+b18123.
A. Order of magnitude estimate (34)
In this section we will calculate the minimufy, that can

be measured by a galaxy redshift survey as a function of thtn terms of the galaxy reduced bispectr@y, we have
survey parameters. We start by making a simple estimate to

put the results of the next sections in context. A survey with Q¢ b, Q%
N 123 2 123
volumeV contains Qy=—"+—+—. (35
by b? by
1
4 3
Nic~ ?kmax(zw)g Note that each term in this expression has a different behav-
ior. Q(fzs depends very weakly on scale through the local
Vv Komax 3 spectral index (which can be measurgdand depends
~4.5x10° (31 strongly on triangle configuration, the second term due to
(1h™1 Gpc)3 0.3h Mpc? nonlinear bias is a constant, and the last term due to primor-

dial non-Gaussianity depends rather strongly on s¢sde
Fourier modes, wherk,,,, is the largest wave number that Fig. 2). Therefore it is possible to simultaneously obtain con-
can be used in the analysis. Let us use the skewness to esitraints onb;, b,, andfy, .
matefy, . With this number of modes we expect to be able For the reasons discussed above, we work with the re-

to measure the skewness roughly to the level, duced bispectrunQ;,3,* which has an identical signal to
noise toB;,3in the limit of Gaussian fluctuations. Indeed, for

15 Q125= B123/2 123, WhereX ;,5is the denominator in Eq29),

Asz~\/— (32 (AQ?/Q?=(AB?)/B?+(A3?)/3?, and (AB?)/B?

Ni ~[3A(K)]"* [see Eq.39)] and(AS2)/32=12/N2, where

is the number ok modes contributing to the estimate of
power spectrunP(k) and A(k)=47k3P(k). In other

4 an words, the signal to noise & is dominated by that o8 and
<10 “fy SO we expect to be able to deteigh ~30 if V the power spectrum can be considered perfectly determined

~(1h~ ! Gpe). ¢
. - or our purposes.
The abovg .estim.ate indicates t.hat we _expect LSS SUIVEYS The bispectrum signal to noise for a given triangle can be
to be competitive with CMB experiments in constraining pri- written as

mordial non-Gaussianity. However, there are several simpli-

fications in this estimatél) the density field fluctuations are

not Poisson distributed, thus the skewness is not the best (§> — Quz3 - Bizs (36)
estimate offy, ; (2) the galaxy density field is a biased tracer N/ s AQizz ABjp3’

of the underlying mass and biasing modifies the bispectrum,

therefore one must determine simultaneoully and bias \here the last equality follows from the discussion above.
parameters(3) the survey geometry can significantly com- The bispectrum variance in the Gaussian limit can be com-

plicate the determination of the bispectrum. We will tackle pyted in similar fashion to the standard power spectrum case
these problems in the rest of this section to obtain a more3g]. For a bispectrum estimat¢40]

robust estimate of the capabilities of redshift surveys.

where we have used the Gaussian variance. In the previo@lﬁ‘é
section we showed that the skewness is of orsigr2

N Vs
B. Ideal geometry Bios= Wzsfk d3q1jk dsquk d3036p (0129 5q16q26q3,
1 2 3

We first consider the case of ideal survey geometry, as- (37)
suming that bispectra for different triangle shapes are uncor-
related, i.e., the bispectrum covariance matrix is diagonat—
and given by Gaussian statistics. In order to see how well IFrom now on we refer t& as the bispectrum rather than the
one can probe non-Gaussianity one has to include also theduced bispectrum.
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where the integration is over the bin defined Qye (k;
— 8kI2 K+ 6k/2), V¢=(27)3V is the volume of the funda-
mental cell, and

Vlzszf d3Q1j d3Q2J dSQ35D(Q123)
kq ky k3

=872k Kokgok3, (38)

the variance 15

123

S
ABL=kiy— Pror(ki) Prot(ka) Pror(ks),  (39)
123

wheres;,3=6,2,1 for equilateral, isosceles, and general tri-
angles, respectively, and

Piot(K)=P(k) + = (40

(2m)°%n

where the number densi@accounts for the shot noise.
For simplicity, in this section we shall assume that the
estimates of the bispectrum are Gaussian distrib(iteprac-

PHYSICAL REVIEW D69, 103513 (2004

102

fy, (marginalized)

10 K.ax=0.3 h Mpe!

|
0.1

Ko [h/Mpc]

L |
0.01

o
Koo [h/Mpe]

FIG. 3. Minimum detectable value df,. as a function ok,
(left) and ki, (right), after marginalization over bias parameters.
The solid line corresponds to an ideal survey witk 1(Gpch)?

tice one can check this assumption for a given survey geomand no shot noise. The other lines corresponty to1(h~* Gpc)?

etry, seg/41]). We shall go beyond this in the next section
when we obtain bounds di,, from the PSCz survey. In the

with n=10"4(h Mpc™1)3 (dotted ling, V=0.3(h~* Gpc)® with n
=3x10"3(h Mpc™ 12 (long dashed ling andV=0.1(h"* Gpc)®

Gaussian approximation, the likelihood for the bispectrumyin n=10-3(h Mpc=1)3 (short dashed line

estimates’ obeys[42]

(Qobs_ Qmod) 2
AQ?

mod

—2InL=const+ 2
=

(41)

where T denotes the sum over trianglgdefined precisely
below, Eq.(43)], Qs is the observed bispectrum, af,.q
andAQﬁ1od are computed from Eq$35) and(39) in terms of
the model parametets; ,b,,fy, . If observations are consis-
tent with the fiducial model wittb;=1, b,=0, andfy, =0,
Qobs= Q€ and we have

3
—2InL=const X, aje;F;, (42
i1

where @y =(1—Db,), a,=b,/b;, az=fy and the Fisher
matrix is given by

R 0]
Fij= DEEDIED 5 (43
kg =Kmin ka=Kmin kg=k" AB7,3

with K, =maxKnin,|ki—ks|), and we have assumed that the

varianceA B2, is computed only including linear bias. Here
B{}=B%,,, B{2=3 1,3, andB{3,=B,4f\. , which are, re-
spectively, the bispectra induced by gravity, nonlinear bias
and primordial non-Gaussianity. Equatié#?) is now the

2Equation(39) corrects Eq(A16) in [40].

standard Gaussian likelihood for the parametgrand their
error bars(marginalized over all othes;) are simply given
by

ol=(F ). (44)
Figure 3 shows the minimal detectable valuefgf, given
by 1o error bars from Eq(44), for different survey volumes
and galaxy number densities. The left panel shows how the
fyu limits improve as we include more triangles towards
smaller scales by increasirg,.,, whereas the right panel
shows the opposite regime, whekg,, is held fixed and one
probes larger scaléfrom right to lefy by decreasindy,, all
the way up to the fundamental mode of the surkgy,
=k;. Figures 3 and 4 assume bispectra whose sides are
binned with sk=Kk; .

The different lines in Fig. 3 have been chosen to roughly
represent the 2dF surveyshort-dashed line the main
sample(long-dashed ling and the LRG sampléotted ling
of the SDSS survey, and a hypothetical survey with the same
volume as the LRG sample but with high enough density to
make shot noise negligible &t,.,. In the absence of shot
noise (and keeping our ideal survey geometry consgtame
minimum detectable value ofy, scales simply as/~*2
The scaling withk . is basically given by the naive expec-
tation that the constraints dn,. should be inversely propor-
tional to the square root of the number of modes available,

Ny, =k3 V. We thus see from Fig. 3 that an all-sky survey

with n~3x10"3(h Mpc™1)2 up to redshifiz~1 can probe
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0.1 |

b, (marginalized)

0.01 |

k. ..=0.3 h Mpc™!

103

0.1

b, (marginalized)

0.01 |-

10-2

FIG. 4. Same as Fig. 3 but for the linedr;} and quadratic bias

o
Kpex [h/Mpe]

0.01

o
K [h/Mpe])

K, =0.3 h Mpe™!

o
Kpex [h/Mpe]

parametersk,).

0.01

o
Kein [B/Mpe]
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biasing parameters. This is again a consequence cfdhle
dependencef primordial non-Gaussianity; in fact, the signal
to noise for an equilateral triangle of sikes given by (A
=47k3P)

B¢ 4
= —\37A(k), (45)

AB 7

2
E: V3mA(k), (46)

for linear and quadratic bias, respectively, whereas for pri-
mordial non-Gaussianity,

Bt 487%k3P,,
E: —ZfNL:14X 10_4fNL:C0nSt, (47)
c

where we have used a scale invariant primordial spectrum
normalized to produce the correct level of CMB anisotropies,
(4mk3P,/c*)12=2.3x1075. Equation (47) says thatthe
signal to noise per triangle is constahtn other words, for
primordial non-Gaussianity given by E(l) the total signal
to noise is only decreased at large scales by the decline in the
number of triangles, whereas for biasing parameters there is
an additional suppression due to the decrease imtiséluc-
tuation amplitude at large scalp40,45.

This explains why our constraints dr, are about two-
orders of magnitude better than those obtaind@8), where
the bound onfy, is derived by translating the constraint on
b, to an effective value ofy, atk~0.6h Mpc™ 2.

C. Including survey geometry: SDSS forecast

Let us improve the above treatment, considering a realis-
tic survey geometry with the induced covariance matrix be-
tween different triangles. We also include redshift distor-
tions, as calculated by second-order Lagrangian perturbation
theory(2LPT) from non-Gaussian initial conditions given by
Eq. (1), see[41] for a comparison of 2LPT against-body
simulations for the redshift-space bispectrum. For biasing,
we assume Eq.35) still holds in redshift space, which is a
reasonable approximation near our fiducial unbiased model.
A treatment of bias and primordial non-Gaussianity in the
presence of redshift distortions is beyond the scope of this

values offy_ of order unity. A redshift survey of such a paper.

volume may be realistic in the not too distant fut{i4é].

We consider two survey geometries that approximate the

Figure 4 shows the corresponding results for the bias panorth part of the SDSS survey, a 7300 square degree fegion

rametersb; andb,, showing that 2dF and SDSS surveys and a second one with 10400 square degtede. do not
should be able to determine the bias parameters to withifhclude the South part of the survey in our analysis, which

1-2% accuracy. This is in rough agreement with previousas a smaller volume and a nearly two-dimensional geom-
estimateq 42,44, we will provide a more detailed assess-

ment for the SDSS case in Sec. Il C. E—

It is worth comparing the right panels of Figs. 3 and 4 10 3jere by “triangle” we mean all triangles with sides withk
see from what scales is most of the signal coming from. For- /2. see Eq(37).
the case of biasing parameters, the dependenck gnat 4See http://www.sdss.org/status under “spectroscopy.” It corre-

large scales is rather weak compared to thatffgr, saying  sponds to omitting stripes 17 through 28, and ignoring 76—86 in the
that large-scale triangles contribute significantly more infor-south.

mation toward constraining primordial non-Gaussianity than SThis adds stripes 17 through 28.
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TABLE I. SDSS mock catalog§or each geometjyand bispec- R R S G AR R
trum measurements used in the analysis. Cosmological paramete 0.08 e 3 f\ » =
are as in Sec. llk,;,=0.02h Mpc™ !, andk,,,=0.3h Mpc™ ™. - = E

- \ 3 E

\ E E

1072fNL Nmocks 1073Po Niriangles Nt &0 \ \\ =5 3
0,1,4 6080 2,5,10 75101 1015 \ \ F
-0.04 == =

I = = E

etry that complicates the simplified bispectrum analysis we_g gg R \J// E ¥ o
will do below. For the radial selection function we use that I L R T

-0.05 0 0.05
1-b

o
i

corresponding to the “NYU LSS Samples” 10—{26], and 0.08
we assume that the angular selection function is unity every-
where inside the survey region, which is a very good ap- 0.04

1

Marginalized errors

proximation. & / )

Using a 2LPT cod¢41] with about 42<10° particles in |, O F | / Ab,=0.04 - 0.034
a rectangular box of sidds =660, 990, and 1320 * Mpc, _0.04 \ 4
we have created about®L0® realizations of each geometry, iy Aby=0:058 = 0.043

A LERIERY LR Ry RELARALS LA AR Y ELA] RATN IRRARLLY RERRRRR) L2 SRRARY RERERLLNELD)
| T

for Gaussian initial conditions and models with primordial _g og
non-Gaussianity with,, =100 and 40Qsee Table)L In all
cases, cosmological parameters are as given in Sec. Il an  —400 -200 0 200
b,=1, b,=0. For each of these realizations, we have mea- fu.
Sqred the redshift-space bispectrum for tljalmgles of all shapes FIG. 5. Joint 68% confidence intervals for two parameters at a
with S'deﬁl b?t\_’veen Kmin=0.02n Mpc and Okm?X time, with the third parameter marginalized over. The inner contour
=0.3n Mpc™", giving a total of Nyjangies™ 7.5X 191 - corresponds to the larger survey volume case. The lower right panel
angles. These are binned iy =1015 triangles with @ bin  shows the resuling & error bars after marginalization, with
size of 6k=0.01%1 Mpc™*. The generation of each mock smaller errors corresponding to the larger volume survey geometry.
catalog takes about 15 min, and has aboutld® galaxies
for the smaller area and 5<7L0° galaxies in the larger area >0; that is, it represents the overall amplitude of the bispec-
case. The redshift-space density field in each mock catalog tJum averaged oveell triangles. The next eigenmode,
then weighed using the FKP proced{i88], see, €.9/41,42 =2, hasy,,>0 for nearly collinear triangles ang,,<0
for a discussion in the bispectrum case. We have tried differfor nearly equilateral triangles, thus it represents the depen-
ent weightsP, (see Table)lto minimize the error bars; the dence of the bispectrum on the triangle shagee Fig. 2
results we present correspond By=5000 (™ * Mpc)®>.  Higher-order eigenmodes contain further information, such
The bispectrum in each realization is then measured for alks the dependence 6J with scale, important to constrain
(=7.5x 10" binned into 1015triangles, taking about 2 min  primordial non-Gaussianit§30,31; see Fig. 6 for an illus-
per realizatior?. tration of this point.

In order to generalize the discussion given above to the |f the bispectrum likelihood is Gaussian, we can write
case of arbitrary survey geometry, we introduce the bispecdown the likelihood as a function of the parametefsas
trum eigenmodes,, [41],

b b b e e e bervere beveeee b e by

Af,= 210 - 145

N
o
o

Nt

Qn—Qn ceih=11 Piladeb], (50

— (48)
AQn
o o where theP;(x) are all equal and Gaussian with unit vari-
where Q=(Q.), (AQm)ZE((Qm—Qm)Z)_ By definiton  ance. We have checked from our Monte Carlo pool that the

Nt
an= E Ymn
m=1

they diagonalize the bispectrum covariance matrix, distribution ofQ is indeed Gaussian even at the largest scales
L we consider. In practice, Gaussianity Bf is not guaranteed

(qnqm>=)\§5nm, (49 at large scales due to the deviations from the central limit

theorem by lack of enough uncorrelated triandl@s,41]. If

and have signal to noise, not Gaussian, diagonalization of the covariance matrix does
Ny not guarantee independence of the eigenmodes,Ahises
Sy 1 D Qm (509  Not necessarily factorize as in Eb1), but this is a good

N n_)\“ o] 7m“AQm ' approximation for small deviations from Gaussianity when

the non-GaussiaR;(x) are determined from mock catalogs
The eigenmodes are easy to interpret when ordered in ternjd1].
of their signal to noisg41]. The best eigenmodéhighest We calculate the bispectrumi{X Nt covariance matrix
signal to noisg sayn=1, corresponds to all weightg,,;  from our N, realizations of the survefsee Table )l and
from that obtainy,,, and\,,, which gives the ingredients to
implement Eq(51). The results from such likelihood analy-
5Timings are for a 1.26 GHz, Pentium Il processor. sis are shown in Fig. 5. Contours denote joint 68% probabili-
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ties, two parameters at a time marginalized over the third R B B N
parameter. The inner contour corresponds to the survey ge
ometry with the larger area. The lower right panel shows the ;440
resulting lo- error bars after marginalization; smaller uncer-
tainties correspond to the larger volume survey geometry. We
have scaled oufy, =100 bispectrum measurements to con-
tinuous values of, ; identical results are obtained by scal-
ing the f =400 mock catalogs.

It is difficult to compare these results to those of the pre-
ceding section, since they correspond to very different sur-# 0
vey geometries. However, comparing Fig. 5 to the long-
dashed lines in Figs. 3 and 4 shows that our more realistic
estimates give error bars larger by a factor of 4—5. There are¢ _sg00
reasons to expect our “realistic” treatment to be actually an
upper bound to the achievable error bars with a more sophis
ticated analysis, for the following reasons. First, we onIy_10000
considered the north part of the survey; second we use FKI
weighting, which is not optimal at large scales and thus 1
could potentially reduce our sensitivity, particularly to pri- e e e b e v e e e b e ey |
mordial non-Gaussianity; and finally, we have only used 20 “mamber of eigenmodes " 120
closed triangles in Fourier space. Due to the lack of transla-
tion invariance there is also a signal in open configurations. FIG. 6. 95% confidence limits ofiy, from the PSCz galaxy

It is interesting to compare the results of Fig. 5 betweerbispectrum[30] after marginalization over bias parameters as a
the two geometries. The larger volume survey leads to afunction of the number of eigenmodes included in the likelihood
improvement in marginalized error bars of 20% bgr, 35%  analysis.
for b,, and 45% forf, . This is more than what one expects
for uncorrelated contributions to the constraining power ofwhat smaller scales than the CMB. Our analysis in the pre-
the survey due to the increased volume20%), and is a vious section suggests that these limits should be improved
manifestation in the improvement of the bispectrum covari-by about an order of magnitude by the 2dF and SDSS sur-
ance matrix due to the narrower survey window function inveys.

Fourier space.

PSCz survey __

. 95% cl.

5000

max. likelihood —-

IV. CLUSTER ABUNDANCE AND PRIMORDIAL

D. fy. from the PSCz galaxy bispectrum NON-GAUSSIANITY

We now consider constraints ofy, from the galaxy e

: ; ; The abundance of clusters probes the probability distribu-
bispectrum measured in the P&8&urvey in[30]. The PS@ . . ) o

Ispectru u ! vey in[30] tion function(PDPF) of the matter fluctuations, and it is thus a

survey[47] is based upon the IRAS Point Source Catalog; . i . . o
y[47] P J 6tural candidate to constrain primordial non-Gaussianity

he bi rum m rements w r n 131
the bispectru easurements we use are based on 13 F33,34,48—5]. For large masses, the abundance of clusters

. . 1 S s _1 .
galaxies in the range 20 Mpc=R=50th * Mpc, with depends on the right tail of the PDF which decays exponen-

galactic latitude |b|=10°, and IRAS 6Qum flux fgy .. I - .
~0.6 Jy; sed30] for more details. We use triangles from tially for Gaussian initial conditions. However, before this

Ky =0.05h Mpc ! to k., =0.3n Mpc L, binned intoNs can be used to place a constrain g , it is necessary to

=183 triangles. We use the eigenmodes and their probab|llt9ave undgr control a number_of systemanc_ eff_ects.

R Even with recent progress in the determination of cosmo-
distributionsP;(x) computed from~10® 2LPT mock cata- . L . )
logs in[41] logical parameters, uncertainties 6, and in particularorg

Figure 6 shows the 95% confidence limits g after can alter the Gaussian abundance prediction enough to make

SO . . difficult probing the small levels of primordial non-

marginalization over the bias parameters as a function of th&aussianit corresponding 10, e.dy ~100. In addition

number of eigenmodeanked by signal to noigancluded calculationyof the rﬁass fSncti’on.frP:)Lm a i.ven PDF is ,not

in the likelihood analysis. Note how the constraintfp is : | from a g .

set by then>2 eigenmodes, which are sensitive to Scalestralghtforwgrd. Even for Gaussian initial conditions, mea-
. ’ surements in numerical simulations suffer from systematic

dependence of the bispectrum. The bound gnconverges

. X . uncertainties of order 10—30 %, depending on the definition
after the best-100 eigenmodes are included, since the re- halo mass[52]. For primordial non-Gaussianity of the

maining half of the eigenmodes does not add any significan[ pe given by Eq(1), the mass function has been estimated

signal to noise. The 95% confidence limits corresponding toanalytically in[33], but there has been so far no complemen-
123 eigenmodes are '

tary study using numerical simulations to give a sense of the
—2000< f <1600 (95%). (52)  uncertainties involved. N
At a more fundamental level, it is not even clear that one
This is comparable to the constraint from CMB fluctuationscan probefy, using rare events such as clusters, given that
before WMAP[23,24], although LSS is sensitive to some- the tail of the PDF in genera notdetermined by the skew-
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ness alone, but rather all the higher-order cumulants of the T T L u,'/h '

TR . . ) M=104 M,/h
distribution through its generating functidr29]. In other 1o focz<t Tl i
words, the mass function for massive clusters will in general_ N, ~ 5.7 108 (ST) N ~ 2.0 10° (ST)
depend on a higher order than quadratic terms in(Eg.On 2,6
512 By(>M—8M)

the other hand, the first step is to see whether deviation&
from Gaussianity can be detected at all for models such a&

Eq. (1), keeping in mind that predictions for the mass func- % " [ 7 . Bualt=-100) |

tion in a fully specified moded® () may be rather different | T

than truncating Eq(1) to second order irb. 1F Swolfn=-80) .
An important source of uncertainty in comparing theoret- b ——— - H——— -+ —

ical predictions with observations of cluster abundance is the ¢ | ¥=10¢ Mo/ T M=10% Mo/ ]

determination of cluster masses. Here we will ignore all the [ Yo 110 - I ]

sources of uncertainty mentioned above, and estimate t
what accuracy it is necessary to determine cluster masses i
order to distinguish a Gaussian from a model witly
=—50,-100, which being positively skewed gives a larger = B
abundance than the Gaussian case. For simplicity we assurr
the Press-SchechtgiPS formula for the mass function
[53,54,

>M)/Ng(>M)

0.01 0.1 0.01 0.1
AM/M AM/M

dn(M,z) 2p

dinoy(2)
dM 2| dinM

dinM vP(v) (53

FIG. 7. The horizontal lines show the excess in the number of
clusters in an ftl)l sky gl;rvely with redshift limits as shown for
masses above 10and 16°h™ "M expected for non-Gaussian pri-
where the mas$/ = 47TPR3/3 is related to the smoothing mordial fluctuations wnthL—flOOp (dashed lines and fNL=p
scale R and mean density by a top hat filter andv  —50 (dotted lines. The solid curves show the excess in the number
=0./oy(2), with 6,=1.686 ando(z) the variance of the of clusters in the Gaussian case due to an underestimate of the mass
density field at redshifz smoothed at scalB. A more accu- limit M by an amountAM as a functionAM/M. The number of
rate analytic estimate of the mass function in the Gaussiadlusters in the Gaussian calsg for such a survey is given assum-
case is given by the Sheth-Tormé&siT) mass function based ing the PS and ST mass functions.
on ellipsoidal collaps€s5-57), but it is unclear how to gen-
eralize it for the non-Gaussian case; therefore, we will useind E(z)=\Qy(1+2)3+Q,. We assume a flat Universe
Eq. (53) instead by changing the PDF{(»v). This has been with the cosmological parameters given in Sec. Il.
found to be a reasonable approximation when compared to Figure 7 shows the excess in the abundance of clusters
numerical simulations, at least for largein non-Gaussian due to non-Gaussianity, given by
models with y? initial conditions[58]. We will only deal
with ratios of non-Gaussian to Gaussian abundances, there- N’C\'IG(>|\/|)
fore our estimates should be more accurate than differences Ane(fn)=—F—= (57)
in the absolute calibration of the mass function. When esti- Nei(>M)

mating the total number of clusters expected in the Gaussia%r £, = — 100 (dashed linésand f, = — 50 (dotted line
NL— ™ NL— ™ d

case, we will quote both PS and ST values. compared 1o the excess that m me fro d i
The total number of clusters with mass larger tivdthat mpared 1o the excess that may co rom an underesti-
mate in the mass determination, given by

can be observed in an all-sky survey between redshifts
andz, is given by

NS(>M—AM)
Ag(AM/M)= —————— (58)

Ne(>M)= f dZJdQJ dM’dn(NI 2) _dv Ng(>M)

dm’  dzdQ’ .
(54) plotted as a function oAM/M. To use Eq.53), we have
measured the non-Gaussian PDF for the density field from
where realizations of Eq(1) on a 512 grid in a box of ™! Gpc
a side, smoothing the density field on a scale di TOMpc
dv  cD%(2) (other smoothing lengths in the relevant range do not change
dzd0 m (55 the results Our results in Fig. 7 for the excess abundance
0 are in reasonable agreement with Fig. 8[&8], where an
analytic approximation was developed to calculate the mass
function instead of using Eq53).
¢z d7 We see from Fig. 7 that in order to probe primordial non-
Dc:_f (56) ~ Gaussianity at level$fy [<100, uncertainties in the mass
0 E(Z") limit M should be well below 10%, assuming perfect knowl-

with
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edge of cosmological parameters, and negligible cosmiin detail by using mock catalogs with the same selection
variance. At present, direct mass determinations througfunction, there are many features of our analysis that need to
weak lensing seems to suffer an absolute uncertainty not bdée improved for a more accurate assessment. We only con-
low AM~10"h~*M, and larger at high redshif69] with  sider the north part of the survey, since the south region has
the contribution of distant large scale structures of the ordea geometry that is nearly two dimensional and which would
of 6% along 60], while the estimates provided by x-ray tem- invalidate our analysis that assumes the window function of
perature measurements hastatisticalerrors of 10—30 %. the survey is sufficiently narrow in all directions. To make
It is interesting to note here that future cluster surveysour analysis more tractable, we have used a weighting
using the Sunyaev-Zel'dovich effef$1] require similar ac- scheme that is not necessarily optimal at large scales; for
curacy in the determination of the mass threshold for detecgprimordial non-Gaussianity this can make a difference since
tion. The goal for these observations to be able to probsignificant information is coming from large scales. For these
cosmological parameters is to achieve an accuracy of 5% oreasons, our estimate is likely to be an upper limit to the
the mass limit and 10% on the mass functjé2,63. These value offy, to be probed by SDSS.
turn out to be minimal requirements for the use of clusters to In addition, we showed using simple signal to noise esti-

probe primordial non-Gaussianity at levels comparable tGnates that an all-sky survey With~ 3 X 1073(h Mpc™1)3

that within reach of CMB and LSS methods.

V. CONCLUSIONS

We studied constraints on primordial non-Gaussianity,
the form given by Eq(1), from measurements of the bispec-
trum in galaxy redshift surveys. We find that taking into ac-
count the scale dependence of the bispectrum induced
primordial non-Gaussianity is essential to obtain reliabl
constraints orfy, . As a preliminary application, we derived
the first constraints orfy, from LSS using the galaxy

bispectrum measured in the PSCz survey, obtairir2p00
=<y =1600 at the 95% confidence level.

of

b
e

up to redshiftz~1 can probe values dfy, of order unity. A
redshift survey of such a volume may be realistic in the not

too distant futurg43].

We have also studied the use of cluster abundance to con-
strain primordial non-Gaussianity. At present, uncertainties
appear too large to be able to compete with CMB or LSS, but
this can change if cluster masses can be determined with an
é’ccuracy of a few percent and other systematic errors in our
theoretical understanding improve.
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