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Cosmology and two-body problem of D-branes
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In this paper, we investigate the dynamics and the evolution of the scale factor of a probe Dp-brane which
moves in the background of source Dp-branes. The action of the probe brane is described by the Born-Infeld
action and the interaction with the background Ramond-Ramond field. When the probe brane moves away
from the source branes, it expands as a power law whose index depends on the dimension of the brane. If the
energy density of the gauge field on the brane is subdominant, the expansion decelerates irrespective of the
dimension of the brane. On the other hand, when the probe brane is a Nambu-Goto brane, the energy density
of the gauge field can be dominant, in which case accelerating expansion occurs forp<4. The accelerating
expansion stops when the brane has expanded sufficiently that the energy density of the gauge field becomes
subdominant.
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I. INTRODUCTION

With the discovery of D-branes, not only string theory b
also cosmology has been activated significantly. T
Randall-Sundrum braneworld model@1–3# is the simplest
cosmological model which was induced by the idea
D-branes. In this model, the action of the brane is assume
be the Nambu-Goto action. Cosmology with the Born-Infe
action has also been investigated in@4–6# and it was found
that the behavior of a gauge field confined to the brane
significantly different from that of a gauge field added to t
Nambu-Goto brane. Interaction between D-branes by
Ramond-Ramond~RR! charge, which is absent in th
Randall-Sundrum model, has been studied by many aut
as a potential energy source that inflates the brane@7–14#.
For a review of cosmology in the context of string theo
see, for example,@15#.

Since D-branes are a fundamental object in superst
theory, their two-body problem is also fundamental. Burg
et al. @16# studied the motion of a probe brane in the bac
ground spacetime of source branes and found that there
bound states of a D6-brane and anti-D6-brane, which t
called a ‘‘branonium.’’ Probe-brane dynamics was also d
cussed in@17,18#. Recently, cosmology on the probe bra
was studied in the context of a bouncing universe@19#.

In this paper, we investigate the two-body problem a
cosmology of D-branes. The basic approach is the sam
@16,19# but we take into account a gauge field confined to
probe brane, which was neglected in@16,19#. The motion of
the brane causes the time evolution of the induced metric
it, which is seen as cosmological expansion or contraction
an observer living on the brane. In this sense, our pictur
similar to that of ‘‘mirage cosmology’’@20–23#. Thus, by
following the motion of the brane, we can also follow th
evolution of the scale factor. We show that the gauge field
the probe brane, which has not been studied rigorously,
affect the behavior of the scale factor.

The rest of this paper is organized as follows. In Sec.
0556-2821/2004/69~10!/103506~8!/$22.50 69 1035
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we review thep-brane solutions in supergravity as the bac
ground spacetime of the source D-branes. We consider
motion of a probe brane in this background spacetime in S
III and follow the evolution of the scale factor on the prob
brane in Sec. IV. In Secs. V and VI, we give a discussion a
summary, respectively.

II. BACKGROUND SPACETIME

We consider a system in which a probe D-brane~or anti-
D-brane! moves within the background ofN parallel source
D-branes. In this section, we review thep-brane solutions in
supergravity as the background spacetime of the sou
D-branes. Low-energy effective theories for superstring th
ries are given by supergravities, among which we consi
only types IIA and IIB here for simplicity. The effective ac
tions include the metric, the two-form potential, and the s
lar dilaton in the Neveu-Schwarz–Neveu-Schwarz~NS-NS!
sector, (n21)-form gauge potentials in the RR sector, a
Chern-Simons terms. Heren is even for type IIA and odd for
type IIB.

To obtain a tractable system to study, we shall mak
consistent truncation~see@24# and references therein! of the
action down to a simple system comprising only the me
GMN , the scalar dilatonf, and a single (n21)-form gauge
potential A[n21] with corresponding field strengthF [n] .
Then the background spacetime of the source Dp-brane is
determined by the following action in the Einstein frame:

S5E DDxA2G FR2
1

2
]Mf]Mf2

1

2n!
eafF [n]

2 G , ~1!

whereD510 anda5(52n)/2 is the dilaton coupling of the
RR field. Assuming asymptotic flatness and spherical sy
metry in the transverse directions, flatness of the branes,
an ‘‘electric’’ gauge field, the background spacetime a
gauge field forp<6 are given by
©2004 The American Physical Society06-1
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ds25h2(72p)/8hmndxmdxn1h(p11)/8dmndymdyn, ~2!

ef5h(32p)/4, ~3!

AM1M2•••M p11
5eM1M2•••M p11

~12h21!, ~4!

where xm(m50,1, . . . ,p) and ym(m51,2, . . . ,D2p21)
are the coordinates parallel and transverse to the branes
spectively. We define the radial coordinate transverse to
brane asr 2[dmny

myn and thus,

h~r !511
k

r 72p
. ~5!

Herek is an integration constant which represent the ene
scale of the source branes:

k5~2Ap!52pGS 72p

2 Dgsl s
72pN, ~6!

wheregs is the string coupling constant at infinity,l s is the
string length scale, andN is the number of source branes.
should be noted that these solutions are reliable only for
@ l s. This is because supergravity is a good approximat
of superstring theory only within this region, where the bra
interactions are dominated by massless string states.

The asymptotic behaviors of the gravitational field and
gauge field potential can be understood in terms of Gau
law. Both behave asymptotically like;r 2(72p), as expected
from the Laplace equation,

¹2f ~r !5F d2

dr2
1

82p

r

d

drG f ~r !50. ~7!

Thus, the potential produced by a D6-brane is, like that o
point particle in ordinary four-dimensional spacetime,;r 21.
For global structures of these solutions, see, for exam
@25#.

On the other hand, there is no asymptotically flat solut
for p>7. Hereafter we concentrate on thep<6 cases.

III. DYNAMICS OF PROBE BRANE

In this section we consider the motion of a probe bra
which is assumed to be parallel to the source branes, in
background spacetime discussed in the previous section.
dynamics of the probe brane which has ‘‘electric’’ charge
determined by the Born-Infeld action~in the string frame!,

SBI52TpE dp11xe2fA2det~gmn12l s
2Fmn!, ~8!

and the interaction with the background gauge fieldA[ p11] ,

SWZ52qTpE A[ p11] . ~9!

Heregmn is the induced metric on the probe brane,Fmn is the
U(1) gauge field strength confined to the brane, andq is the
10350
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RR charge of the brane, which equals61 for the D-brane
and anti-D-brane, respectively. Note that the field stren
Fmn should be thermal in nature in order not to break t
isotropy of the brane. Therefore, we interpret thatFmnFmn

→^FmnFmn&, etc. @26#. The induced metric on the brane i
the string frame is written as

ds̃25e4f/(D22)ds2

52h21/2~12hv2!dt21h21/2d i j dxidxj , ~10!

where we took the static gauge,t5x0, and i , j 51,2, . . . ,p.
Here we defined the velocityv of the brane as

v2[dmn

dym

dt

dyn

dt
. ~11!

Thus the motion of the brane in the dimensions transvers
the brane is described in terms of the radial coordinater and
the velocityv.

Due to the spherical symmetry in the transverse directi
the angular momenta of the brane are conserved. This sh
that the motion is confined to the plane that is spanned by
initial position and momentum vectors. We will denote t
polar coordinate in this plane byr and u. Further, due to
technical difficulty, we treat the gauge field as a perturbat
and consider the leading term. Then the total Lagrangian
the probe brane is

L52mh21@A12h~ ṙ 21r 2u̇2!~11 l s
4FmnFmn!2q#,

~12!

where we have neglected an additive constant,m5Tp*dpx
is the ‘‘mass’’ of the brane, and the overdot denotes a der
tive with respect tot. The independent variables arer ,u, and
the gauge potentialAm on the brane. The canonical momen
associated with these variables are

pr[m21
]L

] ṙ

5
ṙ

A12h~ ṙ 21r 2u̇2!
~11 l s

4FmnFmn!, ~13!

l[m21
]L

]u̇

5
r 2u̇

A12h~ ṙ 21r 2u̇2!
~11 l s

4FmnFmn!, ~14!

pA
i [m21

]L

]Ȧi

52
4A12h~ ṙ 21r 2u̇2!

h
Fi0, ~15!
6-2
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where pA
i is also conserved as we can see from the Eu

Lagrange equation. Thus the ‘‘electric field’’Fi0 can be writ-
ten in terms of the other variables. On the other hand,
‘‘magnetic field’’ Fi j is obtained from the Bianchi identity

]mFnl1]nFlm1]lFmn50 ~16!

as

Fi j 5Ci j 5const. ~17!

Combining the above results, it follows that

FmnFmn5S d ikd j l Ci j Ckl2
d i j pA

i pA
j

8 Dh

[C8h, ~18!

whereC8 is a constant which represents the energy scal
the gauge field.

From Eqs.~13! and ~14!, we obtain the following usefu
relation:

ṙ 21r 2u̇25
pr

21 l 2/r 2

~11Ch!21h~pr
21 l 2/r 2!

, ~19!

whereC[C8l s
4 is a dimensionless constant which represe

the energy scale of the gauge field in units ofl s
21 . Then the

Hamiltonian can be written as

E[pr ṙ 1 l u̇1pA
i Ȧi2m21L

5
$11~4D1C!h%~11Ch!1h~pr

21 l 2/r 2!

hA~11Ch!21h~pr
21 l 2/r 2!

2
q

h
,

~20!

which gives the conserved energy. Here we took the ga
A050 andD[d i j pA

i pA
j /16. Note that this agree with~2.22!

of @16# in the limit of no gauge field,C,D→0. Hereafter, we
set D50 for simplicity, which means that there is only
magnetic field. From Eq.~20!, we expect that the dynamic
does not change very much even if there are both electric
magnetic fields.

Following @16#, we define the effective potentialVeff for
the radial motion as

Veff~r ![E~pr50!

5h21@A~11Ch!21hl2/r 22q#. ~21!

The asymptotic behavior depends on the charge and the
mension of the brane. Forp56,
10350
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Veff~r !→5
l

Ak
r 21/2 for r→0,

11C2q1k~q21!r 21

1F l 2

2~11C!
2k~q21!G r 22 for r→`.

~22!

For p55,

Veff~r !→5
l

Ak
2S l 2

2kAk
1

q

kD r 2 for r→0,

11C2q1F l 2

2~11C!
1k~q21!G r 22

for r→`.

~23!

For p<4,

Veff~r !→5
l

Ak
r (52p)/2 for r→0,

11C2q1
l 2

2~11C!
r 22 for r→`.

~24!

As is pointed out in@16#, there exist stable bound orbits i
the case of the anti-6-brane.

The behavior of the effective potential is shown in Figs.
2, and 3. Figures 1 and 2 show the effective potential of
p-brane and anti-p-brane for variousp, respectively. From
this, we can see that there can be a stable bound state i
case of the anti-6-brane, as is expected. Note that the pos
of the potential minimum,r min , depends on the angular mo
mentuml, and r min can be much larger thanl s if l is suffi-
ciently large. Figure 3 shows the effective potential of t
6-brane for variousC. As can be seen, the qualitative featur
do not depend onC.

Using Eqs.~13!, ~14!, and ~20!, ṙ can be expressed in
terms ofr ,E,l :

FIG. 1. Effective potentialVeff for the radial motion of the probe
brane, varying its spatial dimensionp. Other parameters are set a
k5 l 51 andC50.
6-3
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ṙ 25h21F12
r 2~11Ch!21hl2

r 2~Eh1q!2 G . ~25!

We can follow the motion of the brane by integrating th
equation. Since, as can be seen from Eq.~10!, the scale fac-
tor on the brane is a function ofr, its evolution can also be
calculated from this equation as we discuss in the next s
section. Note that this equation corresponds to the Friedm
equation and that this reduces to the Friedmann equatio
@19# in the limit of C→0.

The brane trajectory can be calculated as follows: de
u[1/r and thus,

u8[
du

du
52r 22

dr

du
52r 22

ṙ

u̇
52

pr

l
. ~26!

Eliminating pr from Eq. ~20! using this equation, we obtain

E5h21@A~11Ch!21hl2~u21u82!2q#, ~27!

from which the orbit is obtained as

FIG. 2. Effective potentialVeff for the radial motion of the probe
antibrane, varying its spatial dimensionp. Other parameters are se
ask5 l 51 andC50.

FIG. 3. Effective potentialVeff for the radial motion of the probe
anti-6-brane, varying the energy scaleC of the gauge field on it.
Other parameters are set ask5 l 51.
10350
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u2u05E
1/r 0

1/r du

AA1Bu72p2u2
, ~28!

where

A5 l 22~E212Eq2C222C!, ~29!

B5E22C2. ~30!

Thus the orbit of the probe brane is equivalent to that o
classical nonrelativistic particle in the central potential p
portional tor p27, even when there exists a gauge field on t
brane. In particular, forp56, the bound orbit is closed.

IV. COSMOLOGY ON PROBE BRANE

A. Evolution of scale factor

From the induced metric on the brane Eq.~10!, the scale
factor a is given by

a5h21/4. ~31!

On the other hand, the cosmological timet on the brane is
expressed as

t[E h21/4A12h~ ṙ 21r 2u̇2!dt

5E h21/4
11Ch

Eh1q
ṙ 21dr

5E h1/4
11Ch

A~Eh1q!22~11Ch!22hl2/r 2
dr.

~32!

Here we used Eqs.~19! and~20! in the second equation an
Eq. ~25! in the last equation. Thus, from Eqs.~31! and~32!,
the scale factora can be obtained as a function oft.

Here we define two characteristic radii: the gravitation
radiusr g and gauge-field radiusr c . The former corresponds
to the Schwarzschild radius,

r g[k1/(72p). ~33!

It should be noted that

h~r !'H k/r 72p for r !r g ,

1 for r @r g .
~34!

The latter represents the radius, below which the approxi
tion of the Lagrangian ~12! breaks down @ l s

4FmnFmn

5Ch(r c)51#:

r c[S Ck

12CD 1/(72p)

'~Ck!1/(72p). ~35!
6-4
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Hereafter we consider the caser g@ l s because otherwise th
scale factor does not change very much in the region wh
the background solution is reliable (r @ l s).

Then let us consider the situation where the probe br
goes away from the neighborhood of the source branes~but
r 5r 0@ l s,r c , of course! to infinity. Whenr !r g , the relation
between the scale factor and the cosmological time is sim
In this case Eq.~32! becomes, noting thath@1 and Ch
,1,

t'E
r 0

r

h1/4
11Ch

Eh
dr

'E21k23/4E
r 0

r

r 3(72p)/4~11Ckrp27!dr. ~36!

Note that this is independent ofq in this limit. First we
consider the caseC50. Then,

t5
4

2523p
E21k23/4~r (2523p)/42r 0

(2523p)/4!. ~37!

At late time (r @r 0), we obtain

t}r (2523p)/4, ~38!

from which the evolution of the scale factor is obtained a

a~t!5h21/4'~krp27!21/4

}t (72p)/(2523p). ~39!

Here (72p)/(2523p)51/7,1/5,3/13,1/4,5/19,3/11 forp
56,5, . . . ,1.Although the expansion becomes faster w
smallerp, the acceleration phase cannot be realized.

If C5” 0, a correction term is added,

a~t!}@t (72p)/(2523p)2ACa1~t!#, ~40!

whereA is a constant which depends onE,k,p, anda1 is, to
leading terms,

a1~t!5H t23(72p)/(2523p) for p>4,

t23/4logt for p53,

t21~r 0
2(32p)/42Bt216/(32p)(2523p)! for p<2,

~41!

where B is also a constant which depends onE,k,p. It
should be noted that the effect of the gauge field decrease
the brane expands since its energy density decreasesh
}a24.

When r becomes much larger thanr g , the scale factor
stops to evolve and becomes almost unity. The behavio
the scale factor in the case of no gauge field is shown in
4. As is expected, the scale factor evolves as a power law
then decelerates quickly to become unity. Figure 5 shows
effect of the gauge field on the brane. As can be seen,
effect is very small even ifC is as large as possible and th
late-time behavior is independent of the existence of
gauge field.
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We can also see the evolution of the scale factor by
effective Friedmann equation which can be derived from E
~25!:

a22S da

dt D 2

5
~72p!2

16
k22/(72p)a22(112p)/(72p)

3~12a4!2(82p)/(72p)~11Ca24!22

3@~E22C2!a2412~Eq2C!

2 l 2k22/(72p)a28/(72p)~12a4!2/(72p)#,

~42!

which agrees with@20# in the limit of C→0.

B. High energy limit

Here we consider the probe brane to be a Nambu-G
brane with a gauge field and the same RR charge a
D-brane, for which the Lagrangian~12! is exact. In this case

FIG. 4. Evolution of the scale factora(t) without the gauge
field on the brane for variousp. Other parameters are set ask
5108, E5103, l 510, q521, r 051.

FIG. 5. Evolution of the scale factora(t) with the gauge field
on the brane for variousC. Other parameters are set asp54, k
5108, E5103, l 510, q521, r 051.
6-5
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we can take the high-energy limit (Ch@1). Although, for a
D-brane, this limit is in contradiction to the approximatio
which we used to derive Eq.~12!, we could still obtain the
tendency to the high-energy effect, as is often done in hig
derivative theory. In this regime, Eq.~32! for r !r g becomes

t'E
r 0

r

h1/4
C

AE22C2
dr

'
Ck1/4

AE22C2
E

r 0

r

r (p27)/4dr. ~43!

For p>4,

t5
4

p23

Ck1/4

AE22C2
~r (p23)/42r 0

(p23)/4!

→
r @r 0

}r (p23)/4; ~44!

then

a~t!}t (72p)/(p23), ~45!

where (72p)/(p23)51/3,1,3 forp56,5,4. Thus accelerat
ing expansion is realized forp54. Next, forp53,

t5
Ck1/4

AE22C2
log

r

r 0

; ~46!

then,

a~t!5k21/4r 0expS AE22C2

Ck1/4
t D . ~47!

Thus the scale factor increases exponentially. Finally, fop
<2,

t5
4

32p

Ck1/4

AE22C2
~r 0

2(32p)/42r 2(32p)/4!; ~48!

then,

a~t!5k21/4S r 0
2(32p)/42

32p

4

AE22C2

Ck1/4
t D 2(72p)/(32p)

.

~49!

It can be easily shown that the expansion is acceleratin
this case. These analyses are confirmed in Fig. 6.

As stated in the previous subsection, the energy densit
the gauge field decreases as the brane expands. With
parametrization in Fig. 6, the gauge field is dominant for
whole evolution sinceC is sufficiently large so thatCh at
infinity is still large@Ch(r 5`)5C51#. If C is smaller than
unity, the late phase will behave like that of the case d
cussed in the previous subsection, even if accelerating
pansion occurs in the early phase. In Fig. 7, we show
10350
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cases with intermediateC. We can see the transition from th
accelerating phase to the decelerating phase. Of course
transition occurs earlier with smallerC.

C. Einstein frame

Finally, we give the evolution of the scale factor in th
Einstein frame. The procedure is almost the same as in
string frame. The induced metric in the Einstein frame is

ds252h2(72p)/8~12hv2!dt21h2(72p)/8d i j dxidxj .
~50!

Then the cosmological time is

t5E
r 0

r

h2(72p)/16A12hv2dr. ~51!

With C50, the scale factor evolves as, forr @r g ,

a~t!5h2(72p)/16}t (72p)2/(112p)2
, ~52!

FIG. 6. Evolution of the scale factora(t) of the brane domi-
nated by the gauge field for variousp. Other parameters are set a
k5108, E5103, l 510,q521, r 051, C51.

FIG. 7. Evolution of the scale factora(t) of the brane domi-
nated by the gauge field for variousC. Other parameters are set a
p53, k5108, E5103, l 510, q521, r 051.
6-6
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where the index is (72p)2/(112p)2

51/25,1/9,9/49,1/4,25/81,9/25 forp56,5, . . . ,1. In the
high-energy limit (Ch@1), for p5” 3,

a~t!}t (72p)2/(32p)2
, ~53!

where (72p)2/(32p)251/9,1,9,25,9 forp56,5,4,2,1. For
p53,

a~t!}expS AE22C2

Ck1/4
t D . ~54!

Thus, the condition that accelerating expansion occurs is
same as in the string frame. It should be noted that the
duced metrics in the string frame and the Einstein fra
coincide with each other forp53 because the dilaton~3! is
constant in this case.

V. DISCUSSION

In the previous section, we dealt with a simple situati
that a probe brane goes away from the neighborhood of
source branes to infinity. If the probe brane approaches
source branes, the scale factor decreases as the inver
that in the previous section. Then the other situations,
example, scattering and bound state of branes, are ea
imagine. In the former case, the brane contracts first, t
bounces and finally expands. In the latter case, the b
continues to expand and contract periodically.

In this paper, we followed the dynamics of a probe bra
that is, we neglected the back reaction. This is justified if
probe brane is light compared to the source branes. T
meansN@1, which we assumed in the analyses in Sec.
If N;1, we have to treat both branes equally and the s
gravity of the branes must be taken into account@27,28#.

Our analysis assumes stability of the probe brane. Th
are possible instabilities due to brane bending and radia
from the brane@16#. Reference@16# gave a preliminary
analysis of such instabilities. They found, forp56, that the
brane is stable classically against bending and that the ra
tion is dominated by the one into the bulk dilation fiel
ev

sh

o
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which can be made sufficiently small by appropriate cho
of the string coupling constant. One of the key assumpti
they made is to treat the brane motion as nonrelativistic
other words, their results have been obtained in the la
separation limit:k/r 72p!1 ~or r @r g in our notation!. We
obtain some of the expressions for the scale factor for
!r g where the relativistic treatment is necessary in the st
sense but we expect that the relativistic corrections will
change the stability discussed in@16#. Recently, it was shown
in @29# that time variations in the background moduli field
generally preclude the existence of stable elliptical orbits

Finally, although our study is based on the approxima
Lagrangian~12!, it would be quite interesting and importan
to study the exact Lagrangian. This will be our future wo

VI. SUMMARY

In this paper, we investigated the evolution of the sc
factor of a probe Dp-brane which moves in the backgroun
of source Dp-branes. When the probe brane moves aw
from the source branes, it expands as a power law, wh
index depends on the dimension of the brane. If the ene
density of the gauge field on the brane is subdominant,
expansion is decelerating irrespective of the dimension of
brane. On the other hand, when the probe brane is a Nam
Goto brane, the energy density of the gauge field can
dominant, in which case accelerating expansion occurs
p<4. The accelerating expansion stops when the brane
expanded sufficiently so that the energy density of the ga
field becomes subdominant. Although this is not the c
with a probe D-brane, we could still obtain the tendency t
high-energy effect of the Born-Infeld action.

The system which is investigated in this paper is t
simple to be our universe. However, further investigati
will give understanding of the relation between superstr
theory and our universe.
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