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Conditions for generating scale-invariant density perturbations
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We analyze the general conditions on the equation of statew required for quantum fluctuations of a scalar
field to produce a scale-invariant spectrum of density perturbations, including the possibility of models which
~in the four dimensional effective description! bounce from a contracting to an expanding phase. We show that
there are only two stable cases:w'21 andw@1. The first is utilized in inflationary models and the second
in the ekpyrotic/cyclic scenario, assuming the perturbations propagate through the bounce. All other cases,
including thew'0 case considered by some authors, require extreme fine-tuning of initial conditions and/or
the effective potential. For the ekpyrotic/cyclic (w@1) case, we also analyze the small deviations from scale
invariance.
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INTRODUCTION

Until recently, the only known mechanism for generati
superhorizon, adiabatic, scale-invariant density perturbat
was inflation@1#, a period of rapid, accelerated expansion.
the last few years, the ekpyrotic@2–4# and cyclic models
@5,6# have been proposed which suggest a second, altern
mechanism based on a period of slow contraction. The m
els assume that the scale-invariant perturbations produ
during the contraction phase pass through the bounce
the same spectral shape into the expanding phase@3,4,7,8#.
In this paper, we introduce a gauge invariant, system
analysis~including gravitational back reaction! that identifies
the most general conditions for obtaining a nearly sca
invariant spectrum for cases where the density perturbat
arise as a result of quantum fluctuations of a single sc
field f with potentialV(f). We include the possibility tha
the universe may bounce from a contracting to an expand
phase, and that the perturbations can be matched across
a bounce in an unambiguous way@3,4,7,8#.

First, we must obtain scale-invariant fluctuations durin
period in which the scalar field dominates the energy den
of the universe. The conditions for this to occur can be ch
acterized by the equation of statew during this epoch. We
find three interesting cases, for each of whichw is nearly
constant: ~i! an expanding universe withw'21, corre-
sponding to slow-roll inflation;~ii ! a contracting universe
with w@1, corresponding to the ekpyrotic/cyclic mode
and ~iii ! a contractinguniverse withw'0, as discussed by
Wands@9# and by Finelli and Brandenberger@10#. Although
the last case does generate a scale invariant spectrum o
vature perturbations, we shall show that the correspond
Newtonian potential has a very red power spectrum. T
points to a serious instability of the background, which
explicitly identify in the infinite wavelength limit. Unlike the
ekpyrotic/cyclic cases, thew50 background solution is un
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stable and hence not a dynamical attractor. The only a
tional cases are ones in whichw is rapidly time-varying, but
these require extreme fine-tuning ofV(f).

Hence, we find that thew@1 case, the one considered
ekpyrotic/cyclic models, is the only conceivable alternati
to inflation. Of course, this assumes that a bounce from c
traction to expansion is possible and that thek-dependence of
the perturbation spectrum is preserved through the bou
~at least in the long-wavelength limit!. Whether this concep
is physically plausible remains controversial. There ha
been criticisms of the models@11# generally~but see@12# for
responses!, and arguments have been raised suggesting th
bounce is impossible@13#, or that scale-invariant perturba
tions produced in the contracting phase cannot pass into
expanding phase@14# ~but see also counterarguments
@15#!. However, very recent work shows that, forw@1, the
contracting phase satisfies ultralocal conditions@16# that
make the evolution for long wavelengths simple to track
until a few Planck times prior to the bounce. If the tim
remaining before the bounce is so small and the spatial
ometry is flat, causality suggests that the bounce should
disturb correlations between distant points~separated by
much more than a Planck length! which cannot communicate
with one another in this finite time interval. Under the
conditions, works by several independent groups@8,17,18#
suggest that perturbations generated during the contrac
phase may pass into the expanding phase with the spe
shape unperturbed. At present, the issue is unsettled an
subject continues to be an area of active research. If
recent results are found to be rigorous, then this paper sh
that there is only one viable alternative to inflation~under the
assumptions stated below!. If the recent results are negate
then this paper shows that inflation is unique.

Our analysis is restricted to the case of a single sc
field, which includes the simplest inflationary scenarios
well as the ekpyrotic/cyclic models. In Newtonian gauge,
perturbed metric for a spatially flat background can be
pressed in terms of a single gauge invariant variableF, the
Newtonian potential, as

ds25a2~t!•$2@112F~xW ,t!#dt21@122F~xW ,t!#dxW2%,
e
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wheret is conformal time, and where we have used the f
that fluctuations of a scalar field do not generate anisotro
stress.

While knowledge ofF is sufficient to determine the per
turbed metric, it is useful to introduce a second variable,z,
which is the curvature perturbation on comoving hypers
faces@19,20#. F andz are related by

z5
2

3a2~11w!
S F

a8/a3D 8
, ~1!

where a prime denotes differentiation with respect tot. The
variablez has the virtue of remaining nearly constant at s
perhorizon wavelengths during epochs ofexpansion. In in-
flationary models, it allows one to easily match the Newto
ian potential at the horizon reentry in the matter domina
phase to that calculated at the horizon exit during the in
tionary phase. In the ekpyrotic/cyclic scenarios, once
spectrum has been determined after the bounce to an exp
ing phase,z also gives the perturbation amplitude at horiz
reentry.

It is tempting to suppose that we should only be interes
in tracking the evolution ofz. However, even thoughz is
continuous throughout a contracting phase or an expan
phase, it can undergo a rapid jump during the transition
tween the two@4,8#. It is necessary to match the incomin
F in andz in to the outgoingFout andzout . Generically there
is some mixing andzout depends on a combination of th
F in andz in @4#. Hence, it is important to know bothF in and
z in at the bounce.

For the ekpyrotic/cyclic case,F in is scale-invariant and
z in is blue~decreasing at long wavelengths!, and, hence,zout
is dominated by the scale-invariant contribution~due toF in)
at long wavelengths, leading to a scale-invariant spectrum
modes reenter the horizon during the expanding phase.
the w'0 case,z in is scale-invariant before the bounce a
F in turns out to be red~increasing at long wavelengths an
exponentially larger thanz in). This suggests that the back
ground possesses a serious long wavelength instability
confirm this by showing that the background solution is no
dynamical attractor.

THE F SPECTRUM

The differential equation for thek-modeuk of the gauge
invariant variableu, related to the Newtonian potential b
u5aF/f8 @where we drop the (in) subscript, henceforth#, is

uk91S k22
b~t!

t2 D uk50; ~2!

b~t![t2H2a2H ē1
~11 ē !

2
S d ln ē

dN
D 1

1

4
S d ln ē

dN
D 2

2
1

2

d2ln ē

dN2 J , ~3!
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where H5a8/a2 is the Hubble parameter,N[ ln a, and ē

[3(11w)/2. Note that in the case of inflation,ē reduces to
the usual ‘‘slow-roll’’ parameter, whileN is the number of
e-folds of expansion.

In the regimek2t2@ubu, Eq. ~2! reduces to the equatio
for a simple harmonic oscillator, anduk is stable. When
k2t2!ubu, however, the amplitude of the mode is unstab
In order to have a situation where successive modes w
increasingk are becoming unstable and growing, we needb
positive, and assuming thatb is slowly varying, we require
that t be negative and increasing. This applies to expand
models, such as inflation, or contracting models, such as
ekpyrotic/cyclic scenarios.

For general time-varyingw, b(t) will be a complicated
function of time, and one can use numerical methods to so
Eq. ~2!. In the most plausible cases, however, it is reasona
to approximatew as constant, at least for the observationa
relevant range of modes.

It is well-known @4,21# that solutions with constantw cor-
respond to potentials of the exponential form,V(f)
52V0e2cf, wherec andV0 are constants. In this case, th
equation of state is related to the slope of the potential b

ē[
3

2
~11w!5

1

2 S V,f

V D 2

~4!

~we use units where 8pG51) and the solution for the back
ground, assuming homogeneity, isotropy and spatial flatn
is given by

a~t!;~2t!1/(ē21), H5
1

~ ē21!at

f85A2

ē
S ē

ē21
D t21, V~f!52

~ ē23!

~ ē21!2a2t2
.

~5!

Substituting the above into Eq.~3!, we obtainb5 ē/( ē
21)2. Sinceb is constant in this case, Eq.~2! can be solved
analytically, with the general solution

uk5A2kt @C1~k!Jn~2kt!1C2~k!J2n~2kt!#, ~6!

wheren[Ab11/4, Jn is the Bessel function of the first kind
of ordern, andCi(k),i 51,2 are arbitrary functions ofk.

The functionsCi(k) are determined by specifying initia
conditions when the mode is stable, i.e., whenk2t2@b. In
this limit, we make the usual assumption that the fluctuatio
in f are in their Minkowski vacuum, which corresponds
uk' ie2 ikt/(2k)3/2. Using the relationuk5aFk /f8 and the
asymptotic properties of Bessel functions, this gives

uk5
A2pkt

4k3/2sin~pn!
@J2n~2kt!2e2 ipnJn~2kt!#, ~7!

where we have neglected an irrelevant phase factor.
5-2
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CONDITIONS FOR GENERATING SCALE-INVARIANT . . . PHYSICAL REVIEW D69, 103505 ~2004!
We are interested in the amplitude of the mode in
long-wavelength regime,k2t2!b. In this limit, we can ex-
pand the Bessel functions to obtain

k3/2Fk'
Ap

23/2sin~pn!G~12n!
S f8

a D S 2kt

2 D 2n11/2

3H 12e2 ipn
G~12n!

G~11n! S 2kt

2 D 2n

2
G~12n!

G~22n! S 2kt

2 D 2J . ~8!

The Newtonian potential has a scale-invariant spectrum
the rms amplitude ofFk varies withk as k23/2. Hence, we
conclude that this will be the case ifn'1/2. Recalling that
n5Ab11/4, this can be expressed as a constraint onb or,
equivalently,ē:

b5
ē

~ ē21!2
!1. ~9!

We have thus translated the requirement of scale inv
ance forF into a condition on the background equation
state. Therefore, we may now determine what choice ow
will satisfy Eq. ~9! and lead to a Harrison-Zel’dovich spe
trum.

First, this condition is clearly satisfied whenē!1, that is,
whenw'21. This corresponds to the case of slow-roll i
flation @1#. Note, however, that there is a second regime
which condition~9! holds, namely whenē@1, correspond-
ing to w@1. This is the limit relevant to the production o
fluctuations in the ekpyrotic and cyclic scenarios@2–6#.
These two regimes are in some sense at opposite end
parameter space. In the inflationary case,ē plays the role of
a slow-roll parameter and is therefore small. In the ekpyro
and cyclic scenarios, however,ē is large compared to unity
Also, from Eq.~5!, we see that the universe is expanding
the first case and contracting in the second.

This analysis assumed a nearly constantw so thatb(t) in
Eq. ~3! and, consequently, the spectral index is nearly c
stant. Note that this assumption is not necessary. It is p
sible, in principle, to build models for which the time
variation ofw is non-negligible, and yet the derivative term
in Eq. ~3! conspire to cancel for a significant range
e-folds, N. This has been discussed for inflation by Wa
et al. @24# who showed that maintaining the cancellation f
many e-folds requires extreme fine-tuning ofV(f) com-
pared to the constantw cases. Hence, these models se
highly unlikely.

THE z SPECTRUM

To calculate the spectrum of the second gauge invar
variable of interest,z, we substitute the expression forF
obtained in Eq.~8! into Eq. ~1!. The leading term in the
expansion forF is
10350
e
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k3/2Fk;S f8

a D ~2kt!2n11/2, ~10!

where we have omitted the numerical coefficient. As befo
we approximatew as constant, and, thus, so isn. Using Eqs.
~5!, we find

k3/2Fk;k2n11/2~2t!l;

l[2
11 ē

2~ ē21!
H 11

ē21

u ē21uJ , ~11!

as well as

a8

a3
;~2t!2(11 ē)/( ē21). ~12!

Since the expression forl involves a factor ofu ē21u, we
must consider the casesē.1 and ē,1 separately. Starting
with the latter~which includes slow-roll inflation!, we find
l50, and therefore

k3/2S Fk

a8/a3D ;k2 ē/(12 ē)~2t!(11 ē)/( ē21). ~13!

Using the relation betweenz andF given in Eq.~1!, we see
that z will have a scale-invariant spectrum ifē!1. Recall
that this limit corresponds to slow-roll inflation and that
also leads to a scale-invariant spectrum forF.

For the caseē.1, which includes the ekpyrotic/cyclic
scenarios, we findl52(11 ē)/( ē21), and thus

k3/2S Fk

a8/a3D ;k21/(ē21). ~14!

Since the right hand side is independent of time, Eq.~1!
implies that this leading term forF does not contribute toz.
In order to determine the long-wavelength piece ofz, we
must therefore keep the higher-order terms in the expan
for F given in Eq.~8!. It is straightforward to show that the
result is of the form

k3/2z; f 1~t!kē/( ē21)1 f 2~t!k(2ē23)/(ē21), ~15!

where f 1(t) and f 2(t) are time-dependent factors.
For the ekpyrotic/cyclic scenarios, corresponding to

regime ē@1, the first-term in Eq.~15! gives the dominant
contribution at long-wavelengths, and thusk3/2z goes likek.
Hence, while the conditionē@1 led to a scale-invarian
spectrum forF in the pre-big-bang phase, it yields a blu
spectrum forz. As we have seen above, this is a cons
quence of the fact that the growing mode ofF, which is
scale-invariant in this limit, is projected out ofz. Thus,z is
determined by the next-order correction in the expansion
F, which is down by a factor ofk2n'k. Nevertheless, as
mentioned earlier,z jumps at the bounce~mixes with the
5-3
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scale-invariantF mode! and is dominated by the scale
invariant contribution at long wavelengths after the unive
begins to expand.

Note that, if we chooseē'3/2, then the second term i
Eq. ~15! dominates at large wavelengths, and the result
spectrum forz is nearly scale-invariant before the bounc
This case, identified by Wands@9,22# and recently studied by
Finelli and Brandenberger@10#, describes a contracting un
verse with a dustlike equation of state,w'0. However, us-
ing our results above, we see that the corresponding s
trum of F is strongly red (k3/2Fk;k22t25), indicating a
severe long wavelength instability. Then ifF and z mix at
all at the bounce, the red contribution would dominate
long wavelengths rendering the resulting universe phen
enologically unacceptable.

STABILITY OF THE BACKGROUND SOLUTION

Before considering evolution of quantum fluctuations,
should first consider whether the constantw solutions we
have assumed as background solutions are stable attract
the equations of motion. If they are not, then they could
arise in a cosmological solution without extraordinary fin
tuning of initial conditions. The expanding inflationary (w
521) is known to be a stable attractor. Here we show t
the contracting ekpyrotic/cyclic (w@1) phase is also a stabl
attractor, but the contractingw50 phase is not.

The stability of the contracting background solutions m
be studied in the infinite wavelength~i.e., homogeneous!
limit simply by considering the scalar field equation in
homogeneous universe,

f̈13
ȧ

a
ḟ52V,f , ~16!

together with the corresponding Friedmann equation. H
dots denote derivative with respect to proper timet. Now we
consider linear perturbations, withf→f1df, a→a1da,
and spatial curvatureka22→dka22, since we consider per
turbations about a flat background. The Friedmann equa
allows us to expressd(ȧ/a) in terms ofdf, dḟ, and dk.
Inserting the background scaling solution

a~ t !}~2t !p,

V~fB!52V0e2cfB(t)5p~3p21!/t2, ~17!

wherep52/c2, and using the Friedmann equation, Eq.~16!
becomes

df̈1
113p

t
dḟ2

123p

t2 df5
3

A2pa2
dk, ~18!

with the generic solution~that is forpÞ 2
3 or 3

2!

df5D
dkt2

a2 1A0t211A1~2t !123p, ~19!
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whereD is a number dependent onp, andA0 and A1 arbi-
trary constants. Forp5 3

2 , Dt2 is replaced byETln(2t), with
E a number. Forp5 2

3 , the second homogeneous solutio
becomes,A1t21ln(2t). The t21 solution is just an infinitesi-
mal shift in the time to the big crunch,df}ḟ, and is present
for all p. Such a shift provides a solution to the Einstei
scalar equations because they are time translation invar
but is physically irrelevant since it can be removed by
redefinition of time. In contrast, the second homogene
solution represents a physical perturbation of the backgro
solution.

For a contracting universe withp. 1
3 , or w,1, the physi-

cal perturbation grows ast approaches zero, indicating a
instability of the background scaling solution.~Note that this
still holds in the specialp5 2

3 case.! For p, 1
3 , or w.1, as

in the ekpyrotic or cyclic case, the physical perturbation go
to zero in this limit, indicating stability.

This interpretation of the two homogeneous solutions
Eq. ~18! can be confirmed~for pÞ 1

3 ) by calculating the ratio
of kinetic energy to potential energy in the scalar field, whi
is constant and equal to

K

V
5

11w

12w
5

1

3p21
~20!

~even for p5 2
3 ) in the background solution. This ratio i

unaltered by thet21 solution~since it is a time shift! but the
t123p solution yields

dS K

VD }~2t !123p ~21!

which for p. 1
3 diverges ast50 is approached.

Our analysis shows in particular that thew50 (p5 2
3 )

background scaling solution is unstable and hence not
attractor. Conversely, the ekpyrotic/cyclic cases, which c
respond top!1, possess scaling solutions which are sta
attractors in the infinite wavelength limit, since the on
growing mode is, as we have discussed, just a time tran
tion. Similar conclusions have been reached in Ref.@22#.

Another general and perhaps more heuristic argument
be obtained by comparing the Friedmann equation for
three cases,

H2[S ȧ

a
D 2

5
1

3
r2

k

a2
, ~22!

whereH is the Hubble parameter andr is the energy density
For the expandingw521 case, the scalar field energy de
sity is nearly constant, whereas the curvature, radia
(}1/a4), matter (}1/a3), and other forms of energy densit
all decrease asa expands. Hence, the contant energy dens
w521 state is an attractor. For thecontracting w@1 case
(a;(2t)p with p!1), the scalar field energy density in
creases ast22}a2(2/p) asa decreases, whereas the curvatu
matter, radiation, or other forms of energy density increas
a slower rate. Hence, thew@1 contracting solution is also a
attractor of the Friedmann equation. However, for thew'0
solution, the scalar field energy density increases as 1/a3, but
radiation density increases at a more rapid rate. Furtherm
5-4
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CONDITIONS FOR GENERATING SCALE-INVARIANT . . . PHYSICAL REVIEW D69, 103505 ~2004!
as shown above, a small perturbation drives the unive
away fromw'0 (K'V) towardsw51 (K@V), a state in
which the energy density (}1/a6) increases even more rap
idly. Hence, thew'0 background is not a stable attractor

We can state the conclusion more generally. For an ex
nential potential proportional to exp(2cf), we have a scal-
ing solution whenV is positive ~negative! for c,A6 (c
.A6). In the scaling solution, we havew5(223p)/(3p)
5(c2/3)21. It follows from the analysis above thatin a
contracting universe, the scaling solution is only a stab
attractor if w.1 (or c.A6) and the scalar potential is
negative. In contrast, we infer thatin an expanding universe
the scaling solution is only a stable attractor if w,1 (c
,A6) and the scalar potential is positive. Inflationary and
quintessence-type scaling solutions are both included in
latter case.

Thus, we have completed our classification of the po
bilities. In particular, we have seen that when the univers
contracting withw@1 the Newtonian potentialF develops a
scale-invariant spectrum while that ofz is blue. In the
ekpyrotic/cyclic models, it is proposed thatF andz mix at
the bounce~which is to say that the growing mode of th
contracting phase does not match to a pure decaying mod
the expanding phase! @4#. Whether this is possible or no
remains controversial@14#. However, recent analyses of th
bounce by Tolleyet al. @8#, Craps and Ovrut@17# and Batte-
field et al. @18# support this notion. In this case, one wou
obtain scale-invariant density perturbations in the expand
phase. When the universe is contracting with a dustlike eq
tion of state (w'0), z acquires a scale-invariant spectrum
while F acquires a red spectrum. With mixing at the boun
one obtains an unacceptable red spectrum. Moreover
shown above, thew50 (p52/3) scaling solution is not an
attractor. Therefore, it is highly unlikely to find the univer
in this scaling solution in the first place.

More generally, we have shown that the only way to o
tain a stable attractor scaling background solution in a c
tracting universe is to have anegativescalar field potential
~as occurs in the ekpyrotic and cyclic models!.

SPECTRAL INDEX IN EKPYROTIC ÕCYCLIC MODELS

In the remaining part of this paper, we shall focus on
ekpyrotic/cyclic generation of perturbations and calculate
spectral index, giving a treatment analogous to that given
inflation by Wanget al. @23#. Here, as throughout the pap
~see the Introduction!, we assume that the bounce from
contracting to an expanding phase is possible and that
scale-invariant perturbations produced during the contrac
phase pass through the bounce to become scale-invarian
turbations in the expanding phase.

Recall that approximate scale invariance of the pow
spectrum in the ekpyrotic/cyclic scenario requires thatē be
large and nearly constant as modes become unstable. S
ē@1, it is convenient to introduce a small, ‘‘fast-roll’’ pa
rametere as
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2ē
5S V

V,f
D 2

. ~23!

The conditionē@1 implies e!1, which translates into the
requirement that the potential be steep.

Sinceē is large and nearly constant, the parameterb de-
fined in Eq.~3! reduces to

b't2H2a2ēH 11
1

2
S d ln ē

dN
D J , ~24!

where we have assumed thatd2ln ē/dN2 and (d ln ē/dN)2 are
much smaller thand ln ē/dN.

Recalling from Eq.~4! that ē'V,f
2 /2V2 for nearly con-

stantē, we obtain

d ln ē

dN
5S f8

aHD d ln ē

df
522S V,f

V D S f8

aHDh, ~25!

where we have introduced a second fast-roll parameterh,
defined by

h[12
VV,ff

V,f
2

. ~26!

Note thath50 corresponds to pure exponential potential
Substituting forf8/(aH) using Eqs.~5!, Eq. ~25! reduces

to

d ln ē

dN
'4ēh. ~27!

Sinceē is assumed to be nearly constant and large, Eq.~27!
implies uhu!1; that is, the potential must be nearly exp
nential.

From the background solution given in Eqs.~5!, it is eas-
ily seen that

t Ha'S 1

ē
D •$11O~e,h!%. ~28!

Therefore, substituting Eqs.~23!, ~27! and~28! into Eq.~24!,
we find

b'2~e1h!. ~29!

We may now proceed to calculate the spectral index
density perturbations. As seen from Eq.~8!, the long-
wavelength limit of the Newtonian potential is given by

k3/2Fk;k2n11/2'k2b, ~30!

where we have used the fact thatn5Ab11/4 andb!1 in
this case.

Equation~30! describes the spectrum ofF for modes that
went unstable during the contracting phase. In Ref.@4#, it
was argued that the pre-big-bang spectrum ofF gets im-
5-5
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printed on the long-wavelength part ofz as the universe
undergoes reversal from contraction to expansion.~See also
Refs. @6,8#, and @24#.! Then, the post-big-bang spectrum
energy density perturbations is given bydk;k2b, corre-
sponding to a spectral index

ns21[
d lnudku2

d ln k
522b, ~31!

where ns51 corresponds to an exactly scale-invaria
~Harrison-Zel’dovich! spectrum.

Substituting Eq.~29! into Eq. ~31!, we find that the spec
tral index of density perturbations in the cyclic and ekpyro
scenarios is given by

ns21524~e1h!524H S V

V,f
D 2

112
VV,ff

V,f
2 J . ~32!

In the case of pure exponential potentials,h vanishes iden-
tically, and therefore the spectrum is red~sincee.0). For
potentials of larger curvature than an exponential, such
2e2cf2

, one hash.0 and the spectrum is also red. How
ever, for potentials of smaller curvature than an exponen
such ase2cAf, one hash,0, and the spectrum will be blu
if e1h is also less than zero. For instance, the stri
inspired potential of Ref.@2# led to a blue spectrum. We now
see that both red and blue spectra can be achieved, as a
pated by Lindeet al. @25#.

It is instructive to compare Eq.~32! with its counterpart in
slow-roll inflation @23,26#

ns21526ē12h̄, ~33!
s.

ys

N

ys

k,

10350
t

as

l,

-

tici-

where ē5V,f
2 /2V2 and h̄5V,ff /V are the usual slow-roll

parameters of inflation. It is easily seen that pure exponen
potentials also yield a red spectrum in this case. Once ag
it is possible to find potentials for which the spectrum can
either red or blue.

In summary, our work shows that an expanding unive
with w'21 ~inflation! and a contracting universe withw
@1 are the only approaches for generating a nearly a
batic, scale-invariant spectrum of fluctuations from a sin
scale field without extreme fine-tuning. In order for the co
tracting case to be relevant for our universe, it must be p
sible for the universe to bounce from a contracting to
expanding phase and for the spectrum of fluctuations to
main scale-invariant after the bounce, as proposed in the
pyrotic and cyclic models. Whether this is physically pla
sible is controversial@13,14#, but recent development
@8,16–18# have suggested reasons to be optimistic. Tak
the optimistic point-of-view, we have shown for the ekp
rotic case that the spectral index is related to fast-roll para
eters that characterize the slope and curvature of the sc
field potential scale. In Ref.@6#, we show that this constrain
requires essentially the same amount of fine tuning as
slow-roll conditions for inflation. In Ref.@27#, we consider
the spectrum in a mixed case where the scalar field rolls fr
an expanding inflationary regime to a contracting ekpyro
regime.
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