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Conditions for generating scale-invariant density perturbations
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We analyze the general conditions on the equation of statequired for quantum fluctuations of a scalar
field to produce a scale-invariant spectrum of density perturbations, including the possibility of models which
(in the four dimensional effective descriptiomounce from a contracting to an expanding phase. We show that
there are only two stable caseg~—1 andw>1. The first is utilized in inflationary models and the second
in the ekpyrotic/cyclic scenario, assuming the perturbations propagate through the bounce. All other cases,
including thew~0 case considered by some authors, require extreme fine-tuning of initial conditions and/or
the effective potential. For the ekpyrotic/cyclioré 1) case, we also analyze the small deviations from scale

invariance.
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INTRODUCTION stable and hence not a dynamical attractor. The only addi-

tional cases are ones in whighis rapidly time-varying, but
Until recently, the only known mechanism for generatingthese require extreme fine-tuning \6{¢).
superhorizon, adiabatic, scale-invariant density perturbations Hence, we find that the/>1 case, the one considered in
was inflation[1], a period of rapid, accelerated expansion. In€kpyrotic/cyclic models, is the only conceivable alternative
the last few years, the ekpyrotf@—4] and cyclic models O inflation. Of course, this assumes that a bounce from con-

[5,6] have been proposed which suggest a second, alternatiffction to expansion is possible and thatkfependence of
mechanism based on a period of slow contraction. The mo helpertqrbaglo? spectrurr|1 IS %r?se_:\\,/ver? tr?rouﬁ.h the bounce
; ; : t least in the long-wavelength limitWhether this concept
eIs_assume that th_e scale-invariant perturbations produc_e(é physically pIaugibIe remagins rc?z)ntroversial. There rl?ave
;jhueru;gr;t;esc%r(\:ttrrzclztlstar; p:?r?ti ?ﬁgse;hrgﬁgiz theﬁgsg?n%e Wltﬁeen criticisms of the mode]41] generally(but sed 12] for
: P shap panding p 2 .responses and arguments have been raised suggesting that a
In this paper, we introduce a gauge invariant, systemati

" . o ) X e bounce is impossiblg13], or that scale-invariant perturba-
analysis(including gravitational back reactipthat identifies tions produced in the contracting phase cannot pass into the

the most general conditions for obtaining a nearly Scale'expanding phasd¢14] (but see also counterarguments in
invariant spectrum for cases where the density perturbatior[q_5])_ However, very recent work shows that, fe>1, the
arise as a result of quantum fluctuations of a single scaldfontracting phase satisfies ultralocal conditidii$] that
field ¢ with potentialV(¢). We include the possibility that 5ke the evolution for long wavelengths simple to track up
the universe may bounce from a contracting to an expandingptj| a few Planck times prior to the bounce. If the time
phase, and that the perturbations can be matched across syghhaining before the bounce is so small and the spatial ge-
a bounce in an unambiguous w8;4,7.9. _ . ometry is flat, causality suggests that the bounce should not
First, we must obtain scale-invariant fluctuations during ayisturb correlations between distant poirtseparated by
period in which the scalar field dominates the energy density,,ch more than a Planck lengtivhich cannot communicate
of the universe. The conditions for this to occur can be charyitn one another in this finite time interval. Under these
a_\cterized b_y the e_quation of stateduring this_ e_poch. We  conditions, works by several independent gro{®d7,1§
find three interesting cases, for each of whishis nearly  gyggest that perturbations generated during the contracting
constant: (i) an expanding universe witlv~—1, core-  phase may pass into the expanding phase with the spectral
sponding to slow-roll inflation(ii) a contracting universe  ghape unperturbed. At present, the issue is unsettled and the
with w>1, corresponding to the ekpyrotic/cyclic models; sypject continues to be an area of active research. If the
and (iii) a contractinguniverse withw=~0, as discussed by recent results are found to be rigorous, then this paper shows
Wands[9] and by Finelli and BrandenbergktQ]. Although  that there is only one viable alternative to inflati@mder the
the last case does generate a scale invariant spectrum of Clssumptions stated belpwf the recent results are negated,
vature perturbations, we shall show that the correspondinghen this paper shows that inflation is unique.
Newtonian potential has a very red power spectrum. This Quyr analysis is restricted to the case of a single scalar
points to a serious instability of the background, which wefie|d, which includes the simplest inflationary scenarios as
explicitly identify in the infinite wavelength limit. Unlike the  \ye|| as the ekpyrotic/cyclic models. In Newtonian gauge, the
ekpyrotic/cyclic cases, the=0 background solution is un- perturbed metric for a spatially flat background can be ex-
pressed in terms of a single gauge invariant variab]ethe

Newtonian potential, as
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wherer is conformal time, and where we have used the factyhere H=a’/a? is the Hubble parameteN=Ina, and e
that fluctuations of a scalar field do not generate anisotropi%3(1+w)/2 Note that in the case of inflatios.reduces to

stress. « " N
: . - . the usual “slow-roll” parameter, whileN is the number of
While knowledge of is sufficient to determine the per- _¢)/4s of expansion.

turbed metric, it is useful to introduce a second variable, In the regimek?72>|8|, Eq. (2) reduces to the equation
which is the curvature perturbation on comoving hypersur-for a simple harmonic oscillator, and, is stable. When

faces[19,20. @ and{ are related by k?72<|B|, however, the amplitude of the mode is unstable.
) In order to have a situation where successive modes with
d increasingk are becoming unstable and growing, we nged
a'/adl ’ @) positive, and assuming thgt is slowly varying, we require
that 7 be negative and increasing. This applies to expanding
models, such as inflation, or contracting models, such as the
ekpyrotic/cyclic scenarios.

- 2
£= 3a2(1+w)

where a prime denotes differentiation with respect.tdhe
variable{ has the virtue of remaining nearly constant at su- ; ) . .
¢ 9 y For general time-varyingv, 8(7) will be a complicated

perhorizon wavelengths during epochsexpansion In in- function of time, and one can use numerical methods to solve
flationary models, it allows one to easily match the Newton- ’ . o
g.(2). In the most plausible cases, however, it is reasonable

ian potential at the horizon reentry in the matter dominate roximat nstant. at least for the observationall
phase to that calculated at the horizon exit during the infla-C @pproximatev as constant, at feast for the observationally
elevant range of modes.

tionary phase. In the ekpyrotic/cyclic scenarios, once itd '€V . .
spectrum has been determined after the bounce to an expand-lt is well-known([4,21] that solutions with constant cor-

ing phase( also gives the perturbation amplitude at horizonresmnd_cgs0 potentials of the exponential f_orm’,(d))
reentry. =—Vpe “?, wherec andV, are constants. In this case, the

It is tempting to suppose that we should only be interestec?quation of state is related to the slope of the potential by

in tracking the evolution of. However, even thougl is 3 1V .\2

continuous throughout a contracting phase or an expanding e=—(1+w)= _<_'¢) (4)
phase, it can undergo a rapid jump during the transition be- 2 2\ Vv

tween the twd4,8]. It is necessary to match the incoming ) )

®,, and{;, to the outgoingb,,; and ;. Generically there (we use units vyhereast 1) a}nd_the solution for the back-

is some mixing and,,; depends on a combination of the _grOl_Jnd, assuming homogeneity, isotropy and spatial flatness,
@, and{;, [4]. Hence, it is important to know both;, and IS given by

;, at the bounce.

For the ekpyrotic/cyclic caseb,, is scale-invariant and (-1 _ 1
Lin is blue(decreasing at long wavelengthand, henceZ, a(r)~(=1) , H= (e—1)ar
is dominated by the scale-invariant contributiglue to®;,,)
at long wavelengths, leading to a scale-invariant spectrum as — _
modes reenter the horizon during the expanding phase. For ;o \ﬁ € 1 y(g)=— (e=3)
thew~0 case,, is scale-invariant before the bounce and ¢'= et/ ¢)= (e—1)2a272

®,, turns out to be redincreasing at long wavelengths and (5)
exponentially larger thag;,). This suggests that the back-

grou.nd possesses a serious long wavelength in;tapility; We gubstituting the above into Eq3), we obtain8=¢/(e
confirm this by showing that the background solution is not a_ 1)2. Since is constant in this case, E(@) can be solved

dynamical attractor. analytically, with the general solution

THE & SPECTRUM U= —k7 [Cy(K) I (—k7)+Ca(k)I_(—k7)], (6)

The differential equation for thk=-modeu, of the gauge
invariant variableu, related to the Newtonian potential by
u=ad/¢’ [where we drop theifi) subscript, henceforihis

wheren=+/B8+1/4, J, is the Bessel function of the first kind
of ordern, andC;(k),i=1,2 are arbitrary functions &

The functionsC;(k) are determined by specifying initial
conditions when the mode is stable, i.e., whéa’>g. In
e B(T)) e O: @ this limit, we make the usual assumption that the fluctuations

2k in ¢ are in their Minkowski vacuum, which corresponds to

u~ie 7/(2k)%2. Using the relatioru,=a®,/¢’' and the
asymptotic properties of Bessel functions, this gives

Ug+

PP _+(1+?) dine| 1(dIne 2
p(n=rHa% e 2 dN 4| dN \V—akT .
Ue=—————[I_n(—kr)—e ™I (—kn)],  (7)
1 d?ne 4Kk3sin(rn)
-, (3
2 dNJ where we have neglected an irrelevant phase factor.
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We are interested in the amplitude of the mode in the o @' "
long-wavelength regimek?72< . In this limit, we can ex- k %k”(; (—kr)~ " (10
pand the Bessel functions to obtain

Cv1p where we have omitted the numerical coefficient. As before,
K32 ~ Jm i’ —k7r\ 7" \(m)a apprfpx(;materv as constant, and, thus, sonisUsing Egs.
2%%in(mn)T(1—n) | @ /| 2 5), we fin
L el () (k)20 kY20~ k" V(= 7)Y,
1178 a2 _ _
l+e e—1
r'-n)/—kr\? A=—— 1+ — , (12)
—ﬁ TT ] (8) 2(6_1){ |€_1|]
as well as
The Newtonian potential has a scale-invariant spectrum if
the rms amplitude ofb, varies withk ask™®2 Hence, we a’ _
conclude that this will be the caserf~1/2. Recalling that —~ (=7 Araled), (12

3
n=+/B+1/4, this can be expressed as a constrainBaor, a

equivalently,e: Since the expression far involves a factor ofe— 1|, we

— must consider the cases>1 ande<1 separately. Starting
_E <1. (9) with the latter(which includes slow-roll inflatioy) we find
(e—1)? A=0, and therefore

ance for® into a condition on the background equation of
state. Therefore, we may now determine what choicevof

will satisfy Eq. (9) and lead to a Harrison-Zel'dovich spec- Using the relation betweefiand® given in Eq.(1), we see

trum. that ¢ will have a scale-invariant spectrum ék<1. Recall

First, this condition is clearly satisfied wher<1, thatis, it this limit corresponds to slow-roll inflation and that it
whenw=~ —1. This corresponds to the case of slow-roll in- 5i55 |eads to a scale-invariant spectrumdar

flation [1]. Note, however, that there is_a second regime in
which condition(9) holds, namely wher>1, correspond-
ing to w>1. This is the limit relevant to the production of

We have thus translated the requirement of scale invari- k3’2< (O )Nk_;/(l_;)(_ T)(1+?)/(?—1)_ 13
a'lad

For the casee>1, which includes the ekpyrotic/cyclic
scenarios, we find =—(1+¢€)/(e—1), and thus

fluctuations in the ekpyrotic and cyclic scenarif®—6). @ -

These two regimes are in some sense at opposite ends of k?»/Z(_k ~ Kk~ We=1) (14)
. . — 1143

parameter space. In the inflationary cas@lays the role of a'la

a slow-roll parameter and is therefore small. In the ekpyrotic

d i i0s. h i | dt i Since the right hand side is independent of time, Eq.
and cyclic scenarios, NOWever,Is farge compared to unity. implies that this leading term fab does not contribute tg.
Also, from Eq.(5), we see that the universe is expanding in

the first case and contracting in the second. In order to determine the long-wavelength pieceofwe

This analysis assumed a nearly constasb that@(r) in must therefore keep the higher-order terms in the expansion

Eq. (3) and, consequently. the spectral index is nearly Conl‘or @ given in Eq.(8). It is straightforward to show that the
. oK d result is of the form

stant. Note that this assumption is not necessary. It is pos-

sible, in principle, to build models for which the time-

variation ofw is non-negligible, and yet the derivative terms

in Eq. (3) conspire to cancel for a significant range of :
. : ; . wheref,(7) andf,(7) are time-dependent factors.
e-folds, N. This has been discussed for inflation by Wang For Ee ekpyrotic/cyclic scenarios, corresponding to the

et al.[24] who showed that maintaining the cancellation for ) . ) X
many e-folds requires extreme fine-tuning \éf¢) com- regime e>1, the first-term in Eq(15) gives the dominant

pared to the constant cases. Hence, these models seenfOntribution at long-wavelengths, and theis’; goes likek.
highly unlikely. Hence, while the conditiore>1 led to a scale-invariant
spectrum ford in the pre-big-bang phase, it yields a blue
spectrum for{. As we have seen above, this is a conse-
quence of the fact that the growing mode ®f which is

To calculate the spectrum of the second gauge invariargcale-invariant in this limit, is projected out ¢f Thus,{ is
variable of interest/, we substitute the expression fdr  determined by the next-order correction in the expansion for
obtained in Eq.(8) into Eq. (1). The leading term in the @®, which is down by a factor ok®"~k. Nevertheless, as
expansion ford is mentioned earlier{ jumps at the bouncémixes with the

K327 ~f,(7) Kel(e=1) 4 fo( T)k(z?—g)/(?— 1), (15)

THE ¢ SPECTRUM
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scale-invariant® mode and is dominated by the scale- whereD is a number dependent @ andA, and A, arbi-
invariant contribution at long wavelengths after the universdrary constants. Fqu= 2, Dt? is replaced byE TIn(—t), with
begins to expand. E a number. Fomp= %, the second homogeneous solution
Note that, if we choose~3/2, then the second term in PecomesA;t~tin(—t). Thet ! solution is just an infinitesi-
Eq. (15) dominates at large wavelengths, and the resultingnal shift in the time to the big cruncl$ ¢, and is present
spectrum for/ is nearly scale-invariant before the bounce.for all p. Such a shift provides a solution to the Einstein-
This case, identified by Wand8,22] and recently studied by scalar equations because they are time translation invariant,
Finelli and Brandenbergdi 0], describes a contracting uni- but is physically irrelevant since it can be removed by a
verse with a dustlike equation of state~0. However, us- redefinition of time. In contrast, the second homogeneous
ing our results above, we see that the corresponding spegolution represents a physical perturbation of the background
trum of @ is strongly red k¥%®,~k=277%), indicating a  solution.
severe long wavelength instability. Thendf and ¢ mix at For a contracting universe with> 3, orw<1, the physi-
all at the bounce, the red contribution would dominate atcal perturbation grows as approaches zero, indicating an
long wavelengths rendering the resulting universe phenominstability of the background scaling 50|Utld'N0te that this
enologically unacceptable. still holds in the speciap=3 case) For p<3, orw>1, as
in the ekpyrotic or cyclic case, the physical perturbation goes
to zero in this limit, indicating stability.
This interpretation of the two homogeneous solutions to
Before considering evolution of quantum fluctuations, weEg. (18) can be confirmedfor p# 3) by calculating the ratio
should first consider whether the constamtsolutions we  of kinetic energy to potential energy in the scalar field, which
have assumed as background solutions are stable attractorsisaconstant and equal to
the equations of motion. If they are not, then they could not
arise in a cosmological solution without extraordinary fine- K_1+w_ 1 (20)
tuning of initial conditions. The expanding inflationary ( Vo 1-w 3p-1
=—1) is known to be a stable attractor. Here we show tha
the contracting ekpyrot|c/eycll_d/(>l) phese Is also a stable unaltered by the ! solution(since it is a time shijtbut the
attractor, but the contracting=0 phase is not. {1730 solution yields
The stability of the contracting background solutions may
be studied in the infinite wavelengtti.e., homogeneous (K) (-
—_— oC

STABILITY OF THE BACKGROUND SOLUTION

Eeven forp=%) in the background solution. This ratio is

limit simply by considering the scalar field equation in a (21)
homogeneous universe,
which for p> 3 diverges ag=0 is approached.

. a. Our analysis shows in particular that the=0 (p=2)

d+3 6=V, (16 background scaling solution is unstable and hence not an
attractor. Conversely, the ekpyrotic/cyclic cases, which cor-
éespond top<1, possess scaling solutions which are stable
attractors in the infinite wavelength limit, since the only
growing mode is, as we have discussed, just a time transla-
tion. Similar conclusions have been reached in R&3).

together with the corresponding Friedmann equation. Her
dots denote derivative with respect to proper timdow we
consider linear perturbaztions, wigfa—>¢+ o¢, a—a+da,
and spatial curvaturka™ “— ska™ <, since we consider per- L

turbations about a flat background The Friedmann equatloBeA(‘)nbc;gi‘ﬁégebr;e::a;riggr?neéhﬁlzs g:i% r;ﬁ;#r:'setguaart?gnmg:t t(naen
allows us to express$(a/a) in terms of 8¢, 5¢, and k. three cases,

Inserting the background scaling solution

s\ 2
, (a1 k
a(t)=(—t)°, H™=|3 =3P 2 (22
V(¢p)=—Voe *%e=p(3p—1)/t?, (17 whereH is the Hubble parameter apds the energy density.

For the expandingv=—1 case, the scalar field energy den-
wherep=2/c?, and using the Friedmann equation, Etf)  sity is nearly constant, whereas the curvature, radiation
becomes («1/a*), matter ¢<1/a%), and other forms of energy density

all decrease aa expands. Hence, the contant energy density

. 1+3p . 1-3p 3 w=—1 state is an attractor. For tleentracting w1 case
8¢+ —— 0= —z 0= ﬁék, (18 (a~(—t)? with p<1), the scalar field energy density in-
2pa creases as 2xa (?P) asa decreases, whereas the curvature,
matter, radiation, or other forms of energy density increase at
a slower rate. Hence, thve>1 contracting solution is also an
Skt? attractor of the Friedmann equation. However, for whe 0
Sh=D —5 + Agt L+ A (— )13, (19) soldtl(_)n, the sealer field energy density m_creasesafs but
radiation density increases at a more rapid rate. Furthermore,

with the generic solutiorithat is forp+ % or 3)
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v, (23

away fromw=~0 (K=~V) towardsw=1 (K>V), a state in €=

which the energy density={1/a®) increases even more rap-

idly. Hence, thew~0 background is not a stable attractor. = ) ,
We can state the conclusion more generally. For an expo--rhe _condltlone>1 implies e<1, which translates into the

nential potential proportional to exp(c¢), we have a scal- requ_|rem_er.1t that the potential be steep.

ing solution whenV is positive (negativé for c< 6 (c Sincee is large and nearly constant, the paramgtate-

>./6). In the scaling solution, we have=(2—3p)/(3p) fined in Eq.(3) reduces to

as shown above, a small perturbation drives the universe 1 ( V )2

2€

=(c?/3)—1. It follows from the analysis above that a 1(dIne
contracting universe, the scaling solution is only a stable B~ 7-2H2a241+— j} (24)
attractor if w>1 (or ¢>./6) and the scalar potential is 2\ dN

negative In contrast, we infer thah an expanding universe — —
gative >0 P 9 where we have assumed thtfin ¢/dN? and (d In /dN)? are
the scaling solution is only a stable attractor if<wdl (c

</6) and the scalar potential is positivénflationary and much sm.aller tham In€/dN. 2o
quintessence-type scaling solutions are both included in this Recalling from Eq.(4) that e~V ;/2V* for nearly con-

latter case. stante, we obtain
Thus, we have completed our classification of the possi- _ _
bilities. In particular, we have seen that when the universe is dine [¢'|dline [V [ ¢’
contracting withw>1 the Newtonian potentiab develops a dN laH do B (7 aH/ ™ @9

scale-invariant spectrum while that d&f is blue. In the

ekpyrotic/cyclic models, it is proposed th@ and ¢ mix at wh(_are we have introduced a second fast-roll paramsgier

the bounce(which is to say that the growing mode of the defined by

contracting phase does not match to a pure decaying mode in

the expanding phasd4]. Whether this is possible or not —1-

remains controversidll4]. However, recent analyses of the

bounce by Tolleyet al.[8], Craps and Ovrutl7] and Batte-

field et al. [18] support this notion. In this case, one would Note that»=0 corresponds to pure exponential potentials.

obtain scale-invariant density perturbations in the expanding Substituting for¢’/(aH) using Eqgs(5), Eq.(25) reduces

phase. When the universe is contracting with a dustlike equd®

tion of state v=0), ¢ acquires a scale-invariant spectrum,

while @ acquires a red spectrum. With mixing at the bounce,

one obtains an unacceptable red spectrum. Moreover, as

shown above, thev=0 (p=2/3) scaling solution is not an _

attractor. Therefore, it is highly unlikely to find the universe Sincee is assumed to be nearly constant and large,(Eq).

in this scaling solution in the first place. implies [ 7[<1; that is, the potential must be nearly expo-
More generally, we have shown that the only way to ob-nential. S o

tain a stable attractor scaling background solution in a con- FTom the background solution given in EgS), it is eas-

tracting universe is to have megativescalar field potential Iy Seen that

(as occurs in the ekpyrotic and cyclic models

(26)

dine i )
aN_ " 4en. (27)

€

THa%(i {1+ 0(e,n)}. (28)

SPECTRAL INDEX IN EKPYROTIC /CYCLIC MODELS o .
Therefore, substituting Eq&23), (27) and(28) into Eq. (24),

In the remaining part of this paper, we shall focus on thewe find
ekpyrotic/cyclic generation of perturbations and calculate the
spectral index, giving a treatment analogous to that given for B~2(e+ 7). (29)
inflation by Wanget al. [23]. Here, as throughout the paper .
(see the Introduction we assume that the bounce from a W(_a may now proceed to calculate the spectral index of
contracting to an expanding phase is possible and that tHi€nsity perturbations. As seen from E(), the long-
scale-invariant perturbations produced during the contractinf/@velength limit of the Newtonian potential is given by
phase pass through the bounce to become scale-invariant per- 2P, ~ KN+ V2B (30)
turbations in the expanding phase. K '

Recall that approximate scale invariance of the POWEl hare we have used the fact that B+ 1/4 andB<1 in
spectrum in the ekpyrotic/cyclic scenario requires thdte  this case.

large and nearly constant as modes become unstable. SinceEquation(30) describes the spectrum @ for modes that
e>1, it is convenient to introduce a small, “fast-roll” pa- went unstable during the contracting phase. In Réj, it
rametere as was argued that the pre-big-bang spectrumdofgets im-
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printed on the long-wavelength part ¢f as the universe where e=V2/2v2 and n=V 4,/V are the usual slow-roll

undergoes reversal from contraction to expansiSee also

parameters of inflation. It is easily seen that pure exponential

Refs.[6,8], and[24]) Then, the post-big-bang spectrum of yqenials also yield a red spectrum in this case. Once again,

energy density perturbations is given ~k #, corre-
sponding to a spectral index

_din[§?

Ns™ 1= "dink (3D

—2B,

it is possible to find potentials for which the spectrum can be
either red or blue.

In summary, our work shows that an expanding universe
with w~ —1 (inflation) and a contracting universe with
>1 are the only approaches for generating a nearly adia-

where nS:]_ Corresponds to an exactly Sca|e_invariantbatic, scale-invariant SpeCtI’um of fluctuations from a Single

(Harrison-Zel'dovich spectrum.

Substituting Eq(29) into Eq.(31), we find that the spec-

scale field without extreme fine-tuning. In order for the con-
tracting case to be relevant for our universe, it must be pos-

tral index of density perturbations in the cyclic and ekpyroticsible for the universe to bounce from a contracting to an

scenarios is given by

2

Ne—1=—4(e+7n)=—4 +1-

Vi

vV
j"’b] . (32
Vi

In the case of pure exponential potentialsyanishes iden-
tically, and therefore the spectrum is ré&ince e>0). For

expanding phase and for the spectrum of fluctuations to re-
main scale-invariant after the bounce, as proposed in the ek-
pyrotic and cyclic models. Whether this is physically plau-
sible is controversial[13,14], but recent developments
[8,16—18 have suggested reasons to be optimistic. Taking
the optimistic point-of-view, we have shown for the ekpy-
rotic case that the spectral index is related to fast-roll param-

potentials of larger curvature than an exponential, such asters that characterize the slope and curvature of the scalar
_e—C¢2, one hasy>0 and the spectrum is also red. How- field potential scale. In Ref6], we show that this constraint
ever, for potentials of smaller curvature than an exponentialiequires essentially the same amount of fine tuning as the
such az~ %%, one hasy<0, and the spectrum will be blue slow-roll conditions for inflation. In Ref[27], we consider

if e+ 7 is also less than zero. For instance, the stringthe spectrum in a mixed case where the scalar field rolls from
inspired potential of Ref.2] led to a blue spectrum. We now an expanding inflationary regime to a contracting ekpyrotic
see that both red and blue spectra can be achieved, as antigegime.

pated by Lindeet al. [25].
It is instructive to compare Eq@32) with its counterpart in
slow-roll inflation[23,26]

ne—1=—6e+27, (33
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