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Precision primordial “He measurement from the CMB
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Big bang nucleosynthesi®BN) and the cosmic microwave backgrou@MB) are two major pillars of
cosmology. Standard BBN accurately predicts the primordial light element abundafdes @, *He and
’Li), depending on one parameter, the baryon density. Light element observations are used as a baryometer.
The CMB anisotropies also contain information about the content of the Universe which allows an important
consistency check on the big bang model. In addition CMB observations now have sufficient accuracy to not
only determine the total baryon density, but also resolve its principal constituents FHmdWe present a
global analysis of all recent CMB data, with special emphasis on the concordance with BBN theory and light
element observations. We firdgh?=0.0250 53922 and Y, = 0.250' 3319 (fraction of baryon mass a#He)
using CMB data alone, in agreement witHe abundance observations. The determinatio¥ ollows us to
constrain the relativistic degrees of freedom during BBN, measured through the effective number of light
neutrino speciesl,\lvveffzaozfgj?g, in accord with the standard model of particle physics. With this concor-
dance established we show that the inclusion of stand¥ird;=3, BBN theory priors significantly reduces
the volume of parameter space. In this case, wedighi?=0.0245 3 3933and Y, = 0.2493 3333, We also find
that the inclusion of deuterium abundance observations reduces,taad Qgh? ranges by a factor of-2.
Further light element observations and CMB anisotropy experiments will refine this concordance and sharpen
BBN and the CMB as tools for precision cosmology.
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[. INTRODUCTION erfully predictive probe of nuclear and particle astrophysics
at low and high redshiftl4—20. Given the constraint on the
Big-bang nucleosynthesi®BN) and the cosmic micro- baryon density from the CMB, BBN vyields a tight prediction
wave backgroundCMB) anisotropy are two pillars of the of primordial *He abundance.
hot big bang model. We also explore the promise of combining the CMB data
The theory of BBN has long stood as an emblem of thewith measurements of the deuteriuD/H) abundance,
predictive power of the big bang modél-4]. BBN has long  showing that current measurements(BfH) can combine
provided the most reliable measurement of the cosmologicapith the CMB constraints to reduce the error bars*ste by
baryon density. However, the CMB is rapidly becoming theanother factor of 2.
preferred method for determining the baryon density, with its In Sec. Il we explain the datéCMB, BBN) and the
rapidly increasing precision. With the CMB, light element method used to determine the likelihood surface in parameter
abundance observations become a probe of the Universe. space—the Metropolis-Hastings Markov chain Monte Carlo
The observation and analysis of cosmic microwave backtMCMC) algorithm. In Sec. Ill the parameter confidence in-
ground (CMB) anisotropies have attracted a great deal oftervals that are extracted from that likelihood surface are
attention in recent years due to their unique relevance fofliscussed. In Sec. IV we discuss the implications of our re-
cosmological theorysee[5] for a recent review A flood of ~ sults and how precision might be increased with further cos-
observational results have been published during the pa$tological data.
two years[6—13. These observations taken together mea-
sure CMB anisotropies over a large range of angular scales. Il. METHODS
The CMB is sensitive to the properties of the photon-baryon
fluid and hence allows a precision determination of the Our cosmological parameters are measured by use of the
baryon density at redshift~ 1000. Markov chain Metropolis-Hastings algorithm. We allow the
It is therefore apparent that combining BBN and CMB “He mass fraction to float as an independent variable, yield-
provides an opportunity for meaningful consistency checksng the following parameter spacé,,,Q, ,ns,h,Qgh?,
on the standard cosmology and has the potential to be pow¢,,7,r,n; where(, , g) is the matter, cosmological con-
stant, and baryon contents, respectiv¥ly,is the fraction of
the baryons irfHe by massh is the Hubble constant in units

*Electronic address: gregOhuey@isildur.astro.uiuc.edu of 100 km/s Mpc,n(s 1y are the power-law index of the pri-
"Electronic address: cyburt@astro.uiuc.edu mordial scalar and tensor perturbations respectively,the
*Electronic address: bwandelt@uiuc.edu fraction of the observed CMB quadrupole that is tensorand
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A AR R R AR AR EEL AL RARAEARRS ] probability needs to be corrected by the factor
- ] P(X;|p)/P(p|X;) in order to enforce detailed balance. If
X1 is not set to the poinp, then it is set to the current

WMAP ] - - .. . .
ik ™ o iR e R point: X; . ;= X; . After a sufficient number of iterations the
YO0 Q Socmamgl ] resulting density of point§X;[i=1 .. .n} asymptotically ap-
e e 1 proaches the likelihood function on parameter space. What
oy MAXIMA 1 constitutes a “sufficient” number of points is in general dif-
E * VSA 4

ficult to determine(and impossible to determine with abso-
| 1 lute certainty—though there are tests which are good indi-
N ] cators. We use a test for our Markov chain which was
5 ] suggested by25] and also used by the WMAP teai6].
9] . $ ] We tune our Markov chain code for optimal efficiency by
"""" 100 2000 2500 3000 first finding the maximal likelihood point in parameter space
using a global maximization methddithin our prior space,
FIG. 1. The figure shows the data used in this papee legend ~ S€e below then using it as the starting point for a sample
and 68% confidence intervals in the space of inferred theoreticadMarkov chain. The variance of the sample chain is used to
power spectrdsolid). compute a step size matrix that will be used by the main
chains. An efficient Markov chain should take steps that are
not too large or too small—either will result in an inefficient,
is the optical depth to the last-scattering surfébat is, res-  slowly converging chain.
cattering of CMB photons by reionization is allowed )or We choose our proposal density to be a multivariate
Note that in our selection of the parameter space simplifyingsaussian, whose covariance matixis proportional to the
assumptions have been made: adiabatic, scale-free primazevariance of the sample chaify . The proportionality con-
dial perturbations, the universe contains only cold dark matstanta(D) is chosen so if the underlying distribution were
ter and a cosmological constant and the neutrino species ataussian, 50% of the Markov chain points would be ac-
strictly those of the standard model. To determine the regioepted. Its value depends on the number of dimensions of
of this parameter space allowed by experimental data, onparameter spac® (for usD=9). We found
must sample the space over a wide range of points. At a
given point the relative likelihood of the parameter values @(D)=0.5478D — 0.36159. (1)
yielding the observations must be determined, and the range
of points sampled must adequately cover the space. Our pri- \We ran two sets of Markov chaind,andB, each consist-
mary likelihood calculation is a comparison of the simulateding of 20 independent chains. Each chain was started at a
CMB spectra produced bymBrasT [21] against the WMAP  point chosen from the distribution of the sample chain./Set
CMB experiment[13], along with smaller-scalébin €¢1;  had only very weak top-hat priors)gh?e[0.014,0.030,
>350) data from the following experiments: Toco9a], Y,€[0.13,0.34, he[0.45,0.95, Q,,€[0.03,1.00, Q,
DASI [7], Maxima [8], VSA [9], ACBAR [10], Boomer-  ¢[0.00,0.97, nse[0.5,1.4, n,e[—3.0,3.0, r€[0.0,3.0,
ang02[11], and CBI[12] [41]. We include the published 7<[0.0,1.0), whereas seB additionally had two strong pri-
calibration uncertainties for each experiment and find theyrs: a BBN consistency condition betwe€hzh? and Y,
maximum likelihood value for these parameters at each point27] and the constraint=0.74+0.11—-0.094[28,42. The

2000

in the cosmological parameter space. _ BBN consistency condition is simply this: for a given baryon
Figure 1 shows the data we used as well as the most likelgensity one expects BBN to produce a certain abundance of
68% of our inferred theory power spectra. “He, with some theoretical errdmostly driven by uncer-

One could attempt to sample the parameter space on @inties in the nuclear cross sectipnis setA we treat(gh?
uniform grid, but the high dimensionality coupled with the ang v as two independent variables. In $twe enforce
computational demands @MBFAST makes this impossible theoretical self-consistency between those variables. This

in & reasonable amount of time. Instead, we implemented thgon-CMB constraint is incorporated in a Bayesian way. The
Metropolis-Hastings MCMC  algorithn{22-24: starting  aqditional information is included as an additional prior and

from the current point in parameter spaXeone proposes a the density to be sampled frothe posterior densijybe-
test pointﬁ, drawn from a distribution described by a density COMes

function called the proposal density{p|X;). The choice of . . )

proposal density is somewhat arbitrary, but a poor choice Piot(X)=Pcmp(X)Peen(Q28h%,Yp) Prubpid h)

V\{I|| cause the parameter _estlmfltl_on procedure to be ineffi- =P()ZlCMB)P(Yp|QBh2)P(h|Hubee data
cient. The likelihood relative t; is computed at the test
point p. If the likelihood atp is greater, then poink; ., ; @

=p. Otherwise there is a probability thi. ,=p equal to  whereP(x|y) is the conditional density for getting given

the likelihood ofﬁ divided by the likelihood of)?i. If the vy. Note thatP(Yp|QBh2) is purely a theoretical prior enforc-
proposal density is not symmetric in its arguments then thisng the BBN relation, and contains no abundance measure-
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ments. The Markov chain then automatically explores the  *% T T T T
new, more constrained region of parameter space. As on [
might expect, seté andB differ significantly in their param-

eter space coverage, and thus their proposal densities ar
chain starting points were determined separately.

Though a Markov chain approach saves significant com-
putational time, it is difficult to guarantee after some number
of points that the chain has converged sufficiently to the true, =
underlying distribution. Indeed, a chain cannot tell one any- > . T

. . . .. = He vs Q_h" consistency
thing about a region it has not yet visited. We use a conver-  “®'T" | _ wuap, w/ BN, Hoproj priors
gence test suggested by Gelman and R{B&), which was 025
also employed by WMARP26].

We have generalized this criterion to multiple dimensions,
keeping in mind that any convergence test must be covarian 0248
(if a transformation of parameter space can change the detel .k I L L L
mination of “convergence,” then the test is a bad prigach . 0z 0 0020 00 00

2
chain out of the 20 has its own mean and varialtd. If Hgh

eaqh chain reflected the under_lylng distribution, then the FIG. 2. The top figure shows the 68% confidence region in the
variance of the means of th.e Ch{.;“n‘?‘ Sh.OU|d be much less th%thZ’ Y, plane from the CMB data alor®@/MAP and high¢ data
the var!ance of the undgrlylng dlstrlbu.tlon. We thug CornpUtefrom other recent CMB experimentbounded by the circled area
the variance of the chain means, multiply with the inverse ofy,e |ing. The straight(black line bounds the 68% confidence
the average chain variance, and take the trace: region from BBN theory alone, using the best fizh? from the
CMB. Note that the BBN theory band is in good agreement with the
1 N CMB data. The bottom figure shows the result of combining CMB
U= N=T. (xj — x)®(xj —X) and BBN data using an expand¥d axis. The solid filled-in region
=1 (red is the 68% confidence region for the d&tMarkov chains
which have as priors the BBN constraint and the Hubble Key
n; project constraint orh. Note that the BBN constraint greatly re-
1 P ¥ duces the allow range &fp as a function of)gh?
> — 71(in_xj)®(xj,i_xj) P N

1
N i=1 nj—li

0.26 — WMAP, weak priors

4 2 :
— He vs Q h” consistency

0.25

0.24

2023

0.249

W=

Project (CCP?! where the parameter constraints from chains
w=Tr{UW 1]/D (3 A and B can be explored and combined with other cosmo-
logical datasets and priors. Further details about the CCP and
. . . bout t timati thodol ill be gi i
whereN is the number of chaing0), n; is the number of ?Zéju our parameter estimation methodology Wil be given in
points in chainj, X is the total mean; is the mean of chain
j- We require thaju<0.1. SetB easily satisfies this criteria
with 30000 points, whereas sét required about 60000 . RESULTS
points. The average chain varian®¥, is used because this .
underestimates the variance of the distribution until conver- AS our Markov chain setd andB approached 60 000 and
gence is attained. 30000 points respectively, convergence test Bj.gave u
As a self-consistency check, one can take the point distri="0-05-0.06[44] and we declared our chains sufficiently
bution of setA and combine it with the BBM2gh?—Y,, and converged to provide reliable statistics. Figure 2a shows the
Hubble Key project priors. The resulting distribution should 68% confidence region of sét in the ((2gh®,Y,) plane.

be the same as sBt The extent to which these distributions Thus from CMB data alone we fin@gh?=0.025"g.3%2and

differ is a measure of non-convergence of the sets. We detel‘p= 0.250 5919

mined that the 68% confidence regions of these distributions It is worth noting also that Markov chain set A yields a
more than 95% overlap in theQ(th,Yp) plane. A Markov  tight constraint on the neutrino number during BBN: Allow-
chain can be combined with a prior after the generation ofng the number of BBN neutrinos to float, one can find a
the chain by assigning a weight to each point. The likelihood8% confidence interval for the number of BBN neutrinos
of a region in parameter space is then the weighted density gfeeded to yield the determined, from the determined
the points in that region. Because a Markov chain maintain§2gh?. Given a BBN code that computes the probability den-
the full D-dimensional likelihood distribution in the param- sity P(Yp|QBh2,NV,eff) (where the stochasticity is due to the
eter space, after it is generated the chain may be convolverieasurement uncertainty in the relevant nuclear cross sec-
with any arbitrary other likelihood function in that parametertions) we can computé®(N, .¢f) based on CMB data and
space. Thus one can generate a Markov chain distribution fd8BN theory as

WMAP alone, and chose any subset of the other cosmologi-

cal datasets to convolve it with—for very little additional

CPU cost. This is the basis of th@osmic Concordance Web-site http://galadriel.astro.uiuc.edu/ccp/
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TABLE |. Cosmological parameter estimates. 0.252
0.251
Parameters Model A Model B
0.25
Qgh? 0.02505605 0.02455:0055 - _
Yo 0.250° 3919 0.2493 5509 | — D/ mult-ab
h 0.684° 3557 0.733+0.059 0.248 He' vs ©,h” consistency .
. -+ I , Priors: +D/H_, H-proj
Q 0-241t8:82421 0.21@8:8@% é . WMIAP P ols BBNI D/H,_, H-proj
& 1
O 0.792 5047 0.798 03 ~ |
s 1.047 3552 1.024 §%4 &l
r 0.168°39%3 0.117°39% 025
n 0.089 5% 0.207 8355 o]
T 0.228° 0153 0.180°9.93% ' D/ world ave
i } 0.248 — He'vs Qth consistency H
G — WMAP, Priors: BBN+D/HW, H-proj
0'24(7L1)2 = 0.022 “(F):():24 ()A(I)26 (L(I)ZS 0.03
P(N, ¢ BBN,CMB) = f dY,d(Qgh?) Q,h’
XP(N, et Yp lQBhZ)P(vaQth) FIG. 3. The primordial abundance of deuterium can be used to

further constrain the baryon densiflight shaded bandblue) is
B 2 68%)], which in turn increases the precision of tig determination
- ded(QBh ) [dark shaded regiofred) is 68%. Two differentD abundances are
used:(2a) data from 2 multiple-line absorption systems, d2t)
X P(Yp|QBh21Nv,eff)P(Yp aQth)- data from 5 systemghe 2 multiple-line plus 3 othergsee texk

The first term under each integral enforces the BBN relatiorfliscrepant from each other, but they lie below the mean
and the second term the CMB posterior. The second equalityalue determined in this evaluation. However, Olive and
holds true if we assume flat prior®(Y,|Qgh? BBN)  Skillman[33] critically evaluate the methods used in deter-
=const andP(N,, ¢¢]Qgh? BBN)=const for the range of mining Y, and find a lower bound to a systematic error,
parameter space of interdgt5]. We findN, o=3.02"5%.  0s,<=0.005. This systematic error is added in quadrature
N, o iS consistent with the standard model value of 3 angwith the statistical error to determine the total error, increas-
previous studie§15—20. ing the errors to 0.0054. Th¥, observations are brought
However,Qgh? and Yp are jointly constrained by BBN  into marginal accord with each other and the CMB; both lie

theory, and thus are not really independent variables. Adopgystematically lower than the CMB determined value. As
ing the standard BBN modelN(, .;{(BBN)=3) of [27] discussed earlier, the systematic error used_is only a lower
yields a consistency relation betwe€zh? and Yp. The bound, and as such the true errors are most likely larger than
68% confidence region of this consistency relation appears if10se quoted. .

Fig. 2a as a narrow bar{@arrow enough that the upper and  In Fig. 2 the allowed)gh? is very large. Any other data
lower bounding curves appear to me)r_génforcing this con- that can reduce the a.”Odeth range will have the addi-
dition greatly increases the precision of parameter estimaional benefit of refining the precision of thé, measure-

tion, as evident in Table I, with dramatic affect 3 mea- Ment. As an example, we considerabundance in Fig. 3.

surementYp=0.2493 3999 This is simply a result of the The value ofD/H is still a somewhat open question due to
accuracy with which*He is determined by BBN0.1%). small number statistics, and thus we demonstrate the effects

In Fig. 2b we have zoomed in on this CMB-BBN concor- Of two differentD abundances. In Fig. 3a we use the average

dance region. Also shown is the 68% confidence region off the 2 multiple absorption line systems #4,35: D/H
setB is the shaded area. As one would expectBagrees = (2.49+0.18)xX107>. The light shaded bantblue) is the
with the product of the CMBsetA) and BBN (consistency ~68% confidence baryon density range allowed by Disi
band likelihoods. It is important to note that in Fig. 2a the Value as determined with the BBN theory [@7]. The dark
agreement between the CMB and BBN allowed regions nee@haded regiorired is the 68% confidence region resulted
not have happened. Instead, the BBN consistency baniiom the convolution of thd baryon range and the concor-

might not have passed through the high CMB likelihood re-dance region of Fig. 2b. Thus we fird,=0.2491 5 g0,

gion, which would have forced one to consider a BBN sce{2gh?=0.023 7 0003 Alternatively, one can use a conserva-
nario other than the standard model one with 3 neutrinoslive combination of 3©/H measurements, including the two
The CMB-BBN agreement reaffirms the standard BBN sceimultiple absorption line systems employed ab$84—39:
nario. D/H=(2.78+0.29)x 10" ° (the overall error increase is be-
Model A and model B compare quite well to cause the other three systems are not consistent with each

“He observations. Olive, Skillman and Steigmi@0] and  other or the multiple absorption line systems, a hint of an
Fields and Olive[31] find Y,=0.238+0.002, while Izotov underlying systematic error for the single absorption line
and Thuar{32] find Y,=0.244+0.002. The errors cited are systems For this D abundance we findY,,=0.2488 §000

statistical only. Comparing these numbers, not only are thegnd Qgh?=0.02303:33%,
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IV. CONCLUSIONS
This work has been based on two general idéBsBBN

and the CMB independently probe two different epochs, pro
viding valuable consistency checks for the underpinnings o
the standard cosmological modé?) having established that

PHYSICAL REVIEW D69, 103503 (2004

the nucleosynthetic history of all the light element abun-
dances as discussed|[ih6] and references therein.

We show the promise of incorporating deuterium abun-
dance observations, yielding{8=0.249 00008, Qgh?
=0.0237 J 991501 Y,=0.2488 3055 Qgh?=0.0230'3:00:5

the cosmological model agrees remarkably well with thesél€Pending on which systems are used to measure the deute-
very different observational probes we use these data t§UM abundance.

make a precision measurement of tfide abundance. We

have presented an analysis of all recent CMB data, in which' ) , ) ;
prmght be incorporated into parameter extraction to increase

we have determined the cosmic baryon density and the
mordial helium abundance. We fourftigh?=0.0250 30352

and Y,=0.250" 3915 at 68% from CMB data alone. This is

consistent with 3 standard model neutrinos during BBN.

We have shown that this is fully consistent with the pre-
dicted “He abundance from BBN theory, and marginally
consistent with*He observations. The likely source of this
slight discrepancy is an underestimate of the dominant, sy
tematic uncertainties in théHe observations, which now

seems affirmed with the CMB determination ¥f,. The
agreement between the CMB-only getonfidence region of

Qgh?, Y, and the consistency band based on BBN theor
shown in Fig. 2a reaffirms the standard BBN model. Thu

using BBN theory, we can effectively removg, as a freely
floating variable, enforcing théIBhZ-Yp BBN relation in

CMB data analysis. Given this, we found the incorporation

The addition of theD abundance observations are only
pne example of many possible cosmological datasets that

precision. An experiment may constrain a parameter directly,
or may reduce degeneracy in a related parameter. For ex-
ample, using large-scale structure information to reduce the
residualns-Q gh? degeneracy in the current CMB data would
also increase the precision of th& determination. Also,
further light element observations and CMB anisotropy ex-
eriments will refine this concordance and sharpen BBN and
he CMB as tools for precision cosmology. Due to the effect
of the*He abundance on the damping tail, this may improve
the constraint on a possible running of the scalar spectral
index. These are the topics of on-going work and can be

ﬁurther explored at th€osmic Concordance Project
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[41] For WMAP, the published likelihood function was used. For [44] For this value we concatenated 5 chains into 1, thus transform-

the other experiments BJK formalism was used, with the BJK ing 20 chains per set to 4.

parameters obtained from eitheabrPAck, or the collabora- [45] For simplicity, we approximate P(Yp,QBh2|CMB)

tions directly. =P(Y,/CMB)P(Qgh?/CMB) for this calculation. We also
[42] The strong priorh=0.74+0.11-0.094 is an asymmetric assume that the CMB does not constraipe¢; (instead, we

Gaussian with plus and minus sigmas as given, and represents treat the effective number of neutrino species that are relevant

the constraint coming from the Hubble key projg28]. for the CMB anisotropy as independent Nf, .¢f) and that
[43] For D>1 we use the word variance to mean covariance ma-  there is naa priori preference for any value &, ¢; or Y, for

trix. any value ofQgh?.
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