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Meson-meson bound states in €2+ 1)-dimensional strongly coupled lattice QCD model
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We consider bound states of two mesd@astimesonkin lattice quantum chromodynamics in an Euclidean
formulation. For simplicity, we analyze an &) theory with a single flavor in 21 dimensions and two-
dimensional Dirac matrices. For a small hopping parametand small plaquette couplirggz, such that 0
<g52< k<1, recently we showed the existence dfaatimesonlike particle, with an asymptotic mass of the
order of —2 In « and with an isolated dispersion curve—i.e., an upper gap property persisting up to near the
meson-meson threshold which is of the order-of In . Here, in a ladder approximation, we show that there
is no meson-mesofor antimeson-antimesoround state solution to the Bethe-Salpeter equation up to the
two-meson threshold. Remarkably the absence of such a bound state is an effect of a potential which is
nonlocal in space at ordes, i.e., the leading order in the hopping parameted local potential appears only
at orderx* and is repulsive. The relevant spectral properties for our model are unveiled by considering the
correspondence between the lattice Bethe-Salpeter equation and a latticeirgmhroesolvent equation with
a nonlocal potential.
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In quantum chromodynami¢®CD), it is a long-standing and establish spectral representations for the two- and four-
problem to establish rigorously the low energy-momentumpoint meson functions, and find that the dominant interaction
(EM) spectrum of particles and their bound states, in particubetween two mesons occurs &t and is a range-1 energy-
lar to show the existence of mesons and baryons, their bouriddependent and, surprisingly, nonlocal potential. A local po-
states, and scattering. One way to attack this question is f@ntial, which is repulsive, appears only at ordet. We
use a lattice regularization. show the correspondence between the relative coordinate BS

Recently, in Ref[1], we showed the existence of baryons €guation, for zero system momentum, and a one-particle lat-
in a 2+ 1 imaginary-time formulation of lattice S8) QCD, tice Sc;hrudlnger rgso_lvent equation W|t_h a range-1 nonlocal
with 2x 2 Pauli spin matrices, one quark flavor, and a Strongootenual. This Schndxng_er operator exh|b|t§ bou_nd states for
coupling regime corresponding to a small plaquette couplin I Iarge”ehnough coupling, regardl'essh of its sign. Hcl)yvever,
gy 2 and a small hopping parameter such as gy 2<x 1o SmMal nopping parameter and in the strong coupling re-

. gime, which can be analytically treated with the method
<1. In Refs.[2,3] we showed the existence of baryons andgiven here. there are no bound states
mesons for (2-1)- and (3+1)-dimensional one-flavor lat- ' :

. ] . . . We recall that there are many attempts to analyze the
tice QCD, using 44 Dirac spin matrices, and for the_ SaME | adron-hadron interactions using numerical simulatices,
region of parameters. The baryorimeson particle

asymptotic mass is-3 Ink (—2Inx) and they are associ- e.g., Refs[5,6] and Ref.[7] and references thereginlt is

e ; . . hard to compute correlations which rapidly vanish into noise
ated with isolated dispersion curves in the EM spectrum b picty

M litting for th ficles is al btained. Th because of the relatively massive particles involved. An at-
ass spiitting for these particies 1S aiso obtained. The €XiSg., qjye potential between the two hadron quark clusters is
tence of mesons for 21 dimensions and 22 Pauli spin

i der h ol b daptati found for some versions of the model, and standard mass
gafn%es, as we consider here, follows Dy an adaptation o omputations are carried out. However, the lack of spectral
ef. [3]. representations for the correlations makes it difficult to es-

G0|.ng up in the spectrum, in Ref4], we showed that tablish the connection between the obtained results and the
there is no baryon-baryon bound state in the EM Spec”“”épectrum

for the (2+ 1)-dimensional one-.fla_vor case up to the WO- " The model we consider here is the same lattice QCD
barypn tr}rer?holdﬁ—6 I? «). This is dqne usr:ng a Iatft'|ce model as in Ref[1], but our analysis is now restricted to the
version of the Bethe-SalpetéBS) equation, where we find \oq0n sector of the underlying physical Hilbert spateTo

that the.leading interaction isa space-range-1 local rep_ulsivghOW how our results are obtained, we recall that the parti-
energy-independent potential at ordét A key step for this H’on function is formally given by

analysis is a spectral representation for both the two- an
four-point baryon correlations. Here we consider the exis- -~

tence of meson-meson bound states below the two-meson Z:f e S 9dydy du(g),
threshold & —4 Ink). Again, we employ the BS equation

and, forF(J, ¥,0), the normalized expectations are denoted
*Electronic address: veiga@icmc.usp.br by (F). The model actiorS(, ¢,9) is
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o K. . wherex®=v%—u®e 7. By translation invariance and with an
S(,,0)= —2 lﬂa’a(U)FZ%(gu’wfe#)ablﬂﬁ’b(u-i‘ eet) abuse of notation(u,v)=G(v—u). The functionG(x),
2 x%+# 0, admits the spectral representation

_ 1
+ > wa,a(umaﬁwﬁ,a(u)—EE x(9p),
o P

73
ueZq

1 s -
G(X)=f f2(A°)|X°"1e'“'XdAoag(>\°)d>\,

-1JT
where hereS runs overue 73, e=+1, andu=0,1,2. where dyoa;(A\°%)dX =d,od; (IT,E(A\°,X\)II),, and £ is the

We use the same notation and conventions as in [R¢f. product of the spectral families for the energy and momen-

and adapt the treatment of symmetries given in Rgf8].  tum component operators. For its Fourier transform
We recall that the Fermione-flavor quark and antiquark é(p):EXGZSe“”'XG(x), p=(p°p)eT3 we get "é(p)
fields ¢, o(u) and ¢, 4(u), wherea=1,2,3 is the colgr in- =G(p) + (2m)2 L 1 S12f(pON0) S(F—X) dyoay(\O)dX,
dex, a=12=+,— is the spin index, u=(u”,u) where f(x.v)=(eX—v) 1+ (e =) 1 BB =S- .
=(u%ut,u?), are defined on the lattice with half-integer "5 ; ( 3/1 (9 yz (e =9 (.p) Xe 72
. , 3 N = Xe G(x°=0xX), I1=1I(1/2,0). The associated disper-
time coordinates ueZi=7,,X7°, where Z,,={*1/2, sion relation is
+3/2,..}. Letting e, ©=0,1,2, denote the unit lattice vec-
tors, there is a gauge group matriXty(gyex )
=U(Quuser) ' associated with the directed bongd u
+e*, and we dropgJ from the notation. 2

K
The spacei and the EM operators are obtained starting ==2Ink+In 1—27(COSP1+ cosp?) |+ O(«%),
from gauge-invariant correlation functions, with support re-

stricted tou®>1/2, by a standard construction. Lettiﬁ@o, with r(«,p) real analytic inx and each componemt’ (j
TX, i=1,2, denote translation of the functions of Grassmanr1,2). Clearly,w(p)~m,+(x?/4)|p|?, |p|<1, wherem,

w(p)=—2Ink+r(«,p)

and gauge variables bf’=0, x e 73, and forF andG only Ew(ﬁ) is the meson mass. Furthermore, separating the one-
depending on coordinates withi®>1/2, we have the particle contribution, the spectral measure has the decompo-
Feynman-KadFK) formula sition  dyoay(A)=Z(X)6(\°— e "M)d\+du(\°,N),
L L where, for T(p)=G(p) %, we have Z(p)*
(G.To T1 T3 F)y=([To T1 T2 F16G), =—(2m)%"P(al'1ax) (p°=ix,P)|y=w(s)» Such thatZ()
=(2m) 2e P+ O(«%), with Z(p) also real analytic inc
where® is an antilinear operator which involves time reflec- andp’, j=1,2. The\® support ofd»(\%\) is contained in

tion (see Ref[2]). We do not distinguish between Grass- |\°|<|«|*"¢, €>0, and [*,dv(\°,X)<O(«%). Points in
mann, gauge varialgles, and_ their associated Hilbert spagge spectrum occur g% singularities ofG(p), for fixed j,
vectors in our notation. As linear operators™ T,, #  and the meson mass points occur as singularitiespfor
=0,1,2, are mutually commutl_ngTO is self-adjoint, .Wlth = +jw(p). Our analysis shows that points of the fopf
—1<To=<1, andTj_,, are unitary, so that we writd;  — i) "|y|<-(4-e€)ink, are regular. Notice that the
—¢lP andl5=(P1,P2) is the self-adjoint momentum opera- above measure decomposition shows the dispersion curve is
tor, with spectral pointg e T?=(—a,7]?. SinceT3=0, we isolated up to—(4—€)In x (upper gap properly making
define the energy operatét=0 by Téze*2H and refer to  possible the particle identification. The isolated dispersion
each point in the EM spectrum associated with zero momeneurve in the EM spectrum associated with fiidield is the
tum as mass. We work in the subspaégC H generated by only spectrum inH,, up to mass—(4—e€)In «. This can be

an even number of or . shown by adapting the subtraction method of R2f.

To determine the meson bound-state spectrum, we first Concerning the symmetriels, we follow R¢g]. For a
give spectral results for the meson and antimeson particle§P‘"‘2t""‘I rotation ofm/2 in the x*, x* plane, given byRe
which are the same using the symmetry results of Réfor =€ R% =—e, the f|.eldsl?.[(u)»andu(u) are transformed
charge conjugation. We introduce the meson figkde Ref. to iII(u",RU) and —iu(u®,RU), (r)ef,pectwely. The im-
[3]) TI(u) = (1W3) dn _(U) a + (U) and the associated field proper zero-momentum stabg;I1(u”,d) transforms under

B — I the irreducible representation of the groubgenerated by.
p(u) = (1W3) o - (U) 5 1 (u). Considering the FK formula  ypger the local charge conjugation symmefiiyand u are

= 0_ =
for (IT(1/2%,), T 1M I(1/2X,)), x°#0, we are led to de- multiplied by (—1) as is also the case for parity and the
fine the associated two-point correlation functionis the  expectations are invariant. Thus, using either charge conju-
characteristic functionx is complex conjugation, and  gation or parity, we havéll(u))=(u(u))=0, and the trun-

means truncation cation in the definition of5(x) can be dropped. As remarked
before,Il is its own antiparticle.
G(Uo,il;vo,iz)=XUOSUO(ﬂ(UO,il)H(v°,>'<’2)>T To determine the gmstence of meson-me$bihl bound
states, we consider the states generated by
+ X000l (TT(U®,%X7) (v, %)) TT*, [1(1/2%,)TI(1/2%,). From the FK formula, we have
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(IT(1/2,0)T1(1/24y),  (TOPI X1 (1/2,05) T (1/20,) )y, D(X1,X2,X3,X4) = Do(X1,X2,X3,X4)

for x°#0, where G(x)=G(u;,U,Uz+X,us+X), with x

:(XOZUO_UO')Z)EZB’ and’ for ug.):ug:uo and ug:ug +f DO(Xl1X21y11y2)K(y11y2!y31y4)
=0

X D(Y3,Ya,X3,X8) (YT~ Y5)
G(uq,Uz,Ug,Ug)=(u(u) m(Uz) I (uz)II(uy)) xyo<,0 Ya:Ya X3 Xa OV

0_,,0
(LU TT(Uz) e (U5) (U)X 0. XAy )Yy yatya.
We now give a rough description of our method before goingwhere  Dg(X;,X5,X3,X4) = G(X1,X3) G(X5,X4) + G(X1,X4)

into detail. We first obtain a spectral representationdr) X G(X,,X3), and we use a continuum notation for sums over
and its Fourier transforrg(k). In this way, we can relate lattice points.D, D, andK:Dgl—D’1 are to be taken as
singularities inG(k) to the EM spectrum. Next, using a lat- matrix operators acting of5(.A), the symmetric subspace of
tice BS equation in a ladder approximatitsee beloy, we  €2(A), where A={(x;,X;) € Z3x73/x]=x3}. In terms
look for the singularities ofG(p) below the two-meson of the (¢, 7,7) relative coordinates and taking the Fourier

threshold. transform in 7, the BS equation becomegsee Ref.
Taking the Fourier transform and inserting the spectra[g]) D(¢,7,k)=Dq(&, 7.k) + [Do(& & KK (—E",— 7' ,k)
7 0 1 2 ~ > A >
representatlons for , T, andT , we have % D(ﬁ’,ﬁ,k)df’d;]’ With kﬁxed, D(f,;],k), etc., is taken
_ . 1 o as a matrix operator oif,(7%), for k=(k%k=0) on the
Q(k)ZQ(k)+(277)2f71J'T2f(k0,?\0)5(k—?\) even subspace of,(7%). The kernelK(—¢&’,—#%',k), in
general, acts as an energy-dependent nonlocal potential in
Xd,dy(I1(1/2G,)11(1/21G,), the nonrelativistic lattice Schdinger operator analogy.
. The key to successfully solve the BS equation is to obtain
X ENO,NIT(1/205)T1(1/214)),, appropriate decay properties for the kerneKofin particu-

. lar, we want a temporal decay faster than the two-particle
=0 —ik-X > . . . 0_.0
where G(k) =23 o€ *XG(x°=0X). The singularities in  decay, herex®*sXil. The typical tool employed to obtain
G(k), for k=(k°=iy,k=0) ande**<1, are points in the the decays is the hyperplane decoupling mettset Refs.
mass spectrum—i.e., the EM spectrum at system momentuf8,9] and references thergirNext, we look for a solution to
zero. the approximate equation wheke is replaced by its first

To analyzeG(k), we follow the analysis for spin models Nhonvanishing order i, which is commonly called &dder
as in Ref.[8]. We relabel the time direction coordinates in @PProximationL to K. These ingredients together with the
G(x) by integer labels, withi®—1/2=x°, G;=%;, i=1,...4 control of perturbations to the ladder approximation lead to a
and write D(xy,Xp,Xg+ X x44|—>2) th):'xg and ngxg 0 rigorous solution of the BS equation and two-particle spec-
=x3—x3, wherex; andx are points on th&? lattice. Now tral results for the complete model as in Red].

) : . . For our case and as is well know,does not have tem-
we pass to difference coordinates and then to lattice relative o
) poral decay, due to vacuum contributions. Even after sub-
coordinates £=X,—X;, 7W=X4—Xz, and 7=X3—X, t0

. N el - - ~ tracting out these contributions and using the hyperplane de-
obtaln* D(Xlgxi’x3+j(’x4+xz_D(O’?E?;Axljxf XXX coupling method, we obtain only a* falloff of K for
=X +X)=D(£,7,7+X) and G(k)=e"""D(¢,7,k), where  temporal distance one. This would force us to deal with an

D(£ 7,k)==,_,D(& 5, 7)e * 7. Explicitly, we have energy-dependent potential in the ladder approximation.
To avoid these complications, replace the kernel
D(X1,X5,X3,X4) D(xl,xz,x3,x4) by h(xy,X2)D'(X1,X2,X3,X4)N(X3,X4) in
all  expressions above, whereh(x;,x;)=cd(X;—X;)
=(uOS+1/2%1) w(x3+ 1/2 %,) +[1-8(x;—x;)], c=1/3/2, andD" is the partially truncated

D, obtained by subtracting, such as faf=<x3, (u(x}
+ 12%) (X5 + 123%))(IL(x§ + 12%)TI(x] +1/2%,))
from D(X1,X5,X3,X4). From now on, without changing the
notation, we assume these replacements have been made.
X (X34 1/2%3) X3+ 1/254) V* xx0= 0. Note that when, e.g.x;=X, in the expression for
23 I1(x,)II(x5), the color-diagonal quark terms are zero by
The point of all this is that the singulariies 3 are the hu! €XCHuSion, essentiallyproducing a change i normaliza-
same as those oD(¢,7,k) and the BS equation for not occur, and for the case of the composite baryon field
D(&,7,k) and its analysis are familigsee Refs[8,9)). with one-flavor quarks as in Reffl], we have[ ¢(x)]>=0
The BS equation in operator form and in what we call theby Pauli exclusion. Our case is intermediate, and with this
equal time representation ©=Dy+DyKD. In terms of modified D, Dy behaves as a good unperturbed part of it.
kernels, withx9=x3 andx3=x3, Finally, with this new D, K has the appropriate decay

XTT(X3+ 1/2 %) IL(x3+ 1/2%,)) Xx9=x

(T (X3+ 12 %)X+ 112 X,)
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«® =44l and the coincident point contribution is zero until the lattice Laplacian offi,(7%)], andV is a nonlocal poten-
O(x?) tial. To obtain this correspondence, we keep only the product

We now obtain our ladder approximatitrto K (see Ref.  0f one-meson contributions ©(£,7%,k% to get
[4]). L is given by thex? contribution toD, 'D°D, %, the R
first nonvanishing term in the Neumann series Kor Dy * B.(Z 5 KO =2(2 Zj Z(p)“ cosp- £ cosp- 7 45
—[Dy+D®%]"1, whereDS=D—D,. We obtain, withc”(x) ol &, 7,K)=2(2m) T2 olk?_ a—2w(p) P-
:(\/2_/3_1)K2/& L(X1,X2,X3,Xa) = C"(K) Zj=1,2;e= =1[ 6(X2
—X1 + €€)(x3 — X2) (X4 — X3) + (X3 — X1)d(Xs  Using the small distance behavior of the two-point function
—X1) 8(Xo— X, ~ €€) + 5(Xo—X1) 6(Xz— X1~ €€)) 6(X4—X1) G, we findZ(F)=(27) ey P, cho=1, Wherec,ox? is
+0(xa—%1) 6(X3—x1) S(Xs—x,—€€))], and, in relative the 2 contribution to (u(0)IT(e%). Writing w(p)=m,
coordinates  and  for c’(;i)=2_c”(;<), L(&, 7,k% +eme®(—K(P)), cm=1/4, where —A(P)=23; ;41
=c'(k)Zj [6(&)6(n—ee')+ 6(é—e€)5(7)], with the  —cosp)), and lettingk®=i(2m,—¢€') so thate’>0 is the
abbreviated notatiok® for k=(k%k=0), which we omit meson-meson hinding energy,
below. In the lattice Schinger operator analogy, corre- - o
sponds to a nonlocal energy-independent potential, wherewe  » - . 2 cosp-£cosp- 7
recall that a local potential is given by contributions to Dol 7.k ):(277)2 fTZZC <[~ A(p)]+e€’
L(X1,X2,X3,X4) With X;=xX5 andx,=x,. The nonlocal po- m
tential, which occurs here, results from tké contribution  \With these approximations in the ladder BS equation, we
with one (threg of the fields inD andD, at a pointy, for  make the identificationsa=x2/2, N=[1—2/3]«%/4, V
example, and the other thréene at the nearest-neighbor =2j,é[5(§) S(7— eel) + 5(E— eel) 8(7)], andz=—€'/2 in

pointsy+ eel. the lattice Schrdin i i
. . L ger resolvent equation, acting on the even
Next, we derive the solution of the BS equation in thesubspace of ,(72).

ladder approximation which reads We now turn to the determination of the ?egative energy
NEN=D(F , A E RO eal 2 bound-state spectrum ¢i’'=—A/2+aV=a "H, a=\/a
D(&,7)=Dol&,7)+C (K)% [Do(¢,0)D(e€’,7) =(1—/2/3)/2, first for anya real. As a self-adjoint operator
. V has the discrete spectrum 22, and 0 with multiplicities
+Dy(é,€e))D(0,7)]. 1, 1, andw, respectively. As—A/2 is bounded, with abso-

] ~ LA _ . . . lutely continuous spectruif®, 4], H' has a negative energy
Using Do(*ee',0)=Do(0,+ee’) and Do(ee',e'€)  pound state with binding energy2|al, for large|a|, regard-
=Dy(eel,e'e"), i,j=1,2 and ¢ €'=x1, we only less of the sign ok. The resolvent equation fét’ is solved
need to determine f)(d,;]) and |5(ei,77), i=1,2, inthe same way as the ladder BS equation and leads to the
in D0.7) = Do(0.7) + 2¢'(x){Do(0.0)3,D(e),7) determinant zero condition 6El4aR0_1)2.—8a2R00(R11

N NP Ay A - +R;5)=0, for a bound state of binding energh,
+2Dg(e",0)D(0,7)} and D(€',7)=Dy(€,7) h for Ry(Z. 7) = (2m) 2 5. Zcoss. SUTS. 1
+2¢()Z[D (&), 7)Do(€,0) + D (e, &)D(0,7)]. Letting "ere: forRol&n)=(2m) /el cosp £eosp 7)1
M denote the X2 matrix with entries M= My, ;CO%’J)(;%?)F’, VL\ﬁi :gtlt?r?g:ilgoe(n?i't?e)éRRoj:nggf( )1/2";‘?;

_ ’ N (Al _ ’ N (0O ij— Mo\&, . 01—
=4¢'()De(0,€), - M1o=4c ())Do(0,0), and Mar g fangR) R, (2+b)Ryy, obtained by multiplying
=2¢'(«x)[Do(e",e7) +Do(e",e7)], the only singularities of  the integrand ofRy, by the denominator and also the de-
D(0,7) andD(e! =2 %), on the imaginank® axis, below  nominator squared dy,, the bound-state equation becomes
the two-meson threshold, occur as zeros ofldeM]. The  (1—2a)?+4a(1—a)(2+b)Ryy=0. As Ry, is positive, there
same holds foD (£, 7). is no solution for G<a<1; there is a solution for<<O and

To analyze the BS equation, we develop an approximate=>1. For our meson-meson problem<@=[1— J2/3)12
correspondence with a one-particle lattice Sdimger op- <1, so there is10 meson-meson bound state in our model.
erator resolvent equation H—z) *=(Hy—2) 1=\ (Hq This work was supported by CNPq and FAPESP. A.F.N.
—2)"W(H-2)"1, whereH=H,+\V, Hy=—aA/2[A is  thanks the CNPq for a doctoral scholarship.

[1] P. A. Faria da Veiga, M. O'Carroll, and R. Schor, Phys. Rev. D Phys. B(Proc. Supp). 53, 804 (1997).

67, 017501(2003. [6] C. Stewart and R. Koniuk, Phys. Rev.97, 5581(1998.
[2] P. A. Faria da Veiga, M. O'Carroll, and R. Schor, Commun. [7] H. R. Fiebig and H. Markum, irinternational Review of
Math. Phys.245 383(2004. Nuclear Physicsedited by A. M. GreeriWorld Scientific, Sin-
[3] A. Francisco Neto, P. A. Faria da Veiga, and M. O'Carroll, J. gapore, 2008 Vol. 9.
Math. Phys 45, 628 (2004). [8] R. S. Schor and M. O’Carroll, Phys. Rev62, 1521(2000; J.
[4] P. A. Faria da Veiga, M. O’'Carroll, and R. Schor, Phys. Rev. D Stat. Phys99, 1207(2000; 99, 1265(2000; 109, 279(2002.
68, 037501(2003. [9] P. A. Faria da Veiga, M. O'Carroll, E. Pereira, and R. Schor,
[5] H. R. Fiebig, H. Markum, A. Mihly, and K. Rabitsch, Nucl. Commun. Math. Phys220, 377 (2001).

097501-4



