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Meson-meson bound states in a„2¿1…-dimensional strongly coupled lattice QCD model
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We consider bound states of two mesons~antimesons! in lattice quantum chromodynamics in an Euclidean
formulation. For simplicity, we analyze an SU~3! theory with a single flavor in 211 dimensions and two-
dimensional Dirac matrices. For a small hopping parameterk and small plaquette couplingg0

22, such that 0
,g0

22!k!1, recently we showed the existence of a~anti!mesonlike particle, with an asymptotic mass of the
order of22 ln k and with an isolated dispersion curve—i.e., an upper gap property persisting up to near the
meson-meson threshold which is of the order of24 ln k. Here, in a ladder approximation, we show that there
is no meson-meson~or antimeson-antimeson! bound state solution to the Bethe-Salpeter equation up to the
two-meson threshold. Remarkably the absence of such a bound state is an effect of a potential which is
nonlocal in space at orderk2, i.e., the leading order in the hopping parameterk. A local potential appears only
at orderk4 and is repulsive. The relevant spectral properties for our model are unveiled by considering the
correspondence between the lattice Bethe-Salpeter equation and a lattice Schro¨dinger resolvent equation with
a nonlocal potential.

DOI: 10.1103/PhysRevD.69.097501 PACS number~s!: 12.38.Gc, 11.10.St, 11.15.Ha, 24.85.1p
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In quantum chromodynamics~QCD!, it is a long-standing
problem to establish rigorously the low energy-moment
~EM! spectrum of particles and their bound states, in parti
lar to show the existence of mesons and baryons, their bo
states, and scattering. One way to attack this question
use a lattice regularization.

Recently, in Ref.@1#, we showed the existence of baryo
in a 211 imaginary-time formulation of lattice SU~3! QCD,
with 232 Pauli spin matrices, one quark flavor, and a stro
coupling regime corresponding to a small plaquette coup
g0

22, and a small hopping parameterk, such as 0,g0
22!k

!1. In Refs.@2,3# we showed the existence of baryons a
mesons for (211)- and (311)-dimensional one-flavor lat
tice QCD, using 434 Dirac spin matrices, and for the sam
region of parameters. The baryon~meson! particle
asymptotic mass is23 lnk (22 lnk) and they are associ
ated with isolated dispersion curves in the EM spectru
Mass splitting for these particles is also obtained. The e
tence of mesons for 211 dimensions and 232 Pauli spin
matrices, as we consider here, follows by an adaptation
Ref. @3#.

Going up in the spectrum, in Ref.@4#, we showed that
there is no baryon-baryon bound state in the EM spect
for the (211)-dimensional one-flavor case up to the tw
baryon threshold ('26 lnk). This is done using a lattice
version of the Bethe-Salpeter~BS! equation, where we find
that the leading interaction is a space-range-1 local repul
energy-independent potential at orderk2. A key step for this
analysis is a spectral representation for both the two-
four-point baryon correlations. Here we consider the ex
tence of meson-meson bound states below the two-me
threshold ('24 lnk). Again, we employ the BS equatio
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and establish spectral representations for the two- and f
point meson functions, and find that the dominant interact
between two mesons occurs atk2 and is a range-1 energy
independent and, surprisingly, nonlocal potential. A local p
tential, which is repulsive, appears only at orderk4. We
show the correspondence between the relative coordinate
equation, for zero system momentum, and a one-particle
tice Schro¨dinger resolvent equation with a range-1 nonloc
potential. This Schro¨dinger operator exhibits bound states f
all large enough coupling, regardless of its sign. Howev
for small hopping parameter and in the strong coupling
gime, which can be analytically treated with the meth
given here, there are no bound states.

We recall that there are many attempts to analyze
hadron-hadron interactions using numerical simulations~see,
e.g., Refs.@5,6# and Ref.@7# and references therein!. It is
hard to compute correlations which rapidly vanish into no
because of the relatively massive particles involved. An
tractive potential between the two hadron quark clusters
found for some versions of the model, and standard m
computations are carried out. However, the lack of spec
representations for the correlations makes it difficult to
tablish the connection between the obtained results and
spectrum.

The model we consider here is the same lattice Q
model as in Ref.@1#, but our analysis is now restricted to th
meson sector of the underlying physical Hilbert spaceH. To
show how our results are obtained, we recall that the pa
tion function is formally given by

Z5E e2S~c,c̄,g!dc dc̄ dm~g!,

and, forF(c̄,c,g), the normalized expectations are denot
by ^F&. The model actionS(c,c̄,g) is
©2004 The American Physical Society01-1
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S~c,c̄,g!5
k

2
( c̄a,a~u!Gab

eem
~gu,u1eem!abcb,b~u1eem!

1 (
uPZ0

3
c̄a,a~u!Mabcb,a~u!2

1

g0
2 (

p
x~gp!,

where here( runs overuPZ0
3, e561, andm50,1,2.

We use the same notation and conventions as in Ref@1#
and adapt the treatment of symmetries given in Refs.@2,3#.
We recall that the Fermi~one-flavor quark and antiquark!

fields ca,a(u) and c̄a,a(u), wherea51,2,3 is the color in-
dex, a51,2[1,2 is the spin index, u5(u0,uW )
5(u0,u1,u2), are defined on the lattice with half-intege
time coordinates uPZ0

3[Z1/23Z2, where Z1/25$61/2,
63/2,...%. Letting em, m50,1,2, denote the unit lattice vec
tors, there is a gauge group matrixU(gu1em,u)
5U(gu,u1em)21 associated with the directed bondu, u
1em, and we dropU from the notation.

The spaceH and the EM operators are obtained starti
from gauge-invariant correlation functions, with support

stricted tou0>1/2, by a standard construction. LettingT0
x0

,

Ti
xi

, i 51,2, denote translation of the functions of Grassma
and gauge variables byx0>0, xPZ3, and forF andG only
depending on coordinates withu0>1/2, we have the
Feynman-Kac~FK! formula

~G,T0
x0

T1
x1

T2
x2

F !H5^@T0
x0

T1
x1

T2
x2

F#QG&,

whereQ is an antilinear operator which involves time refle
tion ~see Ref.@2#!. We do not distinguish between Gras
mann, gauge variables, and their associated Hilbert sp
vectors in our notation. As linear operators inH, Tm , m
50,1,2, are mutually commuting;T0 is self-adjoint, with
21<T0<1, and Tj 51,2 are unitary, so that we writeTj

5eiP j
andPW 5(P1,P2) is the self-adjoint momentum opera

tor, with spectral pointspW PT2[(2p,p#2. SinceT0
2>0, we

define the energy operatorH>0 by T0
25e22H and refer to

each point in the EM spectrum associated with zero mom
tum as mass. We work in the subspaceHe,H generated by
an even number ofc̄ or c.

To determine the meson bound-state spectrum, we
give spectral results for the meson and antimeson partic
which are the same using the symmetry results of Ref.@2# for
charge conjugation. We introduce the meson fields~see Ref.
@3#! P(u)5(1/))c̄a,2(u)ca,1(u) and the associated fiel
m(u)5(1/))ca,2(u)c̄a,1(u). Considering the FK formula

for „P(1/2,xW1),T0
ux0u21P(1/2,xW2)…H , x0Þ0, we are led to de-

fine the associated two-point correlation function~x is the
characteristic function,* is complex conjugation, andT
means truncation!

G~u0,xW1 ;v0,xW2!5xu0<v0^m~u0,xW1!P~v0,xW2!&T

1xu0.v0@^P~u0,xW1!m~v0,xW2!&T#* ,
09750
-

n
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wherex05v02u0PZ. By translation invariance and with a
abuse of notation,G(u,v)5G(v2u). The functionG(x),
x0Þ0, admits the spectral representation

G~x!5E
21

1 E
T2

~l0! ux0u21eilW •xWdl0alW ~l0!dlW ,

where dl0alW (l
0)dlW 5dl0dlW „P,E(l0,lW )P…H and E is the

product of the spectral families for the energy and mom
tum component operators. For its Fourier transfo
G̃(p)5(xPZ3e2 ip•xG(x), p5(p0,pW )PT3, we get G̃(p)
5 G̃(pW ) 1 (2p)2*21

1 *T2f (p0,l0) d(pW 2lW ) dl0alW (l
0)dlW ,

where f (x,y)[(eix2y)211(e2 ix2y)21, G̃(pW )5(xWPZ2

3e2 ipW •xWG(x050,xW ), P5P(1/2,0W ). The associated disper
sion relation is

w~pW !522 lnk1r ~k,pW !

522 lnk1 lnF122
k2

4
~cosp11cosp2!G1O~k3!,

with r (k,pW ) real analytic ink and each componentpj ( j
51,2). Clearly,w(pW )'mk1(k2/4)upW u2, upW u!1, wheremk

[w(0W ) is the meson mass. Furthermore, separating the o
particle contribution, the spectral measure has the decom

sition dl0alW (l
0)5Z(lW )d(l02e2w(lW ))dl01dn(l0,lW ),

where, for G̃(p)5G̃(p)21, we have Z(pW )21

52(2p)2ew(pW )(]G̃/]x)(p05 ix,pW )ux5w(pW ) , such thatZ(pW )
5(2p)22e2w(pW )1O(k3), with Z(pW ) also real analytic ink
andpj , j 51,2. Thel0 support ofdn(l0,lW ) is contained in
ul0u<uku42e, e.0, and *21

1 dn(l0,lW )<O(k3). Points in

the spectrum occur asp0 singularities ofG̃(p), for fixed pW ,
and the meson mass points occur as singularities forp0

56 iw(pW ). Our analysis shows that points of the formp0

5p1 ix, uxu,2(42e)ln k, are regular. Notice that the
above measure decomposition shows the dispersion cur
isolated up to2(42e)ln k ~upper gap property!, making
possible the particle identification. The isolated dispers
curve in the EM spectrum associated with theP field is the
only spectrum inHe , up to mass2(42e)ln k. This can be
shown by adapting the subtraction method of Ref.@2#.

Concerning the symmetries, we follow Ref.@2#. For a
spatial rotation ofp/2 in the x1, x2 plane, given byRe1

5e2, Re252e1, the fieldsP(u) andm(u) are transformed
to iP(u0,RuW ) and 2 im(u0,RuW ), respectively. The im-
proper zero-momentum state(uWP(u0,uW ) transforms under
the irreducible representation of the group Z4 generated byi.
Under the local charge conjugation symmetry,P andm are
multiplied by ~21! as is also the case for parity and th
expectations are invariant. Thus, using either charge co
gation or parity, we havêP(u)&5^m(u)&50, and the trun-
cation in the definition ofG(x) can be dropped. As remarke
before,P is its own antiparticle.

To determine the existence of meson-mesonP-P bound
states, we consider the states generated
P(1/2,xW1)P(1/2,xW2). From the FK formula, we have
1-2
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„P(1/2,uW 1)P(1/2,uW 2), (T0) ux0u21TW xWP(1/2,uW 3)P(1/2,uW 4)…H
for x0Þ0, where G(x)5G(u1 ,u2 ,u31xW ,u41xW ), with x
5(x05v02u0,xW )PZ3, and, for u1

05u2
05u0 and u3

05u4
0

5v0,

G~u1 ,u2 ,u3 ,u4!5^m~u1!m~u2!P~u3!P~u4!&xu0<v0

1^P~u1!P~u2!m~u3!m~u4!&* xu0.v0.

We now give a rough description of our method before go
into detail. We first obtain a spectral representation forG(x)
and its Fourier transformG̃(k). In this way, we can relatek
singularities inG̃(k) to the EM spectrum. Next, using a la
tice BS equation in a ladder approximation~see below!, we
look for the singularities ofG̃(p) below the two-meson
threshold.

Taking the Fourier transform and inserting the spec
representations forT0, T1, andT2, we have

G̃~k!5G̃~kW !1~2p!2E
21

1 E
T2

f ~k0,l0!d~kW2lW !

3dldlW „P~1/2,uW 1!P~1/2,uW 2!,

3E~l0,lW !P~1/2,uW 3!P~1/2,uW 4!…H ,

where G̃(kW )5(xWPT2e2 ikW•xWG(x050,xW ). The singularities in
G̃(k), for k5(k05 ix,k50) ande6x<1, are points in the
mass spectrum—i.e., the EM spectrum at system momen
zero.

To analyzeG̃(k), we follow the analysis for spin model
as in Ref.@8#. We relabel the time direction coordinates
G(x) by integer labels, withui

021/25xi
0, uW i5xW i , i 51,...4,

and write D(x1 ,x2 ,x31xW ,x41xW ), x1
05x2

0 and x3
05x4

0, x0

5x3
02x2

0, wherexi andx are points on theZ3 lattice. Now
we pass to difference coordinates and then to lattice rela
coordinates j5x22x1 , h5x42x3 , and t5x32x2 to
obtain D(x1 ,x2 ,x31xW ,x41xW )5D(0,x22x1 ,x32x11xW ,x4

2x11xW )[D(jW ,hW ,t1xW ) and G̃(k)5eikW•tWD̂(jW ,hW ,k), where
D̂(jW ,hW ,k)5(tPZ3D(jW ,hW ,t)e2 ik•t. Explicitly, we have

D~x1 ,x2 ,x3 ,x4!

5^m~x1
011/2,xW1!m~x2

011/2,xW2!

3P~x3
011/2,xW3!P~x4

011/2,xW4!&xx
2
0<x

3
0

1^P~x1
011/2,xW1!P~x2

011/2,xW2!

3m~x3
011/2,xW3!m~x4

011/2,xW4!&* xx
2
0.x

3
0.

The point of all this is that the singularities ofG̃(k) are the
same as those ofD̂(jW ,hW ,k) and the BS equation fo
D̂(jW ,hW ,k) and its analysis are familiar~see Refs.@8,9#!.

The BS equation in operator form and in what we call t
equal time representation isD5D01D0KD. In terms of
kernels, withx1

05x2
0 andx3

05x4
0,
09750
g

l

m

ve

D~x1 ,x2 ,x3 ,x4!5D0~x1 ,x2 ,x3 ,x4!

1E D0~x1 ,x2 ,y1 ,y2!K~y1 ,y2 ,y3 ,y4!

3D~y3 ,y4 ,x3 ,x4!d~y1
02y2

0!

3d~y3
02y4

0!dy1dy2dy3dy4 ,

where D0(x1 ,x2 ,x3 ,x4)5G(x1 ,x3)G(x2 ,x4)1G(x1 ,x4)
3G(x2 ,x3), and we use a continuum notation for sums ov
lattice points.D, D0 , andK5D0

212D21 are to be taken as
matrix operators acting on,2

s(A), the symmetric subspace o
,2(A), where A5$(x1 ,x2)PZ33Z3/x1

05x2
0%. In terms

of the (jW ,hW ,t) relative coordinates and taking the Fouri
transform in t, the BS equation becomes~see Ref.
@8#! D̂(jW ,hW ,k)5D̂0(jW ,hW ,k)1*D̂0(jW ,jW8,k)K̂(2jW8,2hW 8,k)
3D̂(hW 8,hW ,k)djW8dhW 8. With k fixed, D̂(jW ,hW ,k), etc., is taken
as a matrix operator on,2(Z2), for k5(k0,kW50W ) on the
even subspace of,2(Z2). The kernelK̂(2jW8,2hW 8,k), in
general, acts as an energy-dependent nonlocal potenti
the nonrelativistic lattice Schro¨dinger operator analogy.

The key to successfully solve the BS equation is to obt
appropriate decay properties for the kernel ofK. In particu-
lar, we want a temporal decay faster than the two-part

decay, herek4ux3
0
2x1

0u. The typical tool employed to obtain
the decays is the hyperplane decoupling method~see Refs.
@8,9# and references therein!. Next, we look for a solution to
the approximate equation whereK is replaced by its first
nonvanishing order ink, which is commonly called aladder
approximationL to K. These ingredients together with th
control of perturbations to the ladder approximation lead t
rigorous solution of the BS equation and two-particle sp
tral results for the complete model as in Ref.@9#.

For our case and as is well known,D does not have tem
poral decay, due to vacuum contributions. Even after s
tracting out these contributions and using the hyperplane
coupling method, we obtain only ak4 falloff of K for
temporal distance one. This would force us to deal with
energy-dependent potential in the ladder approximati
To avoid these complications, replace the kern
D(x1 ,x2 ,x3 ,x4) by h(x1 ,x2)D8(x1 ,x2 ,x3 ,x4)h(x3 ,x4) in
all expressions above, whereh(xi ,xj )5cd(xi2xj )
1@12d(xi2xj )#, c5A3/2, andD8 is the partially truncated
D, obtained by subtracting, such as forx2

0<x3
0, ^m(x1

0

1 1/2,xW1)m(x2
0 1 1/2,xW2)&^P(x3

0 1 1/2,xW3)P(x4
0 11/2,xW4)&

from D(x1 ,x2 ,x3 ,x4). From now on, without changing th
notation, we assume these replacements have been m
Note that when, e.g.,x15x2 in the expression for
P(x1)P(x2), the color-diagonal quark terms are zero
Pauli exclusion, essentially producing a change in normal
tion. For the case of a noncomposite boson field, this d
not occur, and for the case of the composite baryon fieldf,
with one-flavor quarks as in Ref.@1#, we have@f(x)#250
by Pauli exclusion. Our case is intermediate, and with t
modified D, D0 behaves as a good unperturbed part of
Finally, with this new D, K has the appropriate deca
1-3
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k6ux3
0
2x1

0u and the coincident point contribution is zero un
O(k2).

We now obtain our ladder approximationL to K ~see Ref.
@4#!. L is given by thek2 contribution toD0

21DsD0
21, the

first nonvanishing term in the Neumann series forK5D0
21

2@D01Ds#21, whereDs5D2D0 . We obtain, withc9(k)
5(A2/321)k2/8, L(x1 ,x2 ,x3 ,x4)5c9(k)( j 51,2;e561@d(x2
2x1 1 eej )d(x3 2 x2)d(x4 2 x3) 1 d(x3 2 x1)d(x4
2x1)d(x22x12eej ) 1 d(x22x1)d(x32x12eej )d(x42x1)
1d(x22x1)d(x32x1)d(x42x12eej )], and, in relative
coordinates and for c8(k)52c9(k), L̂(jW ,hW ,k0)
5c8(k)( j ,e@d(jW )d(hW 2eej )1d(jW2eej )d(hW )#, with the
abbreviated notationk0 for k5(k0,kW50W ), which we omit
below. In the lattice Schro¨dinger operator analogy,L̂ corre-
sponds to a nonlocal energy-independent potential, where
recall that a local potential is given by contributions
L(x1 ,x2 ,x3 ,x4) with x15x3 and x25x4 . The nonlocal po-
tential, which occurs here, results from thek2 contribution
with one ~three! of the fields inD and D0 at a pointy, for
example, and the other three~one! at the nearest-neighbo
pointsy1eej .

Next, we derive the solution of the BS equation in t
ladder approximation which reads

D̂~jW ,hW !5D̂0~jW ,hW !1c8~k!(
j ,e

@D̂0~jW ,0W !D̂~eej ,hW !

1D̂0~jW ,eej !D̂~0W ,hW !#.

Using D̂0(6eei ,0W )5D̂0(0W ,7eei) and D̂0(eei ,e8ej )
5D̂0(eej ,e8ei), i , j 51,2 and e, e8561, we only
need to determine D̂(0W ,hW ) and D̂(ei ,hW ), i 51,2,
in D̂(0W ,hW ) 5 D̂0(0W ,hW ) 1 2c8(k)$D̂0(0W ,0W )( j D̂(ej ,hW )
12D̂0(e1,0W )D̂(0W ,hW )% and D̂(ei ,hW )5D̂0(ei ,hW )
12c8(k)( j@D̂(ej ,hW )D̂0(ei ,0W )1D̂(ei ,ej )D̂(0W ,hW )#. Letting
M denote the 232 matrix with entries M115M22

54c8(k)D̂0(0W ,e1), M1254c8(k)D̂0(0W ,0W ), and M21

52c8(k)@D̂0(e1,e1)1D̂0(e1,e2)#, the only singularities of
D̂(0W ,hW ) and D̂(ej 51,2,hW ), on the imaginaryk0 axis, below
the two-meson threshold, occur as zeros of det@I2M#. The
same holds forD̂(jW ,hW ).

To analyze the BS equation, we develop an approxim
correspondence with a one-particle lattice Schro¨dinger op-
erator resolvent equation (H2z)215(H02z)212l(H0
2z)21V(H2z)21, whereH5H01lV, H052aD/2 @D is

@1# P. A. Faria da Veiga, M. O’Carroll, and R. Schor, Phys. Rev
67, 017501~2003!.

@2# P. A. Faria da Veiga, M. O’Carroll, and R. Schor, Commu
Math. Phys.245, 383 ~2004!.

@3# A. Francisco Neto, P. A. Faria da Veiga, and M. O’Carroll,
Math. Phys.45, 628 ~2004!.

@4# P. A. Faria da Veiga, M. O’Carroll, and R. Schor, Phys. Rev
68, 037501~2003!.

@5# H. R. Fiebig, H. Markum, A. Miha´ly, and K. Rabitsch, Nucl.
09750
e

te

the lattice Laplacian on,2(Z2)], andV is a nonlocal poten-
tial. To obtain this correspondence, we keep only the prod
of one-meson contributions toD̂0(jW ,hW ,k0) to get

D̂0~jW ,hW ,k0!.2~2p!2E
T2

Z~pW !2 cospW •jW cospW •hW

eik0
2e22w~pW !

dpW .

Using the small distance behavior of the two-point functi
G, we findZ(pW ).(2p)22c20

21e2w(pW ), c2051, wherec20k
2 is

the k2 contribution to ^m(0)P(e0)&. Writing w(pW ).mk

1cmk2
„2D̃(pW )…, cm51/4, where 2D̃(pW )52( j 51,2(1

2cospj), and lettingk05 i (2mk2e8) so thate8.0 is the
meson-meson binding energy,

D̂0~jW ,hW ,k0!.
2

~2p!2 ET2

cospW •jW cospW •hW

2cmk2@2D~pW !#1e8
dpW .

With these approximations in the ladder BS equation,
make the identificationsa5k2/2, l5@12A2/3#k2/4, V

5( j ,e@d(jW )d(hW 2eej )1d(jW2eej )d(hW )#, andz52e8/2 in
the lattice Schro¨dinger resolvent equation, acting on the ev
subspace of,2(Z2).

We now turn to the determination of the negative ene
bound-state spectrum ofH852D/21aV5a21H, a5l/a
5(12A2/3)/2, first for anya real. As a self-adjoint operato
V has the discrete spectrum 2,22, and 0 with multiplicities
1, 1, and`, respectively. As2D/2 is bounded, with abso
lutely continuous spectrum@0, 4#, H8 has a negative energ
bound state with binding energy'2uau, for largeuau, regard-
less of the sign ofa. The resolvent equation forH8 is solved
in the same way as the ladder BS equation and leads to
determinant zero condition (114aR01)

228a2R00(R11
1R12)50, for a bound state of binding energyb,
where, for R0(jW ,hW )5(2p)22*T2@cospW•jW cospW•hW #/@(j51,2(1
2cospj)1b#dpW, we setR005R0(0W ,0W ), R0 j5R0(0W ,ej ), and
Ri j 5R0(ei ,ej ). Using the identitiesR01521/21(1/2)(2
1b)R00 andR111R125(21b)R01, obtained by multiplying
the integrand ofR00 by the denominator and also the d
nominator squared ofR00, the bound-state equation becom
(122a)214a(12a)(21b)R0050. As R00 is positive, there
is no solution for 0,a,1; there is a solution fora,0 and
a.1. For our meson-meson problem, 0,a5@12A2/3#/2
,1, so there isno meson-meson bound state in our mode
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