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Calculation of the QCD phase diagram at finite temperature,
and baryon and isospin chemical potentials
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We study the phases of a two-flavor Nambu—Jona-Lasinio model at finite tempefatamd baryon and
isospin chemical potentialgg= (wy+ pq)/2, ;= (my— pq)/2. This study completes a previous analysis
where only small isospin chemical potentials were considered.
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[. INTRODUCTION suited to study the phases of QCD as they have the right
symmetry properties, they do not include the combined ef-
The possible formation of a pion condensate due to dects of the isospin chemical potentja] with a finite baryon
finite isospin chemical potential, has been, in recent years, chemical potentiakg in order to study the pattern of chiral
the subject of several papels—14]. Consequently, the re- symmetry breaking and restoration as well. To consider both
construction of the QCD phase diagram at finite temperaturg.z and u,, we need a model with quarks as microscopic
and quark densities, such as those attainable in Earth expedegrees of freedom. The effect of small (up to half of the
ments and in the interior of stars, is even more challengingion mas$ has been investigated in R¢f.2] in the context
due to the addition of,, in addition to temperaturé and  of the Nambu—Jona-Lasinio model andlauder QCD [14].
baryon chemical potentigtg. Various regions of the phase The result is the splitting of the critical curves for chiral
diagram correspond to different experimental settings. Actusymmetry restoration for the two light flavors, whereas a full
ally, the behavior of QCD at high temperature and lowstudy for arbitraryw, has only been done in the context of a
baryon densities is central to the relativistic heavy-ion colli-random matrix mode11].
sions: experiments at CERN and BNL Relativistic Heavy lon  Studies on the lattice have been performed at finjtand
Collider (RHIC) are expected to produce hadronic matter inug=0 in Refs.[24—-28§ and with a finiteug and u,;=0 in
this regime. On the other hand, the description of neutrorRefs.[28—32. In a recent work33] the effect of bothug
star interiors requires the knowledge of cold nuclear matteand a smalj, has also been considered. The case of high
at large baryon densities. However, nature also provides usnd smally, has been considered in RER4].
with systems at finite isospin chemical potentigl in the In this work we extend the analysis of Reff$2,14] where
form of asymmetric-isospin matter inside neutron starsit was found that the first-order transition line ending at the
nuclear matter has a finit@egative isospinl; density due tricritical point of the caseu;=0 actually splits into two
to Coulomb interactions, apart from finite baryon-numberfirst-order transition lines and correspondingly two crossover
density. Moreover, in any realistic experimental setting inregions are present at low values of baryon chemical poten-
relativistic heavy-ion collisions there is a nonzero, even ifiig| |n particular we will be working in the context of a NJL

small, . model with a form factor included such as to imply a de-

Our present description of the QCD phase diagram in theeasing of the fermion self-energy compatible with the op-
plane (ug,T) anticipates the existence of a tricritical point o1, product expansion.

separating first-order transitions in the regions of low tem- It should also be noticed that in Réf.3] the NJL model

EE;?:]%;IS I)rt(;rr?tiaﬁrgitsjor\\/ierh ireargsg'gtﬁr;}eth[;;o;vﬂ bl‘:]‘ryorhas been augmented by the four-fermi instanton interaction
P 9 P 9 . relevant in the case of two flavors. These authors have found

recent years various other nontrivial phases of QCD at lo at the counling induced by the instanton interaction be-
temperatures and high baryon chemical potentials have be\gn piing . y -~
ween the two flavors might completely wash the splitting of

discovered, such as the color flavor lockii@FL) phase and _ T :

the two-color superconductin(?SO phase(for a review, the_ f|rst-0rd_er transition Ilne_. This happens for \(alues of the

see, Ref[22]). ratio of the instanton coupling to the NJL coupling of order

Coming back to the effects of the isospin chemical poten—o-l—o-ls- )

tial 4, pion condensation has so far been primarily investi- [N Sec. Il we summarize the relevant features of the NJL

gated by means of |0w_energy models based on Chireﬂnodel we have Considered, with ISOspIn Charge included.

Lagrangians[5,7,8,23. Although these models are well The one-loop effective potential and the values of the fit
parameters are included. In Sec. Il we discuss the various
equilibrium phases of the model, together with the corre-

*Electronic address: barducci@fi.infn.it sponding symmetries, by studying the behavior of the scalar
Electronic address: casalbuoni@fi.infn.it and pion condensates with respect to different thermody-
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temperatures above that of the critical ending point. Finally, u wy O
Sec. IV is devoted to conclusions. v= ; =
d 0 g
Il. MODEL is the matrix of chemical potentials ang, a=0,1,2,3, is

the set of the three Pauli matrices plus the identity.

Our purpose is to explore tht_a structure of Fhe _phase dia- \\e note that we can express, either by using the vari-
gram for chiral symmetry and pion condensation in QCD atables,uu ,iLg O the two combinationgeg= (., + wq)/2 and

finite temperature and quark densities, by using a microhlz(ﬂu_ﬂd)/z, which couple to the baryon charge density

scopic model with quark degrees of freedom. This task ha§q to the third component of isospin, respectively,
been accomplished, up to now, in the context of a random

matrix model simulating QCD with two flavofd1] and, in [;#:MB\pT\erMl\pTTS\p_ 2
the case of small differences between thend d quark
chemical potentials, also in the Nambu—Jona-Lasinio modelo study whether a pion condensate shows up, we need to
(NJL) [12] and inladder QCD [14]. calculate the effective potential. This is obtained by using the
One reason for using a model with quarks as microscopistandard technique to introduce Bosor@ollective vari-
degrees of freedom is that it gives us the possibility of study-ables through the Hubbard-Stratonovich transformation and
ing chiral symmetry breaking and pion condensation at botiby integrating out the fermion fields in the generating func-
finite isospin and baryon chemical potentials, which is nottional. However, the effective potential that we have consid-
possible within effective chiral models. ered is not directly obtained from the Lagrangian in EQ.
In Ref.[12], the authors made use of the NJL model with To mimic asymptotic freedom we want to include a form
a suitable form factor included in the quark self-energy tofactor as in Ref{35] and we thus follow the same procedure
mimic asymptotic freedori21,35. This version of the NJL as in Refs[12,21]. The result is a one-loop effective poten-
model turns out to be very close dderQCD as developed tial which generalizes that of the theory described by the
in Refs.[16,36 where the momentum dependence of theLagrangian in Eq(1), and which reduces to it in the limit of
quark self-energy is consistently dictated by the study of they constant form factoE(p)=1,
Schwinger-Dyson equation within a variational approach

(see the previous references for defaildowever, although A2 s 2 )

ladder QCD is a covariant and self-consistent approach, the V= %(Xu+Xd+ 2p%)+Viog. )
dependence on the four-momentum of the quark self-energy

makes the numerical computation of the one-loop effective h —Fz(f))A

potential with finite quark densities much more onerous with Vipq= — Trlog ) ! PYs ,
respect to the NJL case, where the quark self-energies de- ¢ F2(p)Apys hg

pend only on the three-momentum. For this reason, in the

present work we study the NJL model. It is reasonable to he= (i w.+ — B v—Im+F2p)A (4
expect that when employindgadder QCD, the resulting r=(entu)yo=py-l (P)Axi]

physical picture does not considerably differ from that of thewherew, are the Matsubara frequencies and the dimension-
NJL model. This has been the case in previous applicationgss fieldsy; andp are connected to the condensates by the

t00[16,17,19. following relations:

As already said in the Introduction we are not going to
consider the effects of di-fermion condensation. Therefore <q7quf>
our results can be considered valid only outside the region of xi=—4G A

the color superconductive phase, which is roughly in the re-
gion defined byug=400-500 MeV and =50 MeV. At the
same time we will not consider regions at valueggfor gy
higher than 400-500 MeV where other difermion conden-
sates might arisésee for instance Ref37]). o . o
Let us now consider the Lagrangian of the NJL modela@nd are variationally determined at the absolute minimum of

with two flavors u,d with the same mass but different  the effective potential. In the previous equatiofisis a mass

Uysd—dysu
p=—ZG< Vs R Ys > 5)

chemical potentialg., and g, scale appearing in the form factd¥(p?)=A?/(A%+p?)
[35]. It is worth noting that the one-loop effective potential
L= Lo+ Lo+ L+ Ling in Eq. (4) has the same expression as the one derived in Ref.

[14] within ladder QCD. Therein, multiplying the scalar and
pseudoscalar fields, there was a test function guessed from

=Vig¥V —mPV¥+WTAY the study of the one-loop Schwinger-Dyson equation for the
3 quark self-energy, in place d?z(ﬁ) in Eq. (4). The only
+G E [(@Ta\lf)%(@ ys7.0)?], (1) difference is thatF? depends on the three-momentum
a=o whereas the quoted test function depends on the four-

momentum and that the two asymptotic behaviors are differ-
where ent[ ~1/p? in the test function of Ref.14] and~1/p* in F2
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of Eq. (4)]. Otherwise the two effective potentials would be 400
identical. This observation also explains the reason why we
have adopted the NJL model insteadladder QCD to gen-
eralize the analysis of Refl4] at high isospin chemical
potentials as the numerical analysis is much simpler in this 200
case.
To fix the free parameters of the model, which arethe
average current quarks mass= (m,+my)/2, and the cou-
pling G=g/A?, we work at zero temperature and quark den- us (MeV) 0 p
sities. We first choose the mass scalewithin the rangeA Xd
~500-600 MeV. Then we determine the strength of the
coupling g and the mass parameter by requiring a light Xd
quark condensate of the orde¥ ;W)= — (200 MeV)* and —200 p#0
a pion massn,,=140 MeV (the latter evaluated through the
curvature of the effective potential in the direction of the
pion field and having fixed . at its experimental valulg6]). Xu
The output parameters are the following: —400 —200 0 200 200

pu (MeV)

A=580 MeV; g=7; m=45 MeV. (6)
. FIG. 1. Phase diagram for chiral symmetry restoration in the

With these values we obtain a condensat® (W)  plane (u,,uq) of quark chemical potentials, at=0. Different
=—(172 MeV)® and a constituent quark masd/; regions are specified by the nonvanishing of a given condensate,
=428 MeV (defined as in Ref§19,21)). The critical isospin ~ Whereas the others are vanishing (r order~m/A (x, andxa).
chemical potential at zero temperature turns out to;dﬁe Dashed lines are for the continuous vanishing afr for crossover
—89 MeV. The discrepancy of about 258e recall that the phase transitions foy, or x4, whereas solid lines are for discon-
expected ) alue Oitc ould bem_/2~70 MeV) is due to tinuous behaviors. The solid linesandb refer to specific paths at

xp value or,” wou e IS au fixed values ofug, with ug=170 MeV (line a) relative to Fig. 3
the approximate fit procedure. Actually, in our previous Workand,uB:210 MeV (line b) relative to Fig. 4.
based orladder QCD [14], wheref . was consistently cal-

it C_
culated within the model, we got,"=m/2. The determination of the various phases has been per-

formed numerically by minimizing the one-loop effective
lll. PHASE DIAGRAM FOR CHIRAL SYMMETRY potential. We start by showing the results in the,(wq)
BREAKING AND PION CONDENSATION plane, for fixed values of the temperature. Different regions
gre labeled, as in Reff11], by the symbol of the field which

In order to discuss the structure of the phase diagram, it iac Lires a nonvanishing vacuum expectation value due to
worth summarizing the symmetries of the Lagrangian den- d 9 P

L dynamical effects, whereas the other fields are vanishing
sity in Eq. (1). Both £y and £;,; are SUY(2)®SUg(2) N
®UE(1)® UB(1) invariant. The symmetry is reduced by the (p), or of the order—m/A. (x, and/oryq).

Solid lines refer to discontinuous transitions and dashed
B
mass term’y, to SU,(2)®Uy(1) and further reduced from jinaq 1 continuous ones. However, we recall that strictly

the termL,, which selects a direction in the isospin space, agpeaking only the lines surrounding regions with a nonvan-
is evident from Eq(2), unlessu,=uq and thusu,; =0. The  ighing field p refer to genuine phase transitions, associated
remaining symmetry -can be expressed either d%1V \yith the breaking and restoration of thé,(1) symmetry.
®Uy(1) or Uy(1)®U,(1), depending on the basis of the
fields that we are choosing.

The baryon number symmetryB(Jl) is dynamically re-
spected, whereas a nonvanishing vacuum expectation value In Fig. 1 we show the phase diagram in the,(ug)
of the p field defined in Eq(5) may appear, which dynami- plane at zero temperature. Let us start from the vacuum at
cally breaks l{;(l). This implies the appearance of a Gold- T=u,=uys=0, at the center of the picture. Here, in the
stone mode, which is either the charged or =~ at the  chiral limit, the pions are the Goldstone bosons associated
threshold, depending on the sign af, whereas the other with the spontaneous breaking of SU(Z)SU(2);z. We
two pions are massive modes. have chosen these variables in order to compare the structure

As far as the scalar condensatgs, x4 [see Eq.55)] are  of the phase diagram with that obtained in Réfl]. How-
concerned, they do not break any symmetry. However, sincever, if we want to recover known results given in terms of
the mass term is small, their value is almost entirely due téhe baryon chemical potential, we have to move from the
the approximate spontaneous breaking of chiral symmetrycenter along the diagonal af,= ©4 and thus aj, =0, and
Consequently we distinguish regions where the dynamicaihcrease the absolute value ofz. At |uy+ uql/2=|ug|
effect is relevant, from regions where the scalar condensates293 MeV we meet the approximate restoration of chiral
are of order~m/A, namely, where only the effect of the symmetry due to the sudden jump of the condensates of the
explicit breaking of chiral symmetry survives. two (degeneratequarks to values of orderm/A, which is

A. Zero temperature
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FIG. 2. Critical value of the isospin chemical potential, beyond
which a pseudoscalar condensate forms, vs baryon chemical poten- FIG. 4. Scalar condensates y§ for ug=210 MeV andT

tial, at Zero temperature,._LB=204 MeV is the highest allowed =0. The pseudoscalar condensate is zero. The path followed in the
value for pion condensation to occur. The path followed in the

; ) ) . _rﬁ)hase diagram of Fig. 1 is that of the solid line
phase diagram of Fig. 1 is along the upper half of the dashed line i

the lower half plane. . . .
P and by growing x|, we find a second-order phase transition

) _ N ) with the rotation of the scalar condensates into the pseudo-
a discontinuous transition. The same thing happens by MO\calar, namely, we are faced with pion condensation in a
ing along lines parallel to the main diagonal in the regio”relatively simple picture. A difference with Reff11] is that
labeled byy, , x4, enclosed between the two dashed lines atye do not find the vanishing gf for values ofi u,| high with
|wu—pal/2=[1|=89 MeV (see also Fig. 2 where it is regpect to the pion mass, but still sufficiently low to avoid
shown that the critical value qf, at T=0 is independent on  considering superconductive phagestually, for very low
we) and by varying|ug|. The regions in the top-right and || this transition would occur in the present model for
bottom-left corners of Fig. 1 thus have thé‘,(ll)@Uﬁ’,(l) || ~1 GeV).
symmetry ofC with p=0 andy,, x4 of order~m/A. To explore the possibility of multiple phase transitions

By moving from the center along the diagonal @}  and thus of a richer phenomenology, we need to giay
= — ug (and thusug=0) or parallel to it, when crossing one as, for instance, we do in the case described in Fig. 3 where
of the two dashed lines 4j.|=89 MeV (we have already we follow the path of the solid linea in Fig. 1 at ug
discussed the origin of the discrepancy between this value-170 MeV for growingu,;=0. The fieldsy, and x4 are
and half of the pion mass in the moglethe absolute mini- almost degenerate, both in the region of the approximate
mum of the effective potential starts to rotate along the dynamical breaking of chiral symmetry(below u,
direction. We thus have a continuous breaking {)(1.) and =89 MeV) and in the region of spontaneous breaking of
a second-order phase transition with one Goldstone mode, (1), where they rotate into the field. Then, when the
which is, right along the dashed line, either the (in the  Jine ain Fig. 1 crosses the solid line surrounding the region
upper part of the diagraywor the 7~ (in the lower part In  |abeled byy,, we see thap suddenly jumps to zero with the
the chiral limit these two dashed lines merge together inestoration of the U(l) group and thaty, and x4 split.
coincidence with the diagonal @t =0 as the pion becomes Actually the latter suddenly acquires a value due to the dy-

massless in this limit and the rotation is sudden, giving firstnamical breaking of chiral symmetry wheregg undergoes
order phase transitions for pion condensation. In this cas§ fyrther decrease and remains of ordemn/A.

there are two Goldstone bosons associated with the sponta- |y Fig. 4 we plot the behavior of the scalar condensgtes
neous breaking of two U(1) symmetry groupf)a(1)  and yg vs u; at ug=210 MeV, namely, by following the
2Uy(1)] [25].

Coming back to the massive case, and still with reference 1

to Fig. 1, we conclude that by considerijgg| not too large P =200 MeV ; T=0

1 Xu ]
T =0 ; pup= 170 MeV v
!
]
05| :
i
‘
]
]
]
]
]

1 1 L_I—. F :&
0 200 200 . \ ) . . \ .

ur (Mev) —400 —200 0 200 400
ua (Mev)

FIG. 3. Scalar and pseudoscalar condensateg ysfor ug
=170 MeV andT=0. The path followed in the phase diagram of  FIG. 5. Scalar and pseudoscalar condensateg. ys for u,
Fig. 1 is that of the solid line. =200 MeV, T=0 (see Fig. L
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T(MeV) T T T T T T T T 400 v
| S o T = 140 MeV
:PT~~:ff \\
150: P50 e
100f 200} ™.,
50 |
i P4 Xu
R TR TR R A T pa (MeV)OF  Xd xa
uB (MeV) Xd
FIG. 6. Phase diagram for chiral symmetry in thes(T) plane O
for zero or small isospin chemical potentjal . For u,=0 (central —200 -
line), the crossover transition line starts from the poiR} a
=(0,174) and ends at the poigt=(220,85). The line betweeb Xu p KO
and the pointP#=(293,0) is the line for the first-order transition
with discontinuities in the(uu) and (dd) condensates. Fog,
=30 MeV (side lines, the two crossover transition lines start from —400 —200 0 200 400
the pointP+=(0,174) and end at the poinE,=(190,85) andE, tu (MeV)

=(250,85). The lines betwedn, and the point?! =(263,0) and

betweenEy and the pointP4=(323,0) are the lines for the first-
order transitions with discontinuities in tqeu) and({dd) conden-

sates, respectively.

path described by the solid linein Fig. 1. We see that we
never cross the region with#0 and that we simply pass

FIG. 8. Phase diagram for chiral symmetry restoration in the
plane (u,,xq) of quark chemical potentials, af=140 MeV,

which is above the temperature of the critical ending p@ee Fig.
6). Different regions are specified by the nonvanishing of a given

condensate, whereas the others are vanishih@(~m/A (x, and
Xxq)- Dashed lines are lines for the continuous vanishing of for
crossover phase transitions gy or x4, whereas solid lines are for

from a region where the dynamical effect of the breaking ofiscontinuous behaviors. The solid limerefers to the path atg

chiral symmetry is entirely due to a large valueygfand x4

of order ~m/A (at large negativeu; and smallu,), to a
region where this effect manifests itself with a large value of,, ). The region in between has almost degenerate and both

Xxq and x, of order~m/A (at large positivex, and small

=0 vs u,=0 followed in Fig. 10.

value of ug (see also Fig. R

400
T =60 MeV
Xu
200 p#0
Xd
Xu
pes (MeV) 0 g
Xd
Xd 1
—200 / p#0
Xu
—400 —200 0 200 400
o (MeV)
FIG. 7. Phase diagram for chiral symmetry restoration in the
plane (u,,uxq) Of quark chemical potentials, @t=60 MeV, which
is below the temperature of the critical ending pdisee Fig. 8.

Different regions are specified by the nonvanishing of a given con-

tu = 200 MeV ; T =60 MeV

Xu

—400

densate, whereas the others are vanishpjgdr ~m/A (x, and
Xq)- Dashed lines are lines for the continuous vanishing of for

crossover phase transitions fgg or x4, Whereas solid lines are for

discontinuous behaviors.
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0 200 400

large x, and 4. Pion condensation does not occur for this

Finally, in Fig. 5, we plot the behavior of the condensates
at fixedu, =200 MeV vsu4 (see again Fig.)1 The rotation
of the pion condensate into the scalar ones occurs when the
vertical line atu,=200 MeV meets the dashed line at
=89 MeV, which happens fopr4 of few MeV. Then, when
1q has sufficiently increasedyy falls to a small value of

pa (MeV)

FIG. 9. Scalar and pseudoscalar condensateg. ys for u,
=200 MeV, T=60 MeV (see Fig. 7.
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1 T T T T T T T C MeV
pp=0; T =140 MV | b (,,),,. et

[ up=0 1

200F .

X = Xd l 150F .
100f .

50 F .

L 0 50 100 150 200
0 200 400 T (MeV)
ur (MeV)

FIG. 12. Critical value of the isospin chemical potential, beyond
which a pseudoscalar condensate forms, vs temperature, at zero
baryon chemical potential.

FIG. 10. Scalar and pseudoscalar condensateg,ysfor ug
=0 andT=140 MeV. The figure is obtained following pathin
the phase diagram of Fig. 8.

become lines of crossover transitions fior T(E) [see Fig.

1 and Figs. 7 and 8 where we plot the phase diagrams in the
(py,pq) plane atT=60 MeV andT=140 MeV, which is,
respectively, below and abovigE)]. The new feature con-
cerns the regions with+# 0, which also reduce their size for

The evolution of the phase diagram for growing temperagrowing T, whc_ereas the order of t.he. transitions starts to
tures is easily understood as far as the regions it are ~ change from first to second, beginning from the critical
concerned. Actually, in this case the effective potential at th©INts at highes{ |, until they reach the points of the
minimum is the sum of two independent terms, one for eactpoundaries which c'0|nC|de with those of the regions labeled
flavor, and the results are straightforwardly given through thdY Xu O xq (see Fig. & Also the length of the curves of
analysis of chiral symmetry breaking and restoration for zSecond-order phasg transitions to pion condensation at fixed
single flavor at finite temperature and chemical potentiaV@lues of|ug| sensibly reduces from low temperatures to
(see, for instance, Refil6,18). In Fig. 6 we show the phase Nigh temperaturessee again Fig. 1, and Figs. 7 angl 8
diagram at zero, or small isospin chemical potertak also Similar behavior, for highT, is found in Ref.[11]. For T
Refs.[12,14)). From this picture we see that moving along = T(P1) =174 MeV, which is the crossover temperature at
any of the critical lines of chiral symmetry restoration atZero chemical potentidbee Fig. 6, all these regions disap-
fixed u,, the critical value of the baryon chemical potential P€ar from the phase diagram, which is thus characterized by
up decreases for growing temperatures. Furthermore?=0 andyy,xq~m/A.
for temperatures below that of the critical ending point The behavior of the scal_ar_and pseudoscalar condensates
E, T<T(E)=85 MeV, the transitions are always discontinu- & T=60 MeV are much similar to those &t=0. As an
ous whereas they become crossover transitions Tor €xample we plot, in Fig. 9, the condensates saf
>T(E). Consequently the regions labeled jy and/oryy, =200 MeV andT=60 MeV vs uy (compare with Fig. b
in Fig. 1 shrink when growing and their rectilinear sides The situation is dlffe_rent if we consider temperatures above

T(E)=85 MeV. For instance, & =140 MeV, we see from

order ~m/A with a discontinuous transition, whereas
remains constant at its large value.

B. Finite temperature

1 . . . . . . . Fig. 8, that the structure of the phase diagram is only slightly
e =200 MeV ; T =140 McV | modified with respect to the case of two independent flavors
which undergo crossover phase transitions at sufficiently

1 Trrrgrrrrgrrerfyrrrfrrrrygrrroos

up=0, pur=200 MeV 1

0.5} £ ]

Xu
&
Il Ill Il Il Il Il ag g b g e o b g g d% o g a1 oo by
—400 —200 ] 0 200 400 0 50 100 150 200 250 300
#e (Mev) T (MeV)

FIG. 11. Scalar and pseudoscalar condensategysfor wu,

=200 MeV, T=140 MeV (see Fig. &

FIG. 13. Pion condensates v3, for wug=0 and gy,
=200 MeV. The scalar condensatgsand x4 are of order~m/A.
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high values of their own chemical potentialactually the andu,=200 MeV. Similar behaviors are obtained for fixed
region of pion condensation has sensibly reduced with revalues ofug and u, .

spect to Figs. 1 and)7The phase transition associated with

the spontaneous breaking of,(1) can be both second or [V. CONCLUSIONS

first order, depending on the path followed. In Fig. 8, the , yis haper we have continued the study of pion conden-
solid line a refers to a path aug=0 vs u;=0 where the  gation at finite baryon and isospin density in the NJL model
transition to pion condensation is continuous. The behaviofhat we started in Ref.14] in the case ofadder QCD for
of the condensates relative to this path is plotted in Fig. 10small isospin chemical potentials. The extension to higher
In Fig. 11 we plot the scalar and pseudoscalar condensatesiabspin chemical potentials confirms the structure predicted
Mmy=200 MeV andT=140 MeV vsSugy- in Ref. [11], where two-flavor QCD was simulated in the
In Fig. 12 we plot the value of the critical isospin chemi- context ofa rando_m matrix model. Some difference _between
cal potentialu® beyond which a pion condensate forms vsth€ W0 analyses is present, at low temperatures, in the re-
temperatureT at zero baryon chemical potentiglg. The gion of high isospin chemical potentials, at the boundary of

h of uC i i q d si he bi the region where color superconductivity should take place.
growth of u" Is easlly understood since the pion rnassActuaIIy in this region we find that pion condensation is still

(which should be twiceu") is expected to grow near the active, whereas in Ref11] the authors find that the pion
critical temperature for chiral symmetry restorat{@8]. On  condensate vanishes. We have also shown the expected be-
the other hand, no phase transition to pion condensation isavior of scalar and pion condensates by following different
expected above the crossover temperature for chiral symmeaths, for growing temperatures, both in the plane of quark
try restoration. Thus the line of critical values endsTat chemical potentials g,,xq) and in that of isospin and
=174 MeV. baryon chemical potentialsu(,ug). The analysis that we

The pion condensate is also expected to decrease ftvave performed should also be confirmed, with only small
growing temperatures: in Fig. 13 we sheguws T at ug=0 quantitative differences, withitadder QCD.
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