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Calculation of the QCD phase diagram at finite temperature,
and baryon and isospin chemical potentials

A. Barducci,* R. Casalbuoni,† G. Pettini,‡ and L. Ravagli§
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We study the phases of a two-flavor Nambu–Jona-Lasinio model at finite temperatureT, and baryon and
isospin chemical potentialsmB5(mu1md)/2, m I5(mu2md)/2. This study completes a previous analysis
where only small isospin chemical potentialsm I were considered.
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I. INTRODUCTION

The possible formation of a pion condensate due t
finite isospin chemical potentialm I has been, in recent year
the subject of several papers@1–14#. Consequently, the re
construction of the QCD phase diagram at finite tempera
and quark densities, such as those attainable in Earth ex
ments and in the interior of stars, is even more challeng
due to the addition ofm I , in addition to temperatureT and
baryon chemical potentialmB . Various regions of the phas
diagram correspond to different experimental settings. Ac
ally, the behavior of QCD at high temperature and lo
baryon densities is central to the relativistic heavy-ion co
sions: experiments at CERN and BNL Relativistic Heavy I
Collider ~RHIC! are expected to produce hadronic matter
this regime. On the other hand, the description of neut
star interiors requires the knowledge of cold nuclear ma
at large baryon densities. However, nature also provide
with systems at finite isospin chemical potentialm I in the
form of asymmetric-isospin matter inside neutron sta
nuclear matter has a finite~negative! isospinI 3 density due
to Coulomb interactions, apart from finite baryon-numb
density. Moreover, in any realistic experimental setting
relativistic heavy-ion collisions there is a nonzero, even
small,m I .

Our present description of the QCD phase diagram in
plane (mB ,T) anticipates the existence of a tricritical poi
separating first-order transitions in the regions of low te
peratures from crossover transitions in the low bary
chemical potential and high-temperature regime@15–21#. In
recent years various other nontrivial phases of QCD at
temperatures and high baryon chemical potentials have b
discovered, such as the color flavor locking~CFL! phase and
the two-color superconducting~2SC! phase~for a review,
see, Ref.@22#!.

Coming back to the effects of the isospin chemical pot
tial m I , pion condensation has so far been primarily inve
gated by means of low-energy models based on ch
Lagrangians@5,7,8,23#. Although these models are we
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suited to study the phases of QCD as they have the r
symmetry properties, they do not include the combined
fects of the isospin chemical potentialm I with a finite baryon
chemical potentialmB in order to study the pattern of chira
symmetry breaking and restoration as well. To consider b
mB and m I , we need a model with quarks as microscop
degrees of freedom. The effect of smallm I ~up to half of the
pion mass! has been investigated in Ref.@12# in the context
of the Nambu–Jona-Lasinio model and inladderQCD @14#.
The result is the splitting of the critical curves for chir
symmetry restoration for the two light flavors, whereas a f
study for arbitrarym I has only been done in the context of
random matrix model@11#.

Studies on the lattice have been performed at finitem I and
mB50 in Refs.@24–28# and with a finitemB andm I50 in
Refs. @28–32#. In a recent work@33# the effect of bothmB

and a smallm I has also been considered. The case of highmB

and smallm I has been considered in Ref.@34#.
In this work we extend the analysis of Refs.@12,14# where

it was found that the first-order transition line ending at t
tricritical point of the casem I50 actually splits into two
first-order transition lines and correspondingly two crosso
regions are present at low values of baryon chemical po
tial. In particular we will be working in the context of a NJ
model with a form factor included such as to imply a d
creasing of the fermion self-energy compatible with the o
erator product expansion.

It should also be noticed that in Ref.@13# the NJL model
has been augmented by the four-fermi instanton interac
relevant in the case of two flavors. These authors have fo
that the coupling induced by the instanton interaction
tween the two flavors might completely wash the splitting
the first-order transition line. This happens for values of
ratio of the instanton coupling to the NJL coupling of ord
0.1–0.15.

In Sec. II we summarize the relevant features of the N
model we have considered, with isospin charge includ
The one-loop effective potential and the values of the
parameters are included. In Sec. III we discuss the vari
equilibrium phases of the model, together with the cor
sponding symmetries, by studying the behavior of the sc
and pion condensates with respect to different thermo
namical parameters amongT,mB ,m I ~or mu ,md). Results are
shown for growing temperatures, starting from zero up
©2004 The American Physical Society04-1
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temperatures above that of the critical ending point. Fina
Sec. IV is devoted to conclusions.

II. MODEL

Our purpose is to explore the structure of the phase
gram for chiral symmetry and pion condensation in QCD
finite temperature and quark densities, by using a mic
scopic model with quark degrees of freedom. This task
been accomplished, up to now, in the context of a rand
matrix model simulating QCD with two flavors@11# and, in
the case of small differences between theu and d quark
chemical potentials, also in the Nambu–Jona-Lasinio mo
~NJL! @12# and in ladder QCD @14#.

One reason for using a model with quarks as microsco
degrees of freedom is that it gives us the possibility of stu
ing chiral symmetry breaking and pion condensation at b
finite isospin and baryon chemical potentials, which is n
possible within effective chiral models.

In Ref. @12#, the authors made use of the NJL model w
a suitable form factor included in the quark self-energy
mimic asymptotic freedom@21,35#. This version of the NJL
model turns out to be very close toladderQCD as developed
in Refs. @16,36# where the momentum dependence of t
quark self-energy is consistently dictated by the study of
Schwinger-Dyson equation within a variational approa
~see the previous references for details!. However, although
ladder QCD is a covariant and self-consistent approach,
dependence on the four-momentum of the quark self-ene
makes the numerical computation of the one-loop effec
potential with finite quark densities much more onerous w
respect to the NJL case, where the quark self-energies
pend only on the three-momentum. For this reason, in
present work we study the NJL model. It is reasonable
expect that when employingladder QCD, the resulting
physical picture does not considerably differ from that of t
NJL model. This has been the case in previous applicat
too @16,17,19#.

As already said in the Introduction we are not going
consider the effects of di-fermion condensation. Theref
our results can be considered valid only outside the regio
the color superconductive phase, which is roughly in the
gion defined bymB*400–500 MeV andT&50 MeV. At the
same time we will not consider regions at values ofmu or md
higher than 400–500 MeV where other difermion conde
sates might arise~see for instance Ref.@37#!.

Let us now consider the Lagrangian of the NJL mod
with two flavors u,d with the same massm but different
chemical potentialsmu andmd ,

L5L01Lm1Lm1Lint

5C̄ i ]̂C2mC̄C1C†AC

1 G (
a50

3

@~C̄taC!21~C̄ ig5taC!2#, ~1!

where
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C5S u

dD , A5S mu

0

0

md
D

is the matrix of chemical potentials andta , a50,1,2,3, is
the set of the three Pauli matrices plus the identity.

We note that we can expressLm either by using the vari-
ablesmu ,md or the two combinationsmB5(mu1md)/2 and
m I5(mu2md)/2, which couple to the baryon charge dens
and to the third component of isospin, respectively,

Lm5mBC†C1m IC
†t3C. ~2!

To study whether a pion condensate shows up, we nee
calculate the effective potential. This is obtained by using
standard technique to introduce Bosonic~collective! vari-
ables through the Hubbard-Stratonovich transformation
by integrating out the fermion fields in the generating fun
tional. However, the effective potential that we have cons
ered is not directly obtained from the Lagrangian in Eq.~1!.
To mimic asymptotic freedom we want to include a for
factor as in Ref.@35# and we thus follow the same procedu
as in Refs.@12,21#. The result is a one-loop effective poten
tial which generalizes that of the theory described by
Lagrangian in Eq.~1!, and which reduces to it in the limit o
a constant form factorF(pW )51,

V5
L2

8G
~xu

21xd
212r2!1Vlog , ~3!

Vlog52Tr logS hu 2F2~pW !Lrg5

F2~pW !Lrg5 hd
D ,

hf5~ ivn1m f !g02pW •gW 2@m1F2~pW !Lx f #, ~4!

wherevn are the Matsubara frequencies and the dimens
less fieldsx f andr are connected to the condensates by
following relations:

x f524G
^C̄ fC f&

L
,

r522G
^ūg5d2d̄g5u&

L
~5!

and are variationally determined at the absolute minimum
the effective potential. In the previous equations,L is a mass
scale appearing in the form factorF(p2)5L2/(L21p2)
@35#. It is worth noting that the one-loop effective potenti
in Eq. ~4! has the same expression as the one derived in
@14# within ladderQCD. Therein, multiplying the scalar an
pseudoscalar fields, there was a test function guessed
the study of the one-loop Schwinger-Dyson equation for
quark self-energy, in place ofF2(pW ) in Eq. ~4!. The only
difference is that F2 depends on the three-momentu
whereas the quoted test function depends on the fo
momentum and that the two asymptotic behaviors are dif
ent @;1/p2 in the test function of Ref.@14# and;1/pW 4 in F2
4-2
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CALCULATION OF THE QCD PHASE DIAGRAM AT . . . PHYSICAL REVIEW D 69, 096004 ~2004!
of Eq. ~4!#. Otherwise the two effective potentials would b
identical. This observation also explains the reason why
have adopted the NJL model instead ofladder QCD to gen-
eralize the analysis of Ref.@14# at high isospin chemica
potentials as the numerical analysis is much simpler in
case.

To fix the free parameters of the model, which areL, the
average current quarks massm5(mu1md)/2, and the cou-
pling G5g/L2, we work at zero temperature and quark de
sities. We first choose the mass scaleL within the rangeL
;500–600 MeV. Then we determine the strength of
coupling g and the mass parameterm by requiring a light
quark condensate of the order^C̄ fC f&.2(200 MeV)3 and
a pion massmp.140 MeV ~the latter evaluated through th
curvature of the effective potential in the direction of t
pion field and having fixedf p at its experimental value@36#!.

The output parameters are the following:

L5580 MeV; g57; m54.5 MeV. ~6!

With these values we obtain a condensate^C̄ fC f&
52(172 MeV)3 and a constituent quark massM f
5428 MeV ~defined as in Refs.@19,21#!. The critical isospin
chemical potential at zero temperature turns out to bem I

C

589 MeV. The discrepancy of about 25%~we recall that the
expected value ofm I

C would bemp/2.70 MeV) is due to
the approximate fit procedure. Actually, in our previous wo
based onladder QCD @14#, where f p was consistently cal-
culated within the model, we gotm I

C5mp/2.

III. PHASE DIAGRAM FOR CHIRAL SYMMETRY
BREAKING AND PION CONDENSATION

In order to discuss the structure of the phase diagram,
worth summarizing the symmetries of the Lagrangian d
sity in Eq. ~1!. Both L0 and Lint are SUL(2)^ SUR(2)
^ UV

B(1)^ UA
B(1) invariant. The symmetry is reduced by th

mass termLm to SUV(2)^ UV
B(1) and further reduced from

the termLm which selects a direction in the isospin space,
is evident from Eq.~2!, unlessmu5md and thusm I50. The
remaining symmetry can be expressed either as UV

u(1)
^ UV

d(1) or UV
B(1)^ UV

I (1), depending on the basis of th
fields that we are choosing.

The baryon number symmetry UV
B(1) is dynamically re-

spected, whereas a nonvanishing vacuum expectation v
of the r field defined in Eq.~5! may appear, which dynami
cally breaks UV

I (1). This implies the appearance of a Gol
stone mode, which is either the chargedp1 or p2 at the
threshold, depending on the sign ofm I , whereas the othe
two pions are massive modes.

As far as the scalar condensatesxu ,xd @see Eq.~5!# are
concerned, they do not break any symmetry. However, s
the mass term is small, their value is almost entirely due
the approximate spontaneous breaking of chiral symme
Consequently we distinguish regions where the dynam
effect is relevant, from regions where the scalar condens
are of order;m/L, namely, where only the effect of th
explicit breaking of chiral symmetry survives.
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The determination of the various phases has been
formed numerically by minimizing the one-loop effectiv
potential. We start by showing the results in the (mu ,md)
plane, for fixed values of the temperature. Different regio
are labeled, as in Ref.@11#, by the symbol of the field which
acquires a nonvanishing vacuum expectation value due
dynamical effects, whereas the other fields are vanish
(r), or of the order;m/L (xu and/orxd).

Solid lines refer to discontinuous transitions and dash
lines to continuous ones. However, we recall that stric
speaking only the lines surrounding regions with a nonv
ishing field r refer to genuine phase transitions, associa
with the breaking and restoration of the UV

I (1) symmetry.

A. Zero temperature

In Fig. 1 we show the phase diagram in the (mu ,md)
plane at zero temperature. Let us start from the vacuum
T5mu5md50, at the center of the picture. Here, in th
chiral limit, the pions are the Goldstone bosons associa
with the spontaneous breaking of SU(2)L ^ SU(2)R . We
have chosen these variables in order to compare the stru
of the phase diagram with that obtained in Ref.@11#. How-
ever, if we want to recover known results given in terms
the baryon chemical potential, we have to move from
center along the diagonal atmu5md and thus atm I50, and
increase the absolute value ofmB . At umu1mdu/25umBu
5293 MeV we meet the approximate restoration of chi
symmetry due to the sudden jump of the condensates of
two ~degenerate! quarks to values of order;m/L, which is

FIG. 1. Phase diagram for chiral symmetry restoration in
plane (mu ,md) of quark chemical potentials, atT50. Different
regions are specified by the nonvanishing of a given condens
whereas the others are vanishing (r) or order;m/L (xu andxd).
Dashed lines are for the continuous vanishing ofr or for crossover
phase transitions forxu or xd , whereas solid lines are for discon
tinuous behaviors. The solid linesa andb refer to specific paths a
fixed values ofmB , with mB5170 MeV ~line a) relative to Fig. 3
andmB5210 MeV ~line b) relative to Fig. 4.
4-3



o
on
a

d

e

lu

o

i
s
s
a
n

nc

on
do-

n a

id

or

ns

ere

ate

of

on

dy-

of

the

nd
ot

the
e

A. BARDUCCI, R. CASALBUONI, G. PETTINI, AND L. RAVAGLI PHYSICAL REVIEW D69, 096004 ~2004!
a discontinuous transition. The same thing happens by m
ing along lines parallel to the main diagonal in the regi
labeled byxu , xd , enclosed between the two dashed lines
umu2mdu/25um I u589 MeV ~see also Fig. 2 where it is
shown that the critical value ofm I at T50 is independent on
mB) and by varyingumBu. The regions in the top-right an
bottom-left corners of Fig. 1 thus have the UV

u(1)^ UV
d(1)

symmetry ofL with r50 andxu ,xd of order;m/L.
By moving from the center along the diagonal atmu

52md ~and thusmB50) or parallel to it, when crossing on
of the two dashed lines atum I u589 MeV ~we have already
discussed the origin of the discrepancy between this va
and half of the pion mass in the model!, the absolute mini-
mum of the effective potential starts to rotate along ther
direction. We thus have a continuous breaking of UV

I (1) and
a second-order phase transition with one Goldstone m
which is, right along the dashed line, either thep1 ~in the
upper part of the diagram! or thep2 ~in the lower part!. In
the chiral limit these two dashed lines merge together
coincidence with the diagonal atm I50 as the pion become
massless in this limit and the rotation is sudden, giving fir
order phase transitions for pion condensation. In this c
there are two Goldstone bosons associated with the spo
neous breaking of two U(1) symmetry groups@UA

B(1)
^ UV

I (1)# @25#.
Coming back to the massive case, and still with refere

to Fig. 1, we conclude that by consideringumBu not too large

FIG. 3. Scalar and pseudoscalar condensates vsm I , for mB

5170 MeV andT50. The path followed in the phase diagram
Fig. 1 is that of the solid linea.

FIG. 2. Critical value of the isospin chemical potential, beyo
which a pseudoscalar condensate forms, vs baryon chemical p
tial, at zero temperature.mB5204 MeV is the highest allowed
value for pion condensation to occur. The path followed in
phase diagram of Fig. 1 is along the upper half of the dashed lin
the lower half plane.
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and by growingum I u, we find a second-order phase transiti
with the rotation of the scalar condensates into the pseu
scalar, namely, we are faced with pion condensation i
relatively simple picture. A difference with Ref.@11# is that
we do not find the vanishing ofr for values ofum I u high with
respect to the pion mass, but still sufficiently low to avo
considering superconductive phases~actually, for very low
umBu this transition would occur in the present model f
um I u;1 GeV).

To explore the possibility of multiple phase transitio
and thus of a richer phenomenology, we need to growumBu
as, for instance, we do in the case described in Fig. 3 wh
we follow the path of the solid linea in Fig. 1 at mB
5170 MeV for growingm I>0. The fieldsxu and xd are
almost degenerate, both in the region of the approxim
dynamical breaking of chiral symmetry~below m I
589 MeV) and in the region of spontaneous breaking
UV

I (1), where they rotate into ther field. Then, when the
line a in Fig. 1 crosses the solid line surrounding the regi
labeled byxd , we see thatr suddenly jumps to zero with the
restoration of the UV

I (1) group and thatxu and xd split.
Actually the latter suddenly acquires a value due to the
namical breaking of chiral symmetry whereasxu undergoes
a further decrease and remains of order;m/L.

In Fig. 4 we plot the behavior of the scalar condensatesxu
and xd vs m I at mB5210 MeV, namely, by following the

FIG. 4. Scalar condensates vsm I for mB5210 MeV andT
50. The pseudoscalar condensate is zero. The path followed in
phase diagram of Fig. 1 is that of the solid lineb.

FIG. 5. Scalar and pseudoscalar condensates vsmd , for mu

5200 MeV, T50 ~see Fig. 1!.
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path described by the solid lineb in Fig. 1. We see that we
never cross the region withrÞ0 and that we simply pas
from a region where the dynamical effect of the breaking
chiral symmetry is entirely due to a large value ofxu andxd
of order ;m/L ~at large negativem I and smallmu), to a
region where this effect manifests itself with a large value
xd and xu of order ;m/L ~at large positivem I and small

FIG. 6. Phase diagram for chiral symmetry in the (mB ,T) plane
for zero or small isospin chemical potentialm I . For m I50 ~central
line!, the crossover transition line starts from the pointPT

5(0,174) and ends at the pointE5(220,85). The line betweenE
and the pointPm5(293,0) is the line for the first-order transitio

with discontinuities in thê ūu& and ^d̄d& condensates. Form I

530 MeV ~side lines!, the two crossover transition lines start fro
the pointPT5(0,174) and end at the pointsEu5(190,85) andEd

5(250,85). The lines betweenEu and the pointPu
m5(263,0) and

betweenEd and the pointPd
m5(323,0) are the lines for the first

order transitions with discontinuities in the^ūu& and^d̄d& conden-
sates, respectively.

FIG. 7. Phase diagram for chiral symmetry restoration in
plane (mu ,md) of quark chemical potentials, atT560 MeV, which
is below the temperature of the critical ending point~see Fig. 6!.
Different regions are specified by the nonvanishing of a given c
densate, whereas the others are vanishing (r) or ;m/L (xu and
xd). Dashed lines are lines for the continuous vanishing ofr or for
crossover phase transitions forxu or xd , whereas solid lines are fo
discontinuous behaviors.
09600
f

fmd). The region in between has almost degenerate and
largexu andxd . Pion condensation does not occur for th
value ofmB ~see also Fig. 2!.

Finally, in Fig. 5, we plot the behavior of the condensa
at fixedmu5200 MeV vsmd ~see again Fig. 1!. The rotation
of the pion condensate into the scalar ones occurs when
vertical line atmu5200 MeV meets the dashed line atm I
589 MeV, which happens formd of few MeV. Then, when
md has sufficiently increased,xd falls to a small value of

e

-

FIG. 8. Phase diagram for chiral symmetry restoration in
plane (mu ,md) of quark chemical potentials, atT5140 MeV,
which is above the temperature of the critical ending point~see Fig.
6!. Different regions are specified by the nonvanishing of a giv
condensate, whereas the others are vanishing (r) or ;m/L (xu and
xd). Dashed lines are lines for the continuous vanishing ofr or for
crossover phase transitions forxu or xd , whereas solid lines are fo
discontinuous behaviors. The solid linea refers to the path atmB

50 vs m I>0 followed in Fig. 10.

FIG. 9. Scalar and pseudoscalar condensates vsmd , for mu

5200 MeV, T560 MeV ~see Fig. 7!.
4-5
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order ;m/L with a discontinuous transition, whereasxu
remains constant at its large value.

B. Finite temperature

The evolution of the phase diagram for growing tempe
tures is easily understood as far as the regions withr50 are
concerned. Actually, in this case the effective potential at
minimum is the sum of two independent terms, one for e
flavor, and the results are straightforwardly given through
analysis of chiral symmetry breaking and restoration fo
single flavor at finite temperature and chemical poten
~see, for instance, Refs.@16,18#!. In Fig. 6 we show the phas
diagram at zero, or small isospin chemical potential~see also
Refs. @12,14#!. From this picture we see that moving alon
any of the critical lines of chiral symmetry restoration
fixed m I , the critical value of the baryon chemical potent
mB decreases for growing temperatures. Furtherm
for temperatures below that of the critical ending po
E, T,T(E)585 MeV, the transitions are always discontin
ous whereas they become crossover transitions foT
.T(E). Consequently the regions labeled byxu and/orxd
in Fig. 1 shrink when growingT and their rectilinear sides

FIG. 10. Scalar and pseudoscalar condensates vsm I , for mB

50 andT5140 MeV. The figure is obtained following patha in
the phase diagram of Fig. 8.

FIG. 11. Scalar and pseudoscalar condensates vsmd , for mu

5200 MeV, T5140 MeV ~see Fig. 8!.
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become lines of crossover transitions forT.T(E) @see Fig.
1 and Figs. 7 and 8 where we plot the phase diagrams in
(mu ,md) plane atT560 MeV andT5140 MeV, which is,
respectively, below and aboveT(E)]. The new feature con-
cerns the regions withrÞ0, which also reduce their size fo
growing T, whereas the order of the transitions starts
change from first to second, beginning from the critic
points at highestum I u, until they reach the points of the
boundaries which coincide with those of the regions labe
by xu or xd ~see Fig. 8!. Also the length of the curves o
second-order phase transitions to pion condensation at fi
values of umBu sensibly reduces from low temperatures
high temperatures~see again Fig. 1, and Figs. 7 and 8!. A
similar behavior, for highT, is found in Ref.@11#. For T
.T(PT)5174 MeV, which is the crossover temperature
zero chemical potential~see Fig. 6!, all these regions disap
pear from the phase diagram, which is thus characterized
r50 andxu ,xd;m/L.

The behavior of the scalar and pseudoscalar condens
at T560 MeV are much similar to those atT50. As an
example we plot, in Fig. 9, the condensates atmu
5200 MeV andT560 MeV vs md ~compare with Fig. 5!.
The situation is different if we consider temperatures abo
T(E)585 MeV. For instance, atT5140 MeV, we see from
Fig. 8, that the structure of the phase diagram is only sligh
modified with respect to the case of two independent flav
which undergo crossover phase transitions at sufficie

FIG. 12. Critical value of the isospin chemical potential, beyo
which a pseudoscalar condensate forms, vs temperature, at
baryon chemical potential.

FIG. 13. Pion condensates vsT, for mB50 and m I

5200 MeV. The scalar condensatesxu andxd are of order;m/L.
4-6
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high values of their own chemical potentials~actually the
region of pion condensation has sensibly reduced with
spect to Figs. 1 and 7!. The phase transition associated w
the spontaneous breaking of UV

I (1) can be both second o
first order, depending on the path followed. In Fig. 8, t
solid line a refers to a path atmB50 vs m I>0 where the
transition to pion condensation is continuous. The beha
of the condensates relative to this path is plotted in Fig.
In Fig. 11 we plot the scalar and pseudoscalar condensat
mu5200 MeV andT5140 MeV vsmd .

In Fig. 12 we plot the value of the critical isospin chem
cal potentialm I

C beyond which a pion condensate forms
temperatureT at zero baryon chemical potentialmB . The
growth of m I

C is easily understood since the pion ma
~which should be twicem I

C) is expected to grow near th
critical temperature for chiral symmetry restoration@38#. On
the other hand, no phase transition to pion condensatio
expected above the crossover temperature for chiral sym
try restoration. Thus the line of critical values ends atT
5174 MeV.

The pion condensate is also expected to decrease
growing temperatures: in Fig. 13 we showr vs T at mB50
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andm I5200 MeV. Similar behaviors are obtained for fixe
values ofmB andm I .

IV. CONCLUSIONS

In this paper we have continued the study of pion cond
sation at finite baryon and isospin density in the NJL mo
that we started in Ref.@14# in the case ofladder QCD for
small isospin chemical potentials. The extension to hig
isospin chemical potentials confirms the structure predic
in Ref. @11#, where two-flavor QCD was simulated in th
context of a random matrix model. Some difference betwe
the two analyses is present, at low temperatures, in the
gion of high isospin chemical potentials, at the boundary
the region where color superconductivity should take pla
Actually in this region we find that pion condensation is s
active, whereas in Ref.@11# the authors find that the pion
condensate vanishes. We have also shown the expecte
havior of scalar and pion condensates by following differe
paths, for growing temperatures, both in the plane of qu
chemical potentials (mu ,md) and in that of isospin and
baryon chemical potentials (m I ,mB). The analysis that we
have performed should also be confirmed, with only sm
quantitative differences, withinladder QCD.
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