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Electroweak high-energy scattering and the chiral anomaly
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The effect of perturbative QCD interactions on the high-energy scattering of electroweak vector bosons,
when the exchanged channel has pion quantum numbers, is considered. The chiral anomaly is shown to appear
in the couplings of particular transverse momentum diagrams, producing an enhancement of the scattering
amplitude by a power of the energy. 8&i(as) a single large transverse momentum gluon is involved and,
within the transverse momentum diagram framework, there is no cancellation. In higher orders, soft gluons,
carrying both normal and anomalous color parity, are also present. The manipulation of a transverse momen-
tum cutoff to replace the ultraviolet anomaly divergence by infrared divergences that can lead to confinement
and chiral symmetry breaking is briefly discussed. The possible implications for electroweak symmetry break-
ing are noted.
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I. INTRODUCTION and do not couple to leptons. Consequently, in the elec-
troweak Regge limit, we can anticipate a significantly ex-
The cancellation of the chiral anomaly in the electroweakpanded “anomaly problem” which the well-known short dis-
sector of the standard model is crucial for the existence ofance cancellations, between quarks and leptons, will not be
the model as a well-defined short-distance field theory. Irsufficient to remove.
perturbation theory, the anomaly is a large momentum con- In this paper we will show that the triangle anomaly does
tribution in axial vector triangle diagrams that, if uncan- indeed appear in the couplings of transverse momentum dia-
celled, destroys the renormalizability of a left-handed gauggrams that describe the high-energy scatteringvof® vec-
theory such as the electroweak sector of the standard modebr mesons. All the diagrams we consider describe the ex-
In the Regge limit the Feynman diagrams of standard perturehange of a quark-antiquark pair, with the flavor quantum
bation theory contract to form transverse momentum dianumbers of the pion, together with some number of gluons.
grams and produce a new perturbation expansion that can hi#e choose pion quantum numbers because our ultimate goal
organized into Reggeon diagraifis-7]. Beyond leading-log is to understand the relationship between the anomaly and
order, the external couplings of the transverse momenturohiral symmetry breaking in the context of high-energy scat-
diagrams(which are also the couplings of the Reggeon dia-tering. Since two fermion exchange is involved, we would
gramsg contain contracted loop diagrams involving “effec- expect the energy dependence to be, at most, logarithmic.
tive vertices” that result from the contraction. The effective (Pion exchange would have no energy dependeite sig-
vertices can then produce new “anomalies,” not present imal of the anomaly will be a power divergence of transverse
the normal perturbation expansion. For QCD, this is demonmomentum integrals that produces an additional power of
strated in the next-to-leading log calculatiph] of gluon  the energy in the full amplitude.
scattering, in which an infrare@luon) triangle anomaly is Since the anomaly phenomenon we discuss involves lon-
responsible for the helicity nonconservation that occurs, anditudinal vector meson states it is natural to expect that the
in our work on the contribution of infrared quark loop underlying gauge invariance of the electroweak theory will
anomalies to pion or Pomerd®] and triple Pomeron9] be responsible for some form of cancellation. We discuss this
vertices. possibility at some length in an appendix at the end of the
In the electroweak scattering problem considered in thigpaper. While it appears that the anomaly is not completely
paper, the underlying left-handed theory contains elementargliminated, these identities do produce cancellations that can
axial vector vertices. It is natural, therefore, tHabmpo-  not be straightforwardly expressed in terms of transverse mo-
nents of these elementary vertices will appear also in thementum diagram divergences. Moreover, it is clear that the
Regge limit effective verticedA priori, therefore, large mo- large transverse momentum region producing the anomaly
mentum contributions, directly analogous to the familiar tri-could also contribute in an important way within superfi-
angle anomaly, can be expected within the loop diagramsially nonleading Feynman diagrams. If there is finally a
that contribute tgbeyond-leading-ordgtransverse momen- cancellation, then it most likely means the failure of the
tum diagram couplings. Indeed, as we shall see, internal etransverse momentum diagram formalism for the elec-
fective vertices, resulting from longitudinal vector meson ex-troweak theory unles@s, in any case, we strongly advooate
change, also appear which are quark current components thatransverse momentum cutoff is imposed from the outset. In
have point interactions only at infinite momentum. Such curthe main body of the paper our purpose will be to study
rent components do not appear in the original Lagrangiarontributions to transverse momentum diagrams and, apart
from the discussion in Appendix D, and the related discus-
sion in Sec. VC, we will make only brief references to the
*Email address: arw@hep.anl.gov possibility that there could be important contributions out-
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side of the transverse momentum diagram formalism. anomalous gluons play a crucial rg&] in the emergence of
The anomaly occurs only in the even signature amplitudeQCD confinement and chiral symmetry breaking, in the con-
which is a sum of scattering amplitudes for vector mesonsext of high-energy scattering and Reggeon diagrams. In par-
with opposite and same sign helicities, i.e., ticular, we have argued that the Pomeron is formed from
A*(S)=AH(P.P_)=A_.(P. P_)+A.. (=P, P_) anoma]ous gluons and that configgrqtions of this kind are an
- -+t - ++ +oh - essential component of Regge limit pions and nucleons.
=A_(S+A,.(—9). (1.1)  However, Whilg we have been ablg to show r[(%/.anoma-'
lies provide triple Pomeron and pion-Pomeron interactions
with involving the anomalous gluons, it has proven very difficult
to find a simple starting point in which the anomalous gluons
A (S ——cS A, (S—— —-cS (1.2 couple directly and from which a detailed description of had-
S S ron amplitudes can be developed. It is very encouraging,
therefore, to see that anomalous gluons appear straightfor-

In a vector theory the amplitude . (S) and A, .(S) wardly in the anomaly contributions that dominate the elec-

would simply add in a single helicity amplitude and the : . .
anomaly would cancel. troweak scattering amplitudes we consider.

Our calculations are carried out in a theory that is very Ve have not explored the full consequences of the power

close to, but is not quite, the standard model. For Simpncity,enhancemer(ﬂ.Z) nor, as we discussed above, is it clear that

as we discuss further in Sec. II, we ignore both leptons andhe po_ssi_bilities for_cancellation have been exhaustgd. While
the photon and consider On|y one doublet of quarks_ We disno Unltarlty bound is V|0|ated, we, nevertheleSS, believe that
cuss the general framework for our analysis in Sec. Ill andhe enhancement severely threatens the unitarity of the
isolate the simplest diagram, whichG¥ «), that potentially ~ theory(at least in the channel and should not be present in
gives an enhancement. Section IV is devoted to a detailegihysical amplitudes. Rather than looking for further cancel-
demonstration that the enhancement does indeed occur fations, we will argue(only very briefly in this paperthat
this diagram. It is generated by the combination of an effecalthough the enhancement is actually unphysical, it selects
tive vertex due to the left-handed coupling of a scatteringhe physically relevant diagrams and, in doing so, anticipates
vector meson, a quark-antiquark effective vertex due to @hiral symmetry breaking and confinement. In fact there is
longitudinal massive vector intermediate state, and a singl@o sign, in the anomaly amplitudes that give E.2), of
(large transverse momentyigluon vertex. AtO(as), there  either thes-channel or the-channel intermediate states that
is only a small number of possibilities for the anomaly to are present in the diagrams from which they are calculated.
occur within the transverse momentum diagram formalismp Sec. VII, we suggest that the enhancement is obtained by
and, as we discuss in Sec. V, it is clear that it does not cancellj,sing a “wrong procedure” to evaluate the Regge limit con-
As we show in Sec. VI, aD(a?) there are contributions  ribytion of diagrams. If a transverse momentum cutoff is
in which an additional soft gluon playS no kinematical role in |n|t|a||y imposed1 the energy enhancement will be elimi-
the occurrence of the anomaly and simply accompanies thgated. Instead, because the cutoff produces a Ward identity
O(as) process. Not surprisingly, the soft gluon produces ayiolation, the anomaly diagrams dominate because of infra-
transverse momentum infrared divergence in individual diaTed transverse momentum divergences that appear and infra-
gram contributions. In tracing the corresponding cancellared properties of the anomaly come into play. We will argue
tion, we find new(but closely relaterprocesses which occur that these divergences should be analyzed, and “physical
first only atO(as)? and for which infrared properties of the amplitudes” extracted, before the cutoff is removed. This is
anomaly are needed to fU"y determine their Contribution.emphasized as a major conclusion of the paper in Sec. VI,
Also atO(ag), “anomalous” (odd) color charge parity two which also contains other conclusions.
gluon exchange appears, involving one finite and one large Initially, a study of the infrared anomaly contributions of
transverse momentum gluon. diagrams, that matches the present study of ultraviolet con-
In this paper we will frequently refer to a multigluon tributions, will be required. After this, we anticipate, the
transverse momentum state which carries color zero andnalysis of infrared divergences will parallel our discussion
anomalous color charge parityiot equal to the gluon num- [8] of hadron scattering. All-orders properties of the diver-
ben as “anomalous gluons.” In the present context, such agences have to be combined with Reggeon field theory, to
state first appears @(«2). Three gluons with even color obtain the “physical amplitudes” in which the cutoff can be
parity and(separately large, finite, and soft transverse mo- removed. In this paper we will describe only the general
mentum are involved. In higher orders various combination@rguments that we believe should be employed. We expect
of soft and finite transverse momentum gluons can accomnthat the resulting amplitudes will have both confinement and
pany the large transverse momentum gluon. Additional glu€hiral symmetry breaking, in the sense that the scattering
ons could also share the large transverse momentum, but wéll be describable as the exchange of a color zero, Gold-
do not discuss this possibility. stone boson, pion. Although our hadron work provides the
Reggeized gluon exchanges that are the outcome of peframework for our general understanding, a major part of the
turbative calculation$1—7] in a vector theory carry normal logic and justification for the procedure we outline can be
color parity (even/odd for an even/odd number of glupns appreciated directly within the present context, without ref-
However, we have arguedor a very long time[10]) that  erence to the Pomeron problem. That the starting point is
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much more straightforward than in the hadron case holds out

the promise that it will be correspondingly easier to carry the > >
procedure through in detalil. J |
1T > h 4
Il. THE ALMOST STANDARD MODEL T _%

For simplicity, we will consider a theory which, for our
purposes, is sufficiently close to the standard model, but
which is actually less complex. We will consider a “flavor
SU(2)” triplet of vector mesongW*,W~,W°} with massM
and left-handed couplings to a flavor doublet of qudtksdt  \\here
with the usual QCD interaction. We will effectively assume
that the vector mesons originate from a spontaneously bro- 2
ken gauge theory, as in the standard model, but apart from a(0)=1— >
the discussion of Reggeization in this section, their self- 167
interaction will play almost no role in our analysi@here T

. . ) . he even signature channel will be dominated by the ex-
will be no gauge_dependence in our discussion bec_ause ﬂ&%ange of two Reggeized vector mesons for whiapart
vector mesons will always be on shell and gluons will onlyf

. . . rom a logarithmic factor
contribute in gauge-independent transverse momentum 9 o

diagrams—although, in effect, we evaluate gluon contribu- A(S0) ~ SPAO-1oguO) 2.3
tions in the Feynman gauge. S

We ignore the extra complications of the photon and all
mixing angles, which could only lessen the possibilities for
cancellation of the anomaly phenomenon that we find. Sinc
there is no photon, the usual electroweak ultraviolet anomal
is absent and so we do not need to include leptons. In fact,
we noted in the Introduction, the anomaly we discuss in
volves (components 9fQCD currents to which leptons do
not couple and, therefore, could not provide any possibility
for cancellation. If we give the quarks a small mass A(S,0)
(< M) any potentially singular infrared contributions will be S
eliminated. However, for much of our discussion we will be ] ) )
interested only in large internéransversemomenta, where Since the running ofrs does not enter our calculations,
“large” is defined relative toM, and som will be omitted. the relative value oM, compared to the QCD scale, does not

The absence of a quark mass has the technical advantage tR@Pear in our discussion. Therefore, the instability of the
we will be able to exploit the considerable, Regge limit, VEctor mesons is not an issue. More generally it also should

simplifications of the Feynman diagrams that describe &0t be a very significant issue. We can, of course, define
massless chiral theory. vector meson scattering amplitudes by going to complex

We will study the high-energy scattering of the massivePoles and any undesirab_le featurgs of these amplitudgs will
vector mesons via a quark-antiquark exchange channel ffeed baqk into the scattering amphtudes qf physmal particles.
which, potentially, a “pion” could appear as a bound state Alternatively, we could exploit the Reggeization property of
Perturbatively, the leading behavior of the amplitudes we/€Ctor mesons and, although it would be very obscure for
study would be giverfif there were no anomaly enhance- most readers, we could carry out our discussion in terms of
men) by the exchange of vector mesons. However, since th&eggeon amplitudes. In this case, it would be rather straight-
flavor symmetry is non-Abelian, the vector mesons will beforward to argue that the non-Regge nature of the anomaly
Reggeized by self-interactions. Sin€® is conserved, sig- €nhancement energy behavior that we find will violate
nature is well-defined and Reggeized vector meson exchande&hannel unitarity. However, since the simplest diagrams we
will give high-energy behavior in the odd-signature channe[consider are already very high-order in the electroweak cou-

FIG. 2. A Feynman diagram—the hatched lines are on shell.

+0(gh<1. 2.2

Therefore, if we sungin principle at leastall diagrams pro-
gucing all self-interaction Reggeization effects then the con-
fribution of (any number of exchanged vector mesons to
E:IVOI‘ exchange amplitudes will be smaller than the anomaly
‘enhanced quark-antiquark exchange amplitudes we discuss
which give

-~ W (2.4

of the form pling [O(«y)] their contribution is very small at current
energies and so any unitarity problems could only be of
A(S0 ~ s¥O, (2.2 physical relevance at extremely high energies.
S—w

\
quark D I >

7

\ e,/ —

kL & wAn = gluon
-~ = vector
meson /
FIG. 1. A transverse momentum diagram. FIG. 3. A triangle diagram coupling with “effective vertices.”
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i ﬁ:ﬁ%::( 4 FIG. 4. The leading-log amplitude.
X [lns]

We could also regard our calculations as academic angarticles have finite relative rapidity, fewer lines are placed
say that we are simply using left-handed vector mesons ton shell in the reduction to a transverse momentum diagram,
uncover properties of QCD. From this point of view we and a nonleading log amplitude, with a smaller number of
could make the madd as small as we like. Also, throughout transverse momentum loops, is obtained. In this case, the
the main body of the paper the origin Bfwill be irrelevant  couplings and interactions in the transverse momentum dia-
and we will implicitly assume that it originates from some grams have more structure. It is (superficially nonleading
mechanism which is unrelated to the quarks we consider. It iamplitudes of this kind that the high-energy behavior can be
important that the high-energy behavi@2.4) is obtained enhanced by the occurrence of the triangle anomaly within
with internal vector mesons on mass shell. Because longituthe couplings of the transverse momentum diagram.
dinal states are involved this behavior is scaledtfand so
can not be cancelled by a physical Higgs contribution of any B. Double logs
kind. o . _

If we ignore Reggeization, or if the vector mesons are A well-known extra compllcatlon, n th_e appllcatlo_n of
massless, then the anomaly enhanced amplitudes will giv@e transverse momentum diagram formalism to ferr_nlon ex-
high-energy behavior comparable with thatwfultiple) vec- change amplitudes, is that transverse loops involving anly
tor meson exchange. This could be an additional reason, rmion propagators are generally Iogarlthmlc.ally divergent
be added to those briefly mentioned in Sec. V why boun 11]. at large transvers'e. momentur_n. These divergences, ef-
states of(higher-colored quarks and antiquarks should actu- e_ctlve_ly, proEiuce addltlo?al logarithms Of the energy and
ally be responsible for the vector meson mass generation. '€ rise to double logs that are assoqated with s_mgle
the electroweak scalil is actually a second QCD scale, as rapidity differences. In the diagrams we discuss there is, po-

would then be the case, we would surely expect unitarity tJentially, a logarithmic divergence of_this kind but it is over-
be just as important for the higher scale as for the lowe helmed by the. anomaly power .d|vergence_ that we fmd.
scale. herefore, we will not be directly interested in logarithmic

transverse momentum divergences and, in the main body of
the paper, will refer to them only for reasons of complete-
. O(as)—ONE GLUON DIAGRAMS ness. In Appendix B we briefly discuss the possible physical

In thi " d ibe th neral framework Withinrelevance of the anomaly with respect to the double logs.
n this section we describe the general framewo From the general viewpoint of this paper, however, it is

which we discus€)(a) diagrams and focus on the simplest important that, because we can regard the double logs as

Leg/r:lcné?nneg;agram that, potentially, produces an anomaly ®Mescribed by transverse momentum diagrams, they do not

represent high-energy behavior that is not anticipated by this

formalism. (Even though it might not be the most efficient
A. Transverse momentum diagrams method for studying properties of the double I9gh. s,
perhaps, worth noting that, since the divergences do not oc-

energy behavior of a Feynman diagram is typically obtained"" 'tr.' Regfginzatlon diagrams, tthey ((jj(.) not aﬁepttth%reorggl;
by routing the large light-cone momenta through the diagrarr?!Za lon of transverse momentum diagrams 1nto Regg

in such a way that the number of particles that are close tg!agrams. In faCt'.th'S reorganization re<_juces the degree of
mass shell and have large relative longitudinal momentunq'vergence'.-rhe @vergences_, occur only in Regggon diagram
separationsi.e., large rapidity differencess maximal. After loops containing just Reggeized quarks and antiquarks and,

longitudinal integrations are carried out, close to the on-shelf the leading log form of the trajectory function is used, the

configuration, the result is a transverse momentum integral
multiplied by logarithms of the energy. The transverse mo-{ p p_t
mentum integral corresponds to a “transverse momentun

A
4

L
LA

,.
o

As is very well known, the leadingRegge limi} high-

diagram” obtained by contracting all of th&lose t9 on- N k> N
shell lines. In general, there is one logarithm and one trans: ’ i’
verse momentum loop for each large rapidity difference. "\[, p’ P”J," )
Consequently, the leading-log amplitude contains a trans-p, 4 G; +k’ > pr- k§ YP_
verse momentum diagram with the maximal number of
loops. In Appendix B we provide a brief, nontechnical, re- 3 Gk ;
view [11] of known results that apply to the fermion ex- € —~ <
change scattering amplitudes we will discuss. <k
The relationship between transverse momentum diagram¢ Py P_T
and the process of putting lines on shell in full Feynman
diagrams will dominate our discussion. When two, or more, FIG. 5. Momentum notation for the diagram of Fig. 2.
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A%

?* FIG. 6. Effective verticega) for helicity A
=—1 (b) for helicity A=+1.

(b)

presence of the Reggeon propagator reduces the divergen Tr{K, G (k, k| K, Gr(k, .k}
szkif d?k, . (31

from log to lodlog] form.
ki *(kf)?

C. The enhanced transverse momentum diagram . . o
g G, and Gg should satisfy(Reggeon Ward identities so

As we will elaborate below, the lowest-order appearancghat, as discussed further in Sec. V, there is no infrared di-
of the anomaly enhancement is associated with the trangergence ak| ?=0 and a divergence &, 2=0 would be
verse momentum diagram shown in Fig. 1. The remainder of|iminated by adding either a momentum transfer or a quark
this section and the following two sections will be devoted tOmass, as discussed in the previous section. Conventionally,
the study ofO(as) Feynman diagrams which give a contri- since two fermion exchange is involved, we would expect
bution to the high-energy scattering of vector mesons thafhe accompanying energy dependence to be only logarithmic.
contains this transverse momentum integral. We would also expect the large momentum behavioGpf

We will use the diagrammatic notation of Fig. 1—for angG_ to be such that the full integral is, at worst, logarith-
quarks, gluons, and vector mesons—throughout the paper, {Rically divergent(producing an additional energy logarithm,
both Feynman diagrams and transverse momentum digy giscussed aboyeThe signal of the anomaly will be that
grams.(Almost all of our discussion will be concerned with G, andG actually grow at large transverse momentum, in a

Feynman diagrams and so there should be no confusion as {9anner that produces an additional power of the energy.
which kind of diagram is under consideratipfor simplic-

ity, in this and the following two sections, we will omit fla-
vor and color quantum numbers and consider just the mo-
mentum and spin structure of diagrams. In this case, a In the next section we will see that the Feynman diagram
“gluon” is effectively a “photon,” i.e., a massless vector shown in Fig. 2 has a Regge limit contribution, involving the
particle with a vector coupling to a massléks most of the  transverse momentum diagram of Fig. 1, in which each of
discussion “quark-antiquark” pair. A “vector meson” is a the hatched lines is placed on shell.

massive vector particle with a left-handédght-handedd  In effect, the box graphs at either end of the full graph con-
coupling to the quarkantiquark. Because of the left-handed tract to give triangle diagram contributions to the couplings
coupling, the high-energy scattering of vector bosons withG_ and Gy as shown in Fig. 3. If the left-handed nature of
definite helicity has a particularly simple diagrammatic struc-the interactions of the scattering vector particles leads to a
ture. left-handed(vecton “effective vertex” for the triangle dia-

To avoid the introduction of an extra momentum scale, wegram then, naively, it would appear that the triangle anomaly
will consider forward scattering, i.e., zero momentum trans4s obviously present. If this has the standard form of the
fer. We should emphasize, however, that this does not implyltraviolet triangle anomaly, we would expect a linear
that our calculations are invalidated for the simple reasomgrowth withk/ that would then produce a divergence of the
that we consider an infrared region in which perturbationk/ integration. In fact, since effective vertices are not neces-
theory does not apply. It should become clear that, since thearily simple local vertices or, if they are, the propagators
phenomenon we discuss involves large internal transvers@ay no longer be elementary, much more discussion is re-
momenta, a momentum transfewith M?<t<Swould not  quired to show that there is a contribution that is closely
significantly affect our analysis. In the forward direction, therelated to the triangle anomaly.
integrand of Fig. 1 is a product of the couplinGs(k, ,k|) The diagram of Fig. 2 has the minimal complexity needed
and Gg(k, ,k|) and transverse momentum propagators forto generate triangle couplings, as in Fig. 3, for bGth and
the gluon, quark, and antiquark and the integral has th&g. We will find that this is necessary to obtain a nonzero

D. A Feynman graph producing the anomaly enhancement

simple form contribution in the full amplitude.
L T-
. . > , , > 1% gp 24 un FIG. 7. The internal vector
(p +k)_u(P +k), /M2 (P'+k), (B'+k) /M2 k¥ 8Py /u meson numerator.
f T
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E. Leading logs, nonleading logs, and the anomaly produce a reduction to the transverse momentum integral of

A priori, as described in Appendix B, we expect the lead-F19- 1. The large momentum behavior will be a combination
ing high-energy behavior of Fig. 2 to tn s]*, multiplied by of the transverse momentum dependence of the exchanged

the transverse momentum diagram obtained, as illustrated AfoPagators and the internal loop momentum dependence of
Fig. 4, by placing all vertical lines on shellA hatch on a the propagators |n_the left and right side triangle diagrams
line will always imply that it is on-shell.In fact, this trans- ~ cOrresponding to Fig. 3.

verse momentum diagram contains quark loops that are loga-

rithmically divergent and generate additional powers of,In  A. Internal momenta and the quark mass-shell conditions

as discussed above. , _ We consider, first, the left-hand box subgraph that appears
The transverse momentum diagram of Fig. 1 should apj, Fig. 5. As shown, we dired®, along the left-most quark

pear at the next-to-next-to-leading log levi@rmally with @~ jine 514 yse the” integration to put this line on shell, i.e.,
factor of[In SJ?). In this contribution, it would be anticipated

that the dominant internal momenta, within tBg and Gy f iy(Py+--+)
dk”
(k-

couplings, will be “close to” that of the corresponding fast - -
external particldin particular, there should be no large inter- tpl)P tiet - p
nal rapidity difference (4.2

The expectation would be that lardeelative internal
momenta within theG, and Gg couplings are suppressed BY usingk’ for this purpose, we keep thg integration as
because of Ward identity cancellations that are a consed four-dimensional integral that we can anticipate will have
quence of gauge invariance for the glu@giving either a an anomaly contribution from the large momentum region,
finite or, at worst, logarithmically divergent integrahs we  asP.—.
will see, the anomaly contradicts this expectation in that it is  Using thek” integration as in Eq4.2) has, however, the
a contribution to thes, and G couplings from, relatively, disadvantage that it introduces additiopaldependence into
large internal momentum in which the unhatched verticaltwo of the propagators forming the triangle diagram. Conse-
quark lines of Fig. 2(and, correspondingly, the unhatched quently the triangle diagram no longer has the elementary
vertical line of Fig. 3 are far off shell. This does not, how- structure known to generate the anomaly. We will avoid this
ever, imply the failure of a Ward identity. Rather, as we problem by considering only a limited part of tpé integra-
enlarge on further in Sec. V, the presence of the anomalsion, i.e., we consider the region where the components of
means that large internal momenta play an important role ifave the order of magnitude
the Ward identity(In Appendix C we review the correspond-
ing situation for the vector Ward identities in the familiar |p’.|~eSY?’<P., p|?~eMS’<MP,, |p’|~eM,
axial-vector—vector—vector triangle diagram in which the 4.3
anomaly occurs.

In the course of our analysis we will find that, in the whereeis small, but finite. As we will see, this will allow us
low-order diagrams where the anomaly first occurs, there art ignore thek” dependence of triangle diagram propagators
no additional logarithmgmultiplying the power enhance- while simultaneously keeping only the transverse momentum
men) associated with lines that are only close to on shelldependence of the exchanged propagators and also allowing
rather than actually on shell, in the large transverse momerthe anomaly spin structure to emerge as a l&gapproxi-

TYy_+oe

4@

tum divergence. mation.
We will use powers ofe as a simple way to impose in-
IV. THE ANOMALY ENHANCEMENT equalities amongst momenta that we could equally well im-

pose more abstractly. We will integrate over a range of mo-

Is this section we study, in detail, the occurrence of thementa having the given order of magnitude. Since we are
anomaly enhancement in the high-energy behavior of thgy interested in showing that an anomaly power enhance-

Feynman diagram of Fig. 2. This diagram is shown again inynent occurs, and will make no attempt to determine the co-
Fig. 5, together with the momentum notation that we will oficient multiplying it, the use of powers a@fwill be suffi-

use. , o cient to carry through our arguments. Note that as we
We will consider the limit explicitly discuss later, if we allowep’ to be slightly larger,
i.e.,|p’_|~M, a Lorentz transformation on E¢4.3) would
\/5 \/é \/5 —\/5 give all components the same order of magnitude, pg.,
P,—|—5»-200], P-— PR 00] (4D _(em)¥2SY In this case, however, the approximations we
make in the following would be more marginal, and more

and will find that the anomaly is a simple pole, of the I:eyn_dlscussmn of their justification would be required. For sim-

man integral, aS=<«, which results from the combination plicity, therefore, we keejjp_ |~ M, although we believe

of the asymptotic pinching of mass-shell propagator poledn® fuI! anomaly generating region includgz_|~M.
(those hatched in Fig.)2vith the large momentum behavior ~ 'f Kl is also large, but small compared o , say

of off-shell propagators. The on-shell propagators will be , )

used to carry out longitudinal momentum integrations and k,'?~e¥MS<p, ' ? (4.9
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} . A A%
then the mass-shell conditidd.2) becomes Y*Y+ 47,
r2 1/2
, ’ p, eMS Ak A
|k*+p*|~ P+ - Sl/2 ~eM (45) p’ -2 P T "
A
. . o ki kY
which, together with Eq(4.3), implies that Y_ 'ﬁ’_s
[k_[~eM. (4.6) FIG. 8. The internal quark numerator.

_If we similarly directP_ along the right-most quark line - enwum contribution of the’ integration, we note that we
in Fig. 5 and consider the analogous region of ffeinte-  oyain 4 factor op!, in this part of the numerator if there is
gration, then using, to put this line on shell we will obtain y_ at one of the vertices. This is possible at the upper
a similar constraint ok, . Together, these constraints ensureyertex in Fig. 7(see below; but is not possible at the lower
that, in the momentum region we are considering, transversggriex, since a_ at the bottom vertex woultantjcommute
momenta dominate the gluon propagator. Equatiér® and  through the adjacent transverse numerator and give zero.
(4.4), together with the corresponding range fdr, define a As we will see, we obtain the factor @f, , in combina-

range of internal transverse momenta that is growing with;o, with the spin structure needed to obtain the anomaly in
the external energy but which is, nevertheless, close to magg, resulting triangle diagram, K2>p'2. Since we have
L 1

shell for the hatched quark lines. already imposed Ed4.3), we can achieve this by taking

B. Adjacent quark numerators and the external effective ki~ e stz 6—1/2pl’ 2 (4.9
vertices

Consider, next, the contribution of the quark numeratorsThe dominant contribution of the vector meson numerator is

that are adjacent to the fast quark line. When combined witﬁhen as shown in Fig. TWe remove the (¥ s) factors in

Eq. (4.2, the y_ components give zero. Therefore, the Iead-the quark couplings of the internal vector meson by

ing contribution, in the momentum region we are Consider_(antbcommutmg them around the quark lophe © nota-

ing, is given by the transverse numerator components. Tgon mdmgtes EQ"’“ the' twe matrices are not multiplied.
discuss this contribution we use the comptgxnatrix for- With ki>p,®, putting the vector meson propagator on
malism [16] described in Appendix A. We can then write Shell via thek_ integration gives

both numerators in the form

(ky*®@ipy-+)/M? .
1 ~ . f — ~ 7k¥*®@y_IM?
b =50 +K)¥* +(p'+k')* 7. (4.7) [(k-Fp)pi-]
(4.10
We take the vector meson states to be transversely polarized. ) o ) )
The helicity of each vector meson will be conserved, but thednd, if Eq.(4.9) is satisfied, the mass-shell constraint gives
two helicities can be equal or opposite. _Usm_g E(QQ.B) and R
(A14), the (1-ys) vector meson coupling implies that, as Ik |~_i~ el (4.1
illustrated in Fig. 50, there is just one combinationjoénd o pl €S2 ' '
¥* numerator matrices that can contribute for each helicity.
For helicity A = — 1, the resulting coupling is that illustrated
in Fig. 6(a), while A =+ 1 gives that of Fig. &). (In all the
figures of this kind we follow the normal convention and
multiply v matrices in the direction of the quark arrgw.

C. The internal vector mesons

The on-shell contribution of the internal vector meson
propagator is, of course, gauge independent and can be ob-
tained from the unitary gauge propagator

(9= (P"+K)u(p' +k),/M?]
(p'+k)?—M?

mol=d>
» O

L (p'+k)=

4.9

It is the second part of the on-shell numerator, corresponding
to longitudinal polarization of the intermediate state, that
produceq8] the vectorlike(cross-channglcoupling needed

to obtain the anomaly. Since we are looking for a large mo- FIG. 9. The effective triangle diagram.

=g
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The parallel discussion of the on-shell contribution of the D. The internal quark numerator and the triangle amplitude
right-side internal vector meson will give a corresponding  gq; the remaining components of Fig. 3 that we have not

constraint onk|. The two constraints, taken together with
Eq. (4.9, imply that(as for the gluohtransverse momenta
dominate the central quark and antiquark propagators. As Wg) pea v,

noted, ensuring that_ remains finite, with Eq(4.9) satis-

yet discussed, the largest contributiginat also gives the
vertex as in Fig. Yis obtained by taking the gluon coupling
and taking the remaining quark numerator to also
be transverse. The chirality then feeds through the propaga-

fied, provides part of the motivation for the initial choice of ;. 45 illustrated in Fig. 8.

Eq. (4.3 as thep’ integration region.

Combining Figs. 6, 7, and 8, and using E4.10 we

Note that, although we consider very large transversgpiain an effective triangle diagram with the numerators and
momenta, because the vector mesons remain on shglkrtices shown in Fig. 9. In this figure we have also included
the high-energy behavior we will find will be scaled by the transverse quark and antiquark propagatdrk (and
M2. Consequently, there is no possibility that it could bea,*/k*) that are external to the triangle diagram. The ampli-

cancelled by the contribution of a Higgs particl@hat is, if

tude obtained from Fig. 9 iGpart from an overall constant

the Higgs mechanism were used to generate the vector Mehat we neglect-involving a numerical factor, factors mf

son mass.

Ak

k(R Yy (B KDY DY v | Y

and powers of the coupling constants

Y AR .
TGL(kkaL)A_N_ fd p
k k* k

with the integration region specified by E@.3).

(4.12

(p'+k)*(p')? M2/

was, as we remarked, part of the motivation for the initial

With Egs.(4.3)—(4.5) satisfied, we can make the approxi- restriction to the momentum regidd.3)—(4.5).

mations
[k (p”+k")|~eM?,
Ip.(p_+k")|~e*M S

(p'+k)Z~[e+O(e¥)]M s
(4.13
and so

(p'+K)2~(p'+k)2. (4.14

Consequently, we can approximate E4.12 as (again ig-
noring an overall constant

¥ s
TGL(kerL)A_
k k*
7(f i kp'1* 7| ¥
~ — p [ RE—
k [pl+k!17[2p}p.—(p])?] M?/ f*
(4.15

with the integration region still specified by E@L.3).
Because we have eliminatéd andk’. (which are func-
tions of p’ andp”), the amplitudg4.15 is (almos} that of

E. The anomaly contribution

Using Eq.(A4) we can write the numerator momentum

factor of Eq.(4.19 as
K[p'T* =k, -p] +ik, Xp] . (4.19

The first term is not special to a vector vertex fermion tri-
angle diagram and is not related to the anomaly. We expect it
to arise from(and to eventually be cancelled)by variety of
contributions to the complete transverse momentum cou-
plings of Fig. 1. It is the second term in E@.16 that we
expect to give an anomaly contribution. It's parity properties
result directly from the product of an odd number of quark
numerators and so we anticipate that it can only be cancelled
by effective triangle diagrams that contain three quark propa-
gators.

Keeping just the second term in E@.15 gives, for the
integrazl within the brackets(apart from the factor of
y-1M9)

f dp;dpLJdei ’ ' 2IkJ_>pr; r\27°
[pl+ki1TM2ppl—(p1)°]
(4.17

To carry out the angular integration f@r we choose co-

a conventional triangle Feynman diagram—uwith local verti-ordinates p5,p;) such thatk| lies along the two axis. In

ces. Achieving the elimination & andk’. from Eq.(4.195

this case,
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|p! [(k3cos¢—k,sing),
(4.18

piki=Ipi|[ki[cos¢, plxk =

wherek, andk; are projections ok, along and perpendicu-

lar to k| . We can, therefore, write

fd j d(p;)? k. Xp!
PedR | e —(p7] [pl Tk, 2

_fd y ,f d(p!)?
PP ) 2pip = (07

2 |p; | (ks cosp—ks sinp)
Xf ¢ 1\2 1\2 ! ! )
0 [(p))?+ (k[ )?+2|p]||k] |cos¢]
(4.19
Using
fzwd e L bcose =0 (4.2
. ¢a+bcos¢——5[a+ cos¢]"=0 (4.20
and
fZW COS(b 1 ron b 2m 52
_— d¢ cosgp— — d¢ co
0 atbcos¢,.,a o ¢ cos¢ 0 4 ¢
b2 ] b2
+0 3 ~0—¥+O 3
(4.21
we obtain
J » k. xp] kKL |k xKk] 423
’ r12 - 12 - 12 )
[pi+ki] k2<p!? P P,
Equation(4.19 gives, therefore,
.y f d(p;?)
>< [
Sl awss (pl?)
J' dp’.dp” 423
Y l~elSipll~eM[2p\ pL = (p[)?]
If we change variables to
Vsx=p 2 sy=p, (4.24

we obtain

f d(p. )f dp/,dp”
p/2~eM\S (p] 2) Jipll~evsip’ |~em[2p,p" —(p])?]

dydp_

f dx 4.29
_ Bt A — 4.2
x~eM X Jlyl~elp’ |~eM[2yp’ —X]

PHYSICAL REVIEW D 69, 096002 (2004

which is clearly a constant that we do not need to evaluate.
Equation(4.23 is sufficient to conclude that the integra-

tion region on which we have focused gives, for E415),

the behavior

(4.2

F. Behavior of the full amplitude

It is straightforward to obtain the behavior of the full am-
plitude that results from combining E¢.26) with the cor-
responding contribution from the right-side box graph in Fig.
5. As we have discussed above, the internal mass-shell con-
ditions determine that the longitudinal momenta in the cen-
tral propagators of Fig. 5 can be neglected. As a resulk the
andk, loop integrations produce, as anticipated, a transverse
momentum integral of the form of E¢3.1) which we write,
in complexy-matrix notation, as

d2k] 5 5+
Gu(k, k| ) Gr(k, k)
k k
jdzk/f (kak ) T y_ ¥ y. %}
ki? Kkic*
d2k! d2k, [ koki—ksky
~ f (4.27)
k|?k? M2

Since the foregoing analysis assumes that both @¢$.and

(4.9) hold, it follows that bothk|? andk?® can be integrated
over a range of values, that a@§ M S*?) without either the
approximations that we have made breaking down or the
transverse momentum approximation to the gluon and quark
propagators being invalidated. Therefore, we obtain a contri-
bution from Eq.(4.27) of the form

d2k] 5 5*
Gu(k, k] )

k k*

R(kL 1ki)}

1 S
~— d(k/? J d(k¥)~—. (4.2
M* Jomst?) (k%) o(mst?) (k1) M2 (4.28

[Note that, because the anomaly contributiorGidk, ,k|)

is linear ink| , if it is combined with aGg(k, ,k|) that does
not have this contribution then integration over will give

a cancellation of the enhancement effect. This is why we
have considered a diagram which gives anomaly contribu-
tions to bothG_ andGg.]

As we noted above, because two fermion exchange is
involved, we would have expected the amplitude to increase
only as some power of I8 However, we have now shown
that the kinematic region of Fig. 5 that we have isolated
actually produces a power enhancement of the expected high
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< -E- v FIG. 10. Unitarity cuts of(a)
Vv 4 the diagram of Fig. 2 andb) a
< AAAAAAAAAA < related diagram.

energy behavior. As we will see in the next section, there arenally, the integral is linearly divergent. Also, a product of
no accompanying logarithms in this lowest-order appearancthree orthogonaly matrices is present—although there is no

of the anomaly.

trace involved. Consequently, it is natural to expect a large

Clearly, if a fixed transverse momentum cutoff is im- momentum contribution of the form associated with the tri-

posed, i.e.,

kizi ki < )\L

then there will be no contribution of the fort4.28 whenS .

is sufficiently large. Therefore, a transverse cutoff eliminates R f da.d f 2
the enhancement effect and restores the normal behavior ex- - 4-9a- q
pected for two fermion exchange. However, as we discuss at

angle anomaly.
The strictly infinite momentum region contribution to Eq.

(429 (43D is

k. Xq,

q?

=
[29.0-—0°]

greater length in Sec. VII, a transverse cutoff violates gauge Ak
invariance Ward identities in a way that replaces the anomaly X (4.32
enhancement by transverse momentum infrared divergences. M2 fex

G. Comparison with the axial vector vertex anomaly

which, integrating by parts with respect ¢, we can re-

To see the relationship between the anomaly amplitud&rite as
(4.26 that we have found and the familiar axial vector

anomaly we proceed as follows. First we change variables ¥y k, Xq, y_
from p’ to q, where ~— f dq+dq_f d2qi—2 2
, " [2d.9-—a]?/ M* &
p ! ! 4.3
di=", 9-=Ap’, d,=p, A=( ™. (433
(4.30 and, with a further integration by parts, as
If we also extend the integration region fpt. to p’ ~M . 21k % -
(which, as we have already noted, would not significantly 7 qu dq fdzq qilk. <.} rr
alter the above analysgishen Eq.(4.15 becomesmoving K s L[quf—qf]?’ M2 fox '
the y_ /M? outside of the brackets (4.34
z’( f da kg™ - ﬁ Undoing they-matrix removal involved in going from Egs.
o\ g = cemyzsta ey g2 2 2., (4.12—(4.19 (or, equivalently, insertingy matrices using 2
kA= [a.+ki]T20.0-~ai]/ M (5*3]) =y, y-+y_y =¥y +%"%) we can rewrite Eq(4.34 as
where, as indicated the range of integration is now the same . YA yly_[ay* 1y 6" %]\ v- ¥*
for all components of). In the limit S— oo, the integrationis  ~7Y f o) >3 N
over a four-dimensional large momentum region and, for- il>0 [a”] M* ke
R Y4 (1-ys)y-4 v 4, | vy ¥*
/ ~% d* _—
|qil>0(M) [9?]® M2 f*
(4.35

FIG. 11. A twisted diagram.

We recognize the integral, within the brackets, of Eq.
(4.35 as a left-handed transverse propagator contribution to
a tensor component of the standard large momentum
anomaly integralapart from the feature that there is no trace
of the y matrices involveyl Therefore, we could anticipate
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FIG. 12. (a) The G, generated
by Fig. 11.(b) The effective tri-
angle diagram.

(a) (b)

Eq. (4.26 directly from the familiar anomaly contribution to sight this seems paradoxical since it would appear that the
a three current verteX ,,5(K; ,k,)—the notation is that of analysis of Fig. 2, in the previous section, can be viewed as

Fig. 54. In our case, the calculation of ais-channel discontinuity—via the unitar-
ity cut corresponding to the dashed line in Fig(&0
ki=—k,=k| (4.36 The tree amplitude that appears below the cut is inte-

grated with the one loop amplitude that appears above the
and if we consider the decomposition into invariant ampli-cut. That the calculation can be related to the evaluation of a
tudes(C1), Eq. (4.26 corresponds to the contribution of the discontinuity immediately justifies, in fact, our choice of
first two terms, which are linear ik; andk,. lines to place on shell.

It is very well known that in the three-current vertex the  That there is ultimately no discontinuity associated with
ambiguity of the ultraviolet anomaly contribution is deter- the anomaly is due to a second discontinuity contribution
mined by vector current Ward identities that relate thefrom the unitarity cut of a closely related graph shown in
anomaly contribution to infrared triangle diagram contribu-Fig. 10b). Clearly Fig. 1@b) is so similar to Fig. 1() that
tions. In our case, we anticipate that there will be aour analysis carries over directly. In both cases, the interme-
(Reggeized gluon Ward identity which similarly determines diate state integration ovés, produces an imaginary contri-
the coefficient of the anomaly contribution we have found.bution ofi|S|Y2 However, thek| integration, that also gives
We discuss this point further in Sec. V. Note, however, thata factor ofi |S| 12 s part of the integration within the loop
in the special momentum configuratiof.36, all the other  amplitude.
terms in Eq.(C1) vanish—if there are no infrared diver-  |f we formulate the above analysis as a unitarity calcula-
gences to consider. Therefore, in the lowest-order graphs wgon then the amplitude on one side of the cut must be com-
are discussing, the ultraviolet anomaly contributions we arglex conjugated. As a result, the loop amplitude will have the
discussing cannot be cancelled by the contribution of infrappposite sign in the contributions from Figs.(d0and 1@b)
red transverse momentum regions. and since all other parts of the diagrams contribute identi-

cally, adding the two will give a factor of

(2m)*([iIs]Y2li |82+ [ S| Y20 —i[8]Y2]) =0.

In this section we consider other diagrams that are also (5.9
O(as) and similarly have anomaly enhancements that might
produce an overall cancellation.

V. NONCANCELLATION OF THE ANOMALY

Alternatively, if we calculate the contribution of the two dia-
grams as that of amplitudes then the loop amplitude will
have the same sign in both cases and &gl will be re-
It is significant that the anomaly amplitude we haveplaced by
found, although calculated with internal lines on shell, is
real. Indeed there is no evidence, in the amplitude, of either
the s-channel or thet-channel intermediate states that are (m) (LIS S|Y21+ 1] 9| Y2)[1] 9| ¥2]) = 2*S.
present in the diagram from which it was calculated. At first (5.2

A. Reality of the anomaly amplitude

FIG. 13. Addition of an exchanged gluon to a
cut amplitude.
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- -, _ s T Loy FIG. 14. Representation of the
I - - - = - double dispersion relation f@s, .

which will, indeed, give a real amplitude. The contribution of on shell of the left side fast quark and the right side anti-
Fig. 1Qb) simply doubles that of Fig. 18). The absence of quark. Therefore, the justification for the choice of lines
a discontinuity implies that, as we anticipated earlier, therglaced on shell is closely related to the existence of the
are no additional logarithms accompanying the power enasymptotic physical region discontinuity of Fig. (a8 The
hancement due to the anomaly. As we stated in the last seasymptotic pinching of the particle poles that gives the dis-
tion, the anomaly is a simple pole &= which results continuity in Fig. 13a), together with the large momentum
from the combination of the asymptotic pinching of the behavior of the uncut propagators, is responsible for the pole
mass-shell poles of the hatched propagators with the larget infinite momentum in Fig. 18) that corresponds to the

momentum behavior of the unhatched propagators. anomaly.
A second, essential, point related to the choice of on-shell
B. Another anomaly generating diagram lines is the following. According to multi-Regge theory, the

coupling G, can be evaluated by a double dispersion rela-
tion, represented schematically in Fig. 14—where the cuts
represent the discontinuities involved. As a consequeace,
can be expressed as a sum over dispersion integrals which
ive amplitudes corresponding to all possible double discon-
inuities plus, possibly but not necessarilyeneralizefisub-
“traction terms containing just single discontinuities. The
anomaly contributions we have found are, in fact, general-
ed subtraction terms and the contributions of Figs. 3 and
12, respectively, correspond to the two single discontinuity
terms shown explicitly in Fig. 14. However, since we are
evaluating an amplitude, and not a discontinuity, to have a
contribution with on-shell lines corresponding to particular
single discontinuities ofs, and Gg, these discontinuities
must be present in the asymptotic kinematic region we are
‘considering. In fact, the discontinuity line in Fig. (b3 can
be regarded as representing the combination of the relevant
giscontinuities ofG, andGg.

The diagram of Fig. 1() is obtained from that of Fig.
10(a) by simultaneously “twisting” both the left and right-
side box diagrams. For much of our discusdimeluding the
addition of extra gluons in the next sectjome will keep the
right-side of the diagrams we consider, and therefore the co
respondingGg, fixed and discuss anomaly amplitudes en
tirely in terms of possible left-side contributions @_. In

ently discussing, the right-side coupling will be that of Fig. 2
[or Fig. 10a)] and it will be clear that, as in the above dis-
cussion, diagrams with the right-side coupling of Fig(0
simply give parallel contributions. However, when we con-
sider infrared cancellations in the next section, it will be
essential to also consider all contributionsGq .

Consider, next, the diagram shown in Fig. 11 that is ob
tained from that of Fig. 2 by twisting the left half of the
diagram relative to the right half. By a similar application of
the above analysis, which puts on shell the hatched line
shown in Fig. 11, the transverse momentum diagram of Fig.
1 will again be generated. TH8, shown in Fig. 12a), ob-
tained from the left part of Fig. 11, contains the effective If we consider just contributions to the transverse momen-
triangle diagram shown in Fig. 12. tum diagram of Fig. 1, then Fig. 11 is the only diagram

A very similar expression to Eq4.26 will clearly be  which contributegvia the coupling of Fig. )] to the same
obtained. The differences in the analysis can be summarizduklicity amplitude as Fig. 2 and which generates an appro-
as follows. priate effective triangle diagram, apart from the diagram ob-

(i) The analogue of Eq4.12 gives Eq.(4.15 but with  tained by similarly twisting Fig. 1(®). We can not twist just
K[p'1* —k*p’ which leads tok, xp!——k, xp! in Eq. the quark-antiquark state since this would reverse the direc-

C. Possible cancellation mechanisms

(4.17) and the following. tion of the quark arrow along the fast quark line, requiring a
(i) A second change of sign arises frdth— —k/ in change of the external helicity to obtain a coupling. We con-
Eq. (4.15. - + clude, therefore, that the full anomaly contributionGo is

The net result is that an identical anomaly contribution, toPPtained by adding the two effective triangle diagrams of
that obtained from Fig. 2, is obtained from the diagram ofFig. 15. Therefore, within the transverse momentum diagram

Fig. 11. —
The lines placed on shell, asymptotically, in Fig. 11 do not <

correspond to a simple cut of the diagram, as was the cas

for Fig. 2. However, Fig. 11 can also be represented as ir

Fig. 13b), i.e., as an exchanged gluon attached to the off- - Y +

shell lines of the cut amplitude of Fig. (8. The exchanged Y

gluon has transverse momentum much less than the off-she V4

quark or antiquark to which it couples in the large momen- \

tum p’ andp” regions which generate the anomaly. Conse- ~
guently, it does not interferé&inematically with either the FIG. 15. The two effective triangle diagrams generating the

guark-antiquark scattering process, or the asymptotic placingnomaly.
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FIG. 16. Tree diagrams con-
T < 5 < ; < T + T< // <\\ < T + | ; E | + o tributing to electroweak ward
e N v N\ identities.

of Fig. 1, the anomaly enhancement does not cancel. is entirely due to the asymptotic nature of the placing on
It is natural, however, to expect that there will be furthershell of the quark and antiquark lines. Also, when the Ward
cancellations. As we emphasized in the Introduction, becauddentity cancellations are carried out several diagrams are
longitudinal vector meson contributions are involved, it isincluded, in addition to Fig. 18, that would normally be con-
important to look for all possible cancellation mechanismssidered nonleading. This makes it clear that there is a general
that could be associated with an underlying gauge invariphenomenon of superficially nonleading high-energy behav-
ance. In particular, because the left-side quark and right-sidier contributing to the leading behavior because of large
antiquark are asymptotically on shell, we must considetransverse momentum divergences.
whether asymptotic electroweak Ward identities could lead There is also a second Ward identity, involving the top
to the cancellation of the vector meson numerator contribupart of Fig. 1@a) and other loop diagrams, some of which
tions that are producing the anomaly enhancement. are shown in Fig. 19, that might be expected to lead to the
There are two obvious Ward identity related cancellationsiecoupling of the topy_p/, vertex in Fig. 7, together with
that we should consider. First, we consider the tree diagranhe corresponding_ p” right-side vertex. These vertices are
that appears in the lower half of Fig. (H). At finite momen-  crycially important for our analysis. However, in this case it
tum, if the intermediate state quark and antiquark are strictlys the intervention of the asymptotic anomaly that invalidates
on shell, there will be Ward identities involving this diagram the potential asymptotic Ward identities and, self-

and all other diagrams obtained by attaching the internal vecconsistently, prevents the decoupling of the vector meson
tor meson lines at all possible points. Examples of such diayertices that are involved.

grams, together with the initial diagram, are shown in Fig. |n conclusion, we can say that there is no cancellation of
16. In fact, because the intermediate state quark and antihe transverse momentum coupling effective triangle dia-
quark are only asymptotically on shell, we might expect thalgram anomaly by another diagram with a similar anomaly.
only the vector meson numerator components that are pararhere may very well be a cancellation outside of the trans-
lel to the asymptotic light-cone quark and antiquark mo-yerse momentum diagram formalism. However, in this paper

menta must decouple. This decoupling has already appeargd |east, we will not pursue this possibility any further.
in the analysis of Sec. IVC.

In Appendix D we study in detail the Ward identity can-
cellations associated with the tree diagrams of Fig. 16. The _ ] )
essential part of the first diagram in Fig. 16 is, indeed, di- 10 obtain an anomaly amplitude for the scattering of vec-
rectly cancelled by the contribution of the second diagramtor mesons which both have helicity=+1 we include the
which corresponds to the Feynman diagram shown in Figi.e_ft side coupling of Fig. &) within a diagram that other-
17. However, the anomaly enhanced amplitude produced b{ise is the same as Fig. 2 or Fig. 11. The result is the two
Fig. 17 appears to not be representable as a transverse nfiadrams shown in Fig. 20. When displayed in the first form,
mentum diagram divergence. it is clear thgt the c_)nIy d|fference_ between these diagrams

More surprisingly, perhaps, essentially the same anomalnd. respectively, Figs. 2 and 11 is that along the left-most
enhanced amplitude then reappears via the contribution ofertical lineP, ——P . Therefore, if we evaluate the dia-
the third diagram in Fig. 16, which corresponds to the Feyngrams with the sign of®. reversed, corresponding to a
man diagram shown in Fig. 18. This is a diagram that wouldcross-channel physical region, the appropriate on-shell con-
normally be neglected because off-shell propagators are caligurations will be present. The diagrams will be kinemati-
rying large light-cone momenta. cally identical, respectively, to Figs. 2 and 11 and will give

In a sense, therefore, nothing is gained by implementinddentical anomaly contributions, but with— —S.
the Ward identity cancellations. However, after this imple- The second form for the diagrams displayed in Fig. 20 is

mentation it is apparent that the lack of anomaly cancellatiofnore transparent for discussing symmetry properties of the
intermediate state. In particular, in this form, it is clear that

Fig. 2Qb) can be obtained from Fig. 2 by twisting the quark-

D. The same helicity scattering amplitude

N
4

N

LY
4

A > N Yy i S

I~ LN N

T . A T N

i
<

™

N

F

P\
A
S

FIG. 17. A Feynman diagram with a canceling anomaly contri- FIG. 18. The Feynman diagram corresponding to the third tree
bution. diagram in Fig. 16.
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FIG. 19. Loop diagrams con-
* T /‘/{_j * r ol { | *o tributing to electroweak Ward
< N identities.

antiquark intermediate stateogether with the necessary re-  G. C and P properties of the transverse momentum state
direction of the quark arrow in the left part of the diagyam
Figure 2@a) can similarly be obtained from Fig. 11.

Since the intermediate state in Fig. 1 is completely trans-
verse(or, equivalently, is d-channel intermediate statéhe
T part of theCPT transformation, defining the signature of an
E. Cancellation in a vector theory amplitude, has no effect on it. Therefore, we should be able

If the vector mesons we are considering had a vector couf0 relate signature directly to th@P properties of the trans-
pling, rather than a left-handed coupling, to quarks, then th&¥€rse momentum state.
diagrams of Fig. 16 would appear also in the opposite sign The parity transformation reverses the transverse momen-
helicity amplitude but with (3 ys) couplings replacing the tum of the gluon and so, because of the couplidg6),
(1— vs) couplings in Fig. 60). In this case, after the use of simply gives a minus sign. Without a color factor, the charge
Eq. (A15), the relative minus sign discussed in the previousSoniugation transformation also gives just a minus sign.
subsectior{resulting fromS— — S) produces a cancellation Therefore, the gluon component of the intermediate state is
between the anomaly contributions from Figs. 2 anéaR0 even undelCP. For quarks the Ieft—handgd coupllng wola}es
Similarly, the contributions from Figs. 11 and (®D cancel. both P andC. As a result, the quark-ant|quark .|ntermed|ate
In a vector theory, this cancellation of right and Ieft-handedState _only has simple t_ransformanon properties under the
coupling contributions would persist, even as we add mo combinedCP transformation. Charge conjugation transforms

r% . . .
. i . quark(antiquark to the corresponding antiquafkuark),
gluons as discussed in the next section. with the same helicityopposite chirality. The parity part of

_ _ the CP transformation then reverses the helicities. In our
F. The even signature amplitude case, the quark and antiquark have opposite helicities and so

To form signatured scattering amplitudes we should addhey will be simply interchanged by theP transformation.
to, or subtract from, a particular helicity amplitude the am-/ndividually, the diagrams we are discussing do not have
plitude obtained by a CPT transformation of one scattering/MPIe Symmetry properties with respect to quark/antiquark

state relative to the other. ThereforeAif . andA , , are the nterchange. Not surprisingly, however, the full set of

opposite sign and same sign amplitudes we have discusseﬁg\%nigcﬁo;g'r%%t'e‘?gls in the even signature amplitude does

A (P, ,P_)=A_,(P.,P_)*A, . (-P, ,P.) With the four diagrams 2, 11, 28), and 2@b), added in
(5.3 the even signature amplitude, it is cle@sing the second
display form in Fig. 20 that the left-side coupling is sym-
metric, diagrammatically, with respect to the interchange of
is an even-odd signature amplitude. This implies that théhe quark and antiquark. The interchange relates Fig. 2 to
anomaly amplitudes arising from Figs. 2 and@Gre added Fig. 20b) and Fig. 11 to Fig. 2@). In addition to the rever-
in the even signature amplitude and subtracted in the odgal of the quark line, the contribution of Fig. &) to the
signature amplitud¢as are the anomaly amplitudes arising even signature amplitude differs kinematically from that of
from Figs. 11 and Fig. 2B)]. Therefore, the anomaly can- Fig. 2 in two ways that produce canceling sign changes.
cels in the odd signature amplitude and is present only in th&irst, k, ——k, and, secondly, the effect in the_ integra-
even signature amplitude. This will continue to be the case ason of P, — — P resulting from the definition of the even
we add more gluons in the next section. It is directly relatedsignature amplitude. Therefore, in this amplitude, the quark-
via a generalization of the discussion of the previous twoantiquark intermediate state is even und&. Since the

subsections, to the cancellation in a vector theory. gluon state is also even undeP, the full transverse momen-
S
. BL 3
‘ N
FIG. 20. The scattering of same helicity vec-
‘\ﬁ—_;_\‘ J,HJJ tor mesons.
I i T <3 7
N ’ N

(@) (b)
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plicit, the replacement of the couplings of Fig. 6 by those of

0 0 + -
W W W W -
\1(5 d u d Fig. 22.
u , d , d , u B. Color factor diagrams and the one gluon color factor

SU(3) color factors will also be relatively simple. In all
the diagrams we discuss, there will be only one quark loop.
tum state is indeed even undep, as it should be. There is no external color and so color is introduced into the

Note that the full even signature amplitude will contain, in quark Ioc_)p only by the cogplings to the i_nternal gluons. Also,
addition to the four diagrams of Figs. 2, 11,80 and 2@b), for the diagrams we consider, gluons will appear only as'part
the four related diagrams obtained by substituting the righf)f the exc_ha_nged transverse _momentum state and will be
side of Fig. 1Qb) for that of Fig. 1@a). In effect, in this attached W'th'r_‘ the correspondif andGRtrans_verse mo-
second set of diagrams the twists are madeGanthat are mentum.coupllngs. As a result, we can use a simple notation
made onG, in the first set of diagrams. Each set of twists ist0 describe color factors. We represent the q.uark.IOOp asa
sufficient to give an intermediate state with the appropriatJeCtangle’ and attach gluons only to the_vert!cal lines. The
CP property. As a result, the discussion of each set of fowattachment of gluons to the left-side vertical line represents
diagrams can be made separately and is directly parallel. | & order of attachrtnent to thl_e quarl;}]r)ot[;]wrghlhrl[thz left-side
higher orders it will sometimes be necessary to consider bot ansverse momentum couplidg , while the right-side ver-

sets of twists together to obtain an intermediate state with th cal line similarly represents the order O.f attachment within
right CP property r. For each gluon there is a color matihxat each attach-

ment point. The full color factor is the trace of the product of
the X matrices taken around the loop, and then summed over
i=1,..,8 for each gluon. The notation is illustrated for vari-
We begin with a discussion of $P) flavor that will, es- 0ous numbers of exchanged gluons in Fig. 23.

FIG. 21. Vector meson and quark vertices.

VI. COLOR FACTORS AND MORE GLUONS

sentially, allow us to ignore it in the following. All of the diagrams discussed in the previous section con-
tain just one gluon and have the same color factor. This is
A. SU(2) flavor represented by Fig. 28 and is simply

The SU?2) flavor symmetry will play only a minimal role 2 Tr{>\-2}
in our discussion and we will introduce it in a very elemen- i e
tary manner. We consider the exchange of a quark-antiquark
{I=1],=0} state that, in the standard model, would carrySince all diagrams have the same color fadi@mnd flavor
the quantum numbers of the®. Identifying W=, W° with  facton all of the discussion in the previous section is essen-
the {I =1,l,= =,0} vector mesons and identifying,d with tially unchanged, apart from the discussion of charge conju-
the {I =1/2],= +1/2} quarks, we can add flavor quantum gation, which now has to include color charge conjugation.
numbers to the discussion of the previous section by using For a general gluon field with color matrid ,,, color
the vector-meson—quark vertices of Fig. 21. The flavorlessharge conjugation is defined as
couplings of Fig. 6 are then replaced by the sums of cou- T
plings shown in Figs. 22) and 22b) and the internal vector Map—[—Map] = —Mp,. (6.2
meson on-shell contributions are replaced by a similar sum - . .

We then add all the diagrams obtained with this set otFor the hermitian color matrix vertices
couplings. The most important feature of these couplings is [—N]T=—[N ], (6.3
that they are symmetric with respect ie~d and that this
symmetry is preserved by the internal vector meson exwhere[---]* denotes complex conjugation. Therefore, in ad-
change interactionglt is also important for theCP proper-  dition to the charge conjugation minus sign discussed in the
ties of the diagrams we discuss that, in going from FigaR2 last section, the coupling of the gluon to the quark line
to Fig. 22b), left-handed quarks and right-handed antiquarkgwithin G, , say is complex conjugated. Correspondingly,
are interchanged, as was the case for Figa) &nd 6b).]  for the quark-antiquark pair, in addition to the charge conju-
Consequently, the addition of $2) flavor factors will not  gation discussed in the previous section, quark-antiquark in-
produce any diagram cancellations and we can leave, as interchange gives

(6.9

WU

WO W WO wt wt WO W
u u d d u u d d
u + d + d + u u + d + d + u FIG. 22. Couplings with S(2)
flavor quantum numbers.
u u d d 5 u u d d
Wo W WO wt W + WO W

W
(a) (b)
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> > present, this diagram again, potentially, includes a logarith-
)\i As )\i AAAAAAAAAA )‘i mic transverse momentum divergence generating an addi-
= s A ) - tional energy logarithn.
< J ¢ ] We begin with the addition of a soft gluon to the diagram
of Fig. 2. The anomaly will appear in the same manner as
(a) (b) before if, in the high-energy limit, an effective triangle dia-
gram is generated as in Fig. 3, but with the additional gluon
As > X > attached, via a point coupling, to one of the three vertices of
J " i AV - AN the diagram. The required local coupling could appear, in
’J_’_,.r\\ LAAAA - < AAAA principle, ifk” can be directed through an adjacent quark line
A ¢ )\j < which can be put on shell by tHé integration. If this line
carries(predominantly a large light-cone momentum then,
(c) (d) in analogy with Eq.(4.2), the integration will produce cou-

plings that are independent kf . In Figs. 2%a), 25(b), and
25(c) we show how the extra gluon could be added to Figs.
6, 7, and 8, respectively, with the finglmatrices remaining
the same as in Fig. 9.

in Eq. (6.3). Since the parity transformation is unchanged, N Fig- 23¢) the soft and hard gluon can be interchanged,

the full gluon plus quark/antiquark transverse momenturVN€reas in Figs. 28) and 23b) there is no ambiguity as to

state remains even und€P when color charge conjugation Where the soft gluon has to be attached, if famatrix struc-
is included. ture is to remain the same.

For Fig. 25a) we can, essentially, apply E@Gt.2) directly.
For the couplings of Figs. ZB) and 25%c) there is, however,
a problem if the extra gluon is soft and so carries only very
Next, we look for Feynman diagrams that contain twosmall transverse momentum. In these cases, the propagator
gluons and that also, potentially, contain the anomaly enthat has to be placed on shell by tké integration is adja-
hancement. We will assume that only one gluon is involveccent to an off-shell propagator that, in the anomaly configu-
in the transverse momentum diVergence and will Considefation, iS Carrying Very |arge transverse momentLp'ﬁ)( In
two possibilities for the scale of the transverse momentumpis case the mass-shell condition is
carried by the second gluon. It can either be “soft,” i.e., it

FIG. 23. Color factor diagrams.

[NTF =[] (6.9

C. The addition of a soft gluon

carries a very small momentuki, with (p.+K)Z eM \/5 .
" e ey "~ ~ ~M 6.
K/ |<M <[k, |,|k] | soft (6.5 p. Vs
or *finite,” i.e., which cannot be satisfied witk” <|k”|<M. Therefore, if

(6.6) the vertex for the extra gluon is of the form of Fig.(Bbor
' 25(c), in both theG, andGg couplings, then it cannot carry

As we will see, in some diagrams soft gluon exchange i§k1|2<M2-

possible, in addition to the anomaly generation, while in oth- ~ Later, we will discuss potential contributions from verti-
ers only finite gluon exchange is possible. In both cases, thees of the form of Figs. 26) and 2%c) whenk” is *finite,”
second gluon will provide an important color factor. A soft i.e., |k} |>~M?2. For the moment, we consider only the vertex
gluon, however, will also produce an infrared divergenceof Fig. 25a). Generation of the corresponding triangle dia-
Since the full transverse momentum state carries zero cologram is shown in Fig. 26 and the full Feynman diagram, with
such divergences must cancel. This will help us to locatéhe extra gluon attached in the same manner to both sides of
other diagrams generating the anomaly. Fig. 5, is shown in Fig. 27.

We consider the “soft” gluon case first and look for dia-  As illustrated, the lines put on shell correspond to making
grams that contribute to the transverse momentum diagrar@ double cut of the diagram. This corresponds to double dis-
of Fig. 24 which, as discussed further in Appendix B, wouldcontinuity contributions to th&, andGg couplings.(These
again be expected to contributrmally) only at next-to-  contributions are again generalized subtractions in that the
next-to-leading log.(Note that, when the anomaly is not full dispersion relations foG, andGg contain triple discon-

tinuities)

K/ [~M< [k, |,k | finite".

ALY LS D. The two gluon anomaly amplitude

If k| is much smaller than any other transverse momen-
tum in the diagram of Fig. 23, the only significadt depen-
dence will be in the&k” propagator. Hence, tH€ integration

FIG. 24. The two gluon transverse momentum diagram. Thecan be factored out from the remaining integrations and, be-
broken line denotes a soft gluon. fore the inclusion of any color factor, the diagram of Fig. 23
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Y_ Ak Y.|.
A %
?(1—‘0’;)\—»‘0’ v N
-3 (X T &
:0’ AAPAS %* Vi Jorrns
+ A
. -1 0 e
T (1—75) BRS¢ — s v-¢
/'/ Y+ FIG. 25. Adding a gluon to the
| | vertices of(a) Fig. 6, (b) Fig. 7,
\|/ v Vv and(c) Fig. 8.
A K

47_ P —lé

Ao 1
A
¥ -7
(a) (b) ()
gives, via the reduction of Figs. 29 and 26, a high-energy
anomaly enhanced amplitude of the form (b) IE] Tr{N NN, (0 .EJ Tr{NiN AN} (6.9)
n ’ ’ 2 ~ A
e A2KT d?k e TROXKD ) Ty s 3
2 - | d%k. ) N We discuss these two factors in a manner that will generalize
ki ki M Kk* when further gluons are added. The essential formula we
o — ) 2 need is
(IkkMd ki)J d2k d?k, [ koki—Ksks
krrZ erkZ M2 2
* o )\|)\J:§5|J+2k (Ifljk+dljk))\k (61@

fkkMdZKI f d(kf)f d(k?)
kIZ O(M31/2> |V|2 O(MSllz) |\/|2

which, sincef;;, is antisymetric andl;;, is symmetric, im-

— M2 6.9 plies that
- 4
We can smllarly add. a soft gluon to each of the one gluqn NN =2 8 +22 dijih i (6.11)
diagrams discussed in the last section and generate a high- 3 K
energy amplitude of the same form. There is, however,
clearly a divergence dk’/|>=0 that we must discuss. First,
. and
however, we discuss the relevant color factors.
E. Two gluon color factors NN — A= —2i Ek i\ (6.12
There are two possible color factors for the transverse
momentum diagram of Fig. 24. They are shown in Figs.
23(b) and 23c) and have the form Therefore, the sum of the two color factd9) is given by
>k
_> N\ _> k”

FIG. 26. Atwo gluon effective
triangle diagram.
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—> ’
¥ -.A.A.A.‘.A.AEA"‘.A > P RAAAAAAAAAAAY ¥
A d N N 4 S A\
N
> >
4 4 ¢ ) U I A [
A s~~~\.\.~;}'~~~ ANV hA Y AAAAIRAANAA AN (A VA
->
N N2 [P I S - v == -
—— , ., -T" ) L
€ € € < €

FIG. 27. A two gluon Feynman diagram with two cuts.

parity. In the antisymmetric factd6.14) only the color octet
iEJ: TrNNNN NN NN with odd color parity contributes.

4
=iEi Tr[ {g bij +22k dijk)\k})\i)\j] F. The color factor for the anomaly
Consider again the effective triangle diagram of Fig. 22.

4 2 - - ) .
:Z Tr §5ij+22 dijihi §5ij+2 diji N (As_ in the last sectlor_1, we will |n|t|a!ly discuss qnly the
0 K [ various anomaly contributions G, , with Gg kept fixed)

Comparing with the diagrams of Figs. 3 and(d?2 the

=> 8 5+ EE dgk} zzof (6.13  twisted triangle diagram that should give an anomaly contri-
o9 3% 9 bution to add to that of Fig. 26 is that shown in Fig.(29
and the corresponding full diagram is that of Fig(I#9As
and the difference of the two gives illustrated in Fig. 30 and in analogy with Fig. 13, Fig.(Bp

can be obtained by adding an exchanged gluon to the two cut
amplitude of Fig. 3(n).
Again, in the anomaly region, witfk| |?<|p!{|%, |p]|?, the
exchanged gluon does not interfere significantly with the ki-
:E Tr{[2i Nl Fig N 13 pematics of taking lthe double discontinuity of Fig.@o It
ik is also clear from Fig. 30, that the on-shell lines of Fig(#9
4 correspond to physical double discontinuities of the and
=> ~fi =12 (6.14  Gr.
Tk 3 If we consider the order ok matrix multiplication (fol-
lowing the quark arrowwe see that it is reversed for the two
Both Egs.(6.13 and (6.14 are expressed as a sum of gluons in Fig. 28a) compared to those in Fig. 26. As a result,
squares of color factors where each individual term correjf we add the two diagrams the anomaly is multiplied by the
sponds to a particular color for the gluon intermgdiate stategym of the two color factorés.13. As we have discussed, in
The states that contribute can be found by writing the leftyhis case there are separate contributions corresponding to

side color factor as a sum over distinct intermediate states, dShather the quark-antiquark pair is in a color octet or a color
is effectively done in Eqs(6.11) and (6.12). The full color zero state

factor can then be written, relying on the orthogonality of the
intermediate states, as a sum of squares of the left-side fac-
tors. The quark-antiquark intermediate state can only carry
zero or octet color. Correspondingly, since the total color of To form signatured amplitudes we consider, with the dia-
the intermediate state is zero, the gluon sums must also cograms of Figs. 27 and 29), the corresponding diagrams for
tribute either zero or octet color. This will continue to be thesame helicity vector scattering. These are shown in Figs.
case when more gluons are present in the transverse mome3i(a) and 31b), respectively. With flavor included, the left-
tum state. For the two gluon case, as illustrated in Fig. 28, ithand couplings in these diagrams should be replaced by the
the symmetric color facto(6.13 the gluon sums give zero full, flavor symmetric, couplings of Fig. 2ZB), while the

and octet color contributions, which both have even coloright-hand couplings should continue to be the analogue of

- ([E:E)EE)

izj Tr{)\l)\|7\|)\J_)\|)\J)\|)\]}:I%I Tr{[_2|f”k)\k])\|)\]}

G. Signature and color charge parity

+[
j

FIG. 28. Color breakdown of the intermediate

+ - 2= ={0},{8} MY =1{0}){8.+} state.
- = = =18 No% = 18,7}
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1 >k 1 1
_:\»\-u\v. MANAAAAY > k7 s “w—>k” PranaanasannanAnanananny FIG. 29. (a) A twisted effec-
N ) tive diagram.(b) The full twisted
. >k e \ diagram.
(@ (b)

Fig. 22a). As in Fig. 18, we display the diagrams in two Comparing Eqs(6.15 and(6.16 with Eq.(6.11) we observe
different ways, each of which will be simpler for particular that the color zero two gluon state carries nega@and is
arguments. separately even undé&® and odd undeP. It therefore has
To discuss signature we focus on the first forms displayed:normal” color charge parity(equal to the number of gluons
Comparing with our discussion of the diagrams of Fig. 20,in the stat¢ but has “anomalous” negative parity, producing
we note that Figs. 34) and 31b) again differ, kinematically, an “anomalous” negative signature. The color parity of the
from Figs. 27 and 2®), respectively, only in thaP, — octet gluon state is also well defined if we igndre]
— P, along the left-most vertical line. Therefore, if we — [\ ]* (which is, of course, compensated for by the quark-
evaluate the diagrams of Fig. 31 in the cross-channel physantiquark interchange discussed beloand is similarly
cal region—with the sign oP, reversed—they will be ki- even.
nematically identical, respectively, to Figs. 27 andi2%nd To discuss theCP transformation of the quark-antiquark
will give identical anomaly contributions, but wite— —S. pair we compare with our discussion in Sec. Il E and note,
Therefore, these diagrams have anomaly contributions witfirst, that the left-side coupling of Fig. 81 can be obtained,
the opposite sign to those of Figs. 26 andif%nd in a diagrammatically, from that of Fig. 27 by quark-antiquark
vector theory would provide a cancellation. In the preseninterchange. The left-side coupling of Fig. (8L can simi-
case, since the color factors are the same, the anomaly colarly be obtained from that of Fig. 29). In the even signa-
tributions of the two diagrams of Fig. 31 add to those ofture amplitude we must evaluate the diagrams of Fig. 31 with
Figs. 27 and 2®) in the even signature amplitude and pro- P, ——P, compared to the other diagrams. Therefore,
duce a cancellation in the odd signature amplitude. guark-antiquark interchange now gives three kinematic
As in our discussion of the one gluon diagrams, we carchanges of sign
also obtain the signature from ti symmetry properties of

the intermediate transverse momentum state. We consider, (1 ki——k,
first, properties of the gluon component. Since the gluons . T _
have only QCD vertices, they can have simple transforma- (i) ki—-k from P,—~-P,,

tion properties undeC and P separately. Applying color no _
charge conjugation to Eq6.11) gives (i) k-——k= from P, ——P,. (6.17
When all four diagrams are added the amplitude is, kinemati-
cally, antisymmetric under quark-antiquark interchange. As a
2 result, when the quark-antiquark pair has color zero it is,
:§5ij+2 dijk[ Ni]*. (6.15  straightforwardly, negative undeCP. Combined with the
k negativeCP of the color zero two gluon state this gives no
change under the fulCP transformation, as is necessary to

The parity transformation reverses the transverse momentu@ptain an even signature amplitude. _

of the gluons and so, because of the coupl#hg@ for the When octet color is involved, the color effect of inter-
large transverse momentum gluon, again gives a minus sigghanging the quark-antiquark pair will, as we already noted
Therefore, the full effect of theCP transformation of the —above, again béx,]—[N,]*. Therefore, with the negative

gluon component of the intermediate state is given by sign coming from the kinematic interchange, the complete
CP transformation on the quark-antiquark pair again com-

5 5 bines with the octet part of E¢6.16 to produce an overall
§5ij+2k dij[ N — — §5ij_; dij[Ni*. (6.16 Etct);{glve CP result for the full two gluon quark-antiquark

[N NN T= (= D2 NN NN T=I0 N+ NN T

FIG. 30. Addition of an ex-
changed gluon to a two cut ampli-
tude.

AR AN A AA —
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FIG. 31. Same helicity scattering diagrams with one soft gluon.

(@)

H. Infrared cancellations If k", is similarly constrained ango justify the reduction to
. . "2 "o
Since Eq.(6.8) contains an infrared divergendat kiz a transverse momentum diagrame requirek“=|k” k', |,

~0), and there is no external color, there must be othefhe lower limit for thek’ integration is

anomaly contributions that cancel this divergence. Before

discussing the possible diagrams that could be involved, it . m*

will be useful to first discuss the lower limit on the? L By (6.19
integration in Fig. 27.

The momentum flow through the two lines that are put
on-shell by thek” andk” integrations is shown in Fig. 32.
Sincek| is large and” is small, all the large momenta flow
through both lines. Therefore, the large momenta are signifi-
cantly constrained by thke’ mass-shell condition before the
k" mass-shell condition is imposed. If we, temporarily, intro- f|k1|2~
duce a quark masm then thek” mass-shell condition is
(P, +p’+k’)2=m? and, with this constraint, the mass-shell
condition fork” becomes

and so an infrared divergence appears|kit?=0, as S
—oo, of the form
dzki

~InS—Inm*. 6.2
m#/s kiz ( @

As we discuss briefly in the next section, we expect the
cancellation of the infrared divergen¢@.20 to be a conse-

—2K'(p’ +K'), +m? quence of a Ward identity that results from attaching the soft
k" ~ L = , gluon at every possible point around the effective triangle
P diagram. Consider, therefore, the attachment of the soft

gluon, inG_, according to the other possibilities illustrated
in Fig. 25. With the attachment shown in Fig.(Bbwe ob-
tain the full diagrams shown in Fig. 33.
The mass-shell condition now has the fo®n7) and so, if
the lower limit for thek’, integration still has the form
\ (6.18), requiring|k| |>>k’ k" gives the lower limit

o (6.18

—-
o= N
; , a1t — k_integration 5
Prretet T K~ 623
” L gl2 - .
MAAA, <— K
Pyt+ptk’ T T ¥ integration Therefore, if the diagrams of Fig. 33 give anomaly contribu-
, tions they will have, as a factor, an infrared divergence of the
/f ¢ <-p'tk form
T P+ dzkl 1
f w2 oz L2 —InS—Inm?=InM. (6.22
FIG. 32. Momentum flow for th&’ andk” integrations. K/ |2~m2m/st2 K 2
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Tx” FIG. 33. Diagrams obtained

with the soft gluon attachment of
Fig. 250b).

/ -> k7 \L<_\

If, instead, one attachment of the soft gluon is that of Fig.different properties compared to those we have so far dis-
25(c) rather than that of Fig. 26), as we have just dis- cussed. In Fig. 35 we compare the large momentum route for
cussed, there will clearly be a similar infrared divergence. k' with the possible routes fd¢’, around the same triangle.
There is, however, a major reason why the diagrams of We observe, first, that while the route f&f large was
Fig. 33, ultimately, do not give an anomaly contribution. Be-determined by the particles we wished to put on shell, there
cause of the location of the soft gluon attachment, the sigmare two possible routes K| is large. As illustrated, it could
change(iii) in Eq. (6.17) will not be present wherP,. —  flow through either one or two quark propagators. From Egs.
—P_ in the diagrams appropriately related to those of Fig.(4.21) and (4.22, we see that the anomaly contribution is
33 in the same sign helicity amplitude. As a result, in thepgptained from an expansion in powers|&f/p|| (in which
even Signature anomaly amplitude, the quark-antiqual’k interﬂqe first term does not Contribut&onsequenﬂy' |kl ap_
mediate state must be positive un@?. Alternatively, if we ears in only one propagator, rather than two, the anomaly
add all the diagrams related to those of Fig. 33 that give algontribution will be reduced by a factor df (in the even
possible contributions to eadBr, we will obtain Gg cou-  sjgnature amplitude where both chiralities are added for each
plings to the quark-antiquark intermediate state that hav@ropagator. The sign will also be opposite. This is the nor-
negativeCP. Therefore, when all diagrams related to thosema| ambiguity of the ultraviolet anomaly, that occurs be-
of Fig. 33 are added in the even signature amplitude, th@ause of the choice of momentum routing, which we expect
resulting G, requires positiveCP for the quark-antiquark to pe determined by a Ward identity.
state, while theGg requires negativecP Consequently, if If k' is small, thek” mass-shell condition does not con-
there is an anomaly contribution from any of the diagrams, itrajn the large transverse momentupi Y involved in the
must cancel in the sum. k" mass-shell condition. As a result, tké mass-shell con-

This last problem similarly applies to all diagrams in dition gives a constraint similar to E .
which one soft gluon attachment is as in Fig(&5while the 9 ®7),1e.

other attachment is that of Fig. @B. As we will shortly p'2  eMSY?
discuss there will, nevertheless, be important anomaly con- kKl ~— T~ €M. (6.23
tributions from diagrams in which the attachments of the Py S

second gluon, in botls, andGg, are either of the form of . L -
Fig. 25b) or Fig. 25c). In this case, however, the second Since thek’, integration inGg has the lower limi(6.18), we

gluon necessarily has “finite” transverse momentum and sdVill @gain obtain an infrared divergence of the form of Eq.
can not produce an infrared divergence. (6.22. In this case, ho_weve_r, since the_re is a gluor_1 attached
To look further for a divergence that could cancel that dug© both the left and right side quark lines, there is @B
to Fig. 27, we must consider whether there are any nevg;onﬂlct. Alsq, from E|g. 36,. it is clear that neither g!uon
kinematic configurations, generating the anomaly and inintérferes with the kinematics of the quark subamplitude,
volving a soft gluon, that cannot be viewed as a soft g|u0ﬁNhICh remains such that the vector meson lines can consis-
accompanying the one gluon enhancement diagrams. In fadgntly be placed on shell. In fact, if the anomaly has the sign
if we are considering the attachment of the soft gluon afnd magnitude obtained from the second routing of Fig.
every possible point around the effective triangle diagram39(b) (Which is the “normal” routing, there will be a can-
there is one possibility that we have not yet included or
discussed. This is to interchange the momenta of the twc

gluons involved in Fig. 26. In Fig. 34 we show the full dia- > W 1
gram obtained from Fig. 27 by interchangikg andk” in T et TV TTTPTPR
one side of the diagram relative to the other. The soft gluon M/ A k7 %_;m
is again indicated by a broken linéNote that Fig. 34 is A N ¥
symmetric with respect t&’ andk”, if we interchange the 4 4
roles of G, andGg.) —2— ';'

If we interchangek’ and k” in Fig. 26, then the large ¢ ¢ <

transverse momentum flows into the triangle diagram at the

left-most vertex while the single gluon vertex carries only

small transverse momentum. This does indeed give an FIG. 34. The diagrams obtained by interchangiigandk” in
anomaly contribution. This contribution has, however, someFig. 27.
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k"R Ik Possible routes fok” .

<— k” <— k”

(a) (b)

cellation with the divergence obtained from Fig. 27 when theanomaly contributions that add to those of Fig. 37 in the
diagram of Fig. 34 is added and the two contributions, fromeven signature amplitude. However, as in our discussion of
k” large andk’ small, andk’ large andk” small, are com- the diagrams of Fig. 23, because the finite gluon is not at-
bined. tached to the fast left side quark, the sign chafiggin Eq.

At this point we note thak’ is the total momentum flow-  (6.17) will not be present whe®, — — P, in the diagrams
ing in at a “vector” vertex of an effective triangle diagram of F|g 38. Consequen“y, ﬂ"@L Coup”ng obtained by add-
with an anomaly. In this case, as we discuss in the nexjq the diagrams of Fig. 38 to those of Fig. 37, requires even
section(and illustrate for the usual triangle anomaly in Ap- cp for the quark-antiquark intermediate state. When the cor-
pendix O, we expect that the appropriate Ward identity, \o5nonding diagrams are added, this argument will similarly
which yv(_)uld determine which routing in Fig. 89 is cor- apply toGg. As a result, the quark-antiquark state is neces-
rect, will involve both the large internal momentum region Ofeﬁf"r"y positive undelCP. This can be consistent with even

the triangle diagram that generates the anomaly and a sm . ; .
) i . . Signature for the complete intermediate state only if the two
internal momentum region that produces a very different ki-

nematic form, containing the “anomaly pole.” The discus- gluon state is also even und@P. This can, in turn, only be

sion of the anomaly pole and pion wee gluon couplings tha{he case if the tV\/“0 gluon stafe carries antisymmetr_ic octet
we have given in Ref8] should, essentially, carry over to an color and so has “anomalous” odd color charge pafitpt
infra-red analysis of effective triangle vertices that would bedual to the number of gluops _
the analogue of the ultraviolet analysis presented in this pa- " the two gluon anomaly contributions that we have dis-
per. This analysis must be carried out before we can estal§4ssed in previous subsections, the two gluon state has car-
lish, in detail, how the(Reggeoi Ward identities are satis- fied normal color charge parity because the addition of
fied, and that infrared divergences are indeed eliminatedvisted diagrams gave the symmetric color factor. We must
when the diagram of Fig. 34) is added to that of Fig. 27. consider, therefore, whether there are also “twisted dia-
grams” related to those of Fig. 37 which cancel the antisym-
metric part of the color factor.
Twisted diagrams related to the diagrams of Fig. 37 are
In the final form of two gluon anomaly contributions that shown in Fig. 39. For Figs. 38) and 39b), the color factor
we consider the second gluon transverse momerk{ins s indeed reversed compared, relatively, to Figga8and
neither very small, nor grows witls. It is “finite,” i.e., 37(b). Also, it is clear that, in Figs. 38) and 39b), the
O(M?). In the diagrams we consider, the above discussiomppropriate(hatched lines can be consistently placed on
implies that the kinematics of the anomaly prevent the secshell.[This is not true for other diagrams that could, poten-
ond gluon from carrying very small transverse momentumtially, be related, by twisting, to either of Fig. @GJ or 37(b).]
In particular, we consider diagrams of the form shown in Fig.Therefore, as before, adding the diagrams of Figéa)3gnd
37, in which the second gluon attachment is the same in botB9(b) to those of Figs. 3@&) and 37b) gives the symmetric
G, and Gg, and has the form of either Fig. @5 or Fig.  color factor and so, because the quark-antiquark state has
25(c). The broken gluon line in these diagrams now indicatessvenCP, the anomaly contribution must cancel in the sums
finite transverse momentum and the lines put on shell corresf these diagrams.
spond, as illustrated, to two cuts through each diagram. The
combination of particle poles giving these two discontinui-
ties, together with the off-shell loop, that occurs either at the
top, in the middle, or at the bottom, in the three diagrams, is

now responsible for the anomalys usual, a closely related .
set of diagrams is obtained by simultaneously twisting both

G, and G in each of these diagrams. For Fig.(87the

same diagram is actually obtained, but the kinematic regions

I. Anomalous color parity gluons

for the two gluons are interchangéd.
To form signatured amplitudes, as before, we consider the
same helicity scattering amplitudes shown in Fig. 38. Again
we can argue that these diagrams are related to those of Fig
37 by P,——P, and so the same anomaly amplitude is
obtained, but withS— —S. Therefore, these diagrams give  FIG. 36. Two gluons accompanying the quark subamplitude.
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(a) (b) (c)
FIG. 37. Gluon attachment$a) As in Fig. 25b) or (b) and(c), as in Fig. 2%c).

Both Figs. 39c1l) and 39c2) can be regarded as twisted n
relative to Fig. 37c). For Fig. 39cl) the color factor is re- Pln:H i (6.29
versed compared to Fig. @&, but the hatched lines clearly
cannot be consistently placed on shell in the physical regio
For Fig. 39c2) it seems probable that the hatched lines ca
be placed on shell consistently, even though the necessary 1
cuts would cross. The issue is irrelevant, however, since Fig. Po= H i (6.25
39(c2) has the same color factor as Fig.(&7 In fact, there j=n
is no twisted diagram corresponding to Fig(&7avhich has . , )
a reversed color factor and in which all the necessary hatchedSing Ed.(6.10 extensively we can write
lines can be consistently placed on shell.

Since we can regard the color factor for Fig(&7as the Pin=Ap+ E Bink\k (6.26
sum of the symmetric and antisymmetric factors, the anti- k
symmetric, odd color parity, component will be selected for . , )
the anomaly contribution from this diagrafand it's same Where Ai, multiplies the unit matrix and bothA,,
helicity counterpajt Similarly for Fig. 39c2), if it contrib- ~ —Aipip....i, @MdB1n=Bj i, _j « contain combinations of
utes. Together with the contribution of corresponding dia-f andd tensors. Similarly, we can write
grams obtained by twisting bot®, and G, these will be
the only anomaly g:ontri_bl_Jtion from diagrams in which the Pn1=An1+E B\ (6.27)
second gluon carries “finite” transverse momentum. In all K
cases, the second gluon is attached as in Fi¢g)28nd not
as in Fig. 2%b). The finite gluon contributions have the im- Equations(6.26) and(6.27 decomposé;, andP,,, respec-
portant property that the two gluon state carries “anomalougively, into a sum of color singlet and color octet contribu-
color parity.” This is significant because, as we emphasizedlons.
in the Introduction, Reggeized gluon exchanges that appear It follows from the hermiticity of the\; that
in vector theory perturbative calculatiofts—7] carry normal

rr}['ogether with the product taken in the reverse order

.....

1 1
color parity. The appearance of anomalous color parity gluon T_ T Nk *
states is, therefore, a direct consequence of the presence of (Pny) ,—Hn ()"j) J-Hn ()"j) (Pw)*,  (6.28
the anomaly.
where ¢--)T denotes transposition ane- ()* denotes com-
J. General multigluon color factors plex conjugation. Equivalently,
Before considering more complicated multigluon configu- Py=[(P1)T]*. (6.29

rations we give a general discussion of multigluon color fac-

tors which generalizes the previously discussion of twoas a result

gluon color factors. We note first that we can obtain Egs.

(6.12) and (6.12 from Eq. (6.10 by a more general argu- Ani=A%,, Bhu=Bln (6.30
ment than just the symmetry and antisymmetry of dhend

f tensors. Consider a product ®fmatrices or, equivalently,

AN A AAAAA
v A/ LRSIV V L VY
AN AN A AN A E

AN
(a) (b) (0

FIG. 38. Same helicity diagrams related to the diagrams of Fig. 37.
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FIG. 40. A transverse momentum diagram with two soft gluons.

which is a similar sum of squares of color factors which,
because they contain an odd numberf déénsors, describe
S Y gluon states with anomalous color charge parity.

(c1) (c2) In the two gluon states that we have so far considered, all

FIG. 39. Diagrams related to the diagrams of Fig. 33 by twist-
ing.

color factors apart from the first term in E¢.34) have
appeared. This term corresponds to a color zero anomalous
color parity multigluon configuration. It will appear in the

three gluon diagrams that we discuss next. We continue to

Pint Pni=2 R&A1n) + 2 REByp) N confine our discussion to a single large transverse momen-
) _ tum gluon and consider only multiple soft or finite gluon
P1n—Pn1=2i IM(Agp) +2i IM(Byp) Mg contributions that do not involve any factors of3n(In gen-

(6.31) eral, we anticipate that higher order logarithms lead to the

which gives Eqs(6.11) and(6.12), as a very simple case.
Since thef andd tensors are both real, it follows from Eq.

(6.10 that a factor of is always accompanied by d&tensor.

Therefore, the real and imaginary parts of bét}) andB;,

separate Reggeization of each of the transverse momentum
gluons in the diagrams we stugly.

K. Two soft gluons

contain, respectively, even and odd number$ whsors. If We begin with two soft gluons and consider diagrams that
we then consider contribute to the transverse momentum diagram of Fig. 40.
We will straightforwardly obtain an anomaly enhanced am-

Tr{Eil,i2 ,,,,, in(Plnt P, (Pin)} (6.32 plitude, as before, from diagrams in which two soft gluons

are attached to the external effective point vertices, as illus-

the distinct color ofA;, andB,, and the distinct symmetry trated in Fig. 41.

properties of the real and imaginary coefficients implies that Because all the large momenta pass through both soft
gluon attachments and are constrained byktheéntegration,

T i, ... i (P1at Pni)(P1n)} the infra-red scale is the same for both andn®&S"?, as in
Eq.(6.18 and(6.19. Infrared cancellations can, presumably,
=23 i,....i {[R&(A1)]*+[(Re&(B1y) 1% be discussed in the same manner as in our discussion of one
6.33 soft gluon diagrams. The twisted diagram of Fig(l@)lagain

which is a sum of the squares of color factors for color zerot
and color octet states which contain an even numbef of
tensors and so describe normal color parity gluon state
Similarly,

reverses the color matrix multiplication of Fig. @) and so
he sum of the two diagrams gives a color factor of the form
of Eq. (6.33, corresponding to normal color parity for the
gomplete three gluon transverse state.

" To check that the anomaly amplitude obtained is even
signature we note that the anomaly diagrams in the same

o . _ sign helicity amplitude will again be related to the opposite
T2y, oy (Pin=Pra) (Pan)} sign diagrams by, — — P . For example, the diagram of

ALIM(AL) 12+ [IM(B1,) 1% F_ig. 37a) Wi!l be relate_d to a same sign helicity amplitude
n diagram as illustrated in Fig. 42 Since the color factors are

(6.39 the same, these amplitudes are again relate8-by- S and

NS AR DN AN AR (AN
SRR AL YD) DL ML VL M Vi VL L VA VL L VA L TR L TR T

() (b)
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N N [*# N t0000ily,, ““““,\/ i\“,\\u.\,\u.-\- . -
A1 9 A — \.\\\-\:\\\.\\\')‘:nuumu 202 000000000,] FIG. 42. Related dlagrams n
Y ANV VA > A different helicity amplitudes.

T — < pa— T

will add in the even signature amplitudand would cancel where the term we have shown explicitly is the color zero,
in a vector theory. anomalougeven color parity, term.

As before, the full gluon state will have negative parity ~Because the diagrams of Fig. 43 contain one less gluon
because of the single large transverse momentum gluo®itached to the fast quark lines than the diagrams of Fig. 42,
Combined with the negativénorma) color parity this im-  the quark-antiquark component of the transverse state, in the
plies that the three gluon state is even un@ér Repeating €ven signature amplitude, will be odd undeP. Therefore,
the discussion of the quark-antiquark state that we gave fd obtain even signature overall the gluon component must
the one soft gluon amplitudes we find that there is an addi&/S0 be odd unde€P, implying that is even under color
tional change of sign fronP, — — P, that results from the charge conjugation. Consequently, the anomalous color par-

additional soft gluon. As a result, quark-antiquark inter-%Y {€rm. shown explicitly in Eq/(6.36), is selected for the

change gives no kinematic change of sign and the coloﬁ%ordféeirr? t?]%n;?/%r:]egitg?]fain?ecgmglliTsélgn of the diagrams of

charge parity transformation simply givag—\f . Conse-
quently, the full quark-antiquark-multigluon intermediate M. Multigluons
state is even undeCP, as required for even signatur@Ve . . . .
should note, however, that although the color zero three (?Iearly we ?OUld generallze .the fpregm_ng dlscus_sm_n toa
gluon state has normal color charge parity, it is “anomalous™aMnewy of ml.JIt.|quon conf|glurat|ons '|nvolvm'g combinations
in that it has negative parity, giving an “anomalous” positive _Of soft and_ f'n'_te gluons, with effect!ve vertices of the form
signature). |IIL_Jstrated in Fig. 44. However, having e_stabllshed the cou-
pling of color zero anomalous color parity gluons, we have

all the general properties that we require for the discussion of
the next section.

Consider, next, adding a soft gluon to the diagrams of Since a large transverse momentum gluon can give a scal-
Figs. 37c) and 38c), in which there is already one finite ing contribution of the form
transverse momentum gluon present. If the soft gluon is at-

L. Color zero anomalous color parity

tached to the left and right side quark lines, the resulting d*k}
opposite sign and same sign helicity diagrams are shown, ”Lk,,)2~\,§(k,,)2 (6.37
respectively, in Figs. 43) and 43b). B L
The color factor for both diagrams is the same, i.e., it is also possible for additional large transverse momentum
gluons to participate in the enhancement effect. Potentially,
E THNANANN N (6.35 this could be an elaborate phenomenon involving, presum-
S ably, the reggeization of both quarks and gluons and, in

higher orders, scaling properties of Reggeized gluon interac-

If we pick out the color zero intermediate state then thetlons’ as well as the evolution af;.. However, since we will

color factors on the left and right side of the diagrams musf- o-c” in the next section, that large transverse momentum
separately factor into traces 'Igherefore we can%vrite anomaly contributions are unphysical, there seems little
P y ' ' point in exploring the issue any further. In part, we discuss

the analagous infrared phenomenon in the next section.

2 TN NG ~ 2 TN TN A+ VIl. REGGEON WARD IDENTITIES, CUTOFFS,
Lok Lk AND INFRARED DIVERGENCES

~ > 2 e (6.3 Our calculations in the previous sections have demon-
Tk strated that the anomaly enhanced diagrams, some of which

i YN VRNV Aab b i
N AN VAN AN
FIG. 43. Anomalous color par-
-:\‘N\.N\’V‘ MR ‘N\N\\‘\:_ A0 A AN AV A WA A A N AN NN :'\4\'\4\\4\:_ Itydlagrams Wlth one SOft and one
) N finite gluon.

(@) (b)
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a c A. Ward identity consequences and a transverse momentum
(a) (b) (c) y q

cutoff

FIG. 44. Multi gluon effective vertices. . . T .
Gauge invariance implies that a general amplitude

contain anomalous gluons, provide the dominant contribu$ (@) -+ with all (external lines on shell except for one

tion in the exchange channel we have considered. HoweveﬁJluon that carries four momentugrsatisfies the simple Ward

as we remarked in the Introduction, we believe that theIdentlty

power enhancement involved should not be present in physi- q,(A,(q) )=0. (7.0
cal amplitudes. Assuming that there is no perturbative can- g
cellation, via some mechanism that has yet to be elucidatedhis identity usually followg12], at a given order in pertur-
then obtaining “physical” amplitudes without the enhance- bation theory, only after the zero momentum gluon has been
ment is,a priori, a challenging problem. attached to the remainder of the diagram at all possible
In this section we will briefly outline how we anticipate points. It is well known that this identity, in turn, implies that
the desired physical amplitudes can be obtained. The essetire gluon amplitude vanishes at zero four momentum. Also,
tial point will be that the contribution of the anomaly dia- from analogous Ward identitigs2], a similar result holds
grams is very different if we take the Regge limit before orwhen more than one gluon carriers vanishing four momen-
after the removal of an ultraviolet transverse momentum cuttum. [If the gauge symmetry is spontaneously-broken then,
off. This cutoff introduces infrared divergences and if it is of course, the Ward identities corresponding to Ef1),
removed only at a very late stage, as we will propose, theguch as the “electroweak Ward identities” referred to in Sec.
the result obtained will also depend on whether all orders/ C, have additional mass terms which prevent the infrared
sums are performed before or after it is removed and on howanishing of amplitude$.
and at what stage, infra-red cut-offa the form of gluon and The vanishing of a loop amplitude when external mo-
quark massgsare removed. This ambiguity is the essence ofmenta are small compared ttfinite” ) internal momenta
the anomaly and it would not be surprizing if there is aalso implies, generally, a suppression of internal momenta
unique procedure that is necessary to obtain the right “physithat are large compared to, finite, external momenta. If, how-
cal” answer. ever, there is an external axial current producing an anomaly
As we have already noted, both in the Introduction and incontribution in a loop, then the situation is different. In this
the previous section, a study of the infrared anomaly contricase, as we briefly review in Appendix C, in addition to the
butions of the diagrams we have considered, that matches theell-known anomalous Ward identify.3] for the axial cur-
present study of ultraviolet contributions, will be necessaryrent, vector Ward identities require a cancellation between
before any detailed arguments can be carried through. Teeparate contributions, with different kinematic structure,
fully elucidate infrared anomaly contributions it will surely from large and small internal momentum regions. In particu-
be necessary to abandon the restriction to forward kinematidar, the large momentum anomaly contributi@@5) cancels
and transverse polarizations that has greatly simplified thevith an infrared term that, in special momentum configura-
foregoing discussion. Nevertheless, based on our experient¢iens (and only when the quarks are massjessduces to a
with hadron scattering amplitudg8], we believe that a com- simple pole in the axial vector channel. This is the “anomaly
plete procedure for obtaining physical amplitudes can be depole” that can, in the right circumstances, be interpreted as a
veloped utilizing the following, briefly summarized, proper- Goldstone boson pole, signaling chiral symmetry breaking.
ties. Our hope is that since the present starting point is muchn addition to the discussion in Appendix C, a detailed analy-
simpler than the hadronic problem, the analysis will be corsis of the anomaly pole, and the internal momentum region

respondingly more straightforward. generating it, can be found in R¢B].
Ifm 1% .1t _ .
E Gy ::TN::: Ky 4 10 Ty 4d Ky pA >0 10 FIG. 46. Iteration of a gluon kern&.
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FIG. 47. Isolation of the divergence associated \ilith

In general, the above properties of gluon amplitudes, as \, dQ?
functions of four-dimensional momenta, transfer directly f F

[14] to corresponding properties for the multigluamulti-

Reggeontransverse momentum couplings that we discuss ir\]/vhereQ is the sum of all gluon transverse momenta

this paper, as functions of transverse momenta. The linear A priori, the anomaly pole can appear in b@h andé
vanishing when transverse momenta are scaled to zero |§, e er ,att=0 where the pole should appear aRf.inite
sufficient to eliminate infrared divergences in the transverseﬁght”ke momentum can be exchanged which can be parallel
momentum diagrams that we consider. If there is an anoma% eitherP ., or P_ . We suspect that this light-cone momen-
in a transverse momentum _coupling then, as we_alread}{Jm determines whether the pole appears Gia or Gg.
noted in our discussion of infrared cancellations in Secciearly, a detailed study, of the kinematics and polarizations
VIH, there will be large and small internal momentum can-and kinematic forms associated with the appearance of the
cellations in the associated transverse momerifReygeon  anomaly pole will be needed to be sure that, in the full am-
Ward identities that parallel the cancellations that take placglitude, there is a simple pole with the appropriate residue to
in the four-dimensional Ward identities. We expect that in-pe associated with a pion.

frared divergences will be avoided, in part, by cancellation of

the ultraviolet anomaly contributions we have found with B. Transverse momentum infrared divergences

infrared “anomaly pole” contributions. In fact, the coeffi- i . )

cient of the anomaly in a transverse momentum coupling Since the divergencé’.2) is not removed by external

(which we did not determineshould be fixed by this cancel- couplings(with a transverse cutdff we must consider the
lation. effect of (all orders interactions amongst the gluons. In the

If we impose a transverse momentum cutoff in all internallowest-order diagrams we expect the divergence to be
loop integrals of the diagrams we consider, this cutoff will bePresent for both normal and anomalous color parity gluon
present in all transverse momentum diagram integrals angfates. There.may glso be additional divergent transverse mo-
also within the loop integrals giving the external couplings.Mentum configurations. However, as we now describe, when
A cutoff in the transverse momentum diagram integrals igve sum all infrared divergences to all orders we expect that
gauge invariantA priori, however, in the external couplings Eq. (7.2 is the only divergence that survives, and then only
such a cutoff is not gauge invariant. Therefore, if we take th0r ahomalous gluons. .
regge limit with a transverse momentum cutoff imposed, it e can summarize the general nature of gluon infrared
will be a serious question whether gauge invariance is relfansverse momentum divergences and the role of a trans-
stored by removing the cutoff after the limit. For the presentVersé momentum cutoff, very briefly, as follows. An ex-
we note only that in Ref[8] we argued that anomaly pole panded version of this summary can be found in E&ﬂf.Fo_r
contributions to infrared divergent amplitudes are gauge inf€asons that will become apparent in the next subsection we
variant. In the infrared region, we anticipate that there will beSPecifically discuss the case of &) color, although all the
effective triangle diagram contributions ®, and G cou- properties we describe remain the same for higher gauge

plings in which small transverse momentum gluons couple ag"oups. _
all three vertices, as illustrated in Fig. 45. Based on the 1he self-interactions of aN gluon transverse momentum
analysis of the previous section, both normal and anomalou%tlate Ty are described by dimensionless “kernels”
color parity multigluon states should couple. With a trans-Kn(.- - Ki v'--vkj’ ,...), wherel denotes S(2) color.[Each it-
verse momentum cutoff imposed we expect that, when thé&ration of a kernel produces an additional factor o8 lor
total gluon transverse momentum vanishes the correspondirfd —1) " in the J plane, which we will not show explicitly.
Ward identity will fail and there will be a non-zero coupling When thet-channel color is nonzero the infrared divergences
involving (when the quarks are masslesise anomaly pole. related to Reggeization do not cancel and

As a consequence, in transverse momentum diagrams of the N o

form of Fig. 40 (with all gluons soft there will be a loga- H ﬁ
rithmic infrared divergence of the form el ki2

(7.2

KNGk K )=,

Q2%1#0 (Q=3k). (7.3

As a result, the sum of all diagrams in any colored channel
exponentiates to zero as illustrated in Fig. &, is an ex-
ternal coupling analogous to tli® andGg appearing in the
FIG. 48. A class of transverse momentum diagrams. previous sections.
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quark with a divergence.
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When|=0 andQ?#0, there is a cancellation of diver- anomalous will be exponentiated to zero by interactions that
gences in thek$. (This is the infrared finiteness property iterate the divergence. However, since the cutoff has still to
which is extensively exploited in BFKL applicationgit the  be removed and it is unclear how to handle the infrared di-
leading-log level, infrared finiteness leads directly to confor-vergence, the result is still far from a sensible amplitude.
mal scale invariance. When renormalization effects are intro- To obtain a more sensible result, we have to use a more
duced, scale invariance is lost in the ultraviolet region. Scalgophisticated treatment of the infrared divergences. In par-
invariance properties may still be present in the infrared reticular, we initially take the S(8) gauge symmetry of QCD
gion (in particular, they will be present if there is an infrared to be partially broken to S(2). We could motivate this by
fixed point for the gauge couplipgin this case, the kemnels noting, first, that the structure of the anomaly diagrams is
K will scale canonically aQ?— 0 so that, with a transverse mych simpler. Only odd numbers of anomalous gluons can

momentum cutoff, , carry color zerdbecause of the absence of théensoj. An
5 oy overall logarithmic infrared divergence will still occur, as we
d<k; d<k; : . . .
f H Kr?l(kly KoK kL) have discussed in the previous subsection, because of the
lkil Ik 12<n, i k2 7 kj’2 unbroken SW2) gauge symmetry. However, some gluons

5 [that are massive and outside the(8)subgroup will inter-
NfMd_Q 74 act with the quark-antiquark pair. Also, we might hope to
Q% (7.4 eliminate the divergence by averaging over the direction of
the SU2) subgroup within S(B), as the transverse momen-
The presence of the cutoff ensures that this divergence imm cutoff is removed.
unambiguously isolated from ultraviolet divergences with  With these last observations in mind, it is easy to appre-
which it might mix. ciate why Reggeon field theoRFT) should be applied to
This is the same divergence as Ef}2), which appears in  the problem. In formulating the study of the QCD pomeron
the lowest-order diagrams. The kern&l§ have Ward iden- using RFT we have argudd,10,14, that we should start
tity zeroes which result in the special property that iterationfrom the Reggeon diagranter, equivalently, transverse mo-
of any Kﬁ, does not increase the degree of divergence. Inmentum diagramsin which the gauge symmetry is com-
stead, there is a distinct contribution from eaGh and the  pletely broken. With a transverse momentum cutoff, the
residue of the divergence can be written in a factorized formgauge symmetry can first be restored to(3tand the result-
as illustrated in Fig. 47. If there is no Ward identity zero in ing Reggeon diagrams can be described by supercritical
the external coupling&y, Eq. (7.4) is a potential source of pomeron RFT—provided all infrared divergences can be ab-
a simple infrared divergence @°=0. sorbed into a “Pomeron condensate.”
Similar properties to the above hold for the interactions of qo; our present problem we anticipate applying RFT as
gluons with quarks. Crucially, however, there is no kernel,iows. With SU?3) color broken to S(R), we consider all

describing a transverse momentum interaction between gaqrams of the form illustrated in Fig. 49. In these diagrams,

quark-antiquark pair and an anomalous gluon state. This i nomalous gluonBwithin an SU2) subgroup accompany a
because anomalous gluons couple only through an anoma]

: . . . “quark-antiquark pair that is interacting with massive,
and anomalies can not occur within the two-dimensional k|-Re cized. aluons. The massive al tside ti2) SU
nematics that the kernels describe. 99 9 : giuons are outside .
subgroup and carry nonzero transverse momentum. This set
should map completely on to supercritical RFT diagrams
containing both Pomeror{svith the Pomeron being a mas-

If we consider all the diagrams discussed in previous secsive Reggeized gluon plus anomalous(3Ugluong and a
tions, generalized to include arbitrary numbers of gluonsReggeized Goldstone boson pion. In this mapping, the physi-
and add both interactions amongst the gluons and betwearal significance of the logarithmic infrared divergence would
the quark-antiquark pair, we arrive at the set of transversée clear. It would be identified as responsible for the appear-
momentum diagrams shown in Fig. 48. ance of a Pomeron condensate.

If the gluons are anomalous and carry zero color, they will The restoration of S(B) gauge symmetry would be de-
have no interaction with the quark-antiquark pair and thescribed by the critical Pomerdi5] interacting with a Regge
divergence(7.4) will occur when the transverse momentum pole pion and(with the appropriate quark sector present
of all gluons is scaled to zero. As we discussed above, thg7,8]) the transverse momentum cutoff can be removed as
anomaly pole should appear in the coefficient of this diverpart of the critical phenomenon. Also, as part of the critical
gence, presumably, with the right kiematic structure to bephenomenon, the SP) direction of the pomeron condensate
interpreted as a pion pole. All other similar diagrams, inwould be randomized within S3) and disappear. In effect,
which either the color is nonzero or the gluons are nothe infrared divergence, producing the condensate, would be

C. SU(2) color and Reggeon field theory
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eliminated by averaging over the direction of the(8JUsub- In Appendix D, we raise the possibility that the occur-
group within SU3). rence of the anomaly enhancement phenomenon in the dia-
For hadron scattering it was importaf8] that the grams that we have discussed is related, via Ward identity
Pomeron condensate could be related to an anomalous glueontributions, to a more widespread phenomenon of large
component of the scattering states. This was necessary, firstansverse momentum enhancement. If this is the case, then
because the’s anomaly coupling of the pion to the Pomeron it is likely that the general transverse momentum diagram
is produced by a product of three orthogonamatices. To formalism will fail. Since there would then be no Reggeon
obtain this product, it was essential to have anomalous gluodiagram formalismi-channel unitarity is also likely to fail.
components in both the scattering pion and the exchangetihe conclusion, which is really the main conclusion of this
Pomeron. As we have seen, in electroweak scattering thigaper, is that to use the transverse momentum diagram for-
requirement is absent because the vector mesons have @talism(and therefore to ensutechannel unitarity it is es-
ementaryys couplings, which allow the anomalous gluons to Sential to initially employ a transverse momentum cutoff.
appear in just the exchanged channel. However, the gluon [N previous papers we have found that for bound-state
components of the scattering states also seemed to be imp@dplitudes in QCD, the occurrence of anomalies in multi-
tant for the higher-order Pomeron interactions needed to of3€ggeon verticesinvolving anomalous gluondeads to an
tain the critical Pomeron. It may be, therefore, that RFT carfnalagous sensitivity to infrared and ultraviolet transverse
only be consistently applied to the analysis of infrared divermomentum cutoffs. We have argued that an ultraviolet cutoff
gences if the scattering vector mesons are also “hadronic.8hould be kept until after physical scattering amplitudes have
That is, if they also have an anomalous gluon component, déen derived via an analysis of infrared divergences. We an-
they would have if they aquire their mass by absorbing Goldicipated that, without an initial cutoff, the ultraviolet
stone bosons resulting from QCD chiral symmetry@nomaly effects would produce nonunitary power enhance-
breaking—with the quarks being color sextet quarks. Thement of the energy behavior of bound-state amplitudes.
presence of the sextet quarks would prodi%8] an infrared ~ However, as we noted in the Introduction, accessing the
fixed point (in the massless quark theorthat would guar- ~@nomalies in hadron amplitudes is very complicated and,
antee the infrared scaling of gluon kernels producing Egtherefore, itis much more difficult to appreciate their signifi-
(7.4) and would also produce the “quark saturation” of QCD cance. In the electroweak amplitudes we have studied in this
that we have argued is needed to obtain the critical Pomerdp@pPer the anomaly appears immediately, because of the pres-
with no transverse momentum cutoff. Perhaps, all these fe&nce of elementary left-handed couplings. As a result the
tures are needed to obtain a self-consistent description of tHehoice between bad, large transverse momentum based,
Regge limit for left-handed, massive, electroweak vectohigh-energy behavior and infrared anomaly domination pro-

bosons. ducing “nonperturbative” dynamics, is also immediately
clear.
VIIl. CONCLUSIONS Potential nonunitary properties of electroweak high-

energy scattering amplitudes may not be of great concern if,

We have demonstrated that the triangle anomaly appeass is currently believed by many physicists, the gravitational
in the couplings of transverse momentum diagrams that danteraction intervenes long before the relevant energies are
scribe the high-energy scattering W=° vector mesons. reached. From this perspective, our study of electroweak am-
When the full amplitudes are directly evaluated, without anyplitudes can be viewed as simply a technical exercise in
special cutoff procedure, the anomaly produces an enhanceich left-handed vector mesons are used to study how, with
ment, by a power of the energy, that threatens the unitarity othe cutoff manipulation we have described, the formation of
the theory. QCD bound states, including confinement and chiral symme-

The most well-known consequence of a large momentuntry breaking, can take place via Regge limit infrared anomaly
triangle anomaly is the famous anomalous Ward identity foreffects. Nevertheless, it seems hard to avoid the conclusion
axial current§13]. Less emphasized is the feature that, in thethat if confinement and chiral symmetry breaking do not take
presence of the anomaly, vector Ward identities are satisfieglace in this manner, thefassuming that it does not cancel
by a subtle cancellation between the contributions of largehe power enhancement of quark-antiquark exchange by the
and small internal momentum regions. In the vector mesomltraviolet anomaly will dominate any electroweak symme-
scattering we have discussed, an effective current componetry breaking mechanism that is perturbatively based.
with an anomaly appears and it is the less emphasized feature Our point of view is that the unitarity of the electroweak
that plays a crucial role. Even though there are no anomalpart of the standard model is a deep constraint. Indeed, it
related cancellations between large and small internal masould be that obtaining consistent high-energy scattering am-
menta in the finite momentum Ward identities, in a left- plitudes for massive vector mesons, with left-handed cou-
handed gauge theory, it appears that the Regge limit emplings to quarks, may actually require QCD confinement and
hances large transverse momentum regions such that thechiral symmetry breaking to take place via the anomaly, and
are cancellations of this kind in the transverse momentunmay even, perhaps, require that the chiral symmetry breaking
(ReggeohWard identities. There is then an “anomaly prob- (of higher color quarKsis responsible for electroweak sym-
lem” in the sense that the Regge limit result is very sensitivemetry breaking.
to the manipulation of ultraviolet and infrared cutoffs, as we We were led to the present investigation as an outcome of
have described. our study of the QCD Pomeron. For a long period of time we
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understood the crucial role of the anomaly in producing uni-gauge interaction are particularly apparent.

tary high-energy amplitudes within QCD, but were unable to In addition to using conventional light-cone momenta
find a simple starting point from which to begin constructionk. = (ko*=k;)/v2, we write

of such amplitudes. Then, in our most recent pd|8ér we

showed that wee gluon properties of the pion, obtained from k=k,+iks, k*=k,—iks (A1)

the anomaly, provide such a starting point, at least in part. At

the same time we realized that such properties should appetr describe transverse momenta. We then have

if the pion is extracted from the wee parton structure of an
electroweak vector meson. This led us to the, a priori much k? = kk* (A2)
simpler, problem of how an exchanged pion appears within

the scattering of vector mesons. We now believe that th@&nd

results of this paper will lead to an understanding of the pion N N

which will, eventually, provide a simple starting point for the 2k, -q, =kg* +k*q. (A3)

construction of QCD high-energy amplitudes. )
We can also write
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APPENDIX A: COMPLEX NOTATION FOR TRANSVERSE with 6 the angle between the two vectors.
v MATRICES To describe transversgmatrices, we similarly write
To discuss high-energy vector meson scattering ampli- Y=(ya+ivya) V2, ¥ =(yo—iys)lV2. (AB)

tudes involving (massless fermion exchange, it is conve-
nient to use a complex number notatidr6] for both trans-  \We then have
verse momenta andy matrices. In this formalism, the

consequences of chirality conservation and a left-handed (9)2=(5*)?=0, »y*+5*y=2 (A7)
Ak
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and we can write rately[16,11. As we elaborate on briefly in Appendix B, the
R R very different properties of the interaction of same sign and
2K, =ky* +k* 5. (A8) opposite sign chirality exchanges is of fundamental impor-
tance.

In the Regge limit the transverse part of an exchanged |f we also define
fermion propagator dominates, i.e., for a massless fermion

11 Lo I Loxs I L
kK 1/% % =Yy, Ho=—3 y Ly =sy-vs,
—— e (A9) 2 2 2
K2 2\ Rk &
1

where the two terms represent the two different chiralities. H‘:§7+ Y- (ALD)
For example, the transverse momentum integration of a
quark-antiquark state with transverse momentgm and  then we can write
equal chiralitiesopposite sign helicitiostakes the form

ys=I1, =)L, —1I_). (A12)

Ak Ak A
| ddhora-k-k)| So+ o . . .

R e e P Spinors in the subspac&s_IT, andIT_II_ (orIT,II, and

ki, k¥ ki ko R ) o . .
(A10) H+_H,) carry opposite chirality, as is evident from the fol-
lowing relations:

where the® sign indicates that the twg matrices are sepa-
rately associated with the two fermion lines. The contribu- y_3[1— ys]9* =y_[1+ y5]¥%* = y_[1—-TI_I1. ]%%*
tion of a two fermion state with opposite chiralities is clearly
analagous. However, the distinct combinations of same sign

and opposite sign chiralities are exchanged and interact sepa- -

1
1+5 w*)w* =2y ¥y,

O(as)

+ bﬁ-_—:((wL ... FIG. 53. Transverse momen-
+ PR - N i
tum diagrams originating from the

O(as) diagrams of Fig. 53.
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Y-V [L-ysly=y-[1+ys]¥* =y [L+T11T_15* % £
- kl
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Similarly, we can show that '}’57# p 1 2
. . . . . —>
Y+ ¥ (1=v5)¥=0, v ¥(1—ys)¥* =2y, %", k-+k ()
(A14) 1 ™2 by
. . . . e =9 -
y-¥(1+y5)¥* =0, y_-¥ (1+y5)¥y=2y-%"%, 1 > k2
(A15) ‘Yﬁ
VY (1) ¥=00 v W1+ y) Y =2y, 5Y (.A16) FIG. 54. The fermion loop contribution ©,,,4(k; ,k>).

For a vector particle, with momentum along the 1 axis,while the diagram with the arrow reversed contributes to the
the polarization vectors for states with helicity=+1 are A, _ helicity amplitude. By similar reasoning, the diagram
of Fig. 2 contributes to thé& _ | helicity amplitude.
1 The diagram shown in Fig. 5i) is the only possibility
e“(A=+1)=-—(0,0,1i), for the scattering of states with equal, negative, helicities. In
V2 the cross channel, in which the incoming and outgoing, right
hand, vector mesons are interchanged, the diagram untwists
to become the diagram of Fig. &). Figure 51b) contrib-
utes to theA __ helicity amplitude, while the corresponding
diagram with the quark arrow reversed contributes to the
A vector boson with helicith = — 1 can make a transition to A helicity amplitude. For the amplitudes with® quan-
a left-handed intermediate state quark via the emission of aitim numbers in thé-channel, that we discuss in this paper, it
antiquark. To calculate the scattering of a vector boson witifollows from CPT invariance that

helicity A=—1 we introduce an irﬁial coupling o@&*(l
—vs) ¢ and a final state coupling afy(1— ys) . Utilizing

the above relations we find that, as illustrated in Fig. 50Note that, in all diagrams, only same sign chirality states are
there is only one nonzero coupling to potential quark-exchanged.
antiquark transverse momentum states that could be ex-

changed. As a consequence, if we consider the scattering %DPENDD( B: REVIEW OF LEADING AND NONLEADING

1
K(N=—1)=—(0,0,1-1i). Al7
e*(\ )ﬁ(OO ) (A7)

A, =A__ and A_,=A, _. (A18)

opposite helicity states there is only one possible lowest- LOGS
order diagram, which is that shown in Fig.(8L The initial
¥*(1—vys) vertex on the right-hand side of Fig. & rep- As far as we know, the diagrams we discuss in this paper

resents the coupling of a vector boson with the same polathave not been discussed in detail in the literature. However,
ization, but opposite helicitysince it has opposite momen- if we were to make théwrong assumption that the left-
tum along the one axigo that of the left-hand side vector handed coupling does not affect the extraction of high-
boson. energy logarithms, ofmore simply if we impose a trans-

A simple way to see that the diagram of Figajlcontrib-  verse momentum cut-off, there are a number of well-known
utes to opposite helicity scattering is to note that, because a&sults that would carry over, almost directly, into our prob-
the direction of the quark arrow, the intermediate state conlem. Just to put the discussion of this paper in context, we
sists of a left-handed quark, which must be produced by aive here a very brief, nontechnical, overvi¢®i] of these
negative helicity vector boson, and a right-handed antiquarkiesults.
which must be produced by a positive helicity vector boson. All the results concern the extraction of leading and non-
The direction of the arrow is fixed by choosing the left-handleading logarithms. If we organize the quark-antiquark ex-
vector meson to be the one with negative helicity. The diachange diagrams into distinct series depending on the power
gram of Fig. 1a) contributes to thed_ , helicity amplitude of ag (the QCD coupling involved, then typical diagrams

p’+ p"—k
Y_ \I'" ’ \Il" V+ Ay < ALy % Al > Ak
pk ( kK pr-k W LIRS QRIS R & &
== ¢ E . s « p-%k- k P+ &k FIG. 55. The tree diagram ob-
/f‘}* A N N ,h';*\ tained from Fig. 1.
k
- A A A
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k74 k =[ (k- k) 1_ (}’{’+15’)_1] V* FIG. 56. Splitting Fig. 55.
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giving such logarithms are illustrated in Fig. 52. The firstthe lastO(«g) transverse momentum diagram shown explic-

series contains purely electroweak diagrams that have a logitly in Fig. 53—with simple vertices. This diagram being

rithmic expansion inx,, (the “electroweak” coupling. The  obtained by placing all vertical lines on shell, as in Fig. 5

second series contau@(as) corrections to the first series, using longitudinal momentum integrations. At the next-to-
the third series contair®(a?2) corrections to the first series, leading log level the secon®(a,) transverse momentum

*

etc. diagram should be generated and the $trs) transverse
All diagrams of the form shown in Fig. 52 would be ex- momentum diagram, which is the diagram that appears in
pected to give high-energy amplitudes of the form Fig. 1, should be generated by Fig. 2 at the next-to-next-to-
leading log level.
A(S,0) ~ 2 anmranan[InS]". (B1) The transverse momentum diagram of Fig. 17 is the first
S—eolmir O(a?) diagram appearing in Fig 53 and would be generated,

at leading log, by the fII’SO(aS) dlagram in Fig. 53. The

To make our discussion straightforward we can suppose th%ia ram of Fig. 20 is the secor@(a?) diagram appearin
we, initially, introduce a transverse momentum cutoff so that g 9. s 9 PP g

we can ignore ultra-violet transverse momentumepr|C|tIy in Fig. 52. The anticipated leading log result for
divergences—including both the anomaly power divergencefis diagram would be frs multiplied by the secon®(«?)
that we discuss in this paper, and the logarithmic divergencei§ansverse momentum diagram appearing explicitly in Fig.
that we discuss below. As a result, all the coefficiemts, 53 and the firsD(a2) diagram in Fig. 53 would be gener-
can be represented é&sums of transverse momentum dia- ated at the next-to-next-to-leading log level, i.e., multiplied
grams of the form illustrated in Fig. 53. by a factor of IR S,

With the transverse momentum cutoff in place, the first In the leading and nonleading-log studies of pure vector
two diagrams in Fig. 52 give a leading log amplitude whichgauge theorieg5] there is no problem with ultraviolet diver-
contains the first diagram in Fig. 53 multiplied bySmand a  gences, either in transverse momentum, or more generally.
next-to-leading log amplitude which contains the same transOnly the normal(ultraviolet divergences associated with
verse momentum diagram but with no factor ofSinThe  renormalization have appeared in the nonleading-log verti-
third diagram in Fig. 52 gives a leading log amplitude whichces. The Ward identities of the gauge theory produce cancel-
contains the second diagram in Fig. 53 multiplied bySn lations that lead always to convergent transverse momentum
and a next-to-leading log amplitude which contains the firsintegrals, with the accompanying logarithms just those pre-
diagram in Fig. 53 multiplied by I8 and so on. In general, dicted by Regge theoryEven though, as is very well known
the external couplings and the internal vertices in the transby now, individual Feynman diagrams produce transverse
verse momentum diagrams acquire more and more structuraomentum divergences that, at first sight, produce additional
(involving loop integralg as first leading logs, then next-to- logarithms beyond those anticipated by Regge thgory.
leading logs, next-to-next-to-leading logs, etc., are includedEquivalently, the complete sum of logarithms and transverse
in the sum(B1). momentum diagrams can be rearranddl into subseries

The diagram of Fig. 2, appearing in Sec. Ill, is the lastrepresented by Reggeon diagrams.
diagram shown explicitly in the second row of Fig. 52. Itis  When fermions are involved there is, as we already noted
first-order inag and, conventionally, as noted in Sec. Ill, we in Sec. lll, the extra subtlety of the logarithmic divergence of
would expect that it’s leading-log contribution would contain fermion transverse momentum integr@ld ,16. Therefore,

prr k

T ’+k pn T % AN * % A *
~ Y ‘li’ — kY Y ¥V_ i i
/ ' p "k’ Ptk FIG. 57. The amplitude obtained from the

,f' \ . second term of Fig. 56.
k
A A A
(P7-k) (P'+k')
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FIG. 58. Splitting of another
tree diagram.
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if the transverse momentum cutoff is removed, extra powers A,= kiA5+ kik,Ag, (C3)
of In S will be generated and the seri€B1) must be rear-
ranged appropriately. However, fermion Reggeization is not A1=K3A,+ K koAs. (C4)

affected by the divergencesince the relevant transverse

momentum integrals involve combinations of fermions and The large momentum regidwith appropriate regulariza-
gluong. Consequently, as we noted in Sec. lll, when thetion) gives an “anomaly” contribution toA; and A, of the
transverse momentum diagrams are organized into Regge®orm

diagrams, the presence of the Reggeon propagator reduces

the divergence from log to I¢tpg] form. Also, the Reggeon 1 " 1 ”
kernel for opposite sign helicities gives convergent integrals. 1 uap(K1,K2)= a2 €oapuKit e €rapukat
(As we noted in the previous appendix, the distinct combi- (C5)

nations of opposite and same sign helicities are exchanged
and interact separatelyOnly the kernel for opposite sign leading to the well-known “anomalous” divergence equation
helicities (same sign chiralitiesproduces logarithmic diver-
gences at large transverse momentum. 1 5o

In the diagrams discussed in this paper, the quark- (k1+k2)MTua/3:ﬁfaaaﬁklk2- (C6)
antiquark states we consider are same sign chirality states.
However, the anomaly enhancement overwhelms the l0gg=or the vector Ward identities to hold in the presence of Eq.
rithmic divergence that would otherwise result. We believe(cs), there must be related, infrared singular, contributions to

this is important, physically. If we start with a transverse e othera, . For example, whek?=0, Eq.(C3) becomes
momentum cutoff both the anomaly power divergence and

the logarithmic divergence will be absent. When the confine- q’—k3
ment and chiral symmetry breaking described in Sec. V is Az=kikoAg=——7—As (C7)
implemented via the extraction of infrared divergences, it

may be(and the results of Ref8] directly suggest thisthat implying that there must be a pole i, arising from the

only (transverse momentuntonvergent same sign helicity yegion of small internal momentum. In appropriate circum-
exchanges are involved in forming bound states. Sincgances; this pole can be interpreted as a Goldstone boson
“double logs” are,a priori, in conflict with regge theory, this pole, signaling chiral symmetry breaking.

is probably necessary for the bound states to be described by ¢ e considerk, 0, and assume that all the are suf-

Regge theory. ficiently nonsingular, then EqC1) gives
APPENDIX C: THE ANOMALY AND VECTOR WARD Tpap(Ki,Ko) ——— Az€sapK3 (C8
IDENTITIES k10

To understand the special nature of Ward identities in thavhich, if we keep only the ultraviolet anomaly ter(@5),
presence of the anomaly, it is helpful to recall some well-gives
known properties of the one loop contribution, shown in Fig.

54, of massless fermions to an axial-vector—two-vector three
current vertext , . 5(K1,K>) . After decomposition into invari-
ant amplitudes

1
T,ua,B(kllKZ) Wrﬂ-zfaaﬁﬂkgqéo. (Cg)

Alternatively, if we use Eq(C3), together with Eq(C8), we

T,u,a,B( kllk2)=AlanB,uk§_r+A2€ k{2r+A3E§(ray,leki(lsk(2r obtain

oaBu
+A4€50'ap,k2ﬁkfkg+ ASEﬁaﬁpklakfkg ptk
|
o v v t
+ A€ 505, KaakTKS (Cy P-k b +p K
| -
v
the vector Ward identities /
a B rd < )
klrﬂaﬁ=0, kZFlmB=0 (CZ) pr_ pn+k+kr Il\P
require FIG. 59. Another tree diagram.
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v
¥ —1 A% -1
5 < } ~ V4 Ai,\ Y_P/(B/P_) 1Y*V_P_|:(P_|_' p”) "Y,.P”
ép’_ p"+k+k’ \ TP pl}_ kr
- ~ (p)l_ ]'2,)
p_

FIG. 60. Part of the tree diagram appearing in Fig. 59.

k3—0. full diagram we obtain the amplitude shown in Fig. 57 and
(109 SO the relevant piece of Fig. 55 is retained.
The first tree diagram obtained by moving the left side
rinternal vector meson to the right is the second diagram ap-

tributions toT . 5(k ,kz) that cancel the ultraviolet anomaly pearing in Fig. 16, which is the lower part of the Feynman
contribution (C5) and produce the “Ward identity zero” diagram appearing in Fig. 17. We consider the right part of
(C10. this tree diagram and divide it into two pieces as in Fig. 58.

The first piece gives an amplitude that directly cancels the

From our point of view, therefore, the presence of the ' : -
ultraviolet anomaly(C5) has two consequences. The first is @MPlitude of Fig. 57. Therefore, it would appear that the

the anomalous Ward identityC6). The second is that the amplitude involved in the anomaly enhancement is immedi-
vector Ward identities require a cancellation between Sepé;_\tely eliminated. However, there are further cancellations

rate contributiongwith different kinematic structujefrom ~ that remain to be discussed. . .
large and small internal momentum regions. As a conse- 1€ second piece of Fig. 58 has to be combined with the

quence, if an explicit ultraviolet cutoff is introduced, Eq. Contribution of the tree diagram shown in Fig. 59. Making
(C5) will be modified and the vector Ward identities will no th€ usual separatiofinto two pieces of the right side of the
longer hold. The contribution, to the vector current diver-'€€ diagram appearing in Fig. 59 and removing the piece
gence, of the pole term iAg will survive, however, since it that car}cels with the §ecqnd piece of Fig. 58 Igaves the piece
is generated in the infrared regi¢8]. sho_wn in Fig. 60. This piece wpuld be zero if the vertical
antiquark were exactly, and not just approximately, on-shell.
Since the amplitude of Fig. 60 goes to zeroRas— «,
APPENDIX D: ELECTROWEAK WARD IDENTITY with all internal momenta fixed, it is, superficially, a nonlead-
CANCELATIONS ing asymptotic contribution. However, it has worse large

In this appendix we consider whether Ward identity can-iransverse momentum behavior than the original amplitude
cellations can remove the longitudinal polarization contribu-Of Fig. 56. In effect, we have replaced a leading asymptotic
tions of vector mesons that produce the anomaly enhancegPntribution that has manageable internal momentum behav-
high-energy behavior in the diagrams we have discussed. A8" With a superficially nonleading contribution with bad in-
described in Sec. 1lIC, we are interested in Ward identityt€™al momentum behavior. At this point, this substitution
implications when we add all the diagrams that effectivelydoes not actually lead to any important effects, although this
replace the tree diagram that forms the lower part of Fig. Will not be the case for an analagous substitution that we

Toap(Ke ko) ——o (KiAs+KikoAs) €ap,

For consistency, again, there must be infrared singular co

by another tree diagram. As in Sec. Il it will be sufficient Make later. We obtain the maximal contribution from the
for our purposes to consider only the diagrams of an AbeliaftmPplitude of Fig. 60 if we use the mass-shell condition
theory. P_k’~(p!—k])? and combine the resulting amplitude

We focus on the same region of phase space as in Sec. IWith the second term in Fig. 56. This gives
which will be the basis for all approximations we make. If

we ignore (I-1vys) factors (which are irrelevant for the K2
present discussionthe lower part of Fig. 1 gives the ampli- o 1 . (D1)
tude shown in Fig. 55. We consider, first, the addition of tree K- (p+k)(p! —K.)

diagrams in which the internal left-side vector boson line is

attached at all possible points. We begin with the diagrams

obtained by moving this line to the right. This amplitude does not have the growth at lakgethat the
The subdiagram forming the left part of Fig. 55 can beamplitude of Fig. 55 has and so can be neglected.

split into two pieces as illustrated in Fig. 56, where the We now consider the contribution of the first term in Fig.

dashed line indicates that additional momentum flows in to &6. This has to be combined with tree diagrams obtained by

vertex without changing the algebraic structure. It is themoving the left side internal vector meson line to the left.

Ward identity cancellation for the second piece of Fig. 56There is only one such diagram, which is shown in Fig. 61.

that involves moving the vector boson line to the right. Note,Normally this contribution to the high-energy limit would be

first, that if we combine this term with the right-side of the ignored because an off-shell propagator carries the IRrge
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FIG. 61. Another tree diagram. FIG. 63. The tree diagram giving the surviving amplitude.
momentum. However, if we split this diagram into two (k;k’ k
ieces as in Fig. 62, the first piece cancels with the first piece = = (D4)
p g p p k+k_ (Ifj/+k/)(l'j//_k/)

of Fig. 56.

If the vertical quark line were on shell so that the full
numerator, and not just the asymptotie. piece, were  gince hothk’, k' and k,k_ are finite, this is, indeed, an
present, the second piece of Fig. 62 would be zero. In fact, 'émplitude of the form of Fig. 55.
we use the mass-shell conditiéh. k" ~(p] +k[)? we ob- We conclude that the large transverse momentum behav-
tain ior of the amplitude in Fig. 3, which combines with the loop

amplitude in the top half of Fig. 1 to give the anomaly, does

. L - , not cancel after the imposition of Ward identities. In this
(p'+k* kL (p'+kH* kL1 respect, therefore, nothing is gained by implementing the
Pk k_( 1K) Y (B2) " Ward identity cancellations. However, the lack of cancella-

A - (PLTKL - (P'+K) tion is entirely due to the asymptotic on-shell nature of the
quark and antiquark lines. This raises a general issue of prin-

Since bottk” andk _ are finite in the momentum region we CiPle. Including the remaining amplitude that would put

are considering, EqD?) is of the same form as the second these lines exactly on-shell would apparently cancel the be-

term in Fig. 56. In this case, therefore, a superficially non-havior (D4). Yet this amplitude would normally be neglected

leading asymptotic contribution, with bad large transverséS contributing only to nonleading high-energy behavior. It

momentum behavior, gives a contribution that cannot be necan contribute to the leading behavior only if there are large

glected transverse momentum divergences. In fact, as we have em-

We now consider the additional tree diagrams that would?h@sized, to carry out the Ward identity cancellations we
be involved in a Ward identity for the right side internal have actually included several diagrams that would normally

vector meson line. From the above discussion it follows that?€ considered nonleading.

after we have added all such diagrams and carried out the 1he normal procedure is to effectively assume in advance
analogous cancellations to those above, there will be ont?d then justifya posteorj that transverse momenta will be
surviving contribution that will give an amplitude of the sufficiently cutoff after the summation over all diagrams. The

form of Fig. 55. This will come from the tree diagram shown '€ading parts of diagrams can then be safely extracted with-
in Fig. 63. The piece of this diagram that we have picked ouPUt worrying about transverse momentum dlvergences._ The
would vanish if both the quark and antiquark vertical lines°ccurrence of the anomaly enhancement phenomenon in the
were on-shell. From Fig. 62 and E@?2) it is clear that this diagrams that we have discussed could imply that in many

piece gives a “superficially nonleading’ amplitude of the _otherdiagrams large transverse momenta are also suffici_en.tly
form important that the normal methods are inadequate. If this is

the case, then it is likely that the general transverse momen-
tum diagram formalism will fail. Since there would then be
(p’+kH* . (p"—kH* no Reggeon diagram formalisrtrchannel unitarity is also
Pk P k. (D3)  likely to fail. The conclusion, which is really the main con-
clusion of this papefas we already stated in Sec. Vllis
that to use the transverse momentum diagram formalism
which, after we use the mass-shell conditions Ror and  (and therefore to ensutechannel unitarity it is essential to

P_, gives the amplitude initially employ a transverse momentum cutoff.
v k+p’
P++kl_;1 T S Tl SN (T T Sy S0
§ Py <k'k =-[x-k e FIG. 62. Splitting the diagram of Fig. 61.

L= T Rt -k L (B 4K+ 87 ]

! Ve
A *
’ ) *

- - + N[_% (k'+p’ ]{’%
(J k (P+k_)
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