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Electroweak high-energy scattering and the chiral anomaly

Alan R. White*
Argonne National Laboratory, 9700 South Cass, Illinois 60439, USA

~Received 17 October 2003; published 19 May 2004!

The effect of perturbative QCD interactions on the high-energy scattering of electroweak vector bosons,
when the exchanged channel has pion quantum numbers, is considered. The chiral anomaly is shown to appear
in the couplings of particular transverse momentum diagrams, producing an enhancement of the scattering
amplitude by a power of the energy. AtO(as) a single large transverse momentum gluon is involved and,
within the transverse momentum diagram framework, there is no cancellation. In higher orders, soft gluons,
carrying both normal and anomalous color parity, are also present. The manipulation of a transverse momen-
tum cutoff to replace the ultraviolet anomaly divergence by infrared divergences that can lead to confinement
and chiral symmetry breaking is briefly discussed. The possible implications for electroweak symmetry break-
ing are noted.
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I. INTRODUCTION

The cancellation of the chiral anomaly in the electrowe
sector of the standard model is crucial for the existence
the model as a well-defined short-distance field theory.
perturbation theory, the anomaly is a large momentum c
tribution in axial vector triangle diagrams that, if unca
celled, destroys the renormalizability of a left-handed gau
theory such as the electroweak sector of the standard mo
In the Regge limit the Feynman diagrams of standard per
bation theory contract to form transverse momentum d
grams and produce a new perturbation expansion that ca
organized into Reggeon diagrams@1–7#. Beyond leading-log
order, the external couplings of the transverse momen
diagrams~which are also the couplings of the Reggeon d
grams! contain contracted loop diagrams involving ‘‘effe
tive vertices’’ that result from the contraction. The effecti
vertices can then produce new ‘‘anomalies,’’ not presen
the normal perturbation expansion. For QCD, this is dem
strated in the next-to-leading log calculation@4# of gluon
scattering, in which an infrared~gluon! triangle anomaly is
responsible for the helicity nonconservation that occurs,
in our work on the contribution of infrared quark loo
anomalies to pion or Pomeron@8# and triple Pomeron@9#
vertices.

In the electroweak scattering problem considered in
paper, the underlying left-handed theory contains elemen
axial vector vertices. It is natural, therefore, that~compo-
nents of! these elementary vertices will appear also in
Regge limit effective vertices.A priori, therefore, large mo-
mentum contributions, directly analogous to the familiar t
angle anomaly, can be expected within the loop diagra
that contribute to~beyond-leading-order! transverse momen
tum diagram couplings. Indeed, as we shall see, interna
fective vertices, resulting from longitudinal vector meson e
change, also appear which are quark current components
have point interactions only at infinite momentum. Such c
rent components do not appear in the original Lagrang
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and do not couple to leptons. Consequently, in the e
troweak Regge limit, we can anticipate a significantly e
panded ‘‘anomaly problem’’ which the well-known short di
tance cancellations, between quarks and leptons, will no
sufficient to remove.

In this paper we will show that the triangle anomaly do
indeed appear in the couplings of transverse momentum
grams that describe the high-energy scattering ofW6,0 vec-
tor mesons. All the diagrams we consider describe the
change of a quark-antiquark pair, with the flavor quantu
numbers of the pion, together with some number of gluo
We choose pion quantum numbers because our ultimate
is to understand the relationship between the anomaly
chiral symmetry breaking in the context of high-energy sc
tering. Since two fermion exchange is involved, we wou
expect the energy dependence to be, at most, logarith
~Pion exchange would have no energy dependence.! The sig-
nal of the anomaly will be a power divergence of transve
momentum integrals that produces an additional power
the energy in the full amplitude.

Since the anomaly phenomenon we discuss involves
gitudinal vector meson states it is natural to expect that
underlying gauge invariance of the electroweak theory w
be responsible for some form of cancellation. We discuss
possibility at some length in an appendix at the end of
paper. While it appears that the anomaly is not complet
eliminated, these identities do produce cancellations that
not be straightforwardly expressed in terms of transverse
mentum diagram divergences. Moreover, it is clear that
large transverse momentum region producing the anom
could also contribute in an important way within super
cially nonleading Feynman diagrams. If there is finally
cancellation, then it most likely means the failure of t
transverse momentum diagram formalism for the el
troweak theory unless~as, in any case, we strongly advocat!
a transverse momentum cutoff is imposed from the outse
the main body of the paper our purpose will be to stu
contributions to transverse momentum diagrams and, a
from the discussion in Appendix D, and the related disc
sion in Sec. V C, we will make only brief references to t
possibility that there could be important contributions o
©2004 The American Physical Society02-1
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ALAN R. WHITE PHYSICAL REVIEW D 69, 096002 ~2004!
side of the transverse momentum diagram formalism.
The anomaly occurs only in the even signature amplitu

which is a sum of scattering amplitudes for vector mes
with opposite and same sign helicities, i.e.,

A1~S!5A1~P1P2!5A21~P1 ,P2!1A11~2P1 ,P2!

5A21~S!1A11~2S!. ~1.1!

with

A21~S! ——→
S→`

cS, A11~S! ——→
S→`

2cS. ~1.2!

In a vector theory the amplitudesA21(S) and A11(S)
would simply add in a single helicity amplitude and th
anomaly would cancel.

Our calculations are carried out in a theory that is ve
close to, but is not quite, the standard model. For simplic
as we discuss further in Sec. II, we ignore both leptons
the photon and consider only one doublet of quarks. We
cuss the general framework for our analysis in Sec. III a
isolate the simplest diagram, which isO(as), that potentially
gives an enhancement. Section IV is devoted to a deta
demonstration that the enhancement does indeed occu
this diagram. It is generated by the combination of an eff
tive vertex due to the left-handed coupling of a scatter
vector meson, a quark-antiquark effective vertex due t
longitudinal massive vector intermediate state, and a sin
~large transverse momentum! gluon vertex. AtO(as), there
is only a small number of possibilities for the anomaly
occur within the transverse momentum diagram formali
and, as we discuss in Sec. V, it is clear that it does not can

As we show in Sec. VI, atO(as
2) there are contributions

in which an additional soft gluon plays no kinematical role
the occurrence of the anomaly and simply accompanies
O(as) process. Not surprisingly, the soft gluon produce
transverse momentum infrared divergence in individual d
gram contributions. In tracing the corresponding cance
tion, we find new~but closely related! processes which occu
first only atO(as)

2 and for which infrared properties of th
anomaly are needed to fully determine their contributio
Also at O(as

2), ‘‘anomalous’’ ~odd! color charge parity two
gluon exchange appears, involving one finite and one la
transverse momentum gluon.

In this paper we will frequently refer to a multigluo
transverse momentum state which carries color zero
anomalous color charge parity~not equal to the gluon num
ber! as ‘‘anomalous gluons.’’ In the present context, such
state first appears atO(as

3). Three gluons with even colo
parity and~separately! large, finite, and soft transverse m
mentum are involved. In higher orders various combinatio
of soft and finite transverse momentum gluons can acc
pany the large transverse momentum gluon. Additional g
ons could also share the large transverse momentum, bu
do not discuss this possibility.

Reggeized gluon exchanges that are the outcome of
turbative calculations@1–7# in a vector theory carry norma
color parity ~even/odd for an even/odd number of gluon!.
However, we have argued~for a very long time@10#! that
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anomalous gluons play a crucial role@8# in the emergence o
QCD confinement and chiral symmetry breaking, in the co
text of high-energy scattering and Reggeon diagrams. In
ticular, we have argued that the Pomeron is formed fr
anomalous gluons and that configurations of this kind are
essential component of Regge limit pions and nucleo
However, while we have been able to show how@9# anoma-
lies provide triple Pomeron and pion-Pomeron interactio
involving the anomalous gluons, it has proven very diffic
to find a simple starting point in which the anomalous gluo
couple directly and from which a detailed description of ha
ron amplitudes can be developed. It is very encourag
therefore, to see that anomalous gluons appear straigh
wardly in the anomaly contributions that dominate the el
troweak scattering amplitudes we consider.

We have not explored the full consequences of the po
enhancement~1.2! nor, as we discussed above, is it clear th
the possibilities for cancellation have been exhausted. W
no unitarity bound is violated, we, nevertheless, believe t
the enhancement severely threatens the unitarity of
theory~at least in thet channel! and should not be present i
physical amplitudes. Rather than looking for further canc
lations, we will argue~only very briefly in this paper! that
although the enhancement is actually unphysical, it sele
the physically relevant diagrams and, in doing so, anticipa
chiral symmetry breaking and confinement. In fact there
no sign, in the anomaly amplitudes that give Eq.~1.2!, of
either thes-channel or thet-channel intermediate states th
are present in the diagrams from which they are calcula
In Sec. VII, we suggest that the enhancement is obtained
using a ‘‘wrong procedure’’ to evaluate the Regge limit co
tribution of diagrams. If a transverse momentum cutoff
initially imposed, the energy enhancement will be elim
nated. Instead, because the cutoff produces a Ward ide
violation, the anomaly diagrams dominate because of in
red transverse momentum divergences that appear and i
red properties of the anomaly come into play. We will arg
that these divergences should be analyzed, and ‘‘phys
amplitudes’’ extracted, before the cutoff is removed. This
emphasized as a major conclusion of the paper in Sec. V
which also contains other conclusions.

Initially, a study of the infrared anomaly contributions o
diagrams, that matches the present study of ultraviolet c
tributions, will be required. After this, we anticipate, th
analysis of infrared divergences will parallel our discuss
@8# of hadron scattering. All-orders properties of the dive
gences have to be combined with Reggeon field theory
obtain the ‘‘physical amplitudes’’ in which the cutoff can b
removed. In this paper we will describe only the gene
arguments that we believe should be employed. We exp
that the resulting amplitudes will have both confinement a
chiral symmetry breaking, in the sense that the scatte
will be describable as the exchange of a color zero, Go
stone boson, pion. Although our hadron work provides
framework for our general understanding, a major part of
logic and justification for the procedure we outline can
appreciated directly within the present context, without r
erence to the Pomeron problem. That the starting poin
2-2
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ELECTROWEAK HIGH-ENERGY SCATTERING AND THE . . . PHYSICAL REVIEW D 69, 096002 ~2004!
much more straightforward than in the hadron case holds
the promise that it will be correspondingly easier to carry
procedure through in detail.

II. THE ALMOST STANDARD MODEL

For simplicity, we will consider a theory which, for ou
purposes, is sufficiently close to the standard model,
which is actually less complex. We will consider a ‘‘flavo
SU~2!’’ triplet of vector mesons$W1,W2,W0% with massM
and left-handed couplings to a flavor doublet of quarks$u, d%
with the usual QCD interaction. We will effectively assum
that the vector mesons originate from a spontaneously
ken gauge theory, as in the standard model, but apart f
the discussion of Reggeization in this section, their s
interaction will play almost no role in our analysis.~There
will be no gauge dependence in our discussion because
vector mesons will always be on shell and gluons will on
contribute in gauge-independent transverse momen
diagrams—although, in effect, we evaluate gluon contri
tions in the Feynman gauge.!

We ignore the extra complications of the photon and
mixing angles, which could only lessen the possibilities
cancellation of the anomaly phenomenon that we find. Si
there is no photon, the usual electroweak ultraviolet anom
is absent and so we do not need to include leptons. In fac
we noted in the Introduction, the anomaly we discuss
volves ~components of! QCD currents to which leptons d
not couple and, therefore, could not provide any possibi
for cancellation. If we give the quarks a small massm
(!M ) any potentially singular infrared contributions will b
eliminated. However, for much of our discussion we will
interested only in large internal~transverse! momenta, where
‘‘large’’ is defined relative toM, and som will be omitted.
The absence of a quark mass has the technical advantag
we will be able to exploit the considerable, Regge lim
simplifications of the Feynman diagrams that describe
massless chiral theory.

We will study the high-energy scattering of the mass
vector mesons via a quark-antiquark exchange channe
which, potentially, a ‘‘pion’’ could appear as a bound sta
Perturbatively, the leading behavior of the amplitudes
study would be given~if there were no anomaly enhanc
ment! by the exchange of vector mesons. However, since
flavor symmetry is non-Abelian, the vector mesons will
Reggeized by self-interactions. SinceCP is conserved, sig-
nature is well-defined and Reggeized vector meson excha
will give high-energy behavior in the odd-signature chan
of the form

A~S,0! ;
S→`

Sa~0!, ~2.1!

FIG. 1. A transverse momentum diagram.
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where

a~0!512
g2

16p2 1O~g4!,1. ~2.2!

The even signature channel will be dominated by the
change of two Reggeized vector mesons for which~apart
from a logarithmic factor!

A~S,0! ;
S→`

S2a~0!21,Sa~0!. ~2.3!

Therefore, if we sum~in principle at least! all diagrams pro-
ducing all self-interaction Reggeization effects then the c
tribution of ~any number of! exchanged vector mesons
flavor exchange amplitudes will be smaller than the anom
enhanced quark-antiquark exchange amplitudes we dis
which give

A~S,0! ;
S→`

S

M2 . ~2.4!

Since the running ofas does not enter our calculations
the relative value ofM, compared to the QCD scale, does n
appear in our discussion. Therefore, the instability of
vector mesons is not an issue. More generally it also sho
not be a very significant issue. We can, of course, de
vector meson scattering amplitudes by going to comp
poles and any undesirable features of these amplitudes
feed back into the scattering amplitudes of physical partic
Alternatively, we could exploit the Reggeization property
vector mesons and, although it would be very obscure
most readers, we could carry out our discussion in terms
Reggeon amplitudes. In this case, it would be rather strai
forward to argue that the non-Regge nature of the anom
enhancement energy behavior that we find will viola
t-channel unitarity. However, since the simplest diagrams
consider are already very high-order in the electroweak c
pling @O(aw

4 )# their contribution is very small at curren
energies and so any unitarity problems could only be
physical relevance at extremely high energies.

FIG. 2. A Feynman diagram—the hatched lines are on shell.

FIG. 3. A triangle diagram coupling with ‘‘effective vertices.
2-3
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FIG. 4. The leading-log amplitude.
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We could also regard our calculations as academic
say that we are simply using left-handed vector meson
uncover properties of QCD. From this point of view w
could make the massM as small as we like. Also, throughou
the main body of the paper the origin ofM will be irrelevant
and we will implicitly assume that it originates from som
mechanism which is unrelated to the quarks we consider.
important that the high-energy behavior~2.4! is obtained
with internal vector mesons on mass shell. Because long
dinal states are involved this behavior is scaled byM2 and so
can not be cancelled by a physical Higgs contribution of a
kind.

If we ignore Reggeization, or if the vector mesons a
massless, then the anomaly enhanced amplitudes will
high-energy behavior comparable with that of~multiple! vec-
tor meson exchange. This could be an additional reason
be added to those briefly mentioned in Sec. V why bou
states of~higher-colored! quarks and antiquarks should act
ally be responsible for the vector meson mass generatio
the electroweak scaleM is actually a second QCD scale, a
would then be the case, we would surely expect unitarity
be just as important for the higher scale as for the low
scale.

III. O„as…—ONE GLUON DIAGRAMS

In this section we describe the general framework wit
which we discussO(as) diagrams and focus on the simple
feynman diagram that, potentially, produces an anomaly
hancement.

A. Transverse momentum diagrams

As is very well known, the leading~Regge limit! high-
energy behavior of a Feynman diagram is typically obtain
by routing the large light-cone momenta through the diagr
in such a way that the number of particles that are close
mass shell and have large relative longitudinal momen
separations~i.e., large rapidity differences! is maximal. After
longitudinal integrations are carried out, close to the on-s
configuration, the result is a transverse momentum inte
multiplied by logarithms of the energy. The transverse m
mentum integral corresponds to a ‘‘transverse momen
diagram’’ obtained by contracting all of the~close to! on-
shell lines. In general, there is one logarithm and one tra
verse momentum loop for each large rapidity differen
Consequently, the leading-log amplitude contains a tra
verse momentum diagram with the maximal number
loops. In Appendix B we provide a brief, nontechnical, r
view @11# of known results that apply to the fermion e
change scattering amplitudes we will discuss.

The relationship between transverse momentum diagr
and the process of putting lines on shell in full Feynm
diagrams will dominate our discussion. When two, or mo
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particles have finite relative rapidity, fewer lines are plac
on shell in the reduction to a transverse momentum diagr
and a nonleading log amplitude, with a smaller number
transverse momentum loops, is obtained. In this case,
couplings and interactions in the transverse momentum
grams have more structure. It is in~superficially! nonleading
amplitudes of this kind that the high-energy behavior can
enhanced by the occurrence of the triangle anomaly wit
the couplings of the transverse momentum diagram.

B. Double logs

A well-known extra complication, in the application o
the transverse momentum diagram formalism to fermion
change amplitudes, is that transverse loops involving o
fermion propagators are generally logarithmically diverge
@11# at large transverse momentum. These divergences
fectively, produce additional logarithms of the energy a
give rise to ‘‘double logs’’ that are associated with sing
rapidity differences. In the diagrams we discuss there is,
tentially, a logarithmic divergence of this kind but it is ove
whelmed by the anomaly power divergence that we fi
Therefore, we will not be directly interested in logarithm
transverse momentum divergences and, in the main bod
the paper, will refer to them only for reasons of comple
ness. In Appendix B we briefly discuss the possible phys
relevance of the anomaly with respect to the double logs

From the general viewpoint of this paper, however, it
important that, because we can regard the double log
described by transverse momentum diagrams, they do
represent high-energy behavior that is not anticipated by
formalism. ~Even though it might not be the most efficie
method for studying properties of the double logs.! It is,
perhaps, worth noting that, since the divergences do not
cur in Reggeization diagrams, they do not affect the reor
nization of transverse momentum diagrams into Regg
diagrams. In fact, this reorganization reduces the degre
divergence. The divergences occur only in Reggeon diag
loops containing just Reggeized quarks and antiquarks a
if the leading log form of the trajectory function is used, th

FIG. 5. Momentum notation for the diagram of Fig. 2.
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FIG. 6. Effective vertices~a! for helicity L
521 ~b! for helicity L511.
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presence of the Reggeon propagator reduces the diverg
from log to log@log# form.

C. The enhanced transverse momentum diagram

As we will elaborate below, the lowest-order appearan
of the anomaly enhancement is associated with the tr
verse momentum diagram shown in Fig. 1. The remainde
this section and the following two sections will be devoted
the study ofO(as) Feynman diagrams which give a contr
bution to the high-energy scattering of vector mesons
contains this transverse momentum integral.

We will use the diagrammatic notation of Fig. 1—fo
quarks, gluons, and vector mesons—throughout the pape
both Feynman diagrams and transverse momentum
grams.~Almost all of our discussion will be concerned wit
Feynman diagrams and so there should be no confusion
which kind of diagram is under consideration.! For simplic-
ity, in this and the following two sections, we will omit fla
vor and color quantum numbers and consider just the
mentum and spin structure of diagrams. In this case
‘‘gluon’’ is effectively a ‘‘photon,’’ i.e., a massless vecto
particle with a vector coupling to a massless~for most of the
discussion! ‘‘quark-antiquark’’ pair. A ‘‘vector meson’’ is a
massive vector particle with a left-handed~right-handed!
coupling to the quark~antiquark!. Because of the left-hande
coupling, the high-energy scattering of vector bosons w
definite helicity has a particularly simple diagrammatic stru
ture.

To avoid the introduction of an extra momentum scale,
will consider forward scattering, i.e., zero momentum tra
fer. We should emphasize, however, that this does not im
that our calculations are invalidated for the simple rea
that we consider an infrared region in which perturbat
theory does not apply. It should become clear that, since
phenomenon we discuss involves large internal transv
momenta, a momentum transfert with M2!t!S would not
significantly affect our analysis. In the forward direction, t
integrand of Fig. 1 is a product of the couplingsGL(k' ,k'8 )
and GR(k' ,k'8 ) and transverse momentum propagators
the gluon, quark, and antiquark and the integral has
simple form
09600
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E d2k'8 E d2k'

Tr$k”'GL~k' ,k'8 !k”'GR~k' ,k'8 !%

k'8
2~k'

2 !2
. ~3.1!

GL and GR should satisfy~Reggeon! Ward identities so
that, as discussed further in Sec. V, there is no infrared
vergence atk'8

250 and a divergence atk'
250 would be

eliminated by adding either a momentum transfer or a qu
mass, as discussed in the previous section. Convention
since two fermion exchange is involved, we would expe
the accompanying energy dependence to be only logarith
We would also expect the large momentum behavior ofGL
andGR to be such that the full integral is, at worst, logarit
mically divergent~producing an additional energy logarithm
as discussed above!. The signal of the anomaly will be tha
GL andGR actually grow at large transverse momentum, in
manner that produces an additional power of the energy.

D. A Feynman graph producing the anomaly enhancement

In the next section we will see that the Feynman diagr
shown in Fig. 2 has a Regge limit contribution, involving th
transverse momentum diagram of Fig. 1, in which each
the hatched lines is placed on shell.
In effect, the box graphs at either end of the full graph co
tract to give triangle diagram contributions to the couplin
GL andGR as shown in Fig. 3. If the left-handed nature
the interactions of the scattering vector particles leads t
left-handed~vector! ‘‘effective vertex’’ for the triangle dia-
gram then, naively, it would appear that the triangle anom
is obviously present. If this has the standard form of t
ultraviolet triangle anomaly, we would expect a line
growth with k'8 that would then produce a divergence of t
k'8 integration. In fact, since effective vertices are not nec
sarily simple local vertices or, if they are, the propagat
may no longer be elementary, much more discussion is
quired to show that there is a contribution that is clos
related to the triangle anomaly.

The diagram of Fig. 2 has the minimal complexity need
to generate triangle couplings, as in Fig. 3, for bothGL and
GR . We will find that this is necessary to obtain a nonze
contribution in the full amplitude.
FIG. 7. The internal vector
meson numerator.
2-5
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E. Leading logs, nonleading logs, and the anomaly

A priori, as described in Appendix B, we expect the lea
ing high-energy behavior of Fig. 2 to be@ ln s#4, multiplied by
the transverse momentum diagram obtained, as illustrate
Fig. 4, by placing all vertical lines on shell.~A hatch on a
line will always imply that it is on-shell.! In fact, this trans-
verse momentum diagram contains quark loops that are l
rithmically divergent and generate additional powers of lns,
as discussed above.

The transverse momentum diagram of Fig. 1 should
pear at the next-to-next-to-leading log level~formally with a
factor of @ ln S#2). In this contribution, it would be anticipate
that the dominant internal momenta, within theGL and GR
couplings, will be ‘‘close to’’ that of the corresponding fa
external particle~in particular, there should be no large inte
nal rapidity difference!.

The expectation would be that large~relative! internal
momenta within theGL and GR couplings are suppresse
because of Ward identity cancellations that are a con
quence of gauge invariance for the gluon~giving either a
finite or, at worst, logarithmically divergent integral!. As we
will see, the anomaly contradicts this expectation in that i
a contribution to theGL andGR couplings from, relatively,
large internal momentum in which the unhatched verti
quark lines of Fig. 2~and, correspondingly, the unhatche
vertical line of Fig. 3! are far off shell. This does not, how
ever, imply the failure of a Ward identity. Rather, as w
enlarge on further in Sec. V, the presence of the anom
means that large internal momenta play an important rol
the Ward identity.~In Appendix C we review the correspond
ing situation for the vector Ward identities in the famili
axial-vector–vector–vector triangle diagram in which t
anomaly occurs.!

In the course of our analysis we will find that, in th
low-order diagrams where the anomaly first occurs, there
no additional logarithms~multiplying the power enhance
ment! associated with lines that are only close to on sh
rather than actually on shell, in the large transverse mom
tum divergence.

IV. THE ANOMALY ENHANCEMENT

Is this section we study, in detail, the occurrence of
anomaly enhancement in the high-energy behavior of
Feynman diagram of Fig. 2. This diagram is shown again
Fig. 5, together with the momentum notation that we w
use.

We will consider the limit

P1→S AS

2
,
AS

2
,0,0D , P2→S AS

2
,

2AS

2
,0,0D ~4.1!

and will find that the anomaly is a simple pole, of the Fey
man integral, atS5`, which results from the combinatio
of the asymptotic pinching of mass-shell propagator po
~those hatched in Fig. 2! with the large momentum behavio
of off-shell propagators. The on-shell propagators will
used to carry out longitudinal momentum integrations a
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produce a reduction to the transverse momentum integra
Fig. 1. The large momentum behavior will be a combinati
of the transverse momentum dependence of the excha
propagators and the internal loop momentum dependenc
the propagators in the left and right side triangle diagra
corresponding to Fig. 3.

A. Internal momenta and the quark mass-shell conditions

We consider, first, the left-hand box subgraph that appe
in Fig. 5. As shown, we directP1 along the left-most quark
line and use thek28 integration to put this line on shell, i.e

E dk28
ig~P11¯ !

~k28 1p28 !P11 i e1¯

——→
P1→`

pg21¯ .

~4.2!

By usingk28 for this purpose, we keep thep8 integration as
a four-dimensional integral that we can anticipate will ha
an anomaly contribution from the large momentum regio
asP1→`.

Using thek28 integration as in Eq.~4.2! has, however, the
disadvantage that it introduces additionalp8 dependence into
two of the propagators forming the triangle diagram. Con
quently the triangle diagram no longer has the elemen
structure known to generate the anomaly. We will avoid t
problem by considering only a limited part of thep8 integra-
tion, i.e., we consider the region where the components op8
have the order of magnitude

up18 u;eS1/2!P1 , p'8
2;eMS1/2!M P1 , up28 u;eM ,

~4.3!

wheree is small, but finite. As we will see, this will allow us
to ignore thek28 dependence of triangle diagram propagat
while simultaneously keeping only the transverse momen
dependence of the exchanged propagators and also allo
the anomaly spin structure to emerge as a largek' approxi-
mation.

We will use powers ofe as a simple way to impose in
equalities amongst momenta that we could equally well
pose more abstractly. We will integrate over a range of m
menta having the given order of magnitude. Since we
only interested in showing that an anomaly power enhan
ment occurs, and will make no attempt to determine the
efficient multiplying it, the use of powers ofe will be suffi-
cient to carry through our arguments. Note that as
explicitly discuss later, if we allowedp28 to be slightly larger,
i.e., up28 u;M , a Lorentz transformation on Eq.~4.3! would
give all components the same order of magnitude, i.e.,pi8
;(eM )1/2S1/4. In this case, however, the approximations w
make in the following would be more marginal, and mo
discussion of their justification would be required. For sim
plicity, therefore, we keepup28 u;eM , although we believe
the full anomaly generating region includesup28 u;M .

If k'8 is also large, but small compared top'8 , say

k'8 2;e3/2MS1/2!p'8 2 ~4.4!
2-6
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ELECTROWEAK HIGH-ENERGY SCATTERING AND THE . . . PHYSICAL REVIEW D 69, 096002 ~2004!
then the mass-shell condition~4.2! becomes

uk28 1p28 u;
p'8 2

P1

;
eMS1/2

S1/2 ;eM ~4.5!

which, together with Eq.~4.3!, implies that

uk28 u;eM . ~4.6!

If we similarly directP2 along the right-most quark line
in Fig. 5 and consider the analogous region of thep9 inte-
gration, then usingk18 to put this line on shell we will obtain
a similar constraint onk18 . Together, these constraints ensu
that, in the momentum region we are considering, transv
momenta dominate the gluon propagator. Equations~4.3! and
~4.4!, together with the corresponding range forp9, define a
range of internal transverse momenta that is growing w
the external energy but which is, nevertheless, close to m
shell for the hatched quark lines.

B. Adjacent quark numerators and the external effective
vertices

Consider, next, the contribution of the quark numerat
that are adjacent to the fast quark line. When combined w
Eq. ~4.2!, theg2 components give zero. Therefore, the lea
ing contribution, in the momentum region we are consid
ing, is given by the transverse numerator components.
discuss this contribution we use the complexg-matrix for-
malism @16# described in Appendix A. We can then writ
both numerators in the form

p”'5
1

2
@~ p̂81 k̂8!ĝ* 1~ p̂81 k̂8!* ĝ #. ~4.7!

We take the vector meson states to be transversely polar
The helicity of each vector meson will be conserved, but
two helicities can be equal or opposite. Using Eqs.~A13! and
~A14!, the (12g5) vector meson coupling implies that, a
illustrated in Fig. 50, there is just one combination ofĝ and
ĝ* numerator matrices that can contribute for each helic
For helicity l521, the resulting coupling is that illustrate
in Fig. 6~a!, while l511 gives that of Fig. 6~b!. ~In all the
figures of this kind we follow the normal convention an
multiply g matrices in the direction of the quark arrow.!

C. The internal vector mesons

The on-shell contribution of the internal vector mes
propagator is, of course, gauge independent and can be
tained from the unitary gauge propagator

Gmn~p81k!5
@gmn2~p81k!m~p81k!n /M2#

~p81k!22M2 .

~4.8!

It is the second part of the on-shell numerator, correspond
to longitudinal polarization of the intermediate state, th
produces@8# the vectorlike~cross-channel! coupling needed
to obtain the anomaly. Since we are looking for a large m
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mentum contribution of thep8 integration, we note that we
obtain a factor ofp18 in this part of the numerator if there i
a g2 at one of the vertices. This is possible at the upp
vertex in Fig. 7~see below!, but is not possible at the lowe
vertex, since ag2 at the bottom vertex would~anti!commute
through the adjacent transverse numerator and give zero

As we will see, we obtain the factor ofp18 , in combina-
tion with the spin structure needed to obtain the anomaly
the resulting triangle diagram, ifk'

2 @p'8
2. Since we have

already imposed Eq.~4.3!, we can achieve this by taking

k'
2 ;e1/2MS1/2;e21/2p'8 2. ~4.9!

The dominant contribution of the vector meson numerato
then as shown in Fig. 7.@We remove the (12g5) factors in
the quark couplings of the internal vector meson
~anti!commuting them around the quark loop.# The ^ nota-
tion indicates that the twog matrices are not multiplied.

With k'
2 @p'8

2, putting the vector meson propagator o
shell via thek2 integration gives

E dk2

~ k̂ĝ* ^ ip18 g21¯ !/M2

@~k21p28 !p18 ¯#
;

p18 →`

p k̂ĝ* ^ g2 /M2

~4.10!

and, if Eq.~4.9! is satisfied, the mass-shell constraint give

uk2u;
k'

2

up18 u
;

e1/2MS1/2

eS1/2 ;e21/2M . ~4.11!

FIG. 8. The internal quark numerator.

FIG. 9. The effective triangle diagram.
2-7
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The parallel discussion of the on-shell contribution of t
right-side internal vector meson will give a correspondi
constraint onuk1u. The two constraints, taken together wi
Eq. ~4.9!, imply that ~as for the gluon! transverse moment
dominate the central quark and antiquark propagators. As
noted, ensuring thatk2 remains finite, with Eq.~4.9! satis-
fied, provides part of the motivation for the initial choice
Eq. ~4.3! as thep8 integration region.

Note that, although we consider very large transve
momenta, because the vector mesons remain on s
the high-energy behavior we will find will be scaled b
M2. Consequently, there is no possibility that it could
cancelled by the contribution of a Higgs particle.~That is, if
the Higgs mechanism were used to generate the vector
son mass.!
i-

rti

09600
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D. The internal quark numerator and the triangle amplitude

For the remaining components of Fig. 3 that we have
yet discussed, the largest contribution~that also gives theg2

vertex as in Fig. 7! is obtained by taking the gluon couplin
to beg1 and taking the remaining quark numerator to a
be transverse. The chirality then feeds through the propa
tor as illustrated in Fig. 8.

Combining Figs. 6, 7, and 8, and using Eq.~4.10! we
obtain an effective triangle diagram with the numerators a
vertices shown in Fig. 9. In this figure we have also includ
the transverse quark and antiquark propagators (ĝ/ k̂ and
ĝ* / k̂* ) that are external to the triangle diagram. The amp
tude obtained from Fig. 9 is~apart from an overall constan
that we neglect-involving a numerical factor, factors ofp,
and powers of the coupling constants!
ĝ

k̂
GL~k' ,k'8 !

ĝ*

k̂*
;

ĝ

k̂
S E d4p8

k̂ĝ* ~ p̂81 k̂8!* ĝg2~ p̂81 k̂8!ĝ* g1@ p̂8#* ĝ

~p81k8!4~p8!2

g2

M2
D ĝ*

k̂*
~4.12!
ial

m

ri-
ct it

ou-

es
rk
lled
pa-
with the integration region specified by Eq.~4.3!.
With Eqs.~4.3!–~4.5! satisfied, we can make the approx

mations

uk18 ~p28 1k28 !u;e2M2,

up18 ~p28 1k28 !u;e2M S1/2,

~p81k8!'
2 ;@e1O~e5/4!#M S1/2

~4.13!

and so

~p81k8!2;~p81k8!'
2 . ~4.14!

Consequently, we can approximate Eq.~4.12! as ~again ig-
noring an overall constant!

ĝ

k̂
GL~k' ,k'8 !

ĝ*

k̂*

;
ĝ

k̂
S E d4p8

k̂@ p̂8#*

@p'8 1k'8 #2@2p18 p28 2~p'8 !2#

g2

M2D ĝ*

k̂*

~4.15!

with the integration region still specified by Eq.~4.3!.
Because we have eliminatedk28 andk18 ~which are func-

tions of p8 andp9), the amplitude~4.15! is ~almost! that of
a conventional triangle Feynman diagram—with local ve
ces. Achieving the elimination ofk28 andk18 from Eq.~4.15!
-

was, as we remarked, part of the motivation for the init
restriction to the momentum region~4.3!–~4.5!.

E. The anomaly contribution

Using Eq. ~A4! we can write the numerator momentu
factor of Eq.~4.15! as

k̂@ p̂8#* 5k'•p'8 1 ik'3p'8 . ~4.16!

The first term is not special to a vector vertex fermion t
angle diagram and is not related to the anomaly. We expe
to arise from~and to eventually be cancelled by! a variety of
contributions to the complete transverse momentum c
plings of Fig. 1. It is the second term in Eq.~4.16! that we
expect to give an anomaly contribution. It’s parity properti
result directly from the product of an odd number of qua
numerators and so we anticipate that it can only be cance
by effective triangle diagrams that contain three quark pro
gators.

Keeping just the second term in Eq.~4.15! gives, for the
integral within the brackets~apart from the factor of
g2 /M2)

E dp18 dp28 E d2p'8
ik'3p'8

@p'8 1k'8 #2@2p18 p28 2~p'8 !2#
.

~4.17!

To carry out the angular integration forp'8 we choose co-
ordinates (p28 ,p38) such thatk'8 lies along the two axis. In
this case,
2-8
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p'8 k'8 5up'8 uuk'8 ucosf, p'8 3k'5up'8 u~k3 cosf2k2 sinf!,

~4.18!

wherek2 andk3 are projections ofk' along and perpendicu
lar to k'8 . We can, therefore, write

E dp18 dp28 E d~p'8 !2

@2p18 p28 2~p'8 !2#

k'3p'8

@p'8 1k'8 #2

5E dp18 dp28 E d~p'8 !2

@2p18 p28 2~p'8 !2#

3E
0

2p

df
up'8 u~k3 cosf2k2 sinf!

@~p'8 !21~k'8 !212up'8 uuk'8 ucosf#
.

~4.19!

Using

E
0

2p

df
sinf

a1b cosf
52

1

b
@a1b cosf#0

2p50 ~4.20!

and

E
0

2p

df
cosf

a1b cosf
;

b!a

1

a
E

0

2p

df cosf2
b

a2 E
0

2p

df cos2 f

1OS Fb2

a3G D;02
pb

a2 1OS Fb2

a3G D
~4.21!

we obtain

E df
k'3p'8

@p'8 1k'8 #2
;

k'8
2
!p'8

2

k3uk'8 u

p'8
2 ;

k'3k'8

p'8
2 . ~4.22!

Equation~4.19! gives, therefore,

k'3k'8 E
p'8

2;eMAS

d~p'8
2!

~p'8
2!

3E
up18 u;eAS,up28 u;eM

dp18 dp28

@2p18 p28 2~p'8 !2#
. ~4.23!

If we change variables to

ASx5p'8
2, ASy5p18 ~4.24!

we obtain

E
p'8

2;eMAS

d~p'8
2!

~p'8
2!

E
up18 u;eAS,up28 u;eM

dp18 dp28

@2p18 p28 2~p'8 !2#

5E
x;eM

dx

x
E

uyu;e,up28 u;eM

dydp28

@2yp28 2x#
~4.25!
09600
which is clearly a constant that we do not need to evalua
Equation~4.23! is sufficient to conclude that the integra

tion region on which we have focused gives, for Eq.~4.15!,
the behavior

;
ĝ*

k̂*
S ~k'3k'8 !g2

M2 D ĝ

k̂
. ~4.26!

F. Behavior of the full amplitude

It is straightforward to obtain the behavior of the full am
plitude that results from combining Eq.~4.26! with the cor-
responding contribution from the right-side box graph in F
5. As we have discussed above, the internal mass-shell
ditions determine that the longitudinal momenta in the c
tral propagators of Fig. 5 can be neglected. As a result thek'8
andk' loop integrations produce, as anticipated, a transve
momentum integral of the form of Eq.~3.1! which we write,
in complexg-matrix notation, as

E d2k'8

k'8
2
E d2k'TrH ĝ

k̂
GL~k' ,k'8 !

ĝ*

k̂*
GR~k' ,k'8 !J

;E d2k'8

k'8
2
E d2k'S k'3k'8

M2 D 2
Tr$g2ĝ* g1ĝ%

k̂k̂*

;E d2k'8 d2k'

k'8
2k'

2 S k2k382k3k28

M2 D 2

. ~4.27!

Since the foregoing analysis assumes that both Eqs.~4.4! and
~4.9! hold, it follows that bothk'8

2 andk'
2 can be integrated

over a range of values, that areO(MS1/2) without either the
approximations that we have made breaking down or
transverse momentum approximation to the gluon and qu
propagators being invalidated. Therefore, we obtain a con
bution from Eq.~4.27! of the form

E d2k'8

k'8
2
E d2k'TrH ĝ

k̂
GL~k' ,k'8 !

ĝ*

k̂*
GR~k' ,k'8 !J

;
1

M4
E

O~MS1/2!
d~k'8

2!E
O~MS1/2!

d~k'
2 !;

S

M2
. ~4.28!

@Note that, because the anomaly contribution toGL(k' ,k'8 )
is linear ink'8 , if it is combined with aGR(k' ,k'8 ) that does
not have this contribution then integration overk'8 will give
a cancellation of the enhancement effect. This is why
have considered a diagram which gives anomaly contri
tions to bothGL andGR .]

As we noted above, because two fermion exchange
involved, we would have expected the amplitude to incre
only as some power of lnS. However, we have now show
that the kinematic region of Fig. 5 that we have isolat
actually produces a power enhancement of the expected
2-9
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FIG. 10. Unitarity cuts of~a!
the diagram of Fig. 2 and~b! a
related diagram.
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energy behavior. As we will see in the next section, there
no accompanying logarithms in this lowest-order appeara
of the anomaly.

Clearly, if a fixed transverse momentum cutoff is im
posed, i.e.,

k'8
2,k'

2 ,l' ~4.29!

then there will be no contribution of the form~4.28! whenS
is sufficiently large. Therefore, a transverse cutoff elimina
the enhancement effect and restores the normal behavio
pected for two fermion exchange. However, as we discus
greater length in Sec. VII, a transverse cutoff violates ga
invariance Ward identities in a way that replaces the anom
enhancement by transverse momentum infrared divergen

G. Comparison with the axial vector vertex anomaly

To see the relationship between the anomaly amplit
~4.26! that we have found and the familiar axial vect
anomaly we proceed as follows. First we change variab
from p8 to q, where

q15
p18

L
, q25Lp28 , q'5p'8 , L5S e

M D 1/2

S1/4.

~4.30!

If we also extend the integration region forp28 to p28 ;M
~which, as we have already noted, would not significan
alter the above analysis! then Eq.~4.15! becomes~moving
the g2 /M2 outside of the brackets!

ĝ

k̂
S E

uqj u;~eM !1/2S1/4
dqj

k̂q̂*

@q'1k'8 #2@2q1q22q'
2 #
D g2

M2

ĝ*

k̂*
,

~4.31!

where, as indicated the range of integration is now the sa
for all components ofq. In the limit S→`, the integration is
over a four-dimensional large momentum region and, f

FIG. 11. A twisted diagram.
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mally, the integral is linearly divergent. Also, a product
three orthogonalg matrices is present—although there is
trace involved. Consequently, it is natural to expect a la
momentum contribution of the form associated with the
angle anomaly.

The strictly infinite momentum region contribution to E
~4.31! is

;
ĝ

k̂
S E dq1dq2E d2q'F k'3q'

q'
2 G 1

@2q1q22q'
2 #
D

3
g2

M2

ĝ*

k̂*
. ~4.32!

which, integrating by parts with respect toq'
2 , we can re-

write as

;
ĝ

k̂
S E dq1dq2E d2q'

k'3q'

@2q1q22q'
2 #2D g2

M2

ĝ*

k̂*
~4.33!

and, with a further integration by parts, as

;
ĝ

k̂
S E dq1dq2E d2q'

q'
2 @k'3q'#

@2q1q22q'
2 #3D g2

M2

ĝ*

k̂*
.

~4.34!

Undoing theg-matrix removal involved in going from Eqs
~4.12!–~4.15! ~or, equivalently, insertingg matrices using 2
5g1g21g2g15ĝĝ* 1ĝ* ĝ) we can rewrite Eq.~4.34! as

;ĝS E
uqi u@O~M !

d4q
ĝ* @ q̂* ĝ #g2@ q̂ĝ* #g1@ q̂* ĝ #

@q2#3 D g2

M2

ĝ*

k̂*

;ĝS E
uqi u@O~M !

d4q
g̃* q”'~12g5!g2q”'g1q”'

@q2#3 D g2

M2

ĝ*

k̂*
.

~4.35!

We recognize the integral, within the brackets, of E
~4.35! as a left-handed transverse propagator contribution
a tensor component of the standard large momen
anomaly integral~apart from the feature that there is no tra
of the g matrices involved!. Therefore, we could anticipat
2-10
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FIG. 12. ~a! The GL generated
by Fig. 11. ~b! The effective tri-
angle diagram.
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Eq. ~4.26! directly from the familiar anomaly contribution t
a three current vertexTmab(k1 ,k2)—the notation is that of
Fig. 54. In our case,

k152k25k'8 ~4.36!

and if we consider the decomposition into invariant amp
tudes~C1!, Eq. ~4.26! corresponds to the contribution of th
first two terms, which are linear ink1 andk2 .

It is very well known that in the three-current vertex th
ambiguity of the ultraviolet anomaly contribution is dete
mined by vector current Ward identities that relate t
anomaly contribution to infrared triangle diagram contrib
tions. In our case, we anticipate that there will be
~Reggeized! gluon Ward identity which similarly determine
the coefficient of the anomaly contribution we have foun
We discuss this point further in Sec. V. Note, however, th
in the special momentum configuration~4.36!, all the other
terms in Eq.~C1! vanish—if there are no infrared diver
gences to consider. Therefore, in the lowest-order graphs
are discussing, the ultraviolet anomaly contributions we
discussing cannot be cancelled by the contribution of in
red transverse momentum regions.

V. NONCANCELLATION OF THE ANOMALY

In this section we consider other diagrams that are a
O(as) and similarly have anomaly enhancements that mi
produce an overall cancellation.

A. Reality of the anomaly amplitude

It is significant that the anomaly amplitude we ha
found, although calculated with internal lines on shell,
real. Indeed there is no evidence, in the amplitude, of eit
the s-channel or thet-channel intermediate states that a
present in the diagram from which it was calculated. At fi
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sight this seems paradoxical since it would appear that
analysis of Fig. 2, in the previous section, can be viewed
the calculation of ans-channel discontinuity—via the unitar
ity cut corresponding to the dashed line in Fig. 10~a!.

The tree amplitude that appears below the cut is in
grated with the one loop amplitude that appears above
cut. That the calculation can be related to the evaluation
discontinuity immediately justifies, in fact, our choice
lines to place on shell.

That there is ultimately no discontinuity associated w
the anomaly is due to a second discontinuity contribut
from the unitarity cut of a closely related graph shown
Fig. 10~b!. Clearly Fig. 10~b! is so similar to Fig. 10~a! that
our analysis carries over directly. In both cases, the inter
diate state integration overk' produces an imaginary contri
bution of i uSu1/2. However, thek'8 integration, that also gives
a factor of i uSu1/2, is part of the integration within the loop
amplitude.

If we formulate the above analysis as a unitarity calcu
tion then the amplitude on one side of the cut must be co
plex conjugated. As a result, the loop amplitude will have
opposite sign in the contributions from Figs. 10~a! and 10~b!
and since all other parts of the diagrams contribute ide
cally, adding the two will give a factor of

~2p!4~@ i uSu1/2#@ i uSu1/2#1@ i uSu1/2#@2 i uSu1/2# !50.
~5.1!

Alternatively, if we calculate the contribution of the two dia
grams as that of amplitudes then the loop amplitude w
have the same sign in both cases and Eq.~5.1! will be re-
placed by

~p!4~@ i uSu1/2#@ i uSu1/2#1@ i uSu1/2#@ i uSu1/2# !52p4S.
~5.2!
a
FIG. 13. Addition of an exchanged gluon to
cut amplitude.
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FIG. 14. Representation of th
double dispersion relation forGL .
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which will, indeed, give a real amplitude. The contribution
Fig. 10~b! simply doubles that of Fig. 10~a!. The absence o
a discontinuity implies that, as we anticipated earlier, th
are no additional logarithms accompanying the power
hancement due to the anomaly. As we stated in the last
tion, the anomaly is a simple pole atS5` which results
from the combination of the asymptotic pinching of th
mass-shell poles of the hatched propagators with the la
momentum behavior of the unhatched propagators.

B. Another anomaly generating diagram

The diagram of Fig. 10~b! is obtained from that of Fig.
10~a! by simultaneously ‘‘twisting’’ both the left and right
side box diagrams. For much of our discussion~including the
addition of extra gluons in the next section! we will keep the
right-side of the diagrams we consider, and therefore the
respondingGR , fixed and discuss anomaly amplitudes e
tirely in terms of possible left-side contributions toGL . In
the simple case of the one gluon diagrams that we are p
ently discussing, the right-side coupling will be that of Fig
@or Fig. 10~a!# and it will be clear that, as in the above di
cussion, diagrams with the right-side coupling of Fig. 10~b!
simply give parallel contributions. However, when we co
sider infrared cancellations in the next section, it will
essential to also consider all contributions toGR .

Consider, next, the diagram shown in Fig. 11 that is o
tained from that of Fig. 2 by twisting the left half of th
diagram relative to the right half. By a similar application
the above analysis, which puts on shell the hatched li
shown in Fig. 11, the transverse momentum diagram of F
1 will again be generated. TheGL shown in Fig. 12~a!, ob-
tained from the left part of Fig. 11, contains the effecti
triangle diagram shown in Fig. 12~b!.

A very similar expression to Eq.~4.26! will clearly be
obtained. The differences in the analysis can be summar
as follows.

~i! The analogue of Eq.~4.12! gives Eq.~4.15! but with
k̂@ p̂8#* → k̂* p̂8 which leads tok'3p'8 →2k'3p'8 in Eq.
~4.17! and the following.

~ii ! A second change of sign arises fromk'8 →2k'8 in
Eq. ~4.15!.
The net result is that an identical anomaly contribution,
that obtained from Fig. 2, is obtained from the diagram
Fig. 11.

The lines placed on shell, asymptotically, in Fig. 11 do n
correspond to a simple cut of the diagram, as was the c
for Fig. 2. However, Fig. 11 can also be represented a
Fig. 13~b!, i.e., as an exchanged gluon attached to the
shell lines of the cut amplitude of Fig. 13~a!. The exchanged
gluon has transverse momentum much less than the off-s
quark or antiquark to which it couples in the large mome
tum p8 and p9 regions which generate the anomaly. Con
quently, it does not interfere~kinematically! with either the
quark-antiquark scattering process, or the asymptotic pla
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on shell of the left side fast quark and the right side an
quark. Therefore, the justification for the choice of lin
placed on shell is closely related to the existence of
asymptotic physical region discontinuity of Fig. 13~a!. The
asymptotic pinching of the particle poles that gives the d
continuity in Fig. 13~a!, together with the large momentum
behavior of the uncut propagators, is responsible for the p
at infinite momentum in Fig. 13~b! that corresponds to the
anomaly.

A second, essential, point related to the choice of on-s
lines is the following. According to multi-Regge theory, th
coupling GL can be evaluated by a double dispersion re
tion, represented schematically in Fig. 14—where the c
represent the discontinuities involved. As a consequenceGL
can be expressed as a sum over dispersion integrals w
give amplitudes corresponding to all possible double disc
tinuities plus, possibly but not necessarily,~generalized! sub-
traction terms containing just single discontinuities. T
anomaly contributions we have found are, in fact, gene
ized subtraction terms and the contributions of Figs. 3 a
12, respectively, correspond to the two single discontinu
terms shown explicitly in Fig. 14. However, since we a
evaluating an amplitude, and not a discontinuity, to hav
contribution with on-shell lines corresponding to particu
single discontinuities ofGL and GR , these discontinuities
must be present in the asymptotic kinematic region we
considering. In fact, the discontinuity line in Fig. 13~b! can
be regarded as representing the combination of the rele
discontinuities ofGL andGR .

C. Possible cancellation mechanisms

If we consider just contributions to the transverse mom
tum diagram of Fig. 1, then Fig. 11 is the only diagra
which contributes@via the coupling of Fig. 6~a!# to the same
helicity amplitude as Fig. 2 and which generates an app
priate effective triangle diagram, apart from the diagram o
tained by similarly twisting Fig. 10~b!. We can not twist just
the quark-antiquark state since this would reverse the di
tion of the quark arrow along the fast quark line, requiring
change of the external helicity to obtain a coupling. We co
clude, therefore, that the full anomaly contribution toGL is
obtained by adding the two effective triangle diagrams
Fig. 15. Therefore, within the transverse momentum diagr

FIG. 15. The two effective triangle diagrams generating
anomaly.
2-12
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FIG. 16. Tree diagrams con
tributing to electroweak ward
identities.
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of Fig. 1, the anomaly enhancement does not cancel.
It is natural, however, to expect that there will be furth

cancellations. As we emphasized in the Introduction, beca
longitudinal vector meson contributions are involved, it
important to look for all possible cancellation mechanis
that could be associated with an underlying gauge inv
ance. In particular, because the left-side quark and right-
antiquark are asymptotically on shell, we must consi
whether asymptotic electroweak Ward identities could le
to the cancellation of the vector meson numerator contri
tions that are producing the anomaly enhancement.

There are two obvious Ward identity related cancellatio
that we should consider. First, we consider the tree diag
that appears in the lower half of Fig. 10~a!. At finite momen-
tum, if the intermediate state quark and antiquark are stri
on shell, there will be Ward identities involving this diagra
and all other diagrams obtained by attaching the internal v
tor meson lines at all possible points. Examples of such
grams, together with the initial diagram, are shown in F
16. In fact, because the intermediate state quark and
quark are only asymptotically on shell, we might expect t
only the vector meson numerator components that are p
lel to the asymptotic light-cone quark and antiquark m
menta must decouple. This decoupling has already appe
in the analysis of Sec. IV C.

In Appendix D we study in detail the Ward identity ca
cellations associated with the tree diagrams of Fig. 16.
essential part of the first diagram in Fig. 16 is, indeed,
rectly cancelled by the contribution of the second diagra
which corresponds to the Feynman diagram shown in F
17. However, the anomaly enhanced amplitude produced
Fig. 17 appears to not be representable as a transverse
mentum diagram divergence.

More surprisingly, perhaps, essentially the same anom
enhanced amplitude then reappears via the contributio
the third diagram in Fig. 16, which corresponds to the Fe
man diagram shown in Fig. 18. This is a diagram that wo
normally be neglected because off-shell propagators are
rying large light-cone momenta.

In a sense, therefore, nothing is gained by implemen
the Ward identity cancellations. However, after this imp
mentation it is apparent that the lack of anomaly cancella

FIG. 17. A Feynman diagram with a canceling anomaly con
bution.
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is entirely due to the asymptotic nature of the placing
shell of the quark and antiquark lines. Also, when the Wa
identity cancellations are carried out several diagrams
included, in addition to Fig. 18, that would normally be co
sidered nonleading. This makes it clear that there is a gen
phenomenon of superficially nonleading high-energy beh
ior contributing to the leading behavior because of lar
transverse momentum divergences.

There is also a second Ward identity, involving the t
part of Fig. 10~a! and other loop diagrams, some of whic
are shown in Fig. 19, that might be expected to lead to
decoupling of the topg2p18 vertex in Fig. 7, together with
the correspondingg1p29 right-side vertex. These vertices a
crucially important for our analysis. However, in this case
is the intervention of the asymptotic anomaly that invalida
the potential asymptotic Ward identities and, se
consistently, prevents the decoupling of the vector me
vertices that are involved.

In conclusion, we can say that there is no cancellation
the transverse momentum coupling effective triangle d
gram anomaly by another diagram with a similar anoma
There may very well be a cancellation outside of the tra
verse momentum diagram formalism. However, in this pa
at least, we will not pursue this possibility any further.

D. The same helicity scattering amplitude

To obtain an anomaly amplitude for the scattering of ve
tor mesons which both have helicityl511 we include the
left side coupling of Fig. 6~b! within a diagram that other-
wise is the same as Fig. 2 or Fig. 11. The result is the t
diagrams shown in Fig. 20. When displayed in the first for
it is clear that the only difference between these diagra
and, respectively, Figs. 2 and 11 is that along the left-m
vertical line P1→2P1 . Therefore, if we evaluate the dia
grams with the sign ofP1 reversed, corresponding to
cross-channel physical region, the appropriate on-shell c
figurations will be present. The diagrams will be kinema
cally identical, respectively, to Figs. 2 and 11 and will giv
identical anomaly contributions, but withS→2S.

The second form for the diagrams displayed in Fig. 20
more transparent for discussing symmetry properties of
intermediate state. In particular, in this form, it is clear th
Fig. 20~b! can be obtained from Fig. 2 by twisting the quar

- FIG. 18. The Feynman diagram corresponding to the third t
diagram in Fig. 16.
2-13
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FIG. 19. Loop diagrams con
tributing to electroweak Ward
identities.
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antiquark intermediate state~together with the necessary re
direction of the quark arrow in the left part of the diagram!.
Figure 20~a! can similarly be obtained from Fig. 11.

E. Cancellation in a vector theory

If the vector mesons we are considering had a vector c
pling, rather than a left-handed coupling, to quarks, then
diagrams of Fig. 16 would appear also in the opposite s
helicity amplitude but with (11g5) couplings replacing the
(12g5) couplings in Fig. 6~b!. In this case, after the use o
Eq. ~A15!, the relative minus sign discussed in the previo
subsection~resulting fromS→2S) produces a cancellatio
between the anomaly contributions from Figs. 2 and 20~a!.
Similarly, the contributions from Figs. 11 and 20~b! cancel.
In a vector theory, this cancellation of right and left-hand
coupling contributions would persist, even as we add m
gluons as discussed in the next section.

F. The even signature amplitude

To form signatured scattering amplitudes we should a
to, or subtract from, a particular helicity amplitude the a
plitude obtained by a CPT transformation of one scatter
state relative to the other. Therefore, ifA21 andA11 are the
opposite sign and same sign amplitudes we have discus

A6~P1 ,P2!5A21~P1 ,P2!6A11~2P1 ,P2!
~5.3!

is an even-odd signature amplitude. This implies that
anomaly amplitudes arising from Figs. 2 and 20~a! are added
in the even signature amplitude and subtracted in the
signature amplitude@as are the anomaly amplitudes arisi
from Figs. 11 and Fig. 20~b!#. Therefore, the anomaly can
cels in the odd signature amplitude and is present only in
even signature amplitude. This will continue to be the cas
we add more gluons in the next section. It is directly relat
via a generalization of the discussion of the previous t
subsections, to the cancellation in a vector theory.
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G. C and P properties of the transverse momentum state

Since the intermediate state in Fig. 1 is completely tra
verse~or, equivalently, is at-channel intermediate state! the
T part of theCPT transformation, defining the signature of a
amplitude, has no effect on it. Therefore, we should be a
to relate signature directly to theCP properties of the trans
verse momentum state.

The parity transformation reverses the transverse mom
tum of the gluon and so, because of the coupling~4.26!,
simply gives a minus sign. Without a color factor, the char
conjugation transformation also gives just a minus si
Therefore, the gluon component of the intermediate stat
even underCP. For quarks the left-handed coupling violate
both P andC. As a result, the quark-antiquark intermedia
state only has simple transformation properties under
combinedCP transformation. Charge conjugation transform
a quark~antiquark! to the corresponding antiquark~quark!,
with the same helicity~opposite chirality!. The parity part of
the CP transformation then reverses the helicities. In o
case, the quark and antiquark have opposite helicities an
they will be simply interchanged by theCP transformation.
Individually, the diagrams we are discussing do not ha
simple symmetry properties with respect to quark/antiqu
interchange. Not surprisingly, however, the full set
anomaly contributions in the even signature amplitude d
have such a property.

With the four diagrams 2, 11, 20~a!, and 20~b!, added in
the even signature amplitude, it is clear~using the second
display form in Fig. 20! that the left-side coupling is sym
metric, diagrammatically, with respect to the interchange
the quark and antiquark. The interchange relates Fig. 2
Fig. 20~b! and Fig. 11 to Fig. 20~a!. In addition to the rever-
sal of the quark line, the contribution of Fig. 20~b! to the
even signature amplitude differs kinematically from that
Fig. 2 in two ways that produce canceling sign chang
First, k'→2k' and, secondly, the effect in thek28 integra-
tion of P1→2P1 resulting from the definition of the eve
signature amplitude. Therefore, in this amplitude, the qua
antiquark intermediate state is even underCP. Since the
gluon state is also even underCP, the full transverse momen
c-
FIG. 20. The scattering of same helicity ve
tor mesons.
2-14
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ELECTROWEAK HIGH-ENERGY SCATTERING AND THE . . . PHYSICAL REVIEW D 69, 096002 ~2004!
tum state is indeed even underCP, as it should be.
Note that the full even signature amplitude will contain,

addition to the four diagrams of Figs. 2, 11, 20~a!, and 20~b!,
the four related diagrams obtained by substituting the ri
side of Fig. 10~b! for that of Fig. 10~a!. In effect, in this
second set of diagrams the twists are made onGR that are
made onGL in the first set of diagrams. Each set of twists
sufficient to give an intermediate state with the appropri
CP property. As a result, the discussion of each set of f
diagrams can be made separately and is directly paralle
higher orders it will sometimes be necessary to consider b
sets of twists together to obtain an intermediate state with
right CP property.

VI. COLOR FACTORS AND MORE GLUONS

We begin with a discussion of SU~2! flavor that will, es-
sentially, allow us to ignore it in the following.

A. SU„2… flavor

The SU~2! flavor symmetry will play only a minimal role
in our discussion and we will introduce it in a very eleme
tary manner. We consider the exchange of a quark-antiqu
$I 51,I z50% state that, in the standard model, would ca
the quantum numbers of thep0. Identifying W6, W0 with
the $I 51,I z56,0% vector mesons and identifyingu,d with
the $I 51/2,I z561/2% quarks, we can add flavor quantu
numbers to the discussion of the previous section by us
the vector-meson–quark vertices of Fig. 21. The flavorl
couplings of Fig. 6 are then replaced by the sums of c
plings shown in Figs. 22~a! and 22~b! and the internal vecto
meson on-shell contributions are replaced by a similar s

We then add all the diagrams obtained with this set
couplings. The most important feature of these coupling
that they are symmetric with respect tou↔d and that this
symmetry is preserved by the internal vector meson
change interactions.@It is also important for theCP proper-
ties of the diagrams we discuss that, in going from Fig. 22~a!
to Fig. 22~b!, left-handed quarks and right-handed antiqua
are interchanged, as was the case for Figs. 6~a! and 6~b!.#
Consequently, the addition of SU~2! flavor factors will not
produce any diagram cancellations and we can leave, as

FIG. 21. Vector meson and quark vertices.
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plicit, the replacement of the couplings of Fig. 6 by those
Fig. 22.

B. Color factor diagrams and the one gluon color factor

SU~3! color factors will also be relatively simple. In a
the diagrams we discuss, there will be only one quark lo
There is no external color and so color is introduced into
quark loop only by the couplings to the internal gluons. Als
for the diagrams we consider, gluons will appear only as p
of the exchanged transverse momentum state and wil
attached within the correspondingGL andGR transverse mo-
mentum couplings. As a result, we can use a simple nota
to describe color factors. We represent the quark loop a
rectangle, and attach gluons only to the vertical lines. T
attachment of gluons to the left-side vertical line represe
the order of attachment to the quark loop within the left-s
transverse momentum couplingGL , while the right-side ver-
tical line similarly represents the order of attachment with
GR . For each gluon there is a color matrixl i at each attach-
ment point. The full color factor is the trace of the product
thel matrices taken around the loop, and then summed o
i 51,..,8 for each gluon. The notation is illustrated for va
ous numbers of exchanged gluons in Fig. 23.

All of the diagrams discussed in the previous section c
tain just one gluon and have the same color factor. This
represented by Fig. 23~a! and is simply

(
i

Tr$l i
2%. ~6.1!

Since all diagrams have the same color factor~and flavor
factor! all of the discussion in the previous section is ess
tially unchanged, apart from the discussion of charge con
gation, which now has to include color charge conjugatio

For a general gluon field with color matrixMab , color
charge conjugation is defined as

Mab→@2Mab#
T52Mba . ~6.2!

For the hermitian color matrix verticesl i

@2l i #
T52@l i #* , ~6.3!

where@¯#* denotes complex conjugation. Therefore, in a
dition to the charge conjugation minus sign discussed in
last section, the coupling of the gluon to the quark li
~within GL , say! is complex conjugated. Correspondingl
for the quark-antiquark pair, in addition to the charge con
gation discussed in the previous section, quark-antiquark
terchange gives
FIG. 22. Couplings with SU~2!
flavor quantum numbers.
2-15
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ALAN R. WHITE PHYSICAL REVIEW D 69, 096002 ~2004!
@l i #* →@l i # ~6.4!

in Eq. ~6.3!. Since the parity transformation is unchange
the full gluon plus quark/antiquark transverse moment
state remains even underCP when color charge conjugatio
is included.

C. The addition of a soft gluon

Next, we look for Feynman diagrams that contain tw
gluons and that also, potentially, contain the anomaly
hancement. We will assume that only one gluon is involv
in the transverse momentum divergence and will cons
two possibilities for the scale of the transverse moment
carried by the second gluon. It can either be ‘‘soft,’’ i.e.,
carries a very small momentumk9, with

uk'9 u!M!uk'u,uk'8 u↔ ‘ ‘soft’ ’ ~6.5!

or ‘‘finite,’’ i.e.,

uk'9 u;M!uk'u,uk'8 u↔ ‘ ‘finite’’. ~6.6!

As we will see, in some diagrams soft gluon exchange
possible, in addition to the anomaly generation, while in o
ers only finite gluon exchange is possible. In both cases,
second gluon will provide an important color factor. A so
gluon, however, will also produce an infrared divergen
Since the full transverse momentum state carries zero c
such divergences must cancel. This will help us to loc
other diagrams generating the anomaly.

We consider the ‘‘soft’’ gluon case first and look for dia
grams that contribute to the transverse momentum diag
of Fig. 24 which, as discussed further in Appendix B, wou
again be expected to contribute~formally! only at next-to-
next-to-leading log.~Note that, when the anomaly is no

FIG. 23. Color factor diagrams.

FIG. 24. The two gluon transverse momentum diagram. T
broken line denotes a soft gluon.
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present, this diagram again, potentially, includes a logar
mic transverse momentum divergence generating an a
tional energy logarithm.!

We begin with the addition of a soft gluon to the diagra
of Fig. 2. The anomaly will appear in the same manner
before if, in the high-energy limit, an effective triangle di
gram is generated as in Fig. 3, but with the additional glu
attached, via a point coupling, to one of the three vertices
the diagram. The required local coupling could appear,
principle, if k9 can be directed through an adjacent quark l
which can be put on shell by thek29 integration. If this line
carries~predominantly! a large light-cone momentum then
in analogy with Eq.~4.2!, the integration will produce cou
plings that are independent ofk'9 . In Figs. 25~a!, 25~b!, and
25~c! we show how the extra gluon could be added to Fi
6, 7, and 8, respectively, with the finalg matrices remaining
the same as in Fig. 9.

In Fig. 25~c! the soft and hard gluon can be interchange
whereas in Figs. 25~a! and 25~b! there is no ambiguity as to
where the soft gluon has to be attached, if theg-matrix struc-
ture is to remain the same.

For Fig. 25~a! we can, essentially, apply Eq.~4.2! directly.
For the couplings of Figs. 25~b! and 25~c! there is, however,
a problem if the extra gluon is soft and so carries only ve
small transverse momentum. In these cases, the propa
that has to be placed on shell by thek29 integration is adja-
cent to an off-shell propagator that, in the anomaly config
ration, is carrying very large transverse momentum (p'8 ). In
this case the mass-shell condition is

k29 ;
~p'8 1k'9 !2

p18
;

eMAS

eAS
;M ~6.7!

which cannot be satisfied withk29 !uk'9 u!M . Therefore, if
the vertex for the extra gluon is of the form of Fig. 25~b! or
25~c!, in both theGL andGR couplings, then it cannot carry
uk'9 u2!M2.

Later, we will discuss potential contributions from vert
ces of the form of Figs. 25~b! and 25~c! whenk9 is ‘‘finite,’’
i.e., uk'9 u2;M2. For the moment, we consider only the vert
of Fig. 25~a!. Generation of the corresponding triangle di
gram is shown in Fig. 26 and the full Feynman diagram, w
the extra gluon attached in the same manner to both side
Fig. 5, is shown in Fig. 27.

As illustrated, the lines put on shell correspond to mak
a double cut of the diagram. This corresponds to double
continuity contributions to theGL andGR couplings.~These
contributions are again generalized subtractions in that
full dispersion relations forGL andGR contain triple discon-
tinuities.!

D. The two gluon anomaly amplitude

If k'9 is much smaller than any other transverse mom
tum in the diagram of Fig. 23, the only significantk'9 depen-
dence will be in thek9 propagator. Hence, thek'9 integration
can be factored out from the remaining integrations and,
fore the inclusion of any color factor, the diagram of Fig.

e

2-16
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FIG. 25. Adding a gluon to the
vertices of~a! Fig. 6, ~b! Fig. 7,
and ~c! Fig. 8.
o
hig
e

t,

rs
gs

lize
we
gives, via the reduction of Figs. 25~a! and 26, a high-energy
anomaly enhanced amplitude of the form

Euk'9 u!M d2k'9

k'9
2
E d2k'8

k'8
2
E d2k'S k'3k'8

M2 D 2
Tr$g2ĝ* g1ĝ%

k̂k̂*

;S Euk'9 u!M d2k'9

k'9
2 D E d2k'8 d2k'

k'8
2k'

2 S k2k382k3k28

M2 D 2

;S Euk'9 u!M d2k'9

k'9
2 D E

O~MS1/2!

d~k'8
2!

M2
E

O~MS1/2!

d~k'
2 !

M2

;S/M2. ~6.8!

We can similarly add a soft gluon to each of the one glu
diagrams discussed in the last section and generate a
energy amplitude of the same form. There is, howev
clearly a divergence atuk'9 u250 that we must discuss. Firs
however, we discuss the relevant color factors.

E. Two gluon color factors

There are two possible color factors for the transve
momentum diagram of Fig. 24. They are shown in Fi
23~b! and 23~c! and have the form
09600
n
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r,

e
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~b! (
i , j

Tr$l jl il il j%, ~c! (
i , j

Tr$l il jl il j%. ~6.9!

We discuss these two factors in a manner that will genera
when further gluons are added. The essential formula
need is

l il j5
2

3
d i j 1(

k
~ i f i jk1di jk !lk ~6.10!

which, sincef i jk is antisymetric anddi jk is symmetric, im-
plies that

l jl i1l il j5
4

3
d i j 12(

k
di jklk ~6.11!

and

l jl i2l il j522i(
k

f i jklk . ~6.12!

Therefore, the sum of the two color factors~6.9! is given by
FIG. 26. A two gluon effective
triangle diagram.
2-17
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FIG. 27. A two gluon Feynman diagram with two cuts.
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(
i , j

Tr$l jl il il j1l il jl il j%

5(
i , j

TrH F4

3
d i j 12(

k
di jklkGl il j J

5(
i , j

TrH F4

3
d i j 12(

k
di jklkGF2

3
d i j 1(

l
di j l l l G J

5(
i , j

F8

9
d i j 1

4

3 (
k

di jk
2 G520

4

9
~6.13!

and the difference of the two gives

(
i , j

Tr$l jl il il j2l il jl il j%5 (
i , j ,k,l

Tr$@22i f i jklk#l il j%

5(
i , j ,k

Tr$@2i f j iklk#@ i f i j l l l #%

5(
i , j ,k

4

3
f i jk

2 512. ~6.14!

Both Eqs.~6.13! and ~6.14! are expressed as a sum
squares of color factors where each individual term co
sponds to a particular color for the gluon intermediate st
The states that contribute can be found by writing the le
side color factor as a sum over distinct intermediate state
is effectively done in Eqs.~6.11! and ~6.12!. The full color
factor can then be written, relying on the orthogonality of t
intermediate states, as a sum of squares of the left-side
tors. The quark-antiquark intermediate state can only ca
zero or octet color. Correspondingly, since the total color
the intermediate state is zero, the gluon sums must also
tribute either zero or octet color. This will continue to be t
case when more gluons are present in the transverse mo
tum state. For the two gluon case, as illustrated in Fig. 28
the symmetric color factor~6.13! the gluon sums give zero
and octet color contributions, which both have even co
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parity. In the antisymmetric factor~6.14! only the color octet
with odd color parity contributes.

F. The color factor for the anomaly

Consider again the effective triangle diagram of Fig. 2
~As in the last section, we will initially discuss only th
various anomaly contributions toGL , with GR kept fixed.!
Comparing with the diagrams of Figs. 3 and 12~a!, the
twisted triangle diagram that should give an anomaly con
bution to add to that of Fig. 26 is that shown in Fig. 29~a!
and the corresponding full diagram is that of Fig. 29~b!. As
illustrated in Fig. 30 and in analogy with Fig. 13, Fig. 29~b!
can be obtained by adding an exchanged gluon to the two
amplitude of Fig. 30~a!.
Again, in the anomaly region, withuk'8 u2!up'8 u2, up'9 u2, the
exchanged gluon does not interfere significantly with the
nematics of taking the double discontinuity of Fig. 30~a!. It
is also clear from Fig. 30, that the on-shell lines of Fig. 29~b!
correspond to physical double discontinuities of theGL and
GR .

If we consider the order ofl matrix multiplication ~fol-
lowing the quark arrow! we see that it is reversed for the tw
gluons in Fig. 29~a! compared to those in Fig. 26. As a resu
if we add the two diagrams the anomaly is multiplied by t
sum of the two color factors~6.13!. As we have discussed, i
this case there are separate contributions correspondin
whether the quark-antiquark pair is in a color octet or a co
zero state.

G. Signature and color charge parity

To form signatured amplitudes we consider, with the d
grams of Figs. 27 and 29~b!, the corresponding diagrams fo
same helicity vector scattering. These are shown in F
31~a! and 31~b!, respectively. With flavor included, the left
hand couplings in these diagrams should be replaced by
full, flavor symmetric, couplings of Fig. 22~b!, while the
right-hand couplings should continue to be the analogue
te
FIG. 28. Color breakdown of the intermedia
state.
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FIG. 29. ~a! A twisted effec-
tive diagram.~b! The full twisted
diagram.
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Fig. 22~a!. As in Fig. 18, we display the diagrams in tw
different ways, each of which will be simpler for particula
arguments.

To discuss signature we focus on the first forms display
Comparing with our discussion of the diagrams of Fig. 2
we note that Figs. 31~a! and 31~b! again differ, kinematically,
from Figs. 27 and 29~b!, respectively, only in thatP1→
2P1 along the left-most vertical line. Therefore, if w
evaluate the diagrams of Fig. 31 in the cross-channel ph
cal region—with the sign ofP1 reversed—they will be ki-
nematically identical, respectively, to Figs. 27 and 29~b! and
will give identical anomaly contributions, but withS→2S.
Therefore, these diagrams have anomaly contributions w
the opposite sign to those of Figs. 26 and 29~b! and in a
vector theory would provide a cancellation. In the pres
case, since the color factors are the same, the anomaly
tributions of the two diagrams of Fig. 31 add to those
Figs. 27 and 29~b! in the even signature amplitude and pr
duce a cancellation in the odd signature amplitude.

As in our discussion of the one gluon diagrams, we c
also obtain the signature from theCP symmetry properties o
the intermediate transverse momentum state. We cons
first, properties of the gluon component. Since the glu
have only QCD vertices, they can have simple transform
tion properties underC and P separately. Applying color
charge conjugation to Eq.~6.11! gives

@l jl i1l il j #→~21!2@l j* l i* 1l i* l j* #5@l jl i1l il j #*

5
2

3
d i j 1(

k
di jk@lk#* . ~6.15!

The parity transformation reverses the transverse momen
of the gluons and so, because of the coupling~4.26! for the
large transverse momentum gluon, again gives a minus s
Therefore, the full effect of theCP transformation of the
gluon component of the intermediate state is given by

2

3
d i j 1(

k
di jk@lk#→2

2

3
d i j 2(

k
di jk@lk#* . ~6.16!
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Comparing Eqs.~6.15! and~6.16! with Eq. ~6.11! we observe
that the color zero two gluon state carries negativeCP and is
separately even underC and odd underP. It therefore has
‘‘normal’’ color charge parity~equal to the number of gluon
in the state! but has ‘‘anomalous’’ negative parity, producin
an ‘‘anomalous’’ negative signature. The color parity of t
octet gluon state is also well defined if we ignore@lk#
→@lk#* ~which is, of course, compensated for by the qua
antiquark interchange discussed below! and is similarly
even.

To discuss theCP transformation of the quark-antiquar
pair we compare with our discussion in Sec. III E and no
first, that the left-side coupling of Fig. 31~b! can be obtained,
diagrammatically, from that of Fig. 27 by quark-antiqua
interchange. The left-side coupling of Fig. 31~a! can simi-
larly be obtained from that of Fig. 29~b!. In the even signa-
ture amplitude we must evaluate the diagrams of Fig. 31 w
P1→2P1 compared to the other diagrams. Therefo
quark-antiquark interchange now gives three kinema
changes of sign

~ i! k'→2k' ,

~ ii ! k28 →2k28 from P1→2P1 ,

~ iii ! k29 →2k29 from P1→2P1 . ~6.17!

When all four diagrams are added the amplitude is, kinem
cally, antisymmetric under quark-antiquark interchange. A
result, when the quark-antiquark pair has color zero it
straightforwardly, negative underCP. Combined with the
negativeCP of the color zero two gluon state this gives n
change under the fullCP transformation, as is necessary
obtain an even signature amplitude.

When octet color is involved, the color effect of inte
changing the quark-antiquark pair will, as we already no
above, again be@lh#→@lh#* . Therefore, with the negative
sign coming from the kinematic interchange, the compl
CP transformation on the quark-antiquark pair again co
bines with the octet part of Eq.~6.16! to produce an overal
positive CP result for the full two gluon quark-antiquar
state.
-

FIG. 30. Addition of an ex-

changed gluon to a two cut ampli
tude.
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FIG. 31. Same helicity scattering diagrams with one soft gluon.
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H. Infrared cancellations

Since Eq.~6.8! contains an infrared divergence~at k'9
2

;0), and there is no external color, there must be ot
anomaly contributions that cancel this divergence. Bef
discussing the possible diagrams that could be involved
will be useful to first discuss the lower limit on thek'9

2

integration in Fig. 27.
The momentum flow through the two lines that are p

on-shell by thek28 andk29 integrations is shown in Fig. 32
Sincek'8 is large andk9 is small, all the large momenta flow
through both lines. Therefore, the large momenta are sig
cantly constrained by thek8 mass-shell condition before th
k9 mass-shell condition is imposed. If we, temporarily, intr
duce a quark massm then thek28 mass-shell condition is
(P11p81k8)25m2 and, with this constraint, the mass-sh
condition fork29 becomes

k29 ;
22k'9 ~p81k8!'1m2

P1
,

;
k'9 →0

m2

S1/2. ~6.18!

FIG. 32. Momentum flow for thek28 andk29 integrations.
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If k19 is similarly constrained and~to justify the reduction to
a transverse momentum diagram! we requirek'9

2*uk29 k19 u,
the lower limit for thek'9 integration is

uk'9 u2 ;
m4

S
~6.19!

and so an infrared divergence appears atuk'9 u250, as S
→`, of the form

E
uk'9 u2;m4/S

d2k'9

k'9
2 ; ln S2 ln m4. ~6.20!

As we discuss briefly in the next section, we expect
cancellation of the infrared divergence~6.20! to be a conse-
quence of a Ward identity that results from attaching the s
gluon at every possible point around the effective trian
diagram. Consider, therefore, the attachment of the
gluon, in GL , according to the other possibilities illustrate
in Fig. 25. With the attachment shown in Fig. 25~b! we ob-
tain the full diagrams shown in Fig. 33.

The mass-shell condition now has the form~6.7! and so, if
the lower limit for the k18 integration still has the form
~6.18!, requiringuk'8 u2.k18 k28 gives the lower limit

uk'8 u2 ;
m2M

S1/2 . ~6.21!

Therefore, if the diagrams of Fig. 33 give anomaly contrib
tions they will have, as a factor, an infrared divergence of
form

E
uk'9 u2;m2M /S1/2

d2k'9

k'9
2 ;

1

2
ln S2 ln m22 ln M . ~6.22!
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FIG. 33. Diagrams obtained
with the soft gluon attachment o
Fig. 25~b!.
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If, instead, one attachment of the soft gluon is that of F
25~c! rather than that of Fig. 25~b!, as we have just dis
cussed, there will clearly be a similar infrared divergence

There is, however, a major reason why the diagrams
Fig. 33, ultimately, do not give an anomaly contribution. B
cause of the location of the soft gluon attachment, the s
change~iii ! in Eq. ~6.17! will not be present whenP1→
2P1 in the diagrams appropriately related to those of F
33 in the same sign helicity amplitude. As a result, in t
even signature anomaly amplitude, the quark-antiquark in
mediate state must be positive underCP. Alternatively, if we
add all the diagrams related to those of Fig. 33 that give
possible contributions to eachGR , we will obtain GR cou-
plings to the quark-antiquark intermediate state that h
negativeCP. Therefore, when all diagrams related to tho
of Fig. 33 are added in the even signature amplitude,
resulting GL requires positiveCP for the quark-antiquark
state, while theGR requires negativeCP Consequently, if
there is an anomaly contribution from any of the diagrams
must cancel in the sum.

This last problem similarly applies to all diagrams
which one soft gluon attachment is as in Fig. 25~c! while the
other attachment is that of Fig. 25~a!. As we will shortly
discuss there will, nevertheless, be important anomaly c
tributions from diagrams in which the attachments of t
second gluon, in bothGL andGR , are either of the form of
Fig. 25~b! or Fig. 25~c!. In this case, however, the secon
gluon necessarily has ‘‘finite’’ transverse momentum and
can not produce an infrared divergence.

To look further for a divergence that could cancel that d
to Fig. 27, we must consider whether there are any n
kinematic configurations, generating the anomaly and
volving a soft gluon, that cannot be viewed as a soft glu
accompanying the one gluon enhancement diagrams. In
if we are considering the attachment of the soft gluon
every possible point around the effective triangle diagra
there is one possibility that we have not yet included
discussed. This is to interchange the momenta of the
gluons involved in Fig. 26. In Fig. 34 we show the full dia
gram obtained from Fig. 27 by interchangingk8 and k9 in
one side of the diagram relative to the other. The soft glu
is again indicated by a broken line.~Note that Fig. 34 is
symmetric with respect tok8 and k9, if we interchange the
roles ofGL andGR .)

If we interchangek8 and k9 in Fig. 26, then the large
transverse momentum flows into the triangle diagram at
left-most vertex while the single gluon vertex carries on
small transverse momentum. This does indeed give
anomaly contribution. This contribution has, however, so
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different properties compared to those we have so far
cussed. In Fig. 35 we compare the large momentum route
k8 with the possible routes fork9, around the same triangle

We observe, first, that while the route fork8 large was
determined by the particles we wished to put on shell, th
are two possible routes ifk'9 is large. As illustrated, it could
flow through either one or two quark propagators. From E
~4.21! and ~4.22!, we see that the anomaly contribution
obtained from an expansion in powers ofuk'9 /p'8 u ~in which
the first term does not contribute!. Consequently, ifk'9 ap-
pears in only one propagator, rather than two, the anom
contribution will be reduced by a factor of12 ~in the even
signature amplitude where both chiralities are added for e
propagator!. The sign will also be opposite. This is the no
mal ambiguity of the ultraviolet anomaly, that occurs b
cause of the choice of momentum routing, which we exp
to be determined by a Ward identity.

If k8 is small, thek9 mass-shell condition does not con
strain the large transverse momentum (p'8 ) involved in the
k28 mass-shell condition. As a result, thek28 mass-shell con-
dition gives a constraint similar to Eq.~6.7!, i.e.,

k28 ;
p82

P1

;
eMS1/2

S1/2 ;eM . ~6.23!

Since thek18 integration inGR has the lower limit~6.18!, we
will again obtain an infrared divergence of the form of E
~6.22!. In this case, however, since there is a gluon attac
to both the left and right side quark lines, there is noCP
conflict. Also, from Fig. 36, it is clear that neither gluo
interferes with the kinematics of the quark subamplitud
which remains such that the vector meson lines can con
tently be placed on shell. In fact, if the anomaly has the s
and magnitude obtained from the second routing of F
35~b! ~which is the ‘‘normal’’ routing!, there will be a can-

FIG. 34. The diagrams obtained by interchangingk8 andk9 in
Fig. 27.
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FIG. 35. ~a! Momentum route fork'8 . ~b!
Possible routes fork'9 .
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cellation with the divergence obtained from Fig. 27 when
diagram of Fig. 34 is added and the two contributions, fr
k9 large andk8 small, andk8 large andk9 small, are com-
bined.

At this point we note thatk8 is the total momentum flow-
ing in at a ‘‘vector’’ vertex of an effective triangle diagram
with an anomaly. In this case, as we discuss in the n
section~and illustrate for the usual triangle anomaly in A
pendix C!, we expect that the appropriate Ward identi
which would determine which routing in Fig. 35~b! is cor-
rect, will involve both the large internal momentum region
the triangle diagram that generates the anomaly and a s
internal momentum region that produces a very different
nematic form, containing the ‘‘anomaly pole.’’ The discu
sion of the anomaly pole and pion wee gluon couplings t
we have given in Ref.@8# should, essentially, carry over to a
infra-red analysis of effective triangle vertices that would
the analogue of the ultraviolet analysis presented in this
per. This analysis must be carried out before we can es
lish, in detail, how the~Reggeon! Ward identities are satis
fied, and that infrared divergences are indeed elimina
when the diagram of Fig. 34~a! is added to that of Fig. 27.

I. Anomalous color parity gluons

In the final form of two gluon anomaly contributions th
we consider the second gluon transverse momentumk'9 is
neither very small, nor grows withS. It is ‘‘finite,’’ i.e.,
O(M2). In the diagrams we consider, the above discuss
implies that the kinematics of the anomaly prevent the s
ond gluon from carrying very small transverse momentu
In particular, we consider diagrams of the form shown in F
37, in which the second gluon attachment is the same in b
GL and GR , and has the form of either Fig. 25~b! or Fig.
25~c!. The broken gluon line in these diagrams now indica
finite transverse momentum and the lines put on shell co
spond, as illustrated, to two cuts through each diagram.
combination of particle poles giving these two discontin
ties, together with the off-shell loop, that occurs either at
top, in the middle, or at the bottom, in the three diagrams
now responsible for the anomaly.@As usual, a closely related
set of diagrams is obtained by simultaneously twisting b
GL and GR in each of these diagrams. For Fig. 37~a! the
same diagram is actually obtained, but the kinematic regi
for the two gluons are interchanged.#

To form signatured amplitudes, as before, we consider
same helicity scattering amplitudes shown in Fig. 38. Ag
we can argue that these diagrams are related to those of
37 by P1→2P1 and so the same anomaly amplitude
obtained, but withS→2S. Therefore, these diagrams giv
09600
e

xt

,

f
all
i-

t

a-
b-

d

n
c-
.
.
th

s
e-
e

-
e
is

h

s

e
n
ig.

anomaly contributions that add to those of Fig. 37 in t
even signature amplitude. However, as in our discussion
the diagrams of Fig. 23, because the finite gluon is not
tached to the fast left side quark, the sign change~iii ! in Eq.
~6.17! will not be present whenP1→2P1 in the diagrams
of Fig. 38. Consequently, theGL coupling obtained by add
ing the diagrams of Fig. 38 to those of Fig. 37, requires ev
CP for the quark-antiquark intermediate state. When the c
responding diagrams are added, this argument will simila
apply toGR . As a result, the quark-antiquark state is nec
sarily positive underCP. This can be consistent with eve
signature for the complete intermediate state only if the t
gluon state is also even underCP. This can, in turn, only be
the case if the two gluon state carries antisymmetric o
color and so has ‘‘anomalous’’ odd color charge parity~not
equal to the number of gluons!.

In the two gluon anomaly contributions that we have d
cussed in previous subsections, the two gluon state has
ried normal color charge parity because the addition
twisted diagrams gave the symmetric color factor. We m
consider, therefore, whether there are also ‘‘twisted d
grams’’ related to those of Fig. 37 which cancel the antisy
metric part of the color factor.

Twisted diagrams related to the diagrams of Fig. 37
shown in Fig. 39. For Figs. 39~a! and 39~b!, the color factor
is indeed reversed compared, relatively, to Figs. 37~a! and
37~b!. Also, it is clear that, in Figs. 39~a! and 39~b!, the
appropriate~hatched! lines can be consistently placed o
shell. @This is not true for other diagrams that could, pote
tially, be related, by twisting, to either of Fig. 37~a! or 37~b!.#
Therefore, as before, adding the diagrams of Figs. 39~a! and
39~b! to those of Figs. 37~a! and 37~b! gives the symmetric
color factor and so, because the quark-antiquark state
evenCP, the anomaly contribution must cancel in the sum
of these diagrams.

FIG. 36. Two gluons accompanying the quark subamplitude.
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FIG. 37. Gluon attachments.~a! As in Fig. 25~b! or ~b! and ~c!, as in Fig. 25~c!.
d

y
io
a
sa
Fi

h

nt
fo

ia

he
al

-
ou
ze
e

o
ce

u
ac
w
qs
-

u-
Both Figs. 39~c1! and 39~c2! can be regarded as twiste
relative to Fig. 37~c!. For Fig. 39~c1! the color factor is re-
versed compared to Fig. 37~c!, but the hatched lines clearl
cannot be consistently placed on shell in the physical reg
For Fig. 39~c2! it seems probable that the hatched lines c
be placed on shell consistently, even though the neces
cuts would cross. The issue is irrelevant, however, since
39~c2! has the same color factor as Fig. 37~c!. In fact, there
is no twisted diagram corresponding to Fig. 37~c! which has
a reversed color factor and in which all the necessary hatc
lines can be consistently placed on shell.

Since we can regard the color factor for Fig. 37~c! as the
sum of the symmetric and antisymmetric factors, the a
symmetric, odd color parity, component will be selected
the anomaly contribution from this diagram~and it’s same
helicity counterpart!. Similarly for Fig. 39~c2!, if it contrib-
utes. Together with the contribution of corresponding d
grams obtained by twisting bothGL and GR , these will be
the only anomaly contribution from diagrams in which t
second gluon carries ‘‘finite’’ transverse momentum. In
cases, the second gluon is attached as in Fig. 25~c!, and not
as in Fig. 25~b!. The finite gluon contributions have the im
portant property that the two gluon state carries ‘‘anomal
color parity.’’ This is significant because, as we emphasi
in the Introduction, Reggeized gluon exchanges that app
in vector theory perturbative calculations@1–7# carry normal
color parity. The appearance of anomalous color parity glu
states is, therefore, a direct consequence of the presen
the anomaly.

J. General multigluon color factors

Before considering more complicated multigluon config
rations we give a general discussion of multigluon color f
tors which generalizes the previously discussion of t
gluon color factors. We note first that we can obtain E
~6.11! and ~6.12! from Eq. ~6.10! by a more general argu
ment than just the symmetry and antisymmetry of thed and
f tensors. Consider a product ofl matrices
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P1n5)
j 51

n

l i j
~6.24!

together with the product taken in the reverse order

Pn15)
j 5n

1

l i j
. ~6.25!

Using Eq.~6.10! extensively we can write

P1n5A1n1(
k

B1nklk , ~6.26!

where A1n multiplies the unit matrix and bothA1n
5Ai 1 ,i 2 ,...,i n

andB1n5Bi 1 ,i 2 ,...,i n ,k contain combinations of
f andd tensors. Similarly, we can write

Pn15An11(
k

Bn1klk . ~6.27!

Equations~6.26! and~6.27! decomposeP1n andPn1 , respec-
tively, into a sum of color singlet and color octet contrib
tions.

It follows from the hermiticity of thel i that

~Pn1!T5)
j 5n

1

~l i j
!T5)

j 5n

1

~l i j
!* 5~P1n!* , ~6.28!

where (̄ )T denotes transposition and (̄)* denotes com-
plex conjugation. Equivalently,

Pn15@~P1n!T#* . ~6.29!

As a result

An15A1n* , Bn1k5B1nk* ~6.30!

or, equivalently,
FIG. 38. Same helicity diagrams related to the diagrams of Fig. 37.
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ALAN R. WHITE PHYSICAL REVIEW D 69, 096002 ~2004!
P1n1Pn152 Re~A1n!12 Re~B1nk!lk

P1n2Pn152i Im~A1n!12i Im~B1nk!lk
~6.31!

which gives Eqs.~6.11! and ~6.12!, as a very simple case.
Since thef andd tensors are both real, it follows from Eq

~6.10! that a factor ofi is always accompanied by anf tensor.
Therefore, the real and imaginary parts of bothA1n andB1n
contain, respectively, even and odd numbers off tensors. If
we then consider

Tr$S i 1 ,i 2 ,...,i n
~P1n6Pn1!~P1n!% ~6.32!

the distinct color ofA1n andB1n and the distinct symmetry
properties of the real and imaginary coefficients implies t

Tr$S i 1 ,i 2 , . . . ,i n
~P1n1Pn1!~P1n!%

52S i 1 ,i 2 , . . . ,i n
$@Re~A1n!#21@~Re~B1n!#2%

~6.33!

which is a sum of the squares of color factors for color z
and color octet states which contain an even numberf
tensors and so describe normal color parity gluon sta
Similarly,

Tr$S i 1 ,i 2 , . . . ,i n
~P1n2Pn1!~P1n!%

522S i 1 ,i 2 , . . . ,i n
$@ Im~A1n!#21@ Im~B1n!#2%

~6.34!

FIG. 39. Diagrams related to the diagrams of Fig. 33 by tw
ing.
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which is a similar sum of squares of color factors whic
because they contain an odd number off tensors, describe
gluon states with anomalous color charge parity.

In the two gluon states that we have so far considered
color factors apart from the first term in Eq.~6.34! have
appeared. This term corresponds to a color zero anoma
color parity multigluon configuration. It will appear in th
three gluon diagrams that we discuss next. We continue
confine our discussion to a single large transverse mom
tum gluon and consider only multiple soft or finite gluo
contributions that do not involve any factors of lnS. ~In gen-
eral, we anticipate that higher order logarithms lead to
separate Reggeization of each of the transverse momen
gluons in the diagrams we study.!

K. Two soft gluons

We begin with two soft gluons and consider diagrams t
contribute to the transverse momentum diagram of Fig.
We will straightforwardly obtain an anomaly enhanced a
plitude, as before, from diagrams in which two soft gluo
are attached to the external effective point vertices, as il
trated in Fig. 41.

Because all the large momenta pass through both
gluon attachments and are constrained by thek28 integration,
the infra-red scale is the same for both and ism2/S1/2, as in
Eq. ~6.18! and~6.19!. Infrared cancellations can, presumab
be discussed in the same manner as in our discussion of
soft gluon diagrams. The twisted diagram of Fig. 41~b! again
reverses the color matrix multiplication of Fig. 41~b! and so
the sum of the two diagrams gives a color factor of the fo
of Eq. ~6.33!, corresponding to normal color parity for th
complete three gluon transverse state.

To check that the anomaly amplitude obtained is ev
signature we note that the anomaly diagrams in the sa
sign helicity amplitude will again be related to the oppos
sign diagrams byP1→2P1 . For example, the diagram o
Fig. 37~a! will be related to a same sign helicity amplitud
diagram as illustrated in Fig. 42 Since the color factors
the same, these amplitudes are again related byS→2S and

-

FIG. 40. A transverse momentum diagram with two soft gluo
FIG. 41. Diagrams with two
soft gluons.
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FIG. 42. Related diagrams in
different helicity amplitudes.
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will add in the even signature amplitude~and would cancel
in a vector theory!.

As before, the full gluon state will have negative par
because of the single large transverse momentum gl
Combined with the negative~normal! color parity this im-
plies that the three gluon state is even underCP. Repeating
the discussion of the quark-antiquark state that we gave
the one soft gluon amplitudes we find that there is an ad
tional change of sign fromP1→2P1 that results from the
additional soft gluon. As a result, quark-antiquark inte
change gives no kinematic change of sign and the c
charge parity transformation simply giveslh→lh* . Conse-
quently, the full quark-antiquark-multigluon intermedia
state is even underCP, as required for even signature.~We
should note, however, that although the color zero th
gluon state has normal color charge parity, it is ‘‘anomalou
in that it has negative parity, giving an ‘‘anomalous’’ positiv
signature.!

L. Color zero anomalous color parity

Consider, next, adding a soft gluon to the diagrams
Figs. 37~c! and 38~c!, in which there is already one finit
transverse momentum gluon present. If the soft gluon is
tached to the left and right side quark lines, the result
opposite sign and same sign helicity diagrams are sho
respectively, in Figs. 43~a! and 43~b!.
The color factor for both diagrams is the same, i.e.,

(
i , j ,k

Tr$lkl jl il il jlk%. ~6.35!

If we pick out the color zero intermediate state then
color factors on the left and right side of the diagrams m
separately factor into traces. Therefore, we can write

(
i , j ,k

Tr$lkl jl il il jlk% ; (
i , j ,k

Tr$l jl ilk%Tr$l il jlk%1¯

; (
i , j ,k

f i jk
2 1¯ , ~6.36!
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where the term we have shown explicitly is the color ze
anomalous~even! color parity, term.

Because the diagrams of Fig. 43 contain one less gl
attached to the fast quark lines than the diagrams of Fig.
the quark-antiquark component of the transverse state, in
even signature amplitude, will be odd underCP. Therefore,
to obtain even signature overall the gluon component m
also be odd underCP, implying that is even under colo
charge conjugation. Consequently, the anomalous color
ity term, shown explicitly in Eq.~6.36!, is selected for the
color zero component of the combination of the diagrams
Fig. 43 in the even signature amplitude.

M. Multigluons

Clearly we could generalize the foregoing discussion t
variety of multigluon configurations involving combination
of soft and finite gluons, with effective vertices of the for
illustrated in Fig. 44. However, having established the co
pling of color zero anomalous color parity gluons, we ha
all the general properties that we require for the discussio
the next section.

Since a large transverse momentum gluon can give a s
ing contribution of the form

;E
~k'9 !2;As

d2k'9

~k'9 !2
~6.37!

it is also possible for additional large transverse moment
gluons to participate in the enhancement effect. Potentia
this could be an elaborate phenomenon involving, presu
ably, the reggeization of both quarks and gluons and,
higher orders, scaling properties of Reggeized gluon inte
tions, as well as the evolution ofas . However, since we will
argue, in the next section, that large transverse momen
anomaly contributions are unphysical, there seems li
point in exploring the issue any further. In part, we discu
the analagous infrared phenomenon in the next section.

VII. REGGEON WARD IDENTITIES, CUTOFFS,
AND INFRARED DIVERGENCES

Our calculations in the previous sections have dem
strated that the anomaly enhanced diagrams, some of w
e

FIG. 43. Anomalous color par-

ity diagrams with one soft and on
finite gluon.
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ALAN R. WHITE PHYSICAL REVIEW D 69, 096002 ~2004!
contain anomalous gluons, provide the dominant contri
tion in the exchange channel we have considered. Howe
as we remarked in the Introduction, we believe that
power enhancement involved should not be present in ph
cal amplitudes. Assuming that there is no perturbative c
cellation, via some mechanism that has yet to be elucida
then obtaining ‘‘physical’’ amplitudes without the enhanc
ment is,a priori, a challenging problem.

In this section we will briefly outline how we anticipat
the desired physical amplitudes can be obtained. The es
tial point will be that the contribution of the anomaly dia
grams is very different if we take the Regge limit before
after the removal of an ultraviolet transverse momentum c
off. This cutoff introduces infrared divergences and if it
removed only at a very late stage, as we will propose, t
the result obtained will also depend on whether all ord
sums are performed before or after it is removed and on h
and at what stage, infra-red cut-offs~in the form of gluon and
quark masses! are removed. This ambiguity is the essence
the anomaly and it would not be surprizing if there is
unique procedure that is necessary to obtain the right ‘‘ph
cal’’ answer.

As we have already noted, both in the Introduction and
the previous section, a study of the infrared anomaly con
butions of the diagrams we have considered, that matche
present study of ultraviolet contributions, will be necess
before any detailed arguments can be carried through
fully elucidate infrared anomaly contributions it will sure
be necessary to abandon the restriction to forward kinema
and transverse polarizations that has greatly simplified
foregoing discussion. Nevertheless, based on our experi
with hadron scattering amplitudes@8#, we believe that a com
plete procedure for obtaining physical amplitudes can be
veloped utilizing the following, briefly summarized, prope
ties. Our hope is that since the present starting point is m
simpler than the hadronic problem, the analysis will be c
respondingly more straightforward.

FIG. 44. Multi gluon effective vertices.
09600
-
er,
e
i-

n-
d,

en-

r
t-

n
s
w,

f

i-

n
i-
the
y
o

cs
e
ce

e-

ch
-

A. Ward identity consequences and a transverse momentum
cutoff

Gauge invariance implies that a general amplitu
^Am(q)¯& with all ~external! lines on shell except for one
gluon that carries four momentumq satisfies the simple Ward
identity

qm^Am~q!¯&50. ~7.1!

This identity usually follows@12#, at a given order in pertur-
bation theory, only after the zero momentum gluon has b
attached to the remainder of the diagram at all poss
points. It is well known that this identity, in turn, implies tha
the gluon amplitude vanishes at zero four momentum. A
from analogous Ward identities@12#, a similar result holds
when more than one gluon carriers vanishing four mom
tum. @If the gauge symmetry is spontaneously-broken th
of course, the Ward identities corresponding to Eq.~7.1!,
such as the ‘‘electroweak Ward identities’’ referred to in Se
V C, have additional mass terms which prevent the infra
vanishing of amplitudes.#

The vanishing of a loop amplitude when external m
menta are small compared to~‘‘finite’’ ! internal momenta
also implies, generally, a suppression of internal mome
that are large compared to, finite, external momenta. If, ho
ever, there is an external axial current producing an anom
contribution in a loop, then the situation is different. In th
case, as we briefly review in Appendix C, in addition to t
well-known anomalous Ward identity@13# for the axial cur-
rent, vector Ward identities require a cancellation betwe
separate contributions, with different kinematic structu
from large and small internal momentum regions. In partic
lar, the large momentum anomaly contribution~C5! cancels
with an infrared term that, in special momentum configu
tions ~and only when the quarks are massless!, reduces to a
simple pole in the axial vector channel. This is the ‘‘anoma
pole’’ that can, in the right circumstances, be interpreted a
Goldstone boson pole, signaling chiral symmetry breaki
In addition to the discussion in Appendix C, a detailed ana
sis of the anomaly pole, and the internal momentum reg
generating it, can be found in Ref.@8#.

FIG. 45. An infrared red effective triangle diagram.
FIG. 46. Iteration of a gluon kernelKN .
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FIG. 47. Isolation of the divergence associated withTN .
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In general, the above properties of gluon amplitudes
functions of four-dimensional momenta, transfer direc
@14# to corresponding properties for the multigluon~multi-
Reggeon! transverse momentum couplings that we discus
this paper, as functions of transverse momenta. The lin
vanishing when transverse momenta are scaled to zer
sufficient to eliminate infrared divergences in the transve
momentum diagrams that we consider. If there is an anom
in a transverse momentum coupling then, as we alre
noted in our discussion of infrared cancellations in S
VI H, there will be large and small internal momentum ca
cellations in the associated transverse momentum~Reggeon!
Ward identities that parallel the cancellations that take pl
in the four-dimensional Ward identities. We expect that
frared divergences will be avoided, in part, by cancellation
the ultraviolet anomaly contributions we have found w
infrared ‘‘anomaly pole’’ contributions. In fact, the coeffi
cient of the anomaly in a transverse momentum coup
~which we did not determine! should be fixed by this cance
lation.

If we impose a transverse momentum cutoff in all intern
loop integrals of the diagrams we consider, this cutoff will
present in all transverse momentum diagram integrals
also within the loop integrals giving the external coupling
A cutoff in the transverse momentum diagram integrals
gauge invariant.A priori, however, in the external coupling
such a cutoff is not gauge invariant. Therefore, if we take
regge limit with a transverse momentum cutoff imposed
will be a serious question whether gauge invariance is
stored by removing the cutoff after the limit. For the prese
we note only that in Ref.@8# we argued that anomaly pol
contributions to infrared divergent amplitudes are gauge
variant. In the infrared region, we anticipate that there will
effective triangle diagram contributions toGL and GR cou-
plings in which small transverse momentum gluons coupl
all three vertices, as illustrated in Fig. 45. Based on
analysis of the previous section, both normal and anoma
color parity multigluon states should couple. With a tran
verse momentum cutoff imposed we expect that, when
total gluon transverse momentum vanishes the correspon
Ward identity will fail and there will be a non-zero couplin
involving ~when the quarks are massless! the anomaly pole.
As a consequence, in transverse momentum diagrams o
form of Fig. 40 ~with all gluons soft! there will be a loga-
rithmic infrared divergence of the form

FIG. 48. A class of transverse momentum diagrams.
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El' dQ2

Q2 , ~7.2!

whereQ is the sum of all gluon transverse momenta.
A priori, the anomaly pole can appear in bothGL andGR .

However, at t50, where the pole should appear, a fin
lightlike momentum can be exchanged which can be para
to eitherP1 or P2 . We suspect that this light-cone mome
tum determines whether the pole appears viaGL or GR .
Clearly, a detailed study, of the kinematics and polarizatio
and kinematic forms associated with the appearance of
anomaly pole will be needed to be sure that, in the full a
plitude, there is a simple pole with the appropriate residue
be associated with a pion.

B. Transverse momentum infrared divergences

Since the divergence~7.2! is not removed by externa
couplings~with a transverse cutoff!, we must consider the
effect of ~all orders! interactions amongst the gluons. In th
lowest-order diagrams we expect the divergence to
present for both normal and anomalous color parity glu
states. There may also be additional divergent transverse
mentum configurations. However, as we now describe, w
we sum all infrared divergences to all orders we expect t
Eq. ~7.2! is the only divergence that survives, and then on
for anomalous gluons.

We can summarize the general nature of gluon infra
transverse momentum divergences and the role of a tr
verse momentum cutoff, very briefly, as follows. An e
panded version of this summary can be found in Ref.@8#. For
reasons that will become apparent in the next subsection
specifically discuss the case of SU~2! color, although all the
properties we describe remain the same for higher ga
groups.

The self-interactions of anN gluon transverse momentum
state TN are described by dimensionless ‘‘kernels
KN

I (...,ki ,...,kj8 ,...), whereI denotes SU~2! color. @Each it-
eration of a kernel produces an additional factor of lnS, or
(J21)21 in theJ plane, which we will not show explicitly.#
When thet-channel color is nonzero the infrared divergenc
related to Reggeization do not cancel and

E )
i 51

N d2ki

ki
2 KN

I ~ ...,ki ,...,kj8 ,...!→`,

Q2,IÞ0 ~Q5S iki !. ~7.3!

As a result, the sum of all diagrams in any colored chan
exponentiates to zero as illustrated in Fig. 46.GN

I is an ex-
ternal coupling analogous to theGL andGR appearing in the
previous sections.
2-27
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FIG. 49. General diagrams
with a divergence.
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When I 50 andQ2Þ0, there is a cancellation of diver
gences in theKN

0 . ~This is the infrared finiteness proper
which is extensively exploited in BFKL applications.! At the
leading-log level, infrared finiteness leads directly to conf
mal scale invariance. When renormalization effects are in
duced, scale invariance is lost in the ultraviolet region. Sc
invariance properties may still be present in the infrared
gion ~in particular, they will be present if there is an infrare
fixed point for the gauge coupling!. In this case, the kernel
KN

0 will scale canonically asQ2→0 so that, with a transvers
momentum cutoffl' ,

E
uki u

2,ukj8u2,l'

)
i

d2ki

ki
2 )

j

d2kj8

kj8
2 KN

0 ~k1 ,...,kN ,k18 ,...,kN8 !

;El' dQ2

Q2 . ~7.4!

The presence of the cutoff ensures that this divergenc
unambiguously isolated from ultraviolet divergences w
which it might mix.

This is the same divergence as Eq.~7.2!, which appears in
the lowest-order diagrams. The kernelsKN

0 have Ward iden-
tity zeroes which result in the special property that iterat
of any KN

0 does not increase the degree of divergence.
stead, there is a distinct contribution from eachTN and the
residue of the divergence can be written in a factorized fo
as illustrated in Fig. 47. If there is no Ward identity zero
the external couplingsGN

0 , Eq. ~7.4! is a potential source o
a simple infrared divergence atQ250.

Similar properties to the above hold for the interactions
gluons with quarks. Crucially, however, there is no kern
describing a transverse momentum interaction betwee
quark-antiquark pair and an anomalous gluon state. Thi
because anomalous gluons couple only through an anom
and anomalies can not occur within the two-dimensional
nematics that the kernels describe.

C. SU„2… color and Reggeon field theory

If we consider all the diagrams discussed in previous s
tions, generalized to include arbitrary numbers of gluo
and add both interactions amongst the gluons and betw
the quark-antiquark pair, we arrive at the set of transve
momentum diagrams shown in Fig. 48.

If the gluons are anomalous and carry zero color, they w
have no interaction with the quark-antiquark pair and
divergence~7.4! will occur when the transverse momentu
of all gluons is scaled to zero. As we discussed above,
anomaly pole should appear in the coefficient of this div
gence, presumably, with the right kiematic structure to
interpreted as a pion pole. All other similar diagrams,
which either the color is nonzero or the gluons are
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anomalous will be exponentiated to zero by interactions t
iterate the divergence. However, since the cutoff has stil
be removed and it is unclear how to handle the infrared
vergence, the result is still far from a sensible amplitude.

To obtain a more sensible result, we have to use a m
sophisticated treatment of the infrared divergences. In p
ticular, we initially take the SU~3! gauge symmetry of QCD
to be partially broken to SU~2!. We could motivate this by
noting, first, that the structure of the anomaly diagrams
much simpler. Only odd numbers of anomalous gluons
carry color zero~because of the absence of thed tensor!. An
overall logarithmic infrared divergence will still occur, as w
have discussed in the previous subsection, because o
unbroken SU~2! gauge symmetry. However, some gluo
@that are massive and outside the SU~2! subgroup# will inter-
act with the quark-antiquark pair. Also, we might hope
eliminate the divergence by averaging over the direction
the SU~2! subgroup within SU~3!, as the transverse momen
tum cutoff is removed.

With these last observations in mind, it is easy to app
ciate why Reggeon field theory~RFT! should be applied to
the problem. In formulating the study of the QCD pomer
using RFT we have argued@7,10,14#, that we should start
from the Reggeon diagrams~or, equivalently, transverse mo
mentum diagrams! in which the gauge symmetry is com
pletely broken. With a transverse momentum cutoff, t
gauge symmetry can first be restored to SU~2! and the result-
ing Reggeon diagrams can be described by supercri
Pomeron RFT—provided all infrared divergences can be
sorbed into a ‘‘Pomeron condensate.’’

For our present problem we anticipate applying RFT
follows. With SU~3! color broken to SU~2!, we consider all
diagrams of the form illustrated in Fig. 49. In these diagram
anomalous gluons@within an SU~2! subgroup# accompany a
quark-antiquark pair that is interacting with massiv
Reggeized, gluons. The massive gluons are outside the S~2!
subgroup and carry nonzero transverse momentum. This
should map completely on to supercritical RFT diagra
containing both Pomerons@with the Pomeron being a mas
sive Reggeized gluon plus anomalous SU~2! gluons# and a
Reggeized Goldstone boson pion. In this mapping, the ph
cal significance of the logarithmic infrared divergence wou
be clear. It would be identified as responsible for the appe
ance of a Pomeron condensate.

The restoration of SU~3! gauge symmetry would be de
scribed by the critical Pomeron@15# interacting with a Regge
pole pion and~with the appropriate quark sector prese
@7,8#! the transverse momentum cutoff can be removed
part of the critical phenomenon. Also, as part of the critic
phenomenon, the SU~2! direction of the pomeron condensa
would be randomized within SU~3! and disappear. In effect
the infrared divergence, producing the condensate, would
2-28
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eliminated by averaging over the direction of the SU~2! sub-
group within SU~3!.

For hadron scattering it was important@8# that the
Pomeron condensate could be related to an anomalous g
component of the scattering states. This was necessary,
because theg5 anomaly coupling of the pion to the Pomero
is produced by a product of three orthogonalg matices. To
obtain this product, it was essential to have anomalous gl
components in both the scattering pion and the exchan
Pomeron. As we have seen, in electroweak scattering
requirement is absent because the vector mesons hav
ementaryg5 couplings, which allow the anomalous gluons
appear in just the exchanged channel. However, the g
components of the scattering states also seemed to be im
tant for the higher-order Pomeron interactions needed to
tain the critical Pomeron. It may be, therefore, that RFT c
only be consistently applied to the analysis of infrared div
gences if the scattering vector mesons are also ‘‘hadron
That is, if they also have an anomalous gluon componen
they would have if they aquire their mass by absorbing Go
stone bosons resulting from QCD chiral symme
breaking—with the quarks being color sextet quarks. T
presence of the sextet quarks would produce@7,8# an infrared
fixed point ~in the massless quark theory! that would guar-
antee the infrared scaling of gluon kernels producing
~7.4! and would also produce the ‘‘quark saturation’’ of QC
that we have argued is needed to obtain the critical Pome
with no transverse momentum cutoff. Perhaps, all these
tures are needed to obtain a self-consistent description o
Regge limit for left-handed, massive, electroweak vec
bosons.

VIII. CONCLUSIONS

We have demonstrated that the triangle anomaly app
in the couplings of transverse momentum diagrams that
scribe the high-energy scattering ofW6,0 vector mesons.
When the full amplitudes are directly evaluated, without a
special cutoff procedure, the anomaly produces an enha
ment, by a power of the energy, that threatens the unitarit
the theory.

The most well-known consequence of a large momen
triangle anomaly is the famous anomalous Ward identity
axial currents@13#. Less emphasized is the feature that, in
presence of the anomaly, vector Ward identities are satis
by a subtle cancellation between the contributions of la
and small internal momentum regions. In the vector me
scattering we have discussed, an effective current compo
with an anomaly appears and it is the less emphasized fea
that plays a crucial role. Even though there are no anom
related cancellations between large and small internal
menta in the finite momentum Ward identities, in a le
handed gauge theory, it appears that the Regge limit
hances large transverse momentum regions such that
are cancellations of this kind in the transverse momen
~Reggeon! Ward identities. There is then an ‘‘anomaly pro
lem’’ in the sense that the Regge limit result is very sensit
to the manipulation of ultraviolet and infrared cutoffs, as w
have described.
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In Appendix D, we raise the possibility that the occu
rence of the anomaly enhancement phenomenon in the
grams that we have discussed is related, via Ward iden
contributions, to a more widespread phenomenon of la
transverse momentum enhancement. If this is the case,
it is likely that the general transverse momentum diagr
formalism will fail. Since there would then be no Regge
diagram formalism,t-channel unitarity is also likely to fail.
The conclusion, which is really the main conclusion of th
paper, is that to use the transverse momentum diagram
malism ~and therefore to ensuret-channel unitarity! it is es-
sential to initially employ a transverse momentum cutoff.

In previous papers we have found that for bound-st
amplitudes in QCD, the occurrence of anomalies in mu
Reggeon vertices~involving anomalous gluons! leads to an
analagous sensitivity to infrared and ultraviolet transve
momentum cutoffs. We have argued that an ultraviolet cu
should be kept until after physical scattering amplitudes h
been derived via an analysis of infrared divergences. We
ticipated that, without an initial cutoff, the ultraviole
anomaly effects would produce nonunitary power enhan
ment of the energy behavior of bound-state amplitud
However, as we noted in the Introduction, accessing
anomalies in hadron amplitudes is very complicated a
therefore, it is much more difficult to appreciate their signi
cance. In the electroweak amplitudes we have studied in
paper the anomaly appears immediately, because of the p
ence of elementary left-handed couplings. As a result
choice between bad, large transverse momentum ba
high-energy behavior and infrared anomaly domination p
ducing ‘‘nonperturbative’’ dynamics, is also immediate
clear.

Potential nonunitary properties of electroweak hig
energy scattering amplitudes may not be of great concer
as is currently believed by many physicists, the gravitatio
interaction intervenes long before the relevant energies
reached. From this perspective, our study of electroweak
plitudes can be viewed as simply a technical exercise
which left-handed vector mesons are used to study how, w
the cutoff manipulation we have described, the formation
QCD bound states, including confinement and chiral symm
try breaking, can take place via Regge limit infrared anom
effects. Nevertheless, it seems hard to avoid the conclu
that if confinement and chiral symmetry breaking do not ta
place in this manner, then~assuming that it does not cance!
the power enhancement of quark-antiquark exchange by
ultraviolet anomaly will dominate any electroweak symm
try breaking mechanism that is perturbatively based.

Our point of view is that the unitarity of the electrowea
part of the standard model is a deep constraint. Indeed
could be that obtaining consistent high-energy scattering
plitudes for massive vector mesons, with left-handed c
plings to quarks, may actually require QCD confinement a
chiral symmetry breaking to take place via the anomaly, a
may even, perhaps, require that the chiral symmetry brea
~of higher color quarks! is responsible for electroweak sym
metry breaking.

We were led to the present investigation as an outcom
our study of the QCD Pomeron. For a long period of time
2-29
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FIG. 50. Couplings to quark-
antiquark transverse momentum
states.
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understood the crucial role of the anomaly in producing u
tary high-energy amplitudes within QCD, but were unable
find a simple starting point from which to begin constructi
of such amplitudes. Then, in our most recent paper@8#, we
showed that wee gluon properties of the pion, obtained fr
the anomaly, provide such a starting point, at least in part
the same time we realized that such properties should ap
if the pion is extracted from the wee parton structure of
electroweak vector meson. This led us to the, a priori m
simpler, problem of how an exchanged pion appears wit
the scattering of vector mesons. We now believe that
results of this paper will lead to an understanding of the p
which will, eventually, provide a simple starting point for th
construction of QCD high-energy amplitudes.
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APPENDIX A: COMPLEX NOTATION FOR TRANSVERSE
g MATRICES

To discuss high-energy vector meson scattering am
tudes involving~massless! fermion exchange, it is conve
nient to use a complex number notation@16# for both trans-
verse momenta andg matrices. In this formalism, the
consequences of chirality conservation and a left-han
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gauge interaction are particularly apparent.
In addition to using conventional light-cone momen

k65(k06k1)/&, we write

k̂5k21 ik3 , k̂* 5k22 ik3 ~A1!

to describe transverse momenta. We then have

k'
2 5 k̂k̂* ~A2!

and

2k'•q'5 k̂q̂* 1 k̂* q̂. ~A3!

We can also write

k̂q̂* 5~ k̂* q̂!* 5k2q21k2q31 i ~k2q32k3q2!

5k'•q'1 ik'3q' , ~A4!

where

k'3q'5uk'uuq'usinu ~A5!

with u the angle between the two vectors.
To describe transverseg matrices, we similarly write

ĝ5~g21 ig3!/&, ĝ* 5~g22 ig3!/&. ~A6!

We then have

~ ĝ !25~ ĝ* !250, ĝĝ* 1ĝ* ĝ52 ~A7!
FIG. 51. Lowest-order dia-
grams.
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FIG. 52. Quark-antiquark ex-
change diagrams organized a
cording to powers ofas .
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and we can write

2k”'5 k̂ĝ* 1 k̂* ĝ. ~A8!

In the Regge limit the transverse part of an exchan
fermion propagator dominates, i.e., for a massless fermi

k”

k2
→

1

2
S ĝ*

k̂*
1

ĝ

k̂
D , ~A9!

where the two terms represent the two different chiraliti
For example, the transverse momentum integration o
quark-antiquark state with transverse momentumq' and
equal chiralities~opposite sign helicities! takes the form

E d2k̂1d2k̂2d2~ q̂2 k̂12 k̂2!S ĝ

k̂1

^

ĝ*

k̂2*
1

ĝ*

k̂1*
^

ĝ

k̂2

D ,

~A10!

where the^ sign indicates that the twog matrices are sepa
rately associated with the two fermion lines. The contrib
tion of a two fermion state with opposite chiralities is clea
analagous. However, the distinct combinations of same
and opposite sign chiralities are exchanged and interact s
09600
d

.
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-

n
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rately @16,11#. As we elaborate on briefly in Appendix B, th
very different properties of the interaction of same sign a
opposite sign chirality exchanges is of fundamental imp
tance.

If we also define

P̂152
1

2
ĝĝ* , P̂252

1

2
ĝ* ĝ, P15

1

2
ĝ2g1 ,

P25
1

2
g1g2 ~A11!

then we can write

g55~P12P2!~P̂12P̂2!. ~A12!

Spinors in the subspacesP2P̂1 andP2P̂2 ~or P1P̂1 and
P1P̂2) carry opposite chirality, as is evident from the fo
lowing relations:

g2ĝ@12g5#ĝ* 5g2@11g5#ĝĝ* 5g2@12P2P̂1#ĝĝ*

5g2S 11
1

2
ĝĝ* D ĝĝ* 52g2ĝĝ* ,
-
FIG. 53. Transverse momen
tum diagrams originating from the
diagrams of Fig. 53.
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g2ĝ* @12g5#ĝ5g2@11g5#ĝ* ĝ5g2@11P2P̂2#ĝ* ĝ

5g2S 12
1

2
ĝ* ĝ D ĝ* ĝ50. ~A13!

Similarly, we can show that

g1ĝ* ~12g5!ĝ50, g1ĝ~12g5!ĝ* 52g1ĝĝ* ,
~A14!

g2ĝ~11g5!ĝ* 50, g2ĝ* ~11g5!ĝ52g2ĝ* ĝ,
~A15!

g1ĝ* ~11g5!ĝ50, g1ĝ~11g5!ĝ* 52g1ĝĝ* .
~A16!

For a vector particle, with momentum along the 1 ax
the polarization vectors for states with helicityl561 are

em~l511!52
1

&
~0,0,1,i !,

em~l521!5
1

&
~0,0,1,2 i !. ~A17!

A vector boson with helicityl521 can make a transition to
a left-handed intermediate state quark via the emission o
antiquark. To calculate the scattering of a vector boson w
helicity l521 we introduce an initial coupling ofc̄ĝ* (1
2g5)c and a final state coupling ofc̄ĝ(12g5)c. Utilizing
the above relations we find that, as illustrated in Fig.
there is only one nonzero coupling to potential qua
antiquark transverse momentum states that could be
changed. As a consequence, if we consider the scatterin
opposite helicity states there is only one possible lowe
order diagram, which is that shown in Fig. 51~a!. The initial
ĝ* (12g5) vertex on the right-hand side of Fig. 50~a! rep-
resents the coupling of a vector boson with the same po
ization, but opposite helicity~since it has opposite momen
tum along the one axis! to that of the left-hand side vecto
boson.

A simple way to see that the diagram of Fig. 1~a! contrib-
utes to opposite helicity scattering is to note that, becaus
the direction of the quark arrow, the intermediate state c
sists of a left-handed quark, which must be produced b
negative helicity vector boson, and a right-handed antiqu
which must be produced by a positive helicity vector bos
The direction of the arrow is fixed by choosing the left-ha
vector meson to be the one with negative helicity. The d
gram of Fig. 1~a! contributes to theA21 helicity amplitude
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while the diagram with the arrow reversed contributes to
A12 helicity amplitude. By similar reasoning, the diagra
of Fig. 2 contributes to theA21 helicity amplitude.

The diagram shown in Fig. 51~b! is the only possibility
for the scattering of states with equal, negative, helicities
the cross channel, in which the incoming and outgoing, ri
hand, vector mesons are interchanged, the diagram untw
to become the diagram of Fig. 50~a!. Figure 51~b! contrib-
utes to theA22 helicity amplitude, while the correspondin
diagram with the quark arrow reversed contributes to
A11 helicity amplitude. For the amplitudes withp0 quan-
tum numbers in thet-channel, that we discuss in this paper,
follows from CPT invariance that

A115A22 and A215A12 . ~A18!

Note that, in all diagrams, only same sign chirality states
exchanged.

APPENDIX B: REVIEW OF LEADING AND NONLEADING
LOGS

As far as we know, the diagrams we discuss in this pa
have not been discussed in detail in the literature. Howe
if we were to make the~wrong! assumption that the left
handed coupling does not affect the extraction of hig
energy logarithms, or~more simply! if we impose a trans-
verse momentum cut-off, there are a number of well-kno
results that would carry over, almost directly, into our pro
lem. Just to put the discussion of this paper in context,
give here a very brief, nontechnical, overview@11# of these
results.

All the results concern the extraction of leading and no
leading logarithms. If we organize the quark-antiquark e
change diagrams into distinct series depending on the po
of as ~the QCD coupling! involved, then typical diagrams

FIG. 54. The fermion loop contribution toTmab(k1 ,k2).
-
FIG. 55. The tree diagram ob
tained from Fig. 1.
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FIG. 56. Splitting Fig. 55.
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giving such logarithms are illustrated in Fig. 52. The fi
series contains purely electroweak diagrams that have a l
rithmic expansion inaw ~the ‘‘electroweak’’ coupling!. The
second series containsO(as) corrections to the first series
the third series containsO(as

2) corrections to the first series
etc.

All diagrams of the form shown in Fig. 52 would be e
pected to give high-energy amplitudes of the form

A~S,0! ;
S→`

(
n,m,r

anmraw
n as

m@ ln S# r . ~B1!

To make our discussion straightforward we can suppose
we, initially, introduce a transverse momentum cutoff so t
we can ignore ultra-violet transverse momentu
divergences—including both the anomaly power divergen
that we discuss in this paper, and the logarithmic divergen
that we discuss below. As a result, all the coefficientsanmr
can be represented as~sums of! transverse momentum dia
grams of the form illustrated in Fig. 53.

With the transverse momentum cutoff in place, the fi
two diagrams in Fig. 52 give a leading log amplitude whi
contains the first diagram in Fig. 53 multiplied by lnS and a
next-to-leading log amplitude which contains the same tra
verse momentum diagram but with no factor of lnS. The
third diagram in Fig. 52 gives a leading log amplitude whi
contains the second diagram in Fig. 53 multiplied by ln2 S
and a next-to-leading log amplitude which contains the fi
diagram in Fig. 53 multiplied by lnS and so on. In general
the external couplings and the internal vertices in the tra
verse momentum diagrams acquire more and more struc
~involving loop integrals! as first leading logs, then next-to
leading logs, next-to-next-to-leading logs, etc., are includ
in the sum~B1!.

The diagram of Fig. 2, appearing in Sec. III, is the la
diagram shown explicitly in the second row of Fig. 52. It
first-order inas and, conventionally, as noted in Sec. III, w
would expect that it’s leading-log contribution would conta
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the lastO(as) transverse momentum diagram shown expl
itly in Fig. 53—with simple vertices. This diagram bein
obtained by placing all vertical lines on shell, as in Fig.
using longitudinal momentum integrations. At the next-t
leading log level the secondO(as) transverse momentum
diagram should be generated and the firstO(as) transverse
momentum diagram, which is the diagram that appears
Fig. 1, should be generated by Fig. 2 at the next-to-next
leading log level.

The transverse momentum diagram of Fig. 17 is the fi
O(as

2) diagram appearing in Fig. 53 and would be generat
at leading log, by the firstO(as

2) diagram in Fig. 53. The
diagram of Fig. 20 is the secondO(as

2) diagram appearing
explicitly in Fig. 52. The anticipated leading log result fo
this diagram would be ln5 S multiplied by the secondO(as

2)
transverse momentum diagram appearing explicitly in F
53 and the firstO(as

2) diagram in Fig. 53 would be gener
ated at the next-to-next-to-leading log level, i.e., multipli
by a factor of ln3 S.

In the leading and nonleading-log studies of pure vec
gauge theories@5# there is no problem with ultraviolet diver
gences, either in transverse momentum, or more gener
Only the normal~ultraviolet! divergences associated wit
renormalization have appeared in the nonleading-log ve
ces. The Ward identities of the gauge theory produce can
lations that lead always to convergent transverse momen
integrals, with the accompanying logarithms just those p
dicted by Regge theory.~Even though, as is very well known
by now, individual Feynman diagrams produce transve
momentum divergences that, at first sight, produce additio
logarithms beyond those anticipated by Regge theo!
Equivalently, the complete sum of logarithms and transve
momentum diagrams can be rearranged@2# into subseries
represented by Reggeon diagrams.

When fermions are involved there is, as we already no
in Sec. III, the extra subtlety of the logarithmic divergence
fermion transverse momentum integrals@11,16#. Therefore,
e
FIG. 57. The amplitude obtained from th
second term of Fig. 56.
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FIG. 58. Splitting of another
tree diagram.
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if the transverse momentum cutoff is removed, extra pow
of ln S will be generated and the series~B1! must be rear-
ranged appropriately. However, fermion Reggeization is
affected by the divergences~since the relevant transvers
momentum integrals involve combinations of fermions a
gluons!. Consequently, as we noted in Sec. III, when t
transverse momentum diagrams are organized into Reg
diagrams, the presence of the Reggeon propagator red
the divergence from log to log@log# form. Also, the Reggeon
kernel for opposite sign helicities gives convergent integr
~As we noted in the previous appendix, the distinct com
nations of opposite and same sign helicities are exchan
and interact separately.! Only the kernel for opposite sign
helicities ~same sign chiralities! produces logarithmic diver
gences at large transverse momentum.

In the diagrams discussed in this paper, the qua
antiquark states we consider are same sign chirality sta
However, the anomaly enhancement overwhelms the lo
rithmic divergence that would otherwise result. We belie
this is important, physically. If we start with a transver
momentum cutoff both the anomaly power divergence a
the logarithmic divergence will be absent. When the confi
ment and chiral symmetry breaking described in Sec. V
implemented via the extraction of infrared divergences
may be~and the results of Ref.@8# directly suggest this! that
only ~transverse momentum! convergent same sign helicit
exchanges are involved in forming bound states. Si
‘‘double logs’’ are,a priori, in conflict with regge theory, this
is probably necessary for the bound states to be describe
Regge theory.

APPENDIX C: THE ANOMALY AND VECTOR WARD
IDENTITIES

To understand the special nature of Ward identities in
presence of the anomaly, it is helpful to recall some we
known properties of the one loop contribution, shown in F
54, of massless fermions to an axial-vector–two-vector th
current vertexTmab(k1 ,k2). After decomposition into invari-
ant amplitudes

Tmab~k1 ,k2!5A1esabmk1
s1A2esabmk2

s1A3edsamk1bk1
dk2

s

1A4edsamk2bk1
dk2

s1A5edsbmk1ak1
dk2

s

1A6edsbmk2ak1
dk2

s ~C1!

the vector Ward identities

k1
aGmab50, k2

bGmab50 ~C2!

require
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A25k1
2A51k1k2A6 , ~C3!

A15k2
2A41k1k2A3 . ~C4!

The large momentum region~with appropriate regulariza
tion! gives an ‘‘anomaly’’ contribution toA1 and A2 of the
form

Tmab~k1 ,k2!5
1

4p2 esabmk1
s1

1

4p2 esabmk2
s1¯

~C5!

leading to the well-known ‘‘anomalous’’ divergence equati

~k11k2!mTmab5
1

2p2 edsabk1
dk2

s . ~C6!

For the vector Ward identities to hold in the presence of E
~C5!, there must be related, infrared singular, contributions
the otherAi . For example, whenk1

250, Eq. ~C3! becomes

A25k1k2A65
q22k2

2

2
A6 ~C7!

implying that there must be a pole inA6 , arising from the
region of small internal momentum. In appropriate circu
stances, this pole can be interpreted as a Goldstone b
pole, signaling chiral symmetry breaking.

If we considerk1→0, and assume that all theAi are suf-
ficiently nonsingular, then Eq.~C1! gives

Tmab~k1 ,k2! ——→
k1→0

A2esabmk2
s , ~C8!

which, if we keep only the ultraviolet anomaly term~C5!,
gives

Tmab~k1 ,k2! ——→
k1→0

1

4p2 esabmk2
sÞ0. ~C9!

Alternatively, if we use Eq.~C3!, together with Eq.~C8!, we
obtain

FIG. 59. Another tree diagram.
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FIG. 60. Part of the tree diagram appearing in Fig. 59.
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Tmab~k1 ,k2! ——→
k1→0

~k1
2A51k1k2A6!esabmk2

s→0.

~C10!

For consistency, again, there must be infrared singular c
tributions toTmab(k1 ,k2) that cancel the ultraviolet anomal
contribution ~C5! and produce the ‘‘Ward identity zero
~C10!.

From our point of view, therefore, the presence of t
ultraviolet anomaly~C5! has two consequences. The first
the anomalous Ward identity~C6!. The second is that the
vector Ward identities require a cancellation between se
rate contributions~with different kinematic structure! from
large and small internal momentum regions. As a con
quence, if an explicit ultraviolet cutoff is introduced, E
~C5! will be modified and the vector Ward identities will n
longer hold. The contribution, to the vector current dive
gence, of the pole term inA6 will survive, however, since it
is generated in the infrared region@8#.

APPENDIX D: ELECTROWEAK WARD IDENTITY
CANCELATIONS

In this appendix we consider whether Ward identity ca
cellations can remove the longitudinal polarization contrib
tions of vector mesons that produce the anomaly enhan
high-energy behavior in the diagrams we have discussed
described in Sec. III C, we are interested in Ward iden
implications when we add all the diagrams that effectiv
replace the tree diagram that forms the lower part of Fig
by another tree diagram. As in Sec. III, it will be sufficie
for our purposes to consider only the diagrams of an Abe
theory.

We focus on the same region of phase space as in Sec
which will be the basis for all approximations we make.
we ignore (12g5) factors ~which are irrelevant for the
present discussion!, the lower part of Fig. 1 gives the ampl
tude shown in Fig. 55. We consider, first, the addition of t
diagrams in which the internal left-side vector boson line
attached at all possible points. We begin with the diagra
obtained by moving this line to the right.

The subdiagram forming the left part of Fig. 55 can
split into two pieces as illustrated in Fig. 56, where t
dashed line indicates that additional momentum flows in t
vertex without changing the algebraic structure. It is t
Ward identity cancellation for the second piece of Fig.
that involves moving the vector boson line to the right. No
first, that if we combine this term with the right-side of th
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full diagram we obtain the amplitude shown in Fig. 57 a
so the relevant piece of Fig. 55 is retained.

The first tree diagram obtained by moving the left si
internal vector meson to the right is the second diagram
pearing in Fig. 16, which is the lower part of the Feynm
diagram appearing in Fig. 17. We consider the right part
this tree diagram and divide it into two pieces as in Fig. 5
The first piece gives an amplitude that directly cancels
amplitude of Fig. 57. Therefore, it would appear that t
amplitude involved in the anomaly enhancement is imme
ately eliminated. However, there are further cancellatio
that remain to be discussed.

The second piece of Fig. 58 has to be combined with
contribution of the tree diagram shown in Fig. 59. Makin
the usual separation~into two pieces! of the right side of the
tree diagram appearing in Fig. 59 and removing the pi
that cancels with the second piece of Fig. 58 leaves the p
shown in Fig. 60. This piece would be zero if the vertic
antiquark were exactly, and not just approximately, on-sh

Since the amplitude of Fig. 60 goes to zero asP2→`,
with all internal momenta fixed, it is, superficially, a nonlea
ing asymptotic contribution. However, it has worse lar
transverse momentum behavior than the original amplit
of Fig. 56. In effect, we have replaced a leading asympto
contribution that has manageable internal momentum beh
ior with a superficially nonleading contribution with bad in
ternal momentum behavior. At this point, this substituti
does not actually lead to any important effects, although
will not be the case for an analagous substitution that
make later. We obtain the maximal contribution from t
amplitude of Fig. 60 if we use the mass-shell conditi
P2k28 ;(p'9 2k'8 )2 and combine the resulting amplitud
with the second term in Fig. 56. This gives

S k28
2

k2

D 1

~ p̂81 k̂8!~p'9 2k'8 !
. ~D1!

This amplitude does not have the growth at largek' that the
amplitude of Fig. 55 has and so can be neglected.

We now consider the contribution of the first term in Fi
56. This has to be combined with tree diagrams obtained
moving the left side internal vector meson line to the le
There is only one such diagram, which is shown in Fig. 6
Normally this contribution to the high-energy limit would b
ignored because an off-shell propagator carries the largeP1
2-35
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momentum. However, if we split this diagram into tw
pieces as in Fig. 62, the first piece cancels with the first pi
of Fig. 56.

If the vertical quark line were on shell so that the fu
numerator, and not just the asymptoticg2 piece, were
present, the second piece of Fig. 62 would be zero. In fac
we use the mass-shell conditionP1k28 ;(p'8 1k'8 )2 we ob-
tain

~ p̂81 k̂8!*

P1k2

;
k28

k2

~ p̂81 k̂8!*

~p'8 1k'8 !2
5

k28

k2

1

~ p̂81 k̂8!
~D2!

Since bothk28 andk2 are finite in the momentum region w
are considering, Eq.~D2! is of the same form as the secon
term in Fig. 56. In this case, therefore, a superficially no
leading asymptotic contribution, with bad large transve
momentum behavior, gives a contribution that cannot be
glected.

We now consider the additional tree diagrams that wo
be involved in a Ward identity for the right side intern
vector meson line. From the above discussion it follows th
after we have added all such diagrams and carried out
analogous cancellations to those above, there will be
surviving contribution that will give an amplitude of th
form of Fig. 55. This will come from the tree diagram show
in Fig. 63. The piece of this diagram that we have picked
would vanish if both the quark and antiquark vertical lin
were on-shell. From Fig. 62 and Eq.~D2! it is clear that this
piece gives a ‘‘superficially nonleading’’ amplitude of th
form

~ p̂81 k̂8!*

P1k2
k̂

~ p̂92 k̂8!*

P2k1
~D3!

which, after we use the mass-shell conditions forP1 and
P2 , gives the amplitude

FIG. 61. Another tree diagram.
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S k18 k28

k1k2
D k̂

~ p̂81 k̂8!~ p̂92 k̂8!
. ~D4!

Since bothk18 k28 and k1k2 are finite, this is, indeed, an
amplitude of the form of Fig. 55.

We conclude that the large transverse momentum beh
ior of the amplitude in Fig. 3, which combines with the loo
amplitude in the top half of Fig. 1 to give the anomaly, do
not cancel after the imposition of Ward identities. In th
respect, therefore, nothing is gained by implementing
Ward identity cancellations. However, the lack of cancel
tion is entirely due to the asymptotic on-shell nature of t
quark and antiquark lines. This raises a general issue of p
ciple. Including the remaining amplitude that would p
these lines exactly on-shell would apparently cancel the
havior ~D4!. Yet this amplitude would normally be neglecte
as contributing only to nonleading high-energy behavior
can contribute to the leading behavior only if there are la
transverse momentum divergences. In fact, as we have
phasized, to carry out the Ward identity cancellations
have actually included several diagrams that would norm
be considered nonleading.

The normal procedure is to effectively assume in adva
~and then justifya posteori! that transverse momenta will b
sufficiently cutoff after the summation over all diagrams. T
leading parts of diagrams can then be safely extracted w
out worrying about transverse momentum divergences.
occurrence of the anomaly enhancement phenomenon in
diagrams that we have discussed could imply that in m
other diagrams large transverse momenta are also sufficie
important that the normal methods are inadequate. If thi
the case, then it is likely that the general transverse mom
tum diagram formalism will fail. Since there would then b
no Reggeon diagram formalism,t-channel unitarity is also
likely to fail. The conclusion, which is really the main con
clusion of this paper~as we already stated in Sec. VIII!, is
that to use the transverse momentum diagram formal
~and therefore to ensuret-channel unitarity! it is essential to
initially employ a transverse momentum cutoff.

FIG. 63. The tree diagram giving the surviving amplitude.
FIG. 62. Splitting the diagram of Fig. 61.
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