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Yu-Qi Chen
Institute of Theoretical Physics, Academia Sinica, Beijing 100080, People’s Republic of China
(Received 27 July 2002; published 18 May 2p04

The renormalization issue in the reparametrization invariance in heavy quark effective theory and NRQCD
is investigated. | argue that the renormalization of the transformation of the heavy quark field under the
variation of the velocity parametaf is attributed to the renormalization of the small component field in the
proposed transformation. | derive the matching conditions for determining the renormalized small component
field by imposing an infinitesimal transformation \éfon the relations between the Green'’s functions in QCD
full theory and those in the effective theory. As an application, | determine the renormalized transformation to
order 1/m? using the matching conditions. The obtained result is in disagreement with that determined by the
indirect method.
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[. INTRODUCTION is expanded to higher orders ofnl/ Later on, Manohaf4]
discussed its higher order expansion. Ch&hproposed an
Heavy quark effective theoHQET) [1] and nonrelativ- infinitesimal transformation of the heavy quark field under
istic QCD (NRQCD) [2] are powerful tools in dealing with the velocity variation fromV—V+ AV. Chen’s transforma-
the dynamics of heavy-light and heavy-heavy systems, retion keeps the tree level effective Lagrangian invariant to all
spectively. In those systems, the off-shell momentum of therders of 1. Finkemeier, Georgi, and Mclrvif6] showed
heavy quark is much smaller than its mass. The effectivehat to order Ih? the effective Lagrangian constrained by
theories are designed to reproduce the results of the QCD fullanohar and Luke’s transformation and Chen’s transforma-
theory at the low energy scale in a simpler way by integrattion may be related to each other by a field redefinition.
ing out the effects at the energy scale of the heavy quark Chen’s transformation can be expanded as inverse power
mass. In the past decade both effective theories and thederies of the heavy quark mass. Each term contains the prod-

applications have been intensively studied. uct of some covariant derivatives and the heavy quark field.
It can be thought of as a composite operator. Since the heavy
A. What is the reparametrization invariance quark expansion changes the ultraviolet behavior of the

riginal transformation, beyond the next leading order, it

is reparametrization invariand®Pl). It arises from the fact urns out that it needs to be renormalized. Its renormalization
that the effective theory explicitly depends on the four veloc-S different from that of the effective Lagrangian since each

ity parameterV. In constructing the effective Lagrangian, term n the Lagrangian IS a .b|I|near function of the heavy
one needs to divide the heavy quark momentBnnto a quark field. The renormalization of the operators in the La-

large and small part aB=mV-+k, wherem is the heavy grangi_an is familiar to us and we ha_\ve appropriate matching
quark mass ané is a small resid,ual momentum. One also conditions to determine the coefficients of them. However,

needs to decompose the Dirac 4-fermion field as large an?j]e ’e’.‘O”T‘a”Z""“O” of the composite operators in thg trans-
small two-component fields with respect Yoand use the formation is a new case. How to carry out its renormalization
large one to describe the heavy quark or antiquark. Thes8 rl1<q|t_ obV|o(ijs.Oh| 7 d lized t ¢
procedures lead to the effective Lagrangian beihdepen- i '.ﬁ}n a;n . 7] pt:or;ﬁse a renorcn;]a |z’et ranfs ormtg-
dent. The choice o¥ which satisfiesv?=1 is not unique. 'on. 1he Tofm 15 exactly the same as f-nen's ranstormation

But the physical prediction should be unchanged against th%g?frt] }2Ztutl?siiti?\e/gnt?n;ggtw;tlc\?;rgco?r\;sk:]ishtrtagsaglle d
variation of the velocity parametdf. This is the RPI. It is y P Y

required by the consistency of effective theory and also conf[-he gene_ral ::hovarla_r;_t de:c!v?élve. tﬁugd”@? dllaic_ussded thls_l
ducts interesting applications. It was first proposed in HQET.'SSU?t usm?h te ?ué.'l.'ary Ied g}ﬁ '?h an Olt ained a ?'rg' ar
However, the same invariance also holds for NRQCD effeciooW @s that of xilian an . he resulls presented In
. these papers are formal. They did not show how to determine
tive theory. . L : : .
the general covariant derivative by certain matching condi-
tions. Actually, in the literature no specific calculation for
determining the transformation has been made with this
To implement RPI in the effective theory, it is essential tomethod. The only calculation to determine the renormalized
find out an appropriate transformation of the heavy quarkransformation was given by Balzereit in an unpublished pa-
field under the variation d¥. It was first studied by Manohar per[9]. He first calculated the effective Lagrangian to order
and Luke[3] in HQET. They used the Lorentz boost of the 1/m? at one loop level in the leading logarithmic approxima-
four component spinor field as the transformation of thetion. By requiring that the effective Lagrangian be invariant,
heavy quark field from finite velocity to V'. Their trans- he could then determine the renormalized transformation to

formation suffers from operator ordering ambiguities when itorder 1in? indirectly. There are some drawbacks to this kind

One interesting theoretical issue in those effective theorie

B. A brief review of previous studies
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of calculation. First, since it is an indirect determination, onetwo-point and three-point functions. In Sec. IV, | show that

is not able to get too many insights into the renormalizationprevious results can be understood more clearly by con-
issue in the RPI. Second, it makes the RPI less practicallgtructing the effective Lagrangian in an alternative way,

useful. An interesting application of the RPI is that once wewhere a four-component effective Lagrangian is constructed
know the transformation, we can use it to constraint thefirst, followed by its reduction to the effective Lagrangian in

higher order effective Lagrangian and make the calculationghe two-component field. | then show that the remormalized
simpler[3,5,6]. Since Balzereit did it in an inverse order, RP| Small component field determined by the matching condi-
cannot be used to constraint the effective Lagrangian witt§ions is consistent with the result of Kilian and QFl. Then

that method. Third, the calculations are quite complicated Show that the renormalized effective Lagrangian is rep-
since the determination of the higher order effective I_a_arametnzatlon invariant under the renormalized transforma-

o ; tion. Conclusions are given in Sec. V. Finally, in the Appen-
rangian is usually tedious work. ) . ; ’
grang y dix, | derive the general relations between the Green’s

) ) functions with the generating functional method.
C. New method to renormalize the transformation

In this paper, | propose a new method to study the renorl. RENORMALIZED TRANSFORMATION OF THE HEAVY
malization issue in the RPI. In this method, | derive explicit QUARK FIELD
matching conditions to determine the coefficients of the new In the hea uark effective theorv. the heavy quark is
composite operators in the transformation so that the renor; . vy q ) Y, I yq

) : . described by a two component field while in QCD full theory
malized transformation can be directly calculated to all or-

. . : it is described by the Dirac four-component field. Thus, to
ders of 1m and e without knowing the higher order effec- construct the effective theory, one first needs to decompose

tive Lagrangian. Th_e obtained t_ransformation can be used che Dirac four-component field as the two-component fields.
constrain the effective Lagrangian |r‘rr1/expa_nS|on. A simple way to realize this decomposition is
Recall that there are some general relations between the

Green’s functions in the QCD full theory and those in the hy. (X)=exp(imV-x)P.¥(x), )

effective theory[1]. These relations ensure that the effective

theory reproduces the same physical predictions as the fulthere

theory and can be used as the matching conditions to deter-

mine the renormalized effective Lagrangian. Since these re- = H @)

lations are valid for arbitrary velocity parametér we may = 2

impose an infinitesimal transformation ¥fon both sides of o ) )

the relations and gain some new relations. We will show tha@e the projection operators. The introduced phase factor just

the composite operators in the heavy quark transformatiofemoves the large pamV from the heavy quark momentum

are inserted on the effective theory side of these relations ar When it is written asp=mV-+k, with k the residue mo-

the new relations obtained can be used as the matching Coﬂlentum. This definition of the field was first introduced by

ditions to determine the renormalized transformation. Georgi[1] and has been used by most peofig in the
As a specific example, | will use these matching condi-literature. Nevertheless, it is not unique. Different definitions

tions to determine the renormalized transformation to ordefead to different forms of the effective Lagrangian. However,
1/m? at one-loop level. The obtained result is in disagreethey can be related to each other by a field redefinition and
ment with that obtained by Balzerdif]. Since the same Produce the same phyglgal predictiditd. Throughout this
LagrangianMRR Lagrangiahis used, the disagreement be- Paper, we use the definitiod).
tween these two different results cannot be accounted for by
a field redefinition. A. The tree level transformation

I \{vill also show that the renormglized transformatior_\ de-  with the definition in Eq.(1), the effective Lagrangian
termined by these matching conditions can be written in th‘?eads[S 13
form of Chen’s transformation with the covariant derivative '
substituted by an operator which may be called a general £% ="y, (X)iD-Vhy. (X)
covariant derivative. Thus the renormalized transformation ¢
determined by the matching conditions presented in this pa- —
per is consistent with the result of Kilian and Cfl). —hvi (0D 5 =5 P-Phv (), S

The remainder of the paper is organized as follows. In
Sec. ll, after a brief review of the tree level transformation, lwhere D#=¢*—ig,A* is the covariant derivative. This is
argue that the renormalized transformation of the heavyhe nonlocal form of the effective theory. The effective
quark field can be attributed to the renormalization of thetheory in this form is equivalent to that of the full theory in
small component field. | then show that the matching condithe sense that they produce the saBmatrix elements.
tions for determining it can be obtained by imposing an in-Without expansion, the effective Lagrangian does not receive
finitesimal transformation on the general relations betweemenormalization.
the Green'’s functions in the QCD full theory and those in the  Obviously, this effective Lagrangian depends on the ve-
effective theory. As an example, in Sec. lll, | determine thelocity parameterV. The choice of this parameter is not
renormalized transformation to ordem® by matching the unique. The RPI implies that the physical predictions by the
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effective theory are independent of the choicevofin Ref.  Any insertion of interaction vertex with gluons can be ob-

[5], it was shown that the effective Lagrangié8) is invari-  tained by functional differentiating over the gluon field

ant under an infinitesimal transformatioh—V+ AV B(x). When the quark fieldh, , (X) is related to the field in
the full theory by Eq.(1), the Green'’s functions satisfy the

_ AY following simple relation(a derivation of this relation using
Ahy (X)= 5 [hv+ () +hy-(X)], (4 the generating functional method is given in Appendix
with hy,_(x) being the small component field given by Gy(x,y;B)=P,G(X,y;B)P,, (8)
. where = means that we omit the phase factor [gxp/- (x
hy-(¥) =5 —5p v P-1Rhv+ (X). (5)  —y)]and the renormalization constafftm/ ., () ] Which
arises from the renormalization of the heavy quark field.
AV is constrained bAV-V=0 due toV?=1. Both sides are valid to all orders inn/and a5 expansion.

Both the effective Lagrangia(8) and the transformation This relation ensures that ttf®matrix elements in the effec-
given by Egs(4) and(5) can be expanded as a power seriestive theory are identical to those in the full theory.

of 1/m. The RPI is then valid order by order inni/ This ‘The relation(8) is just the matching conditions to deter-
implies that the tree level transformation makes the tree levahine the coefficients of the operators in the effective La-
effective Lagrangian valid at any order ofn/ grangian. Below starting from this relation we derive the

matching conditions to determine the renormalized transfor-
B. Matching conditions for renormalizing the transformation mation of the heavy quark field.

Obviously, the relation{8) is valid for arbitraryV. It im-

When the effective theory is expanded in terms ah,l/  pjies that we may impose an infinitesimal transformation
the ultraviolet behavior of the theory is changed. Both the_,\/+ A\ on both sides. It follows that

effective Lagrangian and the transformation receive renor-

malization. AY AY
The renormalization procedure of the effective Lagrang-  AGy(x,y;B)= EG(x,y;B)P++ P+G(x,y;B)?. 9

ian is well known. The counterterms are bilinear operators of

the heavy quark field. In Feynman diagrams, contributionsygain the symbok= means that we omit the renormalization
from these operators can be expressed as insertions of COM&5nstant, the phase factor, and a term arising from its infini-

sponding vertices on the heavy quark lines. In order that thg,sima) shift which is trivial under the transformation.

effective theory reproduces the results of the QCD full  Gien the definitions of the Green’s functions in E(,
theory, the Green’s functions in the effective theory with the(7) we have the following unique solution to E):

heavy quark field defined in Eq1l) and those in QCD full
theory are required to satisfy certain relations. The coeffi- o AV .
cients of those operators can be fixed by virtue of these re- (0| TAhy, (x)hy, (y)|0)B= 7<0|T\p(x)\p(y)|Q>B|:+ )
lations. Thus those relations can be used as the matching

conditions to determine the renormalized effective Lagrang- (10

1an. Ahy () in this equation defines the infinitesimal transfor-

. The renormalizatipn of the trapsformation is a New Casgy qiion of the heavy quark field. Equatién0) implies that
since each composite operator is a linear function of the

heavy quark. It can only be inserted at the endpoints of thfnw(x) IS propo:ctlonal tod¥. Thus we may write it in the
quark line as tadpole diagrams. Thus, to renormalize th ollowing generic form as

transformation, one needs to seek matching conditions with AV

insertions of such operators at the endpoints of thg quark line Ahy, (X)= =[P, h{, (X)+P_h{_(x)]. (11

on the side of the effective theory. Fortunately, it is found 2

that these matching conditions can be obtained by imposin% S )

an infinitesimal transformation o¥ on both sides of the >ubstituting it into Eq(10), it can then be decomposed as
matching conditions for renormalizing the effective Lagrang-IWe €quations by the projection operators

ian. _ _

Now let us first look at the relations between the Green's  (0IThy (X)hy (y)[0)P=P (0] T (x)¥(y)[|0)°P .,
functions in the full QCD and those in the effective theory. | (12)
denote the Green'’s functions in the full theory Byx,y;B) _ _
and those in the effective theory I84,(x,y;B), respectively, (0| Th{,_(x)hy (y)|0)B=P_(0|T¥(x)¥(y)|0)BP, .

whereB is an arbitrary background field. They are defined by (13
G(x,y;B)=(0|T¥(x)W¥(y)|0)E (6) We see that Eq(12) is nothing but Eq(8) if hy. (x) is
identical tohy, (x). Equation(13) is a new one which can
and be regarded as the definition of thE,_(x). In this new
o equation, the right-hand side is still the projected Green’s
Gy(x,Y;B)=(0|Thy, (x)hy, (y)|0)E. (7)  functions in the full theory while the left-hand side is the
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Green'’s functions in the effective theory with the operator _ Z__
h{,_ inserted at the endpoint Both sides can be expanded LY(X)=Zhy (x)iD - Vhy, (X)+ %hw(X)Dzhw(X)
in terms of 1. With the effective Lagrangian, it is calcu-
lable order by order in i and a5 expansion. Ze— ) 5
Equation (11) together with Eqs(12) and (13) implies + o+ (X) (D V) hy (X)
that the renormalized transformation keeps the same form as
the tree-level transformatiof). But only the small compo- ZZy ,
nent field needs to be renormalized. g P + th(X)Uﬂ G (X hy (%), (14)
Now let us illustrate how Eq(13) determines the renor-
malizedhy_(x) field as the matching conditions in the hard o= (i/2)[ y*,y"], and the most general form of the renor-
cutoff regularization. Similar arguments are applicable to themalizedh,_(x) field can be written as
dimensional regularization.
do(,u);D di(u)

Suppose one takes different hard cutoff regularization en- hy_(X) = D+ D.VD
ergy scalesA. in the effective theory and\; in the full Ve | 2m 4m?
theory, respectively. Thd ; should be much larger than the
heavy quark masm for including both quark and antiquark da(u)
contributions. TheA, should be much smaller tham for * 4m2 DDV [hy. (), (15)

making the Irh expansion eligible. So they satisfy a hierar-

chy relationA;<m<A;. In calculating the tree level dia- whereZ,Z,,Z.,,do(x),d,(u),d>(u) are the short distance
grams, the relation13) is valid for arbitrary momenta of coefficients to be determined.

external gluons and heavy quarks with the tree level effective In the following matching procedures, all the short-
Lagrangian and the transformation. However, in calculatinglistance coefficients are assumed to be calculated to all or-
loop diagrams the integration bounds are different on botlders inag, which makes the matching procedure applicable
sides.(On the effective theory side, it is integrated out from for higher order calculations. But in this paper we only
0 to A while on the full theory side it is integrated from 0 to present the one-loop result in the final expression.

A;.) Thus, to make the relatiofl3) valid, one has to add Since the off-shell momenta of the heavy quark and the
the contributions of the loop integrals with the loop momentamomenta of the gluons are much smaller than the quark mass
from A, to A; to the effective theory side. Since the loop in the heavy quark limit, in the matching procedure, the in-
momentum in this region is larger than the external momentéegrand can be expanded as power series of these momenta
of gluons and residue momentum of quarks, their contribuover the heavy quark mass. This leads to the remainder part
tions can be expressed as the insertions of the local operatop$ the loop momentum integrals no longer depending on the
on the heavy quark line either at a point betwadn y or at  heavy quark mass. We are free to choose the infrared regu-
the endpoink. Those local operators not inserted at the endator since the infrared divergences cancel on both sides. If
point x correspond to the counterterms in the renormalizedve use a limitation order in which the external off-shell mo-
effective Lagrangian. Those local operators inserted at thenenta of heavy quark and the momenta of the gluons go to
endpointx correspond to the counter terms in the renormal-zero first, followed bye=2—D/2 going to zero, as used by
ized small component fieltl,_(x). Since the effective La- Eichten and Hill in Ref[1], then all terms such d¢" arising
grangian can be fixed by the matching conditigs the  from the loop momentum integrals vanish. In the effective
renormalized small component fielig,_(x) can uniquely be theory, this implies that all contributions from the loop dia-
determined by these matching conditions after subtractin§rams vanish since all loop momentum integrals are propor-
the insertion of the high-dimensional operators in the renortional tok while in the full theory it implies that there is no
malized effective Lagrangian. Therefore, Ed1) can be logarithmic nonlocal term of these external momenta. This
used as the matching conditions for determining the renorsimplifies the matching calculations significantly. It is easy to
malized small component fiel,_ (x). Equation(13) allows ~ See that to determine these coefficients, we need to match
one to determine the renormalizégy_(x) to any order of both the two-point and three-point functions.

1/m and ag.
A. Matching the two-point function

[1l. RENORMALIZED TRANSFORMATION Let us first match the two-point function and see what we
TO ORDER 1/m? can learn from it. For external momentumof the heavy
quark near mass shell, the generic form of the QCD heavy

As a specific example, in this section, we determine thg, 5.y self-energy, the inverse of the two-point function, with
renormalized effective Lagrangian and the (x) fieldupto  Spove infrared regulator can be written as
the next leading order corrections ofrlusing the matching

conditions(8) and(13), respectively. For simplicity, we carry 2(p)=A(p—m)+2BmA, (16)
our calculations in the dimensional regularization and Feyn-
man gauges. whereA is defined as

Up to next leading order corrections ofmi,/ the most 2 2
general form of the renormalized effective Lagrangian can be A= p—m (17)
expressed as 4m?
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FIG. 2. Diagrams contributing to the matching conditions on the
FIG. 1. Self-energy diagram on QCD side. effective theory side. The circle, up and down triangles represent
the operators with coefficiendy, d,, andd,, respectively, while
The heavy quark expansion implies tida& 1. ThusA,B can the solid and the blank boxes represent the insertion of the kinetic
be expanded as power seriesAaf Up to next leading order, and (D -V)?/2m operators in the effective Lagrangian.
they can be written as
arise from the tree diagrams. With all possible insertions of
A=1+co(p)+Ca(p)A, higher order terms, the right-hand side of the matching con-
dition (8) reads
B=ci(u)+ca(m)A. (18)

i 2
At one-loop level in QCD, there is only one 1Pl diagram Zk-V(l+ MKV —Ze5) P.. (22
contributing to the self-energy, as shown in Fig. 1. Carrying
out a specific calculation with the above infrared regulatorCOmparing Eq.(22) to Eq. (21), we see thaZ=c=1+c¢,
we obtain that +c¢4, and Zg=(c;+c,+c,)/c. With the one-loop values

2 given in Eq.(19), we have

C
Col k) = )| N +2], . P
Z=1+—ayp)| 3In—+4|,
o 2 4 m
Cl(,u)=§as(,u,) |nﬁ+1 , Ce 2
Ze=—_—aypu)|3In—+1]. (23
C, 2 2 m
Colp) =~ ?QS(“) In?+2 : These results are in agreement with those presented in the
literature[1]. The coefficientZ,, can only be determined by
Cr u? matching the 3-point function in the next subsection.
Calp)=——ag(u)| In—— 1) , (19 We then use the matching conditi¢hd) to determine the
™ m renormalizechy,_ (x) field up to order Ith corrections. With

the two-point function given in Eq(20), the QCD side of

with Ce=4/3. _ Eg. (13 reads
The two-point Green’s function reads

i P_G(p)P. =i AP_KP,
- _G(p)P,=i
CP=35m) 4m2A(A2+ AB—B2A)
2
A(p+m)—2BmA 0 _PKP. K
=i . . .
4m2A(A2+ AB—B2A) 2mekVi™ 2mk-V
2
. . . . CotCy C1
Now we first determine the effective Lagrangian up to — P c(1+cy) 5|. (29
0

order 1m corrections using the matching conditi@®). With

Eq. (20), the QCD side of Eq(8) reads On the effective theory side, again contributions from

loop diagrams vanish while only tree diagrams survive. Up

A(2m+k-V)—2BmA ; ! . ; .
to next leading order correction terms five diagrams give

P+G(p)P+:I 2 2 2 P+ h . . .

Am°A(A“+AB—B-A) nonzero contributions, as shown in Fig. 2. The Feynman
. K2 oot rules for the operator insertions in these diagrams can easily
_ : 14 _ C17C27Cy 5 be obtained from Eqg14) and (15). Their contributions to
ck-V 2mk-V c " the right-side of Eq(13) reads
@) pyp.[ d Lok ( Z. dy+ dz)
where 6=k-V/2m andc=1+cy+c;. "2m | Zk-V 2mz(k-Vv)2 \2mZ  2mZ ’
As argued above, on the side of the effective theory, con- (25)

tributions from the loop diagrams vanish. Thus all contribu-
tions to the right-hand side of the matching conditi@  Comparing Eqs(24) to (25), we obtain that
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C1
1+C0.

dy+dy=1— (26)

We see that only the combination of tlle andd, can be

determined by matching the 2-point function. To determine
each of them separately, we need to match the 3-point func-

tion.

B. Matching the three-point function

In this subsection, we determine the short-distance coef-

ficientsZ,, in Eq.(14) andd, ,d, in Eq.(15) by matching the

three-point function. Here the Feynamn diagrams with th
3-gluon vertex are involved. We use the background fiel
method[14], in which the calculations can be simplified sig-
nificantly. In this method, the QCD Ward identity for the

¢

PHYSICAL REVIEW D 69, 096001 (2004

:
Ceanass”

FIG. 3. Vertex diagrams on QCD side.

2

In—+2
m

ag(

M)
Ca(p) = (2Ce+Ca)——

s+2|, (32

In the matching procedure, the calculations can be signifi-
cantly simplified by taking the polarization vectarin QCD,

the general form of the 3-point Green’s function with this
ertex contributing to the matching conditio(® and(13) is
iven by

G®(p1,P2)=G(p)I®(p1,p2)G(Py). (33

self-energy and the 1P| quark-gluon vertex takes a QED-like

form

K, #(p1,p2)=2(p2) —2(P1), (27)

where I'*(p1,p,) is the 1PI 3-vertex with external quark
momentap,, p,, and gluon momenturk=p,—p;.

Up to next leading order correction terms, the general

form of the QCD 1PI vertex satisfying the Ward ident(87)
with quark near threshold can be written as
B.

_ o
F*“(py1,p2)=Ay*+ EPM"‘

— Cs )
2P (p—m)+ m[k,y 1,

(28)
where

K: 1+ C0+ C2K,
§: Cl+ 2C4K,
— 1

= E(pl+ P2),
_ pi+pi-2m?
A=————. (29

8m?

The one-loop coefficientsy, ¢4, C,, andc, have been
given in Eq.(19). Thus we only need to evaluate tbg For
simplicity, we take the gluon polarization vectesatisfying

e-p;=e-p,=e-k=0. (30

Then we have

— c
F(P1.po) =T*(P1.Po)e, =Aé+ 7 (K¢l (3D

At one-loop level in QCD, there are two Feynman dia-
grams contributing tol'®(p;,p,) as shown in Fig. 3. A
straightforward calculation gives

Now we first determineZ,,, by using Eq.(8). The QCD
side of Eq.(8) reads

P.G(p)I®(p1,p2)G(p2)P
Al(K1+ Zm)—ZBlmA
T Am2A(AZ+AB;—B2A,)

et
Aé+m[k,é])

» As(Ky+2m)—2B,mA,
AmPA,(AS+A,B,—B2A,)

(34)

+

where the subscript 1 and 2 denote the momentum bejng
andp,, respectively. Expanding it to leading orderlgofwe
have

1

—————(1+cpt+cy)PL[K,é]P,.
4mC2k1Vk2V( 0 3) +[ ] +

(39

On the effective theory side, only the insertion of the color-
magnetic dipole term gives nonzero contribution for the
gluon polarization vector satisfying E30). It reads

m
—mpdk,é]m- (36)
Comparing Eqgs(35) to (36), we determine that
1+cytc c3—C
Zp=— oy 22 (37)

c C

With the coefficients given in Eq$19) and(32), Z,, at one-
loop level reads

u?
CAInF + 2CA+ ZCF .

ag(u)

Zn=1+

(38

o

This is in agreement with that obtained in the literatitg

We then determinel, and d, in the renormalizech,, _
field (15) by using the matching conditiofl3). The QCD
side of Eq.(13) reads
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B O N N
N

™,

4 O

FIG. 4. Diagrams contributing to the matching conditions on the
effective theory side. The notations are the same as in Fig. 2. The

magnetic dipole °PThese are the central results of this section. We find that they

solid oval represents the insertion of the color-
erator.

P_G(p)I'®(p1,p2)G(p2) P

Ai(Ki+2m)—2BimA [—  c3
=—P_ 5 5 Aé+ —[K,é]
Am2A,(AZ+A.B;—BIA,) 4m

As(Ky+2m)—2B,mA,
Am2A,(A3+A,B,—B3A,)

Pi. (39

The expression can be expanded as power seriéssof
Keeping only the leading corrections, H89) reads

1 k3 2¢,—C,—2C4
P_éP, 1+ —|1-———1 4
2mcky-V 2mk,-V 2(1+cyp)
Cit+CrtCy C,t+2C3
- 2t 02
C 2(1+cq)

1+cp+ca 1
4mc  Ky-Vky-V

P_KP.[K é]P,. (40)
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Substituting the short-distance coefficients in E(9)
and (32) into Eq. (42), we obtain the one-loop renormalized
coefficients ford, andd,:

2

as(pm) I
dl(M):1+ (CA_ZCF)In_Z_ZCF+ZCA y
m
(43)
as(pm) MZ
do(p) = — CalIn—+2]. (44)
T m

are in disagreement with those obtained by Balzereit in Ref.
[9]. Since we use the same definition of the heavy quark
field, both results should be equal. The result presented in
this paper is derived rigorously using the matching condi-
tions while Balzereit obtained it indirectly from the require-
ment of the invariance of the effective Lagrangian which is
much more complicated.

IV. RPI OF THE RENORMALIZED EFFECTIVE
LAGRANGIAN

In this section, | compare the renormalized transformation
determined by the matching conditio(i) with those given
in Ref.[7]. | show that their results can easily be understood
by constructing the effective Lagrangian in an alternative
way, in which an effective theory in four-component field is
constructed first, followed by its reduction to the effective
theory in the two-component field. | then prove that the
renormalized transformation determined by the matching
condition (13) can be written as the same form with the
transformation given by Eq%4) and (5) with the covariant
derivative substituted by the operator which may be called
the generalized covariant derivative. It means that the result

On the effective theory side, contributions may arise frompresented in this paper is consistent with that given in Ref.

the insertions of the operators bothlig_(x) given in Eq.
(15) and in the effective Lagrangian given in E44). With

[7]. Finally, 1 will show that the renormalized effective La-
grangian is reparametrization invariant under the renormal-

the polarization vectoe, there are only 6 Feynman diagrams ized transformation.

contributing to it as shown in Fig. 4. With appropriate Feyn-

man rules, they read

P_éP 1 < 8,0, 22 5,—dys
B omZIp V| T 2mig v 91917 7 927 020
Zn L b oypkelp 41
_4mZk1Vk2'V — +[ ) ] + - ( )
Comparing Eq(39) to Eq.(41), we determine that
2c,—Cc—2C
dlzl_#,
2(1+cyp)
_ Cxt2cy

These values are consistent with E26) which is obtained
by matching the 2-point function.

A. Effective Lagrangian in four-component field

In the conventional method, a renormalized effective La-
grangian is constructed by the following steps. First a proper
field to describe the low energy particles is chosen. In HQET
and NRQCD, this effective field for describing the heavy
quark is just the two-component field. Then the effective
Lagrangian in this field is expanded as a sum of local opera-
tors in terms of appropriate counting rules. Finally the renor-
malized short distance coefficients of these local operators
are determined by matching the full theory and the effective
theory. We call this method “matching after expansion.”

Here we introduce an alternative way to determine the
renormalized effective Lagrangian. In this method, renormal-
ized local operators expressed in the field of the full theory
are added to the Lagrangian of the full theory by matching
conditions. Then it is expanded in terms of the two-
component field. We call this method “matching before ex-
pansion.”
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Let us illustrate how this works in a hard cutoff regular- _ T\ (i
. . . ) Leg=(1+Co)P(X)(ID —m)W(x
ization. As in the last section, we take different hard cutoff " ( o) ¥ (X )F ()
regularization energy scales, in the effective theory and Cy ic, —

— 2

A¢ in the full theory, respectively. They satisf,<m - %‘I’(X)(D2Jr m?)W (x) — W‘I’(X)

< A;. In calculating the one-loop 1PI diagrams in full QCD

theory, we need to calculate the loop momentum integrals X[(iD —m) (D24 m?)+(D2+m?)(iD —m)]¥(x)
from zero toA;. They can be separated into integrals from 0

to A, and integrals from\, to A;. The first part is just the C3 — ,

same with that in the effective theory while the second part + H‘P(X)QSU“ GV (x)

gives extra contributions. As argued above, the contributions

from this region can be written as local terms of external Cs —

momenta and can be expressed as contributions from local + R‘I’(X)(Dz‘*‘ m?)?W(x). (47)

operators. Therefore, once those local operators are added to

the Lagrangian, the effective theory with hard cutdff can Calculating the 1PI diagrams shown in Figs. 1 and 3 using

produce the same result of the full theory with cutdff. g effective Lagrangian and full QCD, we see that these
tT”r:)lgpa;rgument can easily be generalized to the case of mu oefficients are the same —c,’s given in Egs.(19) and
At this stage, those local operators are written in terms 01(32)'
Dirac four-component field. A general form of the renormal-
ized effective Lagrangian density with hard cutoff, for
heavy quark field can formally be expressed as Now let us reduce Eq47) to the effective Lagrangian in
the two-component field. The equation of motion now reads

B. Effective Lagrangian in two-component field

Les=V(X)(iD —m)¥(x)+ ¥ (x)04(x)¥(X), (45

P_O(X)[hy+(X)+hy_(x)]=0, (48)
where D"zaf‘—igAf‘LTa is the covariant derivative. It may -
be denoted as whereO(x) is theO(x) in which the covariant derivativi®
is replaced byiD +mV due to the phase factor in the field
L= lI_/()()O(x)\II(x) (46) redefinition. It can be regarded as the renormalized equation
of motion.
in a compact form by definin@(x)=iD —m+ 0,(X). From Eq.(48), we can expreshy_(x) as a function of

The first term in Eq(45) is just the tree-level Lagrangian hy.(x) formally as
while the second term arises from the renormalization with

the cutoff A¢,<m. The operators in this term are generally _ 1

the function of the cqvariant derivative andzthe heavy quark hy-(x)= 2m+iD(x)-V—P_0,(X)P_

mass. It may contain terms such BZ+m? and g,G*”

=i[D#,D"], which are suppressed by the off-shell momen- XP_[iD +04(x) ]y (X), (49)

tum of the heavy quark or the momenta of the external glu-

ons. They can be organized via appropriate power countingjhereQ,(x) is the O;(x) in which the covariant derivative
rules. In perturbative calculations, the loop momentum inteip is substituted byiD + mV. This modifies the tree level
gral is from zero toA.. In this region, both the external and expression(5). Once the form 0f04(x) is given, the right-

the loop momenta are smaller them hence the Th expan-  hang side of Eq(49) can be expanded as power series of
sion is allowed and the quark mass dependence is extractqgy, \with 0,(x) given in Eq.(47), up to ordera, and 1Mm?
explicitly. Thus the energy scala is no longer involved in hy_(x) reads ' s ’

the effective theory. | emphasis here that the effective La-

grangian density in this form is independent of the velocity 1 1 2¢;—C,—2C3

parameteV. Thus it automatically satisfies the RPI. hy_(x)=P_| —iD+ 2( — D-VD
Higher-dimensional operators appeaiQg(x). It implies 2m 4 2(1+¢o)

that power divergences arise in the loop momentum inte- C,+ 20,

grals. In the full theory the power divergences cancel when ———————DD-V hy.(x). (50)

both the contributions from quark and antiquark are in- 8(1+co)m?

cluded. However, in the effective theory when we impose a ) o )
hard cutoffA <m on the loop momentum integrals, the con- COmparing this with Eqs(15),(42), we see that they are in
tributions from the antiquark are excluded so that the powefdréement. - _ _ _
divergences do not cancel. Nevertheless, those power diver- Finally, with equation of motion(48), the effective La-
gences are artificial since they cancel between those frofdrangian(46) is reduced to

diagram calculations and those from the short distance coef-

ficients. Lei=hy+ ()O()[hy+ () +hy_(x)]
At one loop and the leading order ofmi/ the most gen- o o o
eral form of the four-component effective Lagrangian is =[hy+(X)+hy_(X)]O(X)hy,(X). (51
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This is just the two-component effective Lagrangian. It canor (11) with the renormalized small component field. It fol-
be expanded as power series afl/n this way, the four- lows that from an infinitesimal transformation of the effec-
component effective Lagrangian is reduced to the twodive Lagrangian51)

component effective Lagrangian. Up to ordeg and 1 _ _ _ _

correction, it is reduced to the effective Lagrangiéim). A Leg= Ay (X)O(X)hy(X) + hy (X)O(x) Ahy(X)
Therefore, the effective Lagrangian obtained by these two
different approaches are equal. — A& — —

=hv(X) 5-0(x)hy(X) +hy. (X) O(X) Ahy(X).

C. Comparison with previous studies (56)

In Sec. Il, we derive the matching conditions for deter-\We have used a shorthand notatiam,(x) = hy , (x)
mining the renormalizedhy,_(x) field as given in Eq(13.  +h,_(x). It is emphasized here that the operaf(x) in-
In the last subsection, th,_(x) field was obtained using troduced in the four component effective field theory is in-
the equation of motion. Its expression is given by E4).  variant against the variation of the veloc¥y Any change
In this subsection, | will show that the small componentarising from the phase factor in the definition of the effective
fields obtained by these two different methods are identicalfield has been omitted simply because it is trivial under the
They uniquely determine the renormalized transformation otransformation.
the heavy quark field against the infinitesimal variation of the  Imposing an infinitesimal transformation on the equation
velocity parametelV. Adding both sides of Eq912) and  of motion (48), we obtain that
(13) together, we have

AY_ _
(O] Tl hy (x) +h{,_(x)Thy (y)|0)B — 5 0()hy(x)+P_O(x)Ahy(x)=0. (57)
=(0[Tw(x)¥(y)|0)BP, , (520 With it, Eq. (56) can be rewritten as
where (0| TW (x)W (y)|0)B is a full propagator under arbi- ALeg=hy(X)O(x)Ahy(x). (58

trary external field8#(x). It is satisfied order by order ia;.

Suppose we calculate the left-hand side at tree level with th
renormalized effective Lagrangian. To validate this equation,
the right-hand side then should also be calculated to the tree

otice thatP, h,,_(x)=0. Imposing an infinitesimal trans-
ormation on it, we immediately have

level with the renormalized four-component effective La- P+Ahv,(x)=—évhv,(x). (59)
grangian(45). Thus it satisfies the following equation: 2
O(X)G(x,y;B)=i8*x—y). (53  Adding it together with P Ahy., (x)=4&7¢/2hy_(x), we
have
Acting an operatorP_6(x) on the left-hand side and P, Ahy(x)=0. (60)

P_0O(x) on the right-hand side of Eq52), the right-hand
side vanishes immediately duefo - P, =0. Since we only  With it, Eq. (56) is reduced to

calculate them at tree level, the opera®{ix) can be moved

within the bracket A Leg=hy(x)O(X)P_Ahy(x). (61)

It follows that AL.=0 from the equation of motion

hy(x)O(x)P_=0. Thus we have shown that the renormal-
ized effective Lagrangiafbl) is invariant against the varia-
tion of the velocity parametér under the infinitesimal trans-

S_mce the_ argumerytm .hV+(y) IS arb_ltrary e_md this correla- formation(4) or (11) with the renormalized small component
tion function contains interaction with arbitrary backgroundﬁeld

gluon field, the unique solution of this equation is

_ , V. CONCLUSION
P_O(X)[hy+(x)+hy_(x)]=0. (59

P_(OTLO(X)[hy+ () +h{_(x)Thy.(y)]|0)B=0.
(54

The RPI is an important theoretical issue in the heavy
This is identical to Eq(48) if hy,_(x) is the same as,_(x).  quark effective theory and the NRQCD effective theory. It is

This implies that the renormalizétd,_(x) determined by the required by the consistency of the effective theory. It also

matching conditiong13) is identical to that from the equa- leads to interesting applicatioh$0—12. The transformation
tion of motion (48). of heavy quark field under the variation of the velocity pa-

rameterV proposed by Chefb] with the tree level expres-
sion of the small-component field keeps the tree level effec-
tive theory invariant. However, at loop level, the
In this subsection, we prove that the renormalized effectransformation needs to be renormalized. In this paper, | have
tive Lagrangian(51) is invariant under the transformatié#)  shown that the renormalized transformation of the heavy

D. RPI of the renormalized effective Lagrangian
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quark keeps the same form as Chen’s trans_form whilg the Fiv:%(AJ“ B)2—d,(A+ B)Z+gfabC(A+ B)Z(A’L B)C,
small component field needs to be renormalized. | derived

the matching conditions for determining the renormalized (A3)
transformation by imposing an infinitesimal transformation Ga=g5 A2+ gfabogbAcx, (A4)
on the relations between the Green’s functions in the full e a

QCD and those in the effective theory. These matching conbeing the gauge-fixing term. If,, satisfies the following re-
ditions are essential for studying the renormalization issue ifgtion:

RPI. As an application of these matching conditions, | deter-

mined the renormalized transformation up to orden?/I SW SW 5J$(y)
also showed that the previous result in REfl can be un- ﬁﬂLJ 4 ~ smE | -3, (A5)
derstood clearly by building the effective theory in an alter- u 8J, s

native way, in which the renormalized effective Lagrangian _ _ _
in Dirac four-component field is constructed first, followed With W[ %,7%,J,B]= —iInZ[5,7J,B], W[ 5,%,J,B] is just

by its reduction to the two-component effective Lagrangianthe effective action regarding to the gluon fieki with
The renormalized small component field is then obtained b@auge-fixing term

the equation of motion. The four-component effective La- a a aboab Ac

grangian automatically satisfies RPI. Thus RPI cannot give G*=4d,(A-B);+gf*™*B A} (A6)
any constraints on any operators in it. When it is reduced to

the two-component effective theory, the same operator witnd!q reads

certain coefficients may appear in different terms. The RPI — _ _

can be used to connect those terms. | also showed that the | o(X) =Y (X)(il —m)W(x) + (X)W (x) + ¥ (x) n(X).
renormalized small component fields obtained by these two (AT)
methods turn out to be the same while the matching condi- ' .

tions provide a systematic way to determine the renormald N€ quark field can be integrated out formally and then we
ized transformation to any desired order imland ag ex-
pansions.

H%;JBP{fWﬂmﬂm—mkﬂﬂf&ﬂ%+b%
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APPENDIX: GENERATING FUNCTIONAL OF GREEN'S (ID —m)W(x)=—7(X). (A9)

FUNCTION . . . L
UNCTIONS The generating functional of the effective theory is similar to

In this appendix, we derive the relations between thehat of the full theory except the heavy quark action. The
Green’s functions in QCD full theory and those in the effec-effective Lagrangian is substituted by H¢6). In the exter-
tive theory using generating functional method. It is similarnal source term of the heavy quark only the large component
to that given in Refs[13] and[5]. We use the background effective field defined in Eq(l) couples to the external
field method[14,15 for gluon field interactions, which ex- source. The action of the heavy quark is given by
plicitly preserves the gauge covariant. . o

In QCD full theory, the generating functional reads |g+(x):qf(x)o(x)\p(x)+ 7(X)Phy,(X)

_ _ +hy (X)P 4 7(X). (A10)
Hmmlm=fﬂw¢MWMJMAQWH@wm o _ . .
(A1) 'S|m|larly,'|ntegrat|ng out the heavy quark field, the generat-

ing functional takes the same form as H&B8) with the
effective action of the heavy quark section is substituted by

where 7, 7,J are the external sources for heavy quark, anti-

quark, and gluon field3 is the background gluon field, is 18" (%) =hy(X)O(X)hy(X) + 7(X) P hy 1 (X)
given by _
+hy (X)P 4 7(X), (A11)
1 1 G2 .
lg(x)=— —F2 Faur— —(G*%+Inde — [+ 22A, with hy(x) =hy (X) +hy_(X).
4 * 2¢ dw a The quark field now is related to the external soui®)

(A2) by the following equation of motion:

with O(xX)hy, (xX)=—P, n(x). (A12)
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Multiplying P_ on both sides, the right-hand side vanishes The full quark propagator with background fiesd'(x) is

and we obtain the renormalized equation of motion derived by differentiating over the external sources
— 2

P_OX)[hys(xX)+hy_(x)]=0. (A13) G(x,y;B)= . (X)g_(y) W(n,;,J,B). (A15)
This is Eq.(48). The renormalizedhy,_(x) can be related to K 7 _
hy.+ () by Eq.(49). With the equation of motioA13), Eq. If the hard cutoff energy scale is setAg, the same as that
(A11) can be simplified as in the QCD full theory, thé(x) is then to bed —m, just as

o - o in the full theory. The effective Lagrangian is just the nonlo-

1" =hy+ () O(x)hy(x) + 7(X) P hy 4. (X) cal form (3). In this case the only difference of the effective

theory and the full theory is the external source term. One

+hy ()P 7(x). (Al14) immediately gains the relations between the Green's func-

tions of the full theory and those in the effective the¢sy.

This gives the effective Lagrangian densigi). This relation ensures that the nonlocal effective theory is
The quark determinant in E@GA8) is responsible for the equivalent to the QCD full theory. The local effective theory

contributions of the heavy quark loop. It is the same in thewith the hard cutoff regularization scale, is equivalent to
full theory and in the effective theory and is suppressed byhe nonlocal effective theory with a hard cutoff;. This
1/m? at least. Thus we may ignore it. ensures the validity of relatio8).
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