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Renormalization in reparametrization invariance
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The renormalization issue in the reparametrization invariance in heavy quark effective theory and NRQCD
is investigated. I argue that the renormalization of the transformation of the heavy quark field under the
variation of the velocity parameterV is attributed to the renormalization of the small component field in the
proposed transformation. I derive the matching conditions for determining the renormalized small component
field by imposing an infinitesimal transformation ofV on the relations between the Green’s functions in QCD
full theory and those in the effective theory. As an application, I determine the renormalized transformation to
order 1/m2 using the matching conditions. The obtained result is in disagreement with that determined by the
indirect method.
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I. INTRODUCTION

Heavy quark effective theory~HQET! @1# and nonrelativ-
istic QCD ~NRQCD! @2# are powerful tools in dealing with
the dynamics of heavy-light and heavy-heavy systems,
spectively. In those systems, the off-shell momentum of
heavy quark is much smaller than its mass. The effec
theories are designed to reproduce the results of the QCD
theory at the low energy scale in a simpler way by integr
ing out the effects at the energy scale of the heavy qu
mass. In the past decade both effective theories and
applications have been intensively studied.

A. What is the reparametrization invariance

One interesting theoretical issue in those effective theo
is reparametrization invariance~RPI!. It arises from the fact
that the effective theory explicitly depends on the four velo
ity parameterV. In constructing the effective Lagrangia
one needs to divide the heavy quark momentumP into a
large and small part asP5mV1k, wherem is the heavy
quark mass andk is a small residual momentum. One al
needs to decompose the Dirac 4-fermion field as large
small two-component fields with respect toV and use the
large one to describe the heavy quark or antiquark. Th
procedures lead to the effective Lagrangian beingV depen-
dent. The choice ofV which satisfiesV251 is not unique.
But the physical prediction should be unchanged against
variation of the velocity parameterV. This is the RPI. It is
required by the consistency of effective theory and also c
ducts interesting applications. It was first proposed in HQ
However, the same invariance also holds for NRQCD eff
tive theory.

B. A brief review of previous studies

To implement RPI in the effective theory, it is essential
find out an appropriate transformation of the heavy qu
field under the variation ofV. It was first studied by Manoha
and Luke@3# in HQET. They used the Lorentz boost of th
four component spinor field as the transformation of
heavy quark field from finite velocityV to V8. Their trans-
formation suffers from operator ordering ambiguities when
0556-2821/2004/69~9!/096001~11!/$22.50 69 0960
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is expanded to higher orders of 1/m. Later on, Manohar@4#
discussed its higher order expansion. Chen@5# proposed an
infinitesimal transformation of the heavy quark field und
the velocity variation fromV→V1DV. Chen’s transforma-
tion keeps the tree level effective Lagrangian invariant to
orders of 1/m. Finkemeier, Georgi, and McIrvin@6# showed
that to order 1/m2 the effective Lagrangian constrained b
Manohar and Luke’s transformation and Chen’s transform
tion may be related to each other by a field redefinition.

Chen’s transformation can be expanded as inverse po
series of the heavy quark mass. Each term contains the p
uct of some covariant derivatives and the heavy quark fie
It can be thought of as a composite operator. Since the he
quark expansion changes the ultraviolet behavior of
original transformation, beyond the next leading order,
turns out that it needs to be renormalized. Its renormaliza
is different from that of the effective Lagrangian since ea
term in the Lagrangian is a bilinear function of the hea
quark field. The renormalization of the operators in the L
grangian is familiar to us and we have appropriate match
conditions to determine the coefficients of them. Howev
the renormalization of the composite operators in the tra
formation is a new case. How to carry out its renormalizat
is not obvious.

Kilian and Ohl @7# proposed a renormalized transform
tion. The form is exactly the same as Chen’s transformat
except that the covariant derivativeDm in Chen’s transfor-
mation is substituted by another operator which they ca
the general covariant derivative. Sundrum@8# discussed this
issue using the auxiliary field method and obtained a sim
result as that of Kilian and Ohl. The results presented
these papers are formal. They did not show how to determ
the general covariant derivative by certain matching con
tions. Actually, in the literature no specific calculation f
determining the transformation has been made with
method. The only calculation to determine the renormaliz
transformation was given by Balzereit in an unpublished
per @9#. He first calculated the effective Lagrangian to ord
1/m3 at one loop level in the leading logarithmic approxim
tion. By requiring that the effective Lagrangian be invaria
he could then determine the renormalized transformation
order 1/m2 indirectly. There are some drawbacks to this ki
©2004 The American Physical Society01-1
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of calculation. First, since it is an indirect determination, o
is not able to get too many insights into the renormalizat
issue in the RPI. Second, it makes the RPI less practic
useful. An interesting application of the RPI is that once
know the transformation, we can use it to constraint
higher order effective Lagrangian and make the calculati
simpler@3,5,6#. Since Balzereit did it in an inverse order, R
cannot be used to constraint the effective Lagrangian w
that method. Third, the calculations are quite complica
since the determination of the higher order effective L
grangian is usually tedious work.

C. New method to renormalize the transformation

In this paper, I propose a new method to study the ren
malization issue in the RPI. In this method, I derive expli
matching conditions to determine the coefficients of the n
composite operators in the transformation so that the re
malized transformation can be directly calculated to all
ders of 1/m andas without knowing the higher order effec
tive Lagrangian. The obtained transformation can be use
constrain the effective Lagrangian in 1/m expansion.

Recall that there are some general relations between
Green’s functions in the QCD full theory and those in t
effective theory@1#. These relations ensure that the effecti
theory reproduces the same physical predictions as the
theory and can be used as the matching conditions to d
mine the renormalized effective Lagrangian. Since these
lations are valid for arbitrary velocity parameterV, we may
impose an infinitesimal transformation ofV on both sides of
the relations and gain some new relations. We will show t
the composite operators in the heavy quark transforma
are inserted on the effective theory side of these relations
the new relations obtained can be used as the matching
ditions to determine the renormalized transformation.

As a specific example, I will use these matching con
tions to determine the renormalized transformation to or
1/m2 at one-loop level. The obtained result is in disagre
ment with that obtained by Balzereit@9#. Since the same
Lagrangian~MRR Lagrangian! is used, the disagreement b
tween these two different results cannot be accounted fo
a field redefinition.

I will also show that the renormalized transformation d
termined by these matching conditions can be written in
form of Chen’s transformation with the covariant derivati
substituted by an operator which may be called a gen
covariant derivative. Thus the renormalized transformat
determined by the matching conditions presented in this
per is consistent with the result of Kilian and Ohl@7#.

The remainder of the paper is organized as follows.
Sec. II, after a brief review of the tree level transformation
argue that the renormalized transformation of the he
quark field can be attributed to the renormalization of
small component field. I then show that the matching con
tions for determining it can be obtained by imposing an
finitesimal transformation on the general relations betw
the Green’s functions in the QCD full theory and those in
effective theory. As an example, in Sec. III, I determine t
renormalized transformation to order 1/m2 by matching the
09600
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two-point and three-point functions. In Sec. IV, I show th
previous results can be understood more clearly by c
structing the effective Lagrangian in an alternative w
where a four-component effective Lagrangian is construc
first, followed by its reduction to the effective Lagrangian
the two-component field. I then show that the remormaliz
small component field determined by the matching con
tions is consistent with the result of Kilian and Ohl@7#. Then
I show that the renormalized effective Lagrangian is re
arametrization invariant under the renormalized transform
tion. Conclusions are given in Sec. V. Finally, in the Appe
dix, I derive the general relations between the Gree
functions with the generating functional method.

II. RENORMALIZED TRANSFORMATION OF THE HEAVY
QUARK FIELD

In the heavy quark effective theory, the heavy quark
described by a two component field while in QCD full theo
it is described by the Dirac four-component field. Thus,
construct the effective theory, one first needs to decomp
the Dirac four-component field as the two-component fiel
A simple way to realize this decomposition is

hV6~x![exp~ imV•x!P6C~x!, ~1!

where

P6[
16V”

2
~2!

are the projection operators. The introduced phase factor
removes the large partmV from the heavy quark momentum
p when it is written asp5mV1k, with k the residue mo-
mentum. This definition of the field was first introduced b
Georgi @1# and has been used by most people@1# in the
literature. Nevertheless, it is not unique. Different definitio
lead to different forms of the effective Lagrangian. Howev
they can be related to each other by a field redefinition
produce the same physical predictions@6#. Throughout this
paper, we use the definition~1!.

A. The tree level transformation

With the definition in Eq.~1!, the effective Lagrangian
reads@5,13#

Leff
0 5h̄V1~x!iD •VhV1~x!

2h̄V1~x!D”
1

2m1 iD •V
P2D” hV1~x!, ~3!

where Dm[]m2 igsA
m is the covariant derivative. This is

the nonlocal form of the effective theory. The effectiv
theory in this form is equivalent to that of the full theory
the sense that they produce the sameS-matrix elements.
Without expansion, the effective Lagrangian does not rece
renormalization.

Obviously, this effective Lagrangian depends on the
locity parameterV. The choice of this parameter is no
unique. The RPI implies that the physical predictions by
1-2
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effective theory are independent of the choice ofV. In Ref.
@5#, it was shown that the effective Lagrangian~3! is invari-
ant under an infinitesimal transformationV→V1DV

DhV1~x!5
DV”

2
@hV1~x!1hV2~x!#, ~4!

with hV2(x) being the small component field given by

hV2~x!5
1

2m1 iD •V
P2iD” hV1~x!. ~5!

DV is constrained byDV•V50 due toV251.
Both the effective Lagrangian~3! and the transformation

given by Eqs.~4! and~5! can be expanded as a power ser
of 1/m. The RPI is then valid order by order in 1/m. This
implies that the tree level transformation makes the tree le
effective Lagrangian valid at any order of 1/m.

B. Matching conditions for renormalizing the transformation

When the effective theory is expanded in terms of 1/m,
the ultraviolet behavior of the theory is changed. Both
effective Lagrangian and the transformation receive ren
malization.

The renormalization procedure of the effective Lagran
ian is well known. The counterterms are bilinear operators
the heavy quark field. In Feynman diagrams, contributio
from these operators can be expressed as insertions of c
sponding vertices on the heavy quark lines. In order that
effective theory reproduces the results of the QCD f
theory, the Green’s functions in the effective theory with t
heavy quark field defined in Eq.~1! and those in QCD full
theory are required to satisfy certain relations. The coe
cients of those operators can be fixed by virtue of these
lations. Thus those relations can be used as the matc
conditions to determine the renormalized effective Lagra
ian.

The renormalization of the transformation is a new ca
since each composite operator is a linear function of
heavy quark. It can only be inserted at the endpoints of
quark line as tadpole diagrams. Thus, to renormalize
transformation, one needs to seek matching conditions w
insertions of such operators at the endpoints of the quark
on the side of the effective theory. Fortunately, it is fou
that these matching conditions can be obtained by impo
an infinitesimal transformation ofV on both sides of the
matching conditions for renormalizing the effective Lagran
ian.

Now let us first look at the relations between the Gree
functions in the full QCD and those in the effective theory
denote the Green’s functions in the full theory byG(x,y;B)
and those in the effective theory byGV(x,y;B), respectively,
whereB is an arbitrary background field. They are defined

G~x,y;B![^0uTC~x!C̄~y!u0&B ~6!

and

GV~x,y;B![^0uThV1~x!h̄V1~y!u0&B. ~7!
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Any insertion of interaction vertex with gluons can be o
tained by functional differentiating over the gluon fie
B(x). When the quark fieldhV1(x) is related to the field in
the full theory by Eq.~1!, the Green’s functions satisfy th
following simple relation~a derivation of this relation using
the generating functional method is given in Appendix!:

GV~x,y;B!8P1G~x,y;B!P1 , ~8!

where 8 means that we omit the phase factor exp@imV•(x
2y)# and the renormalization constantZ@m/m,as(m)# which
arises from the renormalization of the heavy quark fie
Both sides are valid to all orders in 1/m and as expansion.
This relation ensures that theS-matrix elements in the effec
tive theory are identical to those in the full theory.

The relation~8! is just the matching conditions to dete
mine the coefficients of the operators in the effective L
grangian. Below starting from this relation we derive t
matching conditions to determine the renormalized trans
mation of the heavy quark field.

Obviously, the relation~8! is valid for arbitraryV. It im-
plies that we may impose an infinitesimal transformationV
→V1DV on both sides. It follows that

DGV~x,y;B!8
DV”

2
G~x,y;B!P11P1G~x,y;B!

DV”

2
. ~9!

Again the symbol8 means that we omit the renormalizatio
constant, the phase factor, and a term arising from its infi
tesimal shift which is trivial under the transformation.

Given the definitions of the Green’s functions in Eqs.~6!,
~7!, we have the following unique solution to Eq.~9!:

^0uTDhV1~x!h̄V1~y!u0&B8
DV”

2
^0uTC~x!C̄~y!u0&BP1 .

~10!

DhV1(x) in this equation defines the infinitesimal transfo
mation of the heavy quark field. Equation~10! implies that
DhV1(x) is proportional toDV”. Thus we may write it in the
following generic form as

DhV1~x!5
DV”

2
@P1hV18 ~x!1P2hV28 ~x!#. ~11!

Substituting it into Eq.~10!, it can then be decomposed a
two equations by the projection operators

^0uThV18 ~x!h̄V1~y!u0&B8P1^0uTC~x!C̄~y!u0&BP1 ,
~12!

^0uThV28 ~x!h̄V1~y!u0&B8P2^0uTC~x!C̄~y!u0&BP1 .
~13!

We see that Eq.~12! is nothing but Eq.~8! if hV18 (x) is
identical tohV1(x). Equation~13! is a new one which can
be regarded as the definition of thehV28 (x). In this new
equation, the right-hand side is still the projected Gree
functions in the full theory while the left-hand side is th
1-3
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Green’s functions in the effective theory with the opera
hV28 inserted at the endpointx. Both sides can be expande
in terms of 1/m. With the effective Lagrangian, it is calcu
lable order by order in 1/m andas expansion.

Equation ~11! together with Eqs.~12! and ~13! implies
that the renormalized transformation keeps the same form
the tree-level transformation~4!. But only the small compo-
nent field needs to be renormalized.

Now let us illustrate how Eq.~13! determines the renor
malizedhV2(x) field as the matching conditions in the ha
cutoff regularization. Similar arguments are applicable to
dimensional regularization.

Suppose one takes different hard cutoff regularization
ergy scalesLe in the effective theory andL f in the full
theory, respectively. TheL f should be much larger than th
heavy quark massm for including both quark and antiquar
contributions. TheLe should be much smaller thanm for
making the 1/m expansion eligible. So they satisfy a hiera
chy relationLe!m!L f . In calculating the tree level dia
grams, the relation~13! is valid for arbitrary momenta o
external gluons and heavy quarks with the tree level effec
Lagrangian and the transformation. However, in calculat
loop diagrams the integration bounds are different on b
sides.~On the effective theory side, it is integrated out fro
0 to Le while on the full theory side it is integrated from 0 t
L f .) Thus, to make the relation~13! valid, one has to add
the contributions of the loop integrals with the loop mome
from Le to L f to the effective theory side. Since the loo
momentum in this region is larger than the external mome
of gluons and residue momentum of quarks, their contri
tions can be expressed as the insertions of the local oper
on the heavy quark line either at a point betweenx to y or at
the endpointx. Those local operators not inserted at the e
point x correspond to the counterterms in the renormaliz
effective Lagrangian. Those local operators inserted at
endpointx correspond to the counter terms in the renorm
ized small component fieldhV28 (x). Since the effective La-
grangian can be fixed by the matching conditions~8!, the
renormalized small component fieldhV28 (x) can uniquely be
determined by these matching conditions after subtrac
the insertion of the high-dimensional operators in the ren
malized effective Lagrangian. Therefore, Eq.~11! can be
used as the matching conditions for determining the ren
malized small component fieldhV2(x). Equation~13! allows
one to determine the renormalizedhV2(x) to any order of
1/m andas .

III. RENORMALIZED TRANSFORMATION
TO ORDER 1Õm2

As a specific example, in this section, we determine
renormalized effective Lagrangian and thehV2(x) field up to
the next leading order corrections of 1/m using the matching
conditions~8! and~13!, respectively. For simplicity, we carry
our calculations in the dimensional regularization and Fe
man gauges.

Up to next leading order corrections of 1/m, the most
general form of the renormalized effective Lagrangian can
expressed as
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1~x!5Zh̄V1~x!iD •VhV1~x!1

Z

2m
h̄V1~x!D2hV1~x!

1
ZZe

2m
h̄V1~x!~ iD •V!2hV1~x!

1
ZZm

4m
hV1~x!smnGmn~x!hV1~x!, ~14!

smn[( i /2)@gm,gn#, and the most general form of the reno
malizedhV2(x) field can be written as

hV2~x!5P2S d0~m!

2m
iD” 1

d1~m!

4m2 D•VD”

1
d2~m!

4m2 D” D•VD hV1~x!, ~15!

whereZ,Ze ,Zm ,d0(m),d1(m),d2(m) are the short distance
coefficients to be determined.

In the following matching procedures, all the sho
distance coefficients are assumed to be calculated to al
ders inas , which makes the matching procedure applica
for higher order calculations. But in this paper we on
present the one-loop result in the final expression.

Since the off-shell momenta of the heavy quark and
momenta of the gluons are much smaller than the quark m
in the heavy quark limit, in the matching procedure, the
tegrand can be expanded as power series of these mom
over the heavy quark mass. This leads to the remainder
of the loop momentum integrals no longer depending on
heavy quark mass. We are free to choose the infrared re
lator since the infrared divergences cancel on both side
we use a limitation order in which the external off-shell m
menta of heavy quark and the momenta of the gluons g
zero first, followed bye522D/2 going to zero, as used b
Eichten and Hill in Ref.@1#, then all terms such aske arising
from the loop momentum integrals vanish. In the effecti
theory, this implies that all contributions from the loop di
grams vanish since all loop momentum integrals are prop
tional toke while in the full theory it implies that there is no
logarithmic nonlocal term of these external momenta. T
simplifies the matching calculations significantly. It is easy
see that to determine these coefficients, we need to m
both the two-point and three-point functions.

A. Matching the two-point function

Let us first match the two-point function and see what
can learn from it. For external momentump of the heavy
quark near mass shell, the generic form of the QCD he
quark self-energy, the inverse of the two-point function, w
above infrared regulator can be written as

S~p!5A~p” 2m!12BmD, ~16!

whereD is defined as

D[
p22m2

4m2 . ~17!
1-4
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The heavy quark expansion implies thatD!1. ThusA,B can
be expanded as power series ofD. Up to next leading order
they can be written as

A511c0~m!1c2~m!D,

B5c1~m!1c4~m!D. ~18!

At one-loop level in QCD, there is only one 1PI diagra
contributing to the self-energy, as shown in Fig. 1. Carry
out a specific calculation with the above infrared regula
we obtain that

c0~m!5
CF

4p
as~m!S ln

m2

m2 12D ,

c1~m!5
CF

2p
as~m!S ln

m2

m2 11D ,

c2~m!52
CF

p
as~m!S ln

m2

m2 12D ,

c4~m!52
CF

p
as~m!S ln

m2

m2 21D , ~19!

with CF54/3.
The two-point Green’s function reads

G~p!5
i

S~p!

5 i
A~p” 1m!22BmD

4m2D~A21AB2B2D!
. ~20!

Now we first determine the effective Lagrangian up
order 1/m corrections using the matching condition~8!. With
Eq. ~20!, the QCD side of Eq.~8! reads

P1G~p!P15 i
A~2m1k•V!22BmD

4m2D~A21AB2B2D!
P1

5
i

ck•V
S 11

k2

2mk•V
2

c11c21c4

c
d D P1 ,

~21!

whered[k•V/2m andc511c01c1.
As argued above, on the side of the effective theory, c

tributions from the loop diagrams vanish. Thus all contrib
tions to the right-hand side of the matching condition~8!

FIG. 1. Self-energy diagram on QCD side.
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arise from the tree diagrams. With all possible insertions
higher order terms, the right-hand side of the matching c
dition ~8! reads

i

Zk•V S 11
k2

2mk•V
2Zed D P1 . ~22!

Comparing Eq.~22! to Eq. ~21!, we see thatZ5c511c0
1c1, and Ze5(c11c21c4)/c. With the one-loop values
given in Eq.~19!, we have

Z511
CF

4p
as~m!S 3ln

m2

m2 14D ,

Ze52
CF

2p
as~m!S 3ln

m2

m2 11D . ~23!

These results are in agreement with those presented in
literature@1#. The coefficientZm can only be determined by
matching the 3-point function in the next subsection.

We then use the matching condition~13! to determine the
renormalizedhV2(x) field up to order 1/m corrections. With
the two-point function given in Eq.~20!, the QCD side of
Eq. ~13! reads

P2G~p!P15 i
AP2k” P1

4m2D~A21AB2B2D!

5 i
P2k” P1

2mck•V F11
k2

2mk•V

2S 11
c21c4

c
2

c1
2

c~11c0!
D dG . ~24!

On the effective theory side, again contributions fro
loop diagrams vanish while only tree diagrams survive.
to next leading order correction terms five diagrams g
nonzero contributions, as shown in Fig. 2. The Feynm
rules for the operator insertions in these diagrams can ea
be obtained from Eqs.~14! and ~15!. Their contributions to
the right-side of Eq.~13! reads

i
P2k” P1

2m F d0

Zk•V
1

k2

2mZ~k•V!2
2S Ze

2mZ
1

d11d2

2mZ D dG .

~25!

Comparing Eqs.~24! to ~25!, we obtain that

FIG. 2. Diagrams contributing to the matching conditions on
effective theory side. The circle, up and down triangles repres
the operators with coefficientd0 , d1, and d2, respectively, while
the solid and the blank boxes represent the insertion of the kin
and (D•V)2/2m operators in the effective Lagrangian.
1-5
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d051,

d11d2512
c1

11c0
. ~26!

We see that only the combination of thed1 and d2 can be
determined by matching the 2-point function. To determ
each of them separately, we need to match the 3-point fu
tion.

B. Matching the three-point function

In this subsection, we determine the short-distance c
ficientsZm in Eq. ~14! andd1 ,d2 in Eq. ~15! by matching the
three-point function. Here the Feynamn diagrams with
3-gluon vertex are involved. We use the background fi
method@14#, in which the calculations can be simplified si
nificantly. In this method, the QCD Ward identity for th
self-energy and the 1PI quark-gluon vertex takes a QED-
form

kmGm~p1 ,p2!5S~p2!2S~p1!, ~27!

where Gm(p1 ,p2) is the 1PI 3-vertex with external quar
momentap1 , p2, and gluon momentumk5p22p1.

Up to next leading order correction terms, the gene
form of the QCD 1PI vertex satisfying the Ward identity~27!
with quark near threshold can be written as

Gm~p1 ,p2!5Āgm1
B̄

m
p̄m1

c2

2m2 p̄m~p”̄ 2m!1
c3

4m
@k” ,gm#,

~28!

where

Ā511c01c2D̄,

B̄5c112c4D̄,

p̄[
1

2
~p11p2!,

D̄[
p1

21p2
222m2

8m2 . ~29!

The one-loop coefficientsc0 , c1 , c2, and c4 have been
given in Eq.~19!. Thus we only need to evaluate thec3. For
simplicity, we take the gluon polarization vectore satisfying

e•p15e•p25e•k50. ~30!

Then we have

Ge~p1 ,p2![Gm~p1 ,p2!em5Āe”1
c3

4m
@k” ,e” #. ~31!

At one-loop level in QCD, there are two Feynman d
grams contributing toGe(p1 ,p2) as shown in Fig. 3. A
straightforward calculation gives
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c3~m!5~2CF1CA!
as~m!

4p
S ln

m2

m2 12D , ~32!

with CA53.
In the matching procedure, the calculations can be sign

cantly simplified by taking the polarization vectore. In QCD,
the general form of the 3-point Green’s function with th
vertex contributing to the matching conditions~8! and~13! is
given by

Ge~p1 ,p2!5G~p1!Ge~p1 ,p2!G~p2!. ~33!

Now we first determineZm by using Eq.~8!. The QCD
side of Eq.~8! reads

P1G~p1!Ge~p1 ,p2!G~p2!P1

52P1

A1~k” 112m!22B1mD

4m2D1~A1
21A1B12B1

2D1!
S Āe”1

c3

4m
@k” ,e” # D

3
A2~k” 212m!22B2mD2

4m2D2~A2
21A2B22B2

2D2!
P1 , ~34!

where the subscript 1 and 2 denote the momentum beingp1
andp2, respectively. Expanding it to leading order ofk, we
have

2
1

4mc2k1•Vk2•V
~11c01c3!P1@k” ,e” #P1 . ~35!

On the effective theory side, only the insertion of the col
magnetic dipole term gives nonzero contribution for t
gluon polarization vector satisfying Eq.~30!. It reads

2
Zm

4mZk1•Vk2•V
P1@k” ,e” #P1 . ~36!

Comparing Eqs.~35! to ~36!, we determine that

Zm5
11c01c3

c
511

c32c1

c
. ~37!

With the coefficients given in Eqs.~19! and~32!, Zm at one-
loop level reads

Zm511
as~m!

4p
S CAln

m2

m2 12CA12CFD . ~38!

This is in agreement with that obtained in the literature@1#.
We then determined1 and d2 in the renormalizedhV2

field ~15! by using the matching condition~13!. The QCD
side of Eq.~13! reads

FIG. 3. Vertex diagrams on QCD side.
1-6
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P2G~p1!Ge~p1 ,p2!G~p2!P1

52P2

A1~k” 112m!22B1mD

4m2D1~A1
21A1B12B1

2D1!
S Āe”1

c3

4m
@k” ,e” # D

3
A2~k” 212m!22B2mD2

4m2D2~A2
21A2B22B2

2D2!
P1 . ~39!

The expression can be expanded as power series ofk’s.
Keeping only the leading corrections, Eq.~39! reads

P2e” P1

1

2mck2•V
F11

k2
2

2mk2•V
2S 12

2c12c222c3

2~11c0!
D d1

2
c11c21c4

c
d21

c212c3

2~11c0!
d2G

2
11c01c3

4mc2

1

k1•Vk2•V
P2k” P1@k” ,e” #P1 . ~40!

On the effective theory side, contributions may arise fro
the insertions of the operators both inhV2(x) given in Eq.
~15! and in the effective Lagrangian given in Eq.~14!. With
the polarization vectore, there are only 6 Feynman diagram
contributing to it as shown in Fig. 4. With appropriate Fey
man rules, they read

P2e” P1

1

2mZk2•V F11
k2

2

2mk2•V
2d1d12

Ze

Z
d22d2d2G

2
Zm

4mZ

1

k1•Vk2•V
P2k” P1@k” ,e” #P1 . ~41!

Comparing Eq.~39! to Eq. ~41!, we determine that

d1512
2c12c222c3

2~11c0!
,

d252
c212c3

2~11c0!
. ~42!

These values are consistent with Eq.~26! which is obtained
by matching the 2-point function.

FIG. 4. Diagrams contributing to the matching conditions on
effective theory side. The notations are the same as in Fig. 2.
solid oval represents the insertion of the color-magnetic dipole
erator.
09600
-

Substituting the short-distance coefficients in Eqs.~19!
and ~32! into Eq. ~42!, we obtain the one-loop renormalize
coefficients ford1 andd2:

d1~m!511
as~m!

4p
F ~CA22CF!ln

m2

m222CF12CAG ,

~43!

d2~m!52
as~m!

4p
CAS ln

m2

m2 12D . ~44!

These are the central results of this section. We find that t
are in disagreement with those obtained by Balzereit in R
@9#. Since we use the same definition of the heavy qu
field, both results should be equal. The result presente
this paper is derived rigorously using the matching con
tions while Balzereit obtained it indirectly from the requir
ment of the invariance of the effective Lagrangian which
much more complicated.

IV. RPI OF THE RENORMALIZED EFFECTIVE
LAGRANGIAN

In this section, I compare the renormalized transformat
determined by the matching conditions~13! with those given
in Ref. @7#. I show that their results can easily be understo
by constructing the effective Lagrangian in an alternat
way, in which an effective theory in four-component field
constructed first, followed by its reduction to the effecti
theory in the two-component field. I then prove that t
renormalized transformation determined by the match
condition ~13! can be written as the same form with th
transformation given by Eqs.~4! and ~5! with the covariant
derivative substituted by the operator which may be cal
the generalized covariant derivative. It means that the re
presented in this paper is consistent with that given in R
@7#. Finally, I will show that the renormalized effective La
grangian is reparametrization invariant under the renorm
ized transformation.

A. Effective Lagrangian in four-component field

In the conventional method, a renormalized effective L
grangian is constructed by the following steps. First a pro
field to describe the low energy particles is chosen. In HQ
and NRQCD, this effective field for describing the hea
quark is just the two-component field. Then the effecti
Lagrangian in this field is expanded as a sum of local ope
tors in terms of appropriate counting rules. Finally the ren
malized short distance coefficients of these local opera
are determined by matching the full theory and the effect
theory. We call this method ‘‘matching after expansion.’’

Here we introduce an alternative way to determine
renormalized effective Lagrangian. In this method, renorm
ized local operators expressed in the field of the full the
are added to the Lagrangian of the full theory by match
conditions. Then it is expanded in terms of the tw
component field. We call this method ‘‘matching before e
pansion.’’

e
he
-

1-7
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Let us illustrate how this works in a hard cutoff regula
ization. As in the last section, we take different hard cut
regularization energy scalesLe in the effective theory and
L f in the full theory, respectively. They satisfyLe!m
!L f . In calculating the one-loop 1PI diagrams in full QC
theory, we need to calculate the loop momentum integ
from zero toL f . They can be separated into integrals from
to Le and integrals fromLe to L f . The first part is just the
same with that in the effective theory while the second p
gives extra contributions. As argued above, the contributi
from this region can be written as local terms of exter
momenta and can be expressed as contributions from l
operators. Therefore, once those local operators are add
the Lagrangian, the effective theory with hard cutoffLe can
produce the same result of the full theory with cutoffL f .
This argument can easily be generalized to the case of m
tiloops.

At this stage, those local operators are written in terms
Dirac four-component field. A general form of the renorm
ized effective Lagrangian density with hard cutoffLe for
heavy quark field can formally be expressed as

Leff5C̄~x!~ iD” 2m!C~x!1C̄~x!O1~x!C~x!, ~45!

whereDm5]m2 igAm
a Ta is the covariant derivative. It may

be denoted as

Leff5C̄~x!O~x!C~x! ~46!

in a compact form by definingO(x)[ iD” 2m1O1(x).
The first term in Eq.~45! is just the tree-level Lagrangia

while the second term arises from the renormalization w
the cutoff Le!m. The operators in this term are genera
the function of the covariant derivative and the heavy qu
mass. It may contain terms such asD21m2 and gsG

mn

5 i @Dm,Dn#, which are suppressed by the off-shell mome
tum of the heavy quark or the momenta of the external g
ons. They can be organized via appropriate power coun
rules. In perturbative calculations, the loop momentum in
gral is from zero toLe . In this region, both the external an
the loop momenta are smaller thanm, hence the 1/m expan-
sion is allowed and the quark mass dependence is extra
explicitly. Thus the energy scalem is no longer involved in
the effective theory. I emphasis here that the effective
grangian density in this form is independent of the veloc
parameterV. Thus it automatically satisfies the RPI.

Higher-dimensional operators appear inO1(x). It implies
that power divergences arise in the loop momentum in
grals. In the full theory the power divergences cancel wh
both the contributions from quark and antiquark are
cluded. However, in the effective theory when we impos
hard cutoffLe!m on the loop momentum integrals, the co
tributions from the antiquark are excluded so that the po
divergences do not cancel. Nevertheless, those power d
gences are artificial since they cancel between those f
diagram calculations and those from the short distance c
ficients.

At one loop and the leading order of 1/m, the most gen-
eral form of the four-component effective Lagrangian is
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Leff5~11c0!C̄~x!~ iD” 2m!C~x!

2
c1

2m
C̄~x!~D21m2!C~x!2

ic2

8m2C̄~x!

3@~ iD” 2m!~D21m2!1~D21m2!~ iD” 2m!#C~x!

1
c3

4m
C̄~x!gss

mnGmnC~x!

1
c4

8m3C̄~x!~D21m2!2C~x!. ~47!

Calculating the 1PI diagrams shown in Figs. 1 and 3 us
this effective Lagrangian and full QCD, we see that the
coefficients are the samec12c4’s given in Eqs.~19! and
~32!.

B. Effective Lagrangian in two-component field

Now let us reduce Eq.~47! to the effective Lagrangian in
the two-component field. The equation of motion now rea

P2Ō~x!@hV1~x!1hV2~x!#50, ~48!

whereŌ(x) is theO(x) in which the covariant derivativeiD
is replaced byiD 1mV due to the phase factor in the fiel
redefinition. It can be regarded as the renormalized equa
of motion.

From Eq.~48!, we can expresshV2(x) as a function of
hV1(x) formally as

hV2~x!5
1

2m1 iD ~x!•V2P2Ō1~x!P2

3P2@ iD” 1Ō1~x!#hV1~x!, ~49!

whereŌ1(x) is theO1(x) in which the covariant derivative
iD is substituted byiD 1mV. This modifies the tree leve
expression~5!. Once the form ofO1(x) is given, the right-
hand side of Eq.~49! can be expanded as power series
1/m. With O1(x) given in Eq.~47!, up to orderas and 1/m2,
hV2(x) reads

hV2~x!5P2F 1

2m
iD” 1

1

4m2 S 12
2c12c222c3

2~11c0!
DD•VD”

2
c212c3

8~11c0!m2 D” D•VGhV1~x!. ~50!

Comparing this with Eqs.~15!,~42!, we see that they are in
agreement.

Finally, with equation of motion~48!, the effective La-
grangian~46! is reduced to

####Leff5h̄V1~x!Ō~x!@hV1~x!1hV2~x!#

5@ h̄V1~x!1h̄V2~x!#Ō~x!hV1~x!. ~51!
1-8
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This is just the two-component effective Lagrangian. It c
be expanded as power series of 1/m. In this way, the four-
component effective Lagrangian is reduced to the tw
component effective Lagrangian. Up to orderas and 1/m
correction, it is reduced to the effective Lagrangian~14!.
Therefore, the effective Lagrangian obtained by these
different approaches are equal.

C. Comparison with previous studies

In Sec. II, we derive the matching conditions for dete
mining the renormalizedhV28 (x) field as given in Eq.~13!.
In the last subsection, thehV2(x) field was obtained using
the equation of motion. Its expression is given by Eq.~49!.
In this subsection, I will show that the small compone
fields obtained by these two different methods are identi
They uniquely determine the renormalized transformation
the heavy quark field against the infinitesimal variation of
velocity parameterV. Adding both sides of Eqs.~12! and
~13! together, we have

^0uT@hV1~x!1hV28 ~x!#h̄V1~y!u0&B

8^0uTC~x!C̄~y!u0&BP1 , ~52!

where ^0uTC(x)C̄(y)u0&B is a full propagator under arbi
trary external fieldBm(x). It is satisfied order by order inas .
Suppose we calculate the left-hand side at tree level with
renormalized effective Lagrangian. To validate this equati
the right-hand side then should also be calculated to the
level with the renormalized four-component effective L
grangian~45!. Thus it satisfies the following equation:

O~x!G~x,y;B!5 id4~x2y!. ~53!

Acting an operatorP2Ō(x) on the left-hand side and
P2O(x) on the right-hand side of Eq.~52!, the right-hand
side vanishes immediately due toP2•P150. Since we only
calculate them at tree level, the operatorŌ(x) can be moved
within the bracket

P2^0uT@Ō~x!@hV1~x!1hV28 ~x!#h̄V1~y!#u0&B50.
~54!

Since the argumenty in h̄V1(y) is arbitrary and this correla
tion function contains interaction with arbitrary backgrou
gluon field, the unique solution of this equation is

P2Ō~x!@hV1~x!1hV28 ~x!#50. ~55!

This is identical to Eq.~48! if hV28 (x) is the same ashV2(x).
This implies that the renormalizedhV28 (x) determined by the
matching conditions~13! is identical to that from the equa
tion of motion ~48!.

D. RPI of the renormalized effective Lagrangian

In this subsection, we prove that the renormalized eff
tive Lagrangian~51! is invariant under the transformation~4!
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or ~11! with the renormalized small component field. It fo
lows that from an infinitesimal transformation of the effe
tive Lagrangian~51!

DLeff8Dh̄V1~x!Ō~x!hV~x!1h̄V1~x!Ō~x!DhV~x!

5h̄V~x!
DV”

2
Ō~x!hV~x!1h̄V1~x!Ō~x!DhV~x!.

~56!

We have used a shorthand notationhV(x)5hV1(x)
1hV2(x). It is emphasized here that the operatorO(x) in-
troduced in the four component effective field theory is
variant against the variation of the velocityV. Any change
arising from the phase factor in the definition of the effecti
field has been omitted simply because it is trivial under
transformation.

Imposing an infinitesimal transformation on the equati
of motion ~48!, we obtain that

2
DV”

2
Ō~x!hV~x!1P2Ō~x!DhV~x!80. ~57!

With it, Eq. ~56! can be rewritten as

DLeff8h̄V~x!Ō~x!DhV~x!. ~58!

Notice thatP1hV2(x)50. Imposing an infinitesimal trans
formation on it, we immediately have

P1DhV2~x!52
DV”

2
hV2~x!. ~59!

Adding it together with P1DhV1(x)5DV” /2hV2(x), we
have

P1DhV~x!50. ~60!

With it, Eq. ~56! is reduced to

DLeff8h̄V~x!Ō~x!P2DhV~x!. ~61!

It follows that DLeff50 from the equation of motion
h̄V(x)O(x)P250. Thus we have shown that the renorma
ized effective Lagrangian~51! is invariant against the varia
tion of the velocity parameterV under the infinitesimal trans
formation~4! or ~11! with the renormalized small componen
field.

V. CONCLUSION

The RPI is an important theoretical issue in the hea
quark effective theory and the NRQCD effective theory. It
required by the consistency of the effective theory. It a
leads to interesting applications@10–12#. The transformation
of heavy quark field under the variation of the velocity p
rameterV proposed by Chen@5# with the tree level expres
sion of the small-component field keeps the tree level eff
tive theory invariant. However, at loop level, th
transformation needs to be renormalized. In this paper, I h
shown that the renormalized transformation of the hea
1-9
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quark keeps the same form as Chen’s transform while
small component field needs to be renormalized. I deri
the matching conditions for determining the renormaliz
transformation by imposing an infinitesimal transformati
on the relations between the Green’s functions in the
QCD and those in the effective theory. These matching c
ditions are essential for studying the renormalization issu
RPI. As an application of these matching conditions, I de
mined the renormalized transformation up to order 1/m2. I
also showed that the previous result in Ref.@7# can be un-
derstood clearly by building the effective theory in an alt
native way, in which the renormalized effective Lagrangi
in Dirac four-component field is constructed first, followe
by its reduction to the two-component effective Lagrangi
The renormalized small component field is then obtained
the equation of motion. The four-component effective L
grangian automatically satisfies RPI. Thus RPI cannot g
any constraints on any operators in it. When it is reduced
the two-component effective theory, the same operator w
certain coefficients may appear in different terms. The R
can be used to connect those terms. I also showed tha
renormalized small component fields obtained by these
methods turn out to be the same while the matching co
tions provide a systematic way to determine the renorm
ized transformation to any desired order in 1/m and as ex-
pansions.
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APPENDIX: GENERATING FUNCTIONAL OF GREEN’S
FUNCTIONS

In this appendix, we derive the relations between
Green’s functions in QCD full theory and those in the effe
tive theory using generating functional method. It is simi
to that given in Refs.@13# and @5#. We use the backgroun
field method@14,15# for gluon field interactions, which ex
plicitly preserves the gauge covariant.

In QCD full theory, the generating functional reads

Z@h,h̄,J,B#5E d@c,c̄,A#expi E d4x@ I Q~x!1I g~x!#,

~A1!

whereh,h̄,J are the external sources for heavy quark, an
quark, and gluon field,B is the background gluon field,I g is
given by

I g~x!52
1

4
Fmn

a Famn2
1

2j
~Ga!21 ln detFdGa

dvbG1Jm
a Aam,

~A2!

with
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Fmn
a 5]m~A1B!n

a2]n~A1B!m
a 1g fabc~A1B!m

b ~A1B!n
c ,

~A3!

Ga5]mAm
a 1g fabcBm

b Acm, ~A4!

being the gauge-fixing term. IfJm satisfies the following re-
lation:

dW

dBm
a 1E d4yF dW

dJn
b

dJn
b~y!

dBm
a G52Jm

a , ~A5!

with W@h,h̄,J,B#52 i ln Z@h,h̄,J,B#, W@h,h̄,J,B# is just
the effective action regarding to the gluon fieldB with
gauge-fixing term

Ga5]n~A2B!n
a1g fabcBm

b An
c ~A6!

and I Q reads

I Q~x!5C̄~x!~ iD” 2m!C~x!1h̄~x!C~x!1C̄~x!h~x!.
~A7!

The quark field can be integrated out formally and then
have

Z@h,h̄,J,B#5E d@A#det@ iD” 2m#expi E d4x~ I Q8 1I g!,

~A8!

whereI Q8 remains the same form asI Q . But the quark field
now is related to the external sourceh(x) by the following
equation of motions:

~ iD” 2m!C~x!52h~x!. ~A9!

The generating functional of the effective theory is similar
that of the full theory except the heavy quark action. T
effective Lagrangian is substituted by Eq.~46!. In the exter-
nal source term of the heavy quark only the large compon
effective field defined in Eq.~1! couples to the externa
source. The action of the heavy quark is given by

I Q
V1~x!5C̄~x!O~x!C~x!1h̄~x!P1hV1~x!

1h̄V1~x!P1h~x!. ~A10!

Similarly, integrating out the heavy quark field, the gener
ing functional takes the same form as Eq.~A8! with the
effective action of the heavy quark section is substituted

I 8Q
V1~x!5h̄V~x!Ō~x!hV~x!1h̄~x!P1hV1~x!

1h̄V1~x!P1h~x!, ~A11!

with hV(x)5hV1(x)1hV2(x).
The quark field now is related to the external sourceh(x)

by the following equation of motion:

Ō~x!hV1~x!52P1h~x!. ~A12!
1-10
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Multiplying P2 on both sides, the right-hand side vanish
and we obtain the renormalized equation of motion

P2Ō~x!@hV1~x!1hV2~x!#50. ~A13!

This is Eq.~48!. The renormalizedhV2(x) can be related to
hV1(x) by Eq. ~49!. With the equation of motion~A13!, Eq.
~A11! can be simplified as

I 8Q
V5h̄V1~x!Ō~x!hV~x!1h̄~x!P1hV1~x!

1h̄V1~x!P1h~x!. ~A14!

This gives the effective Lagrangian density~51!.
The quark determinant in Eq.~A8! is responsible for the

contributions of the heavy quark loop. It is the same in
full theory and in the effective theory and is suppressed
1/m2 at least. Thus we may ignore it.
ys

09600
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e
y

The full quark propagator with background fieldBm(x) is
derived by differentiating over the external sources

G~x,y;B!5
d2

dh~x!dh̄~y!
W~h,h̄,J,B!. ~A15!

If the hard cutoff energy scale is set toL f , the same as tha
in the QCD full theory, theO(x) is then to beiD” 2m, just as
in the full theory. The effective Lagrangian is just the nonl
cal form ~3!. In this case the only difference of the effectiv
theory and the full theory is the external source term. O
immediately gains the relations between the Green’s fu
tions of the full theory and those in the effective theory~8!.
This relation ensures that the nonlocal effective theory
equivalent to the QCD full theory. The local effective theo
with the hard cutoff regularization scaleLe is equivalent to
the nonlocal effective theory with a hard cutoffL f . This
ensures the validity of relation~8!.
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