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Supersymmetry breaking in two dimensions: The latticeN=1 Wess-Zumino model
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We study dynamical supersymmetry breaking by nonperturbative lattice techniques in a class of two-
dimensionalN=1 Wess-Zumino models. We work in the Hamiltonian formalism and analyze the phase
diagram by analytical strong-coupling expansions and explicit numerical simulations with Green function
Monte Carlo methods.
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I. INTRODUCTION symmetry breaking, nonperturbative techniques must be ex-
ploited and the lattice regularization and renormalization
Supersymmetry(SUSY) is playing an increasingly rel- program is of course one of the main lines of research. In-
evant and unifying role in high energy physics. From adeed, the simultaneous introduction of infrared and ultravio-
purely theoretical point of view, SUSY is required for con- let cutoffs allows for calculations, such as strong-coupling
sistency and finiteness in superstring theory; compactificaexpansions, that are quite complementary to the usual weak-
tion and SUSY breaking mechanisms are then needed in ocoupling perturbative analysis.
der to produce a low energy four-dimensional effective Beside this, when any known analytical treatment fails,
action with a residuaN=1 SUSY. This constraint comes lattice models can also be studied by direct simulations that
from the phenomenological side where the most popular curean provide, in principle, accurate numerical measurements.
rent extensions of the standard model are actually based on In this paper, we address the problem of spontaneous su-
SUSY for at least two reasons. First, supersymmetric grangersymmetry breaking (8) in a simple, but interesting,
unification theories are quite successful in predictingtheoretical laboratory that is the class of Wess-Zun{iv@)
SU(3)xSU(2)xU(1) gauge couplings unificatiofl], a  two-dimensional models of chiral superfields with no vector
fact that can be considered as the main phenomenologicatultiplets. Preliminary results on this subject can be found in
motivation for SUSY[2]. Moreover, supersymmetric models [4]. Related studies of the two dimensional Wess-Zumino
solve in a natural way the hierarchy problé&j of matching model can be found if5].

the electroweak and grand unified the¢BUT) scales with- Despite their simplicity, these systems are nontrivial be-
out being spoiled by huge radiative corrections to Higgs bocause in two dimensions supersymmetry is not strong
sSon masses. enough to predict the exact pattern of breaking, a situation

However, many features of this scenario still need somehat must be compared with the four dimensional case where
clarification. IndeedN=1 SUSY is expected to be exact at WZ models are expected to break supersymmetry if and only
the GUT scale around 19GeV, but must be broken in the if they do at tree level.

TeV region in order to account for the asymmetric mass tex- Unfortunately, as we shall discuss, lattice strong-coupling
tures that are currently observed. In particular, this will beexpansions provide useful insights, but are unable to reliably
true if some superpartner with a mass of a few TeV will bepredict the physics of the continuum theory and one must
observed in the future CERN Large Hadron CollideHC) resort to a numerical analysis.

or Linear Collider experiments. In the model independent Since SB is closely related to the symmetry properties of
analysis, the source of breaking is usually parametrized by the ground state, it appears to be quite reasonable to adopt
complete set of soft terms whose origin remains howevesome kind of Hamiltonian formulation. Moreover, we will
rather unexplained. see in the following that, if we wish to preserve a SUSY

In several approaches, it is due to some kind of spontanesubalgebra, a conserved Hamiltonian is crucial. However, the
ous breaking of SUSY in hiddensector and communicated traditional algorithms for simulation of lattice field theories
to the minimal supersymmetric standard mod@5SM) par-  are based on the Lagrangian formulati@). The main rea-
ticles producing the soft terms. As with every dynamicalson is the immediate probabilistic interpretation of the parti-

tion function, at least for bosonic systems not suffering from
a sign or phase problem; this leads to a host of Monte Carlo

*Electronic address: Matteo.Beccaria@le.infn.it algorithms, some of which are extremely efficient. Of course,
"Electronic address: Massimo.Campostrini@df.unipi.it alternatives based on a more direct Hamiltonian formalism
*Electronic address: feo@fis.unipr.it do exist[7], but they are certainly less exploited in high
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energy physics where emphasis is on Lagrangian symme- Il. THE N=1 WESS-ZUMINO MODEL
tries, in particular Poincarmvariance. IN 14+1 DIMENSIONS
. On the other ha_nd, Ham|ltpn|an methods have be_en gsed A. Definition of the model and patterns of SUSY breaking
in supersymmetric discretized light-cone quantization ] _
(SDLCQ) [8] and also are widely exploited in nonrelativistic L&t us consider the most general SUSY algebra in two
contextg9] where the properties of the ground state are typi_dlmen.slon:s. The generators are split into ferm|_on|c and
cally the simplest and first object of investigation. Moreover,20S0nic ones. The algebra withleft-handed fermionic gen-
these techniques interlace the brute force numerical calcul&rators{Q{}a-1, ...y andN right-handed fermionic genera-
tions with analytical or physical insights about the structuretors {Q’Q}Aﬂ, _._N is denoted by IJ,N). The bosonic gen-
welcome in the study of 38 where we expect major changes and a set of central charg@éB. The nontrivial part of the
to show up at the phase transition. algebra is

Another important feature of our study concerns the fact [QP QP = 5°8(PO— p1)
that fermions, needed in supersymmetric models, are the ma- Lo=ur— '
jor source of complications in the current approaches to lat- A ~B1_ AB/ 01 bl
tice simulations. In the Lagrangian approach quantum expec- {Qr.Qr}=0"(P"+ P,
tation values are computed by summing over histories of the A ~By_ —AB
classical fields, following Feynman’s ideas. In the case of {QU.Qr} =T
fermions, these are Grassmann valwassical fields that
cannot be analyzed by direct numerical methods. The typic
solution amounts to integrating them out and studying the
resulting nqnlocal bosonic model0]. This can be nontrivial . Q. =Qk*Q}, (2.2
for a generic model, and a recent detailed account of this
problem and whether it can formulate successfully superand find
symmetric theories on the lattice can be foundia].

Instead, in the Hamiltonian approach, what is relevant is {Qa,Qu}=2(H1+Po'+T0?),p, (2.2
B e e o e, Froinere o are the paul marices ,2')=(17) and T

’ ) =T*% The minimal realization of this algebra requires a

replacement of commutators by anticommutators and also b,

.é’ingle real chiral multiplet with a real scalar component

the structure of the state space, finite dimensional for ferm|3ind a Majorana fermion with componeni&?. The explicit

ons in finite volume, infinite dimensional in the bosonic case¢;m of the supercharges is
Apparently, in the Hamiltonian approach, there is much more

In the left-right symmetric case WitH\(N):(l,l), we de-
ote

symmetry in the treatment of fermions and bosons than in 1 e 5
the Lagrangian approach. Ql,2:f dx p(x) g A(x) — ox “Vle()]] ¥ ()|,
Looking at the details of the simulation techniques, how- 2.3

ever, problems arise with Hamiltonian fermions due to the
well known hard sign problerfil2]. Roughly speaking, fer- Wherep(x) is the momentum operator conjugate ¢¢x).
mion exchanges introduce problematic and unavoidabldhe central charge corresponds to a topological quantum
signs that often break in a substantial way the probabilisti®umber[16]
interpretation of quantum expectation values required to

. . . . . . de
build a numerical stochastic algorithm. This deep problem is T:f dx—V(¢). (2.4
somewhat milder in 1 dimensions where specific equiva- 2
lences between fermionic and bosonic fields can be esta
lished[13,14]. Also, the topology of fermion dynamics is the
simplest possible and helps in taming the sign problem. Ac
tually, for several fermion models i+l dimensions arising
in solid state theory, like, e.g., Hubbard-like models, algo- 1,
rithms can be devised with no sign problem and good effi- H=3(Q1+Q2). (2.5
ciency as well as scaling propertigks].

The detailed plan of the paper is the following. In Sec. Il nvariant states annihilated by baf) coincide with the zero
we present the model and its lattice Hamiltonian. In Sec. lllenergy states and are thus supersymmetric ground states;
we compute the first nontrivial order of the strong-couplingthey must lie in the topologically trivial sector.
expansion of the ground state energy. In Sec. IV we discuss The problem of predicting the pattern 8¢B is not easy.
the renormalization group trajectories along which a condn principle, the form ofV(¢) is enough to determine
tinuum limit can be reached. In Sec. V we describe a Greewhether supersymmetry is broken or not. At least at tree
function Monte Carlo algorithm. Finally, Sec. VI is devoted level, one easily proves that supersymmetry is broken if and
to present our numerical results. only if V has no zeros. In two dimensions, however, this

ti(s usual with supersymmetric models, the structure of the
HamiltonianH guarantees that the energy eigenstates have
E=0 because
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conclusion is generally false due to radiative corrections. Arfor instanceQ,, and find a state witl®,|s)=0, we cannot
analytic nonperturbative tool that can help in the analysis isay that it is a zero energy state unless we know that it is in

the Witten index defined 23] the T=0 sector. On the other hand, if no states W@h/s)
F =0 are found in any topological sector, then supersymmetry
I=Tr(-=1)", (26) s certainly broken.

whereF is the fermion number. Since supersymmetry is notSi -Ir;grsc;fegjnefswr?]:r?é%r@é’ r\:\;emci:ggllchtc:?es:k;s ir?ée?éxgét
explicitly broken, contributions from positive-energy bosonic 9 persy y oy y 9

and fermionic states cancel and eigenyalue of the operatd@f: if it is positive, we have
breaking.
| = nE:O_ nE:O_ (2.7 The SUSY algebr#2.2) involves explicitly the generators
of space and time infinitesimal translations and is spoiled on
In finite volume, | is invariant under changes W(¢) thatdo  the lattice. In the Lagrangian approach, both space and time
not modify its asymptotic behavior. In particular, it can be are discrete and SUSY is completely broken. In the Hamil-
computed at weak coupling where each zerd/¢p) is as-  tonian formulation, time remains continuous and e 2
sociated to a perturbative zero energy state. Thu¥(#)  algebra is reduced t®d=1 and not totally lost. The full
has an odd number of zeros, we fird0 and supersymme- two-dimensional algebra as well as Lorentz invariance are
try is unbroken. If, on the other han¥/(¢) has an even expected to be recovered in the continuum limit.
number of zeros, the associated perturbative vacua can con- A lattice version of the above model has been previously
tribute | with opposite signs and, whdr=0, we cannot say studied in Refs[17,18§. A similar approach to Wess-Zumino
anything. In particular, a nontrivial set of perturbative zeromodels withN=2 supersymmetry is discussed in Ref9],
energy states with=0 can receive instanton corrections dueand numerical investigations are reported in R&f]. On
to tunneling lifting them to positive energies breaking super-each site of a spatial lattice with sites, we define a real
symmetry while leavind =0. In such cases, the behavior of scalar field ¢, together with its conjugate momentum,
the tunneling rate with increasing volume is crucial in an-such that[p,,¢n]=—i6,,. The associated fermion is a
swering the question of breaking. Majorana fermion ¢, , with a=1,2 and {¢,n,¥p m}
An interesting example of this complicated scenario is= g, 5, ., lﬂ;nzlﬂa,n- The fermionic charge

discussed in Appendix A of Reff23]. We quickly review the '

analysis since it will be important in the interpretation of our . Pri1i— Prn1
results. WhenV(¢)=\(¢?+a?), the action of the WZ Q:gl Papin=| =5 +V(en) |20,
model is

1 i with arbitrary real functionV(¢) (called prepotentialin the
S:J d2x<—((9<p)2+ =y 0 following) can be used to define a semipositive definite lat-
2 2 tice Hamiltonian

—%x2(¢2+a2)2— %mw . (2.9 H=Q?. (2.9
L5 , . This Hamiltonian includes the central charge contribution in
For large positivea“ the index is zero because there are NOiha form of a term

zero-energy states. Due to a special conjugation symmetry

valid for this model in finite volume, the pattern of breaking Pl Pn_1

is invariant undera®— —a®. This means that for negative > Vign——> (2.10

a®, the two zeros o¥ are bosonic and fermionic aréinite .
volume tunneling lifts their energy to a positive value. How-
ever, in infinite volume and large negatiag, the narrow
minimum of the potential is protected from radiative correc-
tions and generates an expectation vale-0 signaling _the interacting model, symmetric with respect@aand this sym-
SSB of theZ, symmetry g—~—¢, y—ysi. The fermion o4y s respected by the spectrum if and only if the ground
becomes massive and supersymmetr_y must be unbroken dgf%lte energy is positive. We stress again Basymmetry

to the absence of a massless Goldstino. breaking implies breaking of the full 2 dimensional super-

The above discussion illustrates that an alternative nonéymmetry, wherea® symmetry does not implgin a generic

perturbative analysis of the models witlk=0 is certainly topological sectgr2D SUSY.
welcome. In the following, we shall put the model on a “\ye yemind that, on the lattice, spontaneous supersymme-
space-time lattice in order to exploit explicit numerical SIMU- {1y hreaking can occur even for finite lattice sizebecause
lations as well as analytical strong-coupling expansions. tunneling among degenerate vacua connecte@ kyforbid-
] ] den by fermion number conservation.
B. Lattice version of the model To write H in a more familiar form, we follow Ref[18]
On the lattice it is impossible to maintain the full SUSY and replace the two Majorana fermion operators with a

algebra and it is important to understand what can be said b§ingle Dirac operatoy satisfying canonical anticommutation
looking at subalgebras. If we consider one supercharge onlyules, i.e..{xn  Xm=0, {xn X1} = Snm:

that is precisely a discretization @t Eigenstates oH are
divided into invariant Q-singlets with zero energy and
Q-doublets with degenerate positive energlydescribes an
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(—1)"—i In particular, taking
’pl,n: oin (XI"HXn)y
X=2 F(en)2n, (2.19
(=D)"+i .
Van="m (X~ ixn)- 21D e obtain
The Hamiltonian takes then the form — o
(0% [Fw www}
H=Hg(p,@) +He(x. x",¢)
-3 (lp2+ E(Mww ))2 +F’<<pn)(—1)"(xlxn—1/2)}|0>=0- (2.16
4 |2t 2 2 n

1 1 A basis of Ward identities is thus obtained by considering
— Z(xMne1rHe)+(— 1)"V'(<Pn)(X§Xn— _) ] F(e)= qD'?.l For insta_mce, on an even Iat'gice with open bound-
2 2 ary conditions we find fon=1 the relation

(2.12

and describes canonical bosonic and fermionic fields with (012 {enV(en) +(—1)"xIxa}0)=0. (2.17)
standard kinetic energies and a Yukawa coupling. A

This Hamiltonian conserves the total fermion number 1 . caseF () = constant is also interesting. It leads to

Nf=§n: Xhxn (2.13 (0], V(g,)|0)=0. (218

and can be examined in each sector with defihltesepa-
rately. For reasons that will be understood later, we shall alsq||. STRONG COUPLING ANALYSIS OF SUSY BREAKING
consider open boundary conditions and restrict the lattice
sizeL to be even. These are constraints that do not affect the L€t us start from the supersymmetry charge
physics of the model in the continuum, but will be very
welcome by the algorithm we are going to apply. 1 2 Pl+1TPI-1 5

The simplest way to analyze the pattern of supersymmetry Q= E, P = V(e _T‘/’I :
breaking for a givervV(¢) is to compute the ground state
energyE,. As we mentioned, on the lattice, we can perform  Following Ref.[19], we define the strong-coupling limit
such a computation in a nonperturbative way by strong couby
pling or numerical simulations. However, before discussing

these items, we want to stress some identities that can be V(g)— )\V(O)()\(P)
used together witlk, to get information on the symmetry of Ao '
the ground state. perform the canonical transformation

C. Lattice Ward identities 1
¢@=\e¢, pP=cp,

If the vacuum|0) is supersymmetricQ|0)=0 and for A
each operatoX we have ] ] ] 0
and rescale the energies hy; dropping the indeX® from

(0{Q,X}|0)=0. (2.14 ¢ andp, the result is

(Qr+1—@1-)¥f _

Q=2| {p.#—vwl)wﬁ— N R

1 . (@re1— @ DV(@) T it i (o1 @1-1)?
H=Q%=2 3 | p?+V2(¢)+2iV' (¢) g yi+ — e
29 A 4N\
H® H®
=HO) L 4
HY™ + 2 + 4
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Introducing the Dirac fieldg, , x/ [18], cf. Eq.(2.11), we obtain

1 1 1 1 1
HO=2 | 5p{+ 5V e+ (= D'V (e (xIx—112) | = [Epf+ SVA@)+ 5 (=1 (¢)

1 1
H®=2 2 Vien (a0 =5 2 (xlxisatHe)
(4) 1 2

H™=3 Z (Pr+1—¢1-1)

|
where we denote by, =0,1 the eigenvalue of/ ; . We remark that this conclusion is in strong disagreement
with the continuuni{or weak-coupling latticeanalysis where
A. Leading order the relevant feature of is the existence of zeros.

For g>1, =(x) and e~ cannot be computed exactl
To leading order in ¥, the Hamiltonian is factorized in a gﬁ q Ym(X) Em p y

supersymmetric quantum mechanics for each site; adoptin xcluding the cases, =0); it is however easy to compute

an explicit representation, we can write the one-site Hamil- en numerically to high accuracy, using, €.g., the Numerov
tonian as method[22]. An example is shown in Fig. 1.
In the following analysis, we shall have to tell betweén
2 with odd or even leading power af.

H==| — == +V2(X)+ 03V’ (X)

AT (3.

1. 0dd g
[in the occupation number representation the basis chosen For oddg
now is (h=0,n=1) for odd sites andrn(=1,n=0) for even ’
sited. This Hamiltonian has &l =2 supersymmetry21],

we either have , =0 orey =0; let us assume
g9 =0: ¢, is the supersymmetric ground state satisfying EQ.
(3.3); all the other states appear in paiss;, ;= ¢,,. Notice
[Q;,Qi}=6H that the ground state is bosonic for even sites, fermionic for
I odd sites(the opposite holds i&; =0).
1 A strong argument against supersymmetry breaking is
Qi==[o1p+aV(X)], given by the Witten index,,=Tr(— 1)t [23]; in the strong-

2 coupling limit, we clearly haved,,=*1; sincely#0 im-
plies unbroken SUSY, anldy is invariant under regular per-
turbations (cf. Sec. Il A3, supersymmetry can never be
broken for oddg, not even in the.—oo limit.

A simple check of this result can be given explicitly when
The conditions for a supersymmetric ground s@@,=0 Vs linear and is discussed in details in Appendix A.
reduce to

1
Qo= 5[0'29_0'1V(X)]- (3.2

o(X) = 3V (X) o(X). 3.3

For polynomialV, supersymmetry is unbroken if and only if 10°F
it is possible to find a normalizable solution to E®.3), g
which happens if the degragof V is odd[21].

We can write the time-independent Sctfirgger equation
as

Y +[2E-V?(x)FV'(x)]y=0;

denoting the eigenfunctions for the two signs By, and 10
their energies by,,, we have

-2

' H[2e0= VIO FV (0]1Yn=0. (34 ' i .

(=1
—
(]

Supersymmetry implies that, f&#0, states are paired in FIG. 1. The ground-state energy=e, and the overlapy, as
boson-fermion doublets. functions of\, for the quadratic prepotenti®d= 2+ \q.
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2. Evenq

For evenq, we haves =&, ; for m=0, this corresponds
to a degenerate ground state with broken supersymmetry

(go =€0>0). The phases of the normalized stdtgs) can
be chosen in order to satisfy

V2enun ) =[=ip+ V(@)1 4n). (3.5
V2eqlyn)=[ip+V(@)]lWp). (3.6
Introducing the notation
(0)==(uo|Olyg),
(¥ |%0) =m0,

we can prove the important relations

(V)2 =\2e¢70, (3.7
1

<<P>—_<<P>+:\/?80770- (3.8

7o can be computed numerically fromy (), cf. Fig. 1.

PHYSICAL REVIEW D69, 095010 (2004
V2e {1 ) = (= D)™ Pl 1 (ip+ V) [ )
=(_l)n<'pm|(_ip+v)|¢n>-

Taking the Hermitian conjugate and exchangmgndn we
find the two equations
\/28n<‘»[/n|||’/’m>=(_1)n<'r/fn|(ip+v)|‘//m> (3.9

V2 ial i) = (= D)™ ol (—ip+ V) [ )
(3.10

therefore

1
<z/fn|V(<p)|¢m>=E[@<—1>m+ Ven(—= )"l th)

or (exploiting parity

. L1 .
<w;IV<<p>|wa>=Ewe—n+ Vem(— )" ™| e

(3.11

The proof of Eq.(3.7) is very simple: just take the scalar In a similar way we can compute

product of Eq.(3.5 with (3| and of Eq.(3.5 with (i |,
and observe thatp).=0. The proof of Eq.(3.8) is also
immediate,

V2eo g @l )= (w5 le(ip+ V)| )
=g l(ip+V) el v )+ (g lile.p1l ¥ )
=\2eo( o | ol ) — (¥ |00 )-

Several simplifications can be exploited wh¥fe) is
even. For an asymptotically positive polynomi&l¢) with
degreeq=2 it is easy to show that

[ )= (=1)"[4y)

wherel is the Hermitian parity inversion operator

V2 o{ | @1 ¥) = (— )™ @l @(ip+ V)1 ).

Taking the Hermitian conjugate and exchangmgndn we
find the two equations

V28 (] @l ) = (= D)™l (—ip = V) o | 1)
(3.12
\/28m<¢n|‘P| ¢m>=(_ 1)m<’pn|¢(ip+v)||‘//m>
(3.13
summing the two equations
V2[Ven(= D)™ Vem(= D)™ il ¢l thm)
:<¢ni[¢’ap]l|wm>: _<¢n|||¢m>

and (exploiting parity

* * _—i 1 F*
<¢n|¢’|¢m>_ \/E\/S—n+(_l)n+m\/a<¢n|¢m>'
(3.14

(ellly)=(—el¥).
Then, the eigenstates can be characterized by the single
equation
V2eq| ) =(=1)"(ip+V)1|¢hy)
where

It is easy in this case to obtain generalized relations like the

previous ones. Let us consider the equation

Yn fact, from their definition, one can see that (¢) have the

same sign wherp— + 0. Since they are related by a parity trans-

formation, their relative phase is fixed by the number of nodes.

Of course, forn=m=0, Egs.(3.11), (3.14 agree with the
previous general results.

3. On the convergence of the perturbative expansion
The Rayleigh-Schinger perturbation theory of a
Hamiltonian of the formH=Hy+ B8H; is regular(i.e., it has
a finite radius of convergence ) if [24]

IH W|<alHoW|+bw| (3.19
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uniformly for all state vectorsl; in our case, Eq(3.195 |_|(2):|_|(BZ)Jr H(FZ) (3.20
clearly holds, for bottH®) andH®, except for the trivial
caseg<1. 1k
H(BZ)ZEE V(e (@r+1—¢1-1) (3.21
B. First order =t
At first order (subleading in the strong-coupling expan- 1t
sion we consider again the two cases of even or @dd H®=— > IZl O X1 X 1x0)- (3.22

1. Odd g

In the case of unbroken supersymmetogd q), the sub- 1
leading correction to the ground-state energy in the strong- 2
couplir?g expansion is zgero: the fermiongi]é/ contributiong (n'[HE?Im) = \/2_807705””'2 (er+2)={er-1)
iy i +iyl 4 has clearly zero diagonal matrix ele- (3.23
ments, and the bosonic contributiong, . V(¢)
—¢V(¢+1) is zero because it factorizes intop)(V)
—(@)(V); strictly speaking, this is true for periodic and free 1
boundary conditions, but it could be false, e.g., for fixed <n'|H(BZ)|n>=—angn]n,[(_l)nlju(_l)m] (3.29
boundary conditions.

Since

we have

where we have exploited

2. Even q
Due to the structure of the Hamiltonian, it is convenient to in 70
describe states in the mixed form (p)=—(-1) '\/?, (3.29
0
2 Y. o (@1, @0)Ng, ... (316 that holds for everV. Sincen=0,1 we can use{1)"=1
ng g PTTE —2n and write
wherezpnl ,,,,, nL(gol, ..., ) is a wave function depending @)
on the bosonic degrees of freedom ang, ... n) is the (n'[Hg |n)— 2 Todnn(—1+n+n)). (326
fermionic component of the state defined in terms of the state
annihilated by ally, The matrix elements dfi?) are
xi|0)=0, (3.17

g (2) 1
<n |HF |n>:_2770hnn’ (3.27
according to the canonical ordering of the Fermi operators:

. - whereh,, =1 if n andn’ are connected by (i.e. a
Iy, ..y =(xp)™ - (x)™[0). (318 hopping of one fermionand 0 otherwise.
Thus, we can hide the bosonic wave functions and write

Of coursen;=0,1 and|ny, . .. ,n,) describes a state with ., offective perturbation acting on purely fermionic states as
fermions at site. In the case of broken supersymmeteyen
q), the subspacB of lowest leading-order energy is spanned ,70
by the states (9%)— 2 X Mijx;— (3.28
i,j=1
J1 aL
IM=4g' (o) o (eUIne, o) B19 peret s the identity operator and

whereo,=(—1)""" and ¢+1_ o . We have adopted open -1 |i—j|=1
boundary conditions, corresponding in our notations to set- L

y p g M;;= 1 i=j=1 orL (3.29

ting ¢o=¢, +1=0 and y5=¢{, ;=0 (and thereforey,
=xL+1=0). 0  otherwise.
Since the number of fermions,n, is conserved, we can

impose an additional constraint dhand define SinceH(e?f) is quadratic, it is convenient to change operator

basis. Letv(P be thepth eigenvector oM with eigenvalue
)\(P)’

BN:[|n>l 2| nlzN}, B:BOEB@BL

2—-6,. . |pm 1
(P = B sifn—| n—= (3.30
. . n .
We will now prove that, for evel, the ground state is dou- L L 2
bly degenerate and lies in the sectors with-L/2,L/2—1.
i i i ) m
At first order, we have to diagonalize the operakt’ AP =—2 cos—p . (3.3
over By . Let us split L
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They define greal unitary matrix

L L

pgl Ui(p)vj(p): Sij ;1 vPy@= Spq-

We can replace the operatoys by the operators; defined
by

L L
XiZE Ui(p)apv apzz Ui(p))(i

with
{ap ,ag}z Spq-

The new form ofH'Z is

2 L
7
Hg%r)=—°( pgl MF’)agap—l). (3.32

2

The eigenvalues.®™, ... A(1271) are negative and (/2
=0; there are thus two degenerate ground states ith

—1 andL/2 fermions. This is required by supersymmetry:

sinceH @ restricted toB commutes withQ(®), all the states
must be paired in doublets witk differing by 1. The ground
state withL/2 fermions is

|ty = Pot(@r) - ng(soL)aI~ --a] ;|0). (3.33

PHYSICAL REVIEW D69, 095010 (2004

02 L 3 — strong coupling

o K=100
o K=200
o K=500
A K=1000
< K=2000

YR Y T N [ S S SO R AN S R SRS TS T T R
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n

FIG. 2. Comparison between strong coupling and MC simula-
tion for the expectation valuge,) in the quadratic model with
V(¢)=2¢? on a lattice withL =22 spatial sites.

C. Discussion

From the analysis of the strong-coupling expansion of the
model we can draw the following conclusion. For polyno-
mial V(¢), the relevant parameter is just its degoee

For oddq, the strong coupling analysis and the tree-level
results agree and supersymmetry is expected to be unbroken.
This conclusion gains further support from the nonvanishing
value of the Witten index at strong coupling.

For eveng, in strong coupling, the ground stdta least in
the sector with half filling has a positive energy density also
for L—o and supersymmetry appears to be broken. Of
course, this can be in disagreement with weak coupling. A
specific case that we shall analyze numerically in great detail

To conclude, the shift of the ground state energy due tgg

the perturbation is

772 L2 n 772 ar
o0 4 S I
Ei=— ( 1 2n§=:l cos ) 5 oty (3.39
In the L—c0 limit we have
E 2
S0 oan), (3.35
L T

ForA (<0, weak coupling predicts unbroken SUSY, whereas
the strong coupling prediction gives broken SUSY fongll
For this specific model, as we already discussed, the strong
coupling analysis agrees with R¢R3] in the sense that it
reproduces the continuum physics in finite volume.

For large expansion parameter, the strong coupling results
can be compared with explicit simulatiorithat we shall
fully discuss in Sec. ¥ Let us consider for instance the

In summary, the first order perturbation in the strong-quadratic model with =0 on a lattice withl =22 spatial
coupling expansion removes the large degeneracy of thgites. In Fig. 2, we show the expectation value,) com-
ground state and determines a doublet of eigenstates wifputed at\,=2. The agreement is quite good apart from the

L/2—1 andL/2 fermions with minimum energy

(3.39

A similar calculation at first order fo{¢,) and (¢ @) is

points on the border where the convergence seems to be
slower. To check the validity of the strong coupling expan-
sion at smaller couplings, we show in Fig. 3 the ground state
energy from MC simulation compared with the first and sec-
ond order strong coupling expansion. The scaled variables on
the plot axes are discussed in Appendix C. The second order
gives better results at large values of the expansion param-

discussed in Appendix B. The second-order correction to theter, but is unreliable below,=0.35.

ground state energy can also be computed with a reasonable In the next section, we shall see that the continuum limit
effort and the result is described in Appendix C. However,is in the region of small\,. Thus, for evenqg, it seems
we remark that the results drawn from the first order correcdifficult to gain additional insight from strong coupling and

tions are not qualitatively changed.

some kind of transition can happen as the continuum limit is
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0'3:' R 1 a)\gh=)§2 4.2
o2l ] N
i ] ph_ R o— == logaM 4
_ ] akNy =Ag 5 ogaM. (4.3
ol 3
= [ ] The way we read these equations is as follows: at one loop
= I ] and for small enough, the physical is obtained by com-
*r s o ] pensating\, by the effect of the one-loop diagrams. These
i wee- Strong Coupling: 1" order ] are computed with the UV cutofi and with the IR cutoff
ik ~- Strong Coupling: 2" order _' given by the(dimension 1 massM of the virtual particles in
C ] the loop.
F ] The first equation allows to replageby A, everywhere
039 05 1.0 1.5 20 25 3.0 and we get
)"2 22/3
< oh
FIG. 3. Comparison between strong coupling and MC simula- A2=ak; (4.4
tion for the ground state energy in the quadratic model Wikp) R
=\,¢? on a lattice withL =22 spatial sites. A )\Sh Ao ~ M
)\0:)\2—h+ﬂ g )\ZW (45)

reached. For this reason, a full simulation of the model ap-
pears to be the only way to answer the question of symmetryhis seems to show that the continuum limit can be reached
breaking. with X,—0 and

XO Ao—0

1 ~
IV. RENORMALIZATION GROUP TRAJECTORIES N ~ A+ EIOQ A2 (4.6)
2

The action of the WZ model is
where A contains the ratid\5"\5" and the details of the
physical mass generation.

1 i 1 1 _
— 2y — 24 _ 2_ gy
S‘f d X(z(a‘P) Yy Vel =S Vie) gy ). V. SIMULATION ALGORITHM

A. Green function Monte Carlo: General considerations

At the perturbative level, this is a superrenormalizable field In this section, we review the Green function Monte Carlo
theory that can be made finite by a renormalizatiove$). ~ approach to the study of the ground state of a general quan-
In the minimal subtraction scheme the renormalized potentiglim model. To this aim, we consider the simple casg0of
is obtained by solving the heat equatidb] +1)-dimensional quantum mechanics in order to illustrate
the basic ideas without unnecessary details hiding the essen-
tial features of the algorithm.
2 For a canonical spinless quantum particle, the Hamil-

J \V; __t \V; 4.1) tonian is

1
H=3p?+V(a), [a.pl=id,. (5.0

where . is the dimensional regularization scale. A depen-
dence orw is thus introduced in the coefficients of the vari- The ground statéW,) of H can be projected out of any
ous monomials appearing in the tree le¥le). For the initial state|i) with nonzero overlag¥|i)#0. The projec-
specific case o¥/(¢)=\,0%+\,, we find that\, is scale- tion is performed by applying the evolution semigroup
independent and {exp(—tH)};=o and going to asymptotically large times.
Focusing on the ground state eneiy, this procedure
leads to the following simple formula:

Nol )= Aol o) — 52 log
oM oMo o o ure W) 5.2
e (FleH]i)

On the lattice, let us denote by a hat the adimensional latticéhe final statdf) is in principle arbitrary, as long as it is not
coupling constants and by the label “ph” the physical ones,orthogonal td¥,); in practice, it must be chosen with care,
fixed and with dimension 1. The above result leads to to avoid numerical instability.
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The vacuum expectation value of a generic observ@ble number K of walkers and extrapolates numerically ko
can be computed as —o, The control of the approximations involved in this
strategy requires some discussion that we defer to the section
devoted to results.
_ (fle"™Moe "i) A point that is worth mentioning regards the possibility of
(Wo|O[Wo)= lim — s (5.3 introducing a guidance in the walkers diffusion. To improve
te= (fle i) the convergence to ground state it is customary to define the
unitarily equivalent Hamiltonian

this procedure is known dsrward walking
To translate the above formula into a stable numerical
algorithm, it is necessary to find a basis such that the Hamil-
tonianH has nonpositive off-diagonal matrix elements. By whereSis an arbitrary(rea) function and
the way, this is true for the Hamiltoniafb.1) in the basis
{|q)} of position eigenstates. If such a basis is found, it is F=VS, 58
possible to identify matrix elements ef ' as probability 1 1
transitions defining a Markov random process in the state V=V—=(VS)2— ZAS.
space. For instance, in the simple case wéris chosen to 2 2
be a zero momentum statgl,f) =0, we havg[Feynman-Kac
formula)

- 1 -
H=eHe S=Zp*+ip-F+V(q), (5.7

It can be shown that the derivation of expressions like Eq.
(5.4) can be easily generalized to this case and the required
modifications can be summarized @$ the potentialV is
(F[ve i) replaced byV, (i) the Wiener process is replaced by a de-
Eo= lim ———~ formed process guided by the drit In the following, we
ot (Fle i) shall call importance sampling the trick of exploiting a non-
zeroS
. . . L .
D Vig(t)le fovia(nidr In .the following sections, we describe m_full_detayls the
f a(mviaitle (5.4 algorithm for the model under study considering first the

:tETm Va1 bosonic and fermionic sectors separately and finally the full
J Dq(r)e o tamIer Hamiltonian.

B. Bosonic sector

whereDq(7) is the Wiener measure. o The bosonic sector of the lattice model is a canonical
The prObablllSth Interpretation of the above equation is as:]uantum mechanical one with many degrees of freedom. The
follows: E, (as well as other observabjesan be computed  a|gorithm is the one described in the previous section. Given

by taking the average over weighted walkers which diffusethe transformed Hamiltoniafl of Eq. (5.7), we write
according to the Wiener process. Each path is weighted by B

the following functional of the trajectory: . & p?
exp(—sHB)—ex;{ - ET/ ex;{ -5 ?>e"gp F
Wla(m)1-exp- | Viatmlar 55 L P B B
0 ' ' X ex 55 ex _EV +0(e%)
(5.9

In the numerical implementation, an estimate Ef is _
obtained by computing The functionV depends on the bosonic state, i.e. the set of
values of the scalar fields that we collectively denoteChy
The rule for the update of the weighted walk€, V) is

E[V(at)wt] built, step by step, following the approximate operator fac-
—_—, (5.6)  torization(5.9) and readsgsee[26] for similar calculations in
t—+ee E(W) the solution of the Langevin equatipn
(Q,,W,)—>(QI”,WW), (51@

whereg, is a numerical discretization of the Wiener process,

W, its associated weight computed by properly approximatwhereQ” andW" are built according to

ing Eq. (5.5 and, finally, E(-) denotes the average with
respect to the realizations gf. In practice, after the choice
of a particular approximatiorﬁ]t, one works with a large

W"=W’exp( —%V(Q’)), (5.11)
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Related tos;, we also define the real valued stochastic
process\Nt=exp(—fE)wStdt), with wg=>4 _Hg . It can be

shown that the weighted expectation valug(t)
€ =E(8s s W,) reconstructs),
! ’ "2t
2=Q'+5F(Q"),
d
Gish== 2 Hsgihs (D),
Q"=Q'+&F(2), s'esS

with 5(0)=Prob(sy=s). Matrix elements of() can be
identified with certain expectation values. In particular, the
ground state energlf, (in the purely fermionic sectprcan

be obtained by

&€
Q=Q+\[§§.

WZW”eX[{ _ g'V( QHI)) , E(wstWt)

E(—\Nt). (513)

EOZ ||m
t—+w

and&’, ¢’ are independent sets of Gaussian random numbers.

In the above update, the integration of the equations of moThe actual construction of the process is straightforward. A

tion associated with the driving forde has been solved at realization ofs; is a piece-wise constant map—S with

second order. In the end a systematic efige®) with re-  isolated jumps at timest=tq,t;, ..., with to<t;<t,

spect to the evolution time has been introduced. <---. The algorithm that computes the triplts,,s; ,W; }

An estimate of the energy in the bosonic sector is obis the following:

tained by taking the weighted average\bfover several re- i)

e We denotes; =s and define the séf of target states
alizations of the walker path n

connected t®. Ts={s’,I's/s>0}. We also define the
total widthT'g=2>, ETSFS,S.

Ebosone  |im w (5.12 (i) Extract 7=0 with probability density ps(7)

v E(WO) =T 's". In other words,7= — (1/T')log ¢ with &
uniformly distributed in[0,1].

C. Fermionic sector (i) Extract a new states’ e Ty with probability pg

:FS’S/FS'
Definet, 1=t + 7, St ., =S
andW, =W, -e” "

n+1 n

!

In the fermionic sector, the spirit of the algorithm is the iv)
same, but there are important technical differences that wg
want to emphasize. At fixed scalar fields configuration, the

remaining state space is purely fermionic and, on a finite ) ) ) o
lattice, it is both discrete and finite dimensional. In this sector there is no systematic error due to a finite

To simplify notation, in this section we denoké=Hp . evolution time. The semigroup dynqmics is in fact repro-
The Hamiltonian can be thought of as a large sparse matriduced exactly by the above stochastic processiy). .
H=|Ho| with sands’ denoting fermionic states. We now ~ APout Importance Sampling, we remark that in the dis-
show that a similar construction like the one exploited withCrete case, the inclusion of a trial wave function amounts to
Hg can be repeated here. The Gaussian random noise thite redefinition
was the building block in the simulation of the Wiener pro-
cess is replaced here by a discrete jump process.

Again, the problem is that of giving a probabilistic repre-
sentation for the evolution semigro@p={e'"},_,. To this
aim, we define a Markov process that describes diffusion invhere W =(s|W () are the components of the trial ground
the discrete state space and we also provide a rule for thgate|qu>_ The new HamiltoniarH is not symmetric, but
update of a walker weight. We finally show that suitablethe above formulas works as well with no need for further
averages over weighted walkers reconstruct the evolutiomodifications: actually, they have been derived without re-
governed byH and project a given initial state onto the quiring any symmetry conditionl=H".
ground state. Some final comments are in order about the choice of the

For each pais,s’ in the state spac8such thas#s’ and  pasis for the fermionic states. As we mentioned in the gen-
Hss#0 we definel'ss=—Hgs. We assume that alls's  eral discussion, we want to have zero or negative off-
>0 (no sign problem and build anSvalued Markov sto-  diagonal matrix elements ¢i. The simplest choice amounts
chastic process; by identifyingI's s as the rate for the tran- o consider eigenstaten) of the occupation numberg! y;

sition s—s’. Hence, the average occupatioRs(t)  and with a relative phase fixed by the natural choice
=E(5S'St), with E(-) denoting the average with respect

- . 1
Flos= 3 Hars . (5.14

S

to s,, obeys the Master EquatioRy(B)=2g .s(I'sgPs
_Fs’sps)-

095010-11
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This does not guarantee that the above sign problems are K

absent. In fact, in weak-coupling perturbation theory, the MMW=|cW"V+¢], c=——, (5.18
choice of periodic boundary conditions does not break super- 2 wim

symmetry wherl. mod 4=0 as can be checked, e.g., in the n

free model. However, under this condition, there is an even

number of fermionsL/2, in the ground state and a sign Where¢& is a random number uniformly distributed [i0,1],
problem arises due to boundary crossings of a fermion, sinck is the desired number of walkers, and is the maximum
such a transition involves an odd number of fermion ex-integer not greater thawr, the new ensembl&’ contains
changes. To avoid such a difficulty, we shall adopt operM(" copies of each configuratios™ in & and all the
boundary conditions. With this choicé, needs just to be weights are set to 1; the actual number of walkirsvill

even to assure a supersymmetric weak coupling ground statgscillate aroundk. This procedure has the advantage that
Also, we shall restrict to the cademod4=2 and to the there is no harmful effect from its repeated application;

sector with L/2 fermions that contains a nondegeneratetherefore we apply it at each Monte Carlo iteration, after all
ground state, with zero energy at all orders in a weaktne fields have been updated.
coupling expansion.
F. Choice and dynamical optimization of the trial wave
D. Algorithm for the full model function W+

To study the full Hamiltonian of the Wess-Zumino model,  About the choice of the trial wave function, we propose
the simplest attitude is to perform an approximate splitting ofthe factorized form
the bosonic and fermionic sectors. For instance, with second

order precision, we can write Wy =eSe(@)  Selenx )W Vo | Wohe,  (5.19
_ 1 where |W)g®|Wo)e is the ground state of the free model
exp(—aH)—exp( - ESHB)eXp(_‘SHF) given explicitly in Appendix D and
1 5 ds
X ex —ESHB +0(e%), (5.16 SBZE 2 aEQDﬁ,

n k=1

and consider separately the evolution relatetHtpandHg dr

freezing the fermionic or bosonic fields respectively. In the SFZE (_1)n(X;Xn_ 5) kZl 01154*-
n =

end, an extrapolation to the—0 limit must be performed.

Equation(5.16) has been approximated to the same order a%ince the trial wave function is a modification of the free

Eq. (5.9; if necessary, both can be improved. ground-state wave function, we expect that importance sam-

pling will improve as we approach the continuum limit.
E. Variance control The degreesdg and dg must be chosen carefully to

A straightforward implementation of the above formulas@chieve a balance between the accuracy of the trial wave
fails because of a numerical instability: the variance of theunction on one hand, and convergence of the adaptive de-
walker weightsW, computed over the walkers ensemble termination of the parametetsand computathn tlr_ne on the
grows exponentially witht and forbids the projection onto Other hand. We chose;=dg =4, except fog situations very
the ground stat§27]. A good trial wave function can cer- CloSe to the continuum limit, €.gV=»A;¢%+Xo with A,
tainly reduce the growth rate, but the problem disappears-0-2, for which we choselg=dg=2 (cf. Sec. VI D.
only in the ideal case when the trial wave function is exact. 1he trial wave function should of course respect the sym-
To bypass this problem, some kind bfanchingprocedure ~ Metries of the model; , symmetry possessed by the model
must be applied in order to delete trajectorfeslkers with for specific forms ofV is very hel_pr_JI to reduce the number
low weight and replicate those with larger weight. of .parameters that we must optimize. For dddthe modBeI

In practice, we introduce an ensemble, i.e., a collection ofNjoys the exact symmetiy, — — ¢, and therefore ode,

K independent walkers™ each one carrying its own weight andej can be set to zero. For evah the model enjoys the
w(m: approximate symmetrng,— — @n, xn— X (it is broken by

irrelevant terms and by boundary tenmand we verified that

E={(s(t),WV(t)),1=n=K}. (5.17  oddef and evenaf can be set to zero.
Let us denote byw={a®,«"} the collective set of free

When the variance of the weights in the ensemble becomegarameters appearing in the trial wave function. A possible
too large,£ is transformed in a new ensemidie that repro-  approach consists in performing simulations of moderate size
duces the same expectation valu@s least in theK—~  at fixed e in order to optimize their choice. However, as
limit) and has a smaller variance. We adopted the branchinghown in[29], the trial wave functiof¥ ) can also be op-
procedure of Ref[28]: for each walkers™ we compute a timized dynamically within Monte Carlo evolution with a
multiplicity better performance of the full procedure.

095010-12
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The idea is again simple: consider the ground state energ' 10'g——=7———71 T —
as a typical observable; for a given choice @f after N F
Monte Carlo steps, a simulation with an average population 10"
of K walkers furnishes a biased estimakty(N,K,a). If we ol
denote by(-) the average with respect to Monte Carlo real-

izations,Eo is a random variable such that

04k .

N|im (Eo(N,K,@))=Eq+ SEq(a,K), (520, L 1
where 5Ey(a,K) depends oy, but vanishes a —o. Be- 00k - = “g
sides, the size of the fluctuations is measured by r %
e IO:Jk ' I, — 20:)1( T ook
. N==c,o(K, @)
Var Eo(N,K, @) ~ N (5.2 FIG. 4. a and » dynamics from a run a¥=0.5¢2—0.55, L
=34 andK=100.
In the K— oo limit, (E,) is exact and independent af The N|ay|
constantc,(K, @) is related to the fluctuations of the effec- T=EMaxr,, 7= > -3, (5.23
k k

tive potentialV and is strongly dependent @n The problem
of finding the optimal trial wave function can be translated in ) ) ) ) )
the minimization ofc,(K, @) with respect toe. WhereNznl—n(_, is the number of iterations in th_e mtgrval

The algorithm we propose performs this task by interlac-0f Monte Carlo iterationsrio,n; ] we are considering; is
ing a Stochastic Gradient steepest descent with the Montd® variance ok in the interval, andi is the slope of the
Carlo evolution of the walkers ensemble. At each Montelinear least-squares fit tey, vs n. 7 is invariant under
Carlo step, we updaie,— a;,,, according to the simple law translations and scale transformations; it is positiveifis
drifting and it is negative ifw, is oscillating.

A typical example of the implementation of theand #
dynamics is shown in Fig. 4y is initialized to 10°°; after
each interval oN=5000 iterations, ifr>0.15, » is multi-
where &, is the ensemble at step and {7} is a suitable plied by *%/10; if 7<0, » is divided by*%/10; if 0<7<0.15,
sequence, asymptotically vanishing; to keep things simpley is unchanged; finally, is restricted to the interval
we use the same for all componentsy, of «, although in  [1076,10"4]. The parameters of the dynamics given here
principle we could use a differeng, for eachay . were obtained empirically.

A nonlinear feedback is thus established between the trial
wave function and the evolution of the walkers. The conver-
gence of the method cannot be easily investigated by analyti-
cal methods and explicit numerical simulations are required We measure the vacuum expectation values ¢qf,
to understand the stability of the algorithm [R9], examples ~ #n®m, Xhxn, and of
of applications of the method with purely bosonic or fermi-
onic degrees of freedom can be found. Here, we apply the
method for the first time to a model with both kinds of fields.

In practice, the choice of the initial values afis impor-
tant: it is clear that, if we have a good guess of the optimal L
values(e.g., fror_n runs at the samébut for smaller values Yo= { Q, E fPﬂ%bz,n]- (5.24
of L or K), starting from them makes the convergence much n=1
faster. We also noticed that, starting e.g. frag=0, the
steepest descent at times fails amgoscillates wildly; this  Note that, with our choice of boundary conditions, we do not
never happens if most of the starting values have at least theave translation invariance and, e @p,,) will depend oni;
right sign and order of magnitude. however, the dependence is sizable only within a few corre-

We found it useful to determiney dynamically as well. lation lengths from the border; therefore we typically aver-
The basic idea is that we wish to decreas@hen all theayy = age site-dependent quantities excluding sites closer than a
have reached the optimal value and they are oscillating auitableL ., from the border; in the case dfp,¢), wWe
random around it: in this situation, a smallgermeans less average over all pairs with fixed distance |n—m|, exclud-
noise ona. On the other hand, we wish to increagavhen  ing the cases whemor mis closer thark ,;, from the border.
one or moree, is drifting: a largern now means a faster The ground-state energy is measured simply by averaging
approach toward the optimal value. To monitor the trend othe measured values &f over the ensemble&(t), discard-

@, we use the quantity ing a suitable thermalization interval ¢g):

Qnp1= 0~ nnVaVargnV (5.22

G. Observable measurement

L
T= n; (ens1— @n-DV(en),

N| =
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FIG. 5. The central chargg [cf. Eq. (5.24)] vs At from runs at
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FIG. 6. The ground-state energy densiy/L vs 1K at V
=%, L=22, with statistics b1 M iterations forK <5000, 500 k
iterations atk =5000, and 300 k iterations &=10000.

with the Green function Monte Carlo method whgrean be
identified with the simulation time and is thus taken to infin-
ity by the very nature of the algorithm.

The analysis 0f18] is performed on a 12100 lattice,
hence with a rather coarse spatial mesh. In the model with
V(@) =3¢, supersymmetry appears to be unbroken in full
agreement with our analysis. In the quadratic model with

cf. Eq. (5.2)._ The vacuum expectation value of a gene_ricv(q,):)\2"024r Ao, the authors of Ref.18] find rather strong
observable is computed implementing the forward-walkmgsigna|3 for supersymmetry breaking wikly bigger that the

formula(5.3) as

Ky
1 ty 21 O; (Wi t+at
O)= ,
(0) ti—toi=foh1
izl Wi t+At
(siOlsi )
he (sidsi) (.29

In principle, in Eq.(5.26) we must take thé&t—oe limit, but

in practice a moderate value likét=500 is sufficient. A
typical example ofAt dependence is shown in Fig. 5; it
should be noticed that the error bars grow wih but very
slowly.

VI. NUMERICAL RESULTS

A. Review of previous lattice studies

The class of models that we study in this paper has beer

previously considered ifil8] with a Monte Carlo approach
that determines the ground state energy by using

Tr(He™ ™) 6.1

and working numerically with a large fixeg. This is in the

spirit of the usual Lagrangian algorithms to be compared

critical value\y=—0.5 and have numerical results showing
a very small ground state energy flop<<—0.5. No discus-
sion of the continuum limit is attempted.

B. Odd V

As an example of odd prepotential, we study the cdse
= ¢3. We plot the ground-state energy Ksn Fig. 6 and the
Ward identityY; vs K in Fig. 7. Both give very convincing
evidence for unbroken SUSY; all the other Ward identities

0.03

0.02

o
(=]
[=]
—o
—c—i

-0.01

-0.02

YR T T T N T TN T S AN S T S T N ST N T S N ST ST
_0%3000 0.001 0.002 0.003 0.004 0.005

/K

FIG. 7. The Ward identity; vs 1K atV=¢°, L=22.
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are consistent with zero, but more noisy. It should be noticed #3650 04 08 047 046
that the bosonic and fermionic contributionlig are==*7.4: L o—or=n k=0 ]

. . . L O—¢ L=34, K=200 [
we are observing a cancellation of four orders of magnitude. L ar-d K-20 ]

050 v—v =58 k=200 _|

C. Supersymmetry breaking

We now turn to the more interesting case of even prepo-
tential, investigating the casé=\,¢%+ \,. We remind that 3
in this case the model enjoys an approximziesymmetry 040l
On——@n, XnHXE. For fixed\,, we may expectin the [
L —oo limit) a phase transition a\t0=)\g°)()\2), separating a
phase of broken SUSY and unbrok&a (high \) from a
phase of unbroken SUSY and brok2a (low Ag). We in-

vestigated in details the caag=0.5. 0,30 ————————————————————————
The usual technique for the study of a phase transition is [ sobzmkz
the crossingmethod, applied to the Binder cumuldi30] . OI HLZAZI K=sw0 ]
50— v—v L=58 K=500 _|
sty <M4>)_ 6.2
2 (M?)2)" ' 0451

in our case, the choice of a sensible definition for the mag- B
netizationM is nontrivial, since our model is neither ferro- %%
magnetic nor antiferromagnetic, and it does not enjoy trans-
lation symmetry. We tried out several definitions, before
making the choice

035

2
even (oddj— m

min ever{odd)i

L—Lmin
M

éi, (63 ; 2

FIG. 8. The Binder cumularB vs \,.

1+Lmin

where, typically, L,iz=6; Mgyen and Mqq are perfectly

equivalent, and the values Bfwe quote in the following are we have small but nonzem,, and we observe equivalence

the average _oBe\,enand Boda- L . of the even- and odd-channels; an example is shown in
The crossing method consists in plottiBg/s A for sev- g g | the unbroken phasa, is larger, and the even- and
eral values ofl; the crossing poinkg(L1,L,), determined o444 channels are somewhat different: an example is shown
by the condition in Fig. 10. The difference between the two phases is appar-
or or ent, e.g., in the plot of, vs Ay, presented in Fig. 11; the
B(Ag,L1)=B(Ao.L2), data presented here would indicat§) = —0.48+0.01.
An alternative window to the phase transition is offered
by the optimized values of the parameters of the bosonic part
of the trial wave function, which should be related to the

is an estimator oRgc) [30]; the convergence is dominated by
the critical exponent of the correlation length and by the
critical exponentw of the leading corrections to scalirigf.

Ref. [31]): 04

)\gr(Ll'LZ):)\E)C)_’_O(Liw*l/v,Lz*a)*l/ll);

we expect the phase transition we are studying to be in the
Ising universality class, for which=1 andw=2, and there-
fore we expect fast convergence)df to (%) . The results,
plotted in Fig. 8, indicate\{”) = —0.48+0.01. c

It is possible to study the phase transition by looking at
the connected correlation functid®y={¢,¢m)., averaged 01
over all n,m pairs with |[m—n|=d, excluding pairs for
whichmor nis closer to the border thatypically) 6. In our
staggered formulation, even and oddmay correspond to
different physical channels.

G, is fitted to the form exp-a, —a,d+ag/(d+10)], sepa- T T
rately for even and odd; the best fits give a goog? if we 4
remove the smallest distances, typicafly=3 for the odd FIG. 9. The connected correlation functi@y for V=0.5¢2

channel andi<4 for the even channel. In the broken phase,-0.5.
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BFgF—T——T—TT 77T T 1T T T T T T T T T T T L L

o even 1 = — quadratic fit
o odd 0.04 o data I

0.1

B
G %
001 0.00
I 0021
0.002 . -0.7 -
0 10 20 30 40 X
d
FIG. 10. The connected correlation functi@y for V=0.5¢2 FIG. 12. The optimization parametef; ; it is insensitive toL
—0.38. andK.
effective potentiaV 4 of the bosonic field, S=/x?/d.o.f. We present a plot o vs \, in Fig. 13; these

data givex )~ —0.53, with a rather large uncertainty.
B 4 B 2.
Veff((P)N_aMP —ao,

we verified thata§<0, as required by stability; a negative D. Continuum limit

value for ag therefore indicates unbroked, symmetry, We wish to investigate if the pattern established in Sec.
while a positivea5 indicates spontaneous breakingZsf VI C extends to the continuum limit.
The numerical values of® are shown in Fig. 12. Itis ~ We study the trajectory
clear that, especially in the broken phase, statistical errors are N
i i 0 i i 2
underestimated. The above-mentioned scenario is qualita- )\Ozﬂm(m\z), (6.5

tively confirmed, but the data yield"’=—0.40, which is
very far from the more traditional estimates obtained above.

Finally, to investigate the supersymmetry properties ofcorresponding to a 1-loop RG trajectory, cf. Eg.6); the
each phase, we ana|yfe the ground-state energy density effect Of)\o is small in the range we considered, therefore we

extrapolated to infinit& andL. We fit E/L to the form expect this to be a reasonable approximation to a true RG
trajectory.
Eo _ atbL We estimate the correlation length from the exponential
T + K (6.4 decay of the connected correlation functi@y=(¢,¢m)c

averaged over ali,m pairs withjm—n|=d, excluding pairs
x?/d.o0.f. (degrees of freedojrfrom 1 to 2; the errors on the for which mor n is closer to the border thafypically) 8. In
fit parameters are defined by the values giving an increase @ur staggered formulation, even and oddcorrespond to
x? by 1; if y?>>d.o.f. we multiply them by the “scale factor” different physical channels.

00— T T
T T T T ().(ms.,...,...l...,......@.

| O L=58 K=500, even
O L=58, K=>500, odd

— 001289 0, +0.5276)""

0.004
0.06 — -

0.003

5004 T EyL

0.002

0.02 —
o % g 0.001

oot v v v Ly b e b 1w 1
’ -0.50 -0.48 -0.46 —0.44 -0.42 -0.40 -0.38

0.000

7\’0
FIG. 11. The effective masa, of G4 vs Ao for L=58 andK FIG. 13. The ground-state energy denty/L vs\o. The solid
=500; forAg<—0.51 the error ora, is very large. line is a fit to the formEO/L=a\/7\Of7\0(°5.
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6)(10_2 — T T T [ T T T T [ T T T T [ T T T 1T 6)(10_2 — T T T [ T T T T [ T T T T [ T T T 1T
N # 1£=0203) | 1/£=0.166(4) -
10°F 7 -
Gd - b Gd
- 1 107 .
3] 1 ]
10 [ o K=100,L=34 ] [ o K=100,L=34 + 7
[ o K=200,L=34 i o K=200,L=34
|l o K=100,L=46 i I o K=100,L=46 .
| o K=200,L=46 i o K=200,L=46
—4 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 -3 1 1 1 1 I 1 1 1 1 I 1 1 1 1 1
4x10 - 5 10 15 20 310 5 10 15 20
d d
FIG. 14. The connected correlation functiGy at even distance FIG. 15. The connected correlation functiGy at odd distance

for V=0.35355%2+ 0.019502; the curve and value of¢lduoted  for V=0.35355%2+ 0.019502; the curve and value of¢lduoted
are the result of an exponential fit for £@<18 to theL=46, K are the result of an exponential fit for<@1<15 to theL =46, K
=200 data. =200 data.

We performed runs for values af, spaced by a factor of g show a sizable dependencemandL, and it is therefore
2, with a statistics of & 10° iterations. In Figs. 14 and 15 necessary to perform an extrapolationLte> and K —o;
we show the plots of thep correlation for the case/  we fitted the energy density to the form
=0.3502+0.02. It is very difficult to extract a correlation
length from the evert channel, presumably becaugéas a

very small overlap with the lightest state of the channel, and E —&+ ¢ + Ez +K* e+ i ,

the value 1#=0.20+0.03 quoted in Fig. 14 should be con- L L L L

sidered tentative. The oddl-channel is much cleaner, and it

is possible to estimaté with a good precision. which gives a goody?. » remains constant within errors,

For the other values ofy, the situation is similar but with - \ith a valuer~0.75, i.e., the algorithm performs well as we
slightly larger errors. The measured values&gfy follow approach the continuum limit.

very well the nare scaling behavior The “scaling” plot of the energy densit#,/L is shown
in Fig. 17. It seems to behave ag”’, while ndve scaling
IZ37) 98 would predictEq/Lx\3.

The nonzero value oE,/L (disregarding this puzzling
The entire range 0.088\,<0.35 seems to be in the scaling €*Ponent and the lack of any signal for a breakdown of
region, with\,=0.5 a borderline case, as shown in Fig. 16.Parity show that the trajectory we are considering belongs
The values of.,., have very large errors, and it is hard to {© the phase with broken supersymmetry and unbrakgn
draw any conclusion from them. symmetry.
The Green function Monte Carlo algorithm gives a very

accurate measurement of the ground-state ereggyo give VIl. CONCLUSION

a feeling of the precision reached, we quote the results for

the smallest and the largest valuexgfwe considered, along In this paper, we investigated a class of two-dimensional
the trajectory(6.5), N=1 Wess-Zumino models by nonperturbative lattice

Hamiltonian techniques. The key property of the formulation

is the exact preservation of a SUSY subalgebra at finite lat-
tice spacing. Our main tools are numerical simulations using
the Green function Monte Carlo algorithm; we also per-

Eo(A,=0.5L =46K=200)=(69.44+0.05x 10 >. formed strong-coupling expansions.

Eo(A,=0.044] = 46 K = 200) = (1.28+0.01) X 10”3,
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50 T T T T 0-1 T T T I T T T I,
I s
i _ [ - ImEJL = 1.7112In %, - 1.2320 S ]
— IEJL = 2In},-07 |
20 % . ]
godd >\
[ E L
10— m 0.01 —
- a . 1
s N i — 1
| - E=2.14/A, < 7
O L=46
O L=58
L | s L 0.00 R
307 o1 0 03 6.06 0.1 0.6

A

2

FIG. 17. The ground-state energy dendiy/L, extrapolated to
L— andK—«. The dashed curve is the result of a two-parameter
fit, while the solid curve shows the va scaling behavior.

FIG. 16. The correlation length at odd distardggy. The dashed
curve is the result of a scaling fitvith fixed exponent

All our results for the model with cubic prepotential indi- APPENDIX A: CHECK OF UNBROKEN SUSY
cate unbroken supersymmetry. FOR V(¢@)=N 0+,

We studied dynamical supersymmetry breaking in the
model with quadratic prepotentisli=\,¢2+ \ ¢, performing
numerical simulations along a line of constant We con-
firm the existence of two phases: a phase of broken SUS
and unbrokerZ, at high\y and a phase of unbroken SUSY

If the potentialV(¢) is a linear function of the fieldp,
then the ground state can be found explicitly. With a field
translation we can sex,=0. The model Hamiltonian is
¥|B+ He, where we recall that

and brokenZ, at low Ay, separated by a single phase tran- L 1q 1 5
sition. B ) Pn+1~ Pn-1 ) }
Hg=D, [sp2+ 5| ————+\ : Al

We studied the approach to the continuum limit in the — © nzl [Zp” 2( 2 2%n AD
model with quadratic prepotential performing numerical
simulations along a 1-loop RG trajectory in the phase of - 1

: i He= 2, | = 5 (XaXnsat Xas1xn) + (= 1)"2xy

broken supersymmetry; we measured the correlation length Mr “~ 2 (XnXn+17 Xn+1Xn 2XnXn |-
of the bosonic fieldin the odd-distance channglwhich is (A2)

found to scale with the expected exponent; on the other hand,

the ground-state energy density scales with an exponenthus, in the bosonic sector, the Hamiltonian can be written
clearly different from the expected exponent.

In many instances, the simulation algorithm suffers from 1 , 1 8
slow convergence in the number of walkéts HBZE ; Pt > % enVom®m, (A3)
with
ACKNOWLEDGMENTS

A3+1/4, n=m and n=1.
It is a pleasure to thank Camillo Imbimbo, Ken Konishi, B 2 _
Gianni Morchio, and Ettore Vicari for many helpful discus- Vam=) A2+1/2, n=m and I<n<L (A4)
sions and suggestions. —1/4, |n—m|=2.
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In the fermionic sector, the Hamiltonian can be written in (‘I’E,”Ind‘l’é”)
terms of canonical Fermi annihilation and creation operators
as o
1 co {Z—(Zk(LJrl) 1)
HF—E vh ala, (A5) =50 1+L+ , (B4)
sm—(2k 1)

with

(=1)™3, n=m and therefore

VE ={A\3+1/2, n=m and I<n<L (A6)
~12,  |n—-m|=1. (T W)

If we denote by{(»?)?} and{w|} the sortedeigenvalues of
VB and VF, then we find that the ground state has actually 7o 1

—1)" 1+
Zero energy,
2\/28
L/2 SInZ(ZK 1)
Eo= 3. Z w +2 wh= (A7) (B5)

a
co Z(Zk(LH)—l)

This can be proved in the spirit of SUSY without computing
explicitly the eigenvalues. In fact, we can check th&t)? is
the matrixVV® apart from a wrong sign in the diagondls
—m|=2. This can be repaired by changing sigh-—¢ on
the sites witm mod 4= 1,2. Taking into account the particle- (T @y | PE)
hole symmetry oHg, we have thus proved that the spectra

It is interesting to consider the limit— oo of this expression
after a rescalingk—xL where 0<x<1. The result is

of o(VF) ando(VB) have the general form
— [+1+c01(7rx)]
O'(VF):{_Xl,Xl,_Xz,Xz,...} (AS) 2 28
1 1
o(VBY={x3,x2 x3,x3, ...} (A9) L T — 40 _) (B6)
2L2 sirf(mx) L3
with full cancellation between the lowek{2 fermionic val-
ues and one half of the square root of the bosonic ones as in
Eq. (A7). where the sign ist+1 for evenk=xL and —1 for oddk.
APPENDIX B: STRONG-COUPLING EXPANSION 2.{eove))e
OF (@2 AND (e Let us denote briefly
1. {oi)
= /1) (1)
Let us define (A)=(Wo IS, &7
— 70 and
= =— . Bl
The vacuum expectation value of the fietdis (AB)c=(AB)—(A)(B). (B8)
(T @ Wi = o(— 1) W] (— 1) W M) The 2-point correlation is, fok#1,
=o(—1)N(1=-2(Tn | T)). _
82) (k1) =()*(—1)*H (= 1))
(N2 _ 4 \kFloq
The expectation value of the occupation number can be com- =(@) (=D (1= (nctng +4ncy)). (BY)
puted by going to the bas{s} and is
L2 Going to the{a} basis, we immediately obtain
(wPn wPy= 2 v(P)? (B3)
A A B. B
NNy = . , B10
A straightforward calculation gives (i) 1<A=L/2 id L/z+12sBsL i3 (810
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and, fork=#1,

(or@1)e=4(9)%(— 1)* (neny)e . (B11)

The two sums over eigenvalues can be evaluated analytically

thanks to the simple form of the eigenvectot§ . The ex-
plicit result is

(

n even, m even: (—

n even, m odd: (—

n odd, m even: (—

n odd, m odd: (—

PHYSICAL REVIEW D69, 095010 (2004

L/2

L 1
) vﬁ,">v$£>—zan,m+zzn,m, (B12)
L < L 1 1
— (P),,(P) = — Z(—=qyntm_
5 ngmun o= St 5(— 1" 2 Zo
(B13)
where
aa
1)(*M72 1+ cot—(m+n—1)
2L
1)(“+m+1)’z[1+coti(n—m)}
(B14)

aa
(n+m+1)/ 4 _ _
1) Z[l cot2L (m—n)

1)(n+m)/2

1+cot—(m+n 1)}

that can be used to compute the connected correlation on a

finite lattice.
It is interesting to note that the limit—o can be taken
without rescalingn andm. For instance, we have

lim <1P(()l)|‘P1¢n|‘P(()1)>c

L—o

1
(n—1)?

n even:

4(<P)

(B15)
n odd:

n2

APPENDIX C: SECOND-ORDER EXPANSION
FOR E,, EVEN q

The general formula for the second order contribution to

the ground state energy is

E,=E, 1t E;» (Cy
Ep= (W H@[wEY) (C2
TOIHO[G Y (p [HO gD
ey OO

! EO_E’

The stateg¥’) are excited states of the form

W)= (en) i (elng, - .ny)
where k;+ - - -k, =v>0 (integey and oy=(—1)""*'. For

such a state we have

E/:z Skl.

A first important remark is thaitl®) can be restricted to its
H{ part. In fact, the fermionic part d(®) can be written as

H) plus terms that are only functions of the occupation

numbers. These operators acting |(?In0 )) give states that
are orthogonal to the subspace of excited unperturbed states
W',

The first term inE, is simple and can be computed
straightforwardly exploiting the fact that the expectation
value of ¢ over | %)) does not depend ol

L—1— 122
E2,1:T€02_ Z ;l <\I’§)l)|€0|€0|+2|\1’§)1)>
L-1— 5
=4 ¢ ——(<P) Co(L) (C4
where
o= fﬁwspz[l/fﬁ(sv)]zdsv
and
L-2
Co(L)ZZJl(1_<”|>_<n|+2>+4<n|n|+2>)- (CH

AboutE, ,, it can be computed by considering states with an
excited single-site wave function in one or two distinct sites.
Summing the two contributions we find
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L-1— 1 — 1
%= ~(@)?co(L)— >
4 4 s>0

E2:

1 — —
. _80(§(<b§>>2<v<°>>2+c1<L><1>g1>vg1’<pv<°>+c2<L>(<p)2(vgl>>2)
S

1 1
~ 2 st [Z(L_ 1)[<<I>S>>2<V£”>2+<<I>§”>2<vé”>2]+c3<L><I>g“<I>§”V§”V§”] : (C6)
, S

The symbols appearing in the above equations are defined asd
follows: , 0.160 0.0488
0, - . E(\?,%0)=0.2811 — —
VO=(yq V(@) ) =2e070 (C7) A N

1 If we are interested in a comparison with an actual simula-
—[\/a_0+(—1)5\/s—s]<z/;5|<//;>, (Cg  tion, some trivial rescaling is necessary. For instance, in the
V2 case of a purely quadratit( ¢) =\ ,¢? we must compare the
expansion and the results for, 2*Ey/L and identify \
1 1 - =\ as the strong-coupling expansion parameter.
dW=— — ———————(yo|ud). (C9Y 2 9 piing exp P

V2 Veot (—1)%Ves
APPENDIX D: FACTORIZED WAVE FUNCTION
The functionscy ; , {L) can be fitted with a few powers &f FOR THE FREE MODEL
and the numerical result is

V=

In the free cas&/=0, with evenL, we have

2.610
Co(L)=L—1.495- —— - (C10 HO=Hg+Hg, (D1)
where (pg= ¢, .1=0, the same for fermions
L) 0.540- 1'698+ 1.787 .
c,(L)=-0. —_
L L2 _ 1,1 _ 2
(Cll) HB_FIE]_ 2pn+ 8(‘Pn+1 (Pn—l) 1 (Dz)
1 0.301 1.788 1o . )
Co(L)=5L—0.540+ ——+ +ee He=—5 2 (XtXn+1t Xns1Xn)- (D3)
2 L L2 2 n=1
(C12
The two HamiltoniandHg andHg are decoupled and the
2 0.167 ground state takes the factorized form
c3(L)=——2L—T+~--. (C13
™ (v O =[wE) e |wE). (D4)

The full expression folE, has thus the following simpler

; . We now determingl (%)) separatel , assuming mod 4
asymptotic expression: e B,F> p y vl

=2 in order to have a unique ground state in the decoupled

B 1, o, 1, (Vgl))z V=0 model.

|lmrzz(¢ -9 )—E(QD) > P

Lo s>0 €57 & 1. Bosonic sector

1 Let us writeHg in the form
s>01>0 €sT 8t_280 L L
1 , 1
Hp=5 2 Pat5 2 Vamen®m- (DS)

2431 2 nm=1

! SOV () 2V)?)

Let \Z be the eigenvalues of tHex L matrix V and letz{)

2 be the correspondin@eal) eigenvectors satisfying
- —oPpMviym (C14
w2 ° ® zM.z20=4¢,,. (D6)
As an example, we find for the model with ¢) = ¢?, The ground state is
, 0.160 0.0481 . 1 <
E(A2,22=0.2811 MY (0| T O)y=exp — 5 > Rom@n®m| (D7)
nm=1
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where 2 narx ;
L X<=\ 712 SN (D13)
=> N2z (D8)
- and takes the form
The explicit form of\ is
2i—-1 7 Z cos_at Ta,. (D14)
Ng=sin =, L+1
L+1 2
1 1 Hence the one-fermion energies are
=lz(k+1)] |i=1,...,zL]; (D9)
2 2 nw
—cos——-, n=1,...L. (D15)
the dimension of each eigenspace is 2. The ground state en- L+1°
ergy ofHg is o
The fermionic component of thésupersymmetricground
L/2 ;
2i—1 state is
Eop= 2 AK—E sin 2) (D10) P
. . v =1] allo); (D16)
We adopt for the two orthogonal eigenvectors the choice n=1
5 0 (n even the ground state energy &f¢ is
ZF 1= 2i—1m
A JLw | sif 5 (L-n+1)| (nodd Li2 o
(D11) Eor= —21 cos 7 (D17)
2i—1 .
) 2 sin ! zn (n even we can easily check that
@ —_ = L+1 2 (D12
"L+l
0 (n odd). £ £ 1 1 1 D18
oOF— — O,B_E - - - ' ( )
2. Fermionic sector SN2+ 1)
In the free case, the Hamiltonian in the fermionic sector is
diagonalized by the orthogonal change of basis and thereforeeg=Epg+Eqr=0.
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