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Supersymmetry breaking in two dimensions: The latticeNÄ1 Wess-Zumino model
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We study dynamical supersymmetry breaking by nonperturbative lattice techniques in a class of two-
dimensionalN51 Wess-Zumino models. We work in the Hamiltonian formalism and analyze the phase
diagram by analytical strong-coupling expansions and explicit numerical simulations with Green function
Monte Carlo methods.
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I. INTRODUCTION

Supersymmetry~SUSY! is playing an increasingly rel
evant and unifying role in high energy physics. From
purely theoretical point of view, SUSY is required for co
sistency and finiteness in superstring theory; compactifi
tion and SUSY breaking mechanisms are then needed in
der to produce a low energy four-dimensional effect
action with a residualN51 SUSY. This constraint come
from the phenomenological side where the most popular
rent extensions of the standard model are actually base
SUSY for at least two reasons. First, supersymmetric gr
unification theories are quite successful in predict
SU(3)3SU(2)3U(1) gauge couplings unification@1#, a
fact that can be considered as the main phenomenolog
motivation for SUSY@2#. Moreover, supersymmetric mode
solve in a natural way the hierarchy problem@3# of matching
the electroweak and grand unified theory~GUT! scales with-
out being spoiled by huge radiative corrections to Higgs
son masses.

However, many features of this scenario still need so
clarification. Indeed,N51 SUSY is expected to be exact
the GUT scale around 1016 GeV, but must be broken in th
TeV region in order to account for the asymmetric mass t
tures that are currently observed. In particular, this will
true if some superpartner with a mass of a few TeV will
observed in the future CERN Large Hadron Collider~LHC!
or Linear Collider experiments. In the model independ
analysis, the source of breaking is usually parametrized b
complete set of soft terms whose origin remains howe
rather unexplained.

In several approaches, it is due to some kind of sponta
ous breaking of SUSY in ahiddensector and communicate
to the minimal supersymmetric standard model~MSSM! par-
ticles producing the soft terms. As with every dynamic
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symmetry breaking, nonperturbative techniques must be
ploited and the lattice regularization and renormalizat
program is of course one of the main lines of research.
deed, the simultaneous introduction of infrared and ultrav
let cutoffs allows for calculations, such as strong-coupli
expansions, that are quite complementary to the usual w
coupling perturbative analysis.

Beside this, when any known analytical treatment fa
lattice models can also be studied by direct simulations
can provide, in principle, accurate numerical measureme

In this paper, we address the problem of spontaneous
persymmetry breaking (S3B) in a simple, but interesting
theoretical laboratory that is the class of Wess-Zumino~WZ!
two-dimensional models of chiral superfields with no vec
multiplets. Preliminary results on this subject can be found
@4#. Related studies of the two dimensional Wess-Zum
model can be found in@5#.

Despite their simplicity, these systems are nontrivial b
cause in two dimensions supersymmetry is not stro
enough to predict the exact pattern of breaking, a situa
that must be compared with the four dimensional case wh
WZ models are expected to break supersymmetry if and o
if they do at tree level.

Unfortunately, as we shall discuss, lattice strong-coupl
expansions provide useful insights, but are unable to relia
predict the physics of the continuum theory and one m
resort to a numerical analysis.

Since S3B is closely related to the symmetry properties
the ground state, it appears to be quite reasonable to a
some kind of Hamiltonian formulation. Moreover, we wi
see in the following that, if we wish to preserve a SUS
subalgebra, a conserved Hamiltonian is crucial. However,
traditional algorithms for simulation of lattice field theorie
are based on the Lagrangian formulation@6#. The main rea-
son is the immediate probabilistic interpretation of the pa
tion function, at least for bosonic systems not suffering fro
a sign or phase problem; this leads to a host of Monte C
algorithms, some of which are extremely efficient. Of cour
alternatives based on a more direct Hamiltonian formali
do exist @7#, but they are certainly less exploited in hig
©2004 The American Physical Society10-1
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energy physics where emphasis is on Lagrangian sym
tries, in particular Poincare´ invariance.

On the other hand, Hamiltonian methods have been u
in supersymmetric discretized light-cone quantizat
~SDLCQ! @8# and also are widely exploited in nonrelativist
contexts@9# where the properties of the ground state are ty
cally the simplest and first object of investigation. Moreov
these techniques interlace the brute force numerical calc
tions with analytical or physical insights about the structu
of the ground state wave function, a feature that is qu
welcome in the study of S3B where we expect major change
to show up at the phase transition.

Another important feature of our study concerns the f
that fermions, needed in supersymmetric models, are the
jor source of complications in the current approaches to
tice simulations. In the Lagrangian approach quantum exp
tation values are computed by summing over histories of
classical fields, following Feynman’s ideas. In the case
fermions, these are Grassmann valuedclassical fields that
cannot be analyzed by direct numerical methods. The typ
solution amounts to integrating them out and studying
resulting nonlocal bosonic model@10#. This can be nontrivial
for a generic model, and a recent detailed account of
problem and whether it can formulate successfully sup
symmetric theories on the lattice can be found in@11#.

Instead, in the Hamiltonian approach, what is relevan
the algebra of the fields and their conjugate momenta. F
this point of view, fermions and bosons differ just by th
replacement of commutators by anticommutators and als
the structure of the state space, finite dimensional for fer
ons in finite volume, infinite dimensional in the bosonic ca
Apparently, in the Hamiltonian approach, there is much m
symmetry in the treatment of fermions and bosons than
the Lagrangian approach.

Looking at the details of the simulation techniques, ho
ever, problems arise with Hamiltonian fermions due to
well known hard sign problem@12#. Roughly speaking, fer-
mion exchanges introduce problematic and unavoida
signs that often break in a substantial way the probabili
interpretation of quantum expectation values required
build a numerical stochastic algorithm. This deep problem
somewhat milder in 111 dimensions where specific equiv
lences between fermionic and bosonic fields can be es
lished@13,14#. Also, the topology of fermion dynamics is th
simplest possible and helps in taming the sign problem.
tually, for several fermion models in 111 dimensions arising
in solid state theory, like, e.g., Hubbard-like models, alg
rithms can be devised with no sign problem and good e
ciency as well as scaling properties@15#.

The detailed plan of the paper is the following. In Sec.
we present the model and its lattice Hamiltonian. In Sec.
we compute the first nontrivial order of the strong-coupli
expansion of the ground state energy. In Sec. IV we disc
the renormalization group trajectories along which a c
tinuum limit can be reached. In Sec. V we describe a Gr
function Monte Carlo algorithm. Finally, Sec. VI is devote
to present our numerical results.
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II. THE NÄ1 WESS-ZUMINO MODEL
IN 1¿1 DIMENSIONS

A. Definition of the model and patterns of SUSY breaking

Let us consider the most general SUSY algebra in t
dimensions. The generators are split into fermionic a
bosonic ones. The algebra withN left-handed fermionic gen-
erators$QL

A%A51, . . . ,N andN̄ right-handed fermionic genera

tors $QR
A%A51, . . . ,N̄ is denoted by (N,N̄). The bosonic gen-

erators are the components of the two-momentum (P0,P1)
and a set of central chargesTAB. The nontrivial part of the
algebra is

$QL
A ,QL

B%5dAB~P02P1!,

$QR
A ,QR

B%5dAB~P01P1!,

$QL
A ,QR

B%5TAB.

In the left-right symmetric case with (N,N̄)5(1,1), we de-
note

Q1,2[QR
16QL

1 , ~2.1!

and find

$Qa ,Qb%52~H11Ps11Ts3!ab , ~2.2!

where s i are the Pauli matrices, (P0,P1)[(H,P) and T
[T11. The minimal realization of this algebra requires
single real chiral multiplet with a real scalar componentw
and a Majorana fermion with componentsc1,2. The explicit
form of the supercharges is

Q1,25E dxFp~x!c1,2~x!2S ]w

]x
6V@w~x!# Dc2,1~x!G ,

~2.3!

where p(x) is the momentum operator conjugate tow(x).
The central charge corresponds to a topological quan
number@16#

T5E dx
]w

]x
V~w!. ~2.4!

As usual with supersymmetric models, the structure of
HamiltonianH guarantees that the energy eigenstates h
E>0 because

H5
1

2
~Q1

21Q2
2!. ~2.5!

Invariant states annihilated by bothQi coincide with the zero
energy states and are thus supersymmetric ground st
they must lie in the topologically trivial sector.

The problem of predicting the pattern ofS3B is not easy.
In principle, the form of V(w) is enough to determine
whether supersymmetry is broken or not. At least at t
level, one easily proves that supersymmetry is broken if a
only if V has no zeros. In two dimensions, however, th
0-2
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conclusion is generally false due to radiative corrections.
analytic nonperturbative tool that can help in the analysi
the Witten index defined as@23#

I 5Tr~21!F, ~2.6!

whereF is the fermion number. Since supersymmetry is n
explicitly broken, contributions from positive-energy boson
and fermionic states cancel and

I 5nE50
B 2nE50

F . ~2.7!

In finite volume,I is invariant under changes inV(w) that do
not modify its asymptotic behavior. In particular, it can
computed at weak coupling where each zero ofV(w) is as-
sociated to a perturbative zero energy state. Thus, ifV(w)
has an odd number of zeros, we findIÞ0 and supersymme
try is unbroken. If, on the other hand,V(w) has an even
number of zeros, the associated perturbative vacua can
tribute I with opposite signs and, whenI 50, we cannot say
anything. In particular, a nontrivial set of perturbative ze
energy states withI 50 can receive instanton corrections d
to tunneling lifting them to positive energies breaking sup
symmetry while leavingI 50. In such cases, the behavior
the tunneling rate with increasing volume is crucial in a
swering the question of breaking.

An interesting example of this complicated scenario
discussed in Appendix A of Ref.@23#. We quickly review the
analysis since it will be important in the interpretation of o
results. WhenV(w)5l(w21a2), the action of the WZ
model is

S5E d2xS 1

2
~]w!21

i

2
c̄g•]c

2
1

2
l2~w21a2!22

1

2
lwc̄c D . ~2.8!

For large positivea2 the index is zero because there are
zero-energy states. Due to a special conjugation symm
valid for this model in finite volume, the pattern of breakin
is invariant undera2→2a2. This means that for negativ
a2, the two zeros ofV are bosonic and fermionic and~finite
volume! tunneling lifts their energy to a positive value. How
ever, in infinite volume and large negativea2, the narrow
minimum of the potential is protected from radiative corre
tions and generates an expectation value^w&Þ0 signaling the
SSB of theZ2 symmetry w→2w, c→g5c. The fermion
becomes massive and supersymmetry must be unbroken
to the absence of a massless Goldstino.

The above discussion illustrates that an alternative n
perturbative analysis of the models withI 50 is certainly
welcome. In the following, we shall put the model on
space-time lattice in order to exploit explicit numerical sim
lations as well as analytical strong-coupling expansions.

B. Lattice version of the model

On the lattice it is impossible to maintain the full SUS
algebra and it is important to understand what can be sai
looking at subalgebras. If we consider one supercharge o
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for instanceQ1, and find a state withQ1us&50, we cannot
say that it is a zero energy state unless we know that it i
the T50 sector. On the other hand, if no states withQ1us&
50 are found in any topological sector, then supersymme
is certainly broken.

Thus, even if we forgetQ2, we can choose as a clear-c
signal of supersymmetry dynamically breaking the low
eigenvalue of the operatorQ1

2: if it is positive, we have
breaking.

The SUSY algebra~2.2! involves explicitly the generators
of space and time infinitesimal translations and is spoiled
the lattice. In the Lagrangian approach, both space and
are discrete and SUSY is completely broken. In the Ham
tonian formulation, time remains continuous and theD52
algebra is reduced toD51 and not totally lost. The full
two-dimensional algebra as well as Lorentz invariance
expected to be recovered in the continuum limit.

A lattice version of the above model has been previou
studied in Refs.@17,18#. A similar approach to Wess-Zumin
models withN52 supersymmetry is discussed in Ref.@19#,
and numerical investigations are reported in Ref.@20#. On
each site of a spatial lattice withL sites, we define a rea
scalar fieldwn together with its conjugate momentumpn
such that@pn ,wm#52 idn,m . The associated fermion is
Majorana fermion ca,n with a51,2 and $ca,n ,cb,m%
5da,bdn,m , ca,n

† 5ca,n . The fermionic charge

Q5 (
n51

L Fpnc1,n2S wn112wn21

2
1V~wn! Dc2,nG ,

with arbitrary real functionV(w) ~calledprepotentialin the
following! can be used to define a semipositive definite l
tice Hamiltonian

H5Q2. ~2.9!

This Hamiltonian includes the central charge contribution
the form of a term

(
n

V~wn!
wn112wn21

2
, ~2.10!

that is precisely a discretization ofT. Eigenstates ofH are
divided into invariant Q-singlets with zero energy an
Q-doublets with degenerate positive energy.H describes an
interacting model, symmetric with respect toQ and this sym-
metry is respected by the spectrum if and only if the grou
state energy is positive. We stress again thatQ symmetry
breaking implies breaking of the full 2 dimensional supe
symmetry, whereasQ symmetry does not imply~in a generic
topological sector! 2D SUSY.

We remind that, on the lattice, spontaneous supersym
try breaking can occur even for finite lattice sizeL, because
tunneling among degenerate vacua connected byQ is forbid-
den by fermion number conservation.

To write H in a more familiar form, we follow Ref.@18#
and replace the two Majorana fermion operators with
single Dirac operatorx satisfying canonical anticommutatio
rules, i.e.,$xn ,xm%50, $xn ,xm

† %5dn,m :
0-3
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c1,n5
~21!n2 i

2i n
~xn

†1 ixn!,

c2,n5
~21!n1 i

2i n
~xn

†2 ixn!. ~2.11!

The Hamiltonian takes then the form

H5HB~p,w!1HF~x,x†,w!

5(
n

H 1

2
pn

21
1

2 S wn112wn21

2
1V~wn! D 2

2
1

2
~xn

†xn111H.c.!1~21!nV8~wn!S xn
†xn2

1

2D J
~2.12!

and describes canonical bosonic and fermionic fields w
standard kinetic energies and a Yukawa coupling.

This Hamiltonian conserves the total fermion number

Nf5(
n

xn
†xn , ~2.13!

and can be examined in each sector with definiteNf sepa-
rately. For reasons that will be understood later, we shall a
consider open boundary conditions and restrict the lat
sizeL to be even. These are constraints that do not affect
physics of the model in the continuum, but will be ve
welcome by the algorithm we are going to apply.

The simplest way to analyze the pattern of supersymm
breaking for a givenV(w) is to compute the ground stat
energyE0. As we mentioned, on the lattice, we can perfo
such a computation in a nonperturbative way by strong c
pling or numerical simulations. However, before discuss
these items, we want to stress some identities that can
used together withE0 to get information on the symmetry o
the ground state.

C. Lattice Ward identities

If the vacuum u0& is supersymmetric,Qu0&50 and for
each operatorX we have

^0u$Q,X%u0&50. ~2.14!
09501
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In particular, taking

X5(
n

F~wn!c2,n , ~2.15!

we obtain

^0u(
n

H F~wn!Fwn112wn21

2
1V~wn!G

1F8~wn!~21!n~xn
†xn21/2!J u0&50. ~2.16!

A basis of Ward identities is thus obtained by consider
F(w)5wn. For instance, on an even lattice with open boun
ary conditions we find forn51 the relation

^0u(
n

$wnV~wn!1~21!nxn
†xn%u0&50. ~2.17!

The caseF(w)5constant is also interesting. It leads to

^0u(
n

V~wn!u0&50. ~2.18!

III. STRONG COUPLING ANALYSIS OF SUSY BREAKING

Let us start from the supersymmetry charge

Q5(
l

Fplc l
12V~w l !c l

22
w l 112w l 21

2
c l

2G .
Following Ref. @19#, we define the strong-coupling limi

by

V~w!→l→`lV(0)~lw!,

perform the canonical transformation

w (0)5lw, p(0)5
1

l
p,

and rescale the energies byl2; dropping the index(0) from
w andp, the result is
Q5(
l

F plc l
12V~w l !c l

22
~w l 112w l 21!c l

2

2l2 G[Q(0)1
Q(2)

l2
,

H5Q25
1

2 (
l

F pl
21V2~w l !12iV8~w l !c l

1c l
21

~w l 112w l 21!V~w l !1 ic l 11
1 c l

21 ic l 11
2 c l

1

l2
1

~w l 112w l 21!2

4l4 G
[H (0)1

H (2)

l2
1

H (4)

l4
.

0-4
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Introducing the Dirac fieldsx l , x l
† @18#, cf. Eq. ~2.11!, we obtain

H (0)5(
l

F1

2
pl

21
1

2
V2~w l !1~21! lV8~w l !~x l

†x l21/2!G5(
l

F1

2
pl

21
1

2
V2~w l !1

1

2
~21! l 1nlV8~w l !G

H (2)5
1

2 (
l

V~w l !~w l 112w l 21!2
1

2 (
l

~x l
†x l 111H.c.!

H (4)5
1

8 (
l

~w l 112w l 21!2
ti
i

s

if

ent

y
e
rov

q.

for

is

-
e

n

where we denote bynl50,1 the eigenvalue ofx l
†x l .

A. Leading order

To leading order in 1/l, the Hamiltonian is factorized in a
supersymmetric quantum mechanics for each site; adop
an explicit representation, we can write the one-site Ham
tonian as

H5
1

2 F2
d2

dx2 1V2~x!1s3V8~x!G ~3.1!

@in the occupation number representation the basis cho
now is (n50,n51) for odd sites and (n51,n50) for even
sites#. This Hamiltonian has aN52 supersymmetry@21#,

$Qi ,Qj%5d i j H,

Q15
1

2
@s1p1s2V~x!#,

Q25
1

2
@s2p2s1V~x!#. ~3.2!

The conditions for a supersymmetric ground stateQic050
reduce to

c08~x!5s3V~x!c0~x!. ~3.3!

For polynomialV, supersymmetry is unbroken if and only
it is possible to find a normalizable solution to Eq.~3.3!,
which happens if the degreeq of V is odd @21#.

We can write the time-independent Schro¨dinger equation
as

c91@2E2V2~x!7V8~x!#c50;

denoting the eigenfunctions for the two signs bycm
6 and

their energies by«m
6 , we have

cm
691@2«m

62V2~x!7V8~x!#cm
650. ~3.4!

Supersymmetry implies that, forEÞ0, states are paired in
boson-fermion doublets.
09501
ng
l-

en

We remark that this conclusion is in strong disagreem
with the continuum~or weak-coupling lattice! analysis where
the relevant feature ofV is the existence of zeros.

For q.1, cm
6(x) and «m

6 cannot be computed exactl
~excluding the cases«0

650); it is however easy to comput
then numerically to high accuracy, using, e.g., the Nume
method@22#. An example is shown in Fig. 1.

In the following analysis, we shall have to tell betweenV
with odd or even leading power ofw.

1. Odd q

For oddq, we either have«0
250 or «0

150; let us assume
«0

250: c0
2 is the supersymmetric ground state satisfying E

~3.3!; all the other states appear in pairs:«m11
2 5«m

1 . Notice
that the ground state is bosonic for even sites, fermionic
odd sites~the opposite holds if«0

150).
A strong argument against supersymmetry breaking

given by the Witten indexI W[Tr(21)Nf @23#; in the strong-
coupling limit, we clearly haveI W561; since I WÞ0 im-
plies unbroken SUSY, andI W is invariant under regular per
turbations ~cf. Sec. III A 3!, supersymmetry can never b
broken for oddq, not even in theL→` limit.

A simple check of this result can be given explicitly whe
V is linear and is discussed in details in Appendix A.

FIG. 1. The ground-state energy«05«0
6 and the overlaph0 as

functions ofl0 for the quadratic prepotentialV5w21l0.
0-5
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2. Even q

For evenq, we have«m
15«m

2 ; for m50, this corresponds
to a degenerate ground state with broken supersymm
(«0

65«0.0). The phases of the normalized statesucn
6& can

be chosen in order to satisfy

A2«nucn
2&5@2 ip1V~w!#ucn

1&, ~3.5!

A2«nucn
1&5@ ip1V~w!#ucn

2&. ~3.6!

Introducing the notation

^O&65^c0
6uOuc0

6&,

^c0
1uc0

2&5h0 ,

we can prove the important relations

^V&65A2«0h0 , ~3.7!

^w&22^w&15
1

A2«0

h0 . ~3.8!

h0 can be computed numerically fromc0
6(w), cf. Fig. 1.

The proof of Eq.~3.7! is very simple: just take the scala
product of Eq.~3.5! with ^c0

1u and of Eq.~3.5! with ^c0
2u,

and observe that̂p&650. The proof of Eq.~3.8! is also
immediate,

A2«0^c0
1uwuc0

1&5^c0
1uw~ ip1V!uc0

2&

5^c0
1u~ ip1V!wuc0

2&1^c0
1u i @w,p#uc0

2&

5A2«0^c0
2uwuc0

2&2^c0
1uc0

2&.

Several simplifications can be exploited whenV(w) is
even. For an asymptotically positive polynomialV(w) with
degreeq>2 it is easy to show that1

ucn
2&5~21!nI ucn

1&

whereI is the Hermitian parity inversion operator

^wuI uc&5^2wuc&.

Then, the eigenstates can be characterized by the s
equation

A2«nucn&5~21!n~ ip1V!I ucn&

where

ucn&[ucn
1&.

It is easy in this case to obtain generalized relations like
previous ones. Let us consider the equation

1In fact, from their definition, one can see thatcn
6(w) have the

same sign whenw→1`. Since they are related by a parity tran
formation, their relative phase is fixed by the number of nodes
09501
try

gle

e

A2«n^cmuI ucn&5~21!n^cmuI ~ ip1V!I ucn&

5~21!n^cmu~2 ip1V!ucn&.

Taking the Hermitian conjugate and exchangingm andn we
find the two equations

A2«n^cnuI ucm&5~21!n^cnu~ ip1V!ucm& ~3.9!

A2«m^cnuI ucm&5~21!m^cnu~2 ip1V!ucm&
~3.10!

therefore

^cnuV~w!ucm&5
1

A2
@A«m~21!m1A«n~21!n#^cnuI ucm&

or ~exploiting parity!

^cn
6uV~w!ucm

6&5
1

A2
@A«n1A«m~21!n1m#^cn

7ucm
6&.

~3.11!

In a similar way we can compute

A2«n^cmuwucn&5~21!n^cmuw~ ip1V!I ucn&.

Taking the Hermitian conjugate and exchangingm andn we
find the two equations

A2«n^cnuwucm&5~21!n^cnu~2 ip2V!wI ucm&
~3.12!

A2«m^cnuwucm&5~21!m^cnuw~ ip1V!I ucm&
~3.13!

summing the two equations

A2@A«n~21!n1A«m~21!m#^cnuwucm&

5^cni @w,p#I ucm&52^cnuI ucm&

and ~exploiting parity!

^cn
6uwucm

6&57
1

A2

1

A«n1~21!n1mA«m

^cn
7ucm

6&.

~3.14!

Of course, forn5m50, Eqs.~3.11!, ~3.14! agree with the
previous general results.

3. On the convergence of the perturbative expansion

The Rayleigh-Schro¨dinger perturbation theory of a
Hamiltonian of the formH5H01bH1 is regular~i.e., it has
a finite radius of convergence inb) if @24#

iH1Ci<aiH0Ci1biCi ~3.15!
0-6
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uniformly for all state vectorsC; in our case, Eq.~3.15!
clearly holds, for bothH (2) and H (4), except for the trivial
casesq<1.

B. First order

At first order ~subleading! in the strong-coupling expan
sion we consider again the two cases of even or oddq.

1. Odd q

In the case of unbroken supersymmetry~oddq), the sub-
leading correction to the ground-state energy in the stro
coupling expansion is zero: the fermionic contributi
ic l 11

1 c l
21 ic l 11

2 c l
1 has clearly zero diagonal matrix ele

ments, and the bosonic contributionw l 11V(w l)
2w lV(w l 11) is zero because it factorizes intôw&^V&
2^w&^V&; strictly speaking, this is true for periodic and fre
boundary conditions, but it could be false, e.g., for fix
boundary conditions.

2. Even q

Due to the structure of the Hamiltonian, it is convenient
describe states in the mixed form

(
n1 , . . . ,nL

cn1 , . . . ,nL
~w1 , . . . ,wL!un1 , . . . ,nL& ~3.16!

wherecn1 , . . . ,nL
(w1 , . . . ,wL) is a wave function dependin

on the bosonic degrees of freedom andun1 , . . . ,nL& is the
fermionic component of the state defined in terms of the s
annihilated by allx,

x i u0&50, ~3.17!

according to the canonical ordering of the Fermi operato

un1 , . . . ,nL&5~x1
†!n1

•••~xL
†!nLu0&. ~3.18!

Of courseni50,1 andun1 , . . . ,nL& describes a state withni
fermions at sitei. In the case of broken supersymmetry~even
q), the subspaceB of lowest leading-order energy is spann
by the states

un&5c0
s1~w1!•••c0

sL~wL!un1 , . . . ,nL&, ~3.19!

wheres l5(21)l 1nl andc0
61[c0

6 . We have adopted ope
boundary conditions, corresponding in our notations to s
ting w05wL1150 and c0

a5cL11
a 50 ~and thereforex0

5xL1150).
Since the number of fermions( lnl is conserved, we can

impose an additional constraint onB and define

BN5H un&, (
l

nl5NJ , B5B0% . . . % BL .

We will now prove that, for evenL, the ground state is dou
bly degenerate and lies in the sectors withN5L/2,L/221.

At first order, we have to diagonalize the operatorH (2)

over BN . Let us split
09501
g-

te

:
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H (2)5HB
(2)1HF

(2) ~3.20!

HB
(2)5

1

2 (
l 51

L

V~w l !~w l 112w l 21! ~3.21!

HF
(2)52

1

2 (
l 51

L

~x l
†x l 111x l 11

† x l !. ~3.22!

Since

^n8uHB
(2)un&5

1

2
A2«0h0dn,n8(

l
~^w l 11&2^w l 21&!

~3.23!

we have

^n8uHB
(2)un&52

1

4
h0

2dn,n8@~21!n11~21!nL# ~3.24!

where we have exploited

^w l&52~21! l 1nl
h0

A2«0

, ~3.25!

that holds for evenV. Sincen50,1 we can use (21)n51
22n and write

^n8uHB
(2)un&5

1

2
h0

2dn,n8~211n11nL!. ~3.26!

The matrix elements ofHF
(2) are

^n8uHF
(2)un&52

1

2
h0

2hn,n8 ~3.27!

where hn,n851 if n and n8 are connected byHF
(2) ~i.e. a

hopping of one fermion! and 0 otherwise.
Thus, we can hide the bosonic wave functions and w

an effective perturbation acting on purely fermionic states

Heff
(2)5

h0
2

2 S (
i , j 51

L

x i
†Mi j x j21D ~3.28!

where1 is the identity operator and

Mi j 5H 21 u i 2 j u51

1 i 5 j 51 or L

0 otherwise.

~3.29!

SinceHeff
(2) is quadratic, it is convenient to change opera

basis. Letv i
(p) be thepth eigenvector ofM with eigenvalue

l (p),

vn
(p)5A22dp,L

L
sinFpp

L S n2
1

2D G ~3.30!

l (p)522 cos
pp

L
. ~3.31!
0-7
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They define a~real! unitary matrix

(
p51

L

v i
(p)v j

(p)5d i j , (
i 51

L

v i
(p)v i

(q)5dpq .

We can replace the operatorsx i by the operatorsai defined
by

x i5 (
p51

L

v i
(p)ap , ap5(

i 51

L

v i
(p)x i

with

$ap ,aq
†%5dpq .

The new form ofHeff
(2) is

Heff
(2)5

h0
2

2 S (
p51

L

l (p)ap
†ap21D . ~3.32!

The eigenvaluesl (1), . . . ,l (L/221) are negative andl (L/2)

50; there are thus two degenerate ground states withL/2
21 andL/2 fermions. This is required by supersymmetr
sinceH (2) restricted toB commutes withQ(0), all the states
must be paired in doublets withN differing by 1. The ground
state withL/2 fermions is

uC0
(1)&5c0

s1~w1!•••c0
sL~wL!a1

†
•••aL/2

† u0&. ~3.33!

To conclude, the shift of the ground state energy due
the perturbation is

E15
h0

2

2 S 2122(
n51

L/2

cos
pn

L D 52
h0

2

2
cot

p

2L
. ~3.34!

In the L→` limit we have

E1

L
52

h0
2

p
1O~1/L !. ~3.35!

In summary, the first order perturbation in the stron
coupling expansion removes the large degeneracy of
ground state and determines a doublet of eigenstates
L/221 andL/2 fermions with minimum energy

E

L
5«02

1

l2

h0
2

p
1OS 1

l2L
,

1

l4D . ~3.36!

A similar calculation at first order for̂wk& and ^wkw l&c is
discussed in Appendix B. The second-order correction to
ground state energy can also be computed with a reason
effort and the result is described in Appendix C. Howev
we remark that the results drawn from the first order corr
tions are not qualitatively changed.
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C. Discussion

From the analysis of the strong-coupling expansion of
model we can draw the following conclusion. For polyn
mial V(w), the relevant parameter is just its degreeq.

For oddq, the strong coupling analysis and the tree-lev
results agree and supersymmetry is expected to be unbro
This conclusion gains further support from the nonvanish
value of the Witten index at strong coupling.

For evenq, in strong coupling, the ground state~at least in
the sector with half filling! has a positive energy density als
for L→` and supersymmetry appears to be broken.
course, this can be in disagreement with weak coupling
specific case that we shall analyze numerically in great de
is

V~w!5l2w21l0 . ~3.37!

For l0,0, weak coupling predicts unbroken SUSY, where
the strong coupling prediction gives broken SUSY for alll0.
For this specific model, as we already discussed, the str
coupling analysis agrees with Ref.@23# in the sense that it
reproduces the continuum physics in finite volume.

For large expansion parameter, the strong coupling res
can be compared with explicit simulations~that we shall
fully discuss in Sec. V!. Let us consider for instance th
quadratic model withl050 on a lattice withL522 spatial
sites. In Fig. 2, we show the expectation value^wn& com-
puted atl252. The agreement is quite good apart from t
points on the border where the convergence seems to
slower. To check the validity of the strong coupling expa
sion at smaller couplings, we show in Fig. 3 the ground st
energy from MC simulation compared with the first and se
ond order strong coupling expansion. The scaled variable
the plot axes are discussed in Appendix C. The second o
gives better results at large values of the expansion par
eter, but is unreliable belowl2.0.35.

In the next section, we shall see that the continuum lim
is in the region of smalll2. Thus, for evenq, it seems
difficult to gain additional insight from strong coupling an
some kind of transition can happen as the continuum limi

FIG. 2. Comparison between strong coupling and MC simu
tion for the expectation valuêwn& in the quadratic model with
V(w)52w2 on a lattice withL522 spatial sites.
0-8



ap
et

el

ti

n
ri-

tic
es

oop

se

hed

rlo
an-

te
sen-

il-

y

p

t
e,

la

SUPERSYMMETRY BREAKING IN TWO DIMENSIONS: . . . PHYSICAL REVIEW D 69, 095010 ~2004!
reached. For this reason, a full simulation of the model
pears to be the only way to answer the question of symm
breaking.

IV. RENORMALIZATION GROUP TRAJECTORIES

The action of the WZ model is

S5E d2xS 1

2
~]w!21

i

2
c̄]c2

1

2
V~w!22

1

2
V8~w!c̄c D .

At the perturbative level, this is a superrenormalizable fi
theory that can be made finite by a renormalization ofV(w).
In the minimal subtraction scheme the renormalized poten
is obtained by solving the heat equation@25#

m
]

]m
V~w,m!52

1

4p

]2

]w2
V~w,m!, ~4.1!

where m is the dimensional regularization scale. A depe
dence onm is thus introduced in the coefficients of the va
ous monomials appearing in the tree levelV(w). For the
specific case ofV(w)5l2w21l0, we find thatl2 is scale-
independent and

l0~m!5l0~m0!2
l2

2p
log

m

m0
.

On the lattice, let us denote by a hat the adimensional lat
coupling constants and by the label ‘‘ph’’ the physical on
fixed and with dimension 1. The above result leads to

FIG. 3. Comparison between strong coupling and MC simu
tion for the ground state energy in the quadratic model withV(w)
5l2w2 on a lattice withL522 spatial sites.
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ph5l̂2 ~4.2!

al0
ph5l̂02

l̂2

2p
logaM. ~4.3!

The way we read these equations is as follows: at one l
and for small enougha, the physicall0 is obtained by com-
pensatingl̂0 by the effect of the one-loop diagrams. The
are computed with the UV cutoffa and with the IR cutoff
given by the~dimension 1! massM of the virtual particles in
the loop.

The first equation allows to replacea by l̂2 everywhere
and we get

l̂25al2
ph ~4.4!

l̂05l̂2

l0
ph

l2
ph

1
l̂2

2p
logS l̂2

M

l2
phD . ~4.5!

This seems to show that the continuum limit can be reac
with l̂2→0 and

l̂0

l̂2

;
l̂2→0

A1
1

2p
log l̂2 ~4.6!

where A contains the ratiol2
ph/l0

ph and the details of the
physical mass generation.

V. SIMULATION ALGORITHM

A. Green function Monte Carlo: General considerations

In this section, we review the Green function Monte Ca
approach to the study of the ground state of a general qu
tum model. To this aim, we consider the simple case of~0
11!-dimensional quantum mechanics in order to illustra
the basic ideas without unnecessary details hiding the es
tial features of the algorithm.

For a canonical spinless quantum particle, the Ham
tonian is

H5
1

2
p21V~q!, @qi ,pj #5 id i , j . ~5.1!

The ground stateuC0& of H can be projected out of an
initial stateu i & with nonzero overlap̂C0u i &Þ0. The projec-
tion is performed by applying the evolution semigrou
$exp(2tH)%t>0 and going to asymptotically large times.

Focusing on the ground state energyE0, this procedure
leads to the following simple formula:

E05 lim
t→1`

^ f uHe2tHu i &

^ f ue2tHu i &
; ~5.2!

the final stateu f & is in principle arbitrary, as long as it is no
orthogonal touC0&; in practice, it must be chosen with car
to avoid numerical instability.

-

0-9
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The vacuum expectation value of a generic observablO
can be computed as

^C0uOuC0&5 lim
t,t→`

^ f ue2tHOe2tHu i &

^ f ue2(t1t)Hu i &
; ~5.3!

this procedure is known asforward walking.
To translate the above formula into a stable numer

algorithm, it is necessary to find a basis such that the Ha
tonian H has nonpositive off-diagonal matrix elements. B
the way, this is true for the Hamiltonian~5.1! in the basis
$uq&% of position eigenstates. If such a basis is found, it
possible to identify matrix elements ofe2tH as probability
transitions defining a Markov random process in the s
space. For instance, in the simple case whenu f & is chosen to
be a zero momentum state,pu f &50, we have~Feynman-Kac
formula!

E05 lim
t→1`

^ f uVe2tHu i &

^ f ue2tHu i &

5 lim
t→1`

E Dq~t!V@q~ t !#e2*0
t V[q(t)]dt

E Dq~t!e2*0
t V[q(t)]dt

, ~5.4!

whereDq(t) is the Wiener measure.
The probabilistic interpretation of the above equation is

follows: E0 ~as well as other observables! can be computed
by taking the average over weighted walkers which diffu
according to the Wiener process. Each path is weighted
the following functional of the trajectory:

W@q~t!#5exp2E
0

t

V@q~t!#dt. ~5.5!

In the numerical implementation, an estimate ofE0 is
obtained by computing

lim
t→1`

E@V~ q̂t!Ŵt#

E~Ŵt!
, ~5.6!

whereq̂t is a numerical discretization of the Wiener proce
Ŵt its associated weight computed by properly approxim
ing Eq. ~5.5! and, finally, E(•) denotes the average wit
respect to the realizations ofq̂t . In practice, after the choice
of a particular approximationq̂t , one works with a large
09501
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number K of walkers and extrapolates numerically toK
→`. The control of the approximations involved in th
strategy requires some discussion that we defer to the se
devoted to results.

A point that is worth mentioning regards the possibility
introducing a guidance in the walkers diffusion. To impro
the convergence to ground state it is customary to define
unitarily equivalent Hamiltonian

H̃5eSHe2S5
1

2
p21 ip•F1Ṽ~q!, ~5.7!

whereS is an arbitrary~real! function and

F5¹S, ~5.8!

Ṽ5V2
1

2
~¹S!22

1

2
DS.

It can be shown that the derivation of expressions like E
~5.4! can be easily generalized to this case and the requ
modifications can be summarized as~i! the potentialV is
replaced byṼ, ~ii ! the Wiener process is replaced by a d
formed process guided by the driftF. In the following, we
shall call importance sampling the trick of exploiting a no
zeroS.

In the following sections, we describe in full details th
algorithm for the model under study considering first t
bosonic and fermionic sectors separately and finally the
Hamiltonian.

B. Bosonic sector

The bosonic sector of the lattice model is a canoni
quantum mechanical one with many degrees of freedom.
algorithm is the one described in the previous section. Gi
the transformed HamiltonianH̃ of Eq. ~5.7!, we write

exp~2«H̃B!5expS 2
«

2
ṼDexpS 2

«

2

p2

2 De2 i«p•F

3expS 2
«

2

p2

2 DexpS 2
«

2
ṼD1O~«3!.

~5.9!

The functionṼ depends on the bosonic state, i.e. the se
values of the scalar fields that we collectively denote byQ.

The rule for the update of the weighted walker (Q,W) is
built, step by step, following the approximate operator fa
torization~5.9! and reads~see@26# for similar calculations in
the solution of the Langevin equation!

~Q8,W8!→~Q-,W-!, ~5.10!

whereQ- andW- are built according to

W95W8expS 2
«

2
Ṽ~Q8! D , ~5.11!
0-10
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Q95Q81A«

2
j8,

z5Q81
«

2
F~Q8!,

Q95Q81«F~z!,

Q-5Q91A«

2
j9,

W-5W9expS 2
«

2
Ṽ~Q-! D ,

andj8, j9 are independent sets of Gaussian random numb
In the above update, the integration of the equations of m
tion associated with the driving forceF has been solved a
second order. In the end a systematic errorO(«3) with re-
spect to the evolution time has been introduced.

An estimate of the energy in the bosonic sector is
tained by taking the weighted average ofṼ over several re-
alizations of the walker path

E0
bosonic5 lim

t→1`

E@Ṽ~Qt!Wt#

E~Wt!
. ~5.12!

C. Fermionic sector

In the fermionic sector, the spirit of the algorithm is th
same, but there are important technical differences that
want to emphasize. At fixed scalar fields configuration,
remaining state space is purely fermionic and, on a fin
lattice, it is both discrete and finite dimensional.

To simplify notation, in this section we denoteH[HF .
The Hamiltonian can be thought of as a large sparse ma
H5iHss8i with s ands8 denoting fermionic states. We now
show that a similar construction like the one exploited w
HB can be repeated here. The Gaussian random noise
was the building block in the simulation of the Wiener pr
cess is replaced here by a discrete jump process.

Again, the problem is that of giving a probabilistic repr
sentation for the evolution semigroupV5$e2tH% t>0. To this
aim, we define a Markov process that describes diffusion
the discrete state space and we also provide a rule for
update of a walker weight. We finally show that suitab
averages over weighted walkers reconstruct the evolu
governed byH and project a given initial state onto th
ground state.

For each pairs,s8 in the state spaceSsuch thatsÞs8 and
Hs8sÞ0 we defineGs8s52Hs8s . We assume that allGs8s
.0 ~no sign problem! and build anS-valued Markov sto-
chastic processst by identifyingGs8s as the rate for the tran
sition s→s8. Hence, the average occupationPs(t)
5E(ds,st

), with E(•) denoting the average with respe

to st , obeys the Master EquationṖs(b)5(s8Þs(Gss8Ps8
2Gs8sPs).
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Related tost , we also define the real valued stochas
processWt5exp(2*0

t vst
dt), with vs5(s8PSHs8s . It can be

shown that the weighted expectation valuecs(t)
5E(ds,st

Wt) reconstructsV,

d

dt
cs~ t !52 (

s8PS

Hss8cs8~ t !,

with cs(0)5Prob(s05s). Matrix elements ofV can be
identified with certain expectation values. In particular, t
ground state energyE0 ~in the purely fermionic sector! can
be obtained by

E05 lim
t→1`

E~vst
Wt!

E~Wt!
. ~5.13!

The actual construction of the process is straightforward
realization ofst is a piece-wise constant mapR→S with
isolated jumps at timest5t0 ,t1 , . . . , with t0,t1,t2
,•••. The algorithm that computes the triples$tn ,stn

,Wtn
%

is the following:

~i! We denotestn
[s and define the setTs of target states

connected tos: Ts5$s8,Gs8s.0%. We also define the
total width Gs5(s8PTs

Gs8s .
~ii ! Extract t>0 with probability density ps(t)

5Gse
2Gst. In other words,t52(1/Gs)logj with j

uniformly distributed in@0,1#.
~iii ! Extract a new states8PTs with probability ps8

5Gs8s /Gs .
~iv! Define tn115tn1t, stn11

5s8

andWtn11
5Wtn

•e2vst.

In this sector there is no systematic error due to a fin
evolution time. The semigroup dynamics is in fact repr
duced exactly by the above stochastic process (st ,Wt).

About Importance Sampling, we remark that in the d
crete case, the inclusion of a trial wave function amounts
the redefinition

H̃s8s5Cs8
T Hs8s

1

Cs
T

, ~5.14!

whereCs
T5^suC0

T& are the components of the trial groun

stateuC0
T&. The new HamiltonianH̃ is not symmetric, but

the above formulas works as well with no need for furth
modifications: actually, they have been derived without
quiring any symmetry conditionH5HT.

Some final comments are in order about the choice of
basis for the fermionic states. As we mentioned in the g
eral discussion, we want to have zero or negative o
diagonal matrix elements ofH. The simplest choice amount
to consider eigenstatesun& of the occupation numbersx i

†x i

and with a relative phase fixed by the natural choice

un&5)
i 51

L

~x†!niu0&, x i u0&50. ~5.15!
0-11
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This does not guarantee that the above sign problems
absent. In fact, in weak-coupling perturbation theory,
choice of periodic boundary conditions does not break su
symmetry whenL mod 450 as can be checked, e.g., in th
free model. However, under this condition, there is an e
number of fermions,L/2, in the ground state and a sig
problem arises due to boundary crossings of a fermion, s
such a transition involves an odd number of fermion e
changes. To avoid such a difficulty, we shall adopt op
boundary conditions. With this choice,L needs just to be
even to assure a supersymmetric weak coupling ground s
Also, we shall restrict to the caseL mod 452 and to the
sector with L/2 fermions that contains a nondegener
ground state, with zero energy at all orders in a we
coupling expansion.

D. Algorithm for the full model

To study the full Hamiltonian of the Wess-Zumino mode
the simplest attitude is to perform an approximate splitting
the bosonic and fermionic sectors. For instance, with sec
order precision, we can write

exp~2«H !5expS 2
1

2
«HBDexp~2«HF!

3expS 2
1

2
«HBD1O~«3!, ~5.16!

and consider separately the evolution related toHB andHF
freezing the fermionic or bosonic fields respectively. In t
end, an extrapolation to the«→0 limit must be performed.
Equation~5.16! has been approximated to the same orde
Eq. ~5.9!; if necessary, both can be improved.

E. Variance control

A straightforward implementation of the above formul
fails because of a numerical instability: the variance of
walker weightsWt computed over the walkers ensemb
grows exponentially witht and forbids the projection onto
the ground state@27#. A good trial wave function can cer
tainly reduce the growth rate, but the problem disappe
only in the ideal case when the trial wave function is exa
To bypass this problem, some kind ofbranchingprocedure
must be applied in order to delete trajectories~walkers! with
low weight and replicate those with larger weight.

In practice, we introduce an ensemble, i.e., a collection
K independent walkerss(n) each one carrying its own weigh
W(n):

E5$„s(n)~ t !,W(n)~ t !…,1<n<K%. ~5.17!

When the variance of the weights in the ensemble beco
too large,E is transformed in a new ensembleE8 that repro-
duces the same expectation values~at least in theK→`
limit ! and has a smaller variance. We adopted the branc
procedure of Ref.@28#: for each walkers(n) we compute a
multiplicity
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M (n)5 bcW(n)1j c, c5
K̄

(
n

W(n)

, ~5.18!

wherej is a random number uniformly distributed in@0,1#,
K̄ is the desired number of walkers, andbxc is the maximum
integer not greater thanx; the new ensembleE8 contains
M (n) copies of each configurations(n) in E and all the
weights are set to 1; the actual number of walkersK will
oscillate aroundK̄. This procedure has the advantage th
there is no harmful effect from its repeated applicatio
therefore we apply it at each Monte Carlo iteration, after
the fields have been updated.

F. Choice and dynamical optimization of the trial wave
function CT

About the choice of the trial wave function, we propo
the factorized form

uC0
T&5eSB(w)1SF(w,x,x†)uC0&B^ uC0&F , ~5.19!

where uC0&B^ uC0&F is the ground state of the free mod
given explicitly in Appendix D and

SB5(
n

(
k51

dB

ak
Bwn

k ,

SF5(
n

~21!nS xn
†xn2

1

2D (
k51

dF

ak
Fwn

k .

Since the trial wave function is a modification of the fre
ground-state wave function, we expect that importance s
pling will improve as we approach the continuum limit.

The degreesdB and dF must be chosen carefully to
achieve a balance between the accuracy of the trial w
function on one hand, and convergence of the adaptive
termination of the parametersa and computation time on the
other hand. We chosedB5dF54, except for situations very
close to the continuum limit, e.g.,V5l2w21l0 with l2
,0.2, for which we chosedB5dF52 ~cf. Sec. VI D!.

The trial wave function should of course respect the sy
metries of the model; aZ2 symmetry possessed by the mod
for specific forms ofV is very helpful to reduce the numbe
of parameters that we must optimize. For oddV, the model
enjoys the exact symmetrywn→2wn , and therefore oddak

B

andak
F can be set to zero. For evenV, the model enjoys the

approximate symmetrywn→2wn , xn↔xn
† ~it is broken by

irrelevant terms and by boundary terms!, and we verified that
odd ak

B and evenak
F can be set to zero.

Let us denote bya5$aB,aF% the collective set of free
parameters appearing in the trial wave function. A possi
approach consists in performing simulations of moderate
at fixed a in order to optimize their choice. However, a
shown in@29#, the trial wave functionuC0

T& can also be op-
timized dynamically within Monte Carlo evolution with
better performance of the full procedure.
0-12
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SUPERSYMMETRY BREAKING IN TWO DIMENSIONS: . . . PHYSICAL REVIEW D 69, 095010 ~2004!
The idea is again simple: consider the ground state en
as a typical observable; for a given choice ofa, after N
Monte Carlo steps, a simulation with an average popula
of K walkers furnishes a biased estimatorÊ0(N,K,a). If we
denote bŷ •& the average with respect to Monte Carlo re
izations,Ê0 is a random variable such that

lim
N→`

^Ê0~N,K,a!&5E01dE0~a,K !, ~5.20!

wheredE0(a,K) depends ona, but vanishes asK→`. Be-
sides, the size of the fluctuations is measured by

Var Ê0~N,K,a! ;
N→`c2~K,a!

AN
. ~5.21!

In the K→` limit, ^Ê0& is exact and independent ofa. The
constantc2(K,a) is related to the fluctuations of the effe
tive potentialṼ and is strongly dependent ona. The problem
of finding the optimal trial wave function can be translated
the minimization ofc2(K,a) with respect toa.

The algorithm we propose performs this task by interl
ing a Stochastic Gradient steepest descent with the M
Carlo evolution of the walkers ensemble. At each Mon
Carlo step, we updatean→an11 according to the simple law

an115an2hn¹aVarEn
Ṽ ~5.22!

where En is the ensemble at stepn and $h% is a suitable
sequence, asymptotically vanishing; to keep things sim
we use the sameh for all componentsak of a, although in
principle we could use a differenthk for eachak .

A nonlinear feedback is thus established between the
wave function and the evolution of the walkers. The conv
gence of the method cannot be easily investigated by ana
cal methods and explicit numerical simulations are requi
to understand the stability of the algorithm. In@29#, examples
of applications of the method with purely bosonic or ferm
onic degrees of freedom can be found. Here, we apply
method for the first time to a model with both kinds of field

In practice, the choice of the initial values ofa is impor-
tant: it is clear that, if we have a good guess of the optim
values~e.g., from runs at the sameV but for smaller values
of L or K), starting from them makes the convergence mu
faster. We also noticed that, starting e.g. froma050, the
steepest descent at times fails andan oscillates wildly; this
never happens if most of the starting values have at leas
right sign and order of magnitude.

We found it useful to determineh dynamically as well.
The basic idea is that we wish to decreaseh when all theak
have reached the optimal value and they are oscillating
random around it: in this situation, a smallerh means less
noise ona. On the other hand, we wish to increaseh when
one or moreak is drifting: a largerh now means a faste
approach toward the optimal value. To monitor the trend
a, we use the quantity
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tk , tk5
Nuaku

vk
23, ~5.23!

whereN5n12n0 is the number of iterations in the interva
of Monte Carlo iterations (n0 ,n1# we are considering,vk is
the variance ofak in the interval, andak is the slope of the
linear least-squares fit toak,n vs n. tk is invariant under
translations and scale transformations; it is positive ifak is
drifting and it is negative ifak is oscillating.

A typical example of the implementation of thea andh
dynamics is shown in Fig. 4;h is initialized to 1025; after
each interval ofN55000 iterations, ift.0.15, h is multi-
plied by 10A10; if t,0, h is divided by10A10; if 0,t,0.15,
h is unchanged; finally,h is restricted to the interva
@1026,1024#. The parameters of theh dynamics given here
were obtained empirically.

G. Observable measurement

We measure the vacuum expectation values ofwn ,
wnwm , xn

†xn , and of

T5
1

2 (
n51

L

~wn112wn21!V~wn!,

Yq5H Q,(
n51

L

wn
qc2,nJ . ~5.24!

Note that, with our choice of boundary conditions, we do n
have translation invariance and, e.g.,^wn& will depend oni;
however, the dependence is sizable only within a few co
lation lengths from the border; therefore we typically ave
age site-dependent quantities excluding sites closer tha
suitableLmin from the border; in the case of^wnwm&, we
average over all pairs with fixed distancer 5un2mu, exclud-
ing the cases whenn or m is closer thanLmin from the border.

The ground-state energy is measured simply by averag
the measured values ofE0 over the ensemblesE(t), discard-
ing a suitable thermalization interval (0,t0):

FIG. 4. a and h dynamics from a run atV50.5w220.55, L
534 andK5100.
0-13
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E0>
1

t12t0
(

t5t011

t1 (
i 51

Kt

Ei ,twi ,t

(
i 51

Kt

wi ,t

,

Ei ,t5
^si ,tuHusi ,t&

^si ,tusi ,t&
, ~5.25!

cf. Eq. ~5.2!. The vacuum expectation value of a gene
observable is computed implementing the forward-walk
formula ~5.3! as

^O&>
1

t12t0
(

t5t011

t1 (
i 51

Kt

Oi ,twi ,t1Dt

(
i 51

Kt

wi ,t1Dt

,

Oi ,t5
^si ,tuOusi ,t&

^si ,tusi ,t&
. ~5.26!

In principle, in Eq.~5.26! we must take theDt→` limit, but
in practice a moderate value likeDt5500 is sufficient. A
typical example ofDt dependence is shown in Fig. 5;
should be noticed that the error bars grow withDt but very
slowly.

VI. NUMERICAL RESULTS

A. Review of previous lattice studies

The class of models that we study in this paper has b
previously considered in@18# with a Monte Carlo approach
that determines the ground state energy by using

E05 lim
b→`

Tr~He2bH!

Tr~e2bH!
, ~6.1!

and working numerically with a large fixedb. This is in the
spirit of the usual Lagrangian algorithms to be compa

FIG. 5. The central chargeT @cf. Eq. ~5.24!# vs Dt from runs at
V50.5w2 andL534.
09501
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with the Green function Monte Carlo method whereb can be
identified with the simulation time and is thus taken to infi
ity by the very nature of the algorithm.

The analysis of@18# is performed on a 123100 lattice,
hence with a rather coarse spatial mesh. In the model w
V(w)5l3w3, supersymmetry appears to be unbroken in f
agreement with our analysis. In the quadratic model w
V(w)5l2w21l0, the authors of Ref.@18# find rather strong
signals for supersymmetry breaking withl0 bigger that the
critical valuel0.20.5 and have numerical results showin
a very small ground state energy forl0,20.5. No discus-
sion of the continuum limit is attempted.

B. Odd V

As an example of odd prepotential, we study the caseV
5w3. We plot the ground-state energy vsK in Fig. 6 and the
Ward identityY1 vs K in Fig. 7. Both give very convincing
evidence for unbroken SUSY; all the other Ward identit

FIG. 6. The ground-state energy densityE0 /L vs 1/K at V
5w3, L522, with statistics of 1 M iterations forK,5000, 500 k
iterations atK55000, and 300 k iterations atK510000.

FIG. 7. The Ward identityY1 vs 1/K at V5w3, L522.
0-14
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SUPERSYMMETRY BREAKING IN TWO DIMENSIONS: . . . PHYSICAL REVIEW D 69, 095010 ~2004!
are consistent with zero, but more noisy. It should be noti
that the bosonic and fermionic contribution toE0 are.67.4:
we are observing a cancellation of four orders of magnitu

C. Supersymmetry breaking

We now turn to the more interesting case of even pre
tential, investigating the caseV5l2w21l0. We remind that
in this case the model enjoys an approximateZ2 symmetry
wn→2wn , xn↔xn

† . For fixed l2, we may expect~in the
L→` limit ! a phase transition atl05l0

(c)(l2), separating a
phase of broken SUSY and unbrokenZ2 ~high l0) from a
phase of unbroken SUSY and brokenZ2 ~low l0). We in-
vestigated in details the casel250.5.

The usual technique for the study of a phase transitio
the crossingmethod, applied to the Binder cumulant@30#

B5
1

2 S 32
^M4&

^M2&2D ; ~6.2!

in our case, the choice of a sensible definition for the m
netizationM is nontrivial, since our model is neither ferro
magnetic nor antiferromagnetic, and it does not enjoy tra
lation symmetry. We tried out several definitions, befo
making the choice

Meven (odd)[
2

L22Lmin
(

even~odd!i 511Lmin

L2Lmin

f i , ~6.3!

where, typically, Lmin56; Meven and Modd are perfectly
equivalent, and the values ofB we quote in the following are
the average ofBeven andBodd.

The crossing method consists in plottingB vs l0 for sev-
eral values ofL; the crossing pointl0

cr(L1 ,L2), determined
by the condition

B~l0
cr,L1!5B~l0

cr,L2!,

is an estimator ofl0
(c) @30#; the convergence is dominated b

the critical exponentn of the correlation length and by th
critical exponentv of the leading corrections to scaling~cf.
Ref. @31#!:

l0
cr~L1 ,L2!5l0

(c)1O~L1
2v21/n ,L2

2v21/n!;

we expect the phase transition we are studying to be in
Ising universality class, for whichn51 andv52, and there-
fore we expect fast convergence ofl0

cr to l0
(c) . The results,

plotted in Fig. 8, indicatel0
(c)520.4860.01.

It is possible to study the phase transition by looking
the connected correlation functionGd5^wnwm&c , averaged
over all n,m pairs with um2nu5d, excluding pairs for
which m or n is closer to the border than~typically! 6. In our
staggered formulation, even and oddd may correspond to
different physical channels.

Gd is fitted to the form exp@2a12a2d1a3 /(d110)#, sepa-
rately for even and oddd; the best fits give a goodx2 if we
remove the smallest distances, typicallyd<3 for the odd
channel andd<4 for the even channel. In the broken pha
09501
d
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we have small but nonzeroa2, and we observe equivalenc
of the even- and odd-d channels; an example is shown
Fig. 9. In the unbroken phase,a2 is larger, and the even- an
odd-d channels are somewhat different; an example is sho
in Fig. 10. The difference between the two phases is ap
ent, e.g., in the plot ofa2 vs l0, presented in Fig. 11; the
data presented here would indicatel0

(c)520.4860.01.
An alternative window to the phase transition is offer

by the optimized values of the parameters of the bosonic
of the trial wave function, which should be related to t

FIG. 8. The Binder cumulantB vs l0.

FIG. 9. The connected correlation functionGd for V50.5w2

20.5.
0-15
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BECCARIA, CAMPOSTRINI, AND FEO PHYSICAL REVIEW D69, 095010 ~2004!
effective potentialVeff of the bosonic field,

Veff~w!;2a4
Bw42a2

Bw2;

we verified thata4
B,0, as required by stability; a negativ

value for a2
B therefore indicates unbrokenZ2 symmetry,

while a positivea2
B indicates spontaneous breaking ofZ2.

The numerical values ofa2
B are shown in Fig. 12. It is

clear that, especially in the broken phase, statistical errors
underestimated. The above-mentioned scenario is qua
tively confirmed, but the data yieldl0

(c).20.40, which is
very far from the more traditional estimates obtained abo

Finally, to investigate the supersymmetry properties
each phase, we analyzeE, the ground-state energy densi
extrapolated to infiniteK andL. We fit E0 /L to the form

E0

L
5E1

a1bL

Kn ; ~6.4!

x2/d.o.f. ~degrees of freedom! from 1 to 2; the errors on the
fit parameters are defined by the values giving an increas
x2 by 1; if x2.d.o.f. we multiply them by the ‘‘scale factor’

FIG. 10. The connected correlation functionGd for V50.5w2

20.38.

FIG. 11. The effective massa2 of Gd vs l0 for L558 andK
5500; for l0<20.51 the error ona2 is very large.
09501
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S5Ax2/d.o.f. We present a plot ofE vs l0 in Fig. 13; these
data givel0

(c);20.53, with a rather large uncertainty.

D. Continuum limit

We wish to investigate if the pattern established in S
VI C extends to the continuum limit.

We study the trajectory

l05
l2

2p
ln~4l2!, ~6.5!

corresponding to a 1-loop RG trajectory, cf. Eq.~4.6!; the
effect ofl0 is small in the range we considered, therefore
expect this to be a reasonable approximation to a true
trajectory.

We estimate the correlation length from the exponen
decay of the connected correlation functionGd5^wnwm&c
averaged over alln,m pairs withum2nu5d, excluding pairs
for which m or n is closer to the border than~typically! 8. In
our staggered formulation, even and oddd correspond to
different physical channels.

FIG. 12. The optimization parametera2
B ; it is insensitive toL

andK.

FIG. 13. The ground-state energy densityE0 /L vs l0. The solid
line is a fit to the formE0 /L5aAl02l0

(c).
0-16
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SUPERSYMMETRY BREAKING IN TWO DIMENSIONS: . . . PHYSICAL REVIEW D 69, 095010 ~2004!
We performed runs for values ofl2 spaced by a factor o
A2, with a statistics of 43106 iterations. In Figs. 14 and 15
we show the plots of thew correlation for the caseV
50.35w210.02. It is very difficult to extract a correlatio
length from the even-d channel, presumably becausew has a
very small overlap with the lightest state of the channel, a
the value 1/j50.2060.03 quoted in Fig. 14 should be con
sidered tentative. The odd-d channel is much cleaner, and
is possible to estimatej with a good precision.

For the other values ofl2, the situation is similar but with
slightly larger errors. The measured values ofjodd follow
very well the naı¨ve scaling behavior

j}1/l2 .

The entire range 0.088<l2<0.35 seems to be in the scalin
region, withl250.5 a borderline case, as shown in Fig. 1
The values ofjeven have very large errors, and it is hard
draw any conclusion from them.

The Green function Monte Carlo algorithm gives a ve
accurate measurement of the ground-state energyE0; to give
a feeling of the precision reached, we quote the results
the smallest and the largest value ofl2 we considered, along
the trajectory~6.5!,

E0~l250.044,L546,K5200!5~1.2860.01!31023;

E0~l250.5,L546,K5200!5~69.4460.05!31023.

FIG. 14. The connected correlation functionGd at even distance
for V50.353553w210.019502; the curve and value of 1/j quoted
are the result of an exponential fit for 10<d<18 to theL546, K
5200 data.
09501
d

.

or

E0 show a sizable dependence onK andL, and it is therefore
necessary to perform an extrapolation toL→` andK→`;
we fitted the energy density to the form

E0

L
5E1

c

L
1

d

L2 1KnS e1
f

L D ,

which gives a goodx2. n remains constant within errors
with a valuen'0.75, i.e., the algorithm performs well as w
approach the continuum limit.

The ‘‘scaling’’ plot of the energy densityE0 /L is shown
in Fig. 17. It seems to behave asl2

1.7, while naı̈ve scaling
would predictE0 /L}l2

2.
The nonzero value ofE0 /L ~disregarding this puzzling

exponent! and the lack of any signal for a breakdown
parity show that the trajectory we are considering belon
to the phase with broken supersymmetry and unbrokenZ2
symmetry.

VII. CONCLUSION

In this paper, we investigated a class of two-dimensio
N51 Wess-Zumino models by nonperturbative latti
Hamiltonian techniques. The key property of the formulati
is the exact preservation of a SUSY subalgebra at finite
tice spacing. Our main tools are numerical simulations us
the Green function Monte Carlo algorithm; we also pe
formed strong-coupling expansions.

FIG. 15. The connected correlation functionGd at odd distance
for V50.353553w210.019502; the curve and value of 1/j quoted
are the result of an exponential fit for 3<d<15 to theL546, K
5200 data.
0-17



i-

th

S
Y
n

he
a
o
g

an
ne

m

i,
s-

ld

en

ter

BECCARIA, CAMPOSTRINI, AND FEO PHYSICAL REVIEW D69, 095010 ~2004!
All our results for the model with cubic prepotential ind
cate unbroken supersymmetry.

We studied dynamical supersymmetry breaking in
model with quadratic prepotentialV5l2w21l0, performing
numerical simulations along a line of constantl2. We con-
firm the existence of two phases: a phase of broken SU
and unbrokenZ2 at highl0 and a phase of unbroken SUS
and brokenZ2 at low l0, separated by a single phase tra
sition.

We studied the approach to the continuum limit in t
model with quadratic prepotential performing numeric
simulations along a 1-loop RG trajectory in the phase
broken supersymmetry; we measured the correlation len
of the bosonic field~in the odd-distance channel!, which is
found to scale with the expected exponent; on the other h
the ground-state energy density scales with an expo
clearly different from the expected exponent.

In many instances, the simulation algorithm suffers fro
slow convergence in the number of walkersK.
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FIG. 16. The correlation length at odd distancejodd. The dashed
curve is the result of a scaling fit~with fixed exponent!.
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APPENDIX A: CHECK OF UNBROKEN SUSY
FOR V„w…Äl1w¿l0

If the potentialV(w) is a linear function of the fieldw,
then the ground state can be found explicitly. With a fie
translation we can setl050. The model Hamiltonian is
HB1HF , where we recall that

HB5 (
n51

L F1

2
pn

21
1

2 S wn112wn21

2
1l2wnD 2G , ~A1!

HF5 (
n51

L F2
1

2
~xn

†xn111xn11
† xn!1~21!nl2xn

†xnG .
~A2!

Thus, in the bosonic sector, the Hamiltonian can be writt

HB5
1

2 (
n

pn
21

1

2 (
nm

wnVnm
B wm , ~A3!

with

Vnm
B 5H l2

211/4, n5m and n51,L

l2
211/2, n5m and 1,n,L

21/4, un2mu52.

~A4!

FIG. 17. The ground-state energy densityE0 /L, extrapolated to
L→` andK→`. The dashed curve is the result of a two-parame
fit, while the solid curve shows the naı¨ve scaling behavior.
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In the fermionic sector, the Hamiltonian can be written
terms of canonical Fermi annihilation and creation opera
as

HF5(
n,m

Vnm
F an

†am ~A5!

with

Vnm
F 5H ~21!nl2 , n5m

l2
211/2, n5m and 1,n,L

21/2, un2mu51.

~A6!

If we denote by$(vn
B)2% and$vn

F% thesortedeigenvalues of
VB and VF, then we find that the ground state has actua
zero energy,

E05
1

2 (
n51

L

vn
B1 (

n51

L/2

vn
F50. ~A7!

This can be proved in the spirit of SUSY without computi
explicitly the eigenvalues. In fact, we can check that (VF)2 is
the matrixVB apart from a wrong sign in the diagonalsun
2mu52. This can be repaired by changing signw→2w on
the sites withn mod 451,2. Taking into account the particle
hole symmetry ofHF , we have thus proved that the spec
of s(VF) ands(VB) have the general form

s~VF!5$2x1 ,x1 ,2x2 ,x2 , . . . % ~A8!

s~VB!5$x1
2 ,x1

2 ,x2
2 ,x2

2 , . . . % ~A9!

with full cancellation between the lowestL/2 fermionic val-
ues and one half of the square root of the bosonic ones a
Eq. ~A7!.

APPENDIX B: STRONG-COUPLING EXPANSION
OF Šwk‹ AND Šwkw l‹c

1. Šwk‹

Let us define

w̄5^w&152
h0

2A2«0

. ~B1!

The vacuum expectation value of the fieldw is

^C0
(1)uwkuC0

(1)&5w̄~21!k^C0
(1)u~21!nkuC0

(1)&

5w̄~21!k~122^C0
(1)unkuC0

(1)&!.

~B2!

The expectation value of the occupation number can be c
puted by going to the basis$a% and is

^C0
(1)unkuC0

(1)&5 (
p51

L/2

~vk
(p)!2. ~B3!

A straightforward calculation gives
09501
rs

y

in

-

^C0
(1)unkuC0

(1)&

5
1

2L H 11L1

cosF p

2L
~2k~L11!21!G

sin
p

2L
~2k21!

J , ~B4!

and therefore

^C0
(1)uwkuC0

(1)&

5
h0

2A2«0

~21!k
1

L H 11

cosF p

2L
~2k~L11!21!G

sin
p

2L
~2k21!

J .

~B5!

It is interesting to consider the limitL→` of this expression
after a rescalingk→xL where 0,x,1. The result is

^C0
(1)uwxLuC0

(1)&

5
h0

2A2«0
H 1

L
@611cot~px!#

1
p

2L2

1

sin2~px!
1OS 1

L3D J ~B6!

where the sign is11 for evenk5xL and21 for oddk.

2. Šwkw l‹c

Let us denote briefly

^A&[^C0
(1)uAuC0

(1)&, ~B7!

and

^AB&c5^AB&2^A&^B&. ~B8!

The 2-point correlation is, forkÞ l ,

^wkw l&5~ w̄ !2~21!k1 l^~21!nk1nl&

5~ w̄ !2~21!k1 l~12^nk1nk&14^nknl&!. ~B9!

Going to the$a% basis, we immediately obtain

^nknl&c5 (
1<A<L/2

vk
Av l

A
• (

L/211<B<L
vk

Bv l
B , ~B10!
0-19
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and, forkÞ l ,

^wkw l&c54~ w̄ !2~21!k1 l^nknl&c . ~B11!

The two sums over eigenvalues can be evaluated analytic
thanks to the simple form of the eigenvectorsv l

(p) . The ex-
plicit result is
on

t

09501
lly

L

2 (
p51

L/2

vn
(p)vm

(p)5
L

4
dn,m1

1

4
Zn,m , ~B12!

L

2 (
p511L/2

L

vn
(p)vm

(p)5
L

4
dn,m1

1

2
~21!n1m2

1

4
Zn,m ,

~B13!

where
Zn,m55
n even, m even: ~21!(n1m)/2F11cot

p

2L
~m1n21!G

n even, m odd: ~21!(n1m11)/2F11cot
p

2L
~n2m!G

n odd, m even: ~21!(n1m11)/2F11cot
p

2L
~m2n!G

n odd, m odd: ~21!(n1m)/2F211cot
p

2L
~m1n21!G

~B14!
on

tates

d
on

an
s.
that can be used to compute the connected correlation
finite lattice.

It is interesting to note that the limitL→` can be taken
without rescalingn andm. For instance, we have

lim
L→`

^C0
(1)uw1wnuC0

(1)&c

5
4~ w̄ !2

p2
~21!n5 n even:

1

~n21!2

n odd:
1

n2
.

~B15!

APPENDIX C: SECOND-ORDER EXPANSION
FOR E0, EVEN q

The general formula for the second order contribution
the ground state energy is

E25E2,11E2,2 ~C1!

E2,15^C0
(1)uH (4)uC0

(1)& ~C2!

E2,25(
C8

^C0
(1)uH (2)uC8&^C8uH (2)uC0

(1)&

E02E8
. ~C3!

The statesuC8& are excited states of the form

uC8&5ck1

s1~w1!•••ckL

sL~wL!un1 , . . .nL&

where k11•••kL5n.0 ~integer! and s l5(21)nl1 l . For
such a state we have
a

o

E85(
l

«kl
.

A first important remark is thatH (2) can be restricted to its
HB

(2) part. In fact, the fermionic part ofH (2) can be written as

He f f
(2) plus terms that are only functions of the occupati

numbers. These operators acting onuC0
(1)& give states that

are orthogonal to the subspace of excited unperturbed s
uC8&.

The first term in E2 is simple and can be compute
straightforwardly exploiting the fact that the expectati
value ofw l

2 over uC (1)& does not depend onl,

E2,15
L21

4
w22

1

4 (
l 51

L22

^C0
(1)uw lw l 12uC0

(1)&

5
L21

4
w22

1

4
~ w̄ !2c0~L ! ~C4!

where

w25E
2`

`

w2@c0
6~w!#2dw

and

c0~L !5 (
l 51

L22

~12^nl&2^nl 12&14^nlnl 12&!. ~C5!

About E2,2, it can be computed by considering states with
excited single-site wave function in one or two distinct site
Summing the two contributions we find
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E25
L21

4
w22

1

4
~ w̄ !2c0~L !2(

s.0

1

«s2«0
S 1

2
~Fs

(1)!2~V(0)!21c1~L !Fs
(1)Vs

(1)w̄V(0)1c2~L !~ w̄ !2~Vs
(1)!2D

2 (
s.0, t.0

1

«s1« t22«0
H 1

4
~L21!@~Fs

(1)!2~Vt
(1)!21~F t

(1)!2~Vs
(1)!2#1c3~L !Fs

(1)F t
(1)Vs

(1)Vt
(1)J . ~C6!
d

r

la-
the

e

led
The symbols appearing in the above equations are define
follows:

V(0)5^c0
6uV~w!uc0

6&5A2«0h0 ~C7!

Vs
(1)5

1

A2
@A«01~21!sA«s#^c0

2ucs
1&, ~C8!

Fs
(1)52

1

A2

1

A«01~21!sA«s

^c0
2ucs

1&. ~C9!

The functionsc0,1,2,3(L) can be fitted with a few powers ofL
and the numerical result is

c0~L !5L21.4952
2.610

L
1••• ~C10!

c1~L !520.5402
1.698

L
1

1.787

L2
1•••

~C11!

c2~L !5
1

2
L20.5401

0.301

L
1

1.788

L2
1•••

~C12!

c3~L !52
2

p2
L2

0.167

L
1••• . ~C13!

The full expression forE2 has thus the following simple
asymptotic expression:

lim
L→`

E2

L
5

1

4
~w22w̄2!2

1

2
~ w̄ !2(

s.0

~Vs
(1)!2

«s2«0

2 (
s.0,t.0

1

«s1« t22«0

3H 1

4
@~Fs

(1)!2~Vt
(1)!21~F t

(1)!2~Vs
(1)!2#

2
2

p2
Fs

(1)F t
(1)Vs

(1)Vt
(1)J . ~C14!

As an example, we find for the model withV(w)5w2,

E~l2,22!50.28112
0.160

l2
1

0.0481

l4
09501
asand

E~l2,`!50.28112
0.160

l2
1

0.0488

l4
.

If we are interested in a comparison with an actual simu
tion, some trivial rescaling is necessary. For instance, in
case of a purely quadraticV(w)5l2w2 we must compare the
expansion and the results forl2

22/3E0 /L and identify l
5l2

1/3 as the strong-coupling expansion parameter.

APPENDIX D: FACTORIZED WAVE FUNCTION
FOR THE FREE MODEL

In the free caseV[0, with evenL, we have

H (0)5HB1HF , ~D1!

where (w05wL11[0, the same for fermions!

HB5 (
n51

L H 1

2
pn

21
1

8
~wn112wn21!2J , ~D2!

HF52
1

2 (
n51

L

~xn
†xn111xn11

† xn!. ~D3!

The two HamiltoniansHB andHF are decoupled and th
ground state takes the factorized form

uC (0)&5uCB
(0)& ^ uCF

(0)&. ~D4!

We now determineuCB,F
(0) & separately, assumingL mod 4

52 in order to have a unique ground state in the decoup
V[0 model.

1. Bosonic sector

Let us writeHB in the form

HB5
1

2 (
n51

L

pn
21

1

2 (
n,m51

L

Vnmwnwm . ~D5!

Let lk
2 be the eigenvalues of theL3L matrix V and letzn

(k)

be the corresponding~real! eigenvectors satisfying

z(k)
•z( l )5dk,l . ~D6!

The ground state is

^wuCB
(0)&5expS 2

1

2 (
n,m51

L

RnmwnwmD , ~D7!
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where

Rnm5 (
k51

L

lkzn
(k)zm

(k) . ~D8!

The explicit form oflk is

lk5sinS 2i 21

L11

p

2 D ,

i 5 b 1

2
~k11!c S i 51, . . . ,

1

2
L D ; ~D9!

the dimension of each eigenspace is 2. The ground state
ergy of HB is

E0,B5 (
k51

L
1

2
lk5(

i 51

L/2

sinS 2i 21

L11

p

2 D . ~D10!

We adopt for the two orthogonal eigenvectors the cho

zn
(2i 21)5

2

AL11 H 0 ~n even!

sinS 2i 21

L11

p

2
~L2n11! D ~n odd!

~D11!

zn
(2i )5

2

AL11 H sinS 2i 21

L11

p

2
nD ~n even!

0 ~n odd!.

~D12!

2. Fermionic sector

In the free case, the Hamiltonian in the fermionic secto
diagonalized by the orthogonal change of basis
m

B
,

D

o

oo

e-
tt

M

09501
n-

e

s

xx5A 2

L11(
n51

L

sin
npx

L11
an , ~D13!

and takes the form

HF52 (
n51

L

cos
np

L11
an

†an . ~D14!

Hence the one-fermion energies are

2cos
np

L11
, n51, . . . ,L. ~D15!

The fermionic component of the~supersymmetric! ground
state is

uCF
(0)&5 )

n51

L/2

an
†u0&; ~D16!

the ground state energy ofHF is

E0,F52(
i 51

L/2

cos
np

L11
; ~D17!

we can easily check that

E0,F52E0,B5
1

2 S 12
1

sin
p

2~L11!
D , ~D18!

and thereforeE05E0,B1E0,F50.
.J.
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