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In a physical renormalization scheme, gauge couplings are defined directly in terms of physical observables.
Such effective charges are analytic functions of physical scales, and thus mass thresholds are treated with their
correct analytic dependence. In particular, particles will contribute to physical predictions even at energies
below their threshold. This is in contrast with unphysical renormalization schemes si¢B asere mass
thresholds are treated as step functions. In this paper we analyze supersymmetric grand unification in the
context of physical renormalization schemes and find a number of qualitative differences and improvements in
precision over conventional approaches. The effective charge formalism presented here provides a template for
calculating all mass threshold effects for any given grand unified theory. These new threshold corrections may
be important in making the measured values of the gauge couplings consistent with unification.
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[. INTRODUCTION effective charges provide a more natural and physical frame-
work for examining gauge coupling unification. In Sec. V A,
Precision measurements of the gauge couplings and theie demonstrate the invalidity of neglecting heavy threshold
possible unification provide some of the few windows to thecorrections in analyzing grand unified models. The more rig-
Planck scale. It is thus important to have a firm grasp of theorous treatment of light thresholds in physical schemes gives
theoretical ambiguities involved. This paper attempts to adrise to new corrections, but these are numerically small for
dress some of these ambiguities. most sparticle spectra. The treatment of heavy thresholds
In a physical renormalization scheme, gauge couplingsvith various unification boundary conditions is discussed in
are defined directly in terms of physical observables. Suclsec. V B. In the simplest scenario, we find that the gauge
effective charges are analytic functions of physical scalesgouplings should unify at asymptotically large energies and
and thus the thresholds associated with heavy particles atae only heavy threshold corrections are logarithms of heavy
treated with their correct analytic dependence. This is in conmass ratios, corrections which can be obtained in unphysical
trast to unphysical renormalization schemes such as thechemes. An effective unification scale, defined in Sec. VC
modified minimal subtraction MS) scheme where mass as the scale where quantum gravity corrections produce non-
thresholds are treated as step functions. In this paper we witlegligible splittings between the gauge couplings, is found to
analyze supersymmetric grand unification in the context obe roughly 16— 10 GeV, depending on the specific grand
physical renormalization schemes with the goal of systemunified theory(GUT) model used. Section VD considers
atizing the effects of light and heavy mass thresholds andnore general unification boundary conditions with finite uni-
improving the precision of tests of unification compared withfication scale. The resulting heavy threshold corrections are
conventional approaches. given in Eq.(44). This result combined with the results of
In Sec. Il, we motivate physical renormalization schemesSec. VB may be used to determine the experimental consis-
with a simple example and then present the notation antency of any given GUT model. This is the main result of the
results used throughout the paper. In Sec. Ill, we look morgaper. An appendix discusses the details of constructing the
carefully at the problem of decoupling heavy particles andeffective charges. Throughout our analysis, we will find sev-
the errors induced by unphysical schemes. In Sec. IV, weral attractive theoretical features of the supersymmetric
discuss the canonical self-energy-like effective charges foregulator, dimensional reduction, which makes it the pre-
the minimal supersymmetric standard mo@d5SM). These ferred regulator for physical effective charge schemes, even
effective couplings run smoothly over spacelike momentawithout supersymmetry.
have nonanalytic behavior only at the expected physical There have been several previous works on threshold ef-
thresholds for timelike momenta, and more directly measurdects in grand unification. In the first such stufdy, which
the strengths of the forces than the charges of unphysicappeared just after the discovery of grand unification, Ross
schemes. The extraction of effective charges from low enuses form factors to define beta functions which are valid
ergy data is considered. We identify an important modifica-over all energy scales, including near-mass thresholds. The
tion of the electromagnetic couplingoep(Mz) due to the  coupling constants run smoothly over all momenta, and non-
proper inclusion of virtuaW= loops, thus resulting in a4  trivial threshold corrections are found for grand unification.
change in its numerical value. Similar modifications areDespite this early significant work, most subsequent work on
found for the weak mixing angle. As seen in Sec. V, theséGUTs have ignored these threshold effects, perhaps due to
the complexity of the Ross approach.
An exception from the late 1980s is the work of Kennedy
*Email address: mwbinger@stanford.edu and Lynn[2], who defined electroweak effective charges
"Email address: sjbth@slac.stanford.edu similar to the pinch technique charges used in this paper.
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In several paperf3] by Kreuzer, Kummer, and Rebhan, a
the authors compared the Vilkovisky-DeWitt effective ac- a(Q?) = > .
tioin (VDEA), the mass-shell momentum subtraction scheme 1+11,,(Q%)—11,,(0)
(MMOM), and Weinberg's effective gauge theotGT).

They wrote down explicit formula for the running charges Hence, from measurements of the cross section, one can
which include analytic threshold behavior for all particles. I measure the effective charge at two different scalé®?)
calculating predictions from grand unification, they assume; g a(le)_ Suppose the value of the electron charge is not
asymptotic unification at energies much larger than heavlknown, and we are trying to test the predictions of QED. The
particles, so that the only threshold corrections from heavy(Nay to proceed is to use one measurement—say, at the low
particles come from finite constants which are i”depe”de'gcaleQ—as an input to determine Now the prediction at

of energy scale or masses. We find similar results i, pigh scal@, is well defined and represents a test of the
Sec. V B. Furthermore, we include the possibility of a f'n'tetheory. More directly, we could just write(Qﬁ) in terms of

ggtlzgaggrr;ei??olﬁsm Sec. VD, which leads to more compll—a(le)’ leading to the same prediction. Since the cross sec-
: _tion oe- e, (Q?) is proportional tof «(Q?)]?, we are

In [4,5], the authors include the effects of light supersym learly ralat b ble ther. Th dure iust
metric scalar and fermion thresholds, although heavy threstz' @y refating one observavle to another. 1he procedure Jus
outlined is simply an on-shell renormalization schem®iif

olds and gauge bosons virtual effects are not treatefb]in .
gaug il =0. More generally, we will refer to such a scheme as an

the authors include both light and heavy threshold correc frocti h h . " . b
tions, although the treatment of gauge bosons is not achective charge scheme, since we are writing a given ob-

. 2 2 .
equate. In Refs[7,8], the authors come to several conclu- S€vable, herejuste-ﬂ-?e-ﬂ-_(Qh) [or «(Qp)], in terms of
sions similar to ours. However, their definition leads toa@n effective charge(Qy) defined from a measurement of

gauge-parameter-dependent effective couplings. the cross section at the scalg. One could equally well
write any observable in terms of this effective charge. Note

that this approach to renormalization works for arbitrary
Il. PHYSICAL RENORMALIZATION SCHEMES scales, even if the low scale Iies_below some threshold—say,
AND EFFECTIVE CHARGES Q|<m7, while Q,>m... Decouplmg and the smooth “turn-
ing on” of the 7 are manifest.

In order to motivate the reanalysis of supersymmetric uni- Now we will compare with the results obtained by using
fication given in this paper, we will first discuss some generathe conventional implementation MS, which is as follows.
properties of renormalization schemes in the presence dfirst, the cross section is calculated@tusing the rules of
massive fields and determine a criterion for consispéytsi- MS, which allows only the electrons and muons to propagate

.C?_l r;rgormhalizar:ion schemeShese I::riterie:j will ”Ff’_t b‘;igt' in loops, sinceQ,<m,. Comparing the observed cross sec-
isfied by the schemes conventionally used in unificat tion to this result will fix the value of thé1S coupling for

most perturbative calculationsMS and modified dimen- 4 flayorsa,(Q,). To predict the result of the same experi-
sional reduction PR), which have persistent threshold and ment at scaleQ,>m,, we need to evolvey, to the tau
matching errors. Heuristically, these errors can be understoogreshold using the two-flavor beta function, match with a
by noting that such schemes implicitly integrate out allthree-flavor coupling&s through the relation a,(m,)
masses heavier than the physical energy scale until they arey.(m,), and then evolveis(m,) to Q;, using the three-
crossed, and then they are “clicked” on with a step function.fiayor beta function. We will now have a prediction for
Of course, integrating out heavy fields is only valid for en- Tom o u-(QD)x[ a(Q?)]2. One might expect, from the
. . . . Mmoo M " 1
ergies well below their masses. This procedure is prOblemgeneral principle of renormalization grodRG) invariance

atic since it does not correctly incorporate the finite probabil-j¢ physical predictions that this result should be the same as

ity that the uncertainty principle gi_ves for a particle to be pairi, o prediction derived using the physical effective charge
produced below threshold. Effective chal@é schemes, de-  goheme above. However, there is a discrepancy arising from

rived from physical observables, naturally avoid such eITOrS, o incorrect treatment of the threshold effectsMIS. A

and are formally consistent. detailed discussion of this problem will be given in Sec. IIl.
In any case, the result can be obtained by straightforwardly
applying the procedure outlined above. One finds that the

o i . ratio of the cross section derived usiS with the cross
For the purpose of elucidating the benefits of physicalkection derived using effective charges, to first order in per-

renormalization schemes, we will give a simple toy exampleyrpation theory, is given by

using QED with three fermionsg, u, and 7. Consider the

amplitude for the process u~—e~ u . This can be writ- o

ten as a dressed skeleton expansion—i.e., the dressed tree a(Qp) a(Q))

level graph plus the dressed box diagram plus the dressed o(—QZ): +2?[LT(Q|/mr)—5/3], @)

double box, etc. The tree level diagram, dressed to all orders h

in perturbation theory, is equal to the tree level diagram with

one modification: the QED coupling=e?/4 is replaced wherelL , is a logarithmlike functiorithe high energy limit is

by the Gell-Man—Low—Dyson effective charge a logarithm given by

()

A. Simple example
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Error in e u —»e u~ Cross Section(%) TABLE I. Characteristic self-energy constants.

0.4 T T T -
Scalars Fermions Massive gauge bosons
Mp 8/3 5/3 40/21
0.3
2
0 %o 0
a(Q=ao— — 2 Bp( Lp(Q/my) — 75(Q/my)
0.2 T p
m
_Cuv“l‘logﬁ +"', (5)

0.1

where the sum is over all particlgs in the fundamental
theory which contribute to the running of the effective
oo . ; charge. In the QED example above, the sum proceedsepver
o0 0R0 a0 i L u, TandLe=L,=L,, and the functiomS(Q/m )=5/3is a
Quif constant for the simple observabte=Voe-,-_e-,-. IN
FIG. 1. Error in theMiS-based prediction for the scattering cross EQ- (5), Cuy=1/e—yE+log 4 is the divergence and asso-
section, 100% [ 5(Q2)/o(Q?)—1], plotted against the reference Ciated constantsy is the regularization scaley, is the bare
subtraction scal®, for the choicea(Q,)~0.1. gauge coupling, ang, is the contribution of each particle to
the one-loop beta function coefficient. The(Q/m;) are
logarithmiclike functions which are characteristic of the spin
+5/3 of each particle and are given exactly in Eg3). They may
be approximated to within a few percérty

2
1+ —=x(1-x)
m

1
L(Q/m)= Jo dx6x(1—x)log

=[ptanh (571~ 11(3-p*)+2, tc)
where =\1+4m?/Q?. It satisfies the property,(0) Lp(Q/m)~log

=5/3, so that there is no discrepancy when the low reference
scaleQ, is much lower than the tau mass threshold. This -
reflects the important, but often overlooked, fact that un-and have the limits
physical schemes, such BES, are formally consistent only
in desert regions where particle masses can be neglected. The eem Q2 m>Q

error is plotted in Fig. 1. Notice that in this example there is Lp(Q/m) ~ |°9ﬁ' Lp(Q/m) ~ 7p, )

an error only forQ,<m_. However, in the more general case

of multiple-flavor thresholds, there will be errors from both . ) )

high and low scales. Similar discrepancies will be found inWhere the constantg, have values given in Table I. We will
our analysis of grand unification. see that these constants are of central importance in physical

renormalization schemes. These logarithmlike functions
characterize the self-energy-like effect of each patrticle, in-
cluding the finite spread of the wave functions near thresh-
olds due to the uncertainty principle, and may be calculated
Effective charged9] may be defined for any perturba- in several different ways, as will be discussed in Sec. IV and
tively calculable observable the Appendix. Figure 2 shows tte, functions for spacelike
— A0, 20 O momenta.

OQ=A"+a;a™(Q) @ The functions#g(Q/m,) are characteristic of each ob-
by absorbing all of the radiative corrections into the effectiveservable, with a nontrivial functional form indicating devia-
chargea®. To one-loop order using dimensional regulariza-tions from self-energy-like behavior. For a general observ-
tion (DREG) or dimensional reductionDRED), it is  ableO, the functiony$(Q/m,) is nontrivial. We will show
straightforward to show that any unrenormalized effectivein Sec. IV that the constantg, correspond to a particularly
charge may be parametrized as simple and canonical observable, called the pinch-technique

(PT) self-energy.

2
e+ —
2

Mp

(6

B. General properties of effective charges and physical
renormalization schemes

This follows from considering the high energy limit and requir-
ing renormalizability. Note also that our parametrization can be eas- °To be precise, the approximations reproduce the exact functions
ily extended to effective charges which have particles with differentlLy, L, andL, (the subscripts refer to the spin of the massive
masses running together in the loops, and the results are similar. fireld) with maximum error of 3.5%, 0.8%, and 2.2%, respectively,
any case, we will not have use for such charges in this paper.  over the entire range d@.
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The Logarithm-—like Functions
5 T T T T T T T T T T T
[ \ I \

o o DRED
75(0)=7,%(0)=7,%0) = 7,. (10)

This consistency requirement holds for all scherReb-
servablesD,, O,, and for each massive partigle These are
universal constants for each spin and, when DRED is used,
are equal to they, given in Table | above, as can be verified
through explicit calculations. If, for example, DREG was
used instead of DRED, the last equality of Ef0) would
hold only for fermions and scalars, but for spin-1 fields there
is an additional constafitRenormalization schemes that sat-
isfy (the first two equalities 9fEq. (10) will henceforth be
referred to as physical renormalization schemes, and those

A . that do not will be called unphysical renormalization
% 2 4 6 8 10 schemes, for reasons that will become clear.

r=Q/m The above discussion implies a unique decoupling limit

(Q/m—0) for observables. It is interesting that there is also
a restriction on the high energy behavi@/fn— «), which
holds only for supersymmetric theories and takes the form of

The effective coupling renormalized in the most generaf® SUM rule. Itis given by
schemeR is

3

[N 8/3-1

10/21% .
5/3-}

1

FIG. 2. The logarithmlike functions for massive particles of spin
0, 1/2, and 1 are denoted ly, L;, andLy, respectively.

Epesﬁp(G)Ug)(oc) o
. [ar(Qo) ]2 S, 8,6 (D
a(Q)=ar(Qo) =7 2 BlLp(Q/mp) pestp
o . whereK? is a constant that depends only on the observable,
—Lp(Qo/mp) = 55 (Q/mMy) + 75(Qo /M) ], not on the gauge grou or the supermultipletS The

8) ng(Q/mp) are calculated using DRED; otherwise, the sum

rule is true only for differencesnfl(oo)— 7;(;2(00) between
where the functionsy;(Qo/m,) contain all of the informa-  observables. Further, the result holds for any number of su-
tion about the scheme. HemR can be any mathematical persymmetries, which may be broken or unbroken at low
scheme for defining the couplings. In the caseM®, we  energies. This can be proved inductively given the result for
have WF(QO/mp): Lp(Qo/my) —log(QYmP) so that only- N=1. Itis easy to check using Table | above and the corre-
logarithms of the renormalization scal, are subtracted. ~ sponding result for massless gauge bosons given below Eg.
It is straightforward to relate observables to each other: (19) that KP'=2. The sum rule just expresses the fact that
there is no resolution within a supermultiplet at high energies

o o [2%2(Q,)]? and is motivated from conformal invariance and physical
@ Q) =a Z(QZ)_TEp BolLp(Q1/mp) renormalization scheme invariance. Such a sum rule may
provide a powerful link between the contributions of various
—Lp(Qa/my) — nfl(Ql/mp)+ WSZ(QZ/mp)]- spin fields to any observable, particularly if a multiloop or
© nonperturbative generalization was found.
This satisfies the transitivity property of the physical renor-  1ll. UNPHYSICAL RENORMALIZATION SCHEMES
malization group. As before, the sum overuns over all AND THE PROBLEM OF DECOUPLING

particles in the fundamental theory which contribute to the
effective charges. . — . .

For consistency, very massive particles must decoupld€nt Ed.(10) is not met byMS, DR, their massive exten-
properly and must not contribute to physical predictions SIons, or similar schemes. It is well known tHas by itself
Taking them,— limit in Egs. (8) and (9) yields a funda- does not constitute a.complete scheme; rath.er, one must trun-
mental requirement of renormalization schemes and obser#Ate the sum ovep to include only particles with masses less
ables: than the scale of the problem. For each region between

thresholds a different scheme is implemented and one must
translate between schemes when crossing thresholds. Hence
3The term in parentheses in Eq8) becomes Ly(Q/m,) MS is really a set of sghe_mes relate_d to each other. We will
— log(Q¥m?)— 72(Q/m,). Note that in most calculations the first Call such a set an artificial decoupling sche®S) and
term is taken to be a logarithm and mass corrections are systemafioW discuss the most general case at one loop. This will give
cally added, in order to approximate the full threshold dependence
of L,(Q/my,). However, the logDynt) term does not have the
correct threshold dependence, as we will be discussing. “This is explained below Eq19) and below Eq(A11).

Notice that the physical renormalization scheme require-
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us an idea of the discrepancies one may expect in ADSsmy. .1, there are errors of one-loop order which are pro-
when compared to the physical renormalization scheme agortional to Lp(Qn/my) — 7751(Qh/mp) and occur for each

proach.

neglected thresholdp e S—SV*" such thatQ,< m,. These

Let S={m;,m;, ...} be the spectrum of massive particles errors are naturally remedied in physical renormalization
of the fundamental theory ordered from lightest to heaviestgchemes. leading to heavy threshold corrections which will

let S, be the set of massless particles, and =S,

be of importance when grand unification is discussed later.

®{my,my,....my} be some subset up to a given mass scaleThere are also analogous light threshold corrections. The

For any given renormalization scheiRelet theNth phase of

second sum in E15) contains extra terms which arise from

R, denotedR", be the scheme used to renormalize observine artificial decoupling and matching conditions at each

ables at energy scal€3 such that

My,....My<Q<myy1. (12

To useRN, one simply renormalizes the contributions from

particlesp e SN in the usual way dictated by scherReand
then entirely neglects the contributions from pk S—SV.

threshold. These terms are also generally of order of the
one-loop corrections and must cancel if the ADS is to be
consistent(in the sense of giving reliable physical predic-
tions in relations between two observablda general, these
terms do not cancel, since tlig-dependent terms cannot be

cancelled by the choice d%,, which depends only on the

This is a formal statement of the usual implementation of @0 ip/My. Suitably choosingA, [see Eq.(16) below]

ADSs using step functions.
Formg,...,my<Q,Q’<my, 1, the gauge coupling of the
RN scheme flows by

[arn(Q")]?

api(Q) = arn(Q') = ——— X BplLp(Q/my)

peS

—Lp(Q'Imp) — 7(Q/mMy) + 7R(Q'Imy)],
(13

and the most general matching condition between schemes

RN~1 andRN takes the form

aéN(/-LN)
2. ByAN(an/my),

(14

where Ay(u,/mp) is arbitrary now, but will be specified

apn-1(pun) = agn(uy) +

below by minimizing errors and may depend only on the

matching scaleu, for each thresholdn,, for reasons dis-
cussed below.

For Q,>my,, andmg,... my<Q;<my.4 (the h andl
stand for heavy and light scales, respectiyelye may relate

observables by flowing throughthresholds using the above

formulas to obtain

>

peSN+n

a%Y(Qp) = a2(Q)) —

0, 2
M{ BolLy(Qn/my)

4
~Lp(Qi/mp) = 75 H(Qp/mp) + 7,%(Q) /my) ]

+ >

:Bp[Ap(/-Lp/mp) - Lp(#p/mp)
peSN+”—SN
7 M)+ L Q1 /M) — 70 /mpﬂ}

(19

Now let us compare this to the relation, Ef), obtained

leaves a terrer(Q,/mp)—nfz(QMmp) for all peSN*™"
— SN, Hence we see that the high scale and low scale thresh-
old corrections have exactly the same form; indeed, they
have the same origin—namely, the necessity of using an
ADS—which arises from improper decoupling.

In the case of a low scale desert regi@y<m,Vp
eSV*n—gN, one finds that ,(Q,/my)— 7,;92(QI /mg)—0
[by Egs.(7), (10)], and the light threshold errors are elimi-
nated through the choice
Ap(lu“p/mp)zl—p(,“p/mp)_ﬂg(ﬂp/mp)- (16)
In this case, notice that once tig are chosen suitably, the
matching scalg., exactly cancels and there is no need to fix
its value. However, foMS, this choice is equivalent to using
Ap,=0 and u,=m,, which is the matching scale typically
used at one loop. One may object that even in nondesert
regions the known anomalous matching threshold errors
could be systematically subtracted off for each physical pro-
cess considerefiéquivalently allowingA,=A,(Q))]. This is
untenable, as it is the same as using a different coupling for
each process, thus losing the remnants of universality left by
ADSs (i.e., universality in each desert regjon

We have identified two potential problems in artificial de-
coupling schemes, which arise solely from the failure of the
decoupling requirement given in Eq10), regardless of
whether or not the schemé& has analytic threshold
dependenc@ The low scale errors come from the matching
conditions and are exhibited in the last two terms of @&).
These are significant only wheD,<my, ;. The high scale

SSimilar errors occur iQ=<My:n+1-

Proper analytic threshold dependence may be defined by
n,'f(Q/m) going to a constant for both small and lar@ém. Con-
sider the analytic extension &S into the region of mass thresh-
olds, which we ceﬂmassivm_s MMS (similar to that in[10]). This
is defined by 7y"(Qo/m,)=0 so that the full logarithmiclike
functionsL, are subtracted and trivially the conditions for smooth

in the previous section for the tracking of two observablesthreshold dependence are satisfied. Nonethele8S Mas match-

For the case of a high scale desert regi@) €My n:1),
the first sum reduces to EQ9). However, whenQy

ing errors, which result from the failure_of E(LO) and the subse-
quent need to construct an ADS fromWM&.
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self—energy—like
Y projection 1
S —

5SS FIG. 3. Pinch technique for QCD at one loop.

self-energy—like The unique gluonic self-energy-like projection of
v v projection the vertex and box graphs y_ields terms which
- 5 must be added to the conventional self-energy to

TR get the PT effective charge.

self—energy-like

jecti
S IR projection VEEEEE

B ———————_

errors occur when one is calculating an observable at aof the unphysical nature of the schemes and couplings. See
energy Qn=my, ., that is slightly less than masses that[11] for another approach to fixiniy!S.
should Contribute, but are cut off in an ADS. These two Thus we have shown that tmTS andﬁ schemes suffer
errors will give rise to light and heavy threshold correctionserrors unless one is restricted to observables at ene@jies
in unification, as discussed in Sec. IV. which lie far between mass thresholds. In addition, compli-
In practice, both types of errors can often be eliminatectated matching conditions must be applied when crossing
through a “threshold shifting” procedure. This involves thresholds to maintain consistency for such desert scenarios.
modifying the definition ofRN by replacing Eq.(12) with | principle, these schemes are only valid for theories where
my,....My<aQ<my,; and making similar subsequent re- g particles have zero or infinite mass or if one knows the
placements and by choosiag-1 to be large enough so that full field content of the underlying physical theory.
the desired thresholds that are slightly ab&¥eor Q,, are
‘moved” below aQ, so that no matching need occur for .\, cANONICAL PHYSICAL EFFECTIVE CHARGES
those thresholds, since they are already implicitly included in FOR THE MSSM
the couplings. The limit of this procedure as-» leads to a
formally consistent scheme where no matching or artificial The difficulties associated with unphysical schemes are
decoupling is used, but as a result of the failure of decoueircumvented in physical renormalization scheniPRS3
pling, it requires inclusion of contributions from every par- based upon effective charges. So far, we have given consis-
ticle in the (unknown) fundamental theory. This is the exact tency conditions which are satisfied PRSs, but explicit ex-
situation that caused us to introduce an ADS in the firsemples have not been given. This is the topic we now take
place, since we did not want unknown and arbitrarily mas-up.
sive fields contributing to every physical observafileitten For any observable), we define an effective charge
in terms of the ADS scheme chaigét is true that such schemeR?, by
unknown contributions cancel in relations between observ- o
a_bles, _put the u_t|I|ty_ of_ the |r_1termed|ate ADS scheme is lost 7];* (Q/my) = n?(Q/mp), (17
since it's coupling is ill def@&.ln many calculations in
unphysical schemes such 84S, the “threshold shifting”  which, after using Eq(8), is equivalent to
approach may be used to yield physical predictions which
are arbitrarily accurate by choosing a sufficiently lame a%(Q)=aro(Q), (18
However, the usefulness of this procedure depends on the
details of the mass spectrum. There is no universal algorithrthus motivating the terminology “effective charge.” HeR®’
that applies to any field theory. The complicated nature ofs the physical subset of all possible mathematical schemes.
such artificial fixes to the decoupling problem are reflectionsThe canonical example for using an effective charge as a
scheme is furnished in QED by the Gell-Mann—Low—-Dyson
charge, which can be measured directly from scattering ex-
"We might as well always write observables in terms of otherpe€riments. The extension of this concept to non-Abelian
observables; this is precisely the philosophy of effective-chargegauge theories is nontrivil2], due to the self-interactions
inspired physical renormalization schemes. of the gauge bosons which make the usual self-energy gauge
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dependent. However, systematically implementing the Wardields are given by the replacemen{,— nw+2/21, where
identities of the theory allows one to project out the uniquethe additional constant is due to the so-calkedhosts. Al-
self-energy of eaclphysical particle, resulting in a self- though the constant terms will cancel in relations between
energy that is gauge independent, may be resummed to dphysical observables, DRED is the more natural choice, even
fine an effective charge, and may be related via the opticalor nonsupersymmetric theories. This is because decoupling
theorem to appropriate cuts of differential cross sections. Thes manifest(including for massive spin-1 fielggndividually
algorithm for performing the calculation at the diagrammaticfor each observable without relying on cancellation terms
level is called the pinch techniqui#3—-16. The procedure is arising from relations to another observable. This is just a
illustrated in Fig. 3 for the case of massless gauge theorstatement of the fact thay} ®**°=L,(0)Vp. In contrast,
whe_re momentum f_actors from mte_rnal gauge bo_son lines olith DREG one has;2TPRECx L,,(0). Also, the supersym-
vertices combine with gamma matrices to cancel internal fer

. , 9 X metric sum rule in Eq(11) becomes manifest in DRED.
mion propagators, yielding a gluon self-energy-like graph. Using the above results, it is straightforward to write

This is then added to the usual self-energy to yield the fully,,n the effective charges for the standard model through
PT self-energy.

The PT procedure is unambiguous and is merely an ap- 5 @(Q?)
plication of the Ward identities of the theory, which becomes @(Q%)=— o
more transparent in a dispersive derivation from physical 31-39(Q)
cross sections(qg—gg) (see[16] for such a construction
for the electroweak sectorThe generalization of the pinch — . @Q%
technique to higher loops has recently been investigated @2(Q )_§2(Q2)’

[17-22. In the work of Binosi and Papavassili¢a0—22,
the authors prove the consistency of the pinch technique to a3(Q)=ay(Q?), (22
all orders in perturbation theory, making clear how to define
the QCD and electroweak effective charges at higher ordersyhere the effective couplings ands? are defined from PT
The PT charge, labeled by, written in terms of the bare self-energied,,, andil,,, respectively16], as is detailed

coupling o may be calculated for arbitrary gauge theory, iy the aAppendix. It is convenient to write; and@; in terms
broken or unbroken, to Be of & and¥? since the latter contain the contributions from the
mass eigenstate fields. One could use @§) directly, al-

~ _ X though the Higgs sector requires care.

#(Q)=ao~ E% Bl Lp(Q/Mp) = 1p=Cuy+Im]+--, Several subtleties should be addressed before the numeri-

(19 cal values of thé®T couplings are given.
An important difference between the physical effective

where 75 "PRFYQ/my,) = 7, are the constants given in Table charges and the unphysichlS couplings is a distinction

| for massive fields andp,=64/33 for massless spin-1 between timelike and spacelike momenta. In conventional
fields® The fact that these;ff(Q/ m) functions are constants app_roaches, thresholds are tr_eate_:d in a step func_tion_approxi-
is what makes the PT observable the most simple and naturgjation. and hence the running is always logarithmic. The
choice for defining an effective charge scheme. More genergnalytic continuation from spacelike to timelike momenta is
physical effective charge schemisee Egs(8), (9), (10)] trivial, yielding i7 imaginary term_s on the timelike side.
have more complicated running due to th?(Q/mp) terms. Thus the real parts of such couplings are the same modulo

The calculation ofk(Q) has been performed using dimen- thrée-loop (m)? corrections. In contrast, theT couplings
sional reduction, rather than dimensional regularization. W@ timelike and spacelike sides have considerable differences
ft one loop. To see this we need the exact expressions for the

ogarithmiclike functions of a particle of sps) which can be
written as

2

will let PT stand for the renormalization scheme associate
with the PT observable regularized using DRED. The result
in DREG for s=0,1/2 fields are the same, but for spin-1

487 - p?

[Btanh (57— 1](2—
8f particles of different mass propagate together in the loops, this 45°—-1
formula is trivially modified. (23
SWe will useW or “1” subscripts to denote massive spin-1 fields
and ag subscript for massless spin fields. The constants 64/33 anwhere S*=s(s+1) is the total spin-squared eigenvaly,
40/21 are related straightforwardly. In general, for a massive gauge- ~/1+4m2/Q2, and the momenta is spacelik@2(> 0).
bosonW in the representatioR of groupG that is being considered  Thjs formula is merely a compact way to write the results for
and representatiorR’ in additional group factor§&’, we have massive spin-0, -1/2, and -1 fields and has not been explicitly
11 L1 L7 , verified for higher spins. For examplé-, is calculated
Bw=7 CRAR) =5 CRIR)=3 CRAR) 20 from the sum %f the Ssual gauge bosponssélf-interaction loop,
and the ghost loops, the appropriate loops of Goldstone bosons
111 (64 1 : that are absorbed, and the pinched parts of the vertex and
WZE[? CRAR )(3_3)7 g C(RR )(éﬂz 217 ®Y  pox graphgsee the Appendix for detajlsin contrastL._ 1/,

L(Q/m)=2 +1
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is simply related to the usual fermion vacuum polarization =~ TABLE Il. Coupling initial values in the various schemes.
graph, and_,_, comes from the usual scalar contribution to — — — —
the gauge boson self-energy. It is interesting that such a MS DR PT, PT_
s!mple compact. form is obtained, con§|der|ng_the seemlnglya,l(MZ) 127.03427) 127.88127) 129.07627) 128.83027)
different derivations of the threle functions. This may sug- s

gest a more efficient formulation of the perturbative dynam- $°Mz)  0.2311420) 0.230320) 0.2313020) 0.2297320)
ics of quantum fields which treats the various spins in aa3(MZ) 0.1184) 0.1194) 0.1405) 0.1405)
unified mannef23]. Notice that

rections will not cancel. Of course, linear combinations of
the electromagnetic and weak coupliri@s). (22)] are used
for unification, which complicates the matter further, since
different methods of extraction are used for each. It would be
unpleasant to quote a different value ®@f (M) for each
different SUSY spectra considered. However, this approach
has the advantage that the values of the couplings used are
the values that one would directly measure in an experiment
— atM; if a given sparticle spectrum were the correct one. For
B— B, (29) convenience, we will quote the QED coupling extracted as-
suming a fully decoupled SUSY. When calculating detailed
unification predictions in given models, however, the appro-
priate terms will be included in the determination of
@ Y(M5). It should be emphasized that the above complica-
tions are only numerically significant for light sparticle spec-
tra.
Above thresholdy?>4m?, one should replace The initial values may be extracted from experimental
data and are given in Table Il, where spacelike and timelike
T effective couplings are denoted with a+-* and “ —,” re-
tanh %(8~ ) —tanh *(B) +i o (26)  spectively. TheMS and DR couplings are on the timelike
side.
See the Appendix for detailed formulas for the effective
couplings. o
2 Notice that the value of thBT, electromagnetic inverse
B= 1— — coupling, @ (M) =129.076(27), does not correspond to
the usual value of about 128.9@9). This discrepancy arises
becausea (M) includes the virtual effects oW~
From these results it is clear that significant differences willoops, whereas the usual constructionagfen(M7) entirely
arise between the spacelike and timelike couplings evaluatednores the virtual effects of the massive gauge bosons. The
at scaleM2, mainly due to theW* boson threshold asym- proximate cause of this consistent oversight in the literature
metry. is the difficulty in extracting a gauge invariant self-energy-
As has been discussed, another distinction of effectivéike contribution to the running couplings for non-Abelian
couplings is that they are automatically sensitive to light suth€ories, a problem which is resolved through the pinch tech-
persymmetrySUSY) thresholds neavl,, since thel func-  MiAue, in particular, and more generally, in any effective
tions are not zero below threshalon the spacelike side nor charge scheme. Clearly, the present approach yields a cou-
on the timelike side The effects of light SUSY thresholds Pling which more accurately reflects the strength of the elec-
on the values of the couplings at tdepole will depend on tromagnetic force. Similar comments apply to the weak mix-

; . .ing angle.
the method of extraction from the data. The key question id glt sr?ould be emphasized that although we have chosen to
whether or not the light sparticles are implicitly included in dis

. - cuss a particular physical renormalization schéRTRS,
the measured values of the couplingsM. For@(Mz), i will be shown in the next section that all predictions asso-
which is extracted by running the precisely known fine struCjaied with unification are PRS invariant, as they should be.

ture constant fronQ=0 to Mz, we should include correc-  However, a definite scheme must be chosen for explicit cal-
tions from virtual effects of sparticlgsvith model-dependent culations, and th@T scheme is the simplest choice. As ex-
mas$, in the self-energy ternil,,(Mz). However, these pected, we will find that PRS invariance does not extend to
threshold corrections will cancel in any unification pred'c'unphysical schemes such BES or DR, because of errors

tion, since then one is essentially running fr@s=0 t0 Q  4gs0ciated with the incorrect treatment of light and heavy
=Mgyr and the light SUSYs are either fully decoupled or thresholds.

fully turned on. For the strong and weak couplings we use

data from theZ pole, and thus no unknown sparticle thresh- V. UNIFICATION IN PHYSICAL RENORMALIZATION
olds must be accounted for since they are already implicitly SCHEMES

contained in the measured values. When these couplings are
run to the unification scale the induced light threshold cor

8
lim Ly(Q/m)= 3

m—oe

1-3s(s+1)

1—4s(s+1)| (24)

corresponding to the results of Table I. The analytic continu
ation of Eg.(23) to timelike momenta below threshold, 0
<g?=—Q?<4m?, is obtained by replacing

where

_ 4m? _
B= ?—1, tanh (B~ H— —itan }(B71).

where

Now we are ready to discuss unification. In Sec. VA, we
‘will consider only the light spectrum given by the standard
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model fields and theilN=1 superpartners. This gives a Strong Coupling Predictions versus the SUSY scale
model-independent starting point for discussing unification
and makes clear exactly what model-dependent heavy
threshold corrections are needed for consistency with the-<
unification hypothesis. New light threshold corrections, in &
addition to the usual light mass corrections, are evident, al-5
though they are numerically important for only a small range &
of parameter space corresponding to light sparticles. In Sec 3
V B, asymptotic unificatioms introduced, leading to substan-
tial qualitative changes in the usual picture of gauge unifica-&
tion. This particular choice of unification boundary condi- 3
tions will lead to corrections from logarithms of superheavy g
mass ratios, just as would be obtained by implemenbiRy

with the step function approximation. This sheds light on the R R RN P .
nature of the approximation of tHgR approach. In Sec. V C, g 2000 4000 8000 8000 10000
an effective unification scale is derived that is considerable My (GeV)

higher than the usual unification scale. In Sec. VD, more ) - . )
general nonasymptotic boundary conditions are considered, F'C:4- The errorin the prediction fary(M) is plotted against

and the new nontrivial thresholds corrections are found to b&'€ YPical SUSY mass scale, with different lines corresponding to
important values of the ratio of the gluino mass to théino mass. The rela-

In performing the analvsis. the exact analvtic one-loo tive mass spectrum is roughly the same as most sparticle spectrum
P 9 ySIS, y pmodels, including supergravity models, withg setting the overall

form_UIaS discussed in S.eC' IV will be us_ed’ as well as th cale. The experimental standard deviatisr) is 0.0055 for the
leading two-loop corrections. The analytic mass-dependery; strong coupling
two-loop corrections are not known, but these can be esti- '

;nnadter?efcgecgl;rgzrlr?:glyeitr&aﬂlj.and well within the error barS'[obtained through metho@)] are displayed in Fig. 4 against

We will treat the SUSY spectrum as entirely arbitrary, the SUSY scale and in Fig. 5 against the mass ratio of the

rather than assume a particular model or theoretical bias. Th@UInO andr\]/}/-lr]nor.] TNhese ;re-the. two SUSY spgctrum param-
advantage of this approach is that importance of variou§t€"s 10 Which thevs prediction is most sensitive.

spectra parameters becomes transparent, and irrelevant de-Only I|ght gluino scenarios W'tmn@SmW are able to cor-
tails can be ignored. rectly predict the strong coupling for natural SUSY scales

(less than about a TeVHowever, it is generally expected
that the gluino is several times heavier than Weno for
most realistic models of supersymmetry breaking and spec-

In this subsection Only, heaVy thresholds will be entirelytra_ Hence we reproduce the known reims] that, at two
neglected.

The usual test of unification is to prediet(M;) contin-

6 ———T— T
I I \ * Ul I ‘

o
o
1
o

A. (In)validity of neglecting heavy thresholds

Strong Coupling Predictions versus Gaugino masses

gent upon unification. Compared with the conventioD& 8 ]
framework, we expect to see improvements due to the cor- r ]
rect treatment of light thresholds. To be precise, the correc- . gl ]

tions we are discussing are to the difference between the
a3(Mz) prediction obtained from the following two meth- <
ods: (@) using thePT, scheme throughout and) using o
DR (with the artificial decoupling and theta function treat- £
ment of light thresholdsto predictas(Mz), which is then
translated to a prediction fGt;(M). Both approaches cap- %
ture the leading light threshold effects, which appear as loga- &’
rithms of light masses. The additional corrections in Eie i r
scheme are from what we will cadinalytic light threshold = gl o Mauey=500GeV
corrections since they arise from correctly and smoothly in- ;
terpolating between thresholds. These are largest when thet R T
are light supersymmetric partners near or belbly. For
most values of the sparticle masses, they fall inside the erro:
bars. However, such corrections may become more important g\ 5. The error in the prediction fGi;(M.) is plotted against
as the experimental values of the couplings are determinege ratio of the gluino mass to thiino mass, which is the sparticle
more precis_el_y. T_he exact form of the new corrections will bespectrum parameter to whidk;(M;) predictions are most sensi-
shown explicitly in Sec. VB, Eq¥31), (39). tive. The spectrum is fully specified by the ratio ar\m
Now let us compare th®T unification predictions with =500 Ge\=Mg sy, WhereMgysy is the mass of all other spar-
experiment. The predictions for tHeT strong couplingrs ticles.

/
e e

A

Lo

mg/mw
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loops and neglecting heavy thresholds, gauge coupling uni
fication fails by several standard deviations. Except for the
light gluino escape route, this points to the need for large
heavy threshold corrections if unification is to be achieved.

B. Heavy thresholds and asymptotic unification

Henceforth, the complete heavy threshold behavior will

be included in the running of the effective couplings. The '
form of the subsequent corrections will depend on the par-
ticular unification boundary conditions that are chosen, and
the numerical values of the corrections will depend on the
details of the GUT model. In this section we will choose the
simplest boundary conditions, since it will reproduce known
results. Later, more general cases will be considered.

Generally, there are four parameters which specify the

27

PHYSICAL REVIEW D69, 095007 (2004

Asymptotic Unification

23— ~

%216

5 = ‘1|017 2 5 I1|015
Q(GeV)

unification boundary conditions. These are the unification
scaleMy and the values of the couplings at that Scale,ﬁ_ effective couplings, while the dashed lines are BRR cou-

ai(My) fori=1,2,3. qu our purposes, we wil always as- plings. For illustrative purposesys(M;) has been chosen so that
sume standard normallzat!ons and take the couplings to lq.,'lenification occurs at a finite scale fBR and asymptotically for the
equal at some s_cqle. In this case, the_ 9”'y free pargmeterﬁ couplings. Herd g ysy=200 GeV is the mass of all light super-
My . The two distinct cases are for finitd and infinite partners except thé\-ino and gluino which have valuegmg
My . The so-calledasymptotic unificatiortonsidered in this = Mg o= 2mg . For illustrative purposes, we use G

section corresponds to the latter choice: namly,— oo

anda; Y(My)=a, '(My)= a3 *(My). The asymptotic uni- where the two-loop correctiofSare contained ir;(Q,Qy)
fication conditions would be appropriate if the standardand we have defined

model groupGg)y is embedded in a simple Lie group

which is fully restored before gravitational or other string 1

interactions become relevant and neglecting any other exotic  T19(Q,Qq)= — >, Bi(m[Lp(Q/mp)— Lo(Qo/my)
phenomena. Hence this choice is somewhat simple and na- 47 geG

ive, but it is very instructive.

We will find that asymptotic unification reproduces the
same heavy threshold corrections which can be obtained by
unphysical renormalization scheme3R) with finite unifi- which contains all of the one-loop corrections. Now we sepa-
cation scale. The reason is that in takiMy,—> one is rate the sums over the light and heavy speclraGgy
essentially looking at an observalflbe unification require- (Ggy means the standard model fields plus SUSY pariners
men) in a desert region, which, as we have seen, unphysic@indH=G—Ggy, takeQy=M, and letQ=M be some
schemes are capable of treating without error. At first sight, ienergy much larger than the mass of all fields, including the
may seem strange that the infinite unification scale predicheavy fields: i.e.My>m, VpelL+H. The functionsﬁio
tions of physical schemes correspond to finite unificationcgn then be written as
scale predictions of unphysical schemes. However, this is
dictated by the nature of unphysical schemes where masses . , L o o
are turned on and off with a step function. 7 (My—2,Mz)=Bgly—Aj =& — By Ix— S i(*)

The paradigmatic improvement over conventional meth-
ods is summarized in Fig. 6, where asymptotic unification of
the couplings occurs at very large energy. For demonstrative
purposes, the parameters are chosen so that unification o#here
curs.

Now let us derive the analytic formulas for the unification
predictions. We will discuss the most general case oNan
=1 supersymmetricGgy=U(1)y®SU(2) ® SU(3): em-
bedded in a larger gauge gro@using any physical renor-
malization schemdall others are inconsistentwhich we
label by its associated observaldhe

In general, the running of the couplings can be expressed
in the form

FIG. 6. Asymptotic unification. The solid lines are the analytic

— 75(QImy) + 75 (Qo/mp)], 29)

+87,(Mz)—Sg (=), (29)
Be=ZpeaPp, lu=(12m)log(My/Mz),

|X:(1/27T)|Og(Mx/Mz),

1
SLQ=2 - A n(QIm), (30

@0 (Q)=ap Qo) +117(Q,.Q0)~ 6:(Q.Q0),  (27)

105ee the Appendix for details.
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2 ~—1 C~1
Mz M7 a3 (Mz)=a; "(Mz)+ A5
L| —]—log—
m m

B {(Mg)— 3, (Mg + Al (34

_|_ —

12
and . . . . .
which differs from the prediction obtained by neglecting
heavy thresholds by only the ternd,,st,, which reflect
H h the heavy splitting. o
i _hEE:H Eﬁ'( )IOQW' (32 In order to explicitly compare with thBR approach, the
artificial decoupling treatment of thresholds should be em-
ployed, as described in Sec. Il. This involves using a step
The exact one-loop analytic light threshold corrections argunction through each light fielde L with mass greater than
contained inAt, while the heavy threshold splittings are M and through every superheavy fielde H. Then one
contained in5iH, with some arbitrarily chosen heavy mass must impose the unification condition such that the three
My which is conveniently taken to be the mass of heavygauge couplings are equal at the maximum mass of heavy
gauge bosons. fields, M yx=maxm, ,he H}. At energies above this maximum

It is useful to verify that predictions fdry and a3(My) mass, the three couplings run identically according to the
are invariant under the choice of physical renormalizatiorbeta function for the unified grou@; hence, there is no
scheme. In performing the calculation, one must use the facrbitrariness in the choice of the unification scale. Next, the
that the nff functions do not depend on the gauge group orprediction for theDR strong coupling should be translated to
representation op, only the spin. These are necessémut  the PT strong coupling. Doing this, one finds the exact same
not sufficient conditions for the sum rule in Eq11). This  form of Eq.(34), except thaTA:- is replaced by
1

As a result of the physical renormalization scheme invari- A:'H 2 4—,3?”
ance, we may choose the simplest scheme, which i®The MMz ST
predictions are simple and compact when written in terms of =Mz 47 !
the PT chargesy; .

scheme equivalence does not extend to unphysical schemes
M, M2
Li| —|—log—
m,
scheme discussed earlier. Becauseﬁﬁ_Efunctions are con-
From a;(My)=2a,(My), the heavy gauge boson mass

such asDR, though the errors are quantifiable.
2
: . 1 0 z
stants equal tey,=L,(0), theexpressions for the unification + 2 — B ﬂl"OQF . (35
Notice that there are only light threshold corrections beyond
the theta function approximation for particles of mass above

Mx is given by M, since those belowl, are already implicitly accounted
for. This formula is in agreement with Eq&l5), (16), since
My there is a residual error proportional tg(M;/m,) — 5, for
logl == |+1 ~ 1 M-)— %= L(M A each crossed threshold. The analogous corrections for the
Mz @, (Mz)=a; "(Mz)+ Ay, o © . T
= (33 heavy thresholds do not arise in the asymptotic unification
2m B2 scenario, since we are essentially comparing observables at

energy scale$1,~m,, which is of the same order of mag-
where Ap,=A;—A,, Bio=pB1—B,, and A;=AL+sf  nitude as the light thresholds, aMi,>m,, which is much
+6,. Notice thatMy can be determined explicitly only for greater than all thresholds when asymptotic unification con-
the (unlikely) case of a degenerate heavy spectrum wheglitions are assum_ed. The latter scale is a “des_e_rt” scale, and
5:4:0: otherwise, the expression is transcendentaWlig. so the step function method has no errors, giving the same

In the degenerate case, the gauge boson iassM /e is result obtained above in th&'.* For the more general uni-

equal to the unification scale determined by entirely neglectt'cat'on conditions considered in the next subsection there

ing heavy thresholds(denoted by ), divided by e will be additional heavy threshold corrections.
=2.71828.... This result relies on use of the sum rule in Eq. Equation(34) is a useful result, as it allows one to con-

(12) which gives rise to the 12 term on the left-hand side Strain the heavy spectrum, given a light SUSY spectrum. Up

g ; .1 to two-loop finite threshold corrections, which we have esti-
(LHS) of Eq. (33). The generalization to arbitrary physical . ' L
renormaliza?tion schemegM _ MHeKO2 whereK)‘g ?s Ze mated to be small, and assuming that E3#) will yield the
X U ’ -

. . ; i . experimental value of the strong coupling given some appro-
fined in Eq.(11). Neglecting the light and heavy analytic

threshold corrections, the gauge boson mass prediction is the——

same as the .u.nifi_cation ScalerrediCtion in Dig SChe.me' it should be emphasized that this is only the case wheDRe
Also, the unlflcatlon scaleMy _depends on the particular s correctly implemented by choosing the unification scale to be
scheme, which makes sense since different schemes corrgyual to the heaviest threshold in the theory. Different choices are

_Spond to different observables. In contraty is scheme  sometimes made in the literature. For examplg26l, the authors
independent. advocate defining the unification scale to be the geometric mean of
The strong coupling prediction is the heavy masses.
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TABLE Ill. Constants which characterize each representationgions, which have the sant,, and a singlet which haB,,
contribution to thea (M) prediction. =0), which are given in Table Ill along with the value of
— — Bp.

Bn(Ri) Bn(Ri) These same constants will also govern the corrections
from analytic heavy threshold corrections which will be dis-

R;=(3,2,1/6 -3/2 R;=(1,1,1 3/7 . . -
v ( ) 57( ) cussed later in Sec. V D. Notice that, by definition, the con-
Re=(3.1,~1/3) o4 Re=(8.10) 3 stants satisfy the constraint that the sum over all heavy mul-
Rs=(3,1,2/3) 15/14 R,=(1,3,0) —24/7 folets vanishes y
R.=(1,2,1/2) -9/14  Rg=(3,2,5/6) 3/14 P ’
> B,=0, (39
heH

priate full GUT theory(i.e., assuming the asymptotic unifi-

cation hypothesis is trewe can write which equivalently reflects the arbitrariness in the choice of
which heavy mass scaMy one chooses to be canoni¢ate
Ho~—1 pred_~—1 expt_ sH ,3_13 H Eq. (37)], de'1aM«=0. A similar relation also holds for any
e'=ag (Mg a3 (M) o3t Bz 921, (36) complete representation of the grand unified group. For ex-
ample, the24 of SU(5) decomposes into a singlet plg

whered; }(M,)E®is the predicted value of the strong cou- +R;+Rg+Rg. From the table, we havB(Rg)+By(R;)
pling obtained by neglecting heavy thresholds, as illustrated- 2B,(Rg) =0.

in Figs. 4 and 5. We should emphasize the assumptions lead- As a simple example, let us explore thelikely) possi-
ing to this result. First, the standard normalizations of thebility wherein the only heavy field with significantly differ-
couplings are assumed, so that E87) does not hold for ent mass than the heavy gauge boson mdsgis the
higher affine levels or nonstandard hypercharge normalizas-dimensional Higgs supermultiplet in which the light Higgs
tions, as often occur in string models. Second, we assum@oublets are embedded. The triplet components of the two
that the gluino is somewhat heavier than the chargino, so thadiggs supermultiplets contributes2/5, 0, —1 to 81, B2,
there are serious discrepancies, as in Fig. 4, which must be, and henceBh(3+§): —9/7. Using Eq.(37), this leads
explained by heavy threshold corrections. Finally, we are usto M3~ My exp(—14w/9), which is of ordeM /100 . Such
ing the paradigm of asymptotic unification, wherein the full 3 |arge splitting is unnatural and difficult to accommodate in
gauge groupG in which the SM is embedded is restored g theory. In general, “natural” splittings do not lead &
before other Planck scale physics becomes relevant. Witalues of the correct magnitude in ). This is not terribly
these assumptions and noting that heavy thresholds were n&arprising, since minimal SUSY Sb) is already known to

glected in Figs. 4 and 5, we find a typical value of be strongly disfavored.
In general, the large discrepancies in Figs. 4 and 5 imply
expt  theory 1 mﬁ a large splitting in the heavy spectrum, which, in turn, may
fl~—-1~ -—> Bylog (37)  imply a multistep unification scenario—e.g., SO(280,,,4

TheH M —Ggy. The reason is that for the heavy fields to contribute
] to @3(M3), they must not only have a mass splitting com-
where we have definéd pared to some reference heavy gauge bo§dsut also must
have different first beta function coefficients since only the
differencesp{” — %" and g{" — " appear in the correc-
tions.

Before moving to more general unification boundary con-
Values ofB" can be compiled for the heavy representationgditions, we shall give a simple way to define an effective
any unified gauge group and, hence, may be used with heawpnification scale in the asymptotic unification scenario.

mass ratios to exclude or provide evidence for a given GUT
theory. C. Effective unification scale

To calculateBy,, we first write By = B¢ B, whereps = Because the couplings formally unify at infinite energy in
—1/3,—2/3,11/3 for spin 0, 1/2, 1 fields and the remainingthe paradigm of asymptotic unification, there is no apparent
group theory factor i§h=%T1(R)—¥T2(R)+T3(R) for a unification spale. Howeve_r, we suspect that in reali_ty guan-
representatiorR. It is necessary to decompose all represenfum gravitational fluctuations will affect the couplings as
tations in terms of their U(})® SU(2), ®SU(3); content.  they approach the Planck energy. Hence one can define an
Here T,(R)= §2pERY§ and T,(R) 5ab=2pERtfi(t§t?e), i ;arl]‘fectlve un|f|cat|.on scale to be where the splittings bgtween

_the gauge couplings are of the same order as those induced
Py gravitational effects. To be precise, define a dimensionless
gravitational coupling which classically runs with energy as

12
Bn=p5'+ - B2 - (39

=2,3. For many grand unified theories of interest, all mul
tiplets can be decomposed in terms of only eight differen
standard model multiplet&lus their conjugate representa-

2

Q
Gn(Q)=—5, (40
12N0te thatB13/,812= 172 M §|
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whereMp~1.22< 10*° GeV. The leading gravitational cor- ary conditions, as discussed in the next section.[88kfor
rections to the running gauge couplinggQ) will be pro-  a recent string calculation of threshold corrections to grand
portional to Gy(Q)«;(Q). Hence the effective asymptotic unification.

unification scaleM ¢+ can be defined as the scale where the

splittings in the gauge couplings are of order the gravita- D. More general boundary conditions

tional corrections, | a;(M ef) — & (Meg) ~b*Gp(Mem) ey O,

; The discussion of this section concerns the next-simplest
equivalently,

boundary conditions after asymptotic unification. In particu-
lar, we will impose a1(My)=a,(My)=a3(My) at scale
|a; (M) — @ {(Meg) | = b?Gn(Meg) ary = 8g( M), My~M,, for someh e H. As discussed in the previous sec-
tion, one might expectM to roughly correspond to the
(41) asymptotic unification scale, which we found to be roughly
5% 10" GeV. However, we will consideM, as an input
and find the corrections for the strong coupling and gauge
where we takea51~24 to be the typical gauge coupling boson mass predictions.
near unification. The unknown paramets® should be of Before proceeding, there is a subtle point that should be
order 1. EstimatingM . using a simple S{() model, we addressed. Notice that in the previous section, we assumed
find a typical effective unification scale of 1-5 that unificationwould haveoccurred asymptotically were it
X 10 GeV. This is only intended to be a very rough ap- not for gravitational corrections. Hence starting with a finite
proximation since a naively simple $8 model was used. unification scale and then neglecting gravitational correc-
Nevertheless, more complicated and realistic GUT modelg§ons, as we do in this section, does not seem logically con-
yield a unification scale in the same ballpark. It is generallysistent with what was done in the previous section. This ob-
true that our effective unification scale is about an order ofservation is entirely correct, but the point is that indeed we
magnitude or more greater than what is typically called theare considering two orthogonal scenarios: one where a fi-
unification scale £2x 10'® GeV). nite unification scale is obtained from gravity and another
It may seem that our definition of an effective unification where finite unification scale is obtained from nontrivial
scale is rather artificial. However, it may be physically mo-threshold corrections. The latter case may have its origin in
tivated by the following considerations. If indeed the stan-stringy or gravitational physics, but nevertheless becomes
dard model is embedded in some unified theory of gravitynanifest through purely field theoretic mechanisms.
and gauge forces, then there may exist a phase at energiesThe corrections from imposing finite unification scale are
below the Planck scale which consists of a simple Lie grougstraightforward to derive and can be stated in terms of the
containing the supersymmetric standard model. In the abA;=A+ 6"+ 6,, which we defined earlier. This gains an
sence of any gravitational corrections, the running gaugeadditional contribution and can now be written
couplings certainly unify asymptotically, as this is the only
case in which the higher group symmetry is fully realized up Ai=Af+6'+6,—Af, (42)
to arbitrarily high energies. Hence the running couplings
should only deviate from asymptotic unification by the gravi—Where
tational corrections parameterized above. So by the above 1 M M2
reasoning, the effective unification scale should roughly cor- AP = > _Bi<h> Lh<_) —log—
respond to the physical unification scale when the(flian- heH 4 my, mﬁ
tum gravitational theory is considered. o
These results may have consequences for the paradigm Which is of exactly the same form expected from Exp).**
string unification. In particular, one problem of string unifi- Evidently, these are finite heavy threshold corrections in ad-
cation [27] is that the couplings seem to unify at a scaledition to tht?4 corrections from the heavy threshold splittings.
(MZR~2x10' GeV) about 20 times lower than the scale Hence thee™ defined earlier will get an additional contribu-

. H, .
predicted by four-dimensional heterotic string modelsto" from theA;"s and is now
(MgM%~5x 10 GeV). In the approach presented here,

: (43

: . eory 1 m M M3
heavy threshold effects seem to push the effective asymptotic n _~_ = S B Iog—h— L2 Iog—u
unification scale to roughli 3™, Despite the apparent suc- dmich " z " h m?2
cess, this coincidence cannot be taken seriously until several
questions are addressed in regards to this so-called string B 1 My
gauge coupling problem. First, the calculation\d§™? [28] ; Eth Bol Fh ' 49

was performed in th®R scheme, with the field theory step

function treatment generalized to strings. An analogous calExperimentally,e™~ —1, as seen in Figs. 4 and 5 for typical
culation for physical renormalization schemes is lacking, saluino toW-ino mass ratios; this value can be easily adjusted
it is difficult to compare our results with string predictions.

Second, the asymptotic unification boundary conditions are

probably not valid for many string models, and so the unifi- °This is not obvious; one must work through the derivation to see
cation scale will be further changed by more general boundthat indeed the expectdd,— 7, correction terms do arise.
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for nonstandard sparticle spectra. This is our final formularesult for arbitrary renormalization scale. In the appropriate

which may be used to assess the experimental validity olfimits our results reduce to those given|[itb] and[16].

gauge coupling unification in any specific GUT model where The charges are constructed using the pinch-technique,
the gauge group, superheavy mass ratios, and light SUSWhich allows one to extract the universal self-energy func-

masses are given. tion in non-Abelian gauge theories, thus leading to gauge-
Let us now consider the numerical size of these newnvariant effective couplings whicli) contain explicit and
threshold corrections. From E) one finds that complete mass-threshold behavior atid reproduce the
conventional massless beta function in the limit where
My M3 m2 masses can be neglected.
Lh<_> —log— ~log| 1+ —-e"|, (45) At one-loop, the spin-1/2 and spin-0 PT self-energies are
Mh M MG trivially just the usual transverse vacuum polarization

graphs. Only the graph with a gauge boson loop needs to

which can be larger than heavy splitting correctionshave the self-energy-like part projected, as described briefly

2
log(mf/M3) for values ofM\, that are not too large. Hence Sec. Ill and in more detail in Ref§15,16. In calculating

such corrections cannot be neglected. the following, we used both the direct diagrammatic pinch

The value ofM,, is not fixeda priori and corresponds 10 yechnique algorithnil5] and the dispersive derivation from
the physically meaningful energy where the couplings be'physical cross sectiorf46].

come equal due to the new nontrivial heavy threshold cor- The pT effective charges naturally measure the self-
rections. This complicates the analysis of unification by IN-anergy-like propagation of a gauge boson and hence can be
troducing another parameter beyond those that are usualjjierpreted as measuring the real force between two fermions
needed. However, this is to be expected, since a new physicg} arpitrary mass, analogous to the QED effective charge.
phenomenacorrections arising from the virtuality of very the pT charge includes finite mass recoil effects that are

massive particlgshas been included. missed in the heavy quark effective chafgjee V schemg
In fact, one may obtain the heavy quark potential in the
VI. CONCLUSIONS appropriate kinematical limit of the pinch technique effective

We have developed a new way of looking at detailed IOre_(:harge[ls]. The difference between the two are due to finite

dictions of gauge coupling unification which is more physi- o> test-charge effects that are not present in (the
ot gaug piing ur pny charge, but are in th@®T) charge. Different extensions of the
cally motivated than conventional approaches. In addition t

a dramatic paradigmatic improvement, novel heavy and ligh T effective charge beyond one loop have been put forth
threshold corrections are obtained, and the resulting corre 17-19, although it seems that the approach[9] most

tions to unification predictions are presented for a gener losely matches the philosophy used here. A multiloop gen-

GUT model. A natural extension of this work is a thorough ralization of this algorithm remains to be constructed.
analysis and classification of various unified theories. By cal-

culating theBy, constants and the heavy spectrum, one may QCD effective charges

exclude or verify the gauge unification of a given model. The PT self-energy function for supersymmetric QCD,
ﬁ3, can be used to define the effective coupling for super-
ACKNOWLEDGMENTS symmetric QCD by
We wish to thank Ratin Akhoury and Eduardo de Rafael Z3(Qp)
for reading a draft of this paper and providing useful sugges- @3(Q)= _Tsxe (A1)
tions. 1+115(Q,Qo)
APPENDIX: THE PINCH TECHNIQUE The functionIl; can be written down straightforwardly
SELF-ENERGY-LIKE using Egs(5), (9), and the unsubtracted result is given by
EFFECTIVE CHARGES - 5
. - _ - Gg(Qo) [ 11 Q
Here we will give explicit formulas for the pinch tech- II3(Q)= 4 ENC log——Cyy—64/33
nique effective couplings regularized using dimensional re- ™ K
duction, which will be denoted with a tilde. These effective 2
charges will be similar to those constructed[i8,15 for — —NC[Ll/z(Q/mg,)+Iog(m§/,u2)—CUV—5/3]
QCD and in[14,14] for the electroweak sector. However, we 3

will extend these to the minimal supersymmetric case, which 5

involves explicitly including another Higgs doublet, and - L /M) + 1 2 2y _ G, —5/3
regulating the loop integrals with dimensional reduction, as % 3[ 1A Q/Mg) +1og(mg/ %) = Cyv—5/3]
opposed to dimensional regularization, which is used in most

nonsupersymmetric settings. It is well known that DRED 2, o

preserves both supersymmetry and gauge symmetry. Also, _2 E[LO(Q/mﬁH'Og(m«i/“ )~ Cuy—8/3]}.
the effective charges presented[it6] were in the on-shell a

subtraction schemeQ,=0), whereas here we will need the (A2)
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The four terms correspond respectively to the gluons, #(Qo)
gluinos @), Dirac quarks(g), and to complex squark dou- Q)=——— (A5)
blets (). For the scalars we will take the left and right 1+11,,(Q,Qo)

components to be degenerate in mass since such complica-
tions do not change the unification predictions to any nu-and
merical significance. In any case, one may trivially treat the _
two separately. T I1 ,
To relate the resulting effective charge to other schemes ~ Sw(Q)=34(Qo) 1+~W(QO) 1Z(Q Qo)
or observables one needs to use &. Su(Qo) 1+11,,(Q,Qo)
Equation(A2) can be written in a more useful once sub-
tracted form by relating the effective charges at different
scales, leading to an expression governing the running of the
charge given by

(A6)

For the matter sector, we will write only the subtracksH
self energies, as it is now clear how to translate between
schemes using they, constants as described before. The

5 (Q )11 Q2 quarks(qg) and leptongl), along with their scalar superpart-
3 0 ~ .
I15(Q,Qp)=115(Q)—115(Qy) = ?N ( 09—2) ners @,1), yield
0
11, (mattep
N[ L 1/2(Q/mg) =LA Qo /My)] & 4
s e =S ANl QI Lud Qo/m)]
q
2
=2 S [Lua Q/mg) ~ LA Qo/my)] 2
q =2 5 Need[Lo(Q/mg) — Lo(Qo/my)]
q

(A3)

1
— 2, —[Lo(Q/mg)—L / . 4
2 3Lo(@Ime) = Lo(Qo/my)] -3 STLAQIM)~ Lk Qo/my)]

Though the gluon contribution in E¢A2) looks simple, 2
it is actually the most difficult piece to compute. As dis- -> g[Lo(Q/ﬁW)—Lo(Qo/”ﬁ)]l- (A7)
cussed in[15], the pinch technique self-energy which con- '
tributes to the effective charge is gauge and scale indepen-
dent, and indeed reproduces the pure gauge term of3the The electric charge of a particteis denotede, . The analo-
function coefficient. This of course is not the case for the full9Us contributions of individual Dirac mass e|genstate matter

pure gluon vacuum polarization, which is gauge and scalfi€lds to theyZ self-energy are given by the relation

dependent and does not reproduce the corfeftinction. 1 1

The nontrivial and important part of the result is the constant = -———g|—T1P A8
. . . . yZ S = = Yy ( )

64/33. This constant may be obtained using the pinch tech- 4ey| SwCw

nigue and DRED. To translate to DREG one just subtracts
1/11 (from the so-called epsilon ghost® get the constant

67/33. For comparison, the heavy quark potential effective
chargeay, replaces this constant with 28/33 and 31/33 when
using DRED and DREG, respectively. Consequently, the

scheme does not satisfy the decoupling criterion of (EE6). dependent ghost and Goldstone boson lpasnot yield a

This is just a reflection of the fact that infinitely heavy ex- . ? | dd ; h ;
ternal quarks are used in the V-scheme calculation, thus re/g2ug€-invariant resuit and do not give the appropriate con-

dering meaningless the limit where internal virtual gauge trlbutlon to the electroweak beta functions. The proper treat-
bosons acquire very large mass. ment involves calculatlng the self-energy-like part of the

Notice that in the appropriate limit the above reduces to°"€ loope "e” —e e~ amplitude(or using any other fermi-
the standard R@ function coefficient: ons due to universalijyincluding vertex and box corrections

involving neutrinos. These contribute pinched parts which

wherep denotes any of the fermions or scalars above.

The contribution of the charged vector bosons to the self-
energies is more complicated than the matter multiplets.
imilar to the QCD case, the non-Abelian nature of the
theory implies thaW" W~ loops(along with possible gauge-

Q2 make the self-energy-like part gauge invariant and trans-
lim H3 (9 ne)log—~. (A4)  verse. This calculation was first performed[i¥] and then
m—0 4m Qo with dispersion relations if16] for ny=1 Higgs doublets

and renormalized in the on-shell schemeQgt=0. Here we
need to extend these results to arbitragy and Qy, and
would like to have the finite constants in the unrenormalized
The effective QED charge and the effective weak-mixingexpression, including constant terms arising from using
angle are obtained by diagonalizing the electroweak neutrdDRED instead of DREG. The most efficient way to do this is
currents and are given 6] to use the Feynman gauge=1, whereW= bosons,—G*

Electroweak sector
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Goldstone bosons, and;” ghosts all propagate with (Qo)
- igﬂ,,/(pz— M?Z). Hence the only factors of transverse mo- H;V;"H)

menta arise from the three-boson vertex, and so the box

graph and several of the vertex graphs may be neglected, as Ny 1

they do not have pinched parts. Here the dependence on the —40/21)+ D, ( - —)[LO(Q/Ma)JrIOg(Mg/,uZ)
Higgs doublets comes only from the unphysical charged a=2 3

Goldstone scalars for they=1 case and also on charged

Higgs scalars fon,>1. The result for the SU(2RU(1)y _CUV_8/3]] (A12)
electroweak theory is

7[L1(Q/My) +log(M§/ u?) —Cyy

The contribution of the physical massive gauge boson is
characterized by [Z;=(22/3)L,+(—1/3)Ls, explicitly
given by

= aiQO) [2—[L (Q/My) +log(M{/ u?) — Cyy

L (Q/m)=2Btanh ! B~ 1—(B2—1)I7]+(2/7)(B>—1).

—64/33+ 2, ( - %) [Lo(Q/M,) +log(MZ/ 1?)
&= (A13)

—Cuyv— 8/3]} , (A9)  As expected,

2

. Q .
where the constant 64/33 is the same as appeared for the “mo LW(Q/m)_IOgH’ nl]linw Lw(Q/m)=40/21.

gluon self-energy. The sum in the second line will be over (A14)
mass eigenstate charged Higgs scalars; there will be one of

these for each Higgs doublet in the theory. The first scalanotice that Eq.(A13) precisely corresponds to E(R3) for
(a=1 in the sumis an unphysical Goldstone boson that isg=1_

absorbed by th&/=, and hence one identifies its mass to be The separation of pure gauge effects and those arising in
M1=Myy (in the Feynman gaugeThe second charged sca- the broken phase of the theory is useful and allows us to

lar (a=2) is conventionally denoted by~ in the MSSM,  immediately write down the analogous result fg without
with massM,=M+. Additional Higgs doublets beyond the fyrther calculation:

MSSM are not considered here, so we can take-2. The

function Qo)
e (;N{ 3 CalL1(Q/Mw) +log(M G/ u?)
L_l(Q/m)=E[ﬂtanh_lﬁ_l(ﬂ—ﬁz)ﬂ@z—1], M1
11 AL0) —Cyy—64/33+ 2 [——(c ——”(LO(QIMa)
with 8= V1+4m?Q?, comes from theV*W~ and ghost +|09(M§/M2)_Cuv_8/3)]- (A15)

loops, theW" G~ +W~ G* loops, and the pinched self-
energy-like part of theyWWW vertex where the internal neu- Finally, theW-ino and charged Higgsino, whose mixing is
trino line is pinched. Thé., comes from the charged Gold- neglected, contribute

stones and Higgs loops. As might be anticipated from
the fermions and scalars, where, for example, == Q)
limp,_... L1(Q/m)=5/3 is the same constant as appears in  TI7"= 9
the self-energy, we also have the nice property that 4m

4
- §[L1/2(Q/m?|)_ LA Qo/mi) ]

4
- §[|—1/2(Q/m\7v)_ |—1/2(Qo/m\7v)]} (A16)

lim L,(Q/M,y)=64/33. (A1)
My—
and
Notice that in DREG this does not cancel the constant, which 2(Qy)

. 4
in that case is 67/33. With DRED regularization, all massive I1,"= {— §cfv[L1,2(Q/mg)—Ll,z(Qolmg)]

particles decouple, modulo divergent pieces, from the unsub- 4mCySw
tracted self-energy-like expression. 4
Letting theW bosons absorb the Goldstones by perform- - 5(03\,— 1/2)[ L Q/my,) — Ll,Z(QO/mgV)]}
ing simple algebra in EqA9), one finds the result written in
terms of physical degrees of freedom: (A17)
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The SU(2) ®U(1)y effective couplings constructed from
the above results are

@ (Qo)
1+11,(Q,Qy)

for i=1,2 anda;(Q) given in Eq.(22). The PT self-energies
are related by

@(Q)= (A18)

- - Sy~

=11, anvz'

T

Tip=1i,,+ Tz (A19)

Notice thatll,,=3,I1%) andil,,==,11{2 (as well as

PHYSICAL REVIEW D69, 095007 (2004

B2=SeByy+ Bz (A23)
One finds
16
== g Ngt6-ny,
16 ) 1,
B'yZ:_ZNg+ ?SWN9+6CW_ ﬂH E_SW ,
(A24)

thus leading to the MSSM beta function coefficients

B\ /O 2 3/10
B2|=| 6] -Ng| 2| -ny| 112 (A25)
Bs) \9 2 0

i1;) have the correct beta function coefficients, which are The two-loop effects contribute to the running of the cou-
summarized below, and smoothly interpolate between alPings through the terms;(Q,Qo) in Eq. (27). Since we do
mass thresholds. The full mass-dependent beta functions m&pt have the full mass-dependent contributions, we will have

be obtained by differentiating the above expressions, but wi Settle with the using the usual massless limits. These are
will just give the massless limits, in order to make clear our€XPlicitly determined by solving the two-loop renormaliza-

conventions.
The one-loop beta function coefficients are defined by the
relations
da dl':[w o?
=— =—— , A20
dlog Q? “d logQ? 4 By (20
dﬁ/ dﬁ,yz o
=s.C =— , A21
d log Q? SuCug log Q? 477'8yz (A2D)
3 2
Blz g(Cwﬂw_ﬁyz), (A22)

tion group equations and are given by

6i(Q.Qo)

1 3 . )
:_E;’Z—;log 1+aj(Q0)f_7JT|09(Q2/Qé) ,

(A26)
where the beta matrix is
796 54 17.
B?{'SSM: -1 18 25 24 (A27)
22 9 14
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