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Physical renormalization schemes and grand unification

Michael Binger* and Stanley J. Brodsky†

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309, USA
~Received 6 November 2003; published 19 May 2004!

In a physical renormalization scheme, gauge couplings are defined directly in terms of physical observables.
Such effective charges are analytic functions of physical scales, and thus mass thresholds are treated with their
correct analytic dependence. In particular, particles will contribute to physical predictions even at energies
below their threshold. This is in contrast with unphysical renormalization schemes such asMS where mass
thresholds are treated as step functions. In this paper we analyze supersymmetric grand unification in the
context of physical renormalization schemes and find a number of qualitative differences and improvements in
precision over conventional approaches. The effective charge formalism presented here provides a template for
calculating all mass threshold effects for any given grand unified theory. These new threshold corrections may
be important in making the measured values of the gauge couplings consistent with unification.
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I. INTRODUCTION

Precision measurements of the gauge couplings and
possible unification provide some of the few windows to t
Planck scale. It is thus important to have a firm grasp of
theoretical ambiguities involved. This paper attempts to
dress some of these ambiguities.

In a physical renormalization scheme, gauge coupli
are defined directly in terms of physical observables. S
effective charges are analytic functions of physical sca
and thus the thresholds associated with heavy particles
treated with their correct analytic dependence. This is in c
trast to unphysical renormalization schemes such as
modified minimal subtraction (MS) scheme where mas
thresholds are treated as step functions. In this paper we
analyze supersymmetric grand unification in the contex
physical renormalization schemes with the goal of syste
atizing the effects of light and heavy mass thresholds
improving the precision of tests of unification compared w
conventional approaches.

In Sec. II, we motivate physical renormalization schem
with a simple example and then present the notation
results used throughout the paper. In Sec. III, we look m
carefully at the problem of decoupling heavy particles a
the errors induced by unphysical schemes. In Sec. IV,
discuss the canonical self-energy-like effective charges
the minimal supersymmetric standard model~MSSM!. These
effective couplings run smoothly over spacelike momen
have nonanalytic behavior only at the expected phys
thresholds for timelike momenta, and more directly meas
the strengths of the forces than the charges of unphys
schemes. The extraction of effective charges from low
ergy data is considered. We identify an important modifi
tion of the electromagnetic couplingaQED(MZ) due to the
proper inclusion of virtualW6 loops, thus resulting in a 4s
change in its numerical value. Similar modifications a
found for the weak mixing angle. As seen in Sec. V, the

*Email address: mwbinger@stanford.edu
†Email address: sjbth@slac.stanford.edu
0556-2821/2004/69~9!/095007~18!/$22.50 69 0950
eir

e
-

s
h
s,
re
-

he

ill
f
-
d

s
d
e
d
e
r

,
al
re
al
-
-

e

effective charges provide a more natural and physical fra
work for examining gauge coupling unification. In Sec. V A
we demonstrate the invalidity of neglecting heavy thresh
corrections in analyzing grand unified models. The more r
orous treatment of light thresholds in physical schemes g
rise to new corrections, but these are numerically small
most sparticle spectra. The treatment of heavy thresh
with various unification boundary conditions is discussed
Sec. V B. In the simplest scenario, we find that the gau
couplings should unify at asymptotically large energies a
the only heavy threshold corrections are logarithms of he
mass ratios, corrections which can be obtained in unphys
schemes. An effective unification scale, defined in Sec. V
as the scale where quantum gravity corrections produce n
negligible splittings between the gauge couplings, is found
be roughly 1017– 1018 GeV, depending on the specific gran
unified theory ~GUT! model used. Section V D consider
more general unification boundary conditions with finite u
fication scale. The resulting heavy threshold corrections
given in Eq.~44!. This result combined with the results o
Sec. V B may be used to determine the experimental con
tency of any given GUT model. This is the main result of t
paper. An appendix discusses the details of constructing
effective charges. Throughout our analysis, we will find se
eral attractive theoretical features of the supersymme
regulator, dimensional reduction, which makes it the p
ferred regulator for physical effective charge schemes, e
without supersymmetry.

There have been several previous works on threshold
fects in grand unification. In the first such study@1#, which
appeared just after the discovery of grand unification, R
uses form factors to define beta functions which are va
over all energy scales, including near-mass thresholds.
coupling constants run smoothly over all momenta, and n
trivial threshold corrections are found for grand unificatio
Despite this early significant work, most subsequent work
GUTs have ignored these threshold effects, perhaps du
the complexity of the Ross approach.

An exception from the late 1980s is the work of Kenne
and Lynn @2#, who defined electroweak effective charg
similar to the pinch technique charges used in this paper
©2004 The American Physical Society07-1
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In several papers@3# by Kreuzer, Kummer, and Rebhan
the authors compared the Vilkovisky-DeWitt effective a
tioin ~VDEA!, the mass-shell momentum subtraction sche
~MMOM !, and Weinberg’s effective gauge theory~EGT!.
They wrote down explicit formula for the running charg
which include analytic threshold behavior for all particles.
calculating predictions from grand unification, they assu
asymptotic unification at energies much larger than he
particles, so that the only threshold corrections from he
particles come from finite constants which are independ
of energy scale or masses. We find similar results
Sec. V B. Furthermore, we include the possibility of a fin
unification scale in Sec. V D, which leads to more comp
cated corrections.

In @4,5#, the authors include the effects of light supersy
metric scalar and fermion thresholds, although heavy thre
olds and gauge bosons virtual effects are not treated. In@6#,
the authors include both light and heavy threshold corr
tions, although the treatment of gauge bosons is not
equate. In Refs.@7,8#, the authors come to several concl
sions similar to ours. However, their definition leads
gauge-parameter-dependent effective couplings.

II. PHYSICAL RENORMALIZATION SCHEMES
AND EFFECTIVE CHARGES

In order to motivate the reanalysis of supersymmetric u
fication given in this paper, we will first discuss some gene
properties of renormalization schemes in the presence
massive fields and determine a criterion for consistentphysi-
cal renormalization schemes. These criteria will not be sat
isfied by the schemes conventionally used in unification~and
most perturbative calculations!, MS and modified dimen-
sional reduction (DR), which have persistent threshold an
matching errors. Heuristically, these errors can be unders
by noting that such schemes implicitly integrate out
masses heavier than the physical energy scale until they
crossed, and then they are ‘‘clicked’’ on with a step functio
Of course, integrating out heavy fields is only valid for e
ergies well below their masses. This procedure is proble
atic since it does not correctly incorporate the finite proba
ity that the uncertainty principle gives for a particle to be p
produced below threshold. Effective charge@9# schemes, de-
rived from physical observables, naturally avoid such err
and are formally consistent.

A. Simple example

For the purpose of elucidating the benefits of physi
renormalization schemes, we will give a simple toy exam
using QED with three fermionse, m, and t. Consider the
amplitude for the processe2m2→e2m2. This can be writ-
ten as a dressed skeleton expansion—i.e., the dressed
level graph plus the dressed box diagram plus the dre
double box, etc. The tree level diagram, dressed to all ord
in perturbation theory, is equal to the tree level diagram w
one modification: the QED couplinga5e2/4p is replaced
by the Gell-Man–Low–Dyson effective charge
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a~Q2!5
a

11Pgg~Q2!2Pgg~0!
. ~1!

Hence, from measurements of the cross section, one
measure the effective charge at two different scalesa(Qh

2)
anda(Ql

2). Suppose the value of the electron charge is
known, and we are trying to test the predictions of QED. T
way to proceed is to use one measurement—say, at the
scaleQl—as an input to determinee. Now the prediction at
the high scaleQh is well defined and represents a test of t
theory. More directly, we could just writea(Qh

2) in terms of
a(Ql

2), leading to the same prediction. Since the cross s
tion se2m2→e2m2(Q2) is proportional to@a(Q2)#2, we are
clearly relating one observable to another. The procedure
outlined is simply an on-shell renormalization scheme ifQl
50. More generally, we will refer to such a scheme as
effective charge scheme, since we are writing a given
servable, here justse2m2→e2m2(Qh

2) @or a(Qh
2)], in terms of

an effective chargea(Ql
2) defined from a measurement o

the cross section at the scaleQl . One could equally well
write any observable in terms of this effective charge. N
that this approach to renormalization works for arbitra
scales, even if the low scale lies below some threshold—
Ql,mt , while Qh.mt . Decoupling and the smooth ‘‘turn
ing on’’ of the t are manifest.

Now we will compare with the results obtained by usin
the conventional implementation ofMS, which is as follows.
First, the cross section is calculated atQl using the rules of
MS, which allows only the electrons and muons to propag
in loops, sinceQl,mt . Comparing the observed cross se
tion to this result will fix the value of theMS coupling for
two flavorsâ2(Ql). To predict the result of the same expe
ment at scaleQh.mt , we need to evolveâ2 to the tau
threshold using the two-flavor beta function, match with
three-flavor coupling â3 through the relation â2(mt)
5â3(mt), and then evolveâ3(mt) to Qh using the three-
flavor beta function. We will now have a prediction fo
se2m2→e2m2(Qh

2)}@a(Qh
2)#2. One might expect, from the

general principle of renormalization group~RG! invariance
of physical predictions that this result should be the same
the prediction derived using the physical effective cha
scheme above. However, there is a discrepancy arising f
the incorrect treatment of the threshold effects inMS. A
detailed discussion of this problem will be given in Sec. I
In any case, the result can be obtained by straightforwa
applying the procedure outlined above. One finds that
ratio of the cross section derived usingMS with the cross
section derived using effective charges, to first order in p
turbation theory, is given by

ŝ~Qh
2!

s~Qh
2!

5112
a~Ql !

3p
@Lt~Ql /mt!25/3#, ~2!

whereLt is a logarithmlike function~the high energy limit is
a logarithm! given by
7-2
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Lt~Q/m!5E
0

1

dx 6x~12x!logS 11
Q2

m2 x~12x!D 15/3

5@b tanh21~b21!21#~32b2!12, ~3!

where b5A114m2/Q2. It satisfies the propertyLt(0)
55/3, so that there is no discrepancy when the low refere
scaleQl is much lower than the tau mass threshold. T
reflects the important, but often overlooked, fact that u
physical schemes, such asMS, are formally consistent only
in desert regions where particle masses can be neglected
error is plotted in Fig. 1. Notice that in this example there
an error only forQl,mt . However, in the more general cas
of multiple-flavor thresholds, there will be errors from bo
high and low scales. Similar discrepancies will be found
our analysis of grand unification.

B. General properties of effective charges and physical
renormalization schemes

Effective charges@9# may be defined for any perturba
tively calculable observable

O~Q![AO1a1
OaO~Q! ~4!

by absorbing all of the radiative corrections into the effect
chargeaO. To one-loop order using dimensional regulariz
tion ~DREG! or dimensional reduction~DRED!, it is
straightforward to show that any unrenormalized effect
charge may be parametrized as1

1This follows from considering the high energy limit and requ
ing renormalizability. Note also that our parametrization can be e
ily extended to effective charges which have particles with differ
masses running together in the loops, and the results are simila
any case, we will not have use for such charges in this paper.

FIG. 1. Error in theMS-based prediction for the scattering cro
section, 100%3@ŝ(Qh

2)/s(Qh
2)21#, plotted against the referenc

subtraction scaleQl for the choicea(Ql)'0.1.
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aO~Q!5a02
a0

2

4p
(

p
bpS Lp~Q/mp!2hp

O~Q/mp!

2CUV1 log
mp

2

m2D 1¯ , ~5!

where the sum is over all particlesp in the fundamental
theory which contribute to the running of the effectiv
charge. In the QED example above, the sum proceeds ove,
m, t andLe5Lm5Lt , and the functionhp

O(Q/mp)55/3 is a

constant for the simple observableO5Ase2m2→e2m2. In
Eq. ~5!, CUV51/e2gE1 log 4p is the divergence and asso
ciated constants,m is the regularization scale,a0 is the bare
gauge coupling, andbp is the contribution of each particle t
the one-loop beta function coefficient. TheLp(Q/mp) are
logarithmiclike functions which are characteristic of the sp
of each particle and are given exactly in Eq.~23!. They may
be approximated to within a few percent2 by

Lp~Q/m!' logS ehp1
Q2

mp
2D ~6!

and have the limits

Lp~Q/m! '
Q@m

log
Q2

m2 , Lp~Q/m! '
m@Q

hp , ~7!

where the constantshp have values given in Table I. We wil
see that these constants are of central importance in phy
renormalization schemes. These logarithmlike functio
characterize the self-energy-like effect of each particle,
cluding the finite spread of the wave functions near thre
olds due to the uncertainty principle, and may be calcula
in several different ways, as will be discussed in Sec. IV a
the Appendix. Figure 2 shows theLp functions for spacelike
momenta.

The functionshp
O(Q/mp) are characteristic of each ob

servable, with a nontrivial functional form indicating devia
tions from self-energy-like behavior. For a general obse
ableO, the functionhp

O(Q/mp) is nontrivial. We will show
in Sec. IV that the constantshp correspond to a particularly
simple and canonical observable, called the pinch-techni
~PT! self-energy.

s-
t
In

2To be precise, the approximations reproduce the exact funct
L0 , L1/2, and L1 ~the subscripts refer to the spin of the massi
field! with maximum error of 3.5%, 0.8%, and 2.2%, respective
over the entire range ofQ.

TABLE I. Characteristic self-energy constants.

Scalars Fermions Massive gauge boson

hp 8/3 5/3 40/21
7-3
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The effective coupling renormalized in the most gene
schemeR is

aO~Q!5aR~Q0!2
@aR~Q0!#2

4p (
p

bp@Lp~Q/mp!

2Lp~Q0 /mp!2hp
O~Q/mp!1hp

R~Q0 /mp!#,

~8!

where the functionshp
R(Q0 /mp) contain all of the informa-

tion about the scheme. HereR can be any mathematica
scheme for defining the couplings. In the case ofMS, we
have hp

MS(Q0 /mp)5Lp(Q0 /mp)2 log(Q0
2/mp

2) so that only-
logarithms of the renormalization scaleQ0 are subtracted.3

It is straightforward to relate observables to each othe

aO1~Q1!5aO2~Q2!2
@aO2~Q2!#2

4p (
p

bp@Lp~Q1 /mp!

2Lp~Q2 /mp!2hp
O1~Q1 /mp!1hp

O2~Q2 /mp!#.

~9!

This satisfies the transitivity property of the physical ren
malization group. As before, the sum overp runs over all
particles in the fundamental theory which contribute to
effective charges.

For consistency, very massive particles must decou
properly and must not contribute to physical predictio
Taking themp→` limit in Eqs. ~8! and ~9! yields a funda-
mental requirement of renormalization schemes and obs
ables:

3The term in parentheses in Eq.~8! becomes Lp(Q/mp)
2 log(Q0

2/mp
2)2hp

O(Q/mp). Note that in most calculations the firs
term is taken to be a logarithm and mass corrections are syste
cally added, in order to approximate the full threshold depende
of Lp(Q/mp). However, the log(Q0

2/mp
2) term does not have the

correct threshold dependence, as we will be discussing.

FIG. 2. The logarithmlike functions for massive particles of sp
0, 1/2, and 1 are denoted byLs , L f , andLW , respectively.
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R~0!5hp

O1~0!5hp
O2~0! 5

DRED

hp . ~10!

This consistency requirement holds for all schemesR, ob-
servablesO1 , O2 , and for each massive particlep. These are
universal constants for each spin and, when DRED is us
are equal to thehp given in Table I above, as can be verifie
through explicit calculations. If, for example, DREG wa
used instead of DRED, the last equality of Eq.~10! would
hold only for fermions and scalars, but for spin-1 fields the
is an additional constant.4 Renormalization schemes that sa
isfy ~the first two equalities of! Eq. ~10! will henceforth be
referred to as physical renormalization schemes, and th
that do not will be called unphysical renormalizatio
schemes, for reasons that will become clear.

The above discussion implies a unique decoupling lim
(Q/m→0) for observables. It is interesting that there is a
a restriction on the high energy behavior (Q/m→`), which
holds only for supersymmetric theories and takes the form
a sum rule. It is given by

(pPSbp~G!hp
O~`!

(pPSbp~G!
5KO, ~11!

whereKO is a constant that depends only on the observa
not on the gauge groupG or the supermultipletS. The
hp

O(Q/mp) are calculated using DRED; otherwise, the su
rule is true only for differenceshp

O1(`)2hp
O2(`) between

observables. Further, the result holds for any number of
persymmetries, which may be broken or unbroken at l
energies. This can be proved inductively given the result
N51. It is easy to check using Table I above and the cor
sponding result for massless gauge bosons given below
~19! that KPT52. The sum rule just expresses the fact th
there is no resolution within a supermultiplet at high energ
and is motivated from conformal invariance and physi
renormalization scheme invariance. Such a sum rule m
provide a powerful link between the contributions of vario
spin fields to any observable, particularly if a multiloop
nonperturbative generalization was found.

III. UNPHYSICAL RENORMALIZATION SCHEMES
AND THE PROBLEM OF DECOUPLING

Notice that the physical renormalization scheme requ
ment Eq.~10! is not met byMS, DR, their massive exten
sions, or similar schemes. It is well known thatMS by itself
does not constitute a complete scheme; rather, one must
cate the sum overp to include only particles with masses le
than the scale of the problem. For each region betw
thresholds a different scheme is implemented and one m
translate between schemes when crossing thresholds. H
MS is really a set of schemes related to each other. We
call such a set an artificial decoupling scheme~ADS! and
now discuss the most general case at one loop. This will gti-

ce

4This is explained below Eq.~19! and below Eq.~A11!.
7-4
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us an idea of the discrepancies one may expect in AD
when compared to the physical renormalization scheme
proach.

Let S5$m1 ,m2 ,...% be the spectrum of massive particl
of the fundamental theory ordered from lightest to heavie
let S0 be the set of massless particles, and letSN5S0
% $m1 ,m2 ,...,mN% be some subset up to a given mass sc
For any given renormalization schemeR, let theNth phase of
R, denotedRN, be the scheme used to renormalize obse
ables at energy scalesQ such that

m1 ,...,mN,Q,mN11 . ~12!

To useRN, one simply renormalizes the contributions fro
particlespPSN in the usual way dictated by schemeR and
then entirely neglects the contributions from allpPS2SN.
This is a formal statement of the usual implementation
ADSs using step functions.

For m1 ,...,mN,Q,Q8,mN11 , the gauge coupling of the
RN scheme flows by

aRN~Q!5aRN~Q8!2
@aRN~Q8!#2

4p (
pPSN

bp@Lp~Q/mp!

2Lp~Q8/mp!2hp
R~Q/mp!1hp

R~Q8/mp!#,

~13!

and the most general matching condition between sche
RN21 andRN takes the form

aRN21~mN!5aRN~mN!1
aRN

2
~mN!

4p
bNAN~mN /mN!,

~14!

where Ap(mp /mp) is arbitrary now, but will be specified
below by minimizing errors and may depend only on t
matching scalemp for each thresholdmp , for reasons dis-
cussed below.

For Qh.mN1n and m1 ,...,mN,Ql,mN11 ~the h and l
stand for heavy and light scales, respectively! one may relate
observables by flowing throughn thresholds using the abov
formulas to obtain

aO1~Qh!5aO2~Ql !2
@aO2~Ql !#

2

4p F (
pPSN1n

bp@Lp~Qh /mp!

2Lp~Ql /mp!2hp
O1~Qh /mp!1hp

O2~Ql /mp!#

1 (
pPSN1n2SN

bp@Ap~mp /mp!2Lp~mp /mp!

1hp
R~mp /mp!1Lp~Ql /mp!2hp

O2~Ql /mp!#G .

~15!

Now let us compare this to the relation, Eq.~9!, obtained
in the previous section for the tracking of two observabl
For the case of a high scale desert region (Qh!mN1n11),
the first sum reduces to Eq.~9!. However, whenQh
09500
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&mN1n11, there are errors of one-loop order which are p
portional toLp(Qh /mp)2hp

O1(Qh /mp) and occur for each
neglected threshold5 pPS2SN1n such thatQh&mp . These
errors are naturally remedied in physical renormalizat
schemes, leading to heavy threshold corrections which
be of importance when grand unification is discussed la
There are also analogous light threshold corrections.
second sum in Eq.~15! contains extra terms which arise from
the artificial decoupling and matching conditions at ea
threshold. These terms are also generally of order of
one-loop corrections and must cancel if the ADS is to
consistent~in the sense of giving reliable physical predi
tions in relations between two observables!. In general, these
terms do not cancel, since theQl-dependent terms cannot b
cancelled by the choice ofAp , which depends only on the
ratio mp /mp . Suitably choosingAp @see Eq.~16! below#
leaves a termLp(Ql /mp)2hp

O2(Ql /mp) for all pPSN1n

2SN. Hence we see that the high scale and low scale thre
old corrections have exactly the same form; indeed, th
have the same origin—namely, the necessity of using
ADS—which arises from improper decoupling.

In the case of a low scale desert regionQl!mp;p
PSN1n2SN, one finds thatLp(Ql /mp)2hp

O2(Ql /mp)→0
@by Eqs.~7!, ~10!#, and the light threshold errors are elim
nated through the choice

Ap~mp /mp!5Lp~mp /mp!2hp
R~mp /mp!. ~16!

In this case, notice that once theAp are chosen suitably, the
matching scalemp exactly cancels and there is no need to
its value. However, forMS, this choice is equivalent to usin
Ap50 andmp5mp , which is the matching scale typicall
used at one loop. One may object that even in nonde
regions the known anomalous matching threshold err
could be systematically subtracted off for each physical p
cess considered@equivalently allowingAp5Ap(Ql)]. This is
untenable, as it is the same as using a different coupling
each process, thus losing the remnants of universality lef
ADSs ~i.e., universality in each desert region!.

We have identified two potential problems in artificial d
coupling schemes, which arise solely from the failure of t
decoupling requirement given in Eq.~10!, regardless of
whether or not the schemeR has analytic threshold
dependence.6 The low scale errors come from the matchin
conditions and are exhibited in the last two terms of Eq.~15!.
These are significant only whenQl&mN11 . The high scale

5Similar errors occur ifQl&mN1n11 .
6Proper analytic threshold dependence may be defined

hp
R(Q/m) going to a constant for both small and largeQ/m. Con-

sider the analytic extension ofMS into the region of mass thresh
olds, which we call massiveMS MMS ~similar to that in@10#!. This
is defined byhp

MMS(Q0 /mp)50 so that the full logarithmiclike
functionsLp are subtracted and trivially the conditions for smoo
threshold dependence are satisfied. Nonetheless, MMS has match-
ing errors, which result from the failure of Eq.~10! and the subse-
quent need to construct an ADS from MMS.
7-5
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FIG. 3. Pinch technique for QCD at one loop
The unique gluonic self-energy-like projection o
the vertex and box graphs yields terms whi
must be added to the conventional self-energy
get the PT effective charge.
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errors occur when one is calculating an observable at
energyQh&mN1n11 that is slightly less than masses th
should contribute, but are cut off in an ADS. These tw
errors will give rise to light and heavy threshold correctio
in unification, as discussed in Sec. IV.

In practice, both types of errors can often be elimina
through a ‘‘threshold shifting’’ procedure. This involve
modifying the definition ofRN by replacing Eq.~12! with
m1 ,...,mN,aQ,mN11 and making similar subsequent r
placements and by choosinga.1 to be large enough so tha
the desired thresholds that are slightly aboveQl or Qh are
‘‘moved’’ below aQl , so that no matching need occur fo
those thresholds, since they are already implicitly included
the couplings. The limit of this procedure asa→` leads to a
formally consistent scheme where no matching or artific
decoupling is used, but as a result of the failure of dec
pling, it requires inclusion of contributions from every pa
ticle in the ~unknown! fundamental theory. This is the exa
situation that caused us to introduce an ADS in the fi
place, since we did not want unknown and arbitrarily m
sive fields contributing to every physical observable~written
in terms of the ADS scheme charge!. It is true that such
unknown contributions cancel in relations between obse
ables, but the utility of the intermediate ADS scheme is l
since it’s coupling is ill defined.7 In many calculations in
unphysical schemes such asMS, the ‘‘threshold shifting’’
approach may be used to yield physical predictions wh
are arbitrarily accurate by choosing a sufficiently largea.
However, the usefulness of this procedure depends on
details of the mass spectrum. There is no universal algori
that applies to any field theory. The complicated nature
such artificial fixes to the decoupling problem are reflectio

7We might as well always write observables in terms of oth
observables; this is precisely the philosophy of effective-char
inspired physical renormalization schemes.
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of the unphysical nature of the schemes and couplings.
@11# for another approach to fixingMS.

Thus we have shown that theMS andDR schemes suffer
errors unless one is restricted to observables at energieQ
which lie far between mass thresholds. In addition, com
cated matching conditions must be applied when cross
thresholds to maintain consistency for such desert scena
In principle, these schemes are only valid for theories wh
all particles have zero or infinite mass or if one knows t
full field content of the underlying physical theory.

IV. CANONICAL PHYSICAL EFFECTIVE CHARGES
FOR THE MSSM

The difficulties associated with unphysical schemes
circumvented in physical renormalization schemes~PRSs!
based upon effective charges. So far, we have given con
tency conditions which are satisfied PRSs, but explicit
amples have not been given. This is the topic we now t
up.

For any observableO, we define an effective charg
schemeRO, by

hp
RO

~Q/mp!5hp
O~Q/mp!, ~17!

which, after using Eq.~8!, is equivalent to

aO~Q!5aRO~Q!, ~18!

thus motivating the terminology ‘‘effective charge.’’ HereRO

is the physical subset of all possible mathematical schem
The canonical example for using an effective charge a
scheme is furnished in QED by the Gell-Mann–Low–Dys
charge, which can be measured directly from scattering
periments. The extension of this concept to non-Abel
gauge theories is nontrivial@12#, due to the self-interactions
of the gauge bosons which make the usual self-energy ga

r
-
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dependent. However, systematically implementing the W
identities of the theory allows one to project out the uniq
self-energy of eachphysical particle, resulting in a self-
energy that is gauge independent, may be resummed to
fine an effective charge, and may be related via the opt
theorem to appropriate cuts of differential cross sections.
algorithm for performing the calculation at the diagramma
level is called the pinch technique@13–16#. The procedure is
illustrated in Fig. 3 for the case of massless gauge the
where momentum factors from internal gauge boson line
vertices combine with gamma matrices to cancel internal
mion propagators, yielding a gluon self-energy-like gra
This is then added to the usual self-energy to yield the
PT self-energy.

The PT procedure is unambiguous and is merely an
plication of the Ward identities of the theory, which becom
more transparent in a dispersive derivation from phys
cross sectionss(qq̄→gg) ~see@16# for such a construction
for the electroweak sector!. The generalization of the pinc
technique to higher loops has recently been investiga
@17–22#. In the work of Binosi and Papavassiliou@20–22#,
the authors prove the consistency of the pinch techniqu
all orders in perturbation theory, making clear how to defi
the QCD and electroweak effective charges at higher ord

The PT charge, labeled byã, written in terms of the bare
coupling a0 may be calculated for arbitrary gauge theo
broken or unbroken, to be8

ã~Q!5a02
a0

2

4p (
p

bp@Lp~Q/mp!2hp2CUV1 l m#1¯ ,

~19!

wherehp
PT-DRED(Q/mp)5hp are the constants given in Tab

I for massive fields andhg564/33 for massless spin-

fields.9 The fact that thesehp
O(Q/m) functions are constant

is what makes the PT observable the most simple and na
choice for defining an effective charge scheme. More gen
physical effective charge schemes@see Eqs.~8!, ~9!, ~10!#
have more complicated running due to thehp

O(Q/mp) terms.
The calculation ofã(Q) has been performed using dime
sional reduction, rather than dimensional regularization.
will let PT stand for the renormalization scheme associa
with the PT observable regularized using DRED. The res
in DREG for s50,1/2 fields are the same, but for spin

8If particles of different mass propagate together in the loops,
formula is trivially modified.

9We will useW or ‘‘1’’ subscripts to denote massive spin-1 field
and ag subscript for massless spin fields. The constants 64/33
40/21 are related straightforwardly. In general, for a massive ga
bosonW in the representationR of groupG that is being considered
and representationsR8 in additional group factorsG8, we have

bW5
11

3
C~R!d~R8!2

1

6
C~R!d~R8!5

7

2
C~R!d~R8! ~20!

and

hW5
1

bW
F11

3
C~R!d~R8!S64

33D2 1

6
C~R!d~R8!S83DG5 40

21
. ~21!
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fields are given by the replacementhW→hW12/21, where
the additional constant is due to the so-callede ghosts. Al-
though the constant terms will cancel in relations betwe
physical observables, DRED is the more natural choice, e
for nonsupersymmetric theories. This is because decoup
is manifest~including for massive spin-1 fields! individually
for each observable without relying on cancellation ter
arising from relations to another observable. This is jus
statement of the fact thathp

PT-DRED5Lp(0);p. In contrast,

with DREG one hashW
PT-DREGÞLW(0). Also, the supersym-

metric sum rule in Eq.~11! becomes manifest in DRED.
Using the above results, it is straightforward to wri

down the effective charges for the standard model throug

a 1̃~Q2!5
5

3

ã~Q2!

12 s̃2~Q2!
,

a 2̃~Q2!5
ã~Q2!

s̃2~Q2!
,

a 3̃~Q2!5a s̃~Q2!, ~22!

where the effective couplingsã and s̃2 are defined from PT

self-energiesP̃gg andP̃gZ , respectively@16#, as is detailed
in the Appendix. It is convenient to writea 1̃ anda 2̃ in terms
of ã ands̃2 since the latter contain the contributions from t
mass eigenstate fields. One could use Eq.~19! directly, al-
though the Higgs sector requires care.

Several subtleties should be addressed before the num
cal values of thePT couplings are given.

An important difference between the physical effecti
charges and the unphysicalMS couplings is a distinction
between timelike and spacelike momenta. In conventio
approaches, thresholds are treated in a step function app
mation, and hence the running is always logarithmic. T
analytic continuation from spacelike to timelike momenta
trivial, yielding ip imaginary terms on the timelike side
Thus the real parts of such couplings are the same mo
three-loop (ip)2 corrections. In contrast, thePT couplings
on timelike and spacelike sides have considerable differen
at one loop. To see this we need the exact expressions fo
logarithmiclike functions of a particle of spins, which can be
written as

Ls~Q/m!52F @b tanh21~b21!21#S 4S22b2

4S221
D 11G ,

~23!

where S25s(s11) is the total spin-squared eigenvalue,b

5A114m2/Q2, and the momenta is spacelike (Q2.0).
This formula is merely a compact way to write the results
massive spin-0, -1/2, and -1 fields and has not been explic
verified for higher spins. For example,Ls51 is calculated
from the sum of the usual gauge boson self-interaction lo
the ghost loops, the appropriate loops of Goldstone bos
that are absorbed, and the pinched parts of the vertex
box graphs~see the Appendix for details!. In contrast,Ls51/2
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is simply related to the usual fermion vacuum polarizat
graph, andLs50 comes from the usual scalar contribution
the gauge boson self-energy. It is interesting that suc
simple compact form is obtained, considering the seemin
different derivations of the threeLs functions. This may sug-
gest a more efficient formulation of the perturbative dyna
ics of quantum fields which treats the various spins in
unified manner@23#. Notice that

lim
m→`

Ls~Q/m!5
8

3 F123s~s11!

124s~s11!G , ~24!

corresponding to the results of Table I. The analytic conti
ation of Eq. ~23! to timelike momenta below threshold,
,q252Q2,4m2, is obtained by replacing

b→b̄, ~25!

where

b̄5A4m2

q2 21, tanh21~b21!→2 i tan21~ b̄21!.

Above thresholdq2.4m2, one should replace

tanh21~b21!→tanh21~b!1 i
p

2
, ~26!

where

b5A12
4m2

q2 .

From these results it is clear that significant differences w
arise between the spacelike and timelike couplings evalu
at scaleMZ

2, mainly due to theW6 boson threshold asym
metry.

As has been discussed, another distinction of effec
couplings is that they are automatically sensitive to light
persymmetry~SUSY! thresholds nearMZ , since theLs func-
tions are not zero below threshold~on the spacelike side no
on the timelike side!. The effects of light SUSY threshold
on the values of the couplings at theZ pole will depend on
the method of extraction from the data. The key question
whether or not the light sparticles are implicitly included
the measured values of the couplings atMZ . For ã(MZ),
which is extracted by running the precisely known fine str
ture constant fromQ50 to MZ , we should include correc
tions from virtual effects of sparticles~with model-dependen
mass!, in the self-energy termPgg(MZ). However, these
threshold corrections will cancel in any unification pred
tion, since then one is essentially running fromQ50 to Q
5MGUT and the light SUSYs are either fully decoupled
fully turned on. For the strong and weak couplings we u
data from theZ pole, and thus no unknown sparticle thres
olds must be accounted for since they are already implic
contained in the measured values. When these coupling
run to the unification scale the induced light threshold c
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rections will not cancel. Of course, linear combinations
the electromagnetic and weak couplings@Eq. ~22!# are used
for unification, which complicates the matter further, sin
different methods of extraction are used for each. It would
unpleasant to quote a different value ofã21(MZ) for each
different SUSY spectra considered. However, this appro
has the advantage that the values of the couplings used
the values that one would directly measure in an experim
at MZ if a given sparticle spectrum were the correct one. F
convenience, we will quote the QED coupling extracted
suming a fully decoupled SUSY. When calculating detail
unification predictions in given models, however, the app
priate terms will be included in the determination
ã21(MZ). It should be emphasized that the above compli
tions are only numerically significant for light sparticle spe
tra.

The initial values may be extracted from experimen
data and are given in Table II, where spacelike and time
effective couplings are denoted with a ‘‘1’’ and ‘‘ 2,’’ re-
spectively. TheMS and DR couplings are on the timelike
side.

See the Appendix for detailed formulas for the effecti
couplings.

Notice that the value of thePT1 electromagnetic inverse
coupling, ã21(MZ)5129.076(27), does not correspond
the usual value of about 128.968~27!. This discrepancy arise
becauseã21(MZ) includes the virtual effects ofW1W2

loops, whereas the usual construction ofaQED(MZ) entirely
ignores the virtual effects of the massive gauge bosons.
proximate cause of this consistent oversight in the literat
is the difficulty in extracting a gauge invariant self-energ
like contribution to the running couplings for non-Abelia
theories, a problem which is resolved through the pinch te
nique, in particular, and more generally, in any effecti
charge scheme. Clearly, the present approach yields a
pling which more accurately reflects the strength of the el
tromagnetic force. Similar comments apply to the weak m
ing angle.

It should be emphasized that although we have chose
discuss a particular physical renormalization scheme~PRS!,
it will be shown in the next section that all predictions ass
ciated with unification are PRS invariant, as they should
However, a definite scheme must be chosen for explicit c
culations, and thePT scheme is the simplest choice. As e
pected, we will find that PRS invariance does not extend
unphysical schemes such asMS or DR, because of errors
associated with the incorrect treatment of light and hea
thresholds.

V. UNIFICATION IN PHYSICAL RENORMALIZATION
SCHEMES

Now we are ready to discuss unification. In Sec. V A, w
will consider only the light spectrum given by the standa

TABLE II. Coupling initial values in the various schemes.

MS DR PT1 PT2

a21(MZ) 127.934~27! 127.881~27! 129.076~27! 128.830~27!

s2(MZ) 0.23114~20! 0.23030~20! 0.23130~20! 0.22973~20!

a3(MZ) 0.118~4! 0.119~4! 0.140~5! 0.140~5!
7-8
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model fields and theirN51 superpartners. This gives
model-independent starting point for discussing unificat
and makes clear exactly what model-dependent he
threshold corrections are needed for consistency with
unification hypothesis. New light threshold corrections,
addition to the usual light mass corrections, are evident,
though they are numerically important for only a small ran
of parameter space corresponding to light sparticles. In S
V B, asymptotic unificationis introduced, leading to substan
tial qualitative changes in the usual picture of gauge unifi
tion. This particular choice of unification boundary cond
tions will lead to corrections from logarithms of superhea
mass ratios, just as would be obtained by implementingDR
with the step function approximation. This sheds light on
nature of the approximation of theDR approach. In Sec. V C
an effective unification scale is derived that is considera
higher than the usual unification scale. In Sec. V D, m
general nonasymptotic boundary conditions are conside
and the new nontrivial thresholds corrections are found to
important.

In performing the analysis, the exact analytic one-lo
formulas discussed in Sec. IV will be used, as well as
leading two-loop corrections. The analytic mass-depend
two-loop corrections are not known, but these can be e
mated to be numerically small and well within the error ba
and hence can be neglected@24#.

We will treat the SUSY spectrum as entirely arbitra
rather than assume a particular model or theoretical bias.
advantage of this approach is that importance of vari
spectra parameters becomes transparent, and irrelevan
tails can be ignored.

A. „In …validity of neglecting heavy thresholds

In this subsection only, heavy thresholds will be entire
neglected.

The usual test of unification is to predicta3(MZ) contin-
gent upon unification. Compared with the conventionalDR
framework, we expect to see improvements due to the
rect treatment of light thresholds. To be precise, the cor
tions we are discussing are to the difference between
ã3(MZ) prediction obtained from the following two meth
ods: ~a! using thePT1 scheme throughout and~b! using
DR ~with the artificial decoupling and theta function trea
ment of light thresholds! to predict â3(MZ), which is then
translated to a prediction forã3(MZ). Both approaches cap
ture the leading light threshold effects, which appear as lo
rithms of light masses. The additional corrections in thePT
scheme are from what we will callanalytic light threshold
corrections, since they arise from correctly and smoothly i
terpolating between thresholds. These are largest when t
are light supersymmetric partners near or belowMZ . For
most values of the sparticle masses, they fall inside the e
bars. However, such corrections may become more impor
as the experimental values of the couplings are determ
more precisely. The exact form of the new corrections will
shown explicitly in Sec. V B, Eqs.~31!, ~35!.

Now let us compare thePT unification predictions with
experiment. The predictions for thePT strong couplinga 3̃
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@obtained through method~a!# are displayed in Fig. 4 agains
the SUSY scale and in Fig. 5 against the mass ratio of
gluino andW-ino. These are the two SUSY spectrum para
eters to which thea 3̃ prediction is most sensitive.

Only light gluino scenarios withmg̃&mw̃ are able to cor-
rectly predict the strong coupling for natural SUSY sca
~less than about a TeV!. However, it is generally expecte
that the gluino is several times heavier than theW-ino for
most realistic models of supersymmetry breaking and sp
tra. Hence we reproduce the known result@25# that, at two

FIG. 4. The error in the prediction fora 3̃(MZ) is plotted against
the typical SUSY mass scale, with different lines corresponding
values of the ratio of the gluino mass to theW-ino mass. The rela-
tive mass spectrum is roughly the same as most sparticle spec
models, including supergravity models, withMs setting the overall
scale. The experimental standard deviation~s.d.! is 0.0055 for the
PT strong coupling.

FIG. 5. The error in the prediction fora 3̃(MZ) is plotted against
the ratio of the gluino mass to theW-ino mass, which is the sparticle
spectrum parameter to whicha 3̃(MZ) predictions are most sens

tive. The spectrum is fully specified by the ratio andAmg̃mw̃

5500 GeV5MSUSY, whereMSUSY is the mass of all other spar
ticles.
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loops and neglecting heavy thresholds, gauge coupling
fication fails by several standard deviations. Except for
light gluino escape route, this points to the need for la
heavy threshold corrections if unification is to be achieve

B. Heavy thresholds and asymptotic unification

Henceforth, the complete heavy threshold behavior w
be included in the running of the effective couplings. T
form of the subsequent corrections will depend on the p
ticular unification boundary conditions that are chosen, a
the numerical values of the corrections will depend on
details of the GUT model. In this section we will choose t
simplest boundary conditions, since it will reproduce kno
results. Later, more general cases will be considered.

Generally, there are four parameters which specify
unification boundary conditions. These are the unificat
scale MU and the values of the couplings at that sca
a ĩ(MU) for i 51,2,3. For our purposes, we will always a
sume standard normalizations and take the couplings to
equal at some scale. In this case, the only free paramet
MU . The two distinct cases are for finiteMU and infinite
MU . The so-calledasymptotic unificationconsidered in this
section corresponds to the latter choice: namely,MU→`
anda1

21(MU)5a2
21(MU)5a3

21(MU). The asymptotic uni-
fication conditions would be appropriate if the standa
model groupGSM is embedded in a simple Lie groupG
which is fully restored before gravitational or other strin
interactions become relevant and neglecting any other ex
phenomena. Hence this choice is somewhat simple and
ive, but it is very instructive.

We will find that asymptotic unification reproduces th
same heavy threshold corrections which can be obtaine
unphysical renormalization schemes (DR) with finite unifi-
cation scale. The reason is that in takingMU→` one is
essentially looking at an observable~the unification require-
ment! in a desert region, which, as we have seen, unphys
schemes are capable of treating without error. At first sigh
may seem strange that the infinite unification scale pre
tions of physical schemes correspond to finite unificat
scale predictions of unphysical schemes. However, thi
dictated by the nature of unphysical schemes where ma
are turned on and off with a step function.

The paradigmatic improvement over conventional me
ods is summarized in Fig. 6, where asymptotic unification
the couplings occurs at very large energy. For demonstra
purposes, the parameters are chosen so that unification
curs.

Now let us derive the analytic formulas for the unificatio
predictions. We will discuss the most general case of anN
51 supersymmetricGSM5U(1)Y^ SU(2)L ^ SU(3)C em-
bedded in a larger gauge groupG using any physical renor
malization scheme~all others are inconsistent!, which we
label by its associated observableO.

In general, the running of the couplings can be expres
in the form

aOi

21~Q!5aOi

21~Q0!1P̃ i
O~Q,Q0!2u i~Q,Q0!, ~27!
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where the two-loop corrections10 are contained inu i(Q,Q0)
and we have defined

P̃ i
O~Q,Q0!5

1

4p (
pPG

b i
~p!@Lp~Q/mp!2Lp~Q0 /mp!

2hp
Oi~Q/mp!1hp

Oi~Q0 /mp!#, ~28!

which contains all of the one-loop corrections. Now we se
rate the sums over the light and heavy spectra,L5GSM
(GSM means the standard model fields plus SUSY partn!
and H5G2GSM, takeQ05MZ , and letQ5MU be some
energy much larger than the mass of all fields, including

heavy fields; i.e.,MU@mp ;pPL1H. The functionsP̃ i
O

can then be written as

P̃ i
O~MU→`,MZ!5bGl U2D i

L2d i
H2b i

Hl X2SL,i
O ~`!

1SL,i
O ~MZ!2SH,i

O ~`!, ~29!

where

bG5(pPGbp , l U5~1/2p!log~MU /MZ!,

l X5~1/2p!log~MX /MZ!,

SL,i
O ~Q!5(

l PL

1

4p
b i

~ l !h l
O~Q/ml !, ~30!

10See the Appendix for details.

FIG. 6. Asymptotic unification. The solid lines are the analy
PT effective couplings, while the dashed lines are theDR cou-
plings. For illustrative purposes,a3(MZ) has been chosen so tha
unification occurs at a finite scale forDR and asymptotically for the
PT couplings. HereMSUSY5200 GeV is the mass of all light super
partners except theW-ino and gluino which have values12 mg̃

5MSUSY52mw̃ . For illustrative purposes, we use SU~5!.
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D i
L5(

l PL

1

4p
b i

~ l !FLlS MZ

ml
D 2 log

MZ
2

ml
2 G , ~31!

and

d i
H5 (

hPH

1

4p
b i

~h! log
mh

2

MX
2 . ~32!

The exact one-loop analytic light threshold corrections
contained inD i

L , while the heavy threshold splittings ar
contained ind i

H , with some arbitrarily chosen heavy ma
MX which is conveniently taken to be the mass of hea
gauge bosons.

It is useful to verify that predictions forl X and a3(MZ)
are invariant under the choice of physical renormalizat
scheme. In performing the calculation, one must use the
that thehp

O functions do not depend on the gauge group
representation ofp, only the spin. These are necessary~but
not sufficient! conditions for the sum rule in Eq.~11!. This
scheme equivalence does not extend to unphysical sche
such asDR, though the errors are quantifiable.

As a result of the physical renormalization scheme inva
ance, we may choose the simplest scheme, which is thePT
scheme discussed earlier. Because thehp

PT functions are con-
stants equal tohp5Lp(0), theexpressions for the unificatio
predictions are simple and compact when written in terms
the PT chargesã i .

From ã1(MU)5ã2(MU), the heavy gauge boson ma
MX is given by

logS MX

MZ
D11

2p
5

ã2
21~MZ!2ã1

21~MZ!1D12

b12
~33!

where D125D12D2 , b125b12b2 , and D15D1
L1d1

H

1u1 . Notice thatMX can be determined explicitly only fo
the ~unlikely! case of a degenerate heavy spectrum w
d i

H50: otherwise, the expression is transcendental inMX .
In the degenerate case, the gauge boson massMX5MU

H” /e is
equal to the unification scale determined by entirely negle
ing heavy thresholds~denoted by H” ), divided by e
52.718 28... . This result relies on use of the sum rule in
~11! which gives rise to the 1/2p term on the left-hand side
~LHS! of Eq. ~33!. The generalization to arbitrary physic
renormalization scheme isMX5MU

H” e2KO/2, whereKO is de-
fined in Eq. ~11!. Neglecting the light and heavy analyt
threshold corrections, the gauge boson mass prediction is
same as the unification scale prediction in theDR scheme.
Also, the ‘‘unification’’ scaleMU

H” depends on the particula
scheme, which makes sense since different schemes c
spond to different observables. In contrast,MX is scheme
independent.

The strong coupling prediction is
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21~MZ!5ã1

21~MZ!1D31

1
b13

b12
@ã2

21~MZ!2ã1
21~MZ!1D12#, ~34!

which differs from the prediction obtained by neglectin
heavy thresholds by only the termsd12

H ,d13
H , which reflect

the heavy splitting.
In order to explicitly compare with theDR approach, the

artificial decoupling treatment of thresholds should be e
ployed, as described in Sec. II. This involves using a s
function through each light fieldl PL with mass greater than
MZ and through every superheavy fieldhPH. Then one
must impose the unification condition such that the th
gauge couplings are equal at the maximum mass of he
fields,MX5max$mh ,hPH%. At energies above this maximum
mass, the three couplings run identically according to
beta function for the unified groupG; hence, there is no
arbitrariness in the choice of the unification scale. Next,
prediction for theDR strong coupling should be translated
thePT strong coupling. Doing this, one finds the exact sa
form of Eq. ~34!, except thatD i

L is replaced by

D i
L→ (

ml,MZ

1

4p
b i

~ l !FLlS MZ

ml
D 2 log

MZ
2

ml
2 G

1 (
ml.MZ

1

4p
b i

~ l !S h l2 log
MZ

2

ml
2 D . ~35!

Notice that there are only light threshold corrections beyo
the theta function approximation for particles of mass abo
MZ , since those belowMZ are already implicitly accounted
for. This formula is in agreement with Eqs.~15!, ~16!, since
there is a residual error proportional toLp(MZ /mp)2hp for
each crossed threshold. The analogous corrections for
heavy thresholds do not arise in the asymptotic unificat
scenario, since we are essentially comparing observable
energy scalesMZ;ml , which is of the same order of mag
nitude as the light thresholds, andMU@mh , which is much
greater than all thresholds when asymptotic unification c
ditions are assumed. The latter scale is a ‘‘desert’’ scale,
so the step function method has no errors, giving the sa
result obtained above in thed i

H .11 For the more general uni
fication conditions considered in the next subsection th
will be additional heavy threshold corrections.

Equation~34! is a useful result, as it allows one to con
strain the heavy spectrum, given a light SUSY spectrum.
to two-loop finite threshold corrections, which we have es
mated to be small, and assuming that Eq.~34! will yield the
experimental value of the strong coupling given some app

11It should be emphasized that this is only the case when theDR
is correctly implemented by choosing the unification scale to
equal to the heaviest threshold in the theory. Different choices
sometimes made in the literature. For example, in@26#, the authors
advocate defining the unification scale to be the geometric mea
the heavy masses.
7-11
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priate full GUT theory~i.e., assuming the asymptotic unifi
cation hypothesis is true!, we can write

eH[ã3
21~MZ!H”

pred2ã3
21~MZ!expt'd13

H 1
b13

b12
d21

H , ~36!

whereã3
21(MZ)H”

pred is the predicted value of the strong co
pling obtained by neglecting heavy thresholds, as illustra
in Figs. 4 and 5. We should emphasize the assumptions l
ing to this result. First, the standard normalizations of
couplings are assumed, so that Eq.~37! does not hold for
higher affine levels or nonstandard hypercharge normal
tions, as often occur in string models. Second, we ass
that the gluino is somewhat heavier than the chargino, so
there are serious discrepancies, as in Fig. 4, which mus
explained by heavy threshold corrections. Finally, we are
ing the paradigm of asymptotic unification, wherein the f
gauge groupG in which the SM is embedded is restore
before other Planck scale physics becomes relevant. W
these assumptions and noting that heavy thresholds wer
glected in Figs. 4 and 5, we find a typical value of

eH '
expt

21 '
theory

2
1

4p
(

hPH
Bh log

mh
2

MX
2 , ~37!

where we have defined12

Bh[b31
~h!1

12

7
b12

~h! . ~38!

Values ofBh can be compiled for the heavy representatio
any unified gauge group and, hence, may be used with he
mass ratios to exclude or provide evidence for a given G
theory.

To calculateBh , we first writeBh5b̄sh
B̄h , whereb̄sh

5

21/3,22/3,11/3 for spin 0, 1/2, 1 fields and the remaini
group theory factor isB̄h5 5

7 T1(R)2 12
7 T2(R)1T3(R) for a

representationR. It is necessary to decompose all repres
tations in terms of their U(1)Y^ SU(2)L ^ SU(3)C content.
Here T1(R)5 3

5 (pPRYp
2 and Ti(R)dab5(pPRtri(tR

atR
b), i

52,3. For many grand unified theories of interest, all m
tiplets can be decomposed in terms of only eight differ
standard model multiplets~plus their conjugate represent

12Note thatb13/b125
12
7 .

TABLE III. Constants which characterize each representati
contribution to thea

3
(M

Z
) prediction.

B̄h(Ri) B̄h(Ri)

R15(3,2,1/6) 23/2 R55(1,1,1) 3/7
R25(3,1,21/3) 9/14 R65(8,1,0) 3
R35(3,1,2/3) 15/14 R75(1,3,0) 224/7
R45(1,2,1/2) 29/14 R85(3,2,5/6) 3/14
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tions, which have the sameBh , and a singlet which hasBh
50), which are given in Table III along with the value o
Bh.

These same constants will also govern the correcti
from analytic heavy threshold corrections which will be d
cussed later in Sec. V D. Notice that, by definition, the co
stants satisfy the constraint that the sum over all heavy m
tiplets vanishes,

(
hPH

Bh50, ~39!

which equivalently reflects the arbitrariness in the choice
which heavy mass scaleMX one chooses to be canonical@see
Eq. ~37!#, ]eH/]MX50. A similar relation also holds for any
complete representation of the grand unified group. For
ample, the24 of SU~5! decomposes into a singlet plusR6

1R71R81R8. From the table, we haveBh(R6)1Bh(R7)
12Bh(R8)50.

As a simple example, let us explore the~unlikely! possi-
bility wherein the only heavy field with significantly differ
ent mass than the heavy gauge boson massMX is the
5-dimensional Higgs supermultiplet in which the light Higg
doublets are embedded. The triplet components of the
Higgs supermultiplets contributes22/5, 0, 21 to b1 , b2 ,
b3 , and henceBh(313̄)529/7. Using Eq.~37!, this leads
to M3'MX exp(214p/9), which is of orderMX/100 . Such
a large splitting is unnatural and difficult to accommodate
a theory. In general, ‘‘natural’’ splittings do not lead toeH

values of the correct magnitude in SU~5!. This is not terribly
surprising, since minimal SUSY SU~5! is already known to
be strongly disfavored.

In general, the large discrepancies in Figs. 4 and 5 im
a large splitting in the heavy spectrum, which, in turn, m
imply a multistep unification scenario—e.g., SO(10)→G224
→GSM. The reason is that for the heavy fields to contribu
to ã3(MZ), they must not only have a mass splitting com
pared to some reference heavy gauge bosonX, but also must
have different first beta function coefficients since only t
differencesb1

(h)2b2
(h) and b1

(h)2b3
(h) appear in the correc

tions.
Before moving to more general unification boundary co

ditions, we shall give a simple way to define an effecti
unification scale in the asymptotic unification scenario.

C. Effective unification scale

Because the couplings formally unify at infinite energy
the paradigm of asymptotic unification, there is no appar
unification scale. However, we suspect that in reality qu
tum gravitational fluctuations will affect the couplings a
they approach the Planck energy. Hence one can defin
effective unification scale to be where the splittings betwe
the gauge couplings are of the same order as those ind
by gravitational effects. To be precise, define a dimension
gravitational coupling which classically runs with energy

GN~Q!5
Q2

MPl
2 , ~40!

s
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whereMPl'1.2231019 GeV. The leading gravitational cor
rections to the running gauge couplingsa i(Q) will be pro-
portional to GN(Q)a i(Q). Hence the effective asymptoti
unification scaleMeff can be defined as the scale where
splittings in the gauge couplings are of order the grav
tional corrections, ua i(Meff)2aj(Meff)u'b2GN(Meff)aU or,
equivalently,

ua i
21~Meff!2a j

21~Meff!u'b2GN~Meff!aU
21[dg~Meff!,

~41!

where we takeaU
21;24 to be the typical gauge couplin

near unification. The unknown parameterb2 should be of
order 1. EstimatingMeff using a simple SU~5! model, we
find a typical effective unification scale of 1 –
31017 GeV. This is only intended to be a very rough a
proximation since a naively simple SU~5! model was used
Nevertheless, more complicated and realistic GUT mod
yield a unification scale in the same ballpark. It is genera
true that our effective unification scale is about an order
magnitude or more greater than what is typically called
unification scale (;231016 GeV).

It may seem that our definition of an effective unificatio
scale is rather artificial. However, it may be physically m
tivated by the following considerations. If indeed the sta
dard model is embedded in some unified theory of grav
and gauge forces, then there may exist a phase at ene
below the Planck scale which consists of a simple Lie gro
containing the supersymmetric standard model. In the
sence of any gravitational corrections, the running ga
couplings certainly unify asymptotically, as this is the on
case in which the higher group symmetry is fully realized
to arbitrarily high energies. Hence the running couplin
should only deviate from asymptotic unification by the gra
tational corrections parameterized above. So by the ab
reasoning, the effective unification scale should roughly c
respond to the physical unification scale when the full~quan-
tum gravitational! theory is considered.

These results may have consequences for the paradig
string unification. In particular, one problem of string uni
cation @27# is that the couplings seem to unify at a sca
(MG

DR'231016 GeV) about 20 times lower than the sca
predicted by four-dimensional heterotic string mod
(MG

string'531017 GeV). In the approach presented he
heavy threshold effects seem to push the effective asymp
unification scale to roughlyMG

string. Despite the apparent suc
cess, this coincidence cannot be taken seriously until sev
questions are addressed in regards to this so-called s
gauge coupling problem. First, the calculation ofMG

string @28#
was performed in theDR scheme, with the field theory ste
function treatment generalized to strings. An analogous
culation for physical renormalization schemes is lacking,
it is difficult to compare our results with string prediction
Second, the asymptotic unification boundary conditions
probably not valid for many string models, and so the un
cation scale will be further changed by more general bou
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ary conditions, as discussed in the next section. See@29# for
a recent string calculation of threshold corrections to gra
unification.

D. More general boundary conditions

The discussion of this section concerns the next-simp
boundary conditions after asymptotic unification. In partic
lar, we will imposea1(MU)5a2(MU)5a3(MU) at scale
MU;Mh , for somehPH. As discussed in the previous se
tion, one might expectMU to roughly correspond to the
asymptotic unification scale, which we found to be rough
531017 GeV. However, we will considerMU as an input
and find the corrections for the strong coupling and gau
boson mass predictions.

Before proceeding, there is a subtle point that should
addressed. Notice that in the previous section, we assu
that unificationwould haveoccurred asymptotically were i
not for gravitational corrections. Hence starting with a fin
unification scale and then neglecting gravitational corr
tions, as we do in this section, does not seem logically c
sistent with what was done in the previous section. This
servation is entirely correct, but the point is that indeed
are considering two orthogonal scenarios: one where a
nite unification scale is obtained from gravity and anoth
where finite unification scale is obtained from nontrivi
threshold corrections. The latter case may have its origin
stringy or gravitational physics, but nevertheless becom
manifest through purely field theoretic mechanisms.

The corrections from imposing finite unification scale a
straightforward to derive and can be stated in terms of
D i5D i

L1d i
H1u i , which we defined earlier. This gains a

additional contribution and can now be written

D i5D i
L1d i

H1u i2D i
H , ~42!

where

D i
H5 (

hPH

1

4p
b i

~h!FLhS MU

mh
D 2 log

MU
2

mh
2 G , ~43!

which is of exactly the same form expected from Eq.~15!.13

Evidently, these are finite heavy threshold corrections in
dition to the corrections from the heavy threshold splitting
Hence theeH defined earlier will get an additional contribu
tion from theD i

H’s and is now

eH '
theory

2
1

4p
(

hPH
BhH log

mh
2

MX
22FLhS MU

mh
D 2 log

MU
2

mh
2 G J

5
1

4p
(

hPH
BhLhS MU

mh
D . ~44!

Experimentally,eH'21, as seen in Figs. 4 and 5 for typic
gluino toW-ino mass ratios; this value can be easily adjus

13This is not obvious; one must work through the derivation to s
that indeed the expectedLp2hp correction terms do arise.
7-13
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for nonstandard sparticle spectra. This is our final form
which may be used to assess the experimental validity
gauge coupling unification in any specific GUT model whe
the gauge group, superheavy mass ratios, and light SU
masses are given.

Let us now consider the numerical size of these n
threshold corrections. From Eq.~6! one finds that

LhS MU

mh
D 2 log

MU
2

mh
2 ' logS 11

mh
2

MU
2 ehhD , ~45!

which can be larger than heavy splitting correctio
log(mh

2/MX
2) for values ofMU that are not too large. Henc

such corrections cannot be neglected.
The value ofMU is not fixeda priori and corresponds to

the physically meaningful energy where the couplings
come equal due to the new nontrivial heavy threshold c
rections. This complicates the analysis of unification by
troducing another parameter beyond those that are usu
needed. However, this is to be expected, since a new phy
phenomena~corrections arising from the virtuality of ver
massive particles! has been included.

VI. CONCLUSIONS

We have developed a new way of looking at detailed p
dictions of gauge coupling unification which is more phy
cally motivated than conventional approaches. In addition
a dramatic paradigmatic improvement, novel heavy and li
threshold corrections are obtained, and the resulting cor
tions to unification predictions are presented for a gen
GUT model. A natural extension of this work is a thorou
analysis and classification of various unified theories. By c
culating theBh constants and the heavy spectrum, one m
exclude or verify the gauge unification of a given model.
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APPENDIX: THE PINCH TECHNIQUE
SELF-ENERGY-LIKE

EFFECTIVE CHARGES

Here we will give explicit formulas for the pinch tech
nique effective couplings regularized using dimensional
duction, which will be denoted with a tilde. These effecti
charges will be similar to those constructed in@13,15# for
QCD and in@14,16# for the electroweak sector. However, w
will extend these to the minimal supersymmetric case, wh
involves explicitly including another Higgs doublet, an
regulating the loop integrals with dimensional reduction,
opposed to dimensional regularization, which is used in m
nonsupersymmetric settings. It is well known that DRE
preserves both supersymmetry and gauge symmetry. A
the effective charges presented in@16# were in the on-shell
subtraction scheme (Q050), whereas here we will need th
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result for arbitrary renormalization scale. In the appropri
limits our results reduce to those given in@15# and @16#.

The charges are constructed using the pinch-techniq
which allows one to extract the universal self-energy fun
tion in non-Abelian gauge theories, thus leading to gau
invariant effective couplings which~i! contain explicit and
complete mass-threshold behavior and~ii ! reproduce the
conventional massless beta function in the limit whe
masses can be neglected.

At one-loop, the spin-1/2 and spin-0 PT self-energies
trivially just the usual transverse vacuum polarizati
graphs. Only the graph with a gauge boson loop need
have the self-energy-like part projected, as described bri
in Sec. III and in more detail in Refs.@15,16#. In calculating
the following, we used both the direct diagrammatic pin
technique algorithm@15# and the dispersive derivation from
physical cross sections@16#.

The PT effective charges naturally measure the s
energy-like propagation of a gauge boson and hence ca
interpreted as measuring the real force between two ferm
of arbitrary mass, analogous to the QED effective char
The PT charge includes finite mass recoil effects that
missed in the heavy quark effective charge~the V scheme!.
In fact, one may obtain the heavy quark potential in t
appropriate kinematical limit of the pinch technique effecti
charge@15#. The difference between the two are due to fin
mass test-charge effects that are not present in the~V!
charge, but are in the~PT! charge. Different extensions of th
PT effective charge beyond one loop have been put fo
@17–19#, although it seems that the approach of@19# most
closely matches the philosophy used here. A multiloop g
eralization of this algorithm remains to be constructed.

QCD effective charges

The PT self-energy function for supersymmetric QCD

P̃3 , can be used to define the effective coupling for sup
symmetric QCD by

ã3~Q!5
ã3~Q0!

11P̃3~Q,Q0!
. ~A1!

The functionP̃3 can be written down straightforwardl
using Eqs.~5!, ~9!, and the unsubtracted result is given by

P̃3~Q!5
ã3~Q0!

4p F11

3
NcS log

Q2

m22CUV264/33D
2

2

3
Nc@L1/2~Q/mg̃!1 log~mg̃

2/m2!2CUV25/3#

2(
q

2

3
@L1/2~Q/mq!1 log~mq

2/m2!2CUV25/3#

2(
q̃

1

3
@L0~Q/mq̃!1 log~mq̃

2/m2!2CUV28/3#G .

~A2!
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The four terms correspond respectively to the gluo
gluinos (g̃), Dirac quarks~q!, and to complex squark dou
blets (q̃). For the scalars we will take the left and rig
components to be degenerate in mass since such comp
tions do not change the unification predictions to any
merical significance. In any case, one may trivially treat
two separately.

To relate the resulting effective charge to other schem
or observables one needs to use Eq.~9!.

Equation~A2! can be written in a more useful once su
tracted form by relating the effective charges at differe
scales, leading to an expression governing the running of
charge given by

P̃3~Q,Q0![P̃3~Q!2P̃3~Q0!5
ã3~Q0!

4p F11

3
NcS log

Q2

Q0
2D

2
2

3
Nc@L1/2~Q/mg̃!2L1/2~Q0 /mg̃!#

2(
q

2

3
@L1/2~Q/mq!2L1/2~Q0 /mq!#

2(
q̃

1

3
@L0~Q/mq̃!2L0~Q0 /mq̃!#G . ~A3!

Though the gluon contribution in Eq.~A2! looks simple,
it is actually the most difficult piece to compute. As di
cussed in@15#, the pinch technique self-energy which co
tributes to the effective charge is gauge and scale inde
dent, and indeed reproduces the pure gauge term of thb
function coefficient. This of course is not the case for the f
pure gluon vacuum polarization, which is gauge and sc
dependent and does not reproduce the correctb function.
The nontrivial and important part of the result is the const
64/33. This constant may be obtained using the pinch te
nique and DRED. To translate to DREG one just subtra
1/11 ~from the so-called epsilon ghosts! to get the constan
67/33. For comparison, the heavy quark potential effec
chargeaV replaces this constant with 28/33 and 31/33 wh
using DRED and DREG, respectively. Consequently, the
scheme does not satisfy the decoupling criterion of Eq.~10!.
This is just a reflection of the fact that infinitely heavy e
ternal quarks are used in the V-scheme calculation, thus
dering meaningless the limit where internal virtual gau
bosons acquire very large mass.

Notice that in the appropriate limit the above reduces
the standard RGb function coefficient:

lim
mi→0

P̃35
as

4p
~92nf !log

Q2

Q0
. ~A4!

Electroweak sector

The effective QED charge and the effective weak-mixi
angle are obtained by diagonalizing the electroweak neu
currents and are given by@16#
09500
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ã~Q!5
ã~Q0!

11P̃gg~Q,Q0!
~A5!

and

s̃w
2 ~Q!5 s̃w

2 ~Q0!S 11
c̃w~Q0!

s̃w~Q0!

P̃gZ~Q,Q0!

11P̃gg~Q,Q0!
D .

~A6!

For the matter sector, we will write only the subtractedPT
self-energies, as it is now clear how to translate betw
schemes using thehp constants as described before. T
quarks~q! and leptons~l!, along with their scalar superpar
ners (q̃, l̃ ), yield

P̃gg~matter!

5
ã~Q0!

4p F2(
q

4

3
Nceq

2@L1/2~Q/mq!2L1/2~Q0 /mq!#

2(
q̃

2

3
Nceq̃

2@L0~Q/mq̃!2L0~Q0 /mq̃!#

2(
l

4

3
@L1/2~Q/ml !2L1/2~Q0 /ml !#

2(
l̃

2

3
@L0~Q/ml̃ !2L0~Q0 /ml̃ !#G . ~A7!

The electric charge of a particlep is denotedep . The analo-
gous contributions of individual Dirac mass eigenstate ma
fields to thegZ self-energy are given by the relation

P̃gZ
~p!5S 1

4uepu
2 s̃w

2 D 1

s̃wc̃w
P̃gg

~p! , ~A8!

wherep denotes any of the fermions or scalars above.
The contribution of the charged vector bosons to the s

energies is more complicated than the matter multiple
Similar to the QCD case, the non-Abelian nature of t
theory implies thatW1W2 loops~along with possible gauge
dependent ghost and Goldstone boson loops! do not yield a
gauge-invariant result and do not give the appropriate c
tribution to the electroweak beta functions. The proper tre
ment involves calculating the self-energy-like part of t
one-loope1e2→e1e2 amplitude~or using any other fermi-
ons due to universality!, including vertex and box correction
involving neutrinos. These contribute pinched parts wh
make the self-energy-like part gauge invariant and tra
verse. This calculation was first performed in@14# and then
with dispersion relations in@16# for nH51 Higgs doublets
and renormalized in the on-shell scheme atQ050. Here we
need to extend these results to arbitrarynH and Q0 , and
would like to have the finite constants in the unrenormaliz
expression, including constant terms arising from us
DRED instead of DREG. The most efficient way to do this
to use the Feynman gaugej51, whereW6 bosons,2G6
7-15
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Goldstone bosons, andh6 ghosts all propagate with
2 igmn /(p22MW

2 ). Hence the only factors of transverse m
menta arise from the three-boson vertex, and so the
graph and several of the vertex graphs may be neglecte
they do not have pinched parts. Here the dependence o
Higgs doublets comes only from the unphysical charg
Goldstone scalars for thenH51 case and also on charge
Higgs scalars fornH.1. The result for the SU(2)L ^ U(1)Y
electroweak theory is

P̃gg
~W,H !5

ã~Q0!

4p F2
11

3
@L1~Q/MW!1 log~MW

2 /m2!2CUV

264/33#1 (
a51

nH S 2
1

3D @L0~Q/Ma!1 log~Ma
2/m2!

2CUV28/3#G , ~A9!

where the constant 64/33 is the same as appeared fo
gluon self-energy. The sum in the second line will be ov
mass eigenstate charged Higgs scalars; there will be on
these for each Higgs doublet in the theory. The first sca
(a51 in the sum! is an unphysical Goldstone boson that
absorbed by theW6, and hence one identifies its mass to
M15MW ~in the Feynman gauge!. The second charged sca
lar (a52) is conventionally denoted byH6 in the MSSM,
with massM25MH6. Additional Higgs doublets beyond th
MSSM are not considered here, so we can takenH52. The
function

L1~Q/m!5
2

11
@b tanh21 b21~122b2!1b221#,

~A10!

with b5A114m2/Q2, comes from theW1W2 and ghost
loops, the W1G21W2G1 loops, and the pinched self
energy-like part of thegWW vertex where the internal neu
trino line is pinched. TheL0 comes from the charged Gold
stones and Higgs loops. As might be anticipated fr
the fermions and scalars, where, for examp
limm→` L1/2(Q/m)55/3 is the same constant as appears
the self-energy, we also have the nice property that

lim
MW→`

L1~Q/MW!564/33. ~A11!

Notice that in DREG this does not cancel the constant, wh
in that case is 67/33. With DRED regularization, all mass
particles decouple, modulo divergent pieces, from the uns
tracted self-energy-like expression.

Letting theW bosons absorb the Goldstones by perfor
ing simple algebra in Eq.~A9!, one finds the result written in
terms of physical degrees of freedom:
09500
ox
as

the
d

the
r
of
r

,
n

h
e
b-

-

P̃gg
~W,H !5

ã~Q0!

4p F7@L1~Q/MW!1 log~MW
2 /m2!2CUV

240/21#1 (
a52

nH S 2
1

3D @L0~Q/Ma!1 log~Ma
2/m2!

2CUV28/3#G . ~A12!

The contribution of the physical massive gauge boson
characterized by 7L15(22/3)L11(21/3)Ls , explicitly
given by

L1~Q/m!52b tanh21 b21@12~b221!/7#1~2/7!~b221!.

~A13!

As expected,

lim
m→0

LW~Q/m!5 log
Q2

m2 , lim
m→`

LW~Q/m!540/21.

~A14!

Notice that Eq.~A13! precisely corresponds to Eq.~23! for
s51.

The separation of pure gauge effects and those arisin
the broken phase of the theory is useful and allows us
immediately write down the analogous result forgZ without
further calculation:

P̃gZ
~W,H !5

ã~Q0!

4pcwsw
H 2

11

3
cw

2 @L1~Q/MW!1 log~MW
2 /m2!

2CUV264/33#1 (
a51

nH F2
1

3 S cw
2 2

1

2D G~L0~Q/Ma!

1 log~Ma
2/m2!2CUV28/3!J . ~A15!

Finally, theW-ino and charged Higgsino, whose mixing
neglected, contribute

P̃gg
H̃,W̃5

ã~Q0!

4p F2
4

3
@L1/2~Q/mH̃!2L1/2~Q0 /mH̃!#

2
4

3
@L1/2~Q/mW̃!2L1/2~Q0 /mW̃!#G ~A16!

and

P̃gZ
H̃,W̃5

ã~Q0!

4pcwsw
F2

4

3
cw

2 @L1/2~Q/mH̃!2L1/2~Q0 /mH̃!#

2
4

3
~cw

2 21/2!@L1/2~Q/mW̃!2L1/2~Q0 /mW̃!#G .
~A17!
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The SU(2)L ^ U(1)Y effective couplings constructed from
the above results are

a ĩ~Q!5
a ĩ~Q0!

11P̃ i~Q,Q0!
, ~A18!

for i 51,2 anda ĩ(Q) given in Eq.~22!. The PT self-energies
are related by

P̃15P̃gg2
sw

cw
P̃gZ ,

P̃25P̃gg1
cw

sw
P̃gZ . ~A19!

Notice thatP̃gg5(pP̃gg
(p) and P̃gZ5(pP̃gZ

(p) ~as well as

P̃ i) have the correct beta function coefficients, which a
summarized below, and smoothly interpolate between
mass thresholds. The full mass-dependent beta functions
be obtained by differentiating the above expressions, but
will just give the massless limits, in order to make clear o
conventions.

The one-loop beta function coefficients are defined by
relations

da

d logQ252a
dP̃gg

d logQ2 52
a2

4p
bgg , ~A20!

dsw
2

d logQ25swcw

dP̃gZ

d logQ2 5
a

4p
bgZ , ~A21!

b15
3

5
~cw

2 bgg2bgZ!, ~A22!
-

h

y

ys

09500
e
ll
ay
e

r

e

b25sw
2 bgg1bgZ . ~A23!

One finds

bgg52
16

3
Ng162nH ,

bgZ522Ng1
16

3
sw

2 Ng16cw
2 2nHS 1

2
2sw

2 D ,

~A24!

thus leading to the MSSM beta function coefficients

S b1

b2

b3

D 5S 0
6
9
D 2Ng S 2

2
2
D 2nH S 3/10

1/2
0

D . ~A25!

The two-loop effects contribute to the running of the co
plings through the termsu i(Q,Q0) in Eq. ~27!. Since we do
not have the full mass-dependent contributions, we will ha
to settle with the using the usual massless limits. These
explicitly determined by solving the two-loop renormaliz
tion group equations and are given by

u i~Q,Q0!

52
1

4p (
j 51

3
b i j

b j
logS 11a j~Q0!

b j

4p
log~Q2/Q0

2! D ,

~A26!

where the beta matrix is

b i j
MSSM52S 7.96 5.4 17.6

1.8 25 24

2.2 9 14
D . ~A27!
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