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Pion structure from improved lattice QCD: Form factor and charge radius at low masses
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The charge form factor of the pion is calculated in lattice QCD. The nonperturbatively improved
Sheikholeslami-Wohlert action is used together with theO(a) improved vector current. Other choices for the
current are examined. The form factor is extracted for pion masses from 970 down to 360 MeV and for
momentum transfersQ2<2 GeV2. The mean square charge radius is extracted and compared to previous
determinations, and its extrapolation to lower masses discussed.
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I. INTRODUCTION

QCD without doubt is the correct microscopic theory d
scribing all strong interactions, a fact that has been es
lished mainly by impressive agreement between theory
experiment in the perturbative sector. Comparatively few
sults have been obtained in nonperturbative QCD, wh
deals with physics on the scale ofLQCD or the size of a
hadron. It is therefore an obvious challenge to derive
internal structure of a hadron from first principles, entire
within QCD @1#. Next to the nucleon, the pion is an obviou
candidate for such an attempt. Its global features, like cha
spin, and isospin, represent no challenge and are trivi
included in any model. Specific features that actually t
details of our theoretical understanding are observables
the pion form factor and its polarizability. In this paper, w
report on an extensive study of the pion form factor based
lattice QCD. The first results were already reported in@2,3#.

At first glance, the pion looks like a manageable two-bo
system, and there have been many descriptions of the
based on effective models or QCD inspired approaches.
feature all these attempts share is that confinement, the
striking feature of QCD, is—in one way or another—put
by hand. This is of course an unwanted step when one
out to calculate the pion form factor or its mean squ
charge radius, which reflect the form and size of QCD c
finement. Here one obviously wants to proceed from fi
principles, from the fundamental QCD Lagrangian itself.

Several papers have already dealt with aspects of the
structure in lattice QCD. A quantity often considered is t
‘‘Bethe-Salpeter amplitude,’’ the relative quark-antiqua
wave function, extracted from two-point functions@4–7#.
Another approach is based on gauge invariant dens
density correlations@1,7,8#, most recently by Alexandrou

*Electronic address: r86@nikhef.nl
†Electronic address: justus@nikhef.nl
‡Electronic address: edwin@physik.uni-bielefeld.de
0556-2821/2004/69~9!/094511~10!/$22.50 69 0945
-
b-
d
-
h

e

e,
ly
t
e

n

y
on
ne
ost

ts
e
-
t

on

y-

et al. @9#. Two groups have already calculated the pi
charge form factor, proceeding, as in the present work, in
quenched approximation. The pioneering work was done
Martinelli and Sachrajda@10#, followed by more detailed cal-
culations of Draperet al. @11#. One of the findings of the
latter work was that the pion form factor could be describ
quite well by a monopole form, as suggested by vector m
son dominance. As shown in@2#, the range parameter is i
fact very close to ther mass obtained for the same action

Lattice calculations, although starting from first prin
ciples, are not free of approximations. The most obvious
is the use of the lattice itself, necessarily resulting in discr
zation errors. These errors can be reduced by the us
improved lattice QCD actions and the concomitant improv
observables. In the work reported here, we extend the pr
ous work by working inO(a) improved lattice QCD, which
guarantees that errors in the matrix elements we extract
only of orderO(a2). In order to emphasize the importanc
of consistently using both improved action and observab
we discuss the form of the vector current operator at so
length and give numerical examples for the results one
tains with the current operators used in other work.

In addition to the step from a discrete lattice to the phy
cal continuum, one also has to extrapolate the lattice res
in the pion mass. As is known, lattice calculations yield
sults for pions much heavier than the physical pion. T
previous form factor calculations in@10,11# were for pions
on the order of 1 GeV. Another improvement step which
undertake in this paper is to extend our calculations of
electric form factor down to pion masses of 360 MeV. F
the mean square charge radius of the pion which we ext
from the form factor, we then study the extrapolation
lower masses.

It is instructive to compare the mean square radii obtain
from the Bethe-Salpeter amplitudes and from the form fac
We find considerable differences which, as suggested ea
@6#, can be ascribed to the effect of the gluon motion on
position of the center of mass.

The paper is organized as follows. In Sec. II, we fi
©2004 The American Physical Society11-1
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describe the general features of our approach and the de
of our lattice calculations. Results for the two- and thre
point function are described in Secs. III and IV, respective
Our findings for the form factor and the mean square rad
of the pion are elaborated in Sec. V. A summary of our wo
and conclusions are contained in Sec. VI.

II. THE GENERAL METHOD

A. The observables

To obtain the pion form factor from the lattice, one has
calculate two observables, the two- and three-point Gre
functions for an interacting quark-antiquark pair with t
quantum numbers of the pion. Improved techniques are u
in order to removeO(a) discretization effects. We do thi
nonperturbatively for both the action and the electromagn
vector current in the three-point function. Fits to both o
servables were used to extract the desired information, s
as the form factor and the pion mass.

The two-point function, shown schematically in Fig.
projected to momentump is given by

G2,R~ t f ,p!5(
x

^fR~ t f ,x!f†~0,0!&eip•x. ~1!

The operatorf† creates a quark-antiquark pair with th
quantum numbers of the pion at the source at~0, 0!, while
f(x) annihilates it at the sink. Since we will consider ap1,
it is given by

f†~x!5c̄u~x!g5cd~x!. ~2!

Below, all flavor, spin, andSU(3) color indices will be
dropped. On the sink side, we use an extended operator
an interquark distanceR. This suppresses the contribution
excited states to the two-point function and facilitates
extraction of the pion mass. In order to keep the calculat
gauge invariant, the quark and antiquark at the sink are c
nected by gauge links. To further enhance the contribu
from the pion, the links in the extended pion operator ha
been fuzzed to better simulate the tubelike nature of
gluon cloud.

The three-point function, shown in Fig. 2, again conce
a quark-antiquark pair with pion quantum numbers, pro
gating fromxi to xf ; disconnected diagrams do not contri
ute @1,11#. At an intermediate timet a photon is coupled to

FIG. 1. Two-point function.

FIG. 2. Three-point function.
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either one of the charged quarks. This observable is obta
in momentum space by calculating

G3,m~ t f ,t;pf ,pi !5(
xf ,x

^fR~xf ! j m~x!f†~0!&

3e2 ipf•~xf2x!2 ipi•x. ~3!

The parameterR for the pion operator at the sink is now
fixed to the value giving the best overlap in the two-po
function. As we will further discuss below, the choice of th
current to which the quarks couple is important. The co
tinuum or local current

j m
L 5c̄~x!gmc~x! ~4!

is not conserved on the lattice and needs renormalization
a factor ZV , yielding the renormalized localcurrent j m

RL .
Using the Noether procedure, one can also construct a
rent which is conserved on the lattice@12#,

j m
C5c̄~x!~12gm!Um~x!c~x1m̂ !

2c̄~x1m̂ !~11gm!Um
† ~x!c~x!. ~5!

This conservedcurrent still requiresO(a) discretization cor-
rections for matrix elements away from the forward dire
tion.

Using Symanzik’s improvement program, one can ide
tify appropriate operators, which, when used together w
the improved action, result in matrix elements that are free
all O(a) discretization errors. For the vector current cons
ered here, the resultingimprovedcurrent is@13–15#

j m
I 5ZV$ j m

L ~x!1acV]VTmn%, ~6!

with

Tmn5c̄~x!ismnc~x!,

ZV5ZV
0~11abVmq!. ~7!

It is conserved toO(a2) and differs from the renormalized
local current by a total divergence, which vanishes for f
ward matrix elements. The bare quark mass is defined a

amq5
1

2 S 1

k
2

1

kc
D , ~8!

where kc is the kappa value in the chiral limit anda the
lattice spacing. The constants inj m

I are nonperturbatively de
termined from lattice simulations and as such complet
remove theO(a) effects.

From current conservation it can be shown that the g
eral Lorentz structure of the matrix element for the elect
magnetic current of an on-shell pion is

^p~pf !u j mup~pi !&cont5~pf1pi !mF~Q2!, ~9!
1-2
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where F(Q2) with Q252(pf2pi)
2 is the form factor we

are interested in. Connection with the continuum descript
is made by a proper normalization,

^p~pf !u j mup~pi !& latt5
^p~pf !u j mup~pi !&cont

2AEfEi

, ~10!

where Ef and Ei are the final and initial energies, respe
tively.

In our calculations of the three-point function we proje
on initial and final three-momenta with the same length,

upi u5upf u, ~11!

which implies that there is no energy transfer to the pion

Ei5Ef . ~12!

The four-momentum transfer to the pion,Q25(pf2pi)
2, is

then varied by changing the angle between the two mome
Since we will use them54 component of the current, thi
choice has, among others, the numerical advantage tha
have

Ef1Ei

2AEfEi

51 ~13!

when extracting the form factorF(Q2).
The vector meson dominance~VMD ! model has been

quite successful in describing both experimental as wel
early lattice data. This model is inspired by effective fie
theory and is schematically depicted in Fig. 3. Assum
universality, i.e.,grpp5gr , the form factor is given by the
simple monopole form

F~Q2!5H 11
Q2

mV
2J 21

. ~14!

B. The lattice simulation

We performed calculations in the quenched approxim
tion on a 243332 lattice. A set of 100 gluon configurations
a coupling of b56.0 was generated. Thermalization w
reached in 2500 sweeps, whereafter we obtained config
tions at intervals of 500 sweeps. One sweep consists
pseudo-heat-bath step with FHKP updating@16# in the
SU(2) subgroups, followed by four over-relaxation steps

FIG. 3. The VMD model.
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We used the improved Sheikholeslami-Wohlert acti
@17# with the nonperturbatively determined@18# value of
cSW51.769. With this action, we computed propagators
five values of the hopping parameter corresponding to p
masses1 of 970, 780, 670, 540, and 360 MeV; see Table I. W
imposed periodic boundary conditions except in the time
rection where for the fermions antiperiodic boundary con
tions were implemented. The values of the constantscV , bV ,
and ZV

0 needed to eliminate theO(a) effects and to renor-
malize the current were taken from Bhattacharyaet al. @20#.

III. THE TWO-POINT FUNCTION

To extract physical information from the numerical da
for the two-point function, Eq.~1!, we use the following
parametrization:

G2,R~ t f ,p!5 (
n50

1

AZR
n~p!Z0

n~p!e2Ep
nNt/2

3coshFEp
nS Nt

2
2t f D G , ~15!

whereNt532 is the extension of the lattice in the time d
rection. We include the contribution of the ground staten
50) with energyEp

0 and of the first excited state (n51)
with energyEp

1. As discussed in connection with Eq.~1!, the
parameterR indicates the quark-antiquark distance at t
sink, which will be chosen to enhance the contribution fro
the pion ground state. For this we use the approach as o
nally proposed in@21#. The fuzzed gluon links at the pion
sink are created with a link/staple mixing of 2 and a fuzzi
level of 4. TheZR

n denote the matrix elements,

ZR
n~p![ z^VufRun,p& z2, ~16!

which also will yield the ‘‘Bethe-Salpeter’’ amplitudes from
which information about the structure of the pion can
extracted.

The data for the two-point function that correspond to t
same absolute value of the spatial momentum are avera
per configuration. The different configurations are then co
bined in jackknife averages with a block size ranging from
to 5. No significant changes in the errors of the avera

1For definiteness we have takena50.105 fm from@19# to set the
scale.

TABLE I. Masses and̂ r 2&BS for different k values.

k mq ~MeV! mp ~MeV! mr ~MeV! ^r 2&BS ~fm2!

0.13230 154 970~4! 1188~6! 0.1414~2!

0.13330 101 780~4! 1053~8! 0.1480~2!

0.13380 75 670~4! 989~9! 0.1508~2!

0.13430 45 540~6! — 0.1526~2!

0.13480 23 360~9! — 0.1528~4!
1-3
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were observed for increasing block size, indicating that th
are no significant correlations in our ensemble.

A. The fuzzing distanceR

To determine the optimal value for the interquark distan
R we used the jackknife averages to calculate the effec
energy of the pion,

Eeff~ t,upu!5 ln@^G2,R~ t,p!&/^G2,R~ t11,p!&#. ~17!

We variedR from 0 to 10, plotted the effective energy fo
these different fuzzing levels and looked which one stabili
first. An example of the dependence onR is shown in Fig.
4~a! for the effective massMeff(t)5Eeff(t,0), and for the ef-
fective energy in Fig. 4~b! with upu250.48 GeV2, corre-
sponding to the momentum of the pion in our form fac
extraction below. The optimalR value is somewhat depen
dent on the pion’s momentum and mass. After several s
tests, we choseR53 as the common extension parameter
all calculations. Enhancing the ground state contribution
particularly important for the three-point function, where t
distance between source and sink is typically small.

B. Pion masses and energies

Having chosen the fuzzing distanceR, we extract the pion
masses and energies by fitting the jackknife averages to

FIG. 4. Effective masses~a! and effective energies~b! for vari-
ous R. In ~a! the pion mass ismp5970 MeV; in ~b! mp

5540 MeV andp250.48 GeV2.
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~15! for both a single state and two states. The fit range,
number of included time slices centered around the midp
of our time grid att516, is reduced until the minimumx2 is
found and consistency between both fits can be checked
extracting the masses from thep50 averages, we found tha
for a single-state fit a fit range of about 15–17 time slic
gives the lowestx2. In the case of a two-state fit, fitting th
completet range~31 time slices! yields the smallest statisti
cal error;x2 per degree of freedom~DOF! is about the same
for different fit ranges. We found consistency between
two fits. The resulting masses are given in Table I and plot
in Fig. 5 as a function of the inverse of the hopping para
eterk. They agree very well with the results obtained in, e.
@22,23#, whose authors use the same action as we do. A
shown are extrapolations to the chiral limit, based on
following fit functions:

mp
2 5c1S 1

k
2

1

kc
D ~18!

mp
2 5c2S 1

k
2

1

kc
D 1/~11d!

~19!

and

1

k
5

1

kc
1b1mp

2 1b2mp
3 , ~20!

resulting in a slightly different value forkc . Quenched chiral
perturbation theory predicts the second form withd small
and positive@24#. As in @22#, we obtain a negative value fo
d. Equation~20! is a phenomenological fit@22#. There is no
significant difference in the fit quality, so we cannot pref
one fit over the other. Therefore, we simply average the
ferent values, yieldingkc50.13524(4), which agrees quite
well with values obtained from the literature,kc
50.13531(1)@22# andkc50.13525(1)@23#. The bare quark
masses we obtain with ourkc are given in Table I. They will
be used in the~small! mass dependent correction of the im
proved current.

Proceeding analogously, we have also extracted the p
energiesEp

0 for several nonvanishing three-momenta, ag

FIG. 5. Pion masses as functions ofk. Lines: extrapolations as
indicated.
1-4
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using single- and two-state fits in combination. The resu
for the ground state energy are shown in Fig. 6, together w
the prediction from the continuum dispersion relation,

Econt5Amp
2 1p2, ~21!

and from the generally favored lattice dispersion relation

sinh2
E

2
5sinh2

M

2
1(

i 51

3

sin2
pi

2
. ~22!

The data deviate from both predictions at higher mome
However, the figure clearly demonstrates that for the m
mentum relevant for our form factor extraction,p2

50.48 GeV2, we are dealing essentially with continuum k
nematics.

C. Results for the r mass

In the discussion of the form factor, we will often refer
the vector meson dominance model. For completeness an
a further test for our methods, we have also extracted
mass of the lowest vector meson, ther meson. Proceeding
analogously as for the pion, Eq.~1!, we consider a two-poin
function with source and sink operators of the form

Vi5c̄g ic, ~23!

which project onto the polarization statei of a vector meson.
With the same boundary conditions as for the pion, the tw
point function for three-momentump50 was then fitted to a
cosh form as in Eq.~15!. We averaged the polarization stat
i 51,2,3. The results for the three highest parametersk are
shown in Table I. They agree with the values obtained
@22,23#. For the remaining twok values our statistics wer
not sufficient. When needed later for comparison with
vector meson dominance model for the form factor, we w
for simplicity use the values from@22#.

FIG. 6. Energy-momentum relation fork50.13230 and
0.13430; solid line, continuum relation; dashed line, lattice disp
sion relation.
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D. Bethe-Salpeter amplitude andŠr 2
‹BS

To obtain the ‘‘Bethe-Salpeter~BS! amplitudes’’ or ‘‘wave
functions’’F(R), we use theZ factors extracted from a fit o
the two-point function@Eq. ~15!#, since for a pion at rest

F~R!5AZR
0~0!/Z0

0~0!. ~24!

We simultaneously fitted the jackknife averages forR rang-
ing from 0 to 10. Again the results from both the single- a
a two-state parametrization were used to check the con
tency.

The same results for the wave function, but with smal
errors, were obtained from a fit to the plateau of the ratio

F̃~R!5
G2,R~ t,0!

G2,0~ t,0!
. ~25!

An example of a BS wave function is shown in Fig. 7 for th
heaviest pion; only the result of the second method is d
played. The wave function can be used to obtain an estim
of the mean square charge radius of the pion according
@4,5#

^r 2&BSª
1

w

*d3rW rW 2F2~ urWu!

*d3rW F2~ urWu!
. ~26!

The factor w is included to reflect the uncertainty in th
resulting^r 2&. If one assumes that the quark and antiqua
are always located on opposite sides of the meson cente
mass at distancer /2, one hasw54; assuming that the quark
move in an uncorrelated way around the center of massw
52 should be used. The BS radii as a function of the p
mass are given in Table I forw52. The values are much
lower than the physical value of 0.439~8! fm2 @25#. More-
over, the mean square radius is seen to be almost inde
dent of the pion mass in the investigated range. We w
comment on this in more detail in Sec. V.

IV. THE THREE-POINT FUNCTION

For the three-point function, already introduced in Sec.
we now consider a pseudoscalar source att50, a sink att f
511, and a coupling to the photon att with 0,t,t f . Barad
et al. @1# pointed out that current conservation provides
important numerical test which relates the two- and thr
point functions. Translated into momentum space and for

r-

FIG. 7. BS wave function fork50.13230.
1-5
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periodic boundary conditions, this relation reads

G3~ t f ,t;p,p!2G3~ t f ,t8;p,p!5G2~ t f ,p!, ~27!

where, in the second term on the left hand side~LHS!, t f
,t8,Nt . This amounts to considering the total charge t
leaves the source in the forward and backward direction
time and guarantees thatF(Q2)51 at Q250. This relation
holds for each background gauge field configuration se
rately and thus also for configuration averages. We have v
fied that our results for the conserved current satisfy
relation to an accuracy better thanO(1025).

In order to obtainF(0) for the renormalized local and th
improved current, we again exploited Eq.~27!. The LHS of
this equation was averaged over pairs of valuest and t8
symmetric aroundt f and normalized by the two-point func
tion. Utilizing the ZV factor from @20# gives FI(0)
5FRL(0)51 within a jackknife error of 1%. Alternatively
we could have applied this method to independently ext
ZV as done, e.g., in@26#. However, for consistency we use
the entire set of improvement parameters from@20#.

While the above method allows one to determineF(0),
we now describe how we extract the form factor forQ2

.0. As in the two-point function we allow two states
contribute and parametrize the three-point function, Eq.~3!,
as

G3,m~ t f ,t;pf ,pi !5 (
m50

1

(
n50

1

AZR
m~pf !Z0

n~pi !

3^m,pf u j m~0!un,pi&e
2Epf

m
~ t f2t !2Epi

n t,

~28!

where (m,n)Þ(1,1). Contributions from, for example, th
production of pion pairs, as well as ‘‘wraparound effect
due to the propagation of states beyondt f are exponentially
suppressed@,O(e25)#; similarly, an elastic contribution
from the excited state was estimated to be of the order of
or less. All these effects are not reflected in the chosen
rameterization. The inelastic transitions 0↔1 are included to
better describe the data. However, it should be unders
that the state labeled 1 parametrizes contributions from
possible excited states. Therefore we do not interpret
parameters as the energy or the transition form factors
responding to a single genuine excited state.

Since for a given momentum the pion is the state with
lowest energy, one gets with Eqs.~9! and ~10!

G3,m~ t f ,t;pf ,pi !

5F~Q2!
~pf1pi !m

2AEpf

0 Epi

1
AZR

0~pf !Z0
0~pi !e

2Epf

0
~ t f2t !2Epi

0 t

1$AZR
1~pf !Z0

0~pi !^1,pf u j m~0!u0,pi&

3e2Epf

1
~ t f2t !2Epi

0 t1~1↔0!%. ~29!

In the simulations, we tookupf u5upi u5&upminu, where
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upminu5
2p

Ns a
~30!

is the minimal momentum for a lattice withNs lattice points
in the spatial extension. In our case, it amounts to

pi
25pf

250.48 GeV2. ~31!

For our analysis we use the fourth component of the curr
m54. With our choice of momenta the kinematical factors
the fit function Eq.~29! therefore simplify considerably@see
Eq. ~13!#; note also that thet dependence of the first term i
Eq. ~29! vanishes. As a result, the form factor is more eas
extracted without restricting the simulation too much. Diffe
ent momentum transfers are obtained by varying the rela
orientation ofpi andpf .

A. Extraction of parameters

We begin by averaging the three-point correlation fun
tions which have the same four-momentum transfer squa
and then again combine the configurations in jackknife av
ages. Typical jackknife averages of the three-point funct
are shown in Fig. 8~a! for the next highest pion mass fo
various momentum transfers and for different masses at fi
momentum transfer in Fig. 8~b!. If only the pion ground state

FIG. 8. Improved three-point function for~a! different Q2 at
mp5780 MeV and~b! different mp at Q250.97 GeV2.
1-6



.
ex

e

in
n
ct
.

1
n-

th

n

in

o
gl
n
r
fi
e
io
fla
rc
r

he

a

s

-

ou
n

o
ce
in

lting,
c-
or-
gh

ur-
um
the

ed
op-

that

l-

the
e
n

on

nc-

PION STRUCTURE FROM IMPROVED LATTICE QCD: . . . PHYSICAL REVIEW D 69, 094511 ~2004!
contributed, there would be not dependence in this quantity
The data, however, clearly indicate the admixture of an
cited state. This is especially seen at highQ2 and for low
pion masses, where there is no time slice where it is saf
assume that only the pion ground state is present.

We therefore chose to proceed by simultaneously fitt
the parameters in the two-point and three-point functio
Eqs. ~15! and ~29!, respectively. We hereby exploit the fa
that certain parameters appear in both Green’s functions
the case of the two-point function, we fitted the energiesE0

and E1 and theZ factors over the complete time interval
<t<Nt21. In the three-point function, we fit the same e
ergies andZ factors, and in addition the form factorF(Q2)
and the transition matrix elements over the intervalt i,t
,t f . We assume that the energies andZ factors depend only
on the magnitude of the three-momenta and use the fact
we choseupf u5upi u. The fits are done for each value ofQ2

separately. The values forx2/DOF lie between 0.15 and
0.40, depending on mass and momentum transfer. The e
gies andZ factors we obtain from our fits at differentQ2

agree to high accuracy because they are largely determ
by the two-point function.

To compare with earlier work@10,11# we also extracted an
estimate for the form factor from the ratio of three- and tw
point functions. However, the assumption of just a sin
state contributing is at the basis of this method. Correspo
ingly, we found differences ranging from 5 to 10 % fo
F(Q2) between the ratio method and our combined
method, where inclusion of an excited state clearly improv
the fit quality. The size of the difference depends on the p
mass and the momentum transfer, which influences the
ness of the three-point function in the middle between sou
and sink. All our results in the next section are therefo
based on the fit method.

V. RESULTS AND DISCUSSION

We will now discuss the form factors obtained from t
procedure described in the previous section.

A. Dependence on the current

We first compare the form factors we obtain with the loc
current Eq.~4!, the conserved current Eq.~5!, and the im-
proved current Eq.~6!. Only the improved current ensure
that there are no corrections toO(a) with our action.

The form factors forQ2.0, obtained through the simul
taneous fit procedure, are shown in Figs. 9~a! and 9~b! for
two different masses. As can be expected from Fig. 8~a!, the
same fit procedure yields values forF(0) with an error com-
parable to the results for lowQ2. However, we use the
method discussed in connection with Eq.~27! to extract
F(0)51 to higher accuracy.

We first of all observe that, as expected, the results for
heaviest pion,mp5970 MeV, are much more accurate tha
for the lightest pion,mp5360 MeV. However, even with the
larger error bars, a rather smoothQ2 dependence is seen als
in the latter case. We further observe that the differen
between the conserved and improved currents grow with
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creasing momentum transfer and decreasing mass, resu
in particular for the light pion mass, in a substantial corre
tion. The differences between the improved and the ren
malized local currents are due to the tensor term. Althou
this contribution increases withQ2 the improved form factor
stays very close to the result for the renormalized local c
rent; also for the light pion and out to our largest moment
transfer. That these two form factors are so close is due to
fact that the contribution of the tensor term in the improv
current is small. Since the matrix element of the tensor
erator can become comparable in size~up to 70%! with the
local current operator, this smallness is due to the fact
the coefficient cV520.107 determined in@20# is rather
small; the preliminary value obtained by the ALPHA Co
laboration @15# is much larger,cV520.32. Since the im-
proved current is a linear combination of the local and
tensor term, Eq.~7!, the change in the improved current du
to a change incV is straightforward. The difference betwee
the two values ofcV is of order a, resulting in improved
currents which are different only at ordera2. This shows that
O(a2) effects can still become as large as 10% at higherQ2

values and low masses.

B. The form factor and vector meson dominance

As was already observed in@11#, the lattice results for the
form factor show a behavior expected from vector mes

FIG. 9. Form factors extracted from different currents as a fu
tion of Q2 for two pion masses:mp5970 ~top! and 360 MeV~bot-
tom!. Solid curve: VMD model prediction withmV5mr taken from
@22#. Data shifted horizontally for clarity.
1-7



q

he
b
u

tio
at
rs

s
th
-
to

gr
o
w

d

th

the
ell

ge
ch

y
ve
d-
ults,
we
lue
by
ter
also
n-

ing

en

apo-
e

e is
om
ity-

ex-
s-

ate
,
as

nd
.

van der HEIDE, KOCH, AND LAERMANN PHYSICAL REVIEW D69, 094511 ~2004!
dominance. In Figs. 9~a! and 9~b!, we show the prediction
for the form factor if we use the simple monopole form E
~14!, with mV5mr , the latticer mass at the samek value
@22#. At large pion mass the VMD prediction describes t
form factor based on the conserved current rather well
lies substantially above the results from the improved c
rent. However, at lower pion masses the model predic
shifts toward the improved form factor results. To investig
this point in more detail, we fitted the improved form facto
using the vector meson massmV as a fit parameter, omitting
the point at the highestQ2 value. The parametrization work
well and results are shown in Fig. 10. Table II compares
fitted mV values to ther mass extracted from two-point func
tions @22#. The two values can be seen to come closer
gether as the pion becomes lighter, suggesting a better a
ment of the improved results with the simple vector mes
dominance model for lower pion masses. However, as
will see later, in the physical limit, usingmV5mr fails to
describe the experimental data accurately.

C. Determination of the charge radius

It is well known that the slope of the form factor is relate
to the mean square charge radius of the pion,

]F~Q2!

]Q2 U
Q250

5
1

6
^r 2&. ~32!

In contrast to the charge radius extracted from the Be
Salpeter amplitude, this determination of^r 2& is not based on

FIG. 10. Improved form factor as a function ofQ2 for different
mp . Lines: fits to VMD form Eq.~14!.

TABLE II. mr from the two-point function@22#, fitted mV , and
^r 2& for different mp values.

mp ~MeV! mr ~MeV! mV ~MeV! ^r 2& ~fm2!

970~4! 1169~3! 1086~26! 0.197~9!

780~4! 1032~4! 968~26! 0.249~13!

670~4! 966~6! 931~26! 0.269~15!

540~6! 901~6! 882~36! 0.299~24!

360~9! 841~24! 833~75! 0.34~6!
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any specific assumptions about the quark motion inside
pion. As the vector meson dominance model works very w
for low Q2, we show for simplicity the mean square char
radius of the pion obtained from the monopole fit, whi
yields

^r 2&5
1

mV
2 . ~33!

In the following we work only with the improved current. B
looking at the values in Table II and in Fig. 11, we obser
that the^r 2& extracted from the form factor shows a consi
erable mass dependence. This is in contrast to the BS res
which are also shown. Moreover, these results, which
obtained in Sec. III D, are considerably lower than the va
we extract from the form factor. As already discussed
Guptaet al. @6#, this can be due to how one treats the cen
of mass of the two quarks. However, as these authors
point out, the value extracted through the form factor co
tains contributions that are not included when calculat
^r 2& from the Bethe-Salpeter amplitude.

The^r 2& values obtained from the form factor can be se
to get closer to the physical value of^r 2&50.439(8) fm2 as
the pion mass decreases. This led us to try several extr
lations to the physical limit which will be described in th
next section.

In addition to the two methods discussed above, ther
another method to obtain the charge radius of the pion fr
lattice QCD. This method is based on calculating dens
density correlations or four-point functions for the pion@1,8#.
It has recently been used by Alexandrouet al. @9# for densi-
ties at equal times. However, there are difficulties in the
traction of ^r 2& from density-density correlations as di
cussed in detail by Burkardtet al. @27# and Wilcox @28#.

D. Extrapolation in mp

To obtain more physical results, one can try to extrapol
in the pion mass. We takêr 2& as the quantity to extrapolate
since it is known experimentally and its extrapolation h

FIG. 11. Pion charge radii extracted from the form factor a
extrapolations inmp

2 . The BS radii are included for comparison
Experimental result from@25#.
1-8
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been discussed in the literature. We consider three diffe
types of extrapolations. From chiral perturbation theo
~xPT!, one knows the one-loop result@29#,

^r 2&xPT
one loop5c11c2 ln mp

2 . ~34!

In our fit, we will treat c1 and c2 as free parameters. I
quenchedxPT ~QxPT!, the radius is constant at this order
expansion@30#. It is, however, expected that this situatio
will change at the two-loop level, which will introduce term
like

^r 2&QxPT
two loop;d1

1

mp
2 1d2 ln mp

2 1d3mp
2 , ~35!

including a term linear inmp
2 which, for our pion masses

can be expected to yield the dominant contribution@31#. We
therefore tried only a form containing a constant plus a te
linear in mp

2 .
We have observed that our form factor data can be w

described by a monopole form as suggested by simple ve
meson dominance. Therefore, we use this model to obtai
additional extrapolation. Since it can be seen thatmV , just
like mr , scales approximately linearly withmp

2 , one arrives
at

^r 2&VMD5
6

~b11b2mp
2 !2

. ~36!

The three extrapolations are plotted in Fig. 11. The extra
lated value is seen to depend strongly on the method cho
The VMD ansatz describes the data best. If we use this
satz to extrapolate to the physical pion mass we find^r 2&
50.37(2) fm2, which lies below the experimental value o
0.439~8! fm2. This could clearly be due to the extrapolatio
chosen, but also due to assumptions and approximati
such as quenching, inherent in our approach.

E. Comparison with experiment

In Fig. 12 we show our results together with the availa
measurements@32,33#. For clarity we show only our result

FIG. 12. Improved form factor for differentmp , compared to
experiment@32,33#; broken lines as in Fig. 10.
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for threek values. As can be clearly seen, all our calcula
form factors lie above the measured values. Nevertheles
continuous trend toward the experimental values can be
served and we come quite close to them. Whether onl
straightforward further lowering of the pion mass will re
solve the remaining discrepancy between our lattice calc
tions and experiment is not clear. The solid line in the figu
shows the monopole form usingmV

256/̂ r 2&expt with the ex-
perimentally measured charge radius^r 2&expt. This also de-
scribes the experimental data quite well away fromQ250.
However, the corresponding vector meson mass at 730 M
is significantly lower than ther mass, emphasizing that th
VMD inspired monopole description provides a success
parametrization of the form factor data but does not hold
detail.

VI. SUMMARY AND CONCLUSIONS

We have presented calculations for the pion form fac
that improved and extended previous work in several
spects. We have pushed the form factor calculations fo
large range ofQ2 toward much lower pion masses than b
fore. In doing this, we have worked in a framework th
guarantees the absence ofO(a) corrections. This meant a
consistent use of an improved action with the concomit
improved conserved current. It was shown that use of
improved current leads to significant changes over res
based on the conserved Noether current for this action, wh
still containsO(a) corrections at finiteQ2. We chose kine-
matics where the initial and final pion momenta had the sa
absolute value, which leads to practical simplifications wh
extracting the form factor. For the momenta we use, we c
firmed that energy and momenta are sufficiently close to
isfying a continuum dispersion relation.

Our results for the form factor were seen to smoothly va
with pion mass. The lowerQ2 results could all be describe
quite well by a simple monopole form factor. The fitte
range parametermV

21 was, for eachk value, found to be
close to the corresponding latticer mass. The agreemen
between the two values got closer for decreasing pion m
indicating better agreement with the vector meson do
nance model.

The form factor can be used to extract the mean squ
charge radius of the pion. The values we obtained show
the estimates for̂r 2& based on the Bethe-Salpeter amplitu
are qualitative as well as quantitative not very reliable. D
agreement of up to a factor 2 was found with the form fac
based values, which showed also a quite pronounced m
dependence in contrast to the BS results. Extrapolation
our charge radii toward the physical pion mass were sho
to lead to no unique prediction. The best description of
results at our pion masses was provided by a vector me
dominance model. When extrapolated to the physical p
mass, it yields a value for̂r 2& about 15% below the experi
mental value. For an extrapolation inspired by~quenched!
chiral perturbation theory our pion masses are too high to
sufficiently sensitive to the predicted lnmp

2 terms.
When compared to the experimental form factor, it cou

be seen that our results consistently approach the data
1-9
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above over the entire range ofQ2 we consider. While gauge
invariance fixes all form factors atQ250 to F(0)51, we
see that the calculated form factor atQ2.0 comes close to
the experimentally determined shape, and to a monopole
rametrization. This is a nice confirmation that lattice QC
indeed describes a nonperturbative feature such as a
form factor quite realistically and in detail. However,
straightforward extension of our approach to even lower p
masses or higherQ2 is not necessarily the way to proceed
close the last gap with the experiment. Improvements of
approach and other lattice methods will become necess
Corrections of orderO(a2), for example, will become in-
creasingly important and one also has to understand the
of dynamical quarks, which are neglected in the quenc
approximation.

As is well known, Wilson fermions have the major disa
vantage that chiral symmetry is already broken atO(a). This
was one of the reasons improvement was invented and
we chose a framework where action and operators were
sistently improved and corrections only to orderO(a2) show
up. Another method, among others, is the introduction o
fifth dimension and use of so-called domain wall fermion
Chiral symmetry is then not tied to taking the continuu
limit. The price one pays is a substantial increase in
computer time. The RBC Collaboration has chosen this
proach and first results can be found in@34#. In this paper
pion masses down to 390 MeV are used, albeit on a coa
lattice. Their results obtained so far at two lowQ2 points,
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based on the renormalized local current, seem to agree
sonably well with our values. Differences in the impleme
tation of chiral symmetry show up atO(a2).

An open question is of course the significance of t
quenched approximation. Alexandrouet al. @9# have calcu-
lated density-density correlations for thep, r, N, and D in
quenched as well as unquenched lattice QCD. In contras
the r andD, only rather small effects are seen for thep for
values ofmp around 600 MeV. The study of effects due
dynamical quarks, clearly more important at lower pi
masses and highQ2, is an area where further work is nece
sary.
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~NIC!, Jülich and at SARA, Amsterdam under grant SG-1
by the Foundation for National Computing Facilities~NCF!.
The authors thank G. Colangelo for helpful comments c
cerning the extrapolation in the pion mass. J.v.d.H. thank
Sharpe for many stimulating discussions.

,

D

.

@17# B. Sheikholeslami and R. Wohlert, Nucl. Phys.B259, 572
~1985!.
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