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Pion structure from improved lattice QCD: Form factor and charge radius at low masses
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The charge form factor of the pion is calculated in lattice QCD. The nonperturbatively improved
Sheikholeslami-Wohlert action is used together with@&) improved vector current. Other choices for the
current are examined. The form factor is extracted for pion masses from 970 down to 360 MeV and for
momentum transfer?<2 Ge\?. The mean square charge radius is extracted and compared to previous
determinations, and its extrapolation to lower masses discussed.

DOI: 10.1103/PhysRevD.69.094511 PACS nuntderll.15.Ha, 12.38.Gc

I. INTRODUCTION etal. [9]. Two groups have already calculated the pion
charge form factor, proceeding, as in the present work, in the
QCD without doubt is the correct microscopic theory de-quenched approximation. The pioneering work was done by
scribing all strong interactions, a fact that has been estalMartinelli and Sachrajdpl0], followed by more detailed cal-
lished mainly by impressive agreement between theory andulations of Draperet al. [11]. One of the findings of the
experiment in the perturbative sector. Comparatively few relatter work was that the pion form factor could be described
sults have been obtained in nonperturbative QCD, whiclyuite well by a monopole form, as suggested by vector me-
deals with physics on the scale dfocp or the size of a son dominance. As shown {12], the range parameter is in
hadron. It is therefore an obvious challenge to derive thdact very close to the mass obtained for the same action.
internal structure of a hadron from first principles, entirely Lattice calculations, although starting from first prin-
within QCD [1]. Next to the nucleon, the pion is an obvious ciples, are not free of approximations. The most obvious one
candidate for such an attempt. Its global features, like chargés the use of the lattice itself, necessarily resulting in discreti-
spin, and isospin, represent no challenge and are triviallgation errors. These errors can be reduced by the use of
included in any model. Specific features that actually tesimproved lattice QCD actions and the concomitant improved
details of our theoretical understanding are observables likebservables. In the work reported here, we extend the previ-
the pion form factor and its polarizability. In this paper, we ous work by working inO(a) improved lattice QCD, which
report on an extensive study of the pion form factor based oguarantees that errors in the matrix elements we extract are
lattice QCD. The first results were already reported2r3]. only of orderO(a?). In order to emphasize the importance
At first glance, the pion looks like a manageable two-bodyof consistently using both improved action and observables,
system, and there have been many descriptions of the piome discuss the form of the vector current operator at some
based on effective models or QCD inspired approaches. Oriength and give numerical examples for the results one ob-
feature all these attempts share is that confinement, the mostins with the current operators used in other work.
striking feature of QCD, is—in one way or another—put in  In addition to the step from a discrete lattice to the physi-
by hand. This is of course an unwanted step when one setal continuum, one also has to extrapolate the lattice results
out to calculate the pion form factor or its mean squarein the pion mass. As is known, lattice calculations yield re-
charge radius, which reflect the form and size of QCD consults for pions much heavier than the physical pion. The
finement. Here one obviously wants to proceed from firstprevious form factor calculations if10,11] were for pions
principles, from the fundamental QCD Lagrangian itself.  on the order of 1 GeV. Another improvement step which we
Several papers have already dealt with aspects of the piaimdertake in this paper is to extend our calculations of the
structure in lattice QCD. A quantity often considered is theelectric form factor down to pion masses of 360 MeV. For
“Bethe-Salpeter amplitude,” the relative quark-antiquark the mean square charge radius of the pion which we extract
wave function, extracted from two-point functiof$—7].  from the form factor, we then study the extrapolation to
Another approach is based on gauge invariant densitylower masses.
density correlationg1,7,8, most recently by Alexandrou It is instructive to compare the mean square radii obtained
from the Bethe-Salpeter amplitudes and from the form factor.
We find considerable differences which, as suggested earlier

*Electronic address: r86@nikhef.nl [6], can be ascribed to the effect of the gluon motion on the
TElectronic address: justus@nikhef.nl position of the center of mass.
*Electronic address: edwin@physik.uni-bielefeld.de The paper is organized as follows. In Sec. Il, we first
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o+ L either one of the charged quarks. This observable is obtained
L . .
i @} fp |R in momentum space by calculating
. _ H 1
FIG. 1. Two-point function. Gau(ts, tipy ’pi)_foX (Pr(X0)]u(x)¢(0))
describe the general features of our approach and the details X @ 1Pt (Xt =X)=ipi-x, ©)

of our lattice calculations. Results for the two- and three-
point function are described in Secs. Ill and IV, respectively. The parameteR for the pion operator at the sink is now
Our findings for the form factor and the mean square radiu$ixed to the value giving the best overlap in the two-point
of the pion are elaborated in Sec. V. A summary of our workfunction. As we will further discuss below, the choice of the
and conclusions are contained in Sec. VI. current to which the quarks couple is important. The con-
tinuum orlocal current
Il. THE GENERAL METHOD L —
j o= (X X 4
A. The observables Ja= 900 Y (X) @
To obtain the pion form factor from the lattice, one has tois not conserved on the lattice and needs renormalization by
calculate two observables, the two- and three-point Green’s factor Z,,, yielding the renormalized IocalcurrentjEL.
functions for an interacting quark-antiquark pair with the Using the Noether procedure, one can also construct a cur-

quantum numbers of the pion. Improved techniques are use@nt which is conserved on the lattif&2],
in order to removeO(a) discretization effects. We do this

nonperturbatively for both the action and the electromagnetic iC= () (1= v U () (x+
vector current in the three-point function. Fits to both ob- Jum 0= 2V, 00 4x+ 1)
servables were used to extract the desired information, such _Z(X+ ) (1+ YM)UL(XW(X)- (5)

as the form factor and the pion mass.
The two-point function, shown schematically in Fig. 1, This conservedturrent still require(a) discretization cor-

projected to momenturp is given by rections for matrix elements away from the forward direc-
tion.
Gur(t.p)= > (dr(ti,x)$T(0,0))eP X (1) Using Symanzik's improvement program, one can iden-
' X

tify appropriate operators, which, when used together with
) o the improved action, result in matrix elements that are free of
The operator¢’ creates a quark-antiquark pair with the 4 O(a) discretization errors. For the vector current consid-
quantum numbers of the pion at the sourceQat0), while  greq here, the resultinignprovedcurrent is[13—15
¢(x) annihilates it at the sink. Since we will considetra,

it is given by iL,=Zin (0 +acydyT,,}, (6)
¢"(0) = gu(X) Y5l X). @ with

Below, all flavor, spin, andSU(3) color indices will be

dropped. On the sink side, we use an extended operator with

an interquark distancR. This suppresses the contribution of 0

excited states to the two-point function and facilitates the Zy=Zy(1+abymg). @)

extraction of the pion mass. In order to keep the calculation

gauge invariant, the quark and antiquark at the sink are corlt is conserved td(a”) and differs from the renormalized

nected by gauge links. To further enhance the contributiofocal current by a total divergence, which vanishes for for-

from the pion, the links in the extended pion operator havevard matrix elements. The bare quark mass is defined as

been fuzzed to better simulate the tubelike nature of the

gluon cloud. 111
The three-point function, shown in Fig. 2, again concerns A=\ e o)’

a quark-antiquark pair with pion quantum numbers, propa-

gating fromx; to x;; disconnected diagrams do not contrib- where «., is the kappa value in the chiral limit aral the

ute [1,11]. At an intermediate timé a photon is coupled to |attice spacing. The constantsiij) are nonperturbatively de-

termined from lattice simulations and as such completely

T = $(X)i 0, %(X),

®

K K¢

v remove theO(a) effects.
ta From current conservation it can be shown that the gen-
ot . eral Lorentz structure of the matrix element for the electro-
t=0,p; ;s magnetic current of an on-shell pion is
FIG. 2. Three-point function. (7]l 7(P)) cone= (Ps+ Pi) F(Q?), 9
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s ot TABLE |. Masses andr?)gg for differentk values.
s
rd K my (MeV) m, (MeV) m, (MeV) (r?gs(fm?
/
AN @ —— 0.13230 154 97@) 11886)  0.14142)
N 0.13330 101 780@ 10538) 0.148@2)
y v ~ 0.13380 75 6701 9899) 0.15082)
N 0.13430 45 54(®) — 0.15262)
N gt 0.13480 23 36®) — 0.15284)

FIG. 3. The VMD model.
We used the improved Sheikholeslami-Wohlert action
where F(Q?) with Q?=—(p;—p;)? is the form factor we [17] with the nonperturbatively determindd8] value of
are interested in. Connection with the continuum descriptiortg,,=1.769. With this action, we computed propagators for

is made by a proper normalization, five values of the hopping parameter corresponding to pion
) massesof 970, 780, 670, 540, and 360 MeV; see Table |. We
_ (m(POI] w7 (Pi)) cont imposed periodic boundary conditions except in the time di-
(m(PO] ul (P )= 2JEE (0 rection where for the fermions antiperiodic boundary condi-
fEj

tions were implemented. The values of the constepts,,,
O . .
where E; and E; are the final and initial energies, respec-and Zy needed to eliminate th®(a) effects and to renor-

tively. malize the current were taken from Bhattachaeyal. [20].
In our calculations of the three-point function we project
on initial and final three-momenta with the same length, lll. THE TWO-POINT FUNCTION
Inil=1pi] (11) To extract physical information from the numerical data
i 3

for the two-point function, Eq(1), we use the following
which implies that there is no energy transfer to the pion, Parametrization:

1
Gonltr,p)= 2 VZR(p)Zg(p)e FN2
The four-momentum transfer to the pio@2= (p;—p;)?, is n=0

then varied by changing the angle between the two momenta. N
xcosr{ ES(——tf) }

Ei: Ef . (12)

Since we will use thex=4 component of the current, this

(15
choice has, among others, the numerical advantage that we

have
whereN, =32 is the extension of the lattice in the time di-
E(+E; rection. We include the contribution of the ground state (
\/_=1 (13 =_0) with en?rgyEg_ and of the first ex_cited_statm(: 1)
2VE(E; with energyE,. As discussed in connection with Ed), the

parameterR indicates the quark-antiquark distance at the
sink, which will be chosen to enhance the contribution from

. - o . the pion ground state. For this we use the approach as origi-
quite successful in describing both experimental as well 3Rally proposed iM21]. The fuzzed gluon links at the pion

early lattice data. This model is inspired by effective field gjk are created with a link/staple mixing of 2 and a fuzzing
theory and is schematically depicted in Fig. 3. ASSumingi,, e of 4. TheZ" denote the matrix elements
universality, i.e.g,,,=9,, the form factor is given by the ' R '

when extracting the form factdf(Q?).
The vector meson dominand®MD) model has been

simple monopole form "(P)=|Q|drln, P, (16)
2) -1
FQY)={1+—| . (14) which also will yield the “Bethe-Salpeter” amplitudes from
\2, which information about the structure of the pion can be
extracted.

The data for the two-point function that correspond to the
same absolute value of the spatial momentum are averaged
We performed calculations in the quenched approximaper configuration. The different configurations are then com-

tion on a 24 32 lattice. A set of 100 gluon configurations at bined in jackknife averages with a block size ranging from 1
a coupling of 3=6.0 was generated. Thermalization wasto 5. No significant changes in the errors of the averages

reached in 2500 sweeps, whereafter we obtained configura-

tions at intervals of 500 sweeps. One sweep consists of a——

pseudo-heat-bath step with FHKP updatiht6] in the IFor definiteness we have takar 0.105 fm from[19] to set the
SU(2) subgroups, followed by four over-relaxation steps. scale.

B. The lattice simulation
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(15) for both a single state and two states. The fit range, the
number of included time slices centered around the midpoint
of our time grid att= 16, is reduced until the minimurng? is
found and consistency between both fits can be checked. In
extracting the masses from tpe= 0 averages, we found that
for a single-state fit a fit range of about 15-17 time slices
gives the lowesy?. In the case of a two-state fit, fitting the
completet range(31 time sliceg yields the smallest statisti-
cal error;x? per degree of freedofDOF) is about the same
for different fit ranges. We found consistency between the
two fits. The resulting masses are given in Table | and plotted
in Fig. 5 as a function of the inverse of the hopping param-

N
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(b) time

FIG. 4. Effective masse&@) and effective energie) for vari-
ous R In (a) the pion mass ism_,=970 MeV; in (b) m,
=540 MeV andp?=0.48 Ge\’.

were observed for increasing block size, indicating that ther

eterx. They agree very well with the results obtained in, e.g.,

[22,23, whose authors use the same action as we do. Also
shown are extrapolations to the chiral limit, based on the
éollowing fit functions:

are no significant correlations in our ensemble. 1 1
m2 = cl<—— —) (18)
A. The fuzzing distanceR K Ke
To determine the optimal value for the interquark distance , (1 1)V
R we used the jackknife averages to calculate the effective m;=Cz P K_c (19

energy of the pion,

Eer(L,|p)) =IN[(G2r(t,p))/(Gar(t+1p))].  (17)

1 1
We variedR from 0 to 10, plotted the effective energy for —= —+b1mf,+ bsz,, (20
these different fuzzing levels and looked which one stabilizes Ko Ke

first. An example of the dependence Bris shown in Fig.  regylting in a slightly different value fot, . Quenched chiral
4(a) for the effe(.:t|ve'masMeﬁ'(t)=Eeg(t,0), and for the ef-  hortyrhation theory predicts the second form witrsmall
fective energy in Fig. @) with |p[*=0.48 GeVf, corre-  gnq positive 24]. As in [22], we obtain a negative value for
sponding to the momentum of the pion in our form factor 5 Equation(20) is a phenomenological fj22]. There is no
extraction below. The optimeR value is somewhat depen- sjgpjficant difference in the fit quality, so we cannot prefer
dent on the pion's momentum and mass. After several suche fit over the other. Therefore, we simply average the dif-
tests, we chosR=3 as the common extension parameter forterent valyes, yieldingc.=0.135244), which agrees quite
all calculations. Enhancing the ground state contribution iSye|l with values obtained from the literature .
pgrticularly important for the thrge—point function, where the:0_13531(1)[22] andx.=0.13525(1)23]. The bare quark
distance between source and sink is typically small. masses we obtain with out, are given in Table I. They will
be used in thésmall) mass dependent correction of the im-
proved current.

Having chosen the fuzzing distanBewe extract the pion Proceeding analogously, we have also extracted the pion
masses and energies by fitting the jackknife averages to EqnergiesEg for several nonvanishing three-momenta, again

and

B. Pion masses and energies
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FIG. 6. Energy-momentum relation fox=0.13230 and To obtain the “Bethe-Salpet¢BS) amplitudes” or “wave
0.13430; solid line, continuum relation; dashed line, lattice d'SperTunctions"@(R) we use the factors extracted from a fit of

sion relation. the two-point functiof Eq. (15)], since for a pion at rest
using single- and two-state fits in combination. The results ®(R)=/2%(0)/25(0). (24)
for the ground state energy are shown in Fig. 6, together with
the prediction from the continuum dispersion relation, We simultaneously fitted the jackknife averages Rorang-
ing from O to 10. Again the results from both the single- and
2. 5 a two-state parametrization were used to check the consis-
Econ= mf—:"' p2, (21 tency. P

The same results for the wave function, but with smaller
and from the generally favored lattice dispersion relation, errors, were obtained from a fit to the plateau of the ratio

. Gg(t,0)

3
E M i R)=———+.
sink? §=sinh2 ?Jrz sir? % (22) ) Gy dt,0)
i=1
An example of a BS wave function is shown in Fig. 7 for the
The data deviate from both predictions at higher momentahe"’wIESt pion; only the result of the second method is dis-

However, the figure clearly demonstrates that for the moPlayed. The wave function can be used to obtain an estimate

mentum relevant for our form factor extractiom? of the mean square charge radius of the pion according to

=0.48 GeVt, we are dealing essentially with continuum ki- [4.5]
nematics. 1 [d3rP2d2(|r])

(25

N L
(r‘)es: w AT (26)
C. Results for the p mass
The factorw is included to reflect the uncertainty in the
gessulting<r2>. If one assumes that the quark and antiquark
are always located on opposite sides of the meson center of
mass at distanag2, one hasv=4; assuming that the quarks
move in an uncorrelated way around the center of mass,
=2 should be used. The BS radii as a function of the pion
mass are given in Table | fov=2. The values are much
V=g, (23 lower than the physical value of 0.48) fm? [25]. More-
over, the mean square radius is seen to be almost indepen-

_ . o ) dent of the pion mass in the investigated range. We will
which project onto the polarization statef a vector meson.  -omment on this in more detail in Sec. V.

With the same boundary conditions as for the pion, the two-
point function for three-momentum= 0 was then fitted to a
cosh form as in Eq(15). We averaged the polarization states
i=1,2,3. The results for the three highest parameteese For the three-point function, already introduced in Sec. I,
shown in Table I. They agree with the values obtained irwe now consider a pseudoscalar sourcé=ad, a sink att;
[22,23. For the remaining twoc values our statistics were =11, and a coupling to the photontawith 0<t<t;. Barad

not sufficient. When needed later for comparison with theet al. [1] pointed out that current conservation provides an
vector meson dominance model for the form factor, we willimportant numerical test which relates the two- and three-
for simplicity use the values fror22]. point functions. Translated into momentum space and for our

In the discussion of the form factor, we will often refer to
the vector meson dominance model. For completeness and
a further test for our methods, we have also extracted th
mass of the lowest vector meson, theneson. Proceeding
analogously as for the pion, E€), we consider a two-point
function with source and sink operators of the form

IV. THE THREE-POINT FUNCTION

094511-5
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periodic boundary conditions, this relation reads 0.0004
Ga(ts,t;p,p) = Ga(ts,t';p,p) = Ga(ts,p), 27 { } ]\ { } } { { oo Gov?
where, in the second term on the left hand s{telS), t; 0.0003 |
<t’<N,. This amounts to considering the total charge that = - Lo Q2=0.48 GeV?
leaves the source in the forward and backward direction in 3 R I TR T S N 2
time and guarantees thB(Q?)=1 atQ?=0. This relation O Fpos 2 T 0:0'97 Gevz
holds for each background gauge field configuration sepa- 00002} | - * & § [ j x ° ¢ @-145GeV]
rately and thus also for configuration averages. We have veri- ! Doty L g [ oramemee
fied that our results for the conserved current satisfy this Lo T S !
relation to an accuracy better th@{107%). ot
In order to obtairF(0) for the renormalized local and the 0.0001 0 5 4 é 8 1'0 12 14
improved current, we again exploited EQ7). The LHS of (@) ti
. ) . . ime
this equation was averaged over pairs of valtieand t
symmetric around; and normalized by the two-point func- 0.0012 : . :
tion. Utilizing the Z, factor from [20] gives F'(0) 2;:%8 oy
=FRY0)=1 within a jackknife error of 1%. Alternatively, . M. =670 MoV r--x--s .
we could have applied this method to independently extract o 2":228 m:x ST
Zy as done, e.g., ifi26]. However, for consistency we used 00008 F 4 | T 71
the entire set of improvement parameters fri@a. = * R S S R S
While the above method allows one to determi@), = S L
we now describe how we extract the form factor @F O S
>0. As in the two-point function we allow two states to 0.0004y . - & F P F o F 5
contribute and parametrize the three-point function, (By. P, : : £z % ¥ : :
as X X X X
L < % 2 4 & 8 10
. N \/ﬁ )
Goultr tipr P)= 2 2 VZR(POZ5(P) o fime
; —EM(ti—t)—E]t FIG. 8. Improved three-point function fd@|) different Q? at
X (m,pilj . (0)[n.pi)e 075, m_=780 MeVpand(b) differe?]tm,, at Q2=0.97)Ge\?. °
(28)
where (m,n)#(1,1). Contributions from, for example, the |pmm|=2_77 (30)
production of pion pairs, as well as “wraparound effects” N,a

due to the propagation of states beydn@re exponentially . . . ) .
suppressed <O(e %)]; similarly, an elastic contribution IS the mlnlmal mome_ntum for a Iattlce_wﬁklg lattice points
from the excited state was estimated to be of the order of 1041 the spatial extension. In our case, it amounts to

or less. All these effects are not reflected in the chosen pa- 5

rameterization. The inelastic transitions-A are included to pi=p;=0.48 GeV. (31)
better describe the data. However, it should be understood ]

that the state labeled 1 parametrizes contributions from affor our analysis we use the fourth component of the current,
possible excited states. Therefore we do not interpret ougt=4- With our choice of momenta the kinematical factors in
parameters as the energy or the transition form factors cothe fit function Eq.(29) therefore simplify considerablsee

responding to a single genuine excited state. Eq. (13)]; note also that the dependence of the first term in
Since for a given momentum the pion is the state with the=d- (29) vanishes. As a result, the form factor is more easily
lowest energy, one gets with Eq8) and (10) extracted without restricting the simulation too much. Differ-
ent momentum transfers are obtained by varying the relative
G3,(te,t;pr.pi) orientation ofp; andps .
2 (PP = 0 —E% (t,-t)—-E° A. Extraction of parameters
=F(Q?*) — === VZr(p1) Zg(pi)e™ o7V~ ! - P
2 ngEéi We begin by averaging the three-point correlation func-
tions which have the same four-momentum transfer squared
+{VZR(PNZ3(P1){1psj ,(0)]0p;) and then again combine the configurations in jackknife aver-
L o ages. Typical jackknife averages of the three-point function
x e Ep U -Eply (150)). (29)  are shown in Fig. &) for the next highest pion mass for
various momentum transfers and for different masses at fixed
In the simulations, we tookps| =|pi| =v2|Pminl, Where momentum transfer in Fig.(B). If only the pion ground state

094511-6
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contributed, there would be _rtajependence in_ this quantity. ] ' ' Improved current ———
The data, however, clearly indicate the admixture of an ex- R Cl_onselrvedI current =]
cited state. This is especially seen at high and for low enormalized local current +—x-—

pion masses, where there is no time slice where it is safe tc 08 r
assume that only the pion ground state is present.

We therefore chose to proceed by simultaneously fitting“‘a 0.6 r
the parameters in the two-point and three-point functions, I

Egs. (15 and(29), respectively. We hereby exploit the fact 04 |

that certain parameters appear in both Green'’s functions. Ir

the case of the two-point function, we fitted the enerdiés 0.2 |

andE! and theZ factors over the complete time interval 1

<t<N,—1. In the three-point function, we fit the same en- 0 : ' : :

ergies andZ factors, and in addition the form facté(Q?) 0 05 1 5 21'5 2 25
and the transition matrix elements over the intertatt (@) Q" (GeV?)

<t;. We assume that the energies ahfactors depend only . .

on the magnitude of the three-momenta and use the fact the 1 Cmgg%gg gﬂ:{_gm N
we chosép;|=|p;|. The fits are done for each value @f Renormalized local current s-x-:
separately. The values fgleDOF lie between 0.15 and 08 |

0.40, depending on mass and momentum transfer. The ene

gies andZ factors we obtain from our fits at differei@? & 06|

agree to high accuracy because they are largely determine ,_%

by the two-point function. 0.4 L
To compare with earlier workL0,11] we also extracted an

estimate for the form factor from the ratio of three- and two- 02 |

point functions. However, the assumption of just a single

state contributing is at the basis of this method. Correspond: 0 . . . .

ingly, we found differences ranging from 5 to 10% for 0 0.5 1 1.5 2 25

F(Q? between the ratio method and our combined fit () Q% (GeV?)

method, where inclusion of an excited state clearly improved

the fit qua”ty_ The size of the difference depends on the pion FIG. 9. Form factors extracted from different currents as a func-

mass and the momentum transfer, which influences the flation of Q for two pion massesm,,= 970 (top) and 360 MeV(bot-

ness of the three-point function in the middle between sourc&m- Solid curve: VMD model prediction witm, =m, taken from

and sink. All our results in the next section are therefore22]- Data shifted horizontally for clarity.

based on the fit method.

creasing momentum transfer and decreasing mass, resulting,
in particular for the light pion mass, in a substantial correc-
V. RESULTS AND DISCUSSION tion. The differences between the improved and the renor-
malized local currents are due to the tensor term. Although
this contribution increases witQ? the improved form factor
stays very close to the result for the renormalized local cur-
rent; also for the light pion and out to our largest momentum
transfer. That these two form factors are so close is due to the
fact that the contribution of the tensor term in the improved

We first compare the form factors we obtain with the localcurrent is small. Since the matrix element of the tensor op-
current Eq.(4), the conserved current E¢5), and the im-  erator can become comparable in sizg to 70% with the
proved current Eq(6). Only the improved current ensures local current operator, this smallness is due to the fact that
that there are no corrections @(a) with our action. the coefficientcy=—0.107 determined i{20] is rather

The form factors forQ2>0, obtained through the simul- small; f[he prel|.m|nary value obtained by thg ALPHA_CoI-
taneous fit procedure, are shown in Fig&)%nd 9b) for laboration[15] is much larger,c,,=—0.32. Since the im-

two different masses. As can be expected from Fig),8he proved current is a linear combination of the local and the
same i pocedure yield vlues (0)withan eorcom- (€731 S, BT, 1 Shange e b cren e
parable to the results for lowQ?. However, we use the 9 v 9 '

method discussed in connection with E®7) to extract the two valyes Ofc‘/. Is of ordera, resultmg.ln improved
_ . currents which are different only at ordef. This shows that
F(0)=1 to higher accuracy.

2 : 0 .
We first of all observe that, as expected, the results for ouP(a ) effects can still become as large as 10% at higher

heaviest pionm_=970 MeV, are much more accurate than values and low masses.
for the lightest pionm_= 360 MeV. However, even with the
larger error bars, a rather smod@¥ dependence is seen also
in the latter case. We further observe that the differences As was already observed ft1], the lattice results for the
between the conserved and improved currents grow with inform factor show a behavior expected from vector meson

We will now discuss the form factors obtained from the
procedure described in the previous section.

A. Dependence on the current

B. The form factor and vector meson dominance

094511-7
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FIG. 10. Improved form factor as a function @f for different

FIG. 11. Pion charge radii extracted from the form factor and
m,, . Lines: fits to VMD form Eq.(14). ! g I ex

extrapolations imf,. The BS radii are included for comparison.

. . L Experimental result fronj25].
dominance. In Figs. @ and 9b), we show the prediction

for the form factor if we use the simple monopole form Eq. 5 specific assumptions about the quark motion inside the
(14), with my=m,, the latticep mass at the same value oy As the vector meson dominance model works very well
[22]. At large pion mass the VMD prediction describes the¢,, |ow Q2, we show for simplicity the mean square charge
form factor based on the conserved current rather well but, jius of the pion obtained from the monopole fit, which
lies substantially above the results from the improved CUyields

rent. However, at lower pion masses the model prediction

shifts toward the improved form factor results. To investigate 1
this point in more detail, we fitted the improved form factors, (r3y= —. (33
using the vector meson masy, as a fit parameter, omitting my

the point at the highe$d? value. The parametrization works

well and results are shown in Fig. 10. Table Il compares thdn the following we work only with the improved current. By
fitted my values to thep mass extracted from two-point func- looking at the values in Table Il and in Fig. 11, we observe
tions [22]. The two values can be seen to come closer tothat the<r2> extracted from the form factor shows a consid-
gether as the pion becomes lighter, suggesting a better agregrable mass dependence. This is in contrast to the BS results,
ment of the improved results with the simple vector mesorwhich are also shown. Moreover, these results, which we
dominance model for lower pion masses. However, as webtained in Sec. Il D, are considerably lower than the value
will see later, in the physical limit, usingy,=m, fails to ~ we extract from the form factor. As already discussed by
describe the experimental data accurately. Guptaet al. [6], this can be due to how one treats the center
of mass of the two quarks. However, as these authors also
point out, the value extracted through the form factor con-

) . tains contributions that are not included when calculating
It is well known that the slope of the form factor is related (r?) from the Bethe-Salpeter amplitude.

C. Determination of the charge radius

to the mean square charge radius of the pion, The(r?) values obtained from the form factor can be seen
IF(Q?) 1 to get closer to the physical value @f?)=0.439(8) fnf as
=—(r?). (32) the pion mass decreases. This led us to try several extrapo-
Q2 02=0 6 lations to the physical limit which will be described in the

next section.

In contrast to the charge radius extracted from the Bethe- In addition to the two methods discussed above, there is

Salpeter amplitude, this determination(of) is not based on another method to obtain the charge radius of the pion from
lattice QCD. This method is based on calculating density-

TABLE II. m, from the two-point functior22], fitted my, and density correlations or four-point functions for the p[dr,18]..
(r?) for differentm,, values. It has recently been used by Alexandretual. [9] for densi-
ties at equal times. However, there are difficulties in the ex-
m, (MeV) m, (MeV) my (MeV) (r?) (fm? traction of (r?) from density-density correlations as dis-
cussed in detail by Burkardit al. [27] and Wilcox[28].

970(4) 11693) 108626) 0.1979)

780(4) 10324) 96826) 0.24913) L

6704) 966(6) 931(26) 0.26915) D. Extrapolation in m,

540(6) 901(6) 882(36) 0.29924) To obtain more physical results, one can try to extrapolate
36009) 841(24) 83375 0.346) in the pion mass. We take?) as the quantity to extrapolate,

since it is known experimentally and its extrapolation has

094511-8
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1 2970 MV e for three x values. As can be clearly seen, all our calculated
M=670 MeV --rre-rrs form factors lie above the measured values. Nevertheless, a
08 | VMD, n’]‘:/rr:ggg Mg¥ e continuous trend toward the experimental values can be ob-
Experiment »-s - served and we come quite close to them. Whether only a
06 straightforward further lowering of the pion mass will re-
Ng solve the remaining discrepancy between our lattice calcula-
o o4 | tions and experiment is not clear. The solid line in the figure
shows the monopole form usin7g\2,=6/<r2>e,(pt with the ex-
perimentally measured charge rad(u§>expt. This also de-
02 r . scribes the experimental data quite well away fri=0.
o However, the corresponding vector meson mass at 730 MeV
0 L 1 L L 1

is significantly lower than the mass, emphasizing that the
VMD inspired monopole description provides a successful
parametrization of the form factor data but does not hold in
detail.

0 05 1 15 2 25 3 35
Q? (GeV?)

FIG. 12. Improved form factor for differenn,., compared to
experimen{32,33; broken lines as in Fig. 10.

VI. SUMMARY AND CONCLUSIONS
been discussed in the literature. We consider three different
types of extrapolations. From chiral perturbation theoryth
(xPT), one knows the one-loop resyit9],

We have presented calculations for the pion form factor
at improved and extended previous work in several re-
spects. We have pushed the form factor calculations for a
<r2>;geT 0= ¢, + ¢, Inmz. (34) large range oR? toward much lower pion masses than be-
fore. In doing this, we have worked in a framework that
In our fit, we will treatc,; andc, as free parameters. In guarantees the absence @fa) corrections. This meant a
guenchedyPT (QxPT), the radius is constant at this order of consistent use of an improved action with the concomitant
expansion[30]. It is, however, expected that this situation improved conserved current. It was shown that use of this
will change at the two-loop level, which will introduce terms improved current leads to significant changes over results
like based on the conserved Noether current for this action, which
still containsO(a) corrections at finiteQ?. We chose kine-
matics where the initial and final pion momenta had the same
absolute value, which leads to practical simplifications when
extracting the form factor. For the momenta we use, we con-
including a term linear irm?2 which, for our pion masses, firmed that energy and momenta are sufficiently close to sat-

can be expected to yield the dominant contribuidt]. We  1Sfying a continuum dispersion relation.

therefore tried only a form containing a constant plus a term _Our results for the form fz;ctor were seen to smoothly vary

linear in m2. with pion mass. The lowe®~ results could all be described
We have observed that our form factor data can be welfluite well by a S|_rrl1ple monopole form factor. The fitted

described by a monopole form as suggested by simple vect6fNge parametem, = was, for eachx value, found to be

meson dominance. Therefore, we use this model to obtain &f{0Se to the corresponding lattige mass. The agreement

additional extrapolation. Since it can be seen tmat, just between the two values got closer for decreasing pion mass,

like m_, scales approximately linearly Wilﬂmf,, one arrives  indicating better agreement with the vector meson domi-
at nance model.
The form factor can be used to extract the mean square
charge radius of the pion. The values we obtained show that
(36)  the estimates fofr?) based on the Bethe-Salpeter amplitude
are qualitative as well as quantitative not very reliable. Dis-
agreement of up to a factor 2 was found with the form factor

The three extrapolations are plotted in Fig. 11. The extrapobased values, which showed also a quite pronounced mass

lated value is seen to depend strongly on the method chosen. . i
The VMD ansatz describes the data best. If we use this an&ependence in contrast to the BS results. Extrapolations of

satz to extrapolate to the physical pion mass we finf) our charge radii toward the physical pion mass were shown
—0.37(2) ff, which lies below the experimental value of to lead to no unique prediction. The best description of the

0.4398) fm2. This could clearly be due to the extrapolation results at our pion masses was provided by a vector meson

chosen, but also due to assumptions and approximationgOmlnance model. When extrapolated to the physical pion

such as quenchina. inherent in our aporoach mass, it yields a value fdr?) about 15% below the experi-
q 9 bp ' mental value. For an extrapolation inspired {@uenched

chiral perturbation theory our pion masses are too high to be
sufficiently sensitive to the predicted rlnf, terms.

In Fig. 12 we show our results together with the available When compared to the experimental form factor, it could
measurementt32,33. For clarity we show only our results be seen that our results consistently approach the data from

1
(rz)gN;P'T"Okle +dpInm2 +dym?, (35)

m

p?

r2 ST
< >VMD (b1+b2m§7)2

E. Comparison with experiment
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above over the entire range @f we consider. While gauge based on the renormalized local current, seem to agree rea-
invariance fixes all form factors @?=0 to F(0)=1, we  sonably well with our values. Differences in the implemen-
see that the calculated form factor@€>0 comes close to tation of chiral symmetry show up &(a?).

the experimentally determined shape, and to a monopole pa- An open question is of course the significance of the
rametrization. This is a nice confirmation that lattice QCDquenched approximation. Alexandret al. [9] have calcu-
indeed describes a nonperturbative feature such as a pigted density-density correlations for the p, N, and A in

form factor quite realistically and in detail. However, a quenched as well as unquenched lattice QCD. In contrast to
straightforward extension of our approach to even lower pioRhe p and A, only rather small effects are seen for thefor
masses or highed? is not necessarily the way to proceed 0 yajues ofm,, around 600 MeV. The study of effects due to
close the last gap with the experiment. Improvements of oufynamical quarks, clearly more important at lower pion

approach and other lattice methods will become necessanpasses and high?, is an area where further work is neces-
Corrections of ordeO(a?), for example, will become in- sary.

creasingly important and one also has to understand the role
of dynamical quarks, which are neglected in the quenched
approximation.

As is well known, Wilson fermions have the major disad-
vantage that chiral symmetry is already broke®é4). This The work of J.v.d.H. and J.H.K. was part of the research
was one of the reasons improvement was invented and whyrogram of the Foundation for Fundamental Research of
we chose a framework where action and operators were comatter (FOM) and the National Organization for Scientific
sistently improved and corrections only to or@fa®) show ResearchNWO) of The Netherlands. The research of E.L.
up. Another method, among others, is the introduction of avas partly supported by Deutsche Forschungsgemeinschaft
fifth dimension and use of so-called domain wall fermions.(DFG) under grant FOR 339/2-1. The computations were
Chiral symmetry is then not tied to taking the continuum performed at the John von Neumann Institute for Computing
limit. The price one pays is a substantial increase in théNIC), JUich and at SARA, Amsterdam under grant SG-119
computer time. The RBC Collaboration has chosen this apby the Foundation for National Computing Facilitié$CF).
proach and first results can be found[B¥]. In this paper The authors thank G. Colangelo for helpful comments con-
pion masses down to 390 MeV are used, albeit on a coarseerning the extrapolation in the pion mass. J.v.d.H. thanks S.
lattice. Their results obtained so far at two |&@f points,  Sharpe for many stimulating discussions.

ACKNOWLEDGMENTS

[1] K. Barad, M. Ogilvie, and C. Rebbi, Phys. Left43B 222 [17] B. Sheikholeslami and R. Wohlert, Nucl. PhyB259, 572

(1984. (1985.
[2] J. van der Heide, M. Lutterot, J. H. Koch, and E. Laermann,[18] M. Luscher, S. Sint, R. Sommer, P. Weisz, and U. Wolff, Nucl.
Phys. Lett. B566, 131 (2003. Phys.B491, 323(1997.
[3] J. van der Heide, hep-lat/0309183. [19] R. G. Edwards, U. M. Heller, and T. R. Klassen, Nucl. Phys.
[4] M. W. Hecht and T. A. DeGrand, Phys. Rev. &, 2155 B517, 377 (1998,

[20] T. Bhattacharya, R. Gupta, W.-J. Lee, and S. R. Sharpe, Phys.

(1992. ) Rev. D63, 074505(2001).
[5] E. Laermann and P Schmidt, Eur. Phys. 2@ 541 (2002. [21] UKQCD Collaboration, P. Lacock, A. McKerrell, C. Michael,
[6] R. Gupta, D. Daniel, and J. Grandy, Phys. RevA® 3330 |. M. Stopher, and P. W. Stephenson, Phys. Re61D6403
(1993. (1995.
[7] M.-C. Chu, M. Lissia, and J. W. Negele, Nucl. Ph360, 31 [22] M. Gockeleret al, Phys. Rev. D67, 5562(1998.
(1991 [23] UKQCD Collaboration, K. C. Bowleet al, Phys. Rev. D62,
[8] W. Wilcox and K.-F. Liu, Phys. Lett. B72 62 (1986. 054506(2000.
[9] C. Alexandrou, P. de Forcrand, and A. Tsapalis, Phys. Rev. 024] S. R. Sharpe, Nucl. Phys. @roc. Supp). 30, 213(1993.
66, 094503(2002. [25] NA7 Collaboration, S. R. Amendoliet al, Nucl. PhysB277,
[10] G. Martinelli and C. T. Sachrajda, Nucl. PhyB306, 865 168(1986.
(1988. [26] QCDSF-UKQCD Collaboration, T. Bakeyet al., Phys. Lett.
[11] T. Draper, R. M. Woloshyn, W. Wilcox, and K.-F. Liu, Nucl. B 580 197(2004.
Phys.B318 319(1989. [27] M. Burkardt, J. M. Grandy, and J. W. Negele, Ann. Phys.

(N.Y.) 238 441(1995.

[28] W. Wilcox, Phys. Rev. D66, 017502(2002.

[29] J. Gasser and H. Leutwyler, Ann. Phy@\.Y.) 158 142
(1984.

[12] L. H. Karsten and J. Smit, Nucl. PhyB183 103(1981).
[13] G. Martinelli, C. T. Sachrajda, and A. Vladikas, Nucl. Phys.
B358 212 (1991).

[14] M. Luscher, S. Sint, R. Sommer, and H. Wittig, Nucl. Phys. [30] G. Colangelo and E. Pallante, Nucl. Phg§20, 433 (1998.

B491, 344 (1_997)' [31] C. Colangelo(private communication
[15] M. Guagnelli and R. Sommer, Nucl. Phys(Broc. Supp). 63, [32] C. J. Bebelet al, Phys. Rev. DL7, 1693(1978.

886 (1998. [33] Jefferson Lab fpi) Collaboration, J. Volmeet al, Phys. Rev.
[16] K. Fabricius and O. Haan, Phys. Let43B, 495(1984; A. D. Lett. 86, 1713(2001).
Kennedy and B. J. Pendletoibjd. 156B, 393 (1985. [34] RBC Collaboration, Y. Nemoto, hep-lat/0309173.

094511-10



