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Determination of the monopole condensate from monopole action in quenched &) QCD
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We study the effective monopole action obtained in the maximal Abelian projection of the quenc{®d SU
lattice QCD. We determine the quadratic part of the lattice action using analytical blocking from the continuum
dual superconductor model to the lattice model. The leading contribution to the quadratic action depends
explicitly on the value of the monopole condensate. We show that the analytical monopole action matches the
numerically obtained action in quenched @UQCD with a good accuracy. The comparison of numerical and
analytical results gives us the value of the monopole condensate in quenctigd GTD, »=243(42)

MeV.
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[. INTRODUCTION cal applications because the condensate is the only dimen-
sional parameter of the dual model.
The dual superconductor mechanigiy is one of the In Ref.[8] the SU?2) string profile was compared with the

most promising mechanisms invented to explain the confineelassical string solution of the dual superconductor in the
ment of color in non-Abelian gauge theories. The basic eleeontinuum, and the mass of the dual gauge boddn,
ment of this mechanism is the existence of specific field=g#, and the monopole mass were shown to be etual,
configurations—called Abelian monopoles—in the QCDMg~Mg~1.3 GeV. These values are close to the results of
vacuum. The monopoles are identified with the help of theother groups. The value of the monopole condensate derived
Abelian projection metho{2], which uses the partial gauge from the chromoelectric string analysis of R¢8] is 7
fixing of the SUN) gauge symmetry up to an Abelian sub- =194(19) MeV.
group. The Abelian monopoles appear naturally in the Abe- In this paper we determine the value of the monopole
lian gauge as a result of the compactness of the residuabndensate from the effective monopole action obtained in
Abelian group. the numerical simulations of quenched &WJQCD. Our
Various numerical simulations indicate that the Abelianstrategy is the following. We relate thiattice monopole
monopoles may be responsible for the confinement of quarksiodel on the lattice with theontinuumdual superconductor
(for a review, see, e.g., Ref3]). The Abelian monopoles model using the approach of blocking of the continuum vari-
provide a dominant contribution to the tension of the funda-ables to the lattice proposed in Ré¢fl6]. Generally, this
mental chromoelectric strinjgt—6]. In Ref.[7] it was quali- method allows us to construct perfect lattice actions and op-
tatively shown that the monopole condensate is formed in therators in various field theories. In particular, this method
low-temperaturéconfinementphase and it disappears in the was used in Ref{17] for the quenched S@@) QCD at high
high-temperaturédeconfinementphase. The energy profile temperatures to study the dynamics of the static monopoles.
of the chromoelectric string as well as the field distributionThe lattice monopole action obtained with the help of such
inside it can be described with good accuracy by the duablocking depends on the parameters of the original con-
superconductor mod¢6,8,9. tinuum model. The comparison of the analytical form of the
There were various attempts to determine the dual Lafattice monopole action with the corresponding numerical
grangian and the values of its couplif@s-14]. The simplest  results allows us in general to fix the parameters of the con-
version of the dual superconductor model for(8Ugauge tinuum model. In this paper we concentrate on the determi-
theory contains three independent parameters: the mass whtion of the monopole condensate in the quenche@)SU
the monopoleM 4 , the monopole chargg and the value of QCD in the maximal Abelian projectiofi8].
the monopole condensate,, Knowledge of the values of The plan of the paper is the following: In Sec. Il we
these couplings is important because of the possible phenorpropose the method of blocking from continuum to the lat-
enological applications. The parameters of the dual modedice of the monopole currents in four-dimensional space-
determine the basic properties of the chromoelectric stringtime. We compute the quadratic part of the monopole action
the string tension, the thickness of the string, the rigidity ofanalytically in Sec. IIl, while the numerical computation is
the string[15], etc. These characteristics must affect in turndone in Sec. IV. In Sec. V we compare the numerical data
the spectrum of the quark bound states. The parameters of
the model determine also the strength and sign of the forces—
acting between the strings at large distances. The value of thé'in this paper we quote the first set of parameters of IR&f.
monopole condensate plays a central role in phenomenologivhich is self-consistent.
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observables by the continuum model. In Ré&f7] the block-
y ing was performed for the monopoles in three dimensions,
0. / : : /2 which are instantonlike objects. Below we generalize this
L, W AN approach to the 4D case.
9 - & s / k The partition function of the dual superconductor can be
T s E /‘ described in terms of the monopole trajectories as follows:

i o s 8 _ Al E2 4
@ C o C Zmo Dkf DB exp[ fd Xng FoTiKL(X)B (%)

FIG. 1. Blocking of the continuum monopoles to the lattice in
(a) three and(b) four dimensions. In three dimensions the charge —sim(k)] , 1)
corresponding to the lattice culkis given by the total magnetic
charge of the continuum monopoles inside this cube. In four dimen-
sions the charge is proportional to the linking number of the monowhereF ,,=3,B,—43,B,, is the field stress tensor of the dual
pole trajectoryk with the surface of the 3D cub@ gauge field,, , andS;, (k) is the action of the closed mono-
pole currents,

with the analytically calculated action and fix the value of ~
the monopole condensate. Our conclusions are presented in K, (X)= 3g dTaXM( 7) SDX=X(7)). ©)
the last section. # ar

Here the 4D vector functiow «(7) defines the trajectory of
Il. BLOCKING FROM THE CONTINUUM the monopole current. In EqL) the integration is carried out
IN'FOUR DIMENSIONS over the dual gauge fields and over all possible monopole

The method of blocking of continuum variables to thetrajectorles(the sum over disconnected parts of the mono-

lattice [16,17] constructs the lattice modéat given finite pole trajegtorigs is also impl_icitly assurT)ed‘ L
lattice spacingb) starting from a model in continuum. The The action in Eq(1) contains three parts: the kinetic term

essence of this method is simple. Consider, for example, thfr the dual gauge field, the interaction of the dual gauge

blocking of the topological variables, such as the monopol ield with the monopole current, and_the self-interaction of
charge in three space-time dimensié®g]. In three dimen- the monopole currents. The integration over the monopole

sions the monopoles are instantons characterized by their pg_ajectories gives the Lagrangian of the dual Abelian Higgs

sitions and the magnetic charges. Suppose that the dynamieqsc’del[lo]:
of these monopole charges in continuum is described by a
Coulomb gas model with two parameters, the fugagjtand Zmon“ZDAHM=f Dq)f DB exp{ _J d*x
the monopole chargg. Let us superimpose a cubic lattice

with the lattice spacindgy on a particular configuration of the

monopoles. Each of the lattice three-dimensioi3®) cells 1 _

can be characterized by the integer magnetic charge it con- + §|(5M+IBM)¢|2+V((D)
tains. Thus we can relate the continuum configuration of the
monopoles to the lattice configuration characterized by mags here @

netic charge inside each cefiee Fig. 1 for an illustration interactions of the monopole trajectories described by the

The |ne§: St%p ils tto ccl)nstrl;ct::] a “Iattic?_ qur?ntityrt_)r ?dx_ 3 ctionS;; in Eq. (1) lead to the self-interaction of the mono-
ampié, the absolute value ot the magnetic charge INSIAe a Sy fia|q described by the potential terd(®) in Eq. (3).

cell) and calculate analytically the average of this quantity Now let us embed the hypercubic lattice with the lattice

over all cqnflguratlons of th_e continuum monopoles._The pacingb into the continuum space. The 3D cubes are de-
value of this averaged quantity would depend on the size of.

the cellb and on the parameters of the continuum modelmed as follows:

(i.e., on¢ andg). Similarly, one can study numerically the 1

same quantity in a pure lattice modek., in the dimension- Csu= [ b( S,— —) <x,<b

ally reduced quenched $2) QCD as in Ref[17]], and re-

late both numerical and analytical results for the density with

each other. Since the averaged density depends on the scale for v#u and x,=bs,

b, the fitting of the numerical results to the analytically ob-

tained formula gives information about the parameters of thevheres, is the dimensionless lattice coordinate of the lattice

continuum model{ andg. The fitting also provides infor- cubeCs , andx, is the continuum coordinate. The direction

mation about the self-consistency of this approach, or, irof the 3D cube in 4D space is defined by the Lorentz index

other words, about the validity of the description of the lat- .

tice quantities by the continuum model. As in the 3D example described above, let us consider a
Therefore this method allows us to describe the latticeconfiguration of the monopole currents superimposed on the

: ()

is the complex monopole field. The self-

1
+ —
S, 2

, 4
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lattice (4). The monopole chargK inside the lattice cube _ 1( . . e

Cs,, is equal to the total charge of the continuum monopoles, B.(6#:x)= EJ d'y€,,059,D )(X—Y)% OcZop(Y)-

k, which pass through this cube. Geometrically, the total (10)
monopole corresponds to the linking number between the

cube C and the monopole trajectorids (an illustration is

presented in Fig.)1 The mutual orientation of the cube and To derive Eqs(9) and(10) from Eq.(8) we used relatiors).
the monopole trajectory is obviously important. The corre- Substituting Eq(9) into Eq. (1) we get

sponding mathematical expression for the monopole charge

K¢ inside the cub& is a generalization of the Gauss linking .
number to the 4D space-time: Zmon:$ k| DB 2 11 f dbe exp[ i> 6K
Kc(K)=L(3C,k) Keezl © c
1
l H B .
zif d4xf Y €,053 S (X)kea(y) 95D D(x—y) _f d4L—ngiV+|kM(x)Bﬂ(x)+BM(ﬁ,x)]
1 (X=y)
d*x fdyemﬁz = (X)Ky(Y) £ —Sm(k)]- (11
an? Ix=yl*
(5

One can see that the substitution of the uri@y effectively
shifts the gauge field in the interaction term with the mono-
pole current,BMHBH+~BM. Therefore the integration over
the monopole trajectorids, in Eq.(11) is very similar to the

X _ integration that relates Eql) and Eq.(3). Thus, we get
07 ﬁ( )5<4>[ “X(M1, ©)

Here the functlorE‘;C(x) is the 2D 6 function representing
the boundarydsC of the cubeC. In general form it can be
written as follows:

Eaﬁ X)—J dTld’Tz ﬁ

. Zmon® ZDAHM
where the 4D vectax(7) parametrizes the position of the 2D
surfaceX. The functionD® in Eq. (5) is the inverse La- :f Do | DB S
placian in four dimensions>D“(x) = 5“)(x). It is obvi- KceZ
ous that the lattice current§s , are closed,

9'K=0, 7 Xexp{iE HCKC—f d*x
C

due to the conservation of the continuum monopole charge,
d,k,=0. In Eq. (7) the symbold’ denotes the backward
derivative on the lattice. We present a proof of K@) in

I1 fldac

C

1 2
ag

1
+5|{(9M+i[Bﬂ(X)+§M(9;X)]}<I>|2+V(<I>)

Appendix A.
Let us rewrite the dual superconductor mo¢®lin terms (12
of the lattice current&, Eg. (5). To this end we insert the
unity, Summarizing this section, we rewrite the continuum dual
superconductor model in terms of the lattice monopole cur-
1= 2 11 6(Kc=L(ack), (8  rentsk:
KcelZ
into the partition function(1) (here § represents the Kro-
p (D) ( p ZoAHM= 2 e SmorK), (13

necker symbogl Then we integrate the continuum degrees of
freedom,k, andB,,, getting the partition function in terms
of the lattice charge&. The simplest way to do so is to
represent the product of the Kronecker symbols in [Bgin
terms of the integrals,

1- 3 |11 fj;dec

KceZ | C

X, €

where the monopole action is defined via the lattice Fourier
transformation:

e—smonm:f Doc exp—3(0)+i(6,K)},  (14)

XeXp['; OcKe 'f Xk, (X)BL( e,x)], ©) and the action of the compact lattice fieldss expressed in
terms of the dual Abelian Higgs modéAHM) in the con-
where tinuum:
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- 1 sinx,/2
e’s(a)szdbeBex —f d'x| —F2, Qu0=1I1 =75~ (19
492 won
1 To get Eq.(18) from Eqg. (10) we notice that
+§|{aﬂ+i(B#+~BM(0)}<I>|2+V(CI>) .
5 €vap ap(X) =0, VG(X), (20)

(19

Equations(10), and (13)—(15) are the main result of this Where Vg is the characteristic function of the lattice cell
section. Cs .- Namely, the characteristic function of the 3D cube

with the lattice coordinats,, and the direction is

IIl. QUADRATIC PART OF THE MONOPOLE ACTION

An exact integration over the monopaieand dual gauge VilCoaX) = 0,0 0Xa™ bs“)yl;la O(b(s,+12)=x,)

gluonB,, fields in Eq.(15) is impossible in a general case.

However, in this paper we are interested in the quadratic part X0 (x,—b(s,~1/2), (21)

of the monopole action that is dominated by the contribution

of the one dual gluon exchange. Therefore we do not conwhere®(x) is the Heaviside function. The Fourier transform
sider the effect of the fluctuations of the monopole fidld  Of the function(21) is

which lead to the higher-point interactions in the effective .

monopole actioh[19]. Effectively, the neglect of the quan- V,(CyoP) =6, .b°Q (pb)e PP, (22)
tum fluctuations of the monopole field corresponds to a mean

field approximation with respect to this fiel@—(®). In  Substituting Eq(18) into Eq.(17) and changing the momen-
this case the AHM action becomes quadratic and @§  tum variableg=bp, we get the following expression for the
can be rewritten as quadratic action:

2

~ 7°b? -1
oo | DBeXp{_ [ ao $0="0-3 3 OyuFok i babear, (29
2

s,s’ a,a’

where
X

1, 7 -
FFW+?[B#+BM(0)]2 . (16
g

f d4q qzéaa’_qaqa’

4 2 2

where 7= |(®)| is the monopole condensate. 2mT 4w
The Gaussian integration over the dual gauge field can be > iq(s’' —s) 24
done explicitly. In momentum space the effective actiop Qul@Qu (e ' 24

to an irrelevant additive constameads as follows: Here we have introduced the dimensionless parameter

2 4 2
~ 7 d'p PO PuPue w=Mgb. (25)
5(0)=?J 5 ABM(H,p)I;_'——M:BM(G,—p), B
(2m) P B 17) The next step is to substitute ER3) into Eq. (14) and
integrate over the variablesto get the quadratic monopole
~ ~ action:
whereB ,(6,p) is related to the field ,(6,x), given in Eq.
(10), by a continuum Fourier transformation:
Smon(K):E E Ks,aSss',aa’Ks’,a/:
3 s,s’ a,a’
BL.(6.p)=— 2 [*5,.Qu(Pb)
p S,a 1
. Sso aa’:—f ! aal (26)
~P.P.Qu(pb)Je PPIp, (18 T 2
with We could not find an explicit form for the operat#i ! and

therefore we calculate it in the— o limit. This limit corre-
sponds to large values tfthat are consistent with the qua-
2The fluctuations of the monopole fields and their effect on thedratic form of the monopole actiofi9]. The details of the
blocked monopole action will be considered in a subsequent papecalculation are given in Appendix B, and the result is
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2 9,5 TOyeHDI(5=8),)

-
G881+ —H (58|
y7

T
(27)

ID(aa)(g) = z Asi 55.]- 5ska

cyclic
ij,k#*a

I1 A

Fa

Gu(8)= 2 Aghgds, HMu(S)=
cyclic

ijk#a

Here Df)(i) is the 3D Laplacian acting in a time slice

perpendicular to the directiom, s is the Kronecker symbol,
A;=D®)(s) is the 1D Laplacian operatadouble deriva-
tive) defined in Eq(B15), I'(a,x) is the incomplete gamma
function, andtyy is an ultraviolet cutoff. In Eq(27) expo-
nentially suppressed corrections of the or@e~©°"s*) are
omitted.

Inverting the operatof27) and expanding it in inverse
powers ofu we get the quadratic operatSiin the monopole
action (26):

277 1 2 1 1
S ’aa’:—aaa’a ! D; __D; gaD;
ss', ,72b2r Sa,Sa ILLF
1
+ (47D ,'G,D,*G, D"
T2

—3rD, "1, D H+0(u3) (29)

(=),

whereD,=D®  I'=I'(0ty,yM3b?). The operator expan-
sion in EqQ.(28) is written in symbolic form.

IV. MONOPOLE ACTION IN QUENCHED SU (2) QCD

PHYSICALREVIEW D 69, 094508 (2004

with respect to the S(2) gauge transformationd(s,u)
—U(s,0)=Q(s)U(s,u)QT(s+ ). The local condition
of maximization can be written in the continuum limit
as the differential equation d(+igA>)(A;—iA%)=0.
Both this condition and the functiongR9) are invariant
under residual () gauge transformationsQ”®(w)
=diage'“®,e 1)),

After the gauge fixing is done we get the Abelian vari-
ables applying the Abelian projection to the non-Abelian link
variables. The Abelian gauge field is extracted from the
SU(2) link variables as follows:

5 _([1—|C(S,,LL)|2]”2 —c*(s,u) )
e e O R P YA L
(U(S,,LL) 0 )
“| o u*(s,u)/’ 30

whereu(s, ) =exdid(s,u)] represents the Abelian link field
andc(s,u) corresponds to the chargéaff-diagona) matter
fields. The Abelian field strength,,,(s) € (—4m,4m) is de-
fined on the lattice plaquettes by the Abelian link angle

0(s,u) €[ — m,m) as follows:0,,,(s) = 6(s,u) + O(S+ 1, v)
—6(s+ v, ;) — 6(s,v).

To construct the Abelian monopoles we decompose the
field strengthd,,,(s) into two parts,

0,,(S)=0,,(S)+2mm,,(s), (31)

where 6,,(s) e[ —, ) is interpreted as the electromag-
netic flux through the plaquette amnd,,(s) can be regarded
as a number of the Dirac strings piercing the plaquette. The
elementary(i.e., defined on the 3lattice cubes monopole
currents are determined by the DeGrand-Tousdga&id} for-
mula:

1
K,(s)=

Eeﬂupoavmpo(s+ IZL)a (32)

where ¢ is the forward lattice derivative. The elementary
monopole current is defined on a link of the dual lattice and
takes values @;1,+=2. Moreover the elementary monopole

Having determined the action of the blocked monopolesurrent satisfies the conservation condition by construction,
analytically, we are going to determine the same in the

guenched S(2) QCD using numerical calculations. We
simulate the quenched $2) gluodynamics with the lattice
Wilson action,S(U)=—(B/2)ZpTrUp, wherep is the cou-
pling constant andJ, is the SUW2) plaquette constructed
from the link fields. We express all dimensional quantities in
units of the string tensiony= (440 MeV).

Our results are obtained in the maximal AbelidviA)
gauge[ 18] which is defined by the maximization of the lat-
tice functional

R=2, Tro3U(s,u) 050 (s, )],

S,

(29

9,K.(s)=0, (33
whered' is the backward derivative on the dual lattice.

Besides the elementary monopoles one can also study the
so called extended monopolg&l]. The extended monopoles
are usually used to define the monopole current on a cube of
a large size without getting artificial lattice corrections of the
order of the lattice spacing, Then?® extended monopole is
defined on a sublattice with the lattice spacimgna. The
explicit construction of the extended monopoles corresponds
to a block spin transformation of the monopole currents with
the scale facton,
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TABLE |. The quadratic interactions in the monopole action determined numerically.

Coupling Distance Type Coupling Distance Type
91 (0,0,0,0 ku(s) 15 (2,1,1,0 K, (s+2m+v+p)
g2 (1,0,0,0 K, (s+ 1) O16 (1,2,1,0 K, (s+p+2v+p)
93 (0,1,0,0 K,(s+7) 917 0,212 K,(s+2v+p+0)
4 (1,1,0,0 K,(s+u+7v) 18 (2,112 K,(s+2u+v+p+0)
s (0,1,1,0 K,(s+v+p) 919 (1,212 K, (s+p+2v+p+a)
96 (2,0,0,0 k,(s+2u) 920 (2,200 K, (s+2u+2v)
g7 (0,2,0,0 k,(s+2v) 921 (0,2,2,0 k,(s+2v+2p)
s (1,1,12 K, (s+m+v+p+0) U22 (3,0,0,0 K,(s+3x)
9o (1,1,1,0 K, (s+p+v+p) 23 (0,3,0,0 k,(s+37)
910 (0,1,1,2 K,(s+v+p+0) U24 (2,2,1,0 K, (s+2m+2v+p)
911 (2,1,0,0 K, (s+2m+v) 25 (1,2,2,0 K, (s+p+2v+2p)
912 (1,2,0,0 K, (s+p+2v) 26 0,2,2,3 K,(s+2v+2p+0)
913 0,2,1,0 k,(s+2v+p) 927 (2,1,1,0 k,(s+2u+2v+p)
O14 (2,1,0,0 k,(s+2u+7)

n-1 The action determined above takes into account all mono-

k(s)= > k,[ns+(n—1)p+iv+jp+lo]l. (34  pole trajectories. However, a typical monopole configuration
LiI=0 in the confinement phase consists of one large monopole
trajectory (percolating cluster supplemented by a lot of
The spacinga of the original lattice and, consequently, the small (ultraviole) monopole cluster$24]. The percolating
artificial lattice correction$which are of the order oD(a)] cluster fills the whole volume of the lattice and it makes a
can be arbitrarily small while the size of the blocked mono-dominant contribution to the tension of the chromoelectric
pole can be fixed in physical units. In our studied we havestring. The properties of the largest percolating cluster were
studiedn=2,3,4,6,8 blocked monopoles on a*4attice. studied both numericallj24—26 and analytically{27]. The
Applying consecutively the gauge fixing and the Abelianpercolating cluster is associated with the monopole conden-
projection and using formul#34), one can construct the sate[28,22.
Abelian monopole ensemble for any ensemble of the non- If our determination of the monopole action is self-
Abelian fields of quenched SP) QCD. Then using an in- consistent, then at large scalésthe ultraviolet clusters
verse Monte Carlo method one can get the effective monashould not give any contribution neither to the monopole
pole action. The details of this procedure can be found iraction nor to the monopole condensate. The correctness of
Refs.[19,22,23. In our simulations we have used 200 con- the first statement for the leading parametgr, was con-
figurations on a 48lattice. The maximal Abelian gauge was firmed in Ref.[25]. In Figs. 3a) and 3b) we show the cou-

fixed with the help of the standard iterative procedure. plings g, andg, for all clusters and for the percolating clus-
In general, the monopole actioByx", can be represented ter. These couplings show an approximate scaling: they
as a sum of the@-point (n=2) operatorsS;, Refs.[19,22: depend only on the produbt=an and do not depend on the

variablesa andn separately when=3 are considered. The
largerb, the better the scaling.
Sk]= 2 9iS[k], (35 The comparison of the couplings computed on all clusters
1
whereg; are coupling constants. In this paper we adopt only T T g;
the two-point interactions of the forng~k,(s)k,/(s), e
which works well at large values df. Using the inverse
Monte Carlo method we calculate the monopole action pa-
rametrized by 27 couplingg;. The maximal distance be-
tween the interacting currents in this action is 3 in units of
the blocked lattice spacinh. The contributions of higher-
distance interactions are very small. The mutual separation:...l-...
and directions of the monopole currents corresponding to the
couplingsy; are summarized in Table I. We visualize the first  FIG. 2. The graphic representation of the first seven types of the

seven most essential coupling constants in the monopole agquadratic interactions in the lattice monopole action schematized in
tion in Fig. 2. Table I.
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2l < < g, n=2 ] 2._ < < g, n=2 ]
A > g, n=3 L > > g, n=3 ]
g >4 g, n=4 g: < g, n=4 ]
» © gj,n=6 - » 'Y g]) n=6 :
< A g, n=8 < s g,n=8 |
7k > < 4 8,n=2 ] 1k > 4 8yn=2 ]
(s} > gz, n= P ® > gZ’ n=3 1
| <4

q‘ﬂb > 8, n=4 % > 8, n=4

3 <« 8, o g, n=6 3 g e o &, n=6

B e Do ” A gy n=b SNPRI 8 1=8
' S ~ ' i RS » :
0- ........ |..|.Ef.e..>.|.® ....... BI ..... 21 ) E——— i 4 5 |e||>||f® ....... él ..... 2

FIG. 3. The couplingg,; andg, of the monopole actiola) for the all-cluster case an@) for the percolating cluster. In this and other
figures the error bars are smaller than the size of symbols and thebsisahown in units of the string tension.

and on the percolating cluster only are shown in Figs) 4 the monopole action on a set of closed monopole trajectories
and 4b). Again, one can clearly observe that at large scales K(). We consider six types of such monopole trajectories,
the coupling constants evaluated on the different types of thevhich are depicted in Fig. 5.

monopole ensembles coincide with each other, contrary to Let us consider the analytical prediction for the transverse

the smallb case. part of the monopole action. Since we are working in the
w>q limit, we disregardO(w 1) corrections to the qua-
V. MONOPOLE CONDENSATE FROM MONOPOLE dratic action(28). The validity of such approximation is dis-
ACTION cussed below. The leading contribution to the monopole ac-

tion evaluated on closed trajectori&$’ is
To get the value of the monopole condensate we have to
compare the monopole action calculated analytically in Sec.

() :
Il with the numerical results described in Sec. IV. To this f.(b)= S(K_ ): 2md (36)
end we first note that due to the closeness of the monopole ' KO 720?T(0p2MBtyy)
currentsK, , only the transverse part of the monopole op-

erator(28) has significance. Indeed, the shift of the quadratic M) . 0
operatorS— S+ add’ (with a being an arbitrary paramejer where|K™| is the length of the trajectork™ and
does not change the monopole acti@®) due to conserva-

tion condition(7). Therefore, in order to relate the theoretical do=7()(0,0,0=0.24808 . . .,
and numerical results we need to get the transverse part of
the 0perat0|(28). d1=D(?’)(O,O,O)—D(3)(l,0,0)
A simplest and also a practical way to extract the trans-
verse part of the quadratic monopole operator is to calculate =0.16666 . . .,
"""" | B U B L L L R
1 AR T rrerTTr T ]
2 :_ PY [ ] gjr n=2, all _: 0.50 :_' L I n=2, all —:
g © m g, n=6,all e m g, n=6,dll
(*) g, n=2, pect g o g, n=2, pect
. o 8&p n=6, perc o &, n=6, perc
i A g, n=2,all 1 [ o A g, n=2,all 1
]_— u() v 8 n=0, all . 0'25-—4 (4] v & n=6, all ]
: i o a g, n=2,perc ] AA a © a g, n=2,perc ]
A v &, n=6,perc 1 [ A v g, n=6, perc
A o 2 ] [ A @ 4
A
[ v2 A @ 1 - vV A np ]
L v o 4 L v v o] a 4
0' ........ L Y % g ... 8.1 000' ........ Liswisiigs i AP s 4l T E._
1 2 3 ’ 1 2 3 b
(a) b (b)

FIG. 4. The comparison of the coupling® g, , and(b) g3, computed for the all-cluster case and for the percolating cluster.
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S d,=D®(0,0,0-D®(2,0,0
A ' i 3)
:4 <« K( —
< =0.2098% ...,
" K? K” ds=D)(0,0,0 - $D)(1,0,0
Y .1 < A

, - 1ipG)1,1,0=0.1769% . ..
FIG. 5. Set of lattice currents used to get transverse elenfients

of the monopole action operator. The leftmost cuk/® is closed
through boundary conditions.

are the linear combinations of the values of the inverse 3D

d,=D®)0,0,0— 2D®)(1,0,0— {D®(2,0,0 Laplacian D®) at certain points. The numerical values
shown in Eq.(37) correspond to the lattice 38Below we
=0.1810%. . ., call the combinationg( of the g couplings as “transverse

couplings.”

d;=D®(0,0,00— $D®)(1,0,0 Using Table | one can get the transverse combinations of
couplings corresponding to the numerically calculated ac-

- 3D0®)(3,0,0=0.18122 ..., (37) tion:
|
fo=01+202+296+ 2022, f1=0:—0s,

2 1 3 1 1 1
f,=01+ 5(92—95—94) — 397, f3=01+0,— 293_94"‘ 396~ 2911 7923,

f4=01+0,— 97— 012, fs=01— 503~ 50s. (38)

Note that the transverse components of the analytical actiobecause we are working in the limit—c. One the other
(36) with two free parameters should describe six transverseand, the higher value= 8, corresponds to the small lattice
combinations(38) obtained numerically. We fit thé com-  size of the coarse lattice N(n)*=6% which may lead to
ponents by(36) independently for each=0,1,...,5 and large finite-volume artifacts. Therefore we concentratenon
then compare in Table Il the fitting parameterandmyy as =6 blocked monopoles.

a self-consistency test. Since we are working in the1 The fits of the transverse couplings of the monopole ac-
limit we fitted the numerical data for the=6 blocked tion corresponding both to the all monopole cluster case and
monopoles. A lower value of corresponds to the smaller to the percolating cluster are visualized in Fig$a)6and
scaleb and in this case we notice sizable deviations of the6(b), respectively. The best fit parameters obtained from the
numerical results from our fitting function. This is expectedfits of different transverse couplings (Table 1) are very

TABLE Il. The values of the condensaigand the ultraviolet cutoft,,, obtained in a set of independent
fits of then=6 transverse monopole couplin@8) by function(36) for the all monopole cluster case and for
the percolating monopole cluster. The best parameters of the overall fit of the transverse cdyplingsf g
are shown in the last row.

o VMg /o
Coupling All clusters Max cluster All clusters Max cluster
fo 0.521(25) 0.50923) 0.0489) 0.0428)
fq 0.57141 0.58045) 0.02Q9) 0.02210)
o 0.56534) 0.537137) 0.0319) 0.0259)
fa 0.54432) 0.52235) 0.0329) 0.0269)
fa 0.55428) 0.53230) 0.0419) 0.0349)
fg 0.59138) 0.59042) 0.0259) 0.02610)
Average 0.55@13) 0.53413) 0.0364) 0.0314)
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FIG. 6. The fits of then=6 transverse monopole coupling®d) by function (36) (a) for the all monopole cluster case affg for the
percolating monopole cluster.

close to each other, which provides a nice self-consistencfor the higher-order corrections to the effective monopole
test of our approach. Moreover, the value of the monopoldagrangian19].

condensatey calculated in largds limit from the all-cluster The comparison of the numerical and analytical results for
case and the percolating cluster monopole action are thée blocked action gives us the value of the monopole con-
same within error bars, as expected. The numerical value dfensate,n=243(42) MeV. This value is in a quantitative
the monopole condensatebtained by averaging of the re- agreement with another estimation of the monopole conden-

sults of the six independent fitis »=243(6) MeV. sate, 7=194(19) MeV, obtained in Re{8] using a com-
Finally, let us discuss the validity of the large approxi- pletely different method. Moreover, we have shown that our

mation used in this paper. We are working in the range O]method is self-consistent, since is allows to describe various

\/— quadratic interaction of the monopole action using approxi-
momentabyo~1-4. The mass of the dual gauge bosonmately the same values of the monopole condensate.

obtained from the fitting of the string profile by a classical A few words about the ultraviolet cutoff,, are now in
string solution[8] is estimated asMg~1.3 Ge\fa3\/;. order. This cutoff—which enters the effective monopole ac-
Therefore the value ofu, Eg. (25), is in the rangeu  tion (28)—is an independent fitting parameter of the effec-
~3-12. There are two types of corrections to our analyticative monopole action at large scales, E86). In this paper
results: (i) the exponentially suppressed corrections to theve have neglected the fluctuations of the monopole scalar
operator 71 (discussed in Appendix Bare smaller than fields since we were working at large scatesEffectively,

5%; (ii) the O(w 1) correction of Eq(28) is of the order of this corresponds to taking the London limit of the Ginzburg-

10% because of the local nature of teand H operators, Landau model. The London limit possesses known logarith-
and due to low values of the inverse Laplacian mic divergencesi.e., the tension of the Abrikosov vortex is

(3) ; : "a logarithmically divergent function of an ultraviolet scale
D (0,0,0y=1/4. Thus we estimate the systematic correc he physics of the monopole field fluctuations is “hidden” in

tions to the value of the monopole condensate to be of th e value of this cutoff. Strictly speaking, we have to renor-
der of 15%. Taking into account the systematic errors wi ; ' . ' :
or 9 y nalize the model and consider the monopole field fluctua-

get n=243(42) MeV. tions to relate a logarithmic divergence to the values of the
physical parameters entering the Lagrangian of the model.
VI. DISCUSSION AND CONCLUSION This procedure becomes meaningful at small schles
] At small values of the scalethe higher-order interactions

We have obtained the value of the monopole condensatgour-point, six-point, etg. become essentidtl9]. Thus at
using the method of blocking from the continuum to theshort distances the scalar monopole field contributes to the
lattice. Namely, we have obtained numerically the effectiveeffective monopole action. From the point of view of the
monopole action in the maximal Abelian projection of blocking from the continuum, at small values lothe cou-
quenched S(2) lattice QCD. Then we have calculated ana- plings of the monopole action become dependent on the pa-
lytically the effective lattice monopole action starting from rameters of the potential of the monopole field. Thus, a com-
the continuum dual Ginzburg-Landau model. In our simula-parison of the effective monopole action with the blocked
tions we restricted ourselves to the large values of the paran&ction at small scalels may allow us to determine the shape
eterb. This parameter defines a scale at which the monopoléf the monopole potential. We will discuss this problem in a
charge is measured on the lattice. In lalyémit the action ~ forthcoming publicatior29].
of the monopoles is dominated by the quadratic part, and
higher monopole interactions are suppressed. Thus in our ACKNOWLEDGMENTS
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APPENDIX A: PROOF OF CLOSENESS OF LATTICE 4
MONOPOLE CURRENTS =2ib3f %, (~p)sin(bp,/2)

4

In order to prove the relatiofi) it is convenient to rep- (2m)
resent the lattice monopole curref® as the integral over X Q. (ph)e (P9, (A4)
momentum. Using Eq20) and Eq.(22) we get 7

1 Using Eqg. (199 we notice that 2 sifip,/2)Q,(pb)

- =i — 3 —ib(p,s) =p,Q(pb), where the quantity Q(x)=II,[(sinx,/2)/

ZE”VQBEQB(CV'S’X) '(PuBiy ™ P10, DQ5(PD)E ’ (xV/y2)] does not carry any Lorentz index. Then Eé4)
(A1) together with the conservation of the continuum monopole

charge(A3) implies the closeness of the lattice monopole

where S, 4(C,x) =3 (x) the vectorQ, is given in Eq. currents,

(19), and no summatlon over the indexis assumed. Then

Eq. (5) can be rewritten as follows: 4

, dp _
(a,K)S:'baf (2 )4pyky(—p)Q(pb)e*'b‘p'S)Eo.
m

d4

p
K3v7: - b3J (277)4(p,u511‘y_ pya,u,y)

APPENDIX B: CALCULATION OF THE OPERATOR F 1

XEM(—p)&Qy(pb)e‘ib(p's) In this appendix we calculate the expression for the in-
2 verse operatotF 1, presented in Eq(24), for u=Mgb
>1. Let us consider first the diagonal components of the

d'p _ _ inverse operatorF 1. Without loss of generality we take
3 ib(p,s)
=-b (= P)Q,(pb)e” ™, (A2) ) —,—4 ands’=0. We get

2)
~ . 4 =2 3
wherek,,(p) = fdxk,(x)e"'"¥ is the Fourier transformed Fo1 :f d'q q H sing;/2| QitlaSa+i(a.9)
continuum monopole current. There is no summation over 044 (2m)* R+ PR+ p2i=1 | Q2 '
the indexwy in Eq. (A2). To get the second line of E¢A2) (B1)
we used the closeness condition of the continuum monopole
currents, . . . " .
It is convenient to introduce the additional integral
P.K.(P)=0. (A3) .
- J Cdte A (B2)

According to Eq.(4) the lattice monopole currents; , are q§+52+ w?

associated with the centers of the three-dimensional cubes
Cs .- The positions of the cube centers are characterized by
the integer-valued coordinates The corers of the cubes and represent the integre1) in the form
belong to the original lattice while the monopole currents
themselves are associated with the dual lattice. The sites of
the dual lattice are shifted by the 4D vector (1/2,1/2,1/2,1/2) ]:So = J’ dte—# t|:>0(5;4,t)§: P.(si ,t)H P,(s; 1),
with respect to the sites of the original lattice. Thus, the -1
center of the cub& , does not belong to the dual lattice i#i (B3)
because the, coordinate of the center of the cube corre-
sponds to the time slice of the original lattice. In our coordi-
nates, the monopole current defined on the cgg must ~ Where
be associated with the poirts=s+ /2 belonging to the
dual lattice. = dg 1
Thus, the closeness conditi¢) at the site*s of the dual Py (s,t)= f e tatHiasm _ g-s%at (B4)
lattice is —=2m 2wt
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= dg _(q) e *
Pl(S,t)=4fxzsmz(5 g ta"tias Erf(x)=sgnx)— —[1+0O(x ?)] for x>1. (B9)
X
1 2 2 2 . . .
=— (e~ (T4 g (s=1)7at_ pg=s/aty Therefore at general values sthe expressiotiB1) is given
2\/; by a sum of integrals of the form
(B5)
dq | sing/2\ 2 I(,u,~s)=f dt exp{— u’t—s%t+Clogt}, (B10)
Past)=| — g tias °
-2\ /2
whereC is a constant of the order of unity and the quarﬁity
= \/7(e (sT1)%4t L o= (s=1)M4t_o 7s2/4t) depends on the value affi.e., s=s/2,(s—1)/2, etc]. The
value ofs is either of the order of unity or zero. At-1 and
1 st+1 large 1 we getl(u,s)~exp—2ust<1. Thus the integral
+ —| (s+ 1)Erf( ) (B10) with's#0 is exponentially suppressed and therefore it
2\/— will be neglected below. The leading contribution to the op-
L eratorF ! comes from the integrals of the for(810) with
s ~ .
s=0, which are saturated at small
+ - . . .
(s-1 Erf( 2\/") 25Erf( \/")] (B6) Using the expansiofB9) we get to leading order in the
limit t—0:
and Erf(x) is the error function
1
Po(s,t)= —— 8+ O(e st (B11
Erf(x f dye V', 0 ot
To calculate the off-diagonal components of the inverse 1
operatorF ~ ! we take (,v)=(1,2) ands’' =0 (again, with- Pi(s,t)=— ——A +0O(e sty (B12)
out any loss of generalify 2\/5
F o2

t
P,(s,t)= \[;Ag— Ss+0(e ™%, (B13)

4 _ 2 P 2
—f dq 019, 1 smq|/2 (smqllz) @9
( =3

] Pa(s,t)=0(e sty (B14)
_ ” —,uzt : X
fo dte Il;[l P3(s; ’t),l:[a Pi(si 1), B7)  where
where 1, s=1-1
] 5 1, s=0 A 5 0
= aq q 2. s ; sT) ~ 4 ST
— __ainl — | e—ta*tias 0, otherwise, )
Ps(s,t) ZJ_OOZWSIH(Z)E 0, otherwise

(B15)

i
_ (e~ (25~ 1)2/1a_e—(25+ 1)2/1&)_ (B8)

are the Kronecker symbol and the one-dimensional lattice
2\t Laplacian, respectively.

Equations(B1)—(B8) represent the exact expressions for the According to Eqs(B7) and(Bl4), the elements withu

diagonal and off-diagonal elements of the inverse operato?&” of the gggator}' are exponentially suppressed,

F~1. Unfortunately, due to the presence of the Erf functions” x#»~ O(e™%"¥). As for the diagonal elements of this

in Pl, Eq.(B5), the integralgB1) and(B7) cannot be taken ©OPeratoru=wv, we get

analytically. However, in the limif.— o0, which corresponds

to Eq. (25 concerning large blocking scalbs leading con- 1 (o

tributions to these integrals can be easily estimated. F 5_0,144= — J
Let us first consider Eq(B1). The main contribution to 4m?

this integral comes from the region of smal/At smallt the

error function can be represented as + O(e consk)
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1

= 5534 T(Otyyue®)(As, 8,85, + cyclic)

3

2 3
+ —(A51A52553+ cyclic) + _2A51A52A53
M T

+O(eConshy, (B16)

PHYSICAL REVIEW D69, 094508 (2004

Here I' is the incomplete gamma function] (a,x)
=[;t* te7'dt, and “cyclic” means cyclic permutations
over the indicess;. To get Eq.(B16) we used Eqs(B3),
(B11), (B12), and (B13). We also introduced the ultraviolet
cutoff, ty, to regularize the logarithmically divergent piece
of Eq. (B16). Noticing thatD {(s)=A 8,85, +cyclic is
the 3D Laplacian, we get the final expression fér ! pre-
sented in Eq(27).
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