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Behavior of charmonium systems after deconfinement
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We present a study of charmonia in hot gluonic plasma, for temperatures up to three times the deconfinement
transition temperatur@&. . qasystems with quark masses close to the charm mass and different spin-parity
guantum numbers were studied on very fine isotropic lattices. The analysis of temporal correlators, and spectral
functions constructed from them, shows that dth¢r and 7. survive up to quite high temperatures, with little
observable change up to I.5 and then gradually weaken and disappear By .3For the scalar and axial
vector channels, serious modifications are induced by the hot medium already clhsepossibly dissoci-
ating the mesons by 1T}1.
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[. INTRODUCTION recently that meson spectral functions, which are directly
related to the real-time correlators, can be extracted from
The behavior of strongly interacting matter in a hot andtemporal correlators calculated on the lattice using the maxi-
dense environment has been a subject of considerable themrum entropy methodMEM) [4,5]. Some earlier investiga-
retical and experimental research. At very high temperaturegons of meson spectral functiofithout the use of MEM
and densities, hadronic matter is expected to undergo a phagre presented ifi6]. The method has been successfully
transition(or crossoverto a deconfined plasma state. Dedi- applied at zero temperatufd,5,7,9. Additional difficulties
cated heavy-ion collision experiments are aiming to Creatgyre present at finite temperature because of the finite physical
this state, the study of which will enrich our understanding Ofextent of the Euclidean time direction. However, the methods
strong in_teractions and which_ is also directly r_elevant_ for theyt Ret. [5] were applied successfully to gain qualitative in-
early Universe. The suppression of g peak in the dilep-  ¢qmation about the medium modification of mesonic states

tpohnassg?r(:rr;?tqiolr? Err‘]isz“g‘ri S:J%?Lémcpho;:?nn;n?;gr?\?; S?I&R/'Z/vith temperaturg9—11]. Such studies have provided useful
as bound states even in a deconfined medium, due to Cog_uanutanve information about dilepton ratek], and quite

lomb attraction between the quarks. However, based on norllj-neXPeCted noEtriviaI structure of the low-energy spectral
relativistic arguments, Matsui and Satz predicted that alreadfpnction for thess mesonic statefl1].
at temperatures close ., binding between quarks is re-  First applications of such methods to charmonium sys-
duced enough to dissoh@ i, and they proposed its sup- tems also produced interesting and unexpected results
pression as a signal of the deconfinement transftignSev-  [12,13. The ground-state charmonia;. and J/¢, were
eral later studies, based on potential model calculationdound to survive well after the deconfinement transition, at
predicted a pattern of dissolution, with the higher excitationdeast up to temperatures of T5[12], and no significant
dissolving earlier, andJ/¢ dissolving at a temperature modifications of their masses were found on crossing the
~1.1T.[2,3]. transition temperaturgl3]. Both these features are in sharp
Since the validity of such potential model calculations atcontrast to the existing potential model studies. THe 1
high temperatures is net priori clear, a more reliable way statesy® and x., on the other hand, were found to undergo
of studying properties of charmonia in a hot medium isserious temperature modifications, possibly dissolution, al-
clearly desirable. One possibility is to directly analyze theready very close td. [12]. Later studies confirmed these
thermal Green functions of the corresponding states. For gesults, and also found evidence of the disappearance of the
long time it has been thought that numerical study of latticelS states from the spectral function at higher temperatures
is not a practical tool for calculations of dynamic properties[14,15.
of QCD at finite temperature. However, it was shown In the present paper, we are going to report a detailed
study of finite-temperature charmonium correlators and spec-
tral functions in quenched QCD using very fine isotropic

*Electronic address: saumen@physik.uni-bielefeld.de lattices, expanding on preliminary results published in
TElectronic address: karsch@physik.uni-bielefeld.de [12,15. The plan of the paper is as follows. In the next
*Electronic address: petreczk@quark.phy.bnl.gov section, we give a short discussion of the definition of the
$Electronic address: Ines.Wetzorke@desy.de spectral function and its properties. Section Il gives details
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of our lattices and simulation parameters. In Sec. IV we ex- A stable mesonic state contributesydunction-like peak
plain our analysis methods, giving a short outline of theto the spectral function,

maximum entropy method. We then present the results below .

the deconfining transition, which allows us to explain some an(Po.P) = (0] Iu|H)Pe(po) 8(p?—m7), (5
features of our analysis that are used later. Section V is the . .
central part of the paper, where we present our results for thﬂ’heremH is the mass of the state. For an gnstab!e particle
charmonium correlators and spectral functions abdye one gets a smoqther peak, W'.th the peak width bemg related
Study of the systematics is a crucial part of the MEM analy—to t_he (_1ecay W'dth' For sufficiently small det_:ay width, a
sis, at least at the current stage of the finite-temperature mé&reit-Wigner form is commonly used. As one increases the

sonic spectral function studies. Therefore, a detailed discud€mPerature, due to collision broadening the contribution of

sion of the dependence of the results of Sec. V on diﬁerenEj_e states in the spectral fun.ctio.n change, and at sufficiently
igh temperatures, the contribution from a state in the spec-

systematics follows in Sec. VI. In the next section, we dis- | functi b Hicientl kened and broadened
cuss the spatial correlators and screening masses of charnfi@' function may be sufficiently weakened and broadene
at it is not very meaningful to speak of it as a resonance

nia, which show some interesting thermal effects and lead u e
to in-medium modifications of the dispersion relations for 21YMOre. Such a change of contributions of resonance states
and eventual “disappearance of resonances” in the thermal

theJd/ 4. Finally, Sec. VIII contains a summary of our results, . ) X
along with their phenomenological implications. We also_spectral function has been studied analytically, for example

briefly discuss here some points regarding the potentiaﬂ1 thi_NﬁTbu-Jon?-Lasinio modledl in RGEHEI' Finall;t/, ?tf
model studies. Readers who are interested in heavy-ion phg_ery Igh temperatures one would expect the spectral tunc-

nomenology but not particularly interested in the details oft'ﬁn t?] consist olr(ﬂy of a sTT]ooth cotntlln?umt.startlng da';tmge.
our analysis may concentrate on Secs. V and VIII. € charm quark mass. 1he spectral Tunction as denined in

Eq. (4) can be directly accessed by high-energy heavy-ion
experiments. For example, the spectral function for the vec-
tor current is directly related to the differential thermal cross
section for the production of dilepton pair8]:

Most dynamic properties of thermal systems are incorpo-
rated in the spectral function. The spectral function _
oH(pO,ﬁ) for a given mesonic channéf in a system at dpod3p 5=0 27 pg(ePO’T—l)
temperaturel can be defined through the Fourier transform
of the real-time two-point function®~ andD <, or equiva- The presence or absence of a bound state in the spectral
lently, as the imaginary part of the Fourier transformed re{function will manifest itself in the peak structure of the dif-
tarded correlation functiofil6], ferential dilepton rate.

In finite-temperature lattice calculations, one calculates
Euclidean time propagators, usually projected to a given spa-
tial momentum:

1. SPECTRAL FUNCTION AND STATES AT FINITE
TEMPERATURE

dw 5a? 1 R
av(Po,P)- (6)

R 1 - -
ox(Po.P)= Z[Dﬁ(DO:p)_D>(po,p)],

d*x

o DR 0N, @ Cu(7)= | X HT I (034000, @

Dﬁ(<)(p0|5)=f

- - - S where( )1 means thermal average afd means ordering in
D1 (X0, X) = (JIn(X0,X)In(0,0)), Euclidean timer. This quantity is the analytic continuation
<ixe )= ( 10 ; of D7 (Xo,P),

Dy (Xg,X) =(Jn(0,0)I4(Xg,X)). 2
-
The correlatorD ;<) (x,,x) satisfy the well-known Kubo- Gu(rp)=D7(=1m.p). ®
Martin-SchwingenKMS) condition[16] Using this equation and the KMS condition, one can easily
show thatGy(, 5) is related to the spectral function, Eq.

- . -
D (X0, X) =D~ (X +1/T ). 3 (1), by an integral equation,
Inserting a complete set of states in Ef).and using Eq(3), . o .
one gets the expansion Gu(r,p)= fo dowoy(w,p)K(w,7), 9)
- (2m? E, /T En/T
= —En/T4 o= En cos =1/2T
ou(Po,p)=—7— 2 (e ='Txe =) K, 7= SOSfo(T— 1ZD)] 10

sinh(w/2T)
2
X Knl3u(0)m)] Inverting Eg. (9), one can extract spectral functions and
><54(pM—kZ+ k%), (4)  properties of hadrons from correlators calculated in lattice
QCD. In what follows, we use E@9) to extract the behavior
where Z is the partition function, an&™™ refers to the of degenerate heavy meson systems in a thermal medium
four-momenta of the stat@(m)). from finite-temperature mesonic correlators. Equatit) is
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TABLE |. Lattice parameters. The lattice spacing is obtained

oy 3 0
) . cc P
from the string tension. 0 X

E’)’sc 1SO 7c

a ! (Ge c Size T/T. No. conf. Jy=_ 11
:8 ( V) SW K¢ c H C‘ylLC 381 J/l// ( )

6.499  4.04 1494176 0.13558 %824 0.62 50 _ 3 N
48%%16 0.93 50 Cy.vs¢ P1oxc-
48312 1.24 50
48°x10 1.49 45
6.64 4.86  1.457898 0.13495 %824 0.75 100

For zero-temperature spectrum studies, smeared operators
are usually used to increase the overlap with the ground
state, so one can study the ground-state properties already

48°x16 1.12 50 from correlators at small distance. However, when one wants
48°x12 15 60 to study other properties of a channel, for example meson
7192 9.72 1.35500 0.13437 %040 0.9 85 decay constants, one has to be careful about using smeared
64°x24 1.5 80 operators. Here since we will be interested mostly in the
48°x16 2.25 100 existence versus dissolution of the states, it is tricky to use
48°x12 3.0 90 smeared operators. Smearing mimics bound states even

when there are nong9], and it is also difficult to extract
phenomenological quantities, such as the dilepton rate in Eq.

valid only in the continuum. It is not clear in general whether (6), if one works with smeared operators. Therefore, we use

G(r, 5) calculated on the lattice will satisfy the same spectralpomt-to-pomt correlators in this study. When one knows that
. . . L there are bound states, it may be better to use the smeared
representation, but it was shown in REE9] that this is the

case for the free theory operators to calculate the mass Qf the states. .
: The use of the nonperturbative clover action removes
O(a) discretization errors. However, in the case of heavy
quarks, discretization errors of ordél(am) can be large.
Ill. DETAILS OF THE LATTICE AND SIMULATION The errors in using the clover quarks due to finite mass of the
PARAMETERS quarks have been discussed in detail in R22]. The main
In this work, we restrict ourselves to the quenched apSOurces ofO(ma) errors are in the difference between the

proximation and use pure gauge lattices generated using ifpole mass and the kinetic mass, .and in the renormah_zatlon
isotropic Wilson action. In order to have enough points in theconstant used to connect the lattice operators to continuum
temporal direction at high temperatures, we need very fin@nes. For f|n|tem_a, the pole mass that controls the fal!-off of
lattices. We use lattices at three different lattice spacings ithe correlator differs byO(ma) terms from the physically
the range 0.02—0.05 fm. At the higher temperatures only thénportant kinetic mass that controls the dlspers!on rel_atlon.
finer lattices are used, while at the lower temperatures, comlhis can already be seen from the free quark dispersion re-
parison between results from our finer and coarser latticetions[22],
gives an idea of the effect of the limited number of data 1 1
points in our analysis. The lattices were generated using the amy=-——-—,
heat-bath and overrelaxation algorithm, with each sweep 2k 2K
consisting of one heat-bath step followed by four overrelax-
ation steps. The configurations were separated by 200—800
such sweeps, the separation in each case being five to eight
times the autocorrelation time of the Polyakov loop. The
exact details of the lattices was given in Table I. A subset of
these lattices was used for the light meson studies of Ref.
[10]. wheremy is the standard definition of the bare masge

For the valence quarks, we use the clover-improp2@  governs the fall-off of the free quark correlator, amng,ec is
Wilson action, taking the clover coefficients from the non-the term governing the quadratic momentum dependence in
perturbative estimates of the ALPHA Collaborat{@1]. The the dispersion relation, and therefore controlling much of the
clover coefficients used, and the critical couplingat each  spectrum and other interesting physics in heavy quark sys-
B, are shown in Table I. For our coarsest lattice, we use threeems. A large mismatch betwe@n,,e and Myjne(c indicates
« values that bracket the charm, giving a pseudoscalar maskat the quark is too heavy to be treated relativistically. Our
in the range 1.7—-4 GeV. This allows us to study the massattices are fine enough that in most cases the error due to the
dependence of the properties that we are considering. At thignite mass of the charm quark is small enough. The hopping
finer lattices, we use one value close to the charm mass. parameters we have used for our different lattices are listed

In order to study the lowest states in each of the fourin Table Il. We also list there the tree-level pole and kinetic
channels, we take operators with four different spin strucimasses, using Eql12). The tree-level mismatch between
tures. The operators we study are listed below, along with then,e andmy,eiic is <5% for all the sets, except the heaviest
names and spectroscopic representations of the lowest statgsark for set I. To see whether the error is also small for the
for each channel: interacting theory, we also looked at the pole and kinetic

ampge=In(1+amy),

amy(1+amy)(2+amy)
2+4amg+mj

AMyinetic™ ) (12
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TABLE II. Hopping parameters used and the pole and kinetic TABLE IV. Masses(in GeV) of the different charmonium states

masses for different sets. obtained from one exponential fits of spatial correlators belgw
B K ampge aMyinetic am, Tag Mass(in GeV)
6.499 01325 00889 00893 00860 1A o e Wy Xeo Xet
0.1300 0.1584 0.1608 0.1583 I B IA 1.6738) 1.8068) 2.15127) 2.29944)
0.1234 0.3328 0.3531 0.3640 IC IB 2.44Q5) 2.51710 2.87430) 3.00631)
6.64 0.1290 0.1800 0.1835 0.1821 1l IC 4.1514) 4.1916) 4.60044) 4.67048)
7.192 0.13114  0.0940 0.0945 0.0916 nm o 3.071(6) 3.14112)  3.52653  3.624117)

Il 3.744(14)  3.80310)  4.44286)  4.66Q174)

masses of the mesons, where the pole mass is obtained from

the zero-momentum correlator and the kinetic mass is ob- We close this section with a discussion of the zero-
tained from the dispersion relation temperature masses of the charmonia corresponding te the
values given in Table Il. For our coarsest lattices, we use
three x values that bracket the charm quark. For the other
lattices, we use one value each. Since we have not per-
formed calculations on symmetrizero-temperatupelat-
While My, is quite noisy, we found that there is hardly any tices, our estimates of the zero-temperature masses are based
significant deviation from the relativistic dispersion relation on exponential fits to spatial correlators. In fact, if one con-
for the quark masses used by us, except possibly for set I€iders the spatial correlators on lattices below deconfine-
[23]. We therefore use a relativistic treatment for our quarkament, the finite-temperature lattices can be considered as
in what follows, and set the masses of the mesons from themall(in one of the directionszero-temperature lattices. For

M pol
E2=M2yc+ M"k‘i’:p% (13)

pole masses. the lattices belowT. used in this studysee Table ), the
The lattice operators are connected to the continuum opsmall extent is about 1 fm for the two coarser latti¢ests |
erators as and I) and about 0.8 fm for the finest lattideet IIl). The
effect of finite volume on the masses of charmonia was stud-
IPM=2kZp(a,m p=1/a)JFa 2. (14 jed in detail in[27] and it was found that even for lattices of

o ) size 0.75 fm there are no sizeable finite-size effects. Further-
The renormalization factorg,(a,m,u=1/a) are estimated more, even for the much larger light mesons, spatial correla-

using one-loop tadpole improved perturbation theory, tors calculated on lattices at 0.9 have been seen to give
_ good estimates of zero-temperature ma$285 The masses
Zy(a,m,pu=1/a)=uo(a)[ 1+ ay(1/a)z4][1+by(a)ma], we get from exponential fits are given in Table IV.
(19 For set Il, which is very close to the physical value of the
_ charm quark mass, we get ¥@2 MeV for the hyperfine
by(a)=[1+ ay(1/a)By]/u,. (16)  splitting, consistent with the analysis of RE27]. The mass

splitting betweenP and S states is also consistent with the
Here a(1/a) is the running coupling calculated from the findings of[27]. For our finest lattices, the splitting between
heavy quark potential at scaje=1/a [24]. The one-loop P andSstates is largely overestimated. This could be due to
coefficientsz, and by, were calculated in Ref25] and  the limited (~0.82 fm) extent of the lattice.
[26], respectively. For the scalar and pseudoscalar channels,
Z4 was evaluated at scaje=1/a. We evaluatai, from the V. MESON CORRELATORS AND SPECTRAL FUNCTIONS
measured plaquette, FOR T<T,

We begin our discussion of spectral functions and tem-
perature effects on meson properties with an analysis of the
meson correlators below,. We look at the temporal corr-
‘elators, Eq(7), for the four channels in Eq11) and for the
lattices withT<T_ as specified in Table I. For the lattices at
B=6.64 and 7.192, we have one set each belqw the
spatial correlators from which were used in the previous sec-
B « Zos Zec Zue Zax tion for setting Fhe pa_lrameters. Here we use the temporal

correlators and investigate the spectral function at tempera-
6.499 0.1325 0.782 0.839 0.900 0.926 turesT=<T.. On our coarsest set @&=6.499, we have lat-
0.1300 0.847 0.913 0.975 1.003 tices corresponding to two different temperatures belQuw
0.1234 1.032 1.124 1.188 1.221 This allows us to check for any change in meson properties
6.64 0.1290 0.881 0.948 1.007 1.034 as one approachds from below. For most of this study we
7.192 0.13114 0.839 0.886 0.936 0.957 Use zero-momentum projected correlators only, and refer to
them asG(7), and the corresponding spectral function as

—/1 1/4
U0—<§ TrUp|ao> .
The resulting renormalization factors are shown in Table 11l

TABLE Ill. Renormalization factors of local operators for dif-
ferent sets.
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o(w) (we also suppress the subscriptfrom now on. version process, which are less than the number of data

The operators corresponding to the different channel®oints. Then the search for solutions is restricted to this
have been listed in Eq11). For the vector channel, we take SPace, which is now a well-defined problem. Also, in this
the trace over all four direction§i:0GXﬁ 7). Due to cur- algorithm one avoids any (_expllcn erendence_ on the ex_ternal
rent conservation, the time componeﬁlg’g(r), is a con- Parametem in Eq. (18) by integrating over with a condi-

stant, and therefore contributes onlydunction atw=0 to t|or_1ral pr)robab;hty(ts?ﬁ[&?.o] ftor Id?ta'l?.' the default del
the spectral function. In the free quark case, #hifinction 0 reconstruct the spectral function, the default mode

cancels a similar contribution from the space-averaged co@(w) needs to be specified. Since we want to explore the

relator [31]. In the axial vector channel, we sum over the modlflqatmn of the ground-state peaks in the spect(al func
S 3 ~AY tion, it is natural to choose the default model to describe only
three spatial directionsy_ G (7). . :
. e . . . the high-energy part of the spectral function. Due to
At least in principle, one can obtain all the information . : .
) . . . asymptotic freedom, the spectral function at very high ener-
about the spectrum in a given channel by inverting @gto

calculateo(w). Since our lattices have on(10) indepen- gies is expected to approach the case of two free quarks. For

dent data points in the temporal direction, however, extractEW0 free quarks in a mesonic chaniglthe spectral function

ing o(w) from lattice data forG(r) is a highly nontrivial In the continuum is given bj31]

problem. Considerable progress towards the solution of this 3

problem has been made in the last couple of years by using 4 (@)= — 0?0 (w?—4m?)tani w/4T) 1 —4m? w?
the Bayesian method§]. In the next subsection, we explain 8

the rudiments of the maximum entropy meth®dEM), as

i o : . 2
employed in our analysis; in the rest of this section, we use % 4m b 19
this method to extract the spectral function, and discuss the ant w2 H (19
results.
_ 3
A. Analysis: MEM methods ~ Fanz for w-—o. (20)
a

Bayesian techniques for extracting information from inad-
equate data depend on providing prior information to the i
analysis in some forrfi29]. In the MEM of data analysis, the For the scalar, pseudoscalar, vector, and axial vector chan-
prior information is usually introduced in the form of an N€ls, the constants, are 1, 1, 2, and 2, respectivélyl]. On

“entropy term” by using the positivity of the spectral func- the lattice, the spectral functions for the different channels
tion [o(w>0)=0] to give it a probability interpretation have been calculated recently for the free thddi§]. They

[29]. Quite general principles lead to the Shannon entropy show a considerably different high-energy structure from Eq.
(20). Interaction introduces additional modification of the

[ large w behavior of the spectral functiof8]. At low tem-
S= fo do{o(w)—m(w) - o(w)log o(w)/m(w)]} peratures, where the temporal extent is relatively large and
(17)  the dependence on the default model is less important, we
usem(w) =myw? for the default model, withmy=3/(87?)
(see Refs]5,29 for justifications for the form of the entropy for scalar and pseudoscalar channels emg- 3/(472) for
term). The entropy depends on an arbitrary functiofw), vector and axial vector channels. The lattice introduces an
which is called the default model. This function can be con-ultraviolet energy cutoff
sidered as a part of our prior information. The central prob-

lem becomes then to find thg w) that maximizes the “free

2
energy” wmax=aln(7+amo)~4a‘1

F=L—-a$S (18
for our masses. This is the frequency cutoff we use in our
or equivalently the conditional probabili§ o|DH] of hav-  analysis. AboveT, the use of a more refined form of the
ing the spectral functiomr given some dat® and the prior default model, with more accurate information about the
knowledgeH [29]. HerelL is the likelihood function for the high-energy structure of the interacting theory, becomes nec-
dataD, i.e.,L=x?/2, anda is a real and positive parameter. essary, which we discuss in the next subsection.

At zero temperatures, MEM has been successfully applied Use of the full covariance matrix is desirable in the MEM
in spectrum calculation$4,5,7,§. At finite temperatures, analysis. However, it has been shown that with limited sta-
where one is limited further by the small physical extent oftistics sometimes the small eigenvalues of the covariance
the temporal direction, precise quantitative information ismatrix can be too noisy and it may be better to use some
more difficult to obtain. Still, useful qualitative information smoothening of the smaller eigenvaly8s]. In our analysis,
has been obtained about the shape of the spectrum and thwe use the full covariance matrix in most cases; but some-
thermal dilepton rat¢9—11]. times the use of the full matrix gives rise to an unphysical

We follow here Bryan'’s algorithni30] for inverting Eq.  peak atw~0. In such cases, we use the minimum smoothing
(9). This method uses a singular value decomposition of th¢hat can get rid of this peak, if it is possible with a small
kernel, to find the relevant, nonsingular directions in the in-amount of smoothing.
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FIG. 1. Spectral functions at Or9 for the different channels, for

set Il FIG. 2. Spectral functions at 0.75 for the different channels,

for set Il.

For the spectral density extracted from noisy data withyoherties of the zero-temperature ground state in Table IV.
MEM, one can assign error bars to the spectral density intepye 5150 find that for energies~ 2/a, where the doubler

grated over small regions of frequentsee Ref[29]): one  giates are expected to contribute, the structure of the spectral
defines an “integrated spectral density, function is considerably different from the free spectral func-

w+A tion. Similar peaklike structures have been sedi8|nAs we
H(w,A)= f do o(w) explain below, we expect the additional peak seerwat
oA ~1/a is also a lattice artifact.
and then the covariance of this quantity is calculated as A comparison with the spectral structure obtained from

set Il helps in clarifying the nature of the second peak in Fig.

) ) , 1. The spectral functions in different channels for this set are

(oH >:f d‘*’J do'o(w)o(w’). (21) presented in Fig. 2. For this figure we use again the free

lattice spectral function as the default model. The properties

Since we are concerned with the peak structures in the speof the zero-temperature peak in Table IV are reproduced
tral function, in the following sections we show the error quite well. The other peaks are seen to shift at approximately
bars on a region integrated over the peak width of each peakhe same ratio from Fig. 1 as the inverse lattice spacing. This

to show the statistical significance of the peaks. confirms that also the second peak obtained in Figs. 1 and 2
is dominated by lattice artifacts.
B. Discussion of the spectral functions In our coarsest set of lattices, At=6.499, we have two

. . . . N temperatures beloW, . This allows us to study the tempera-
As mentioned in the previous section, the reliability of theture dependence of the mesons belsw and will help in

spgctral function reconstructed from the temporal correlator troducing certain elements in our analysis, as we will see
using MEM depends on the number of data points. We star, elow

the reconstruction of spectral functions beldwon our fin- For the correlators at OT6 , the results are shown for set

est lattice: set Ill. Besides allowing us to have the maximurqB in Fig. 3. We get a three-peak structure for the different
resolution, fine-graining of the lattice also has the advantagghannels' similar to the one shown in the previous figures.

that the lattice artifacts are shifted further away from the.l.he ground state can be resolved quite reliably, and the

ground-state peaks, allowing an accurate extraction of thgtrength and position of the ground state for the different

gro'éj_nd-stalte E}eaks t(;\f mtere?t. | functi 1.9 quark masses agree with the ground-state measurements ob-
igure 1 shows the spectral functions atT.9 recon- tained in the previous section.

structed from the correlators for this set in the different chan- Figure 4 compares the spectral functions for the vector

nels. In order_ to remove th_e uninteresting rise in the channel at 0.6 and OTQ, obtained with the free spectral
fp%ctraldfunctlon,l ?ere .an,(,j in everywhere else we plot th(13’unction as the default model. The highpart of the spectral
reduced spectral function function at 0.9 is seen to be considerably different from
p(w):o’(w)/wz_ (22) that at 0.6,. Also, while p(w) shows a clear ground-state
peak, the peak position is slightly changed from that at 0.6
At T=0.9T., the physical distance available for the and the fall-off of the peak in the high side is considerably
analysis of the temporal correlators is about 0.82 fm, and wéroader. However, we expect this difference in the spectral
have 40 data points. This allows us to have a good resolutiofunction to be an artifact of the limited number of data points
of the ground-state spectral function. We also found thatnd physical distance at this temperature. In fact, Fig. 4 does
omitting the data point at smallestenhances the peak struc- indicate that at 0.B,, the spectral analysis cannot resolve
ture for this set. In each channel we find a three-peak struche three-peak structure, and the ground-state peak is con-
ture, with the ground-state peak replicating quite well thetaminated by the peak ai~ 1/a. One way to improve the
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Vo —— correctly produces the ground-state peak, in both the position
08} Jiy gg T and the strength of the pealln our present analysis with

AX e limited statistics the width of the peak is not of direct physi-
06 | ) cal relevance. It is possibly an effect of the finite statisfics.

Using this default model, now, the ground state affQ.B
reconstructed accurately, with the position and strength of
the peak similar to that at O1§. This also shows the use-
fulness of using such a default model, and we will use it for
reconstructions of the spectral function abdvein the next
section. In essence, what is being done is to realize that the
spectral function for very large>T is dominated by lattice
artifacts, and does not change with temperature. To recon-
o [GeV] struct the ground state accurately from correlators at short
distances, it is important to use correct information of this
FIG. 3. Spectral functions for different channels atlQ.€or set  high-energy part. Another way to confirm that the spectral
IB. function does not show any significant change between 0.9
and 0.6 is by comparing the correlators at UQwith the
reconstruction of the ground state when the physical distancgorrelators reconstructed from the spectral function &t 0.6
is small is to provide more accurate information for the high-15). Since the temperature dependence of the correlators in
energy part in the default model. Since the physical distancgq. (9) comes from both the known temperature dependence
covered is sma_ll,_the high-energy part i_s still i_mporte_mt in thegf the kernel,K(w, ), in Eq. (10), and the nontrivial tem-
correlator and it is only when we provide suitable informa- erature dependence of the spectral functi@(kp,ﬁ), we

tion_about the high-energy part that it is possible to extracgan try to focus on the temperature dependence of the spec-
the information about the ground state accurately. From th?

) : ral function by comparing the correlator with the recon-
analysis of the spectral function at the lowest tempe_raturesgtructed correlator at that temperature,

we see that the high-energy part of the spectral function con-
sists of two broad peaks. This is a general feature of the
spectral functions which does not depend on the default G,econ,T*(r,T)=f do o(0,T*)K(w,7,T), (23

modelm(w), as we will see in Sec. VI. So we use a default

model where the high-energy part of the spectral func’Fion i%vherea(w,T*) is the spectral function at another tempera-
taken from the spectral function constructed aff@,6and in ;e T* The comparison of the correlators for the different

the low-energy part we use the model channels at 0B, with the correlators reconstructed from
o(w,0.6T.) for the corresponding channels is shown in Fig.
5. This figure clearly demonstrates that the correlators at

with m; chosen such that the default model is continuoud-9Tc are completely described by the spectral function at

[15]. The spectral function constructed at D,9using this theTIr:)wer telinp}eratutrhe. " ‘ for set |
default model is also shown in Fig. 4, where for comparison € resufts from e other quark masses for set 1 aré very

we also show the spectral function at D,eusing the same similar and show that for the quark mass range explored by

default model. As we can see, at U,8he spectral function us, the properties of the ground-state mesons do not change
' ¢ at least up to a temperature of 0Q This is consistent with

] ] ] ] other earlier quenched studies in the mesonic s¢2&jrand
0s | Free ggfgg:}; 8;812 — the gluonic sectof32], which showed that the properties of
2-Pk default, 0.6T; ---- the mesonic and gluonic states do not change from their
2-Pk default, 0.9T, vacuum properties until quite close to the deconfinement
06} 1 transition temperature. Of course, this result is not unex-
pected since one does not expect substantial thermal excita-
tion of the heavy glueballs already at these temperatures.

p(w)

04

02|

m(w)=m;w?

p(w)

04T Presumably, such a result may not hold in full QCD, where
excitation of pionic states may produce observable effects
02 | already away fronT..
To summarize, in this section we have studied the spectral
functions belowT . for heavy degenerate mesons in different
0 0 channels. The ground-state properties can be suitably repro-

duced by the MEM analysis of the temporal correlators. We
also show that using nontrivial realistic information about
FIG. 4. Spectral functions for the vector channel belGw,  the high-energy structure of the spectral function in the in-
using both the free spectral function and the high energy part of théeracting theory allows a more accurate reconstruction of the
spectral function from interacting theory as a default model, for seground state already from short-distance correlators available
IB. on a small number of data points. We also propose using the

w[GeV]
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FIG. 5. Ratio of the measured correlators atTQ.vith the 4t
reconstructed correlators at this temperature, using the spectral b)
function at 0.6 (see tex}, for different channels and set IB. For
visual clarity, the vector and scalar channels have been shifted hori- ¥ i
zontally. = St . 2 AX+1.0  SC
§ 0.78T, —5— —=—
o o 11270 —o— ——s
spectral function constructed at the lowest available tempera- & T 15T e —v—
ture to reconstruct the correlator at higher temperatures, as¢ © 2 A
way of studying the temperature dependence of the spectral . s ¢
function. This often provides a more robust analysis, since —_—
the lowest available temperature provides us with the maxi- L e e
mum physical distance, allowing for a more reliable extrac- 0.1 0.2 0.3 0.4 0.5
tion of the spectral function. Both these techniques will be im]

particularly relevant in the next section for studying the spec- _ )

the extraction of the spectral function even more difficult. correlators reconstructed from the spectral function at, 7ér set
Il. (a) PseudoscalaiPS and vector(VC) channelsfb) scalar(SC)

and axial vecto(AX) channels. For visual clarity, the PS and AX
V. CORRELATORS AND SPECTRAL FUNCTIONS channel results have been shifted vertically.

FOR T>T
¢ which predicted a dissolution of; at~1.1T.. For the vec-

In this section we present our results for meson correlator channel, one finds that the reconstructed correlator ex-
tors aboveT,. We first present results for set Il, so that we plains the data quite well at small distances. Some significant
can start with results close td., and then go to higher system modifications, however, are manifested in the correla-
temperatures with set IIl. tors at distances>0.25 fm. At 1.9, some modifications

A number of interesting and important statements abouére already seen at distance$.2 fm. Later in this section,
system modifications of charmonium spectral functions camwe will discuss possible system modifications that can cause
be made by inspecting the finite-temperature meson correlauch a change.
tors. As was discussed in the previous section, the change in The correlators for the scalar and axial vector channels
o(w) with temperature can be studied already from the cor{the 1P state$ are shown in Fig. @). The situation is seen
relators, by first taking out the trivial temperature depen-to be quite different here: already at T, a significant
dence of the kerneK(w,7,T) according to Eq(23). We  system modification of the mesons is manifestated in
CONSHrUCIG oo 7,T) USINgo(w, T*) from the spectral func-  G(7,T)/Geco 7,T) at all distances. The measured correla-
tions obtained for this set at 0.75 (see Fig. 2 The devia- tors are seen to be considerably larger than the reconstructed
tions of Ggcof 7, T) from the correlators directly measured correlators. Such a behavior can be qualitatively understood
aboveT, then indicate system modifications of the spectralif the 1P states are dissolved already at these temperatures:
function aboveT . This method is more robust as it avoids at low temperatures, the spectral function for these states is
using MEM at the higher temperatures, where one has lesgero below~ 3.5 GeV. If the state is dissolved aboVe,

temporal extent and fewer data points. one would expect the correlator to pick up contributions at
In Fig. 6(a) we show the results o6(7,T)/Gecod 7, T) significantly smallerw~2m,, making it larger.
for set Il for the pseudoscalar and vector chanritis 1S The comparison with reconstructed correlators can only

state$. For the pseudoscalar channel, the ratio is seen teell us whether any medium modification can be expected at
remain equal to 1 up to 1T, indicating no significant sys- a given temperature. The ratios of the correlators give a
tem modification of its properties up to this temperature. Thisough idea of the magnitude of such modification. To further
is already in sharp contrast to earlier potential model resultsxplore the nature of the finite-temperature spectral func-
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FIG. 7. The spectral function for th@) scalar and(b) axial
vector channels constructed from the temporal correlators, for setll F|G. 8. The spectral function for th@) pseudoscalar antb)
at temperatures between 1.12 andT1.5The default model uses yector channels constructed from the temporal correlators, for set II
the high-energy part of the spectral function in Fig. 2, as explainegyt temperatures between 1.12 andT}.5The default model uses
in the text. the high-energy part of the spectral function in Fig. 2, as explained
in the text.
tions, it is necessary to reconstruct the spectral function from
the correlators, using MEM. AboVE,, the physical distance The situation is different for theS states: Fig. @) seems
available to us is small, and fewer data points are availablgp rule out dissolution or a major modification of these states.
making it difficult to reliably extract the spectral function The reconstructed spectral functions, shown in Fig. 8, sup-
without any prior knowledge. However, as we have dis-port this: a statistically significant ground-state peak is seen
cussed in Sec. IV B, by introducing information about theup to 1.9, showing that thej. and thel/ survive at least
high-energy part of the spectral function into the MEM up to this temperature. While no major change in mass is
analysis in the form of an appropriate default model we carindicated, a reduction in peak strength is seen af 1;.hiow-
overcome this problem. Therefore, in the default model weever, as discussed below and also Sec. VI, Fig. 15, we expect
use the high-energy part of the spectral function at 0,75 it to be related to the associated systematics.
smoothly matched ton,w? in the low-energy regior(see Having seen that thd/ s survives until 1.5, it will be
Sec. IV B). interesting to explore its properties at higher temperatures.
The spectral functions for the scalar and axial vectorOur finest lattices at set Ill allow us to go up to a temperature
channels abov@,, reconstructed in this way, are shown in of 3T,. The finer grid at 1.5, here also allows one to check
Fig. 7. The significant ground-state peak of Fig. 2 for thesehe reliability of the results of set Il. Figure(® presents
channels is not found at these temperatures. A nonzero speG{7,T)/G ecof 7, T) for different temperaturesG,qcof 7, T)
tral function is seen at a significantly lower, but the peak is constructed using the spectral functions affQ presented
structure is statistically not significant, and it could be relatedn Fig. 1. Up to 1.9, the features of Fig. (@) are very
to a branch cut coming from two on-shell propagatingsimilar to that of Fig. 6a). For the pseudoscalar channel, the
quarks. Such a(w) at low w can also explain the rise of the data are completely explained by the spectral function at
correlators seen in Fig.(B). Since the quark mass for set Il 0.9T.. Some small, but statistically significant, deviations
is very close to the physical charm qudsee Table IV, Fig.  appear at 2.2B.. At 3T., we see significant modification at
7, together with Fig. @), will indicate that they® and they.  all distances. For the vector channel, atTL.5he data agree
are seriously modified, possibly dissolved, already aTl.1 with the reconstructed correlator at small distances, but start
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FIG. 9. Ratio of the measured temporal correlators with the
correlators reconstructed from the spectral function at Ofér set
lll. (&) PseudoscalaPS and vector(VC) channels{b) scalar(SC)
and axial vecto(AX) channels. For visual clarity, the PS and AX
channel results have been shifted vertically.

FIG. 10. The spectral function f¢a) pseudoscalar an) vec-

tor channels constructed from the temporal correlators, for set Ill at
temperatures up toT.. The default model uses the high-energy
part of the spectral function in Fig. 1, as explained in the text.

spectral function is very similar. A very strong peak is seen at

showing significant modifications at larger distances, 1.5T., with no observed reduction in the peak strength from
=0.15 fm. At 2.29 ., such modifications appear already at that belowT,. Unlike the pseudoscalar channel, we see here
~0.1 fm while at 3, G(7,T)/Gecof 7, T) differ signifi-  a slight shift of the peak position, but the amount of the shift
cantly from 1 at all distances. depends on the systematics and we are unable to make a

For the scalar and axial vector channels, one sees 8¢ 1.5 definite comment on it. At 2.2R., a significant peak is seen
a very similar enhancement of the correlator to Figh)6  with a reduced strength, and af 3 the structure at the peak
with G(7,1.5T;) ~60% larger tharG .. 7,T) at ~0.25 fm  position is too broad to be interpreted as a resonance, and is
for the scalar and~120% larger for the axial vector. The also statistically not significant.
pattern of enhancement continues as one goes to higher tem- As we will discuss in detail in the next section, the details
peratures. of the features presented in Fig. 10 and Fig. 8 are not depen-

To extract the spectral function from the temporal correla-dent on the systematics incorporated in extracting the spec-
tors aboveT,, we use, as input to the default model, thetral function, either from the specifics of the default model or
large w structure shown in Fig. 1. Figure @) shows the from the small temporal extent and limited number of data
spectral functions abovE; obtained with this default model. points at higher temperatures. Th& &tate mesons survive
A strong and statistically significant ground-state peak is obwith no significant change of strength at least up tor,5
tained at 1.5.. The peak position and peak strength areand at 2.2%. a significant peak still survives but with a
found to be very similar to those at @.9, indicating essen- reduced strength, while atT3 system effects reduce the
tially no significant change for the pseudoscalar up to thigpeak strength enough that one should consider the state to be
temperature. This is completely consistent with the trendlissolved. Such a change in the spectral function is also com-
seen for G(7,T)/Gecof 7, T) for the pseudoscalar. At pletely consistent with the behavior &(7,T)/Gecol 7. T)
2.25T., we still see a statistically significant peak, but with afor the pseudoscalar channel, since a reduced ground-state
reduced strength, and af 3 the structure at the peak posi- peak will cause a depletion &(7). For the vector channel,
tion is very weak and not statistically significant. the general picture indicated by Fig.(bDis the same. How-

For the vector channel, the temperature dependence of theer, we also see here a depletionGifr) at large distances

094507-10



BEHAVIOR OF CHARMONIUM SYSTEMS AFTR . .. PHYSICAL REVIEW D 69, 094507 (2004

already at 1.%., but no reduction of the peak strength in ' ' ' ' ' '
Fig. 10b), and a small increase in mass. While such an in- 1.2 i % % % %
crease in mass at I'5is consistent with the depletion of the i
correlator, we cannot isolate any physical mass shift from the 1.24T; (+0.02) % %
systematics. o

We would like to comment here on similar works ahy g
in the quark-gluon plasma. Refererde3] uses smeared op- Q"“’ 1 § 3 % i i
erators, which allows them to study the properties of the®E ¥ !
in-medium 7, and J/¢ in more detail, and finds a large © 1.497T, 3 {
Breit-Wigner width~120 MeV and 210 MeV, respectively, ;
at 1.1T. . They also find no reduction of the masses of te 1 —e— ¥=0.1325 g
states abové@ . With our point-point correlators, we cannot 08 . 22831282 |
extract a width reliably; however, any such width will cause 0.05 01 015 0.2 0.5 03
an enhancement of the correlator, which we do not see fol < fm]

these states. However, it is possible that such an enhance-

ment is shielded by a corresponding reduction in peak FIG. 11. The mass dependenceGfr, T)/G oo 7. T) at differ-
strength. Referendd 4] uses point-point correlator, and con- ent temperatures, for the pseudoscalar channel. The reference spec-
cludes that the $ states dissociate already at T,9 Of tral function used foIG ecof 7, T) is o(w,0.62T;). For clarity, the
course, our quarks for set Ill are a little heavier than physicapoints at 1.2F; have been shifted vertically, as indicated in the
charm, and that can cause the mismatitte mass depen- figure.

dence of the modification pattern is discussed b&ldww- and one needs to understand the effect of the systematics

ever, we think another likely reason could be that due to the . : . . !
. : well before drawing physics conclusions. In this section, we
use of the free continuum spectral function, Etp), as the

default model in Ref[14] (which does not provide accurate are going to discuss possible systematic effects in the spec-

. . . tral functions presented in Secs. IV B and V. One obvious
information about the structure of the high-energy part of the . .

X : problem is that at high temperature both the number of data
spectral functiop and the small temporal extent at this tem-

points and the physical extent of the temporal direction be-
perature, MEM cannot resolve the peak structure correctly. X X
fome small, which makes the reconstruction of the spectral

For our coarsest latlices, set |, we have three quar ctions difficult[13]. To some degree this problem can be

masses, giving pseudoscalar masses in the range 1.7-4, . ) 4 .
: overcome if one uses the information about the high-energy
GeV (see Table V. This allows us to study the mass depen- . )
: . . ._behavior of the spectral function extracted at low tempera-
dence of the dissolution pattern, i.e., to answer the questio,

“ - ” . {bres, as was discussed in Sec. V. This issue will be dis-
whether the “melting temperature” for the quarkonia has a : .
cussed here in more detail.
mass dependence.

In Fig. 11 we show the ratio of the pseudoscalar correla- We start the discussion of the systematic effects for spec-

. . tral functions corresponding to ground state, i.e., pseudo-
tors at different temperatures with the correlators reCONC - ar and vector ones. In our method of analvsis. the spec-
structed from spectral function at 0-62using Eq.(23). At ’ ysIs, P

0.93T. expectedlv. the correlators are explained by th tral function belowT, plays a crucial role since we extract
>3, EXpectedly, P Y N&he high-energy information from it, and we examine first the
spectral function at 0.62, for all quark masses. For the

lightest quark studied by uské&0.1325), some system default model dependence of this spectral function. In Fig.

oo T 12 we compare the pseudoscalar and vector spectral func-
modification is already seen at 124 and the modn‘lcatlgn tions at 0.793 ., reconstructed using the free massive lattice
becomes larger as one goes toTL.5For the next heavier

K (k=013) at 1.27. th lat letel spectral function as a default model, with those shown in
quark («=0.13), at 1.24 the correlators agree completely Sec. IV where the massless continuum spectral function was

with .t_he r_econstructed correlators, and one sees temperatyie. 4 5 4 default model. For the guark mass in the free lattice
modification of the pseudoscalar only at the higher tempera}—nodel we usema~0.17, which corresponds to the bare

ture. For our heaviest quark<%0.1234), Fig. 10a) ShO.WS mass for this set. As one can see from the figure, the depen-
that the pseudoscalar correlator is completely explained b?ﬂence on the default model is quite small, even though the
the spectral function up to at least I The vector channel two default models have very different strL,lctures. For com-
ShOV_VS a simil_a_r trgnd, with t_he lighter quarks showing larger arison, the masses extracted from the spatial correlators at
med|um modification at a given temperat_ure_. .For the sqal his temperature are also shown as vertical lines. There is a
and .a.1X|a_| vector .channel_s, we found significant med'umsmall deviation between the peak position and the screening
modifications s!ml[ar to Figs. (6) and 9b) for 'aII three masses~3% for the pseudoscalar channel and% for
quar_k masses, indicating that also for the_: h_e?‘V'eSt qua_rkonlﬁe vector channel. Since we do not expect medium modifi-
stud!gd py us, th? R ;tates yndergo significant medium cation of quarkonia properties below deconfinemehtFig.
modification, possibly dissolution, already at 1T24 5), this should be interpreted as systematic error in our MEM
analysis. Similar statements also hold for the spectral func-
tions at 0.9 .

Therefore, our way of using the information from the high

The extraction of the continuous spectral function fromew part of the spectral function beloW, in the default model
0O(10) data points is, to start with, a rather delicate problemfor the analysis abov& . removes the arbitrariness of the

VI. DISCUSSION OF POSSIBLE SYSTEMATIC ERRORS
IN MEM ANALYSIS
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FIG. 12. The pseudoscaldtop) and vector(bottom) spectral FIG. 13. The spectral functions fde) pseudoscalar antb)
functions at 0.7%, reconstructed using the lattice and continuum vector channels at different temperatures for set Ill, where the de-
default model(see text for further details fault model incorporates the high-energy part of the spectral func-

tion at 0.9, obtained using the free massive lattice spectral func-
default model. To check this, in Fig. 13 we redo the analysision (see text for further details

presented in Fig. 10, where now the highpart was taken

from the spectral function at OTQ calculated with the free stantial modification of the spectral function takes place at
massive lattice default model with the corresponding mass2.25T . and the ground state is “dissolved” aff3 is not an
For comparison, we also show the spectral function af 0.9 artifact of the limited resolution. Figure (& also shows
recalculated with this default model. As one can see, theery clearly the absence of any significant change in the
main features of Figs. 18 and 13b) are very similar to pseudoscalar channel up to T.5 Similar comments also
those of Figs. 1&) and 1@b), respectively, so that one can hold for the vector channel in Fig. . In this case, we do
essentially substitute them without having to change any oee the mass shift at I.5 discussed before irrespective of
the discussion following Fig. 10. Ngatas DUt the exact amount of the shift differs.

Another question to be addressed is to what extent the In Fig. 15 we do a similar analysis for set Il, where we
temperature modification of the spectral functions seen imeconstruct the spectral function at different temperatures us-
Sec. V and Fig. 13 is real physical effect, as opposed to thang the same physical extent as available forT1.5This
offshoot of the inability of the MEM to correctly reproduce figure shows that the seeming reduction of the peak strength
the spectral function from the small number of data pointsat 1.5T in Fig. 8 was probably due to the small number of
and small temporal extent available at higher temperatureglata points available there, and the pseudoscalar and vector
To answer this question, we compare in Fig. 14 the spectrgdeaks are not substantially changed up toTl,5as one
functions for set Ill at different temperatures constructed uswould expect from Fig. @ and the results for set IIl.
ing the same number of data points. In the three panels of Now let us discuss the scalar and axial vector channels. In
Fig. 14@@ the pseudoscalar spectral functions at differentFig. 16 we show the spectral function in the scalar and axial
temperatures are constructed with the same number of datector channels at O/ and set Il using the free massive
points as are available for the highest temperature in th&attice spectral function as a default model. Also shown there
panel, omitting points from the center for the lower tempera-are the spectral functions for the free continuum default
tures.Ngyaia here refers to the number of points after periodicmodel from Sec. IV for comparison. As one can see, the
folding. Though the figure shows that the details of reconspectral functions show a stronger default model dependence
structed spectral functions depend on the number of datdhan the pseudoscalar and vector ones, though the main fea-
points used in the analysis, it is clear that the fact that subtures of the spectral functions are independent of the default
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FIG. 16. Spectral functions for scalétop) and axial vector
(bottom) channels reconstructed using the continuum and the lattice
free spectral function as a default model.

at different temperatures reconstructed using the same number of
data points at each temperature.

0.75T., a large reduction in the peak height of thg state
can be seen, though the position of the peak is roughly cor-

model. The stronger default model dependence is probablact. This problem is also due to limited statistics. It turns out

due to the fact that these correlators are noisier than thgat the probabilityP[ o ] = explL—aS), which is expected
pseudoscalar and vector ones. The default_model dependengepe strongly peaked around somg,,, ideally (for large
of the scalar and axial vector spectral functions was found t%tatistics, has a long tail at large values in this particular

be even stronger for set Il at 0.¥5. If one uses the free case, so that the peak structure seen araypg is smooth-
massive lattice spectral functions as a default model at.qq considerably when one averages aver

ool T T T T S T T
14T g e
1.5Tg o
0.15
MNe J
01 |
0.05 |
0 1 1 b 1
0 4 0
w[GeV]

Finally, we also want to address the issue of whether the
serious system modification, possibly dissolution, of the
states at 1.1P. seen in Fig. 7 is an artifact of the smaller
number of data points at this temperature. In Fig. 17 we
show the spectral functions in scalar and axial vector chan-
nels at 0.7%; and 1.17 . usingN .= 8 data points and the
same temporal extent. The figure clearly shows that the large
change in the spectral function between 0.78nd 1.17 is
a physical effect and not due to the small number of data
points at the higher temperature.

So far all data abovd . have been analyzed using the
high-energy part of the corresponding spectral functions be-
low T.. For set lll at 1.5, we still have Ng,=12 data
points and not too small temporal extent. Therefore, here we
can also reliably reconstruct the spectral function without
providing precise information for the high region. Figure

FIG. 15. Spectral functions for set Il for pseudoscalar and vectol8 shows the spectral function fdr, reconstructed using
with Ng.=6 data points.

both the free massless continuum and the free massive lattice
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FIG. 17. Spectral fun_ctlons frpm set Il for scalar and axial vec- 181 D B6.64, £-0.1290
tor with Ng,= 8 data points at different temperatures. =7.19, k=0.13114 —o—
& 16+
spectral functions as the default model. Although some de+: ?
pendence on the default model is clearly seen, the stron& 1.4}
ground-state peak is pretty stable and provides further evi— - o
dence that thel/ survives well into the deconfined gluon € 127 .
plasma. . @
1=
VII. SPATIAL CORRELATORS AND SCREENING MASSES 0.8 . L L .
0.5 1.5 2 25 3
Most of the early studies of the finite-temperature meson 7T,
spectrum concentrated on studies of correlators in one of the
spatial directiongfor convenience, we will use thedirec- FIG. 19. Screening masses for tft@ vector and(b) pseudo-

tion in what follows. The corresponding masses are usuallyscalar channels for the different sets, normalized by the zero-

PHYSICAL REVIEW D 69, 094507 (2004

referred to as the screening masg®4. The spatial correla- temperature massee text

tors are related to the same spectral function, but the rela-
tionship is a bit more complicated: the momentum-projecte

correlators in thez direction are given by35]

) . ) de 0.7 0
G(Iwn,pT,Z)= 2_epz Ode

—0 21T

2p00'(p015T P2

2, 2
Pot+ wy

(29)

wheref)T is the transverse momentum in tkgplane ando,

%rom the correlators projected to zero transverse momentum
and zero Matsubara frequency.

While the screening masses, in general, are not directly
related to the spectrum of the finite-temperature system, it is
possible to extract important information from them, in par-
ticular for examining particular model spectral functions. In
the presence of a stable bound state, which gives a contribu-

tion ~ 8(p5— p?— m?) to the spectral function, it can be eas-

is the Matsubara frequency. The screening mass is obtaingg} seen from Eq(24) that the screening mass is identical to

' ' lat. def. ——
02 | cont. def. ———-- l
0.15
2
< 01}
0.05
0

8 12 16
w[GeV]

FIG. 18. The vector spectral function at T5and set Ill using

the pole mass of the state.

Numerically, the study of screening masses is much sim-
pler because of the large extent available in ztgirection,
and one can obtain the screening masses from standard one-
exponential fits to the long-distance part of the correlator.
Figure 19 summarizes the temperature dependence of the
vector and pseudoscalar screening masses for the different
sets studied by us. We have calculated them from one-
exponential and two-exponential fits, and in all cases the two
agree. In order to show the relative changes in screening
mass with temperature, we have normalized the masses with
the zero-temperature masses from Table IV, which, as men-
tioned in Sec. lll, were obtained from the screening masses
from the lowest temperature available to us for each set. So
the part belowT . in Fig. 19 is just the normalization except
in set . From the figure, one makes the following observa-

the free continuum and lattice spectral function as a default modekions.
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(i) The screening mass does not change up {dor at 02
least until 0.93 ) for either channel. This observation is in
agreement with what is seen for light quarks and glueballs
We also see that the screening masses béloare in agree- 015
ment with the pole mass extracted from the temporal masse:
wherever such an extraction is possible reliably. .

(ii) The screening masses show a definite temperature e% 01}
fect aboveT ., increasing steadily with temperature for both
the channels. This effect is in sharp contrast to the tempora
correlators, which indicated little temperature effect up to  0.05
~1.5T, in particular for the pseudoscalar channel. Since for
the pseudoscalar channel, we do not see any shift in th
ground-state peak position certainly up toT,5 and possi- 0
bly up to 2.29 ., Fig. 19b) indicates that the pole and
screening masses differ from each other, even though .
bound state is present in the spectral function. For the vecta 04
case also, even though a small shift in the pole position may b)
be present at 1., the shift of screening mass in Fig. (&9
is much larger and indicates a similar difference between the 03 |
pole and screening masses. One possibility that one has 1
consider is that while there is a bound state in the spectra__
function aboveT,, it is not a 5-function state. We investi- £ 02} 09T,
gated the possibility of the screening mass change bein
caused by the state gaining a width abdvge by using a
Breit-Wigner form as found in Ref13], but our conclusion 01|
is that the change in screening mass is too large to be ex
plained this way. |

Another possible way that a screening mass can chang 0 S B
differently from the pole mass, even in the presence of & 2
bound state, is if the dispersion relation changes in the ther-
mal medium(36,28. Since in a thermal medium the Lorentz |G, 20. Spectral functions for th@) pseudoscalar an) vec-
symmetry is lost, in general one would expect an energytor channel for a few nonzero momenta, below and abieThe
momentum asymmetric self-energy term, leading to a dispefimomenta are given in units of@La, whereLa is the transverse
sion relation dimension of the lattice. The vertical bands show the expected peak

. - . positions for the nonzero momenta, assuming a relativistic disper-
0?(p,T)=m(T)2+p2+11(p,T). (25 sion relation.

fehohokohol
W

6
w[GeV]

ands in both figures show the expected peak positions for
he nonzero momenta, assuming a relativistic shift from the
eak at zero momentum. This was obtained by using the
lattice form of Eq.(26) with A(T)=1,

mass. For small momenta, one can make the simplifyin
assumption that the modified dispersion relation can be a
proximated by a temperature-dependent mass and

temperature-dependent “speed of ligh86,28

This will, in general, alter the screening mass from the polg)

®?(p,T)=m?(T)+A%(T)p>. (26) . m2
. . o . coshw(p)—1= 2> (1-cosp)+—, (28
For a s-function state in the dispersion relation, E@6) i=12 2

gives

Msed T) = Mol T)/A(T). (27)  Where all the variables, p;, andm are in units of inverse
lattice spacing. The width of the band reflects the uncertainty
Such a modified dispersion relation can explain the discrepin the zero-momentum peak position due to the finite bin
ancy between the pole and screening mass if, for examplajze. The shift of the peak position at T 9is seen to be
A(T)<1 at 1.9. consistent with the expected relativistic shift in both chan-
This scenario can be checked by constructing the spectralels, in agreement with previous results that the Lorentz
function from the temporal correlators for nonzero momentasymmetry is approximately valid up to close Tq [32,37).
Equation (26) with A(T)<1 will lead to a less-than- At 1.5T., one clearly sees a much smaller shift in the peak
relativistic shift in the spectral function peak with spatial position, confirming the medium modification of the disper-
momenta. Figure 2@) shows the ground-state peak for the sion relation discussed above. A more quantitative analysis,
vector channel below and aboVe for set I, and Fig. 2(b)  to check whether the shift in the screening mass is com-
shows the same for the pseudoscalar channel. The verticpletely due to such a modification of the dispersion relation,
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cannot, however, be conclusively made due to the ratheiWe would like to remind the reader here that about 40% of
large uncertainty in determining the peak position from aall J/« produced in hadron collisions are indirect and come

maximum entropy analysis. from x. and ¢’ states. The remainingl/ ¢ peak then stays
stable as one increases the temperature further, showing little
VIIl. SUMMARY AND DISCUSSION further reduction at least up to I.5. On further increasing

, . . the temperature, the peak starts to “melt” gradually by weak-
In this work, we have conducted a detailed lattice study Ofening and possibly broadening. At 2DR5we see~25%
- 0 1 : '
the properties of the 3 (7. andJ/y) and 1P (xc andxc)  further reduction in the integrated strength of thiey peak
charmonia in hot gluonic medium by studying the thermalfor our quark mass This process continues as one increases

correlators in Euclidean time and extracting spectral functne temperature further, and byr 3the 3/ peak is indistin-
tions from them. We show that one can extract useful inforgyishaple from the background.

mation about medium modifications of charmonia abdye It is reasonable to expect that the qualitative picture re-

by comparing the correlators with those reconstructed fromnains the same as one introduces dynamical quarks. Below
the spectral function below,. We also show that by pro- T_ there may be changes in the meson properties due to the
viding correct information about the structure of the high- gctivation of the thermal pions, and it is possible that the
energy part of the spectral function, one can reliably extrackiates dissociate even befdre. ForJ/y itself, such thermal

the low-energy part of the spectral function at high temperapions will have little effect, and abovg,, the gradual melt-
tures from correlators measured at a limited number 0jng picture described above is likely to be still true qualita-

points. . _ . tively, with the thermal quarks causing only small quantita-
In the hadronic phase, we find that the properties of all thgjye changes.

states remain unchanged at least up to temperatures of These results are quite different from the earlier potential
0.93T as one approaches the deconfinement transition temy,ggel studies, which predicted th& tharmonia to be dis-
perature from below. This is similar to quenched studies ofq}eq at~1.1T, [2,3]. Since the appearance of our earlier
light mesons and glueballs, and may not be true for fullgy,gies[12], some of the potential model studies have been
QCD. _ o reanalyzed. It was pointed out in REB8] that Ref.[2] does

As the temperature of the medium crosgs significant ot take into account a possible rise in the strong-coupling
modifications of they states are observed. The temporal cor-cqnstant neaf ., which will lead to a bound/ deep in the
relators show large enhancement, and already &1tfle  plasma. Also a very thorough and detailed study of the color
ground-state peaks are not observed in the spectral functlogmg|et potential conducted in RéB9] shows that the color
inglicating that these states may have dissopiate_d already 8hglet free energy and potential abdve(up to a few times
this temperature. The S states behave quite differently. 1y pehave very differently from what was anticipated in
Little change is seenin the correl_ato_r; as one crosgeand  Ref. [3] on perturbative groundg0], and will probably give
the spectral function shows a significant ground-state peakse to a considerably higher dissolution temperature for the
until quite high temperatures. No significant reduction of €l-3/4. Be that as it may, it is not clear that a potential model
ther the peak strength or the mass of the state is seen at Iegﬁtjdy can capture all the physics going into the medium
up to 1.9c. At higher temperatures, the peak weakensmogification ofJ/ like the collision broadening due to ther-
though at 2.25. one still finds a significant peakThe ap-  ma) gluons. It will certainly be interesting to have an analysis
parent contradiction of this result with Refl4] has been pased on potential models or other similar studies that can
discussed in Sec. \/Finally, at 3T we do not observe any reproduce all the features of the direct studies by(arsd
significant peak anymore, indicating that the state has broadsiherg, which also rules out any substantial reduction of the

ened and weakened so much that it is not meaningful to tregf55s of thed/y and 7, aboveT, from its zero-temperature
it as a resonance any more. mass.

These results have direct phenomenological implications,
as p(w) for the vector current is connected to the dilepton
rate. Let us consider a hypothetical heavy-ion collision ex-
periment which forms equilibriated gluon plasma, and whose We would like to thank Edwin Laermann and Sven
temperature can be increased gradually. As one crogses Stickan for discussions. This research was funded by GSI
one expects to see a reduction in fiie peak in the dilepton under Contract BI-KAR, and by DOE under Contract No.
channel caused by the disappearance of the excited staté3=-AC02-98CH10886.
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