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We comment on the reweighting method for the study of finite density lattice QCD. We discuss the appli-
cable parameter range of the reweighting method for models that have more than one simulation parameter.
The applicability range is determined by the fluctuations of the modification factor of the Boltzmann weight.

In some models having a first order phase transition, the fluctuations are minimized along the phase transition
line if we assume that the pressure in the hot and the cold phases is balanced at the first order phase transition
point. This suggests that the reweighting method with two parameters is applicable in a wide range for the
purpose of tracing out the phase transition line in the parameter space. To confirm the usefulness of the
reweighting method for two-flavor QCD, the fluctuations of the reweighting factor are measured by numerical
simulations for the cases of reweighting in the quark mass and chemical potential directions. The relation to the
phase transition line is discussed. Moreover, the sign problem caused by the complex phase fluctuations is
studied.
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[. INTRODUCTION In this paper, we make comments on the reweighting
method with respect to more than one simulation parameter,
The study of the phase structure of QCD at a nonzergarticularly including a chemical potential. Because the fluc-
temperatureT and nonzero quark chemical potentj@} is  tuation of the modification factotreweighting factor en-
currently one of the most attractive topics in particle physicgarges the statistical error, the applicable range of this method
[1,2]. Heavy-ion collision experiments aiming to produce thejs getermined by the fluctuation of the reweighting factor.
quark-gluon plasm&QGP are running at BNL and CERN,  \when the error becomes considerable in comparison with the
for which the interesting regime is rather onv density. More-expectation value, the reweighting method breaks down. An
over, a new color superconductor phase is expected in th@teresting possibility is given in the following case: when
region of low temperature and high density. In the last fewye change two parameters at the same time, the reweighting
years, remarkable progress has been achieved in the numefictors for two parameters might cancel each other; then the
cal study of latice QCD at low density by Monte Carlo grror does not increase and the expectation values of the
smulatlons. It was shown that the phase transition line S€P&hysical quantities also do not change by this parameter
rating the hadron phase and the QGP phase can be traced aift. Therefore finding such a direction provides useful in-
from =0 to finite uq, and it was also possible to inves- formation for mapping out the value of physical quantities in
tigate the equation of state quantitatively at low density. Thghe parameter space. As we will see below, there is such a
main difficulty of a study at nonzero baryon density is thatgjrection in the parameter space and a knowledge of this
the Monte Carlo method is not applicable directly at finite property of the reweighting method makes the method more
density, since the fermion determinant is complex for nonyseful. Fodor and Katf3] investigated the phase transition
zero uq and configurations cannot be generated with th@ine for rather largeuq. This argument may explain why
probability of the Boltzmann weight. The most popular tech-they could calculateg, for such largeu, -
nique for a study at nonzergy is the reweighting method; |n the next section, we explain the reweighting method
performing simulations at Red;) =0, and then modify the ith multiple parameters. Then, in Sec. llI, the case ofBU
Boltzmann weight at the step of measurement of observablgsyre gauge theory on an anisotropic lattice is considered as
[3-6]. The Glasgow methoi7] is one of the reweighting the simplest example, and we proceed to full QCD with a
methods. A compositéGlasgow reweighting method has  first order phase transition in Sec. IV. For two-flavor QCD,
recently been proposed [8]. Another approach is analytic the reweighting method with respect to quark mass is dis-
continuation from simulations at imaginary chemical poten-cyssed in Sec. V. The application to nonzero baryon density
tial [9-11]. Moreover, calculating coefficients of a Taylor js discussed in Sec. VI. The problem of the complex measure

expansion in terms of.q is also a hopeful approach for the s also considered in Sec. VII. Conclusions are given in Sec.
study at nonzero baryon densf#,12—-14. Studies by Taylor .

expansion or imaginary chemical potential require analytic-

ity of physical quantities as functions ®fandu, while the

rewe|ght|_ng method has a famous “sign probl_em.” The sign Il. REWEIGHTING METHOD AND THE

pr_oblem is caysed by gomplex phase fluctuatu_)n_s of the fer- APPLICABILITY RANGE

mion determinant, which are measured explicitly in Ref.

[15], and Ref[16] is also an attempt to avoid the sign prob-  The reweighting method is based on the following iden-
lem. tity:
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1 simulation on the phase transition point and apply the re-
(O)gmuy= Z—f DUO[detM (m, u)|Ne™ %) weighting in the @, ,8,) plane.

(B:m. ) A significant feature of a Monte Carlo simulation at a first
order phase transition point is the occurrence of flip-flops
=~ = T FiG . between configurations of hot and cold phases. If one writes

(€7€%) (g myg (&7 € ") (8ymy.) a histogram of the action density, i.e., the plaqueRgsand
1) P., there exist two peaks. The value of the action density
sometimes changes from one near one peak to one near the
HereM is the quark matrixS, is the gauge actiorl\; is the other peak during Monte Carlo stefikB,19. The flip-flop is
number of flavors /4 for staggered type fermions instead the most important fluctuation; in fact, the flip-flop causes
of Ny), F=N{IndetM(m,u)—IndetM(mg,uo)], G=(B the strong peak of susceptibilities of observables such as the
—Bo)P.P=—3S,/3p, B=6/g>, and AF[G]=F[G] plaguette or the Polyakov loop at the transition point. Also,
—(F[G]). mandu=pg4a are the bare quark mass and thethe flip-flop implies strong correlations betwePr and P,
chemical potential in a lattice unit, respectively. The expecbecause the values &, andP, change simultaneously be-
tation value{(O)sm ) can, in principle, be computed by tween the typical values of the two phases in thg (P,)
simulation at {35,My, o) using this identity{17]. However,  plane.
a problem of the reweighting method is that the fluctuation Here, we discuss the fluctuation of the reweighting factor
of eAFeAG:eFeG/(e<F>e<G>) enlarges the statistical error of when one performs a simulation at the transition point
the numerator and denominator of Hd). The worst case, (Bs0.8-0). The expectation value ad at (8,,8,) on an
which is called the “sign problem,” is that the sign of the anisotropic lattice is calculated by
reweighting factor changes frequently during Monte Carlo
steps; then the expectation values in Ek.become vanish- _ —AS, ~AS,
ingly small in comparison with the error, and this method <O>('8"’37) (Oe g>(3"°"370) ie g>(ﬂf’°’3*°)’ ®
does not work. However, the fluctuations causeghen, and
" dependir;cg ofO)(s.m. - Otherwise, ife"e® does not  where AS;=—AB,2P,(X)~ABZ,P(x), and AB,(,
fluctuate,e*"e*®=1 and(O)m ) does not change with =By(»— Bo(ro- For simplification, we ignore the local fluc-
parameter change. Roughly speaking, the difference afuation around the two peaks of the histogram of the action
(O)(g,m, ) from <O>(ﬁo‘m0u“0) increases as the magnitude of density and consider only the flip-flop between hot and cold
fluctuations ofF and G increases and, iF and G have a phases, since it is the most important fluctuation at the first
correlation, the increase of the total fluctuation as a functiorPrder phase transition point. Then, the fluctuation is esti-
of B, m, and u is nontrivial. Therefore, it is important to Mated by the difference of the reweighting factor between
discuss the correlation betweehande® and to estimate the hot and cold phases, up to first order,
total fluctuation of the reweighting factor in the parameter
space in order to estimate the applicability range of the re-
weighting method in the parameter space and how the sys-
tem is changed by parameter shifts. This is helpful informa- +AB (E(hot)_ﬁ(cold)” ...
tion for the study of QCD thermodynamics. T 4 '
(4)

FAG AF JAG
_ <Oe e >(Boxmovll«o) . <Oe e >(Bovmorﬂo)

(hot) (cold)
|e—Asg o _ e—Asg“’ |~3NsitelAﬁg(E(hot)_E(cold))

(o8 (o8

Ill. SU (3) GAUGE THEORY ON AN ANISOTROPIC

LATTICE where PNt (€01 g phot(cold) are the average values of the

Let us start with the case of $8) pure gauge theory on spatial and temporal plaquettes for configurations in the hot
an anisotropic lattice, having two different lattice spacings(cold) phases andlsiteENix N, is the number of sites for an
for the space and time directionsg;, anda,. As we will Nix N, lattice. Hence, along the line which has a slope
show, for this case, there is a clear relation between the phase
transition line and the direction that minimizes the fluctua-

tion of the reweighting factor. The action is dg, - pho) _ peold)
dg,  plhon_pleod)’ ®)
Sy= = Bo 2 PulX)=B:2 P(x), )

the fluctuation of the reweighting factor is canceled to lead-
where P, is the spatialtempora) plaquette. The SB)  ing order.

pure gauge theory has a first order phase transition. At the On the other hand, sinceV=(N,a,)® and T
transition point ;), two phases exist simultaneously. For =(N,a,) "%, the pressure is defined by
the two phases to coexist, the pressure in these phases must

be equal:Ap=pM—pd=0_ If we requireAp=0, we

find that the phase transition line in the parameter space of _ dinz _ 1 aln Z‘

(Bs,B,) hasto run in such a direction that the fluctuation of p=T IV T_ 3N3N . ala. 92, ’ ' (6)
g "TToTT a

the reweighting factor is minimized when we perform a
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D a\¥ B 5.695
= N4 — al)'_g E{r - E{r
T4 T( a, (980.(< > < >0)
5.694
B, _ _
+a,—({P,)—(P)o) |, 7
aag(( )= (P2)o) (7
5.693
whereﬁ,mz(3Nsite)*12XP,,(T)(x), and(E,,(T))o is the ex- «°
pectation value of the plaquette onTa=0 lattice for the
normalization. 5.692
By separating the configurations into those in the hot and
cold phase$18,19, the gap of pressure between the hot and
cold phases af . is computed by 5.691
p p(hot) p(cold) N
A = _ 5.6? L | ! AN
T4 T4 T4 .69 5691 5692 5693 5694  5.695
B
a.\*[ B,
=N4 —| |a, — (PhoV— plcold) FIG. 1. Contour plot of the standard deviation of the reweight-
a, da, ing factor and the phase transition line in the,(3,) plane. Bold
P line is the phase transition line, and the dashed lines denote its error.
+a if(g(hot)_g(cold) (8) Values in this figure are the standard deviation divided by the mean
“oa, T ' value. The simulation point i8=5.6925.
Since the gap of pressure should vanisip,=0, pthot)_ plcold)
0B, | B plhoy _ pleold) Blho)_ pcold) = e (13
/- T 9 o g
gaa/ Ja, E(hot)_E(coId) ( )

This equation fordg,/dB, may correspond to the
Clausius-Clapeyron equation in the,T) plane: dp/dT
=AS/AV (S is the entropy. In fact, Eq.(13) and the van-
ishing pressure gafip=0 are confirmed by calculating the

Moreover, becaus@.=(N.a,) ! on the phase transition
line, a, stays constant withN,T.) ! along the transition

line, i.e.,
slope of the transition line from the peak position of the
. sa, Polyakov loop susceptibility obtained by numerical simula-
AaﬁﬁAB(ﬂr WABT:O' (10)  tions in Ref[20]. Historically, the nonzero gap in pressure at

the transition point was a problem for long time. The reason
for Ap#0 was that a precise nonperturbative measurement
Hf the anisotropy coefficienta,(38,/9a,),a,(dB./3a,),

etc., was difficult, and the perturbative vall#l] cannot be
used at the phase transition point fdr=4 or 6. After the

when one changes parameter8, (8,)—(B8,1tAB,,.B,
+AB,) along the phase transition line. Then the slope of th
phase transition liner() [20] is obtained by

dg, Ja, Ja, B, | 9B, preci_se measurement of the anisotropy coefficients became
re= w =— % B = o (11 possible, the.pro.blem of a nonzero pressure gap was solved.

TiT, T 4 o o Also, determination of these coefficients by another nonper-

turbative method was done in Ref22—-24.
where we used the identify From Eq.(5) and Eq.(13), we find that the direction that

minimizes the fluctuation of the reweighting factor must be

IBs IB; the same as the direction of the phase transition line in the
da, da, 1 (B, .B,) plane, if the pressures in the hot and cold phases are

B, 5_/37 = Ja. da, da, da, balanced aff,, Ap=0. Here, in practice, we estimate the

-7 _*T_7 fluctuation ofe” %S by a numerical simulation. We compute
da, da./  IB; By IBs IP; the standard deviation of the reweighting factor using the
Ja Ja data obtained in Ref.19]. The lattice size is Z4< 36x 4.
o= The data are generated by the standard Wilson gauge action
% 9B+ By (12) with B8,=B,=5.6925, that is, just on the transition line,
da, da, |’ B:.=5.69245(23) foN,=4 ata,=a,. The ellipses in Fig. 1
- B, 9B, are the contour lines of the standard deviation normalized by
the mean valuey/((e 250)2) — (e 2%)2/(e 4%, and we
Hence, the condition foAp=0 becomes write this value in Fig. 1. We also denote the phase transition

094506-3



SHINJI EJIRI PHYSICAL REVIEW D 69, 094506 (2004
(hot) £ (hot) )
(m.B)

4
(m+Am,B+AB) T

ceptibility assuming that the peak position of the susceptibil
ity is the phase transition poif20], by a bold line, and the

line, obtained by the measurement of the Polyakov loop sus{ f
dashed lines are the upper bound and lower bound. We find

T4

that the phase transition line and the line that minimizes f | (o) £ | (co
fluctuations are consistent. This result also means that the — = -
reweighting method is applicable in a wide range for the T (m+Am, B+ AB) T (m.B)

determination of the phase transition line in the parameter _ _ _ _
space of S(B) gauge theory on an anisotropic lattice, since = — N[ (Q{"— Q') Am+ 6( P — pleold) A g]
the increase of the statistical error caused by the reweighting
is small along the transition line. +-.-=0 (19

We note that, from Eq(13), AS{" and AS{™? in Eq.
(4) are equal under the change along the phase transitios required on the first order phase transition line. From this
line; hence the fluctuations are canceled in every order ogéquation, we obtain a similar relation to E4.3)
AB,n - For SU3) pure gauge theory on an anisotropic lat-
tice, the system is independent @f/a. in a physical unit; Qthon_ ol q
hence the system does not change along the transition line <1 <1 - _ﬂ (16)
except for the volum&'=(N,a,)?, if N, is finite} Because 6(Phod—pleold)y  dmj| "~
physical quantities do not change without fluctuation of the ¢
reweighting factor, this result is quite natural.

On the other hand, the change of the reweighting factor
IV. FULL QCD WITH A FIRST ORDER PHASE under a flip-flop is

TRANSITION
) ) ) | AF(hot) AG(hot)_ AF(coId) AG(coId)|
Next, we extend this discussion to the case of full QCD € e e e

with a first order phase transition such as three-flavor QCD _ —thot) ~(cold =(hot) S(cold
near the chiral limit. The reweighting method is applied in ~Naid (QF"*= Q) Am-+ 6(PI)— P A ]
the parameter space om(B). We consider the Helmholtz 4. (17)
free energy density=—T In Z/V for a canonical ensemble
which is equal to minus pressunes= — f, for a large homo-
geneous system. Under a parameter change frop8) to
(m+Am,B+ApB), the variation of the free energy is given
up to the first order, by

If we ignore the local fluctuation around the peaks of the
distribution of P and Q,, again the direction for which the
" fluctuation is canceled is

f f _ _ =(hot)__ ~(cold)
= —— = -NI(Q)—(QuoAm _9B_ 1 —h 18)
(+Am.B+A8) (m.5) dm 6( P(hot)_ P(cold))
TEUP) = (Pho)AST -, This is the same direction as the phase transition line. There-
(14  fore, the fluctuation of the reweighting factor along the phase
_ . — transition line remains small, i.e., the statistical error does
where Q1= NgieN¢d(In detM)/om and P="" not increase very much.
—(6Ngji9) 19Sy/3. For the normalization & =0, we sub- We obtained the same result as for the pure gauge theory

tract the zero temperature contributig®), and (Q1)g.  on an anisotropic lattice, and this argument seems to be quite
Here, we should note that the first derivatives of the freegeneral for models with a first order phase transition, includ-
energy are discontinuous at the phase transition line; hendag models with a chemical potential. However, there is a
we cannot estimate the difference of the free energy beyondifference. Under the change af /a,, any physics does not
the transition line by this equation. change along th@&, line, but physical quantities, in general,
We assume that the gap of the pressure is zero in thdepend on the quark mass. Although the dependencs on
entire parameter space(B). We changenandg along the  might be much smaller than the dependencd bR, if the
phase transition line starting at two points, just above andluctuation of the reweighting factor is completely canceled,
just belowg,, without crossing the transition line. Then the any m dependence is not obtained. In this discussion, we
change of the free energy must be the same for both thesgnored the local fluctuation around the peaks in the hot and
cases, since a pressure gap is not generated under this variald phases, but the local fluctuation may play an important
tion, i.e.,A(Ap)=0. Hence, up to first order dfm andA g, role for them dependence. Also, the sign problem for non-
zero baryon density is caused by complex phase fluctuations
of the reweighting factofsee Sec. V), that is, by the local
in fact, as expected from the finite size scaling, the peak height ofluctuations. Hence the local fluctuation may, in particular, be
the Polyakov loop susceptibility increasesagsincrease$20]. important at nonzero baryon density.
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V. QUARK MASS REWEIGHTING TABLE I. Correlation and susceptibilities d; and P. N,
FOR TWO-FLAVOR QCD =16°X 4. B.=3.6492(22).
As we saw in the previous two sections, the multiparam- g (AQAPINL  ((AQDINGL  ((AP)NgL

eter reweighting seems to be efficient in tracing out the phase

transition line in a wide range of the parameter space. One of 3.640 —1.446) 1.296) 2.677)
the most interesting applications is finding ttpseudacriti- 3.645 -1.8013 1.6913 2.9914)
cal line (B;) in the (m,8) plane for two-flavor or 3.650 —1.706) 1.586) 2.897)
(2+1)-flavor QCD. The phase transition for two-flavor  3.655 —1.7614) 1.65193) 2.9215)
QCD at finite quark mass is expected to be a crossover, 3.660 —1.606) 1.496) 2.777)
which is not related to any singularity in thermodynamic  3.665 —1.3613) 1.1912) 2.5914)
observables, and that for three-flavor QCD is a crossover for 3.670 —1.527) 1.41(8) 2.698)
guark masses larger than a critical quark mass, and is of first 3.6492 —1.744) 1.61(3) 2.925)

order for light quarks. The precise measurement of the
(pseudqcritical line is required for extrapolation to the
physical quark masses and for a study of the universality Q= (N/HrM~1,  Q,=—(N/B)tr(M M~ 1), ...,
class, e.g., to investigate for the two-flavor case whether the (20)
chiral phase transition at finite temperature is in the same

universality class as the three-dimension&Gspin model
or not.

In Ref. [4], we applied the reweighting method in the
(m, B) plane for two-flavor QCD, and calculated the slope o
the transition linedB./dm, where the reweighting factor
with respect to quark mass was expanded into a power seri
and higher order terms which do not affect the calculation o

the slope were neglected. The resultsdgt;/dm compared factor as a function ofn and 8 near the simulation point. Up

well with the data onB.(m) obtained by direct calculations, oo _
without applying the reweighting method, demonstrating theto second order in3—fo and m—mo, the square of the

L L . standard deviation is written as
reliability of a reweighting in a parameter of the fermion
action. In this section, we discuss the relation between the F G2 ) )
fluctuation of the reweighting factor and the phase transition\[A(€7€7)]%)~((AQy1)*)(M—mg)*+2(AQ;AP)(m—m)
line in the (m,B) plane for two-flavor QCD at finite quark _ 2\(p_p N2t ...
mass, i.e., at the crossover transition, by measuring the fluc- (B~ Bo) H((APID(B=fo) - (2]
tuation in numerical simulations.

For the presence of a direction for which the two re-
weighting factors from the gauge and the fermion action can
cel, a correlation between these reweighting factors durin )
Monte Carlo steps is required. We estimate the correlatior] 2P!€ |- The values aB.=3.6492(22) are interpolated by
between these reweighting factors using the configurations iiPPying the reweighting method for tigdirection combin-
Ref. [4]. A combination of the Symanzik improved gauge "9 the data at Seven S|mulat|_on _pou[ﬂs?]. The lines .Of .
action and two flavors of thp4 improved staggered fermion constant fluctuation are drawn in Fig. 2. The_ nL_mee_rs_ in this
action is employed25]. The parameters aren,=0.13, figure are the squares of thg standard deviation dlv!ded. by
—{3.64,3.645,3.65,3.655,3.66,3.665, and B.6The lattice Ngiie- It is found that these ellipses spread over one direction

size is 16X 4. 7800-58000 trajectories are used for mea-2nd the increase of the fluctuation is small along this direc-
surements at .eaqa The details are given in Reff4]2 tion. We also show the slope of the phase transition line by
In the vicinity of the simulation point, the correlation of two lines: the upper bound and lower bound of the derivative

P ; of B. with respect tom obtained by measuring the peak
the reweighting factors can be approximated by position of the chiral susceptibilityd3./dm=1.05(14) for
my=0.1[4]. We see that the directions of small fluctuations

(e"e®)—(e"N(e)=(Ae"Ae®) ar?d of the phase transition are roughly the same. Since the
~(AQ;APY(m—mg)(B—Bo)+- - -, fluctuation enlarges the statistical error of an observable, this
figure can also be regarded as a map indicating the increase
19 of the statistical error due to the reweighting. Therefore, we
understand that the reweighting method can be applied in a
whereP=—3Sy/9B, F=3%_,Qn(m—my)", and we denote wide range of parameters along the phase transition line if
AX=X—(X) for X={P,Q,, ...}. TheQ, are obtained by one performs simulations at the phase transition point.
Moreover, it might also be important that these two direc-
tions are not exactly the same because, if the fluctuation is
2The coefficienth of the knight's move hopping term was incor- completely canceled along the transition line, no quantity can
rectly reported to be 1/96 in Re4]; its correct value is 1/48. change, but the system should change as a function of quark

for standard staggered fermions and also gdr improved
staggered fermions. We calculate the value(AfQ,AP)
fE(Q1P>—<Q1>(P>. The random noise method is used for
the calculation ofQ,,. The results fo{AQ,AP) are listed in
Table I. We find strong correlation between the gauge and
?érmion parts of the reweighting factor.

Then we compute the total fluctuation of the reweighting

If we approximate in this form, lines of constant fluctuation
(standard deviationin the (m,B) plane form ellipses. We
Iso computd (AQ;)?) and{(AP)?), which are written in
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0.02 ; We study the correlation among these factors in the vicinity
A of the simulation point By, 1,=0). Up to O(8— Bg,u?),
the reweighting factor is
0.01 . )
e'?lef|eC~1+Ryu+(RI2) u?+Rou®+P(B—Bo)+ - -
(23

We compute the correlationg) (R3/2)AP), (AR,AP), and
(A(R3/2)AR,) at ©=0, which correspond to the correla-
tions of (€'%,e®), (|e7],e®), and €' |e"|), respectively.
AX=X—(X) for X={P,R,, ...}. Here, (AR;AP) and
(AR;AR,) are zero aju=0 becaus®; is purely imaginary.
The R, are obtained by

001

002 N¢ 0 In detM th (M_lﬁM) (24
=" —— = — r -—,
B_BO ! 4 g 4 au
FIG. 2. Contour plot of the standard deviation of the reweight- )
ing factor in the ,m) plane aroundB., B,=3.6492, andm, B w% d“IndetM
=0.1. Values in this figure are the square of the standard deviation "2~ 4 2 (9#2
divided byNg;. Bold lines show the upper bound and lower bound
of 48 /am. N 1 N LM M
=— |t M — |-t M"*—M" " —] |,
. . . I (?,uz I I
mass even on the transition line, e.g., the chiral susceptibility
should become larger as decreases. (25
VI. CHEMICAL POTENTIAL REWEIGHTING _Ne 1 5°(In detM)
FOR TWO-FLAVOR QCD 37 4 31 é’,u3
A. Correlation among the reweighting factors N; 1 B 3M _1&M _1a2M
Next, let us discuss the reweighting method for nonvan- =730 trl M e =3t M WM e
ishing chemical potential. The reweighting method is really ' M M
important for the study of finite density QCD since direct
. . . . M M oM
simulations are not possible for nonzero baryon density at 2t M1 —M 1 —Mm 1 — (26)
present. However, the complex measure probisign prob- Ip I Ip

lem) is known to be a difficult problem. The reweighting

factor for nonzerqu is complex. If the complex phase fluc- for staggered type fermions. Details of the calculation are

tuates rapidly and the reweighting factor changes sign fregiven in Ref.[4].

quently, the expectation values in E@) become smaller We use the configurations in Ré#] again, generated by

than the error. Then the reweighting method breaks downthe N;=2 p4 improved action on a £& 4 lattice. We gen-

Therefore it is important to investigate the reweighting fac-erated 20000-40000 trajectories fomy=0.1, B,

tor, including the complex phase, in practical simulations. ={3.64,3.65,3.66, and 3.B7The results are summarized in
First of all, we separate the fermion reweighting fa@br  Taple I1. We find that the correlation betwefsf| ande® is

into an amplitudée”| and a phase fact@'?, and investigate very strong in comparison with the other correlations, which

the correlation amonge®|, e'?, and the gauge pam®,  means that the contribution to an observable can be separated

wheree® is real. As is shown in Ref4], the phase factor into two independent parts: one frogt’, and one from a

and the amplitude can be written as the odd and even termgmbination of|eF| x e®.

of the Taylor expansion of Indéd, respectively, since the  To make the meaning of this result clearer, we consider

odd terms are purely imaginary and the even terms are real e following partition function, introducing two differept,

u=0. DenotingF==,_,R,u", Mo and we:
|eF|=eX[{ nzl Re( Rzn)l-tzn} and Z= J DUeR1kot Raug - gRomat Rapgt -+
B X (detM |, _o)N*e s, (27)
e’=exp i >, IM(Ryy_1)u?" 1}, 22
p{ nzl (Ran-1)se 22 Then, atu=0,
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TABLE II. Correlations and susceptibilities amoRf, R,, andP. Ng=16°X 4. 8.=3.6497(16).

B (A(RU)APINGs  (ARAP)NGL  (A(RIUARINGe  ((AR)AHNg:  ((AP):)Ngg

3.64 0.00629) 0.31233 0.03410) 0.21616) 2.6210
3.65 0.05921) 0.43429) 0.05610) 0.25414) 2.878)
3.66 0.05515) 0.41026) 0.0225) 0.231(11) 2.758)
3.67 0.03215) 0.39729) 0.0315) 0.21913 2.698)
3.6497 0.05a13) 0.49519) 0.0507) 0.2679) 2.987)
3N 2 mass. Also, the result in R€f30] suggests that the effect of
(ARZAP)=((ARy)?AP)= — the phase factor, i.e., gf,, on physical quantities is small.
IpodB Isovector chemical potentiaFurthermore, we discuss the

ﬁ(an2_4X|Va2) model with isovector chemical potential. In Red), we dis-

= Ngjte , (28)  cussed the difference in the curvature of the phase transition
B from that of the usual chemical potential. Because we expect
that atT=0 pion condensation happens aroyagkm,/2,
a*In Z d(4xva’) and that the phase transition line runs to that point directly,

2(ARAP) =~ =Nyt (29 the curvature of the transition line for the isovectoshould

dugdp B ’ .
be much larger than that for the usual, since m_/2
where x4 and x)y are the quark number susceptibility and <my/3. However, as we discussed aboye, in Eg. (27)

isovector quark number susceptibilit6]: does not contribute to the shift g8, near =0 and the
difference from the usuat is only in u,, i.e., u,=0 for the
Xq d d n,+ng isovector case. Therefore the difference in the curvature
- Al T) + o gl T) P (30 might be small and the naive picture seems to be wrong. In
T Hu Hd T practice, our result at small using the method in Ref4]
supports that. Moreover, Kogut and Sincl@t] showed that
4X|v_ d d Ny—Ng B from chiral condensate measurements is fairly insensitive
T2 - Iyl T) - I uglT)| T2 (3D to u for small u by direct simulations with the isovectar.
We choose the same chemical potential for up and down B. Fluctuation of the reweighting factor

quarks: u,= mq=pq. Nyq) IS the number density for up
(down) quarks: nyay/T3=a(p/T*)/d(py)/T). The quark
and baryon number susceptibilities are related by
EanB/a,uB=3‘2Xq. If we impose a chemical potential with
opposite sign for up and down quarkg,= — uq= /2,
called the “isovector chemical potential,” the Monte Carlo
method is applicable since the measure is not comple
[27,28. For this model, the isovector quark number suscep
tibility x, in Eq. (31 is the quark number susceptibility,
instead of Eq(30).

The result in Table Il means that

Next, we estimate the fluctuation of the reweighting fac-
tor. As we have seen above, the fluctuation of the reweight-
ing factor is separated into the complex phase facta*5f
and the other part, and these are almost independent. More-
over, this implies that the absolute valueedf is important
;or the determination of3;. The amplitude of the fermionic
part|e*F| and the gauge paet*® are strongly correlated, and
thus the variation of the total fluctuation of these parts in the
parameter space is not simple. Because the total fluctuation
is related to the applicability range of the reweighting
method, here we compute the standard deviatigede® to
estimate the fluctuation, and also discuss the relation to the
— <, (32 phase transition line. The complex phase fluctuagdrwill
IuodB  duedpB be discussed in the next section separately.

Up to the leading order oB— B, and u?, the square of

i.e., u in the phase factory,) does not contribute to th8  {he standard deviation is obtained by
dependence of nearu=0, henceu in the amplitude f.)

is more important for the determination gf by measuring ([A(|€71€9)12)~((AR) ) u*+ 2( AR, AP) u?(B— Bo)

the B dependence of thermodynamic quantities. Moreover, 5 2

these correlations have a relation to the slopgpand 4y, HAP))(B=Bo) ™+ -+ (33

in terms of 8. Since xq—4xy is known to be small aj

=0 [26],2 this result may not change even for small quarkThen the line of constant fluctuation is an ellipse in this
approximation. We show the contour lines in Fig. 3. The
susceptibilities and the correlation B, and P, ((AR,)?),

SHowever, asu increases, the difference betwegg and 4y, ((AP)?), and(AR,AP), are summarized in Table II. The
becomes sizabl¢13], which might be related to only, being  values at the phase transition pofy=3.6497(16) are com-
expected to have a singularity at the critical end pp2g]. puted by the reweighting method for thg direction using

#nz 4z
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FIG. 4. |B.(u) —B(0)|=|AB.| for real u and imaginaryu.
Solid line is the result for regk. Dashed and dot-dashed lines are
the results ofu—iu and u— —iu, respectively.

FIG. 3. Contour plot of the standard deviation of the reweight-
ing factor in the B,u?) plane arounds., B,=3.6497, andm,
=0.1. Bold lines show upper bound and lower bound of

0Bl o(u?). in Ref. [4]. We replaceu by ix or —iu and reanalyze for
imaginary u. In Ref. [4], the reweighting factor has been
the data at fourg points. Numbers in this figure are the obtained in the form of the Taylor expansion jin up to
squares of the standard deviation dividedMy.. We also  O(u?), and the replacement is easy. We determiBgdy
denote the lower and upper boundsdf3./du?=—1.1(4)  the peak position of the chiral susceptibility, using the data at
by bold lines, which are obtained by measurement of then,=0.1 in Ref.[4]. The results of|8.(x)—B.(0)| are
chiral susceptibilityf4]. We find that there exists a direction shown in Fig. 4. Errors from the truncation of the Taylor
along which the increase of the fluctuation is relatively expansion terms ar®(u?). The solid line is the result for
small, and this direction is roughly parallel to the phase tranyeg| . The results ofu—iu and u— —iu are the dashed
sition line. Because we expect that the physics is similagnd dot-dashed lines, respectively. The slopeuatO is

along the transition line, if we consider th"|e® is the  —(428./9u?)/2. We find that these results of the slope for
important part for the calculation g8, this result is quite  real and imaginary. are consistent. It has also been dis-
reasonable. cussed for measurements of spatial correlation lengths to

As well as in the (n,8) plane, the fluctuation of the re- confirm the reliability of the analytic continuation from the
weighting factor is small along the phase transition line inimaginary chemical potenti4B2].
the (u,B) plane, and the reweighting method seems to be
efficient to trace out the phase transition line. This must be a
reason why the phase transition line can be determined for
rather largeu in Ref. [3]. However, in this discussion, we Finally, it is worth discussing the complex phase fluctua-
omitted the complex phase fluctuation, and the phase fludion in order to know the region of applicability of generic
tuation is the most important factor for the sign problem. Asreweighting approaches. If the reweighting factor in Eq.
we will discuss in the next section, the valuegoffor which  changes sign frequently due to the complex phase of the
the sign problem arises depends strongly on the lattice sizguark determinant, then both the numerator and denominator
The sign problem is not very severe for small lattices such asf Eq. (1) become very small in comparison with the statis-
the 4, 63x4, and x4 lattices employed in Refl3], tical error. Of course, the complex phase starts from zero at
which is also an important reason for their successful calcux =0 but grows ag increases. It is important to establish at
lation. what value ofu the sign problem becomes severe.
Imaginary chemical potentialn Fig. 3, we show also the As discussed in the previous section, the phase can be
region for u2<0, i.e., imaginaryu. de Forcrand and Phil- expressed using the odd terms of the Taylor expansion of
ipsen[10] computedd?B./du? by performing simulations IndetM. The complex phase is
with imaginaryw, assuming thag, is an even function i
and analyticity in that regiofalso in Ref.[11] for N=4). 0=Im(Ryp+ Rau3+Rsu®+ - - -). (34
The B.(w) for imaginary o shifts in the opposite direction
from that for realu asu increases, but the absolute value of The explicit expressions fd®; andR; are given in Eqs(24)
the second derivative?8./du? is expected to be the same. and(26).
Here, we confirm whether the results|éf3./du?| obtained Because the sign of the real part of the complex phase
by real and imaginary. are consistent or not by the method changes ab= 7/2, the sign problem occurs when the typical

VIl. COMPLEX PHASE FLUCTUATION
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magnitude off becomes larger tha/2. We use the point at BT T T T T T T T T T
which the magnitude of the phase reaches the valizeas a
simple criterion to estimate the parameter range in which
reweighting methods will start to face serious sign problems.
If the sign problem arises at small, which is expected to
happen for a large lattice, the first term in E§4) is most
important. Then we can estimate the applicability range by
evaluating the fluctuation oR;. Moreover, we expect na-
ively that the magnitude of tM ~*(dM/du)- - - ] is propor-
tional to Ng;e; therefore the value oft at which the sign
problem arises decreases roughly in inverse proportion to the
number of sitedNg;.. Also, the situation is different on lat-
tices of moderate size. In Rdfl5], it is shown that the first
term in Eq. (34) is dominant foru=0.1 and 0.2 but the
higher order terms cannot be neglected fioe 0.3, by cal-
culating the complex phase without the approximation by the
Taylor expansion. If the higher order terms are not negli-
gible, the volume dependence is not simple. For example, in
the case that the term @(«>) plays an important role in
the determination of the applicability range of the reweight-
ing method, the applicability range is expected to decrease i
proportion toN2?, and similarlyN."° for the case that the
O(w®) term is important.

We consider the leading term and the next leading term o
the complex phase. The g)fpectatlo_n va_lue9<nf1ust be zero cability range has been reported in R&5]. Their numerical
at =0 because the partition function is real. Although the S . ) 13
average of the phase is zero, its fluctuations remain impmr_es.ul'.[ of the appllcablhtyigange 'S In proportpn N?Si‘e '
tant. We investigate the standard deviatiorafp toO(x3), This is much better thaN;,. Because their estimations are

based on simulations on’8 4, 83x4, 16°x 4, and 13x4
S(0)=\(6?)—(6)?, using configurations generated on a .. o i licabilit ’ 'relatively | d th
16°x 4 lattice for the study of Ref[13], and the standard amces, the appicabliity ranges are relatively ‘arge, and the

deviations of ImR,) and ImR,) are also computed. higher order terms inu should be important for large.

. / Therefore the result of the volume dependence N ., is

The ra’?dom noise method is used 0 calculater each reasonable for their lattice size, but may change on large
configuration. Then the value @f contains an error due to lattices.

We et the calouition ofs%) meve carefull. Since the _ e @S0 show the _contour plot for 5(0)
noise sets for the calculation of the twan the product must ={ml4,ml2,3ml4,m 5ml4,3ml2,7m/4,27} in Fig. 6. The er-

be independent, we subtract the contributions from using the

same noise vector for each factor. Details are given in the
Appendix of Ref.[4]. By using this method, we can make
the N, dependence of6?) much smaller than that by the -
naive calculation from rather small,; hence it may be
closer to theN,,=« limit. We took N,=50 for this calcula-
tion.

In Fig. 5, we plot the standard deviations of t& )
term, ImR;), and theO(x®) term, ImR3), for Ni=2, m
=0.1. The horizontal axis is temperature normalizedThy
at u=0 (Ty). The temperature scale is determined from the
string tension data in Ref33] with the fit ansatz of Ref.
[34]. The fluctuations of these terms are almost of the same
magnitude and both of them are small in the high tempera- L
ture phase; hence the sign problem is not serious in the high
temperature phase. We confirm, moreover, that @g:)
term is dominant aroung = u,a~0.1, as suggested by Ref.
[15], and the approximation by th®(ux) term for the dis-
cussion of the applicability range in Ré¢#] is valid for the
16°X 4 lattice. This suggests that the applicability range de- FiG. 6. Contour plot of the complex phase fluctuati§s) in
creases roughly in proportion td%. However, in general, the (T/ Ty, mqa=(uq/T)N; ") plane. The complex phagecontains
the magnitude of the fluctuatiofistandard deviationof  O(u®) error. Tgis T, at u=0. N,=4.

FIG. 5. Standard deviation of IR;) and ImR3). Ty is T, at

&1/Nsite changes as a function of the volume; hence the de-

tailed finite size analysis is necessary to investigate the vol-

pme dependence of the applicability range more precisely.
Recently, analysis of the volume dependence of the appli-
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T
o
~
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e
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ror of the contour is estimated by the jackknife method. Atmeasurement of thermodynamic quantities on the phase tran-
the interesting regime for the heavy-ion collisions, /T,  sition line is important for the finite size scaling analysis to
~0.1 for the RHIC angxq/T.~0.5 for the SPS, the fluctua- discuss the universality class. The reweighting method is
tion is smaller thanm/2 in the whole range of. Therefore, useful for this purpose.
the reweighting method seems to be applicable for the quan- We also measured the fluctuation of the reweighting fac-
titative study for the heavy-ion collisions, which is an en-tor in numerical simulations of two-flavor QCD for the cases
couraging result. Also, we find that a point aroumdT,  of reweighting in the quark mass and chemical potential.
=0.9 looks singular. Because we expect the fluctuation off here exists a direction of small fluctuation in then,{3)
the system to diverge at a critical point, this might be relatedplane and it is roughly the same direction as that of the phase
to the presence of a critical end point. The large fluctuatioriransition line. The fluctuation of the reweighting factor with
aroundT/Ty=0.9u4,a>0.5 occurs because ti@( ) term  respect to chemical potential can be separated into two parts:
is large around there. This might correspond with, in generalihe complex phase factor of the fermion part and, on the
the contribution from the higher order terms of the Taylorother hand, the absolute value of the fermion part and the
expansion becoming larger, as the critical point is ap-gauge part. These two parts fluctuate almost independently
proached, so the expansion series does not converge near tharing Monte Carlo steps. This implies that the phase factor
critical point. The plus sign and minus sign appear with al-of the fermion part does not influence the shift @f with
most equal probability, i.e{e'?) is almost zero, when the increasingu at smallx, and also explains why the differ-
standard deviation of9 is larger thanz. The value of ence between the phase transition lines for the usual chemi-
tq/T=uN, at which the standard deviation df is cal potential and isovector chemical potential is small at low
aroundT, is of the order,/T~0O(1). However, we should density. If we neglect the complex phase factor, the increase
notice that the complex phase, again, is very sensitive to thef the fluctuation is also small along the phase transition line
lattice sizeNg. For small lattice size, the sign problem is in the (u?,B) plane, as well as in then, ) plane.
not severe and the reweighting method can be used for con- The value ofu for which the sign problem arises de-
siderably largeru; however, the applicability range of the creases as the lattice siklg; increases; hence simulations at
reweighting method will be narrower for a lattice with a size w#0 are more difficult for larger lattices, even if the fluc-
larger than 18x 4. Also, the analysis of quark mass depen-tuation of the absolute value of the reweighting factor is
dence must be important as a part of future investigations. small along the phase transition line. The complex phase
fluctuation is measured on a’64 lattice. The sign problem
VIIl. CONCLUSIONS is not serious in the high temperature phase, but around the
o . ) phase transition point it becomes serious gradually from this
At present, the reweighting method is an important ap-attice size. For small lattices, the sign problem is not severe
proach to the study of QCD at finite baryon density. Wefor a study at low density, and also, for the’¥64 lattice, the
discussed the applicability range of the reweighting methodypplicability range of the reweighting method covers the in-
with multiple parameters. The fluctuation of the reweightingteresting regime for heavy-ion collisions. Also, the behavior
factor during Monte Carlo steps is a cause of the increase qff the complex phase fluctuation around the transition point
the statistical error due to the reweighting, and the magnitudguggests a critical end point in the region gf,/T,
of the fluctuation determines the applicable range. ~0(1).
For a simulation of S(B) pure gauge theory at the first
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