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Remarks on the multiparameter reweighting method for the study of lattice QCD at nonzero
temperature and density

Shinji Ejiri
Fakultät für Physik, Universita¨t Bielefeld, D-33615 Bielefeld, Germany

~Received 6 January 2004; published 19 May 2004!

We comment on the reweighting method for the study of finite density lattice QCD. We discuss the appli-
cable parameter range of the reweighting method for models that have more than one simulation parameter.
The applicability range is determined by the fluctuations of the modification factor of the Boltzmann weight.
In some models having a first order phase transition, the fluctuations are minimized along the phase transition
line if we assume that the pressure in the hot and the cold phases is balanced at the first order phase transition
point. This suggests that the reweighting method with two parameters is applicable in a wide range for the
purpose of tracing out the phase transition line in the parameter space. To confirm the usefulness of the
reweighting method for two-flavor QCD, the fluctuations of the reweighting factor are measured by numerical
simulations for the cases of reweighting in the quark mass and chemical potential directions. The relation to the
phase transition line is discussed. Moreover, the sign problem caused by the complex phase fluctuations is
studied.
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I. INTRODUCTION

The study of the phase structure of QCD at a nonz
temperatureT and nonzero quark chemical potentialmq is
currently one of the most attractive topics in particle phys
@1,2#. Heavy-ion collision experiments aiming to produce t
quark-gluon plasma~QGP! are running at BNL and CERN
for which the interesting regime is rather low density. Mor
over, a new color superconductor phase is expected in
region of low temperature and high density. In the last f
years, remarkable progress has been achieved in the nu
cal study of lattice QCD at low density by Monte Car
simulations. It was shown that the phase transition line se
rating the hadron phase and the QGP phase can be trace
from mq50 to finite mq , and it was also possible to inves
tigate the equation of state quantitatively at low density. T
main difficulty of a study at nonzero baryon density is th
the Monte Carlo method is not applicable directly at fin
density, since the fermion determinant is complex for no
zero mq and configurations cannot be generated with
probability of the Boltzmann weight. The most popular tec
nique for a study at nonzeromq is the reweighting method
performing simulations at Re(mq)50, and then modify the
Boltzmann weight at the step of measurement of observa
@3–6#. The Glasgow method@7# is one of the reweighting
methods. A composite~Glasgow! reweighting method has
recently been proposed in@8#. Another approach is analyti
continuation from simulations at imaginary chemical pote
tial @9–11#. Moreover, calculating coefficients of a Taylo
expansion in terms ofmq is also a hopeful approach for th
study at nonzero baryon density@4,12–14#. Studies by Taylor
expansion or imaginary chemical potential require analy
ity of physical quantities as functions ofT andmq , while the
reweighting method has a famous ‘‘sign problem.’’ The si
problem is caused by complex phase fluctuations of the
mion determinant, which are measured explicitly in R
@15#, and Ref.@16# is also an attempt to avoid the sign pro
lem.
0556-2821/2004/69~9!/094506~11!/$22.50 69 0945
o

s

-
he

eri-

a-
out

e
t

-
e
-

es

-

-

r-
.

In this paper, we make comments on the reweight
method with respect to more than one simulation parame
particularly including a chemical potential. Because the flu
tuation of the modification factor~reweighting factor! en-
larges the statistical error, the applicable range of this met
is determined by the fluctuation of the reweighting fact
When the error becomes considerable in comparison with
expectation value, the reweighting method breaks down.
interesting possibility is given in the following case: whe
we change two parameters at the same time, the reweigh
factors for two parameters might cancel each other; then
error does not increase and the expectation values of
physical quantities also do not change by this param
shift. Therefore finding such a direction provides useful
formation for mapping out the value of physical quantities
the parameter space. As we will see below, there is suc
direction in the parameter space and a knowledge of
property of the reweighting method makes the method m
useful. Fodor and Katz@3# investigated the phase transitio
line for rather largemq . This argument may explain why
they could calculatebc for such largemq .

In the next section, we explain the reweighting meth
with multiple parameters. Then, in Sec. III, the case of SU~3!
pure gauge theory on an anisotropic lattice is considered
the simplest example, and we proceed to full QCD with
first order phase transition in Sec. IV. For two-flavor QC
the reweighting method with respect to quark mass is d
cussed in Sec. V. The application to nonzero baryon den
is discussed in Sec. VI. The problem of the complex meas
is also considered in Sec. VII. Conclusions are given in S
VIII.

II. REWEIGHTING METHOD AND THE
APPLICABILITY RANGE

The reweighting method is based on the following ide
tity:
©2004 The American Physical Society06-1
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^O& (b,m,m)5
1

Z(b,m,m)
E DUO@detM ~m,m!#Nfe2Sg(b)

5
^OeFeG& (b0 ,m0 ,m0)

^eFeG& (b0 ,m0 ,m0)

5
^OeDFeDG& (b0 ,m0 ,m0)

^eDFeDG& (b0 ,m0 ,m0)

.

~1!

HereM is the quark matrix,Sg is the gauge action,Nf is the
number of flavors (Nf/4 for staggered type fermions instea
of Nf), F5Nf@ ln detM (m,m)2 ln detM (m0 ,m0)#, G5(b
2b0)P,P52]Sg /]b, b56/g2, and DF@G#5F@G#
2^F@G#&. m andm[mqa are the bare quark mass and t
chemical potential in a lattice unit, respectively. The exp
tation value^O& (b,m,m) can, in principle, be computed b
simulation at (b0 ,m0 ,m0) using this identity@17#. However,
a problem of the reweighting method is that the fluctuat
of eDFeDG5eFeG/(e^F&e^G&) enlarges the statistical error o
the numerator and denominator of Eq.~1!. The worst case
which is called the ‘‘sign problem,’’ is that the sign of th
reweighting factor changes frequently during Monte Ca
steps; then the expectation values in Eq.~1! become vanish-
ingly small in comparison with the error, and this meth
does not work. However, the fluctuations cause theb, m, and
m dependence of̂O& (b,m,m) . Otherwise, ifeFeG does not
fluctuate,eDFeDG51 and ^O& (b,m,m) does not change with
parameter change. Roughly speaking, the difference
^O& (b,m,m) from ^O& (b0 ,m0 ,m0) increases as the magnitude
fluctuations ofF and G increases and, ifF and G have a
correlation, the increase of the total fluctuation as a funct
of b, m, and m is nontrivial. Therefore, it is important to
discuss the correlation betweeneF andeG and to estimate the
total fluctuation of the reweighting factor in the parame
space in order to estimate the applicability range of the
weighting method in the parameter space and how the
tem is changed by parameter shifts. This is helpful inform
tion for the study of QCD thermodynamics.

III. SU „3… GAUGE THEORY ON AN ANISOTROPIC
LATTICE

Let us start with the case of SU~3! pure gauge theory on
an anisotropic lattice, having two different lattice spacin
for the space and time directions:as and at . As we will
show, for this case, there is a clear relation between the p
transition line and the direction that minimizes the fluctu
tion of the reweighting factor. The action is

Sg52bs(
x

Ps~x!2bt(
x

Pt~x!, ~2!

where Ps(t) is the spatial~temporal! plaquette. The SU~3!
pure gauge theory has a first order phase transition. At
transition point (Tc), two phases exist simultaneously. F
the two phases to coexist, the pressure in these phases
be equal:Dp[p(hot)2p(cold)50. If we requireDp50, we
find that the phase transition line in the parameter spac
(bs ,bt) has to run in such a direction that the fluctuation
the reweighting factor is minimized when we perform
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simulation on the phase transition point and apply the
weighting in the (bs ,bt) plane.

A significant feature of a Monte Carlo simulation at a fir
order phase transition point is the occurrence of flip-flo
between configurations of hot and cold phases. If one wr
a histogram of the action density, i.e., the plaquettesPs and
Pt , there exist two peaks. The value of the action dens
sometimes changes from one near one peak to one nea
other peak during Monte Carlo steps@18,19#. The flip-flop is
the most important fluctuation; in fact, the flip-flop caus
the strong peak of susceptibilities of observables such as
plaquette or the Polyakov loop at the transition point. Als
the flip-flop implies strong correlations betweenPs and Pt
because the values ofPs andPt change simultaneously be
tween the typical values of the two phases in the (Ps ,Pt)
plane.

Here, we discuss the fluctuation of the reweighting fac
when one performs a simulation at the transition po
(bs0 ,bt0). The expectation value ofO at (bs ,bt) on an
anisotropic lattice is calculated by

^O& (bs ,bt)5^Oe2DSg& (bs0 ,bt0) /^e2DSg& (bs0 ,bt0) , ~3!

where DSg52Dbs(xPs(x)2Dbt(xPt(x), and Dbs(t)
5bs(t)2bs(t)0 . For simplification, we ignore the local fluc
tuation around the two peaks of the histogram of the act
density and consider only the flip-flop between hot and c
phases, since it is the most important fluctuation at the fi
order phase transition point. Then, the fluctuation is e
mated by the difference of the reweighting factor betwe
hot and cold phases, up to first order,

ue2DSg
(hot)

2e2DSg
(cold)

u'3NsiteuDbs~ P̄s
(hot)2 P̄s

(cold)!

1Dbt~ P̄t
(hot)2 P̄t

(cold)!u1•••,

~4!

where P̄s
hot (cold) and P̄t

hot (cold) are the average values of th
spatial and temporal plaquettes for configurations in the
~cold! phases andNsite[Ns

33Nt is the number of sites for an
Ns

33Nt lattice. Hence, along the line which has a slope

dbs

dbt

52
P̄t

(hot)2 P̄t
(cold)

P̄s
(hot)2 P̄s

(cold)
, ~5!

the fluctuation of the reweighting factor is canceled to lea
ing order.

On the other hand, sinceV5(Nsas)3 and T
5(Ntat)

21, the pressure is defined by

p5T
] ln Z

]V U
T

5
1

3Ns
3Ntas

2at

] ln Z
]as

U
at

, ~6!
6-2
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p

T4
5Nt

4S at

as
D 3Fas

]bs

]as

~^P̄s&2^P̄s&0!

1as

]bt

]as

~^P̄t&2^P̄t&0!G , ~7!

whereP̄s(t)5(3Nsite)
21(xPs(t)(x), and^P̄s(t)&0 is the ex-

pectation value of the plaquette on aT50 lattice for the
normalization.

By separating the configurations into those in the hot a
cold phases@18,19#, the gap of pressure between the hot a
cold phases atTc is computed by

D
p

T4
[

p(hot)

T4
2

p(cold)

T4

5Nt
4S at

as
D 3Fas

]bs

]as

~ P̄s
(hot)2 P̄s

(cold)!

1as

]bt

]as

~ P̄t
(hot)2 P̄t

(cold)!G . ~8!

Since the gap of pressure should vanish,Dp50,

]bs

]as
Y ]bt

]as

52
P̄t

(hot)2 P̄t
(cold)

P̄s
(hot)2 P̄s

(cold)
. ~9!

Moreover, becauseTc5(Ntat)
21 on the phase transition

line, at stays constant with (NtTc)
21 along the transition

line, i.e.,

Dat5
]at

]bs
Dbs1

]at

]bt
Dbt50, ~10!

when one changes parameters (bs ,bt)→(bs1Dbs ,bt
1Dbt) along the phase transition line. Then the slope of
phase transition line (r t) @20# is obtained by

r t[
dbs

dbt
U

Tc

52
]at

]bt
Y ]at

]bs
5

]bs

]as
Y ]bt

]as
, ~11!

where we used the identify

S ]bs

]as

]bt

]as

]bs

]at

]bt

]at

D 5
1

]at

]bt

]as

]bs
2

]at

]bs

]as

]bt

3S ]at

]bt
2

]at

]bs

2
]as

]bt

]as

]bs

D . ~12!

Hence, the condition forDp50 becomes
09450
d
d

e

P̄t
(hot)2 P̄t

(cold)

P̄s
(hot)2 P̄s

(cold)
52r t . ~13!

This equation for dbs /dbt may correspond to the
Clausius-Clapeyron equation in the (p,T) plane: dp/dT
5DS/DV (S is the entropy!. In fact, Eq.~13! and the van-
ishing pressure gapDp50 are confirmed by calculating th
slope of the transition line from the peak position of t
Polyakov loop susceptibility obtained by numerical simu
tions in Ref.@20#. Historically, the nonzero gap in pressure
the transition point was a problem for long time. The reas
for DpÞ0 was that a precise nonperturbative measurem
of the anisotropy coefficientsas(]bs /]as),as(]bt /]as),
etc., was difficult, and the perturbative value@21# cannot be
used at the phase transition point forNt54 or 6. After the
precise measurement of the anisotropy coefficients bec
possible, the problem of a nonzero pressure gap was so
Also, determination of these coefficients by another nonp
turbative method was done in Refs.@22–24#.

From Eq.~5! and Eq.~13!, we find that the direction tha
minimizes the fluctuation of the reweighting factor must
the same as the direction of the phase transition line in
(bs ,bt) plane, if the pressures in the hot and cold phases
balanced atTc , Dp50. Here, in practice, we estimate th
fluctuation ofe2DSg by a numerical simulation. We comput
the standard deviation of the reweighting factor using
data obtained in Ref.@19#. The lattice size is 24233634.
The data are generated by the standard Wilson gauge a
with bs5bs55.6925, that is, just on the transition line
bc55.69245(23) forNt54 atas5at . The ellipses in Fig. 1
are the contour lines of the standard deviation normalized

the mean value:A^(e2DSg)2&2^e2DSg&2/^e2DSg&, and we
write this value in Fig. 1. We also denote the phase transi

FIG. 1. Contour plot of the standard deviation of the reweig
ing factor and the phase transition line in the (bs ,bt) plane. Bold
line is the phase transition line, and the dashed lines denote its e
Values in this figure are the standard deviation divided by the m
value. The simulation point isb55.6925.
6-3
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line, obtained by the measurement of the Polyakov loop s
ceptibility assuming that the peak position of the suscepti
ity is the phase transition point@20#, by a bold line, and the
dashed lines are the upper bound and lower bound. We
that the phase transition line and the line that minimiz
fluctuations are consistent. This result also means that
reweighting method is applicable in a wide range for t
determination of the phase transition line in the parame
space of SU~3! gauge theory on an anisotropic lattice, sin
the increase of the statistical error caused by the reweigh
is small along the transition line.

We note that, from Eq.~13!, DSg
(hot) and DSg

(cold) in Eq.
~4! are equal under the change along the phase trans
line; hence the fluctuations are canceled in every orde
Dbs(t) . For SU~3! pure gauge theory on an anisotropic la
tice, the system is independent ofas /at in a physical unit;
hence the system does not change along the transition
except for the volumeV5(Nsas)3, if Ns is finite.1 Because
physical quantities do not change without fluctuation of
reweighting factor, this result is quite natural.

IV. FULL QCD WITH A FIRST ORDER PHASE
TRANSITION

Next, we extend this discussion to the case of full QC
with a first order phase transition such as three-flavor Q
near the chiral limit. The reweighting method is applied
the parameter space of (m,b). We consider the Helmholtz
free energy densityf 52T ln Z/V for a canonical ensembl
which is equal to minus pressure,p52 f , for a large homo-
geneous system. Under a parameter change from (m,b) to
(m1Dm,b1Db), the variation of the free energy is give
up to the first order, by

f

T4U
(m1Dm,b1Db)

2
f

T4U
(m,b)

52Nt
4@~^Q̄1&2^Q̄1&0!Dm

16~^P̄&2^P̄&0!Db#1•••,

~14!

where Q̄15Nsite
21Nf](ln detM )/]m and P̄5

2(6Nsite)
21]Sg /]b. For the normalization atT50, we sub-

tract the zero temperature contribution^P̄&0 and ^Q̄1&0 .
Here, we should note that the first derivatives of the f
energy are discontinuous at the phase transition line; he
we cannot estimate the difference of the free energy bey
the transition line by this equation.

We assume that the gap of the pressure is zero in
entire parameter space (m,b). We changem andb along the
phase transition line starting at two points, just above a
just belowbc , without crossing the transition line. Then th
change of the free energy must be the same for both th
cases, since a pressure gap is not generated under this
tion, i.e.,D(Dp)50. Hence, up to first order ofDm andDb,

1In fact, as expected from the finite size scaling, the peak heigh
the Polyakov loop susceptibility increases asas increases@20#.
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T4U
(m1Dm,b1Db)

(hot)

2
f

T4U
(m,b)

(hot) D
2S f

T4U
(m1Dm,b1Db)

(cold)

2
f

T4U
(m,b)

(cold)D
52Nt

4@~Q̄1
(hot)2Q̄1

(cold)!Dm16~ P̄(hot)2 P̄(cold)!Db#

1•••50 ~15!

is required on the first order phase transition line. From t
equation, we obtain a similar relation to Eq.~13!

Q̄1
(hot)2Q̄1

(cold)

6~ P̄(hot)2 P̄(cold)!
52

db

dmU
Tc

. ~16!

On the other hand, the change of the reweighting fac
under a flip-flop is

ueDF(hot)
eDG(hot)

2eDF(cold)
eDG(cold)

u

'Nsite@~Q̄1
(hot)2Q̄1

(cold)!Dm16~ P̄(hot)2 P̄(cold)!Db#

1•••. ~17!

If we ignore the local fluctuation around the peaks of t
distribution of P and Q1 , again the direction for which the
fluctuation is canceled is

2
db

dm
5

Q̄1
(hot)2Q̄1

(cold)

6~ P̄(hot)2 P̄(cold)!
. ~18!

This is the same direction as the phase transition line. Th
fore, the fluctuation of the reweighting factor along the pha
transition line remains small, i.e., the statistical error do
not increase very much.

We obtained the same result as for the pure gauge th
on an anisotropic lattice, and this argument seems to be q
general for models with a first order phase transition, inclu
ing models with a chemical potential. However, there is
difference. Under the change ofas /at , any physics does no
change along theTc line, but physical quantities, in genera
depend on the quark mass. Although the dependence om
might be much smaller than the dependence onT/Tc , if the
fluctuation of the reweighting factor is completely cancele
any m dependence is not obtained. In this discussion,
ignored the local fluctuation around the peaks in the hot
cold phases, but the local fluctuation may play an import
role for them dependence. Also, the sign problem for no
zero baryon density is caused by complex phase fluctuat
of the reweighting factor~see Sec. VII!, that is, by the local
fluctuations. Hence the local fluctuation may, in particular,
important at nonzero baryon density.

of
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V. QUARK MASS REWEIGHTING
FOR TWO-FLAVOR QCD

As we saw in the previous two sections, the multipara
eter reweighting seems to be efficient in tracing out the ph
transition line in a wide range of the parameter space. On
the most interesting applications is finding the~pseudo!criti-
cal line (bc) in the (m,b) plane for two-flavor or
(211)-flavor QCD. The phase transition for two-flavo
QCD at finite quark mass is expected to be a crosso
which is not related to any singularity in thermodynam
observables, and that for three-flavor QCD is a crossover
quark masses larger than a critical quark mass, and is of
order for light quarks. The precise measurement of
~pseudo!critical line is required for extrapolation to th
physical quark masses and for a study of the universa
class, e.g., to investigate for the two-flavor case whether
chiral phase transition at finite temperature is in the sa
universality class as the three-dimensional O~4! spin model
or not.

In Ref. @4#, we applied the reweighting method in th
(m,b) plane for two-flavor QCD, and calculated the slope
the transition linedbc /dm, where the reweighting facto
with respect to quark mass was expanded into a power s
and higher order terms which do not affect the calculation
the slope were neglected. The results fordbc /dm compared
well with the data onbc(m) obtained by direct calculations
without applying the reweighting method, demonstrating
reliability of a reweighting in a parameter of the fermio
action. In this section, we discuss the relation between
fluctuation of the reweighting factor and the phase transit
line in the (m,b) plane for two-flavor QCD at finite quark
mass, i.e., at the crossover transition, by measuring the
tuation in numerical simulations.

For the presence of a direction for which the two r
weighting factors from the gauge and the fermion action c
cel, a correlation between these reweighting factors du
Monte Carlo steps is required. We estimate the correla
between these reweighting factors using the configuration
Ref. @4#. A combination of the Symanzik improved gaug
action and two flavors of thep4 improved staggered fermio
action is employed@25#. The parameters arem050.1,b0
5$3.64,3.645,3.65,3.655,3.66,3.665, and 3.67%. The lattice
size is 16334. 7800–58000 trajectories are used for me
surements at eachb. The details are given in Ref.@4#.2

In the vicinity of the simulation point, the correlation o
the reweighting factors can be approximated by

^eFeG&2^eF&^eG&[^DeFDeG&

'^DQ1DP&~m2m0!~b2b0!1•••,

~19!

whereP52]Sg /]b, F5(n51
` Qn(m2m0)n, and we denote

DX[X2^X& for X5$P,Qn , . . . %. TheQn are obtained by

2The coefficientc3
F of the knight’s move hopping term was inco

rectly reported to be 1/96 in Ref.@4#; its correct value is 1/48.
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Q15~Nf/4!tr M 21, Q252~Nf/8!tr~M 21M 21!, . . . ,
~20!

for standard staggered fermions and also forp4 improved
staggered fermions. We calculate the value of^DQ1DP&
[^Q1P&2^Q1&^P&. The random noise method is used f
the calculation ofQn . The results for̂ DQ1DP& are listed in
Table I. We find strong correlation between the gauge a
fermion parts of the reweighting factor.

Then we compute the total fluctuation of the reweighti
factor as a function ofm andb near the simulation point. Up
to second order inb2b0 and m2m0 , the square of the
standard deviation is written as

^@D~eFeG!#2&'^~DQ1!2&~m2m0!212^DQ1DP&~m2m0!

3~b2b0!1^~DP!2&~b2b0!21•••. ~21!

If we approximate in this form, lines of constant fluctuatio
~standard deviation! in the (m,b) plane form ellipses. We
also computê (DQ1)2& and ^(DP)2&, which are written in
Table I. The values atbc53.6492(22) are interpolated b
applying the reweighting method for theb direction combin-
ing the data at seven simulation points@17#. The lines of
constant fluctuation are drawn in Fig. 2. The numbers in t
figure are the squares of the standard deviation divided
Nsite. It is found that these ellipses spread over one direct
and the increase of the fluctuation is small along this dir
tion. We also show the slope of the phase transition line
two lines: the upper bound and lower bound of the derivat
of bc with respect tom obtained by measuring the pea
position of the chiral susceptibility,dbc /dm51.05(14) for
m050.1 @4#. We see that the directions of small fluctuatio
and of the phase transition are roughly the same. Since
fluctuation enlarges the statistical error of an observable,
figure can also be regarded as a map indicating the incr
of the statistical error due to the reweighting. Therefore,
understand that the reweighting method can be applied
wide range of parameters along the phase transition lin
one performs simulations at the phase transition point.

Moreover, it might also be important that these two dire
tions are not exactly the same because, if the fluctuatio
completely canceled along the transition line, no quantity c
change, but the system should change as a function of q

TABLE I. Correlation and susceptibilities ofQ1 and P. Nsite

516334. bc53.6492(22).

b ^DQ1DP&Nsite
21 ^(DQ1)2&Nsite

21 ^(DP)2&Nsite
21

3.640 21.44~6! 1.29~6! 2.67~7!

3.645 21.80~13! 1.69~13! 2.99~14!

3.650 21.70~6! 1.58~6! 2.89~7!

3.655 21.76~14! 1.65~13! 2.92~15!

3.660 21.60~6! 1.49~6! 2.77~7!

3.665 21.36~13! 1.19~12! 2.58~14!

3.670 21.52~7! 1.41~8! 2.68~8!

3.6492 21.74~4! 1.61~3! 2.92~5!
6-5
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mass even on the transition line, e.g., the chiral susceptib
should become larger asm decreases.

VI. CHEMICAL POTENTIAL REWEIGHTING
FOR TWO-FLAVOR QCD

A. Correlation among the reweighting factors

Next, let us discuss the reweighting method for nonv
ishing chemical potential. The reweighting method is rea
important for the study of finite density QCD since dire
simulations are not possible for nonzero baryon density
present. However, the complex measure problem~sign prob-
lem! is known to be a difficult problem. The reweightin
factor for nonzerom is complex. If the complex phase fluc
tuates rapidly and the reweighting factor changes sign
quently, the expectation values in Eq.~1! become smaller
than the error. Then the reweighting method breaks do
Therefore it is important to investigate the reweighting fa
tor, including the complex phase, in practical simulations

First of all, we separate the fermion reweighting factoreF

into an amplitudeueFu and a phase factoreiu, and investigate
the correlation amongueFu, eiu, and the gauge parteG,
whereeG is real. As is shown in Ref.@4#, the phase factor
and the amplitude can be written as the odd and even te
of the Taylor expansion of ln detM , respectively, since the
odd terms are purely imaginary and the even terms are re
m50. DenotingF5(n51

` Rnmn,

ueFu5expH (
n51

`

Re~R2n!m2nJ and

eiu5expH i (
n51

`

Im~R2n21!m2n21J . ~22!

FIG. 2. Contour plot of the standard deviation of the reweig
ing factor in the (b,m) plane aroundbc , b053.6492, andm0

50.1. Values in this figure are the square of the standard devia
divided byNsite. Bold lines show the upper bound and lower bou
of ]bc /]m.
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We study the correlation among these factors in the vicin
of the simulation point (b0 ,m050). Up to O(b2b0 ,m2),
the reweighting factor is

eiuueFueG'11R1m1~R1
2/2!m21R2m21P~b2b0!1•••.

~23!

We compute the correlations,^D(R1
2/2)DP&, ^DR2DP&, and

^D(R1
2/2)DR2& at m50, which correspond to the correla

tions of (eiu,eG), (ueFu,eG), and (eiu,ueFu), respectively.
DX[X2^X& for X5$P,Rn , . . . %. Here, ^DR1DP& and
^DR1DR2& are zero atm50 becauseR1 is purely imaginary.
The Rn are obtained by

R15
Nf

4

] ln detM

]m
5

Nf

4
trS M 21

]M

]m D , ~24!

R25
Nf

4

1

2

]2ln detM

]m2

5
Nf

4

1

2 F trS M 21
]2M

]m2 D 2trS M 21
]M

]m
M 21

]M

]m D G ,

~25!

R35
Nf

4

1

3!

]3~ ln detM !

]m3

5
Nf

4

1

3! F trS M 21
]3M

]m3 D 23 trS M 21
]M

]m
M 21

]2M

]m2 D
12 trS M 21

]M

]m
M 21

]M

]m
M 21

]M

]m D G ~26!

for staggered type fermions. Details of the calculation
given in Ref.@4#.

We use the configurations in Ref.@4# again, generated by
the Nf52 p4 improved action on a 16334 lattice. We gen-
erated 20000–40000 trajectories form050.1, b0
5$3.64,3.65,3.66, and 3.67%. The results are summarized i
Table II. We find that the correlation betweenueFu andeG is
very strong in comparison with the other correlations, wh
means that the contribution to an observable can be sepa
into two independent parts: one fromeiu, and one from a
combination ofueFu3eG.

To make the meaning of this result clearer, we consi
the following partition function, introducing two differentm,
mo andme :

Z5E DUeR1mo1R3mo
3
1•••eR2me

2
1R4me

4
1•••

3~detM um50!Nf/4e2Sg. ~27!

Then, atm50,

-

n

6-6



REMARKS ON THE MULTIPARAMETER REWEIGHTING . . . PHYSICAL REVIEW D69, 094506 ~2004!
TABLE II. Correlations and susceptibilities amongR1
2 , R2 , andP. Nsite516334. bc53.6497(16).

b ^D(R1
2/2)DP&Nsite

21 ^DR2DP&Nsite
21 ^D(R1

2/2)DR2&Nsite
21 ^(DR2)2&Nsite

21 ^(DP)2&Nsite
21

3.64 0.006~29! 0.312~33! 0.034~10! 0.216~16! 2.62~10!

3.65 0.059~21! 0.434~29! 0.056~10! 0.254~14! 2.87~8!

3.66 0.055~15! 0.410~26! 0.022~5! 0.231~11! 2.75~8!

3.67 0.032~15! 0.397~28! 0.031~5! 0.219~13! 2.68~8!

3.6497 0.059~13! 0.495~19! 0.050~7! 0.267~9! 2.98~7!
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^DR1
2DP&5^~DR1!2DP&5

]3ln Z
]mo

2]b

5Nsite

]~xqa224x IVa2!

]b
, ~28!

2^DR2DP&5
]3ln Z
]me

2]b
5Nsite

]~4x IVa2!

]b
, ~29!

wherexq and x IV are the quark number susceptibility an
isovector quark number susceptibility@26#:

xq

T2
5S ]

]~mu /T!
1

]

]~md /T!
D nu1nd

T3
, ~30!

4x IV

T2
5S ]

]~mu /T!
2

]

]~md /T!
D nu2nd

T3
. ~31!

We choose the same chemical potential for up and do
quarks: mu5md[mq . nu(d) is the number density for up
~down! quarks: nu(d) /T

35](p/T4)/](mu(d) /T). The quark
and baryon number susceptibilities are related byxB
[]nB /]mB5322xq . If we impose a chemical potential wit
opposite sign for up and down quarks,mu52md[m IV/2,
called the ‘‘isovector chemical potential,’’ the Monte Car
method is applicable since the measure is not comp
@27,28#. For this model, the isovector quark number susc
tibility x IV in Eq. ~31! is the quark number susceptibility
instead of Eq.~30!.

The result in Table II means that

]3ln Z
]mo

2]b
!

]3ln Z
]me

2]b
, ~32!

i.e., m in the phase factor (mo) does not contribute to theb
dependence ofZ nearm50, hencem in the amplitude (me)
is more important for the determination ofbc by measuring
the b dependence of thermodynamic quantities. Moreov
these correlations have a relation to the slope ofxq and 4x IV
in terms ofb. Sincexq24x IV is known to be small atm
50 @26#,3 this result may not change even for small qua

3However, asm increases, the difference betweenxq and 4x IV

becomes sizable@13#, which might be related to onlyxq being
expected to have a singularity at the critical end point@29#.
09450
n
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mass. Also, the result in Ref.@30# suggests that the effect o
the phase factor, i.e., ofmo , on physical quantities is smal

Isovector chemical potential. Furthermore, we discuss th
model with isovector chemical potential. In Ref.@4#, we dis-
cussed the difference in the curvature of the phase trans
from that of the usual chemical potential. Because we exp
that atT50 pion condensation happens aroundmq'mp/2,
and that the phase transition line runs to that point direc
the curvature of the transition line for the isovectorm should
be much larger than that for the usualm, since mp/2
!mN/3. However, as we discussed above,mo in Eq. ~27!
does not contribute to the shift ofbc near m50 and the
difference from the usualm is only in mo , i.e.,mo50 for the
isovector case. Therefore the difference in the curvat
might be small and the naive picture seems to be wrong
practice, our result at smallm using the method in Ref.@4#
supports that. Moreover, Kogut and Sinclair@31# showed that
bc from chiral condensate measurements is fairly insensi
to m for smallm by direct simulations with the isovectorm.

B. Fluctuation of the reweighting factor

Next, we estimate the fluctuation of the reweighting fa
tor. As we have seen above, the fluctuation of the reweig
ing factor is separated into the complex phase factor ofeDF

and the other part, and these are almost independent. M
over, this implies that the absolute value ofeDF is important
for the determination ofbc . The amplitude of the fermionic
partueDFu and the gauge parteDG are strongly correlated, an
thus the variation of the total fluctuation of these parts in
parameter space is not simple. Because the total fluctua
is related to the applicability range of the reweightin
method, here we compute the standard deviation ofueFueG to
estimate the fluctuation, and also discuss the relation to
phase transition line. The complex phase fluctuationeiu will
be discussed in the next section separately.

Up to the leading order ofb2b0 andm2, the square of
the standard deviation is obtained by

^@D~ ueFueG!#2&'^~DR2!2&m412^DR2DP&m2~b2b0!

1^~DP!2&~b2b0!21•••. ~33!

Then the line of constant fluctuation is an ellipse in th
approximation. We show the contour lines in Fig. 3. T
susceptibilities and the correlation ofR2 and P, ^(DR2)2&,
^(DP)2&, and ^DR2DP&, are summarized in Table II. Th
values at the phase transition pointbc53.6497(16) are com-
puted by the reweighting method for theb direction using
6-7
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the data at fourb points. Numbers in this figure are th
squares of the standard deviation divided byNsite. We also
denote the lower and upper bounds of]2bc /]m2521.1(4)
by bold lines, which are obtained by measurement of
chiral susceptibility@4#. We find that there exists a directio
along which the increase of the fluctuation is relative
small, and this direction is roughly parallel to the phase tr
sition line. Because we expect that the physics is sim
along the transition line, if we consider thatueFueG is the
important part for the calculation ofbc , this result is quite
reasonable.

As well as in the (m,b) plane, the fluctuation of the re
weighting factor is small along the phase transition line
the (m,b) plane, and the reweighting method seems to
efficient to trace out the phase transition line. This must b
reason why the phase transition line can be determined
rather largem in Ref. @3#. However, in this discussion, w
omitted the complex phase fluctuation, and the phase fl
tuation is the most important factor for the sign problem.
we will discuss in the next section, the value ofm for which
the sign problem arises depends strongly on the lattice s
The sign problem is not very severe for small lattices such
the 44, 6334, and 8334 lattices employed in Ref.@3#,
which is also an important reason for their successful ca
lation.

Imaginary chemical potential. In Fig. 3, we show also the
region for m2,0, i.e., imaginarym. de Forcrand and Phil
ipsen @10# computed]2bc /]m2 by performing simulations
with imaginarym, assuming thatbc is an even function inm
and analyticity in that region~also in Ref.@11# for Nf54).
The bc(m) for imaginarym shifts in the opposite direction
from that for realm asm increases, but the absolute value
the second derivative]2bc /]m2 is expected to be the sam
Here, we confirm whether the results ofu]2bc /]m2u obtained
by real and imaginarym are consistent or not by the metho

FIG. 3. Contour plot of the standard deviation of the reweig
ing factor in the (b,m2) plane aroundbc , b053.6497, andm0

50.1. Bold lines show upper bound and lower bound
]bc /](m2).
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in Ref. @4#. We replacem by im or 2 im and reanalyze for
imaginary m. In Ref. @4#, the reweighting factor has bee
obtained in the form of the Taylor expansion inm up to
O(m2), and the replacement is easy. We determinedbc by
the peak position of the chiral susceptibility, using the data
m050.1 in Ref. @4#. The results ofubc(m)2bc(0)u are
shown in Fig. 4. Errors from the truncation of the Tayl
expansion terms areO(m4). The solid line is the result for
real m. The results ofm→ im andm→2 im are the dashed
and dot-dashed lines, respectively. The slope atm50 is
2(]2bc /]m2)/2. We find that these results of the slope f
real and imaginarym are consistent. It has also been d
cussed for measurements of spatial correlation length
confirm the reliability of the analytic continuation from th
imaginary chemical potential@32#.

VII. COMPLEX PHASE FLUCTUATION

Finally, it is worth discussing the complex phase fluctu
tion in order to know the region of applicability of gener
reweighting approaches. If the reweighting factor in Eq.~1!
changes sign frequently due to the complex phase of
quark determinant, then both the numerator and denomin
of Eq. ~1! become very small in comparison with the stat
tical error. Of course, the complex phase starts from zer
m50 but grows asm increases. It is important to establish
what value ofm the sign problem becomes severe.

As discussed in the previous section, the phase can
expressed using the odd terms of the Taylor expansion
ln detM . The complex phase is

u5Im~R1m1R3m31R5m51••• !. ~34!

The explicit expressions forR1 andR3 are given in Eqs.~24!
and ~26!.

Because the sign of the real part of the complex ph
changes atu5p/2, the sign problem occurs when the typic

-

f

FIG. 4. ubc(m)2bc(0)u[uDbcu for real m and imaginarym.
Solid line is the result for realm. Dashed and dot-dashed lines a
the results ofm→ im andm→2 im, respectively.
6-8
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magnitude ofu becomes larger thanp/2. We use the point a
which the magnitude of the phase reaches the valuep/2 as a
simple criterion to estimate the parameter range in wh
reweighting methods will start to face serious sign problem
If the sign problem arises at smallm, which is expected to
happen for a large lattice, the first term in Eq.~34! is most
important. Then we can estimate the applicability range
evaluating the fluctuation ofR1 . Moreover, we expect na
ively that the magnitude of tr@M 21(]M /]m)•••# is propor-
tional to Nsite; therefore the value ofm at which the sign
problem arises decreases roughly in inverse proportion to
number of sitesNsite. Also, the situation is different on lat
tices of moderate size. In Ref.@15#, it is shown that the first
term in Eq. ~34! is dominant form50.1 and 0.2 but the
higher order terms cannot be neglected form*0.3, by cal-
culating the complex phase without the approximation by
Taylor expansion. If the higher order terms are not ne
gible, the volume dependence is not simple. For example
the case that the term ofO(m3) plays an important role in
the determination of the applicability range of the reweig
ing method, the applicability range is expected to decreas
proportion toNsite

21/3, and similarlyNsite
21/5 for the case that the

O(m5) term is important.
We consider the leading term and the next leading term

the complex phase. The expectation value ofu must be zero
at m50 because the partition function is real. Although t
average of the phase is zero, its fluctuations remain im
tant. We investigate the standard deviation ofu up toO(m3),

S(u)[A^u2&2^u&2, using configurations generated on
16334 lattice for the study of Ref.@13#, and the standard
deviations of Im(R1) and Im(R3) are also computed.

The random noise method is used to calculateu for each
configuration. Then the value ofu contains an error due to
the finite number of noise vectorsNn . To reduce this error
we treat the calculation of̂u2& more carefully. Since the
noise sets for the calculation of the twou in the product must
be independent, we subtract the contributions from using
same noise vector for each factor. Details are given in
Appendix of Ref.@4#. By using this method, we can mak
the Nn dependence of̂u2& much smaller than that by th
naive calculation from rather smallNn ; hence it may be
closer to theNn5` limit. We took Nn550 for this calcula-
tion.

In Fig. 5, we plot the standard deviations of theO(m)
term, Im(R1), and theO(m3) term, Im(R3), for Nf52, m
50.1. The horizontal axis is temperature normalized byTc
at m50 (T0). The temperature scale is determined from
string tension data in Ref.@33# with the fit ansatz of Ref.
@34#. The fluctuations of these terms are almost of the sa
magnitude and both of them are small in the high tempe
ture phase; hence the sign problem is not serious in the
temperature phase. We confirm, moreover, that theO(m)
term is dominant aroundm[mqa;0.1, as suggested by Re
@15#, and the approximation by theO(m) term for the dis-
cussion of the applicability range in Ref.@4# is valid for the
16334 lattice. This suggests that the applicability range
creases roughly in proportion toNsite

21 . However, in general,
the magnitude of the fluctuation~standard deviation! of
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R1 /Nsite changes as a function of the volume; hence the
tailed finite size analysis is necessary to investigate the
ume dependence of the applicability range more precise

Recently, analysis of the volume dependence of the ap
cability range has been reported in Ref.@35#. Their numerical
result of the applicability range is in proportion toNsite

21/3.
This is much better thanNsite

21 . Because their estimations ar
based on simulations on 6334, 8334, 10334, and 12334
lattices, the applicability ranges are relatively large, and
higher order terms inm should be important for largem.
Therefore the result of the volume dependence,m;Nsite

21/3, is
reasonable for their lattice size, but may change on la
lattices.

We also show the contour plot for S(u)
5$p/4,p/2,3p/4,p,5p/4,3p/2,7p/4,2p% in Fig. 6. The er-

FIG. 5. Standard deviation of Im(R1) and Im(R3). T0 is Tc at
m50.

FIG. 6. Contour plot of the complex phase fluctuationS(u) in
the„T/T0 ,mqa[(mq /T)Nt

21
… plane. The complex phaseu contains

O(m5) error.T0 is Tc at m50. Nt54.
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ror of the contour is estimated by the jackknife method.
the interesting regime for the heavy-ion collisions,mq /Tc
'0.1 for the RHIC andmq /Tc'0.5 for the SPS, the fluctua
tion is smaller thanp/2 in the whole range ofT. Therefore,
the reweighting method seems to be applicable for the qu
titative study for the heavy-ion collisions, which is an e
couraging result. Also, we find that a point aroundT/T0
50.9 looks singular. Because we expect the fluctuation
the system to diverge at a critical point, this might be rela
to the presence of a critical end point. The large fluctuat
aroundT/T050.9,mqa.0.5 occurs because theO(m3) term
is large around there. This might correspond with, in gene
the contribution from the higher order terms of the Tay
expansion becoming larger, as the critical point is a
proached, so the expansion series does not converge ne
critical point. The plus sign and minus sign appear with
most equal probability, i.e.,̂eiu& is almost zero, when the
standard deviation ofu is larger thanp. The value of
mq /T5mNt at which the standard deviation ofu is p
aroundTc is of the ordermq /T;O(1). However, we should
notice that the complex phase, again, is very sensitive to
lattice sizeNsite. For small lattice size, the sign problem
not severe and the reweighting method can be used for
siderably largerm; however, the applicability range of th
reweighting method will be narrower for a lattice with a si
larger than 16334. Also, the analysis of quark mass depe
dence must be important as a part of future investigation

VIII. CONCLUSIONS

At present, the reweighting method is an important a
proach to the study of QCD at finite baryon density. W
discussed the applicability range of the reweighting meth
with multiple parameters. The fluctuation of the reweighti
factor during Monte Carlo steps is a cause of the increas
the statistical error due to the reweighting, and the magnit
of the fluctuation determines the applicable range.

For a simulation of SU~3! pure gauge theory at the firs
order phase transition point on an anisotropic lattice,
fluctuation is minimized along the phase transition line in
parameter space of an anisotropic lattice, if we assume
pressure in hot and cold phases to be balanced. This a
ment can also be applied in full QCD, if the theory has a fi
order phase transition, and the same relation between
fluctuation of the reweighting factor and the phase transit
line is obtained. This suggests that the multiparameter
weighting method is an efficient method for tracing out t
phase transition line in multiparameter space. Moreo
og

E
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measurement of thermodynamic quantities on the phase
sition line is important for the finite size scaling analysis
discuss the universality class. The reweighting method
useful for this purpose.

We also measured the fluctuation of the reweighting f
tor in numerical simulations of two-flavor QCD for the cas
of reweighting in the quark mass and chemical potent
There exists a direction of small fluctuation in the (m,b)
plane and it is roughly the same direction as that of the ph
transition line. The fluctuation of the reweighting factor wi
respect to chemical potential can be separated into two p
the complex phase factor of the fermion part and, on
other hand, the absolute value of the fermion part and
gauge part. These two parts fluctuate almost independe
during Monte Carlo steps. This implies that the phase fac
of the fermion part does not influence the shift ofbc with
increasingm at smallm, and also explains why the differ
ence between the phase transition lines for the usual ch
cal potential and isovector chemical potential is small at l
density. If we neglect the complex phase factor, the incre
of the fluctuation is also small along the phase transition l
in the (m2,b) plane, as well as in the (m,b) plane.

The value ofm for which the sign problem arises de
creases as the lattice sizeNsite increases; hence simulations
mÞ0 are more difficult for larger lattices, even if the fluc
tuation of the absolute value of the reweighting factor
small along the phase transition line. The complex ph
fluctuation is measured on a 16334 lattice. The sign problem
is not serious in the high temperature phase, but around
phase transition point it becomes serious gradually from
lattice size. For small lattices, the sign problem is not sev
for a study at low density, and also, for the 16334 lattice, the
applicability range of the reweighting method covers the
teresting regime for heavy-ion collisions. Also, the behav
of the complex phase fluctuation around the transition po
suggests a critical end point in the region ofmq /Tc
;O(1).
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