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We investigate the adjoint SP) lattice gauge theory in-81 dimensions with the Wilson plaquette action
modified by aZ, monopole suppression term. For the zero-twist sector we report on indications for the
existence of a finite temperature transition decoupled from the unphysical bulk transitions.
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[. INTRODUCTION confined although screened phase from a deconfined one.
Anyhow, the problem of establishing a well defined criterion
Pure (3+1)-dimensional SUY) lattice gauge theories in for confinement in this case remains an open and interesting
the fundamental representation show a finite-temperature déne.
confinement phase transiti¢t,2] together with the sponta- Second, and most importantly, lattice artifacts lead to first
neous breaking of a globd), center symmetry3,4] govern- order bqlk phase .transitions at strong _coupling, _preventing
ing the critical indices, which, e.g., for $2) correspond to the continuum limit to_ pe reached vylthln the ordinary con-
the universality class of the three-dimensioriaD) Ising  fined phasg14,15. Similar phase dlagramhs are shared by
model [5]. Lattice universality arguments are commonly SU(N) theories withN=3 [16]. For SU2) 7, monopoles

used to claim that the same should hold for any possiblgvfre otpser(;/ed Ito dnvetthe bulk ttrhan3|t|{t3117,f1€ﬂ. Another
lattice action discretization, in particular with different gaugeIn eresting development came as the vortex iree energy, mea-

group representations. On the other hand, if confinement O%ured on the lattice already n the fuqdqmental theasy,
uarks can be ascribed to peculi@pologica) excitations was rec_ently computed als_o in the adj_omt thef2g)], thus .

9 ) S L suggesting how center vortices and twist sectors are entering

of the continuum Yang-Mills fields, it is not clear how center

. . a center-blind theory. The latter work, however, falls short of
symmetry breaking can lead to an effective theory of quan

, = any attempt to investigate the theory at finite temperature,
tum chromodynamic$QCD) [6]. At finite-temperature vor- sy impling on ergodicity problems of the algorithm at the

tices classified througkr,(SU(N)/Zy)~Zy along a compac-  pylk phase transition, where tunneling among different twist
tified dimension can of course provide a suitable degree ofectors becomes strongly suppressed. Thus, a thorough finite
freedom for the pure Yang-Mills ca$€], but their fate in the  temperature investigation of the &) theory taking into ac-
presence of fermions remains challenging. Moreover, in sucount the topological excitations is still missing. Several at-
persymmetric(SUSY) Yang-Mills theory[8,9] and in the tempts searching for a decoupling of the finite temperature
Georgi-Glashow moddl10] confinement is driven by mag- transition from the bulk transitions were originally under-
netic monopoles. Recent work regarding Yang-Mills theoriesaken by Datta and Gavdsee Refs[21-23 and further
based on exceptional group%l] conjectures that vortices citations therein These authors used the fundamental-
might not be at all necessary to have a confining theoryadjoint mixed action modified by, monopole and vortex
What role do vortices play then in SNj? An investigation suppression terms within the Villain-type formulation. By
of the SU2) lattice gauge theory in theenter blindadjoint  studying the specific heat a finite temperature transition con-
representation, i.e., SO(3)SU(2)/Z,, might offer some in-  sistent with the Ising universality class was found. In the
teresting insight. The presence of finite temperature effectpure center-blind adjoint case including only monopole sup-
for such a model has been debated for a long time. Two maipression it could, however, only be established for the small-
problems have been faced. First, Polyakov’s center symmaeest time extensiofN,= 2. Moreover, the relevance of differ-
try breaking mechanism is available only for the half-integerent twist sectors had not yet appeared in the literature.
representations. For integer ones thg local invariance Here we want to go a step further employing Wilson’s
makes the fundamental Polyakov loop of no use. The adjoinadjoint action formulation modified by a simil&, mono-
Polyakov loop, on the other handannotbe, strictly speak- pole suppression. In this case the action itself is manifestly
ing, an order parameter for a transition, assuming it existedzenter blind. The corresponding phase structure looks in
since gluons will screen adjoint quarks at some distancenany respects similar to the Villain case, but it differs—as
[~1.25 fm for SU2)] [12,13. However, it can still be we shall show—substantially in the fundamental-adjoint
taken as a signature to distinguish, at finite temperature, @eoupling plane. The areas along the two axes are completely
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separated by a bulk phase transition and thus the proof giroduct of plaquettes around any 3-cube, since each link oc-
universality—if the latter is really fulfiled—becomes more curs twice for each edge. In other words,
complicated. In our investigation the twist variables will
prove an important ingredient to understand the phase struc- U, (X)——U,(x) = o.—o;, VYV uxc. (3
ture of the model.

The outline of the paper is as follows. In Sec. Il we intro- This ensures that foBg=0 the action we study is center
duce the model and discuss its phase structure at vanishirgind in the entireB,-\ plane.
temperature with standard bulk observables. In Sec. Il twist Previous finite temperature investigations were mainly
variables will be used in order to show that the first orderdone in the Villain discretization for the $8) term in the
bulk transition seems to weaken to second order in a certaiaction, introducing an independefy-valued plaquette vari-
Ba—A\ range. In Sec. IV we report on the existence of theableop [22,23,28. Two terms with chemical potentials were
finite temperature transition and check scaling for the criticahdded in order to suppress completely the effect of the lattice
temperature. Section V contains our conclusions. Reports d@rtifacts,Z, monopoles and vortices, whose densities in this
this work at early stages have been published in Refscase are given by
[24,25.

II. ADJOINT ACTION MODEL WITH  Z, MONOPOLE
SUPPRESSION

; ; ; ~ 1 ~ ~
We study the_ _8(2) lattice gauge theory W|th a mlxgq E=1—<— s U|>- p H op, (5)
fundamental-adjoint representation Wilson action modified
by a chemical potential term suppressifigmonopoles
wherec and| label theN; 3-cubes and th&\, products of
plaquettes have a link in common, respectively. We can see
that the monopole suppression term in E2).looks formally
identical with the one used in connection with the Villain-
type action, but its realization is different and leads to a
+7‘§ (1=00), 1) different phase structure. The Villain discretizatiton R*)
can be proven to be equivalent to the standardlamental
Wilson action foray—o [22,23,28 [see Eq.(6)]. On the
1 Be _PBa other hand, one can show that the limit- of the Wilson
2 I“Lz?’ adjoint formulation can be mapped, in the trivial twist sector,
g to some positive plaguette modg83]. Such a mapping,
however, as we shall see below, is not equivalent to a con-
tinuous connection with the standard fundamental action
theory. A simple inspection of thB,)— B¢ phase diagram
in these two limits shows that the differences are conspicous.
Therefore, Ay and N must not simply be identified
M=1— <i > UC> ) [20,24,25. One should always bear in mind that in the Vil-
N¢ “¢ lain case the S@) invariance undelJ ,(x)——U ,(x) is
not realized in the action itself but only once the auxiliaty
normalized such that it tends to unity in the strong couplingvariables are integrated out. In Fig. 1 tBe— B8, phase dia-
region [N. denotes the number of 3-cubes on the four-gram of our modek2) at T=0 is shown for rather strong
dimensional(4D) lattice]. We will be particularly interested monopole suppression=1.0. Phase | is connected with the
in the pure adjoint theory, i.eB=0. In the latter case one ordinary confinement phase of the standard(ZUmodel
can analyze the model with the link variables represented bwithin the fundamental representation, whereas phase Il ex-
both S@3) or SU?2) matrices, exploiting the property At tending to8,— % occurs completely decoupled from phase |
=Tr§—1 for the Wilson term or picking a random &)  for 8,=0. Indeed, simulating the model with the lattice size
representative of the @) link to construct theZ, monopole  up to 12 the average plaquette variable exhibits a strong
contribution. As expected, nothing changes in the phase dialiscontinuity across and metastable states on top of the tran-
gram, the integration over the fundamental links simply dou-sition line. At 8,=0.0 the latter was located gt=0.96. By
bling the integration domain in the partition function. A stan- studying the fundamental representation Polyakov loop and
dard Metropolis algorithm has been used to update the linkis susceptibility for lattice size % 128 the finite-temperature
in both cases and we use either one according to the bephase transition was seen@t=1.35, i.e., within phase | as
performance in the case at hand. Althoughis constructed one would expect. The phase structure clearly differs from
in terms of fundamental representation plaquettes, it is #hat of the Villain case, where the transition line for increas-
natural SO(3) quantity. In fact, for every given S@) link ing Br extends along the latter axis up By — (see Ref.
variable, the corresponding $2) representative can always [23]). Therefore, universality of physics observed fBf
be determined up to a sign. But the latter is cancelled in the=0 in comparison with3,=0 remains an open question.

S=2 |38 1-—7—

| e L

2

4 ( TriUp

TrFUp)

whereo.=1Ilp_,5gn(TEUp) taken as a product around el-
ementary 3-cubes defines theZ, charge. For these mono-
poles a density can be introduced as
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T T In any case the properties of the different phases should
be established by means of observables well defined in the
g continuum theory, e.g., the glueball spectrum or the screen-
ing mass. Such a project is currently under consideration.

IIl. TWIST SECTORS AND TUNNELING

Vortex free energies related to 't Hooft spatial loops were
recently measured on the lattice within the fundamental and
1 the adjoint representation of $2) [19,20. In the SQ3) case
the Villain discretization was used and it was stressed that on

05 . the torusT* the following equivalence holds:

12 14 _ By, opTreU o

Z =A DU)erv PIFEPL | O 1),
% SU(2) UPZH f (DU)ePvg 1:[ (oc—1)
6
FIG. 1. The bulk phase transition of the mixed fundamental- ©®
adjoint action mode(1) with monopole suppression for= 1.0. o )
~ where the left-hand side is summed over all the twist sectors.
For Bg=0—as one turns on the monopole suppression—o obtain the equivalence of this modified &P Villain

the bulk transition moves down frofi,=2.5 to lowerBa  model with the SI2) Wilson action case with standard pe-
values intersecting the axis at\ =0.92 as one can see from rjgdic boundary conditions the global constraint

Fig. 2. Phases | and Il are denoted as in Fig. 1. The bulk

transition is characterized by the condensatior¥. pfmono-

poles within phase | N1>0) and by their suppression in N = H op=+1 7)
phase Il M=0). It has been located by monitoring the Pe plane uv

monopole densityM (Fig. 3), the plaquette, and the twist
variables(for the definition of the latter see belpwas a func-
tion of B, for varying A. Figure 3 for a lattice size of
4% 12 (i.e., for nonzero temperaturshows the transition to
be discontinuous for smaN turning into a continuous one
(probably second ordemt larger\ and lowerB,, respec-
tively (see the next paragraphirhe end point of the first- . 1 E H
order branch(at B,=1.2 for N;=4) seems to be identical " LLy 5o Pe plane ur

with the lower\ endpoint of the finite temperature transition (8)
to be reported in Sec. IV.

For Bo>0,A=1.0 no bulk transition is observed any-
more. OurB,-\ phase diagram looks very similar to that of
the Villain case in theB,-\y plane[22,26]. But note that in
the Wilson case phase Il seems to be disconnected fro
phase I.

has to be satisfied. It is straightforward to see that an observ-
able able to distinguish between trivial and nontrivial twist
sectors is given by

sgn T‘:UP (6p(r,u,1/= 1)

These twist variables are again truly SCB) observables
since, due to the boundary conditions, the signs of the links
in the fundamental representation drop out in the product, the
Iﬂ'ﬁlane extending over the whole length of the space and time
directions.

T T T A connection between the existence of nontrivial twist
i rer bk sectors, the presence of center vortices, and, in the decon-
55 4 fined phase, the occurrence of a state characterized by a
- value — 1/3 for the adjoint Polyakov loop 4 (first observed
oL i in [27,21)) was proposed by de Forcrand and Jg2@). The
latter authors found the twist sectors to become metastable
under local updates close to the bulk transition, i.e., the sup-
pression ofZ, monopoles causes the tunneling among differ-

. ent vortex vacua to become exponentially suppressed with

“x increasing volume. The authors were thus prevented to go

M>0 \X further and to investigate the possible extension of such con-

05 - < >=0 y y nection into the finite-temperature case.

In the Wilson case, turning on the &%) invariant Z,

0 ' L L T VA - - monopole suppression term, we observed, for small volumes

(V=4% and on top of the strong first order branch of the

bulk phase transition=<0.7), tunneling between different
FIG. 2. The bulk phase transition in ti — \ plane as seen for distinct twist sector$24,25 as well as a dynamical relation

lattice size 4< 128, between the adjoint Polyakov loop and the twist observable,

3 1 T T T

M=0
& 15 <>% 0 -
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FIG. 3. Monopole density as a function gf, for different values of\ (V=4x12®%) with a statistics 0f0(10°) configurations.

whose nontrivial value signals the presence of the dtgte transition, tunneling between the twist sectors is still evident
= —3 also in this case. For increasing lattice volume on topbut no suppression is seen for increasing volume as Fig. 4
of the bulk phase transition at low values the tunneling shows for the lattice size 2 The twists oscillate between
between the twist sectors becomes more and more sup=1and+1 but the adjoint Polyakov loop fluctuates close to
pressed. Therefore, in agreement with H@0], for small ~ zero and not betweeft 1 and—1/3, in contrast to what was
values of the chemical potential the phase transition seenfound in Ref.[20] for \,=0 and in our case at small The
really first order as we have already argued earlier by monibehavior of the twist variables reminds of the fundamental
toring other observables such as the average plaquette or tR@lyakov loop in the S(2) theory in the fundamental repre-
7, monopole density. sentation, or of the magnetization in an Ising-like system.
However, as soon as the chemical potential is increasethis justifies the definition of an order paramefey such as
the situation changes. The observables are no more discon-
tinuous, thus suggesting a very weak first order or second <~Z>E E(Iz 1+ |20+ 12,0 )
order phase transition. Indeed, far>0.75, on top of the xSyt 2y
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FIG. 4. Monte Carlo history of the adjoint Polyakov loop and of
the three electric twist variables atA\=0.8588,=0.65
for V=12

Figure 5 shows the behavior of the susceptibility of this new
observable

Xwist= NS(Z%) = (2)?) (10)

for three different volumes 8to 12*. A finite-size scaling
test for the maximum values of the susceptibility with the fit

0.4
0.35
0.3
0.25

¥ o015
0.1
0.05

-0.05

0.25
0.2
0.15
0.1

<Lp>

0.05

-0.05

PHYSICAL REVIEW D 69, 094503 (2004

-
+
R L e o= -

0

0.5

1

15 2 25

ansatz 28|

f(Ng)=a[Nglog(Ng) ¥

Ba

FIG. 6. Adjoint Polyakov loogL,) as a function of3, in the
trivial twist sector for lattice sizes ¥416° (uppe) and 6x 16°
(lower), both forx=1.0.

shows that the peaks increase with the lattice size with the

exponentw=2.4=+ .2 which is close to the value of the 4D

redictions for the pur&, monopole system g,=0. More

Ising universality class being consistent with the theoreticakatistics and larger volumes are needed to confirm this re-
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800 |- V=12 —K— T
600 | # -
400 | % -
+ o
200 | : -
; O3z
5 § \
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A
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1000 | a=1.47(0.79) &/’-
w=2.39(0.21)

3 800 | J
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/,—‘i’
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8 10 12

sult. Moreover, the transition does not show any scaling
with N, thus behaving still consistently asTe=0 bulk
transition.

For larger chemical potentiah&1.0) and positiveB,,
i.e., away from the bulk transitiofin phase I}, tunneling is
no more observed and the twist sectors become rigid. Keep-
ing the local update algorithm and turning on themono-
pole potential withh =1 we can thus study the theory within
the trivial twist sector, i.e., for the case of a zero number
(modulo 2 of (extendedl vortices.

IV. INDICATION FOR A PHASE TRANSITION AT  T#0

At finite temperature along a compactified dimension the
periodic boundary condition on the gauge fields allow for
gauge transformations that can be classified through
71(SO(3))~7Z,. In the fundamental representation this
would indeed translate into a gauge transformation that dif-
fers by a nontrivial element of the center at the boundaries.
Such transformations can induce a selection rule within the
Hilbert space. The vacuum state and the higher excited states
can exist in a superposition of the twad<{1 for a gauge
theory discretized on d-dimensional torusdifferent topo-
logical states. The creation of a vortex in the vacuum, as
measured by the 't Hooft loop, simply means taking the ex-

pectation value between two vacuum states belonging to dif-
umes 8,10 and 12 for 8,=0.65. (lower) Finite-size scaling of ferent topologicgl sectors. A symmetry preaking argument
the peak values ofy, as a function of the linear lattice si2é, . can thus be applied to the vacuum state in the Hilbert space,
The dashed line shows the finite-size scaling function fitted to thélthough center symmetry is always unbroken. The observ-
data. ablez is behaving such that it averages to zero if, at finite

FIG. 5. (uppe) Susceptibility ywist @S a function ofx for vol-
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(a) B4 =0.9 (b) Ba=11 (c) Ba=12 (d) Ba=14

FIG. 7. Spatial distribution of the fundamental Polyakov Idbg) in the trivial twist sector ah=1.0, V=4X16° and at varioug3
values.

temperature, the transitions occur among states that exist inteal of the free energy of arinfinitely massive adjoint

superposition of the different topologically distinct eigen- quark.

states, while it takes a nonzero value otherwise. For increasing extent of the lattice in the imaginary time
We will identify the trivial topological sector, in which we direction the onset of the growth is clearly seen to be shifted

shall be particularly interested, with=z,=2,;=1. This  to largerB,. Alternatively one can also consider the spatial

corresponds to vacuum expectation value between thgistribution of the fundamental Polyakov loop. For Igy it

(unique even on a torugopologically trivial state, i.e., no h - . .
. A . r k around:(x) = n n h th
creation/annihilation of extended vorticésodulo 2. shows a broad peak arourig(x) =0, consistent with the

For what we have shown in the previous chapter, we havélaar measure distribution- V1—Lg, but with increasing
a local way to implement this constraint in the action. In- B8 two symmetric peaks show up, consistent withy)>0
deed, since ergodicity in the,— \ plane is recovered along (cf. Fig. 7). The same picture occurs fi¥;,=6 but with a
the bulk phase transition when it weakens, one simply needshifted coupling as one can see from Fig. 8. In order to
to study the system in the broken phase fixing the trivialhighlight this shift somewhat more quantitatively we fitted
twist sector. More than a constraint it actually simply seemghese distributions, produced with a statistics@f10* to
a dynamical feature of the (81)-dimensional adjoint 10°) configurations and rescaled by the Haar measure, with
theory. Setting.=1 and moving parallely to th8, axis, we  some high order polynomialgip to 12th order We verified
have studied the phase structure for zeXo£N) and non-  that the odd derivatives are all zero within the errors and that
zero temperatureN,<N,). The linear spatial lattice size the second derivative departs from zero to positive values
was taken up thl;=<16. We have determined the distribution (see Fig. 9. The corresponding departure poiris should
of the fundamental Polyakov loop, governing the expectatiorbe taken as lower bounds for the critical valygg". We
value of the adjoint Polyakov loop, as an indicator for ashow them in Table I.
physical temperature effect. Appropriate initial conditions Although we did not determine the critical, values we
were used to specify the trivial twist sector monitoredsee that the departure points already indicate a reasonable
throughout the simulations. Far enough from the bulk transiscaling behavior ilN,. Anyway larger volumes, large,’s,
tion the local updates are keeping it fixed. For sake of comand also other observables will be needed to confirm the
pleteness we have studied the other twist sectors as wallniversality with the fundamental case.
given the negative value of the Polyakov loop associated Moreover, although a throughout numerical study is still
with these sectors. For=1 and on the asymmetric lattice required, our data indicate that the point at which the finite-
(N,=4) a clear finitef phenomenon appears. The adjoint temperature lines meet the bulk transition line coincides with
Polyakov loop still averages to zero for low enough, the point where the bulk transition weakens or changes its
while at higher values it eventually starts growing, remainingorder from first to second. This is consistent with the hypoth-
always positive(see Fig. 6, consistently with the fixed esis that for large enough volume the bulk phase transition
trivial twist sector and with its interpretation as the exponen-would decouple from the deconfinement effect and be always

(a) Ba=1.4 (b) Ba=15 (c) Ba=16 (d) Ba =18

FIG. 8. Same as in Fig. 7 for=6x 16°.
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Ba A
0.7 — T T T T T T y FIG. 10. Phase diagram in thig,— \ plane forN,.=4 (continu-
06 - i i ous line andN,=6 (single poinj.
o5} I . finite temperature case. At this point it would be interesting
04 F . to study also the behavior of the Villain discretization with

N i the Z, monopole suppression term used in EQ. By moni-

o 03f 3 T toring mainly the twist variables and the adjoint Polyakov
o2} I . loop we studied first the character of the bulk transition. The
041k I J latter turned out to become weaker with increasing chemical

{ potential\, turning possibly into a second order transition.
0 I At strong monopole suppressiar>1 no bulk transition was
0.1 L L L L L L . found anymore. It is this area in the phase diagram where we
11 12 13 14 15 16 17 18 - "
Ba started to search for a finite temperature transition. We have

found convincing indications for such a transition at two
FIG. 9. Second derivative of the fitting polynomial for the Haar values of N, from the adjoint Polyakov loop and from a
measure rescaled fundamental Polyakov loop distributions at varitypical change of the distributions of the fundamental Polya-
ous B, in the trivial twist sector {=16° A =1.0); the upper figure kov loop variable.

for N;=4, the lower one foN;=6. Due to the strong suppression of tunneling between dif-
_ ferent twist sectors the investigations were carried out with a
weak first or second order evenlat0. local update algorithm within the fixed trivial twist sector. Of

Unfortunately, a direct numerical verification seems unvi-course, a final answer should take into account also tunnel-
able since from the estimates given in RE0] it follows  ings between the sectors to be achieved, e.g., by multicanoni-
that it should occur at very large volumgg=0(700") for  cal update§29] or even more promising with parallel tem-
the Villain casé. pering [30]. The results of the present investigation are

collected in Fig. 10 where we have also included two further
V. CONCLUSIONS points for the finite-temperature transition seenpr=4 at

_ larger valuesh=1.5, 2.0 in an analogous way as demon-
We have carried out a thorough study of pure(3Uat-  girated forn = 1.0.

tice gauge theory in the Wilson adjoint representation, de- |, the meantime we are carrying out an additional inves-
coupling the strong coupling bulk effects from the Com'nuumtigation with the Pisa disorder parametsee, e.g., Ref31))

limit by introducing a chemical potential term suppressiag  adapted for the S@) case, which hopefully will enable us to
monopoles. As stressed in Sec. II, our formulation is not, ajjetermine the universality class of the transition. Preliminary

least not tr_iviaIIy, equivalent to the Villain one used in Refs. yata at least support the existence of a finite-temperature
[20,22,2§ in the whole parameter range we have exploredyansition decoupled from the bulk transition line andgat

We have, moreover, included the study of the twist sectors ifyg|yes compatible with our results quoted here. We shall re-
our analysis, which had not yet appeared in the I|teratur%ort on this in a forthcoming letter.

when the previous studies in R¢R2] were carried out. In

) A quantitative study of the observed finite-temperature
this respect, we have extended the work of R2€)] to the

physical transition could also be viable relying on pure ther-
modynamic quantities, as already done in R22], through

the Lee-Yang zeros technique or by studying the free energy
of a 7, vortex [19,32. More careful investigations of this

TABLE I. The 83-values as explained in the text estimated from
distributions of the fundamental Polyakov lotgee Fig. 9.

N 2 Statistics kind _vv?II hopefully tell us som_ething about the real nature of

7 A the finite-temperature transition we have reported here. But
4 0.92-0.08 0o(10°) the mere occurrence of such a transition is a prerequisite to a
6 1.25-0.15 0(10% still missing proof of universality between $2) and S@3)

lattice gauge theories.

094503-7



BARRESI, BURGIO, AND MULLER-PREUSSKER

ACKNOWLEDGMENTS

We would like to thank V. Bornyakov, M. Creutz, A. Di
Giacomo, H. Ichie, E.-M. llgenfritz, R. Kenna, T. Kovacs,

PHYSICAL REVIEW D59, 094503 (2004

sions. Special thanks go to Oliver Jahn, Philippe de For-
crand, and Terry Tomboulis for detailed critical remarks.
This work was financially supported by a EU-TMR network
under the contract FMRX-CT97-0122 and by the DFG-

M. Peardon, and M. Pepe for helpful comments and discusfunded graduate school GK 271.

[1] L.D. McLerran and B. Svetitsky, Phys. Le&8B, 195(1981).

[2] J. Kuti, J. Polonyi, and K. Szlachanyi, Phys. Le€8B, 199
(19812).

[3] A.M. Polyakov, Phys. Lett72B, 477 (1978.

[4] L. Susskind, Phys. Rev. R0, 2610(1979.

[5] B. Svetitsky and L.G. Yaffe, Nucl. Phy8210, 423 (1982.

[19] P. de Forcrand and L. von Smekal, Phys. Revwe® 011504
(2002.

[20] P. de Forcrand and O. Jahn, Nucl. Phg851, 125(2003.

[21] S. Datta and R.V. Gavai, Phys. Rev.97, 6618(1998.

[22] S. Datta and R.V. Gavai, Phys. Rev.dD, 034505(1999.

[23] S. Datta and R.V. Gavai, Phys. Rev.@2, 054512(2000.

(6] S. Fortunato, F. Karsch, P. Petreczky, and H. Satz, Phys. Letto) A Barresi, G. Burgio, and M. Mier-Preussker, Nucl. Phys. B

B 502 321(2001.
[7] G. 't Hooft, Nucl. Phys.B153 141(1979.
[8] N. Seiberg and E. Witten, Nucl. PhyB426, 19 (1994).
[9] N. Seiberg and E. Witten, Nucl. PhyB431, 484 (1994).
[10] A.M. Polyakov, Nucl. PhysB120, 429 (1977.
[11] K. Holland, P. Minkowski, M. Pepe, and U.J. Wiese, Nucl.
Phys.B668 207 (2003.
[12] C. Michael, Nucl. PhysB259 58 (1985.
[13] P. de Forcrand and O. Philipsen, Phys. Letd &, 280(2000.
[14] G. Bhanot and M. Creutz, Phys. Rev.Z23, 3212(198)).
[15] J. Greensite and B. Lautrup, Phys. Rev. Léf#, 9 (1981).
[16] M. Creutz and K.J.M. Moriarty, Nucl. Phy8210, 50 (1982.
[17] I.G. Halliday and A. Schwimmer, Phys. Letl01B 327
(1981).

[18] L. Caneschi, I.G. Halliday, and A. Schwimmer, Nucl. Phys.

B200, 409(1982.

(Proc. Supp). 106, 495 (2002.

[25] A. Barresi, G. Burgio, and M. Mér-Preussker, Nucl. Phys. B
(Proc. Supp). 119, 571 (2003.

[26] I.G. Halliday and A. Schwimmer, Phys. Letfl02B, 337
(1981).

[27] S. Cheluvaraja and H.S. Sharathchandra, hep-lat/9611001.

[28] E. Bittner, W. Janke, and H. Markum, Phys. Rev6& 024008
(2002.

[29] B.A. Berg and T. Neuhaus, Phys. Lett. 2867, 249 (1991.

[30] E.M. llgenfritz, W. Kerler, M. Miler-Preussker, and H.
Stiben, Phys. Rev. 15, 094506(2002.

[31] A. Di Giacomo, Nucl. PhysA702, 73 (2002.

[32] T. Kovacs and T. Tomboulis, Phys. Rev. L&, 704 (2000.

[33] This equivalence has been first brought to our attention
by O. Jahn.

094503-8



